Robust parameter extraction for decision support using multimodal intensive care data

Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associat...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 367; no. 1887; pp. 411 - 429
Main Authors Clifford, G.D, Long, W.J, Moody, G.B, Szolovits, P
Format Journal Article
LanguageEnglish
Published London The Royal Society 28.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.
AbstractList Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.
Author Clifford, G.D
Long, W.J
Szolovits, P
Moody, G.B
AuthorAffiliation 1 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA 02139, USA
2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Cambridge, MA 02139, USA
AuthorAffiliation_xml – name: 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Cambridge, MA 02139, USA
– name: 1 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA 02139, USA
Author_xml – sequence: 1
  givenname: G.D
  surname: Clifford
  fullname: Clifford, G.D
  email: gari@mit.edu
  organization: Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridge, MA 02139, USA
– sequence: 2
  givenname: W.J
  surname: Long
  fullname: Long, W.J
  organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridge, MA 02139, USA
– sequence: 3
  givenname: G.B
  surname: Moody
  fullname: Moody, G.B
  organization: Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridge, MA 02139, USA
– sequence: 4
  givenname: P
  surname: Szolovits
  fullname: Szolovits, P
  organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18936019$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQjlARfcCVGygnbrvYcWI7F1DVUh4qRSot4jbyOpNdt9k42M7S8utxmmXFgtqTPfpe4xnvJzutbTFJnlMypaSUr50PapoRIqeEFuJRskdzQSdZybOdeGc8nxSEfd9N9r2_IoRSXmRPkl0qS8YJLfeSy3M7631IO-XUEgO6FG-CUzoY26a1dWmF2vih8H3XWRfS3pt2ni77JpilrVSTmjZg680KU60cppUK6mnyuFaNx2fr8yC5PHl3cfRhcvrl_cejw9OJ5rIME8lin1gTXVVM1pwopHQmKcOs1IrXpZCYMcY0CsaIoEKVROiasYJkvKwjdJC8GX27frbESmMbe2-gc2ap3C1YZWAbac0C5nYFGadC0DwavFobOPujRx9gabzGplEt2t4D5yIrS0ki8eXfSZuIP5OMhHwkaGe9d1iDNkENY4zBpgFKYFgYDAuDYWEwLCzKpv_INs73CdgocPY2jtZqg-EWrmzv2ljer7p-SHX-9eJwxbgwVEoBRDJKOBEFgV-mG60iCMb7HuGOsm3_f9qLMe3KB-s2L8pJLos8H_DJiBsf8GaDK3cNXDBRwDeZwxk_-_zp-OQYBj4Z-QszX_w0DmHrGbHo1i3eNZdTGiVvH5QMDWs7_NywJYS6b-IHqmr2G4EqD-w
CitedBy_id crossref_primary_10_1088_0967_3334_33_9_1503
crossref_primary_10_1109_JPROC_2015_2501978
crossref_primary_10_1016_j_medin_2012_04_006
crossref_primary_10_1186_s12911_017_0520_7
crossref_primary_10_1093_jamia_ocad166
crossref_primary_10_1109_JSEN_2018_2828416
crossref_primary_10_1093_jamia_ocad066
crossref_primary_10_1007_s11517_016_1453_5
crossref_primary_10_1109_RBME_2013_2243724
crossref_primary_10_1371_journal_pone_0148814
crossref_primary_10_1109_JBHI_2018_2883606
crossref_primary_10_1109_JPROC_2011_2165270
crossref_primary_10_1109_JBHI_2014_2361654
crossref_primary_10_3923_jas_2015_815_820
crossref_primary_10_1016_j_compbiomed_2018_10_009
crossref_primary_10_1016_j_engappai_2014_05_014
crossref_primary_10_1155_2010_926305
crossref_primary_10_1109_ACCESS_2021_3066166
crossref_primary_10_1152_japplphysiol_01152_2011
crossref_primary_10_1109_ACCESS_2017_2690380
crossref_primary_10_1016_j_asoc_2016_01_005
crossref_primary_10_1088_0967_3334_36_8_1645
crossref_primary_10_1016_j_medine_2013_01_004
crossref_primary_10_1213_ANE_0b013e318241f7c0
crossref_primary_10_1109_JBHI_2014_2333778
crossref_primary_10_1016_j_measurement_2019_02_007
crossref_primary_10_4018_jehmc_2013070105
crossref_primary_10_1186_1475_925X_8_13
crossref_primary_10_3414_ME12_01_0093
crossref_primary_10_1109_TBME_2016_2573285
crossref_primary_10_1016_j_engappai_2015_10_004
crossref_primary_10_1159_000441981
crossref_primary_10_1155_2014_217415
crossref_primary_10_1016_j_bspc_2016_12_004
crossref_primary_10_2196_23495
crossref_primary_10_1098_rsta_2008_0239
crossref_primary_10_1109_ACCESS_2018_2853701
crossref_primary_10_1109_TBME_2012_2208459
Cites_doi 10.1136/jamia.2000.0070066
10.1109/10.678605
10.1109/CIC.2002.1166724
10.1109/TBME.2002.804591
10.1109/IEMBS.2007.4352906
10.1093/intqhc/mzi015
10.1049/el:20020773
10.1016/S0933-3657(01)00076-8
10.1049/ip-vis:19971305
10.1093/bja/ael113
10.1007/s00134-003-2030-6
10.1161/01.CIR.101.23.e215
10.1378/chest.105.4.1211
10.1213/01.ane.0000247964.47706.5d
10.1109/ITAB.2007.4407399
10.1109/TBME.2002.803511
10.1016/0169-2607(91)90039-V
10.1007/BF02347553
10.1007/s001340050500
10.1161/hc0602.103585
10.1109/IEMBS.2006.259985
10.1197/jamia.M1692
10.1109/TCSI.2006.884457
10.1088/0967-3334/26/5/R01
10.1049/ic:20010098
10.1097/00002727-199208000-00006
10.1109/TBME.2007.897817
10.1086/160554
10.1142/S0218339006001830
10.1109/TSP.2002.807005
10.1186/1475-925X-7-18
10.1093/ajhp/52.22.2543
10.1097/00075198-200208000-00008
10.1186/cc2872
10.1097/00003246-199704000-00010
10.1109/CIC.2002.1166854
10.1088/0967-3334/25/3/004
10.1186/cc1021
10.1016/j.jbi.2008.03.003
10.1109/83.913601
10.1007/s00521-005-0013-y
10.1109/IEMBS.2007.4353300
10.1213/01.ane.0000204385.01983.61
10.1016/j.bspc.2007.09.005
10.1197/jamia.M2202
10.1016/j.ijcard.2003.11.006
10.1197/jamia.M2219
10.1049/ic:20050334
10.1049/cp:19970712
10.1007/BF00648343
10.1197/jamia.M1605
10.1186/1472-6947-8-32
10.1088/0967-3334/29/1/002
ContentType Journal Article
Copyright Copyright 2008 & 2009 The Royal Society
2008 The Royal Society
Copyright © 2008 The Royal Society 2008
Copyright_xml – notice: Copyright 2008 & 2009 The Royal Society
– notice: 2008 The Royal Society
– notice: Copyright © 2008 The Royal Society 2008
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1098/rsta.2008.0157
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
EISSN 1471-2962
EndPage 429
ExternalDocumentID PMC2617714
18936019
10_1098_rsta_2008_0157
40485447
ark_67375_V84_N6NMJDFD_7
roypta_367_1887_411
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: U01EB008577
– fundername: NIBIB NIH HHS
  grantid: R01 EB001659
– fundername: NIBIB NIH HHS
  grantid: U01 EB008577
GroupedDBID -
02
0R
2WC
4.4
53G
5VS
8RP
ABBHK
ABEFU
ABFLS
ABPTK
ABXXB
ACIWK
ACNCT
ADACO
ADBBV
ADODI
ADULT
ADZLD
AELPN
AEUPB
AFFNX
AFXKK
ALMA_UNASSIGNED_HOLDINGS
AS
BGBPD
DCCCD
DIK
DNJUQ
DOOOF
DQDLB
DSRWC
DWIUU
EBS
ECEWR
EFSUC
EJD
F5P
FEDTE
H13
HH5
HQ3
HQ6
HTVGU
HZ
JLS
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RNS
ROL
RRY
SA0
TN5
V1E
X
XHC
YNT
---
-~X
0R~
18M
AACGO
AANCE
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACMTB
ACQIA
ACTMH
ADACV
AEXZC
AFVYC
AJZGM
ALMYZ
AQVQM
AS~
BSCLL
BTFSW
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
MRS
TR2
W8F
XSW
~02
AAWIL
ACHIC
ACRPL
ADNMO
ADQXQ
AGLNM
AGPVY
AGQPQ
AIHAF
ALRMG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c689t-83962ef0cdd38f60ae11b813e29ca6f978e2333ce7330717a907cf3350269f233
ISSN 1364-503X
IngestDate Thu Aug 21 14:07:44 EDT 2025
Thu Jul 10 21:54:46 EDT 2025
Fri May 30 10:59:21 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
Tue Jul 01 01:48:12 EDT 2025
Tue Sep 24 00:41:09 EDT 2024
Tue May 24 16:18:18 EDT 2022
Thu Jul 03 21:32:29 EDT 2025
Wed Oct 30 09:37:57 EDT 2024
Mon May 06 11:44:31 EDT 2019
Tue Jan 05 22:12:54 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1887
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c689t-83962ef0cdd38f60ae11b813e29ca6f978e2333ce7330717a907cf3350269f233
Notes ark:/67375/V84-N6NMJDFD-7
ArticleID:rsta20080157
istex:B0E1A5699BE970F2DA37909B08B782F9AB7D46C2
href:411.pdf
Theme Issue 'Signal processing in vital rhythms and signs' compiled by Pablo Laguna and Leif Sörnmo
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2617714
PMID 18936019
PQID 66729980
PQPubID 23479
PageCount 19
ParticipantIDs pubmed_primary_18936019
proquest_miscellaneous_66729980
highwire_royalsociety_roypta_367_1887_411
istex_primary_ark_67375_V84_N6NMJDFD_7
royalsociety_journals_RSTAv367i1887_0831060750_zip_rsta_367_issue_1887_rsta_2008_0157_rsta_2008_0157
crossref_citationtrail_10_1098_rsta_2008_0157
jstor_primary_40485447
crossref_primary_10_1098_rsta_2008_0157
royalsociety_journals_10_1098_rsta_2008_0157
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2617714
ProviderPackageCode RHF
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-28
PublicationDateYYYYMMDD 2009-01-28
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-28
  day: 28
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAlternate PHIL TRANS R SOC A
PublicationYear 2009
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_2_28_1
Moody G.B (e_1_3_2_42_1) 1993; 20
e_1_3_2_49_1
Sun J.X (e_1_3_2_60_1) 2006; 33
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_66_1
e_1_3_2_22_1
e_1_3_2_64_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_68_1
Parlikar T.A (e_1_3_2_51_1) 2007; 34
e_1_3_2_62_1
Clifford G.D (e_1_3_2_13_1) 2004; 31
Hug C (e_1_3_2_27_1) 2007; 34
Clifford G.D (e_1_3_2_16_1) 2005; 7
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
McSharry P.E (e_1_3_2_40_1) 2004; 5467
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_73_1
Dean B.S (e_1_3_2_19_1) 1995; 52
e_1_3_2_71_1
Clifford G.D (e_1_3_2_17_1) 2006; 33
e_1_3_2_29_1
e_1_3_2_65_1
Shu J (e_1_3_2_59_1) 2004; 31
e_1_3_2_63_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
e_1_3_2_61_1
Moody G.B (e_1_3_2_44_1) 1989; 16
e_1_3_2_38_1
e_1_3_2_8_1
Abdala O.T (e_1_3_2_2_1) 2004; 31
e_1_3_2_30_1
e_1_3_2_55_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_57_1
Moody G.B (e_1_3_2_43_1) 2003; 30
e_1_3_2_72_1
e_1_3_2_70_1
Douglass M (e_1_3_2_21_1) 2004; 31
References_xml – ident: e_1_3_2_24_1
  doi: 10.1136/jamia.2000.0070066
– ident: e_1_3_2_31_1
  doi: 10.1109/10.678605
– ident: e_1_3_2_15_1
  doi: 10.1109/CIC.2002.1166724
– ident: e_1_3_2_14_1
– volume: 31
  start-page: 341
  year: 2004
  ident: e_1_3_2_21_1
  article-title: Computer-assisted de-identification of free text in the MIMIC II database
  publication-title: Comput. Cardiol
– ident: e_1_3_2_28_1
  doi: 10.1109/TBME.2002.804591
– ident: e_1_3_2_73_1
  doi: 10.1109/IEMBS.2007.4352906
– ident: e_1_3_2_34_1
  doi: 10.1093/intqhc/mzi015
– ident: e_1_3_2_63_1
  doi: 10.1049/el:20020773
– volume: 31
  start-page: 709
  year: 2004
  ident: e_1_3_2_13_1
  article-title: Generating 24-hour ECG, BP and respiratory signals with realistic linear and nonlinear clinical characteristics using a nonlinear model
  publication-title: Comput. Cardiol
– ident: e_1_3_2_36_1
  doi: 10.1016/S0933-3657(01)00076-8
– ident: e_1_3_2_54_1
  doi: 10.1049/ip-vis:19971305
– ident: e_1_3_2_66_1
  doi: 10.1093/bja/ael113
– ident: e_1_3_2_52_1
  doi: 10.1007/s00134-003-2030-6
– volume: 7
  start-page: 158
  year: 2005
  ident: e_1_3_2_16_1
  article-title: Model-based filtering, compression and classification of the ECG
  publication-title: Int. J. Bioelectromag
– volume: 34
  start-page: 379
  year: 2007
  ident: e_1_3_2_51_1
  article-title: Model-based estimation of cardiac output and total peripheral resistance
  publication-title: Comput. Cardiol
– ident: e_1_3_2_23_1
  doi: 10.1161/01.CIR.101.23.e215
– ident: e_1_3_2_41_1
  doi: 10.1378/chest.105.4.1211
– ident: e_1_3_2_61_1
  doi: 10.1213/01.ane.0000247964.47706.5d
– ident: e_1_3_2_69_1
  doi: 10.1109/ITAB.2007.4407399
– ident: e_1_3_2_8_1
  doi: 10.1109/TBME.2002.803511
– ident: e_1_3_2_38_1
  doi: 10.1016/0169-2607(91)90039-V
– volume: 33
  start-page: 13
  year: 2006
  ident: e_1_3_2_60_1
  article-title: A signal abnormality index for arterial blood pressure waveforms
  publication-title: Comput. Cardiol
– ident: e_1_3_2_74_1
  doi: 10.1007/BF02347553
– ident: e_1_3_2_48_1
  doi: 10.1007/s001340050500
– volume: 5467
  start-page: 78
  year: 2004
  ident: e_1_3_2_40_1
  article-title: A comparison of nonlinear noise reduction and independent component analysis using a realistic dynamical model of the electrocardiogram
  publication-title: Proc. SPIE Int. Symp. on Fluctuations Noise
– volume: 30
  start-page: 235
  year: 2003
  ident: e_1_3_2_43_1
  article-title: Distinguishing ischemic from non-ischemic ST changes: the PhysioNet/Computers in Cardiology Challenge 2003
  publication-title: Comput. Cardiol
– ident: e_1_3_2_49_1
  doi: 10.1161/hc0602.103585
– ident: e_1_3_2_55_1
  doi: 10.1109/IEMBS.2006.259985
– volume: 20
  start-page: 715
  year: 1993
  ident: e_1_3_2_42_1
  article-title: Spectral analysis of heart rate without resampling
  publication-title: Comput. Cardiol
– ident: e_1_3_2_47_1
  doi: 10.1197/jamia.M1692
– ident: e_1_3_2_50_1
  doi: 10.1109/TCSI.2006.884457
– ident: e_1_3_2_4_1
  doi: 10.1088/0967-3334/26/5/R01
– ident: e_1_3_2_62_1
  doi: 10.1049/ic:20010098
– ident: e_1_3_2_6_1
  doi: 10.1097/00002727-199208000-00006
– ident: e_1_3_2_37_1
– ident: e_1_3_2_5_1
– ident: e_1_3_2_57_1
  doi: 10.1109/TBME.2007.897817
– ident: e_1_3_2_58_1
  doi: 10.1086/160554
– ident: e_1_3_2_39_1
– ident: e_1_3_2_12_1
  doi: 10.1142/S0218339006001830
– ident: e_1_3_2_22_1
  doi: 10.1109/TSP.2002.807005
– ident: e_1_3_2_18_1
  doi: 10.1186/1475-925X-7-18
– volume: 52
  start-page: 2543
  year: 1995
  ident: e_1_3_2_19_1
  article-title: Comparison of medication errors in an American and a British hospital
  publication-title: Am. J. Health Syst. Pharm
  doi: 10.1093/ajhp/52.22.2543
– ident: e_1_3_2_20_1
  doi: 10.1097/00075198-200208000-00008
– volume: 16
  start-page: 269
  year: 1989
  ident: e_1_3_2_44_1
  article-title: QRS morphology representation and noise estimation using the Karhunen–Loève transform
  publication-title: Comput. Cardiol
– volume: 34
  start-page: 641
  year: 2007
  ident: e_1_3_2_27_1
  article-title: An analysis of the errors in recorded heart rate and blood pressure in the ICU using a complex set of signal quality metrics
  publication-title: Comput. Cardiol
– ident: e_1_3_2_7_1
  doi: 10.1186/cc2872
– ident: e_1_3_2_67_1
  doi: 10.1097/00003246-199704000-00010
– ident: e_1_3_2_56_1
  doi: 10.1109/CIC.2002.1166854
– ident: e_1_3_2_30_1
  doi: 10.1088/0967-3334/25/3/004
– ident: e_1_3_2_32_1
– ident: e_1_3_2_9_1
  doi: 10.1186/cc1021
– ident: e_1_3_2_3_1
  doi: 10.1016/j.jbi.2008.03.003
– ident: e_1_3_2_11_1
  doi: 10.1109/83.913601
– ident: e_1_3_2_26_1
  doi: 10.1007/s00521-005-0013-y
– ident: e_1_3_2_70_1
  doi: 10.1109/IEMBS.2007.4353300
– ident: e_1_3_2_29_1
  doi: 10.1213/01.ane.0000204385.01983.61
– ident: e_1_3_2_53_1
  doi: 10.1016/j.bspc.2007.09.005
– ident: e_1_3_2_71_1
– ident: e_1_3_2_10_1
  doi: 10.1197/jamia.M2202
– volume: 31
  start-page: 693
  year: 2004
  ident: e_1_3_2_2_1
  article-title: Estimation of missing values in clinical laboratory measurements of ICU patients using a weighted K-nearest neighbors algorithm
  publication-title: Comput. Cardiol
– ident: e_1_3_2_65_1
– volume: 33
  start-page: 829
  year: 2006
  ident: e_1_3_2_17_1
  article-title: Using the blood pressure waveform to reduce critical false ECG alarms
  publication-title: Comput. Cardiol
– ident: e_1_3_2_25_1
  doi: 10.1016/j.ijcard.2003.11.006
– ident: e_1_3_2_68_1
  doi: 10.1197/jamia.M2219
– volume: 31
  start-page: 197
  year: 2004
  ident: e_1_3_2_59_1
  article-title: An open-source, interactive java-based system for rapid encoding of significant events in the ICU using the unified medical language system
  publication-title: Comput. Cardiol
– ident: e_1_3_2_64_1
  doi: 10.1049/ic:20050334
– ident: e_1_3_2_45_1
  doi: 10.1049/cp:19970712
– ident: e_1_3_2_35_1
  doi: 10.1007/BF00648343
– ident: e_1_3_2_72_1
  doi: 10.1197/jamia.M1605
– ident: e_1_3_2_46_1
  doi: 10.1186/1472-6947-8-32
– ident: e_1_3_2_33_1
  doi: 10.1088/0967-3334/29/1/002
SSID ssj0011652
Score 2.2061393
Snippet Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in...
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in...
SourceID pubmedcentral
proquest
pubmed
crossref
royalsociety
jstor
istex
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 411
SubjectTerms Algorithms
Blood pressure
Clinical Errors
Computer Communication Networks
Critical Care - methods
Data Fusion
Data Interpretation, Statistical
Decision Support
Decision Support Techniques
Electrocardiography
Health Services Needs and Demand
Heart rate
Humans
Information retrieval noise
Intensive Care Unit
Intensive Care Units
Interpolation
Missing data
Models, Statistical
Monitoring, Physiologic - methods
Noise
Reproducibility of Results
Signal noise
Signal Processing, Computer-Assisted
Signal Quality
Waveforms
Title Robust parameter extraction for decision support using multimodal intensive care data
URI http://rsta.royalsocietypublishing.org/content/367/1887/411.abstract
https://api.istex.fr/ark:/67375/V84-N6NMJDFD-7/fulltext.pdf
https://www.jstor.org/stable/40485447
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2008.0157
https://www.ncbi.nlm.nih.gov/pubmed/18936019
https://www.proquest.com/docview/66729980
https://pubmed.ncbi.nlm.nih.gov/PMC2617714
Volume 367
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6VIiR4QLRc5vQDAqrg4HO9fixNS1WUCnpA31a2Y4uIkkSxU1X9f_wvZvayXRIJeLHs9WRl73yZ3Vl_M0PIqyJMM5qxAKxfnjlhVPpOwljmZKXnUTf1o5JivPPwkO6fhgdn0dna2q8Wa2lRZ_38amlcyf9oFdpArxgl-w-aNZ1CA5yDfuEIGobjX-n4aJotqhpWgciwwmyHu5f1XBX_RvrgQBXQ6WHtTlhn9yRBQATd_pyORJoNzWDHQCTAQJ22l6ufdaEDocq6qS1eaW6B3H7Q3E_84CDqg_TRCIET3hP790OTG1aUF1DbKfIcN-6LJiliT03JZqm_cz4uNQH_Y7836BsKkSITf-v3DkzjcDqVswaIfjCtx1dg4i_GtSxK0O_sdCCPS0eO61i5zku1zHZAQydyRWVhY9cDWedDA5ipiV0a6lCZeDnnh3LX5Y_pxE0wRAJDjBTr1pPZtK-l6A7BDEZhGN8gN33wVtDcfvrSfMzyqCj8ZB7S5A5l77tdd9dGOl81uE34j7_UjNllvtASSu8ch6qSI9VaMp3cI3eVr2NvS-BukLVisknutDJgwlUDjWqT3BJ8ZDzbUHNOZb9VidG37pNTiXfb4N1u8G4DRmyNd1vh3RZ4txu82wbvNuLdRrw_IKd7uyc7-44qC-LklCW1A0t66helm49GASvBoBSelzEvKPwkT2mZxKzwgyDIizgIcLciTdw4L4Mgcn2alHDrIVmfTCfFY2KnCcj6WRxnbhLGJWMR88MSfAQvicvILy3iaIXwXOXMx9It51xyNxhHBapSrqBAi7wx8jOZLWal5JbWL29rCi9mIAjg5QhZDkC1CFshi11iSAsW5G7_guO3Oz4bwQu8FtgxT5POfyCVM474VxbyQ3o4PBjsDTg8z0MBLiOoMW2RlxptHGYe_JyYTorpouKUgmOeMNcijyT2mlcGJ4iC72iRuINKI4A57bt3JuPvIrc9FoiIvdAi7zpvqoxutXI0R8vFj45Pti9gZMZiZERVRYpOEr8az2QfOGzCQsjB6_Z77fLJqkF6Sm43BusZWa_ni-I5OCt19kKYgt-DVEIZ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Parameter+Extraction+for+Decision+Support+Using+Multimodal+Intensive+Care+Data&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Clifford%2C+G.+D.&rft.au=Long%2C+W.+J.&rft.au=Moody%2C+G.+B.&rft.au=Szolovits%2C+P.&rft.date=2009-01-28&rft.pub=The+Royal+Society&rft.issn=1364-503X&rft.volume=367&rft.issue=1887&rft.spage=411&rft.epage=429&rft_id=info:doi/10.1098%2Frsta.2008.0157&rft.externalDocID=40485447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon