Robust parameter extraction for decision support using multimodal intensive care data
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associat...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 367; no. 1887; pp. 411 - 429 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
The Royal Society
28.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU. |
---|---|
AbstractList | Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU. Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU. Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU.Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU. |
Author | Clifford, G.D Long, W.J Szolovits, P Moody, G.B |
AuthorAffiliation | 1 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA 02139, USA 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Cambridge, MA 02139, USA |
AuthorAffiliation_xml | – name: 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology Cambridge, MA 02139, USA – name: 1 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology Cambridge, MA 02139, USA |
Author_xml | – sequence: 1 givenname: G.D surname: Clifford fullname: Clifford, G.D email: gari@mit.edu organization: Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridge, MA 02139, USA – sequence: 2 givenname: W.J surname: Long fullname: Long, W.J organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridge, MA 02139, USA – sequence: 3 givenname: G.B surname: Moody fullname: Moody, G.B organization: Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridge, MA 02139, USA – sequence: 4 givenname: P surname: Szolovits fullname: Szolovits, P organization: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18936019$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAQjlARfcCVGygnbrvYcWI7F1DVUh4qRSot4jbyOpNdt9k42M7S8utxmmXFgtqTPfpe4xnvJzutbTFJnlMypaSUr50PapoRIqeEFuJRskdzQSdZybOdeGc8nxSEfd9N9r2_IoRSXmRPkl0qS8YJLfeSy3M7631IO-XUEgO6FG-CUzoY26a1dWmF2vih8H3XWRfS3pt2ni77JpilrVSTmjZg680KU60cppUK6mnyuFaNx2fr8yC5PHl3cfRhcvrl_cejw9OJ5rIME8lin1gTXVVM1pwopHQmKcOs1IrXpZCYMcY0CsaIoEKVROiasYJkvKwjdJC8GX27frbESmMbe2-gc2ap3C1YZWAbac0C5nYFGadC0DwavFobOPujRx9gabzGplEt2t4D5yIrS0ki8eXfSZuIP5OMhHwkaGe9d1iDNkENY4zBpgFKYFgYDAuDYWEwLCzKpv_INs73CdgocPY2jtZqg-EWrmzv2ljer7p-SHX-9eJwxbgwVEoBRDJKOBEFgV-mG60iCMb7HuGOsm3_f9qLMe3KB-s2L8pJLos8H_DJiBsf8GaDK3cNXDBRwDeZwxk_-_zp-OQYBj4Z-QszX_w0DmHrGbHo1i3eNZdTGiVvH5QMDWs7_NywJYS6b-IHqmr2G4EqD-w |
CitedBy_id | crossref_primary_10_1088_0967_3334_33_9_1503 crossref_primary_10_1109_JPROC_2015_2501978 crossref_primary_10_1016_j_medin_2012_04_006 crossref_primary_10_1186_s12911_017_0520_7 crossref_primary_10_1093_jamia_ocad166 crossref_primary_10_1109_JSEN_2018_2828416 crossref_primary_10_1093_jamia_ocad066 crossref_primary_10_1007_s11517_016_1453_5 crossref_primary_10_1109_RBME_2013_2243724 crossref_primary_10_1371_journal_pone_0148814 crossref_primary_10_1109_JBHI_2018_2883606 crossref_primary_10_1109_JPROC_2011_2165270 crossref_primary_10_1109_JBHI_2014_2361654 crossref_primary_10_3923_jas_2015_815_820 crossref_primary_10_1016_j_compbiomed_2018_10_009 crossref_primary_10_1016_j_engappai_2014_05_014 crossref_primary_10_1155_2010_926305 crossref_primary_10_1109_ACCESS_2021_3066166 crossref_primary_10_1152_japplphysiol_01152_2011 crossref_primary_10_1109_ACCESS_2017_2690380 crossref_primary_10_1016_j_asoc_2016_01_005 crossref_primary_10_1088_0967_3334_36_8_1645 crossref_primary_10_1016_j_medine_2013_01_004 crossref_primary_10_1213_ANE_0b013e318241f7c0 crossref_primary_10_1109_JBHI_2014_2333778 crossref_primary_10_1016_j_measurement_2019_02_007 crossref_primary_10_4018_jehmc_2013070105 crossref_primary_10_1186_1475_925X_8_13 crossref_primary_10_3414_ME12_01_0093 crossref_primary_10_1109_TBME_2016_2573285 crossref_primary_10_1016_j_engappai_2015_10_004 crossref_primary_10_1159_000441981 crossref_primary_10_1155_2014_217415 crossref_primary_10_1016_j_bspc_2016_12_004 crossref_primary_10_2196_23495 crossref_primary_10_1098_rsta_2008_0239 crossref_primary_10_1109_ACCESS_2018_2853701 crossref_primary_10_1109_TBME_2012_2208459 |
Cites_doi | 10.1136/jamia.2000.0070066 10.1109/10.678605 10.1109/CIC.2002.1166724 10.1109/TBME.2002.804591 10.1109/IEMBS.2007.4352906 10.1093/intqhc/mzi015 10.1049/el:20020773 10.1016/S0933-3657(01)00076-8 10.1049/ip-vis:19971305 10.1093/bja/ael113 10.1007/s00134-003-2030-6 10.1161/01.CIR.101.23.e215 10.1378/chest.105.4.1211 10.1213/01.ane.0000247964.47706.5d 10.1109/ITAB.2007.4407399 10.1109/TBME.2002.803511 10.1016/0169-2607(91)90039-V 10.1007/BF02347553 10.1007/s001340050500 10.1161/hc0602.103585 10.1109/IEMBS.2006.259985 10.1197/jamia.M1692 10.1109/TCSI.2006.884457 10.1088/0967-3334/26/5/R01 10.1049/ic:20010098 10.1097/00002727-199208000-00006 10.1109/TBME.2007.897817 10.1086/160554 10.1142/S0218339006001830 10.1109/TSP.2002.807005 10.1186/1475-925X-7-18 10.1093/ajhp/52.22.2543 10.1097/00075198-200208000-00008 10.1186/cc2872 10.1097/00003246-199704000-00010 10.1109/CIC.2002.1166854 10.1088/0967-3334/25/3/004 10.1186/cc1021 10.1016/j.jbi.2008.03.003 10.1109/83.913601 10.1007/s00521-005-0013-y 10.1109/IEMBS.2007.4353300 10.1213/01.ane.0000204385.01983.61 10.1016/j.bspc.2007.09.005 10.1197/jamia.M2202 10.1016/j.ijcard.2003.11.006 10.1197/jamia.M2219 10.1049/ic:20050334 10.1049/cp:19970712 10.1007/BF00648343 10.1197/jamia.M1605 10.1186/1472-6947-8-32 10.1088/0967-3334/29/1/002 |
ContentType | Journal Article |
Copyright | Copyright 2008 & 2009 The Royal Society 2008 The Royal Society Copyright © 2008 The Royal Society 2008 |
Copyright_xml | – notice: Copyright 2008 & 2009 The Royal Society – notice: 2008 The Royal Society – notice: Copyright © 2008 The Royal Society 2008 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1098/rsta.2008.0157 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics |
EISSN | 1471-2962 |
EndPage | 429 |
ExternalDocumentID | PMC2617714 18936019 10_1098_rsta_2008_0157 40485447 ark_67375_V84_N6NMJDFD_7 roypta_367_1887_411 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: U01EB008577 – fundername: NIBIB NIH HHS grantid: R01 EB001659 – fundername: NIBIB NIH HHS grantid: U01 EB008577 |
GroupedDBID | - 02 0R 2WC 4.4 53G 5VS 8RP ABBHK ABEFU ABFLS ABPTK ABXXB ACIWK ACNCT ADACO ADBBV ADODI ADULT ADZLD AELPN AEUPB AFFNX AFXKK ALMA_UNASSIGNED_HOLDINGS AS BGBPD DCCCD DIK DNJUQ DOOOF DQDLB DSRWC DWIUU EBS ECEWR EFSUC EJD F5P FEDTE H13 HH5 HQ3 HQ6 HTVGU HZ JLS JMS JPM JSG JSODD JST K-O KQ8 MV1 NSAHA O9- OK1 OP1 P2P RHF RNS ROL RRY SA0 TN5 V1E X XHC YNT --- -~X 0R~ 18M AACGO AANCE ABFAN ABPLY ABTLG ABXSQ ABYWD ACGFO ACMTB ACQIA ACTMH ADACV AEXZC AFVYC AJZGM ALMYZ AQVQM AS~ BSCLL BTFSW HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF MRS TR2 W8F XSW ~02 AAWIL ACHIC ACRPL ADNMO ADQXQ AGLNM AGPVY AGQPQ AIHAF ALRMG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c689t-83962ef0cdd38f60ae11b813e29ca6f978e2333ce7330717a907cf3350269f233 |
ISSN | 1364-503X |
IngestDate | Thu Aug 21 14:07:44 EDT 2025 Thu Jul 10 21:54:46 EDT 2025 Fri May 30 10:59:21 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Tue Jul 01 01:48:12 EDT 2025 Tue Sep 24 00:41:09 EDT 2024 Tue May 24 16:18:18 EDT 2022 Thu Jul 03 21:32:29 EDT 2025 Wed Oct 30 09:37:57 EDT 2024 Mon May 06 11:44:31 EDT 2019 Tue Jan 05 22:12:54 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1887 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c689t-83962ef0cdd38f60ae11b813e29ca6f978e2333ce7330717a907cf3350269f233 |
Notes | ark:/67375/V84-N6NMJDFD-7 ArticleID:rsta20080157 istex:B0E1A5699BE970F2DA37909B08B782F9AB7D46C2 href:411.pdf Theme Issue 'Signal processing in vital rhythms and signs' compiled by Pablo Laguna and Leif Sörnmo ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2617714 |
PMID | 18936019 |
PQID | 66729980 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmed_primary_18936019 proquest_miscellaneous_66729980 highwire_royalsociety_roypta_367_1887_411 istex_primary_ark_67375_V84_N6NMJDFD_7 royalsociety_journals_RSTAv367i1887_0831060750_zip_rsta_367_issue_1887_rsta_2008_0157_rsta_2008_0157 crossref_citationtrail_10_1098_rsta_2008_0157 jstor_primary_40485447 crossref_primary_10_1098_rsta_2008_0157 royalsociety_journals_10_1098_rsta_2008_0157 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2617714 |
ProviderPackageCode | RHF CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-28 |
PublicationDateYYYYMMDD | 2009-01-28 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationTitleAlternate | PHIL TRANS R SOC A |
PublicationYear | 2009 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_2_28_1 Moody G.B (e_1_3_2_42_1) 1993; 20 e_1_3_2_49_1 Sun J.X (e_1_3_2_60_1) 2006; 33 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_66_1 e_1_3_2_22_1 e_1_3_2_64_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_68_1 Parlikar T.A (e_1_3_2_51_1) 2007; 34 e_1_3_2_62_1 Clifford G.D (e_1_3_2_13_1) 2004; 31 Hug C (e_1_3_2_27_1) 2007; 34 Clifford G.D (e_1_3_2_16_1) 2005; 7 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 McSharry P.E (e_1_3_2_40_1) 2004; 5467 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_3_1 e_1_3_2_50_1 e_1_3_2_73_1 Dean B.S (e_1_3_2_19_1) 1995; 52 e_1_3_2_71_1 Clifford G.D (e_1_3_2_17_1) 2006; 33 e_1_3_2_29_1 e_1_3_2_65_1 Shu J (e_1_3_2_59_1) 2004; 31 e_1_3_2_63_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 e_1_3_2_61_1 Moody G.B (e_1_3_2_44_1) 1989; 16 e_1_3_2_38_1 e_1_3_2_8_1 Abdala O.T (e_1_3_2_2_1) 2004; 31 e_1_3_2_30_1 e_1_3_2_55_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_53_1 e_1_3_2_74_1 e_1_3_2_6_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_57_1 Moody G.B (e_1_3_2_43_1) 2003; 30 e_1_3_2_72_1 e_1_3_2_70_1 Douglass M (e_1_3_2_21_1) 2004; 31 |
References_xml | – ident: e_1_3_2_24_1 doi: 10.1136/jamia.2000.0070066 – ident: e_1_3_2_31_1 doi: 10.1109/10.678605 – ident: e_1_3_2_15_1 doi: 10.1109/CIC.2002.1166724 – ident: e_1_3_2_14_1 – volume: 31 start-page: 341 year: 2004 ident: e_1_3_2_21_1 article-title: Computer-assisted de-identification of free text in the MIMIC II database publication-title: Comput. Cardiol – ident: e_1_3_2_28_1 doi: 10.1109/TBME.2002.804591 – ident: e_1_3_2_73_1 doi: 10.1109/IEMBS.2007.4352906 – ident: e_1_3_2_34_1 doi: 10.1093/intqhc/mzi015 – ident: e_1_3_2_63_1 doi: 10.1049/el:20020773 – volume: 31 start-page: 709 year: 2004 ident: e_1_3_2_13_1 article-title: Generating 24-hour ECG, BP and respiratory signals with realistic linear and nonlinear clinical characteristics using a nonlinear model publication-title: Comput. Cardiol – ident: e_1_3_2_36_1 doi: 10.1016/S0933-3657(01)00076-8 – ident: e_1_3_2_54_1 doi: 10.1049/ip-vis:19971305 – ident: e_1_3_2_66_1 doi: 10.1093/bja/ael113 – ident: e_1_3_2_52_1 doi: 10.1007/s00134-003-2030-6 – volume: 7 start-page: 158 year: 2005 ident: e_1_3_2_16_1 article-title: Model-based filtering, compression and classification of the ECG publication-title: Int. J. Bioelectromag – volume: 34 start-page: 379 year: 2007 ident: e_1_3_2_51_1 article-title: Model-based estimation of cardiac output and total peripheral resistance publication-title: Comput. Cardiol – ident: e_1_3_2_23_1 doi: 10.1161/01.CIR.101.23.e215 – ident: e_1_3_2_41_1 doi: 10.1378/chest.105.4.1211 – ident: e_1_3_2_61_1 doi: 10.1213/01.ane.0000247964.47706.5d – ident: e_1_3_2_69_1 doi: 10.1109/ITAB.2007.4407399 – ident: e_1_3_2_8_1 doi: 10.1109/TBME.2002.803511 – ident: e_1_3_2_38_1 doi: 10.1016/0169-2607(91)90039-V – volume: 33 start-page: 13 year: 2006 ident: e_1_3_2_60_1 article-title: A signal abnormality index for arterial blood pressure waveforms publication-title: Comput. Cardiol – ident: e_1_3_2_74_1 doi: 10.1007/BF02347553 – ident: e_1_3_2_48_1 doi: 10.1007/s001340050500 – volume: 5467 start-page: 78 year: 2004 ident: e_1_3_2_40_1 article-title: A comparison of nonlinear noise reduction and independent component analysis using a realistic dynamical model of the electrocardiogram publication-title: Proc. SPIE Int. Symp. on Fluctuations Noise – volume: 30 start-page: 235 year: 2003 ident: e_1_3_2_43_1 article-title: Distinguishing ischemic from non-ischemic ST changes: the PhysioNet/Computers in Cardiology Challenge 2003 publication-title: Comput. Cardiol – ident: e_1_3_2_49_1 doi: 10.1161/hc0602.103585 – ident: e_1_3_2_55_1 doi: 10.1109/IEMBS.2006.259985 – volume: 20 start-page: 715 year: 1993 ident: e_1_3_2_42_1 article-title: Spectral analysis of heart rate without resampling publication-title: Comput. Cardiol – ident: e_1_3_2_47_1 doi: 10.1197/jamia.M1692 – ident: e_1_3_2_50_1 doi: 10.1109/TCSI.2006.884457 – ident: e_1_3_2_4_1 doi: 10.1088/0967-3334/26/5/R01 – ident: e_1_3_2_62_1 doi: 10.1049/ic:20010098 – ident: e_1_3_2_6_1 doi: 10.1097/00002727-199208000-00006 – ident: e_1_3_2_37_1 – ident: e_1_3_2_5_1 – ident: e_1_3_2_57_1 doi: 10.1109/TBME.2007.897817 – ident: e_1_3_2_58_1 doi: 10.1086/160554 – ident: e_1_3_2_39_1 – ident: e_1_3_2_12_1 doi: 10.1142/S0218339006001830 – ident: e_1_3_2_22_1 doi: 10.1109/TSP.2002.807005 – ident: e_1_3_2_18_1 doi: 10.1186/1475-925X-7-18 – volume: 52 start-page: 2543 year: 1995 ident: e_1_3_2_19_1 article-title: Comparison of medication errors in an American and a British hospital publication-title: Am. J. Health Syst. Pharm doi: 10.1093/ajhp/52.22.2543 – ident: e_1_3_2_20_1 doi: 10.1097/00075198-200208000-00008 – volume: 16 start-page: 269 year: 1989 ident: e_1_3_2_44_1 article-title: QRS morphology representation and noise estimation using the Karhunen–Loève transform publication-title: Comput. Cardiol – volume: 34 start-page: 641 year: 2007 ident: e_1_3_2_27_1 article-title: An analysis of the errors in recorded heart rate and blood pressure in the ICU using a complex set of signal quality metrics publication-title: Comput. Cardiol – ident: e_1_3_2_7_1 doi: 10.1186/cc2872 – ident: e_1_3_2_67_1 doi: 10.1097/00003246-199704000-00010 – ident: e_1_3_2_56_1 doi: 10.1109/CIC.2002.1166854 – ident: e_1_3_2_30_1 doi: 10.1088/0967-3334/25/3/004 – ident: e_1_3_2_32_1 – ident: e_1_3_2_9_1 doi: 10.1186/cc1021 – ident: e_1_3_2_3_1 doi: 10.1016/j.jbi.2008.03.003 – ident: e_1_3_2_11_1 doi: 10.1109/83.913601 – ident: e_1_3_2_26_1 doi: 10.1007/s00521-005-0013-y – ident: e_1_3_2_70_1 doi: 10.1109/IEMBS.2007.4353300 – ident: e_1_3_2_29_1 doi: 10.1213/01.ane.0000204385.01983.61 – ident: e_1_3_2_53_1 doi: 10.1016/j.bspc.2007.09.005 – ident: e_1_3_2_71_1 – ident: e_1_3_2_10_1 doi: 10.1197/jamia.M2202 – volume: 31 start-page: 693 year: 2004 ident: e_1_3_2_2_1 article-title: Estimation of missing values in clinical laboratory measurements of ICU patients using a weighted K-nearest neighbors algorithm publication-title: Comput. Cardiol – ident: e_1_3_2_65_1 – volume: 33 start-page: 829 year: 2006 ident: e_1_3_2_17_1 article-title: Using the blood pressure waveform to reduce critical false ECG alarms publication-title: Comput. Cardiol – ident: e_1_3_2_25_1 doi: 10.1016/j.ijcard.2003.11.006 – ident: e_1_3_2_68_1 doi: 10.1197/jamia.M2219 – volume: 31 start-page: 197 year: 2004 ident: e_1_3_2_59_1 article-title: An open-source, interactive java-based system for rapid encoding of significant events in the ICU using the unified medical language system publication-title: Comput. Cardiol – ident: e_1_3_2_64_1 doi: 10.1049/ic:20050334 – ident: e_1_3_2_45_1 doi: 10.1049/cp:19970712 – ident: e_1_3_2_35_1 doi: 10.1007/BF00648343 – ident: e_1_3_2_72_1 doi: 10.1197/jamia.M1605 – ident: e_1_3_2_46_1 doi: 10.1186/1472-6947-8-32 – ident: e_1_3_2_33_1 doi: 10.1088/0967-3334/29/1/002 |
SSID | ssj0011652 |
Score | 2.2061393 |
Snippet | Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational
biology. Recent developments in... Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in... |
SourceID | pubmedcentral proquest pubmed crossref royalsociety jstor istex highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 411 |
SubjectTerms | Algorithms Blood pressure Clinical Errors Computer Communication Networks Critical Care - methods Data Fusion Data Interpretation, Statistical Decision Support Decision Support Techniques Electrocardiography Health Services Needs and Demand Heart rate Humans Information retrieval noise Intensive Care Unit Intensive Care Units Interpolation Missing data Models, Statistical Monitoring, Physiologic - methods Noise Reproducibility of Results Signal noise Signal Processing, Computer-Assisted Signal Quality Waveforms |
Title | Robust parameter extraction for decision support using multimodal intensive care data |
URI | http://rsta.royalsocietypublishing.org/content/367/1887/411.abstract https://api.istex.fr/ark:/67375/V84-N6NMJDFD-7/fulltext.pdf https://www.jstor.org/stable/40485447 https://royalsocietypublishing.org/doi/full/10.1098/rsta.2008.0157 https://www.ncbi.nlm.nih.gov/pubmed/18936019 https://www.proquest.com/docview/66729980 https://pubmed.ncbi.nlm.nih.gov/PMC2617714 |
Volume | 367 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6VIiR4QLRc5vQDAqrg4HO9fixNS1WUCnpA31a2Y4uIkkSxU1X9f_wvZvayXRIJeLHs9WRl73yZ3Vl_M0PIqyJMM5qxAKxfnjlhVPpOwljmZKXnUTf1o5JivPPwkO6fhgdn0dna2q8Wa2lRZ_38amlcyf9oFdpArxgl-w-aNZ1CA5yDfuEIGobjX-n4aJotqhpWgciwwmyHu5f1XBX_RvrgQBXQ6WHtTlhn9yRBQATd_pyORJoNzWDHQCTAQJ22l6ufdaEDocq6qS1eaW6B3H7Q3E_84CDqg_TRCIET3hP790OTG1aUF1DbKfIcN-6LJiliT03JZqm_cz4uNQH_Y7836BsKkSITf-v3DkzjcDqVswaIfjCtx1dg4i_GtSxK0O_sdCCPS0eO61i5zku1zHZAQydyRWVhY9cDWedDA5ipiV0a6lCZeDnnh3LX5Y_pxE0wRAJDjBTr1pPZtK-l6A7BDEZhGN8gN33wVtDcfvrSfMzyqCj8ZB7S5A5l77tdd9dGOl81uE34j7_UjNllvtASSu8ch6qSI9VaMp3cI3eVr2NvS-BukLVisknutDJgwlUDjWqT3BJ8ZDzbUHNOZb9VidG37pNTiXfb4N1u8G4DRmyNd1vh3RZ4txu82wbvNuLdRrw_IKd7uyc7-44qC-LklCW1A0t66helm49GASvBoBSelzEvKPwkT2mZxKzwgyDIizgIcLciTdw4L4Mgcn2alHDrIVmfTCfFY2KnCcj6WRxnbhLGJWMR88MSfAQvicvILy3iaIXwXOXMx9It51xyNxhHBapSrqBAi7wx8jOZLWal5JbWL29rCi9mIAjg5QhZDkC1CFshi11iSAsW5G7_guO3Oz4bwQu8FtgxT5POfyCVM474VxbyQ3o4PBjsDTg8z0MBLiOoMW2RlxptHGYe_JyYTorpouKUgmOeMNcijyT2mlcGJ4iC72iRuINKI4A57bt3JuPvIrc9FoiIvdAi7zpvqoxutXI0R8vFj45Pti9gZMZiZERVRYpOEr8az2QfOGzCQsjB6_Z77fLJqkF6Sm43BusZWa_ni-I5OCt19kKYgt-DVEIZ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Parameter+Extraction+for+Decision+Support+Using+Multimodal+Intensive+Care+Data&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Clifford%2C+G.+D.&rft.au=Long%2C+W.+J.&rft.au=Moody%2C+G.+B.&rft.au=Szolovits%2C+P.&rft.date=2009-01-28&rft.pub=The+Royal+Society&rft.issn=1364-503X&rft.volume=367&rft.issue=1887&rft.spage=411&rft.epage=429&rft_id=info:doi/10.1098%2Frsta.2008.0157&rft.externalDocID=40485447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |