Optimized Fault‐Tolerant Fixed‐Time Control for Nonlinear Strict‐Feedback Systems With Output Constraints

Focusing on the actuator fault and output constraints of a nonlinear strict‐feedback system, a neural network‐based optimized fixed‐time controller is investigated in this paper. An optimized backstepping framework is adopted for controller design, where a critic–actor architecture is integrated to...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control
Main Authors Gong, Youmin, Sun, Yue, Li, Dongyu, Ju, Xiaozhe, Ma, Guangfu
Format Journal Article
LanguageEnglish
Published 31.08.2025
Online AccessGet full text
ISSN1049-8923
1099-1239
DOI10.1002/rnc.70163

Cover

Loading…
Abstract Focusing on the actuator fault and output constraints of a nonlinear strict‐feedback system, a neural network‐based optimized fixed‐time controller is investigated in this paper. An optimized backstepping framework is adopted for controller design, where a critic–actor architecture is integrated to progressively approximate the optimal control policy. And the adaptive laws are developed to compensate for the disturbance and actuator failure. To address the output constraints, a nonlinear function related to these constraints is directly incorporated into the controller, thereby simplifying the computations. Furthermore, the fixed‐time stability of the closed‐loop system and each subsystem is analyzed, along with the fulfillment of output constraints. Lastly, the efficiency and correctness of the proposed algorithm are confirmed through two numerical simulations.
AbstractList Focusing on the actuator fault and output constraints of a nonlinear strict‐feedback system, a neural network‐based optimized fixed‐time controller is investigated in this paper. An optimized backstepping framework is adopted for controller design, where a critic–actor architecture is integrated to progressively approximate the optimal control policy. And the adaptive laws are developed to compensate for the disturbance and actuator failure. To address the output constraints, a nonlinear function related to these constraints is directly incorporated into the controller, thereby simplifying the computations. Furthermore, the fixed‐time stability of the closed‐loop system and each subsystem is analyzed, along with the fulfillment of output constraints. Lastly, the efficiency and correctness of the proposed algorithm are confirmed through two numerical simulations.
Author Ju, Xiaozhe
Ma, Guangfu
Sun, Yue
Li, Dongyu
Gong, Youmin
Author_xml – sequence: 1
  givenname: Youmin
  orcidid: 0000-0002-1865-5414
  surname: Gong
  fullname: Gong, Youmin
  organization: School of Intelligence Science and Engineering Harbin Institute of Technology Shenzhen China
– sequence: 2
  givenname: Yue
  orcidid: 0000-0001-7278-0091
  surname: Sun
  fullname: Sun, Yue
  organization: School of Aerospace Science Harbin Institute of Technology Shenzhen China
– sequence: 3
  givenname: Dongyu
  orcidid: 0000-0001-8338-0536
  surname: Li
  fullname: Li, Dongyu
  organization: School of Cyber Science and Technology Beihang University Beijing China
– sequence: 4
  givenname: Xiaozhe
  surname: Ju
  fullname: Ju, Xiaozhe
  organization: School of Aerospace Science Harbin Institute of Technology Shenzhen China
– sequence: 5
  givenname: Guangfu
  surname: Ma
  fullname: Ma, Guangfu
  organization: School of Intelligence Science and Engineering Harbin Institute of Technology Shenzhen China
BookMark eNotkM1KAzEUhYNUsK0ufINsXUxNMr9ZSnGsUOyiBZdD5ibB6EwyJClYVz6Cz-iTOKPChXM5h3MW3wLNrLMKoWtKVpQQdustrEpCi_QMzSnhPKEs5bPpz3hScZZeoEUIr4SMGcvmyO2GaHrzoSSuxbGL359fB9cpL2zEtXlXcjJMr_Da2ehdh7Xz-MnZzlglPN5Hb2Aq1UrJVsAb3p9CVH3Azya-4N0xDsc4dUP0wtgYLtG5Fl1QV_-6RIf6_rDeJNvdw-P6bptAUfEEcsiq8XJWlFRKILpouZAaaMFTEEQDSKWgbDPQuh2zHEjOmIaMybyqRLpEN3-z4F0IXulm8KYX_tRQ0kygmhFU8wsq_QHMQmPK
Cites_doi 10.1109/TCYB.2020.2979614
10.1002/rnc.6131
10.1109/TIE.2021.3116571
10.1002/rnc.6334
10.1002/rnc.7415
10.1109/TAES.2017.2705318
10.1002/acs.3710
10.1109/TASE.2022.3217539
10.1201/9780203749319
10.1109/TNNLS.2020.3045087
10.1002/rnc.7245
10.1109/TCYB.2020.3002108
10.1109/TAC.2018.2867163
10.1109/TCSI.2023.3332086
10.1109/TCSI.2023.3270840
10.1016/j.conengprac.2023.105455
10.1016/j.ast.2019.06.017
10.1016/j.automatica.2005.07.001
10.1109/TAES.2019.2955525
10.2514/1.G006651
10.1109/TCSI.2022.3221097
10.1109/TCNS.2023.3274700
10.1109/TASE.2021.3070140
10.1016/j.ast.2019.06.013
10.1016/j.automatica.2019.108760
10.1109/TCST.2015.2501351
10.1109/TAES.2021.3135372
10.1109/TSMC.2021.3100903
10.1109/9.486648
10.1109/TAC.2011.2179869
10.1002/rnc.6624
10.1002/rnc.7421
10.1109/TASE.2022.3228397
10.1109/TITS.2023.3327085
10.1016/j.isatra.2022.03.027
10.1016/j.automatica.2023.110907
10.1109/TII.2022.3215985
10.1109/TCST.2016.2519838
10.1016/j.isatra.2023.04.013
10.1109/TAC.2005.858636
10.1126/science.153.3731.34
10.1002/rnc.1401
10.1002/rnc.6826
10.1109/TASE.2024.3467382
10.1016/j.ast.2018.10.006
10.1109/TAC.2021.3051262
10.1109/3477.809035
10.1109/TITS.2024.3520328
10.1109/TASE.2022.3179896
10.1109/TAC.2023.3273786
10.1016/j.ast.2022.107332
10.1109/TCYB.2019.2962011
10.1109/JAS.2021.1004018
10.1109/9.935058
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/rnc.70163
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
ExternalDocumentID 10_1002_rnc_70163
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-c689-c5c48c4852671ddc0f6b9adfc1693ca0fccdeec7b4cffb6b95c0522fc42d588a3
ISSN 1049-8923
IngestDate Wed Sep 03 16:37:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c689-c5c48c4852671ddc0f6b9adfc1693ca0fccdeec7b4cffb6b95c0522fc42d588a3
ORCID 0000-0002-1865-5414
0000-0001-8338-0536
0000-0001-7278-0091
ParticipantIDs crossref_primary_10_1002_rnc_70163
PublicationCentury 2000
PublicationDate 2025-08-31
PublicationDateYYYYMMDD 2025-08-31
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-31
  day: 31
PublicationDecade 2020
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2025
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Li B. (e_1_2_9_37_1) 2022; 59
Jiang B. (e_1_2_9_32_1) 2024; 239
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_17_1
  doi: 10.1109/TCYB.2020.2979614
– ident: e_1_2_9_35_1
  doi: 10.1002/rnc.6131
– ident: e_1_2_9_12_1
  doi: 10.1109/TIE.2021.3116571
– ident: e_1_2_9_6_1
  doi: 10.1002/rnc.6334
– ident: e_1_2_9_24_1
  doi: 10.1002/rnc.7415
– ident: e_1_2_9_42_1
  doi: 10.1109/TAES.2017.2705318
– ident: e_1_2_9_19_1
  doi: 10.1002/acs.3710
– ident: e_1_2_9_11_1
  doi: 10.1109/TASE.2022.3217539
– ident: e_1_2_9_9_1
  doi: 10.1201/9780203749319
– ident: e_1_2_9_16_1
  doi: 10.1109/TNNLS.2020.3045087
– ident: e_1_2_9_14_1
  doi: 10.1002/rnc.7245
– ident: e_1_2_9_18_1
  doi: 10.1109/TCYB.2020.3002108
– ident: e_1_2_9_56_1
  doi: 10.1109/TAC.2018.2867163
– ident: e_1_2_9_23_1
  doi: 10.1109/TCSI.2023.3332086
– ident: e_1_2_9_20_1
  doi: 10.1109/TCSI.2023.3270840
– ident: e_1_2_9_46_1
  doi: 10.1016/j.conengprac.2023.105455
– ident: e_1_2_9_47_1
  doi: 10.1016/j.ast.2019.06.017
– volume: 59
  start-page: 7715
  issue: 6
  year: 2022
  ident: e_1_2_9_37_1
  article-title: Distributed Fixed‐Time Leader‐Following Formation Control for Multi‐Quadrotors With Prescribed Performance and Collision Avoidance
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– ident: e_1_2_9_33_1
  doi: 10.1016/j.automatica.2005.07.001
– ident: e_1_2_9_7_1
  doi: 10.1109/TAES.2019.2955525
– ident: e_1_2_9_44_1
  doi: 10.2514/1.G006651
– volume: 239
  year: 2024
  ident: e_1_2_9_32_1
  article-title: Finite‐Time Convergent Control for Spacecraft Attitude Stabilization Based on the Adding Power Integrator Technique
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
– ident: e_1_2_9_28_1
  doi: 10.1109/TCSI.2022.3221097
– ident: e_1_2_9_38_1
  doi: 10.1109/TCNS.2023.3274700
– ident: e_1_2_9_48_1
  doi: 10.1109/TASE.2021.3070140
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ast.2019.06.013
– ident: e_1_2_9_30_1
  doi: 10.1016/j.automatica.2019.108760
– ident: e_1_2_9_54_1
  doi: 10.1109/TCST.2015.2501351
– ident: e_1_2_9_2_1
  doi: 10.1109/TAES.2021.3135372
– ident: e_1_2_9_36_1
  doi: 10.1109/TSMC.2021.3100903
– ident: e_1_2_9_50_1
  doi: 10.1109/9.486648
– ident: e_1_2_9_51_1
  doi: 10.1109/TAC.2011.2179869
– ident: e_1_2_9_25_1
  doi: 10.1002/rnc.6624
– ident: e_1_2_9_10_1
  doi: 10.1002/rnc.7421
– ident: e_1_2_9_5_1
  doi: 10.1109/TASE.2022.3228397
– ident: e_1_2_9_55_1
  doi: 10.1109/TITS.2023.3327085
– ident: e_1_2_9_21_1
  doi: 10.1016/j.isatra.2022.03.027
– ident: e_1_2_9_45_1
  doi: 10.1016/j.automatica.2023.110907
– ident: e_1_2_9_4_1
  doi: 10.1109/TII.2022.3215985
– ident: e_1_2_9_34_1
  doi: 10.1109/TCST.2016.2519838
– ident: e_1_2_9_39_1
  doi: 10.1016/j.isatra.2023.04.013
– ident: e_1_2_9_57_1
  doi: 10.1109/TAC.2005.858636
– ident: e_1_2_9_8_1
  doi: 10.1126/science.153.3731.34
– ident: e_1_2_9_53_1
  doi: 10.1002/rnc.1401
– ident: e_1_2_9_29_1
  doi: 10.1002/rnc.6826
– ident: e_1_2_9_13_1
  doi: 10.1109/TASE.2024.3467382
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ast.2018.10.006
– ident: e_1_2_9_31_1
  doi: 10.1109/TAC.2021.3051262
– ident: e_1_2_9_49_1
  doi: 10.1109/3477.809035
– ident: e_1_2_9_27_1
  doi: 10.1109/TITS.2024.3520328
– ident: e_1_2_9_3_1
  doi: 10.1109/TASE.2022.3179896
– ident: e_1_2_9_15_1
  doi: 10.1109/TAC.2023.3273786
– ident: e_1_2_9_43_1
  doi: 10.1016/j.ast.2022.107332
– ident: e_1_2_9_22_1
  doi: 10.1109/TCYB.2019.2962011
– ident: e_1_2_9_26_1
  doi: 10.1109/JAS.2021.1004018
– ident: e_1_2_9_52_1
  doi: 10.1109/9.935058
SSID ssj0009924
Score 2.438048
Snippet Focusing on the actuator fault and output constraints of a nonlinear strict‐feedback system, a neural network‐based optimized fixed‐time controller is...
SourceID crossref
SourceType Index Database
Title Optimized Fault‐Tolerant Fixed‐Time Control for Nonlinear Strict‐Feedback Systems With Output Constraints
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcoED4ldAC7IQtyolm3US-1gBqwpBK8EiLaeVPbbViG632iZSu-LAI_CMPAnjOHYC5VCQoiiaOE6U-TIeOzPfEPJSK6Z5CUViQauE5VLgN8fcQj5664ozZVqy6g-HxcFn9m6ez0ejb8PsklrtweaveSX_o1WUoV5dluw_aDZ2igI8Rv3iHjWM-2vp-Ai_92W1QZ9xKpuTOgYuzFYnBsegendaXRjdi6ulK1LnY9NdeOGh58mQa_dzuoK-gymOaUrC10BojsajPt49auqzpm5rfLaVJTwJVHBtf19bHDBSrFeqOfeB7Kfxhl2IfAz_6SKD0fgsq4jXT01rE780EX3vfV48tr5sYvBP42TzSq42x2a4ipHlYVk2Gl6cqSRc-NzjPdPJhCvV4MmOrph6Tx27Ritaots66cez8A__j2EuBh96ouZsgZcu2ktvkJsZTjJc4Y83H3vyMSF8SeTwZIGXKs1exbsOvJmBWzK7S-508wm678Fxj4zM6X1ye8Ay-YCsIkxoC5Of338EgNAWIE6A0KAdNChCg0ZoUA8NbBNAQTtQUAcK6kFBB6B4SGbTt7PXB0lXZyOBgosEcmActzwryrHWkNpCCaktOJ4ekKkF0MZAqRhYq_BcDil67RZYpnPO5eQR2UL4mMeElgo4n5h0rNEPl7lQTJTWgoAxK7UcmyfkRXhdizPPprK4oo6n12m0TW71MNohW_W6Mc_QPazV81aLvwDiNW2P
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Fault%E2%80%90Tolerant+Fixed%E2%80%90Time+Control+for+Nonlinear+Strict%E2%80%90Feedback+Systems+With+Output+Constraints&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Gong%2C+Youmin&rft.au=Sun%2C+Yue&rft.au=Li%2C+Dongyu&rft.au=Ju%2C+Xiaozhe&rft.date=2025-08-31&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002%2Frnc.70163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_70163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon