The genome of the extremophile crucifer Thellungiella parvula
Dong-Ha Oh and colleagues report the draft genome of the extremophile crucifer plant Thellungiella parvula . This species is endemic to highly saline environments subject to extreme temperatures. The genome was primarily assembled using next-generation sequencing data. Thellungiella parvula 1 is rel...
Saved in:
Published in | Nature genetics Vol. 43; no. 9; pp. 913 - 918 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.09.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dong-Ha Oh and colleagues report the draft genome of the extremophile crucifer plant
Thellungiella parvula
. This species is endemic to highly saline environments subject to extreme temperatures. The genome was primarily assembled using next-generation sequencing data.
Thellungiella parvula
1
is related to
Arabidopsis thaliana
and is endemic to saline, resource-poor habitats
2
, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the
de novo
assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for
T. parvula
's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance. |
---|---|
AbstractList | Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance. Dong-Ha Oh and colleagues report the draft genome of the extremophile crucifer plant Thellungiella parvula . This species is endemic to highly saline environments subject to extreme temperatures. The genome was primarily assembled using next-generation sequencing data. Thellungiella parvula 1 is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats 2 , making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula 's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance. Thellungiella parvula 1 is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats 2 , making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula ’s extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance. Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance. [PUBLICATION ABSTRACT] Thellungiella parvula (1) is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats (2), making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance. Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance.Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance. |
Audience | Academic |
Author | Hernandez, Alvaro Bressan, Ray A Haas, Jeffrey S Ali, Shahjahan Oh, Dong-Ha Yun, Dae-Jin Zhu, Jian-Kang Dassanayake, Maheshi Cheeseman, John M Hong, Hyewon Bohnert, Hans J |
AuthorAffiliation | 2 Office of Networked Information Technology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 5 Bioscience Core Laboratory-Genomics, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 4 Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, Korea 1 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 8 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 3 Center for Comparative & Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 7 Center for Plant Stress Genomics and Biotechnology, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 6 Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, USA |
AuthorAffiliation_xml | – name: 5 Bioscience Core Laboratory-Genomics, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – name: 7 Center for Plant Stress Genomics and Biotechnology, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – name: 3 Center for Comparative & Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA – name: 8 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA – name: 4 Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, Korea – name: 2 Office of Networked Information Technology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA – name: 6 Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, USA – name: 1 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA |
Author_xml | – sequence: 1 givenname: Maheshi surname: Dassanayake fullname: Dassanayake, Maheshi email: maheshi.dassanayake@gmail.com organization: Department of Plant Biology, University of Illinois at Urbana-Champaign – sequence: 2 givenname: Dong-Ha surname: Oh fullname: Oh, Dong-Ha email: ohdongha@gmail.com organization: Department of Plant Biology, University of Illinois at Urbana-Champaign – sequence: 3 givenname: Jeffrey S surname: Haas fullname: Haas, Jeffrey S organization: Department of Plant Biology, University of Illinois at Urbana-Champaign, Office of Networked Information Technology, School of Integrative Biology, University of Illinois at Urbana-Champaign – sequence: 4 givenname: Alvaro surname: Hernandez fullname: Hernandez, Alvaro organization: Center for Comparative & Functional Genomics, University of Illinois at Urbana-Champaign – sequence: 5 givenname: Hyewon surname: Hong fullname: Hong, Hyewon organization: Department of Plant Biology, University of Illinois at Urbana-Champaign, Division of Applied Life Science (BK21 program), Gyeongsang National University – sequence: 6 givenname: Shahjahan surname: Ali fullname: Ali, Shahjahan organization: Bioscience Core Laboratory-Genomics, King Abdullah University of Science and Technology – sequence: 7 givenname: Dae-Jin surname: Yun fullname: Yun, Dae-Jin email: djyun@gnu.ac.kr organization: Division of Applied Life Science (BK21 program), Gyeongsang National University – sequence: 8 givenname: Ray A surname: Bressan fullname: Bressan, Ray A organization: Division of Applied Life Science (BK21 program), Gyeongsang National University, Department of Horticulture & Landscape Architecture, Purdue University, Center for Plant Stress Genomics and Biotechnology, King Abdullah University of Science and Technology – sequence: 9 givenname: Jian-Kang surname: Zhu fullname: Zhu, Jian-Kang organization: Department of Horticulture & Landscape Architecture, Purdue University, Center for Plant Stress Genomics and Biotechnology, King Abdullah University of Science and Technology – sequence: 10 givenname: Hans J surname: Bohnert fullname: Bohnert, Hans J organization: Department of Plant Biology, University of Illinois at Urbana-Champaign, Division of Applied Life Science (BK21 program), Gyeongsang National University, Center for Plant Stress Genomics and Biotechnology, King Abdullah University of Science and Technology, Department of Crop Sciences, University of Illinois at Urbana-Champaign – sequence: 11 givenname: John M surname: Cheeseman fullname: Cheeseman, John M organization: Department of Plant Biology, University of Illinois at Urbana-Champaign |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24566419$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21822265$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0v1r1DAYB_AgE7ed-idIUXwDeyZpmj39QWEMXwaDgU5_DWku7WW0yZm0Y_vvfcrdnHeKSKFp6ScP7ffbQ7Lng7eEPGZ0zmgBb307B6jukQNWCpmzIwZ7eE0lywUt5D45TOmSUiYEhQdknzPgnMvygLy7WNqstT70NgtNNuCdvR6i7cNq6TqbmTga19iYoeu60bcOF52tdLwaO_2Q3G90l-yjzToj3z5-uDj5nJ-dfzo9OT7LjQQYcgNgdFHSkmmuZYVnVlOzqEVleNlwyRdiQakuGFQ1F0A5tRXUUBghZNNIU8zI-_Xc1Vj3dmGsH6Lu1Cq6XscbFbRT20-8W6o2XKmiBAmM44CXmwEx_BhtGlTvkpk-xdswJgVQVowCRjkjr_4pkQjgFIoC6dMdehnG6DEIBZVgXPCyRPRsjVrdWeV8E_AFzTRTHXN5JLAHKlDN_6LwWNjeGay6wTK2N7ze2oBmwOJaPaakTr9--X97_n3bPvk96V8R3_4xCJ5vgE5Gd03U3rh050QppWAVujdrZ2JIKdpGGTfowYWpINdhjlOUoHyL4U_8xQ6_nfgH3DSZEPjWxrvQd-RP15L0ow |
CODEN | NGENEC |
CitedBy_id | crossref_primary_10_1111_mec_16329 crossref_primary_10_1002_pmic_201200401 crossref_primary_10_1038_srep29404 crossref_primary_10_1093_jxb_ers260 crossref_primary_10_1038_nplants_2014_23 crossref_primary_10_1186_s13059_015_0814_y crossref_primary_10_1093_plcell_koad260 crossref_primary_10_1002_pld3_32 crossref_primary_10_1104_pp_111_193110 crossref_primary_10_1038_sdata_2016_131 crossref_primary_10_1038_ncomms3640 crossref_primary_10_1093_gbe_evad034 crossref_primary_10_1111_aab_12496 crossref_primary_10_1038_s41467_024_45836_5 crossref_primary_10_3390_biom12111583 crossref_primary_10_1111_jipb_12439 crossref_primary_10_1016_j_gpb_2018_07_009 crossref_primary_10_3389_fpls_2018_00161 crossref_primary_10_1016_j_envexpbot_2015_11_010 crossref_primary_10_1093_dnares_dsad011 crossref_primary_10_1111_mec_14930 crossref_primary_10_3389_fpls_2018_00950 crossref_primary_10_1093_gbe_evw058 crossref_primary_10_1371_journal_pgen_1007267 crossref_primary_10_1186_1471_2164_14_578 crossref_primary_10_1038_srep11422 crossref_primary_10_1104_pp_111_189514 crossref_primary_10_1016_j_pbi_2012_01_001 crossref_primary_10_1111_pbi_13680 crossref_primary_10_1016_j_pbi_2012_01_002 crossref_primary_10_1007_s10725_014_0007_9 crossref_primary_10_1111_ppl_13166 crossref_primary_10_1093_jxb_eraa336 crossref_primary_10_3390_ijms241713626 crossref_primary_10_1186_s12864_016_3319_5 crossref_primary_10_1111_j_1744_7909_2012_01115_x crossref_primary_10_1016_j_plaphy_2013_04_009 crossref_primary_10_1186_1471_2164_14_793 crossref_primary_10_1292_jvms_19_0218 crossref_primary_10_1093_gbe_evx259 crossref_primary_10_4161_psb_25196 crossref_primary_10_1038_srep45226 crossref_primary_10_1016_j_envexpbot_2020_104236 crossref_primary_10_1007_s10142_016_0484_1 crossref_primary_10_1093_plcell_koac166 crossref_primary_10_1111_jse_12289 crossref_primary_10_1139_cjb_2018_0202 crossref_primary_10_9787_KJBS_2020_52_4_297 crossref_primary_10_1016_j_plaphy_2018_09_024 crossref_primary_10_3389_fpls_2022_955589 crossref_primary_10_1007_s40502_018_0422_4 crossref_primary_10_4236_abb_2012_34054 crossref_primary_10_1007_s11816_020_00600_1 crossref_primary_10_1186_s12870_024_05288_x crossref_primary_10_1093_aob_mcu152 crossref_primary_10_3390_ijms20051059 crossref_primary_10_1093_database_bav093 crossref_primary_10_1016_j_xplc_2022_100464 crossref_primary_10_1371_journal_pone_0036442 crossref_primary_10_3389_fpls_2021_772655 crossref_primary_10_1007_s11816_012_0249_9 crossref_primary_10_1186_1471_2229_12_131 crossref_primary_10_1111_tpj_16043 crossref_primary_10_1371_journal_pone_0108785 crossref_primary_10_1016_j_pbiomolbio_2018_12_002 crossref_primary_10_1093_jxb_erv331 crossref_primary_10_3390_plants13141902 crossref_primary_10_1111_tpj_15997 crossref_primary_10_1016_S2095_3119_21_63747_4 crossref_primary_10_1038_ncomms5104 crossref_primary_10_1007_s00425_020_03366_6 crossref_primary_10_1111_jeb_12372 crossref_primary_10_1093_pcp_pcy231 crossref_primary_10_3389_fpls_2023_1137211 crossref_primary_10_1080_17429145_2018_1526979 crossref_primary_10_1093_molbev_msv042 crossref_primary_10_1093_dnares_dsy035 crossref_primary_10_3389_fpls_2019_00196 crossref_primary_10_1111_nph_14784 crossref_primary_10_1016_j_pbi_2016_02_005 crossref_primary_10_1016_j_plgene_2023_100424 crossref_primary_10_1093_database_bat014 crossref_primary_10_1105_tpc_113_110486 crossref_primary_10_1111_j_1365_313X_2012_04894_x crossref_primary_10_3389_fpls_2017_00324 crossref_primary_10_1111_nph_15194 crossref_primary_10_1186_1471_2229_13_180 crossref_primary_10_1093_gbe_evv206 crossref_primary_10_1016_j_xinn_2020_100017 crossref_primary_10_1111_pbi_13086 crossref_primary_10_3389_fpls_2021_791219 crossref_primary_10_1038_ncomms12399 crossref_primary_10_1093_molbev_msw020 crossref_primary_10_1111_nph_13217 crossref_primary_10_1371_journal_pgen_1003707 crossref_primary_10_1007_s11356_014_3739_1 crossref_primary_10_1186_s12864_020_07042_7 crossref_primary_10_1371_journal_pcbi_1008318 crossref_primary_10_1186_s13059_019_1650_2 crossref_primary_10_4161_mge_19348 crossref_primary_10_1093_aob_mcu184 crossref_primary_10_3389_fpls_2018_00543 crossref_primary_10_1105_tpc_114_124297 crossref_primary_10_1073_pnas_2025711118 crossref_primary_10_3389_fpls_2023_1305299 crossref_primary_10_1111_tpj_16396 crossref_primary_10_1073_pnas_1209954109 crossref_primary_10_1111_mec_13221 crossref_primary_10_1016_j_plaphy_2021_01_029 crossref_primary_10_1007_s10265_018_1053_6 crossref_primary_10_1073_pnas_1817580116 crossref_primary_10_1270_jsbbs_64_3 crossref_primary_10_3389_fpls_2017_01878 crossref_primary_10_1080_17550874_2012_716868 crossref_primary_10_1093_g3journal_jkaf022 crossref_primary_10_1038_s41598_018_31518_y crossref_primary_10_1074_mcp_M112_022475 crossref_primary_10_1155_2016_5283628 crossref_primary_10_1093_aob_mcu194 crossref_primary_10_1038_s41598_018_37815_w crossref_primary_10_1016_j_ympev_2016_02_021 crossref_primary_10_1093_bioinformatics_bts586 crossref_primary_10_1111_tpj_16005 crossref_primary_10_1111_pce_12768 crossref_primary_10_1093_jxb_eraa031 crossref_primary_10_1093_molbev_msu152 crossref_primary_10_1002_ange_201704120 crossref_primary_10_1080_17550874_2012_745909 crossref_primary_10_1016_j_gene_2022_147124 crossref_primary_10_1016_j_envexpbot_2019_01_009 crossref_primary_10_1038_nplants_2016_167 crossref_primary_10_1038_s41438_020_00422_w crossref_primary_10_1104_pp_112_195081 crossref_primary_10_1111_nph_17295 crossref_primary_10_1071_FP15288 crossref_primary_10_1071_FP15285 crossref_primary_10_1093_nar_gkt1000 crossref_primary_10_1186_gb4003 crossref_primary_10_1016_j_hpj_2016_02_001 crossref_primary_10_1038_ng_2684 crossref_primary_10_3390_ijms19113671 crossref_primary_10_1186_gb_2013_14_3_r29 crossref_primary_10_1371_journal_pone_0097189 crossref_primary_10_14348_molcells_2016_0083 crossref_primary_10_1038_s41477_018_0289_4 crossref_primary_10_1111_nph_12396 crossref_primary_10_1038_s41598_021_87047_8 crossref_primary_10_1111_pbi_13968 crossref_primary_10_1093_molbev_msv226 crossref_primary_10_1093_plphys_kiac564 crossref_primary_10_1186_s12870_019_1973_x crossref_primary_10_1371_journal_pone_0094101 crossref_primary_10_1016_j_hpj_2020_04_005 crossref_primary_10_1016_j_gene_2013_01_034 crossref_primary_10_1038_ng_2470 crossref_primary_10_1007_s00122_014_2354_3 crossref_primary_10_1186_s12864_023_09256_x crossref_primary_10_1093_gbe_evy053 crossref_primary_10_1016_j_cj_2021_06_006 crossref_primary_10_1016_j_pbi_2017_02_005 crossref_primary_10_1186_1471_2164_15_S6_S8 crossref_primary_10_1038_hortres_2014_24 crossref_primary_10_1111_ppa_13794 crossref_primary_10_1016_j_margen_2020_100740 crossref_primary_10_1093_nar_gkab1057 crossref_primary_10_1002_bies_201600113 crossref_primary_10_1104_pp_111_188920 crossref_primary_10_1038_ng_2343 crossref_primary_10_3389_fpls_2022_909527 crossref_primary_10_3389_fpls_2015_00018 crossref_primary_10_1111_nph_18873 crossref_primary_10_1186_gb_2012_13_3_241 crossref_primary_10_1371_journal_pone_0302292 crossref_primary_10_1155_2015_684321 crossref_primary_10_3389_fpls_2017_00713 crossref_primary_10_1104_pp_114_235952 crossref_primary_10_1186_s12915_021_01079_0 crossref_primary_10_1109_TCBB_2018_2849377 crossref_primary_10_1093_hr_uhad161 crossref_primary_10_1111_pce_12178 crossref_primary_10_32604_phyton_2021_012726 crossref_primary_10_1186_s12870_017_1112_5 crossref_primary_10_1371_journal_pone_0073588 crossref_primary_10_3390_ijms21176100 crossref_primary_10_1007_s11120_013_9813_6 crossref_primary_10_1016_j_pbi_2012_02_002 crossref_primary_10_1016_j_bbagrm_2015_12_005 crossref_primary_10_1007_s00344_024_11266_2 crossref_primary_10_1016_j_ygeno_2021_06_031 crossref_primary_10_1007_s00606_020_01727_y crossref_primary_10_1038_s41477_022_01139_5 crossref_primary_10_1007_s11427_020_1662_x crossref_primary_10_1002_anie_201704120 crossref_primary_10_1111_jse_12828 crossref_primary_10_1016_j_ympev_2016_03_031 crossref_primary_10_1111_tpj_13185 crossref_primary_10_1007_s11738_015_1954_0 crossref_primary_10_1016_j_plantsci_2024_112171 crossref_primary_10_1105_tpc_113_113480 crossref_primary_10_1016_j_jplph_2020_153293 crossref_primary_10_1038_s41477_018_0309_4 crossref_primary_10_1093_nar_gku986 crossref_primary_10_1038_nrg3883 crossref_primary_10_1080_07388551_2022_2093695 crossref_primary_10_3390_ijms160920468 crossref_primary_10_1139_gen_2024_0061 crossref_primary_10_1086_698482 crossref_primary_10_3389_fpls_2017_00381 crossref_primary_10_1016_j_envexpbot_2013_03_001 crossref_primary_10_1093_gbe_evaa220 crossref_primary_10_1371_journal_pone_0146764 crossref_primary_10_1186_gb_2012_13_8_166 crossref_primary_10_1016_j_envexpbot_2012_12_002 crossref_primary_10_1186_gb_2012_13_8_167 crossref_primary_10_1038_cr_2017_124 crossref_primary_10_1007_s11103_023_01348_2 crossref_primary_10_1038_s41477_019_0486_9 crossref_primary_10_3389_fpls_2015_00602 crossref_primary_10_1186_s13059_015_0867_y crossref_primary_10_1093_gbe_evu290 crossref_primary_10_1016_j_envexpbot_2014_11_010 crossref_primary_10_1371_journal_pone_0137391 crossref_primary_10_1038_ncomms3797 crossref_primary_10_1002_ajb2_16310 crossref_primary_10_1016_j_jplph_2017_08_014 crossref_primary_10_3390_ijms14046757 crossref_primary_10_3389_fpls_2018_01108 crossref_primary_10_1186_1471_2229_14_2 crossref_primary_10_1016_j_pbi_2017_01_006 |
Cites_doi | 10.1111/j.1365-3040.2009.02086.x 10.1105/tpc.108.062166 10.1093/bioinformatics/17.9.847 10.1093/jxb/erl090 10.1104/pp.104.041723 10.1186/gb-2009-10-3-r25 10.1186/1471-2105-8-64 10.1073/pnas.0909766107 10.1126/science.1197005 10.1073/pnas.0510791103 10.1101/gr.089532.108 10.1038/nature08670 10.1093/jxb/erq188 10.1186/gb-2010-11-9-r94 10.1016/j.tplants.2010.10.006 10.1159/000084979 10.1101/gr.074492.107 10.1093/jxb/erp391 10.1186/gb-2004-5-2-r12 10.1104/pp.110.163923 10.1111/j.1365-313X.2010.04323.x 10.2307/3391953 10.1038/nrg2593 10.1105/tpc.106.042291 10.1104/pp.108.122457 10.1093/gbe/evq033 10.1186/1471-2229-4-10 10.1093/mp/ssn094 10.1038/ng.475 10.1155/2008/619832 10.1038/nmeth.1527 10.1007/978-3-642-86659-3 10.1038/35048692 10.1038/nature08747 10.1007/978-1-4419-7118-0_1 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2011 2015 INIST-CNRS COPYRIGHT 2011 Nature Publishing Group Copyright Nature Publishing Group Sep 2011 2011 Nature America, Inc. All rights reserved. 2011 |
Copyright_xml | – notice: Springer Nature America, Inc. 2011 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2011 Nature Publishing Group – notice: Copyright Nature Publishing Group Sep 2011 – notice: 2011 Nature America, Inc. All rights reserved. 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/ng.889 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Science In Context ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Central Health & Medical Collection (via ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1546-1718 |
EndPage | 918 |
ExternalDocumentID | PMC3586812 2468662121 A267422204 21822265 24566419 10_1038_ng_889 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM059138 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM059138 || GM |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABTAH ABUWG ACBWK ACGFO ACGFS ACIWK ACMJI ACNCT ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR IOV ISR ITC L7B LGEZI LK8 LOTEE M0L M1P M2O M7P MVM N9A NADUK NNMJJ NXXTH ODYON P2P PKN PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TN5 TSG TUS UKHRP VQA X7M XJT XOL Y6R YHZ ZGI ZXP ZY4 ~8M ~KM AAYXX ABFSG ACMFV ACSTC AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT AEZWR AFHIU AHWEU AIXLP IQODW NFIDA PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c688t-c88ca35051a2a691a21b0cdb49c25f262d4d00a3189b248020e98b83c446ff6c3 |
IEDL.DBID | 7X7 |
ISSN | 1061-4036 1546-1718 |
IngestDate | Thu Aug 21 18:19:46 EDT 2025 Fri Jul 11 15:24:51 EDT 2025 Tue Aug 05 11:07:06 EDT 2025 Fri Jul 25 09:10:35 EDT 2025 Tue Jun 17 21:48:43 EDT 2025 Tue Jun 10 20:26:08 EDT 2025 Fri Jun 27 03:53:13 EDT 2025 Fri Jun 27 04:17:54 EDT 2025 Thu Apr 03 06:56:03 EDT 2025 Mon Jul 21 09:09:54 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Tue Jul 01 01:50:09 EDT 2025 Fri Feb 21 02:37:42 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Genome |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c688t-c88ca35051a2a691a21b0cdb49c25f262d4d00a3189b248020e98b83c446ff6c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/ng.889.pdf |
PMID | 21822265 |
PQID | 894124255 |
PQPubID | 33429 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3586812 proquest_miscellaneous_885910810 proquest_miscellaneous_1034820833 proquest_journals_894124255 gale_infotracmisc_A267422204 gale_infotracacademiconefile_A267422204 gale_incontextgauss_ISR_A267422204 gale_incontextgauss_IOV_A267422204 pubmed_primary_21822265 pascalfrancis_primary_24566419 crossref_citationtrail_10_1038_ng_889 crossref_primary_10_1038_ng_889 springer_journals_10_1038_ng_889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
PublicationTitle | Nature genetics |
PublicationTitleAbbrev | Nat Genet |
PublicationTitleAlternate | Nat Genet |
PublicationYear | 2011 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Sommer (CR30) 2007; 8 Beilstein (CR3) 2010; 107 Mun (CR8) 2010; 11 Zerbino, Birney (CR31) 2008; 18 Simpson (CR29) 2009; 19 Huang (CR7) 2009; 41 Gao (CR14) 2006; 57 Oh (CR5) 2010; 154 CR10 Schmutz (CR9) 2010; 463 Hanada (CR23) 2008; 148 Amtmann (CR2) 2009; 2 Alkan, Sajjadian, Eichler (CR11) 2011; 8 Jurka (CR33) 2005; 110 DeBolt (CR25) 2010; 2 Zdobnov, Apweiler (CR34) 2001; 17 CR6 Conesa, Götz (CR12) 2008; 2008 Sudmant (CR17) 2010; 330 Mandáková, Lysak (CR28) 2008; 20 Cannon (CR24) 2004; 4 Quan (CR21) 2007; 19 Hastings (CR19) 2009; 10 Langmead, Trapnell, Pop, Salzberg (CR35) 2009; 10 Inan (CR16) 2004; 135 Dassanayake (CR18) 2011; 16 CR26 CR22 Al-Shehbaz, O'Kane (CR1) 1995; 5 Kurtz (CR32) 2004; 5 Oh (CR13) 2010; 61 Lysak (CR27) 2006; 103 Orsini (CR4) 2010; 61 Lugan (CR15) 2010; 64 Craig Plett, Møller (CR20) 2010; 33 F Gao (BFng889_CR14) 2006; 57 BFng889_CR6 IA Al-Shehbaz (BFng889_CR1) 1995; 5 A Conesa (BFng889_CR12) 2008; 2008 R Lugan (BFng889_CR15) 2010; 64 DD Sommer (BFng889_CR30) 2007; 8 F Orsini (BFng889_CR4) 2010; 61 K Hanada (BFng889_CR23) 2008; 148 J-H Mun (BFng889_CR8) 2010; 11 BFng889_CR22 J Jurka (BFng889_CR33) 2005; 110 D-H Oh (BFng889_CR5) 2010; 154 SB Cannon (BFng889_CR24) 2004; 4 BFng889_CR26 DR Zerbino (BFng889_CR31) 2008; 18 A Amtmann (BFng889_CR2) 2009; 2 M Dassanayake (BFng889_CR18) 2011; 16 MA Beilstein (BFng889_CR3) 2010; 107 C Alkan (BFng889_CR11) 2011; 8 R Quan (BFng889_CR21) 2007; 19 B Langmead (BFng889_CR35) 2009; 10 EM Zdobnov (BFng889_CR34) 2001; 17 PH Sudmant (BFng889_CR17) 2010; 330 PJ Hastings (BFng889_CR19) 2009; 10 S DeBolt (BFng889_CR25) 2010; 2 T Mandáková (BFng889_CR28) 2008; 20 D Craig Plett (BFng889_CR20) 2010; 33 D-H Oh (BFng889_CR13) 2010; 61 JT Simpson (BFng889_CR29) 2009; 19 S Kurtz (BFng889_CR32) 2004; 5 S Huang (BFng889_CR7) 2009; 41 G Inan (BFng889_CR16) 2004; 135 J Schmutz (BFng889_CR9) 2010; 463 BFng889_CR10 MA Lysak (BFng889_CR27) 2006; 103 19529830 - Mol Plant. 2009 Jan;2(1):3-12 18836039 - Plant Cell. 2008 Oct;20(10):2559-70 20595237 - J Exp Bot. 2010 Aug;61(13):3787-98 20624746 - Genome Biol Evol. 2010;2:441-53 16940040 - J Exp Bot. 2006;57(12):3259-70 16549785 - Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5224-9 20148030 - Nature. 2010 Feb 11;463(7282):763-8 11130711 - Nature. 2000 Dec 14;408(6814):796-815 20833729 - Plant Physiol. 2010 Nov;154(3):1040-52 21102452 - Nat Methods. 2011 Jan;8(1):61-5 21070405 - Plant J. 2010 Oct;64(2):215-29 15171794 - BMC Plant Biol. 2004 Jun 1;4:10 17449811 - Plant Cell. 2007 Apr;19(4):1415-31 20875114 - Genome Biol. 2010;11(9):R94 20054031 - J Exp Bot. 2010 Feb;61(4):1205-13 11590104 - Bioinformatics. 2001 Sep;17(9):847-8 16093699 - Cytogenet Genome Res. 2005;110(1-4):462-7 19251739 - Genome Res. 2009 Jun;19(6):1117-23 19881527 - Nat Genet. 2009 Dec;41(12):1275-81 18483572 - Int J Plant Genomics. 2008;2008:619832 21094076 - Trends Plant Sci. 2011 Jan;16(1):1-3 18715958 - Plant Physiol. 2008 Oct;148(2):993-1003 19261174 - Genome Biol. 2009;10(3):R25 15247369 - Plant Physiol. 2004 Jul;135(3):1718-37 17324286 - BMC Bioinformatics. 2007;8:64 21030649 - Science. 2010 Oct 29;330(6004):641-6 18349386 - Genome Res. 2008 May;18(5):821-9 19968828 - Plant Cell Environ. 2010 Apr;33(4):612-26 20921408 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8 14759262 - Genome Biol. 2004;5(2):R12 19597530 - Nat Rev Genet. 2009 Aug;10(8):551-64 20075913 - Nature. 2010 Jan 14;463(7278):178-83 |
References_xml | – ident: CR22 – volume: 33 start-page: 612 year: 2010 end-page: 626 ident: CR20 article-title: Na transport in glycophytic plants: what we know and would like to know publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02086.x – volume: 20 start-page: 2559 year: 2008 end-page: 2570 ident: CR28 article-title: Chromosomal phylogeny and karyotype evolution in = 7 crucifer species ( ) publication-title: Plant Cell doi: 10.1105/tpc.108.062166 – volume: 17 start-page: 847 year: 2001 end-page: 848 ident: CR34 article-title: InterProScan—an integration platform for the signature-recognition methods in InterPro publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.9.847 – volume: 57 start-page: 3259 year: 2006 end-page: 3270 ident: CR14 article-title: Cloning of an H -PPase gene from and its heterologous expression to improve tobacco salt tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl090 – volume: 135 start-page: 1718 year: 2004 end-page: 1737 ident: CR16 article-title: Salt cress. A halophyte and cryophyte relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles publication-title: Plant Physiol. doi: 10.1104/pp.104.041723 – volume: 10 start-page: R25 year: 2009 ident: CR35 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 8 start-page: 64 year: 2007 ident: CR30 article-title: Minimus: a fast, lightweight genome assembler publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-64 – volume: 107 start-page: 18724 year: 2010 end-page: 18728 ident: CR3 article-title: Dated molecular phylogenies indicate a Miocene origin for publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0909766107 – volume: 330 start-page: 641 year: 2010 end-page: 646 ident: CR17 article-title: Diversity of human copy number variation and multicopy genes publication-title: Science doi: 10.1126/science.1197005 – volume: 103 start-page: 5224 year: 2006 end-page: 5229 ident: CR27 article-title: Mechanisms of chromosome number reduction in and related species publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510791103 – ident: CR10 – volume: 19 start-page: 1117 year: 2009 end-page: 1123 ident: CR29 article-title: ABySS: a parallel assembler for short read sequence data publication-title: Genome Res. doi: 10.1101/gr.089532.108 – volume: 463 start-page: 178 year: 2010 end-page: 183 ident: CR9 article-title: Genome sequence of the palaeopolyploid soybean publication-title: Nature doi: 10.1038/nature08670 – volume: 61 start-page: 3787 year: 2010 end-page: 3798 ident: CR4 article-title: A comparative study of salt tolerance parameters in 11 wild relatives of publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq188 – volume: 11 start-page: R94 year: 2010 ident: CR8 article-title: Sequence and structure of chromosome A3 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-9-r94 – volume: 16 start-page: 1 year: 2011 end-page: 3 ident: CR18 article-title: Transcription strength and halophytic lifestyle publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.10.006 – volume: 110 start-page: 462 year: 2005 end-page: 467 ident: CR33 article-title: Repbase Update, a database of eukaryotic repetitive elements publication-title: Cytogenet. Genome Res. doi: 10.1159/000084979 – ident: CR6 – volume: 18 start-page: 821 year: 2008 end-page: 829 ident: CR31 article-title: Velvet: Algorithms for short read assembly using de Bruijn graphs publication-title: Genome Res. doi: 10.1101/gr.074492.107 – volume: 61 start-page: 1205 year: 2010 end-page: 1213 ident: CR13 article-title: Intracellular consequences of SOS1 deficiency during salt stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp391 – volume: 5 start-page: R12 year: 2004 ident: CR32 article-title: Versatile and open software for comparing large genomes publication-title: Genome Biol. doi: 10.1186/gb-2004-5-2-r12 – volume: 154 start-page: 1040 year: 2010 end-page: 1052 ident: CR5 article-title: Genome structures and halophyte-specific gene expression of the extremophile in comparison with ( ) and publication-title: Plant Physiol. doi: 10.1104/pp.110.163923 – volume: 64 start-page: 215 year: 2010 end-page: 229 ident: CR15 article-title: Metabolome and water homeostasis analysis of suggests that dehydration tolerance is a key response to osmotic stress in this halophyte publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04323.x – volume: 5 start-page: 309 year: 1995 end-page: 310 ident: CR1 article-title: Placement of in (Brassicaceae) publication-title: Novon. doi: 10.2307/3391953 – volume: 10 start-page: 551 year: 2009 end-page: 564 ident: CR19 article-title: Mechanisms of change in gene copy number publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2593 – volume: 19 start-page: 1415 year: 2007 end-page: 1431 ident: CR21 article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect shoots from salt stress publication-title: Plant Cell doi: 10.1105/tpc.106.042291 – volume: 148 start-page: 993 year: 2008 end-page: 1003 ident: CR23 article-title: Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli publication-title: Plant Physiol. doi: 10.1104/pp.108.122457 – volume: 2 start-page: 441 year: 2010 end-page: 453 ident: CR25 article-title: Copy number variation shapes genome diversity in over immediate family generational scales publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evq033 – volume: 4 start-page: 10 year: 2004 ident: CR24 article-title: The roles of segmental and tandem gene duplication in the evolution of large gene families in publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-4-10 – volume: 2 start-page: 3 year: 2009 end-page: 12 ident: CR2 article-title: Learning from evolution: generates new knowledge on essential and critical components of abiotic stress tolerance in plants publication-title: Mol. Plant doi: 10.1093/mp/ssn094 – volume: 41 start-page: 1275 year: 2009 end-page: 1281 ident: CR7 article-title: The genome of the cucumber, L publication-title: Nat. Genet. doi: 10.1038/ng.475 – volume: 2008 start-page: 619832 year: 2008 ident: CR12 article-title: Blast2GO: A comprehensive suite for functional analysis in plant genomics publication-title: Intl. J. Plant Genomics doi: 10.1155/2008/619832 – ident: CR26 – volume: 8 start-page: 61 year: 2011 end-page: 65 ident: CR11 article-title: Limitations of next-generation genome sequence assembly publication-title: Nat. Methods doi: 10.1038/nmeth.1527 – volume: 64 start-page: 215 year: 2010 ident: BFng889_CR15 publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04323.x – ident: BFng889_CR22 doi: 10.1007/978-3-642-86659-3 – volume: 33 start-page: 612 year: 2010 ident: BFng889_CR20 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02086.x – volume: 103 start-page: 5224 year: 2006 ident: BFng889_CR27 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510791103 – volume: 2008 start-page: 619832 year: 2008 ident: BFng889_CR12 publication-title: Intl. J. Plant Genomics doi: 10.1155/2008/619832 – volume: 18 start-page: 821 year: 2008 ident: BFng889_CR31 publication-title: Genome Res. doi: 10.1101/gr.074492.107 – volume: 11 start-page: R94 year: 2010 ident: BFng889_CR8 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-9-r94 – volume: 154 start-page: 1040 year: 2010 ident: BFng889_CR5 publication-title: Plant Physiol. doi: 10.1104/pp.110.163923 – volume: 10 start-page: 551 year: 2009 ident: BFng889_CR19 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2593 – volume: 5 start-page: 309 year: 1995 ident: BFng889_CR1 publication-title: Novon. doi: 10.2307/3391953 – volume: 5 start-page: R12 year: 2004 ident: BFng889_CR32 publication-title: Genome Biol. doi: 10.1186/gb-2004-5-2-r12 – ident: BFng889_CR6 doi: 10.1038/35048692 – volume: 19 start-page: 1415 year: 2007 ident: BFng889_CR21 publication-title: Plant Cell doi: 10.1105/tpc.106.042291 – volume: 110 start-page: 462 year: 2005 ident: BFng889_CR33 publication-title: Cytogenet. Genome Res. doi: 10.1159/000084979 – volume: 17 start-page: 847 year: 2001 ident: BFng889_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.9.847 – volume: 330 start-page: 641 year: 2010 ident: BFng889_CR17 publication-title: Science doi: 10.1126/science.1197005 – volume: 16 start-page: 1 year: 2011 ident: BFng889_CR18 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.10.006 – volume: 20 start-page: 2559 year: 2008 ident: BFng889_CR28 publication-title: Plant Cell doi: 10.1105/tpc.108.062166 – ident: BFng889_CR10 doi: 10.1038/nature08747 – ident: BFng889_CR26 doi: 10.1007/978-1-4419-7118-0_1 – volume: 10 start-page: R25 year: 2009 ident: BFng889_CR35 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 4 start-page: 10 year: 2004 ident: BFng889_CR24 publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-4-10 – volume: 463 start-page: 178 year: 2010 ident: BFng889_CR9 publication-title: Nature doi: 10.1038/nature08670 – volume: 41 start-page: 1275 year: 2009 ident: BFng889_CR7 publication-title: Nat. Genet. doi: 10.1038/ng.475 – volume: 61 start-page: 3787 year: 2010 ident: BFng889_CR4 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq188 – volume: 107 start-page: 18724 year: 2010 ident: BFng889_CR3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0909766107 – volume: 19 start-page: 1117 year: 2009 ident: BFng889_CR29 publication-title: Genome Res. doi: 10.1101/gr.089532.108 – volume: 57 start-page: 3259 year: 2006 ident: BFng889_CR14 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl090 – volume: 8 start-page: 61 year: 2011 ident: BFng889_CR11 publication-title: Nat. Methods doi: 10.1038/nmeth.1527 – volume: 2 start-page: 3 year: 2009 ident: BFng889_CR2 publication-title: Mol. Plant doi: 10.1093/mp/ssn094 – volume: 135 start-page: 1718 year: 2004 ident: BFng889_CR16 publication-title: Plant Physiol. doi: 10.1104/pp.104.041723 – volume: 8 start-page: 64 year: 2007 ident: BFng889_CR30 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-64 – volume: 148 start-page: 993 year: 2008 ident: BFng889_CR23 publication-title: Plant Physiol. doi: 10.1104/pp.108.122457 – volume: 2 start-page: 441 year: 2010 ident: BFng889_CR25 publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evq033 – volume: 61 start-page: 1205 year: 2010 ident: BFng889_CR13 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp391 – reference: 16940040 - J Exp Bot. 2006;57(12):3259-70 – reference: 18836039 - Plant Cell. 2008 Oct;20(10):2559-70 – reference: 19251739 - Genome Res. 2009 Jun;19(6):1117-23 – reference: 18349386 - Genome Res. 2008 May;18(5):821-9 – reference: 21102452 - Nat Methods. 2011 Jan;8(1):61-5 – reference: 18483572 - Int J Plant Genomics. 2008;2008:619832 – reference: 21094076 - Trends Plant Sci. 2011 Jan;16(1):1-3 – reference: 18715958 - Plant Physiol. 2008 Oct;148(2):993-1003 – reference: 19968828 - Plant Cell Environ. 2010 Apr;33(4):612-26 – reference: 11590104 - Bioinformatics. 2001 Sep;17(9):847-8 – reference: 20075913 - Nature. 2010 Jan 14;463(7278):178-83 – reference: 15247369 - Plant Physiol. 2004 Jul;135(3):1718-37 – reference: 17449811 - Plant Cell. 2007 Apr;19(4):1415-31 – reference: 20875114 - Genome Biol. 2010;11(9):R94 – reference: 19597530 - Nat Rev Genet. 2009 Aug;10(8):551-64 – reference: 15171794 - BMC Plant Biol. 2004 Jun 1;4:10 – reference: 20921408 - Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18724-8 – reference: 20624746 - Genome Biol Evol. 2010;2:441-53 – reference: 16549785 - Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5224-9 – reference: 19529830 - Mol Plant. 2009 Jan;2(1):3-12 – reference: 19881527 - Nat Genet. 2009 Dec;41(12):1275-81 – reference: 11130711 - Nature. 2000 Dec 14;408(6814):796-815 – reference: 20595237 - J Exp Bot. 2010 Aug;61(13):3787-98 – reference: 16093699 - Cytogenet Genome Res. 2005;110(1-4):462-7 – reference: 20833729 - Plant Physiol. 2010 Nov;154(3):1040-52 – reference: 20148030 - Nature. 2010 Feb 11;463(7282):763-8 – reference: 17324286 - BMC Bioinformatics. 2007;8:64 – reference: 21030649 - Science. 2010 Oct 29;330(6004):641-6 – reference: 21070405 - Plant J. 2010 Oct;64(2):215-29 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 14759262 - Genome Biol. 2004;5(2):R12 – reference: 20054031 - J Exp Bot. 2010 Feb;61(4):1205-13 |
SSID | ssj0014408 |
Score | 2.5073547 |
Snippet | Dong-Ha Oh and colleagues report the draft genome of the extremophile crucifer plant
Thellungiella parvula
. This species is endemic to highly saline... Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant... Thellungiella parvula (1) is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats (2), making it a model for the evolution of plant... Thellungiella parvula 1 is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats 2 , making it a model for the evolution of plant... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 913 |
SubjectTerms | 631/181/2474 631/208/212/748 631/449/2661 Agriculture Animal Genetics and Genomics Arabidopsis thaliana Bacteria Base Sequence Biological and medical sciences Biomedical and Life Sciences Biomedicine Brassicaceae - genetics Cancer Research Chromosomes Chromosomes, Plant - genetics Colleges & universities Environmental stress Evolution Fundamental and applied biological sciences. Psychology Gene Function Genetics Genetics of eukaryotes. Biological and molecular evolution Genome, Plant Genomes Genomics Human Genetics letter Molecular Sequence Data Physiological aspects Plants Rural development Salinity Stress, Physiological - genetics Tandem Repeat Sequences Thellungiella |
Title | The genome of the extremophile crucifer Thellungiella parvula |
URI | https://link.springer.com/article/10.1038/ng.889 https://www.ncbi.nlm.nih.gov/pubmed/21822265 https://www.proquest.com/docview/894124255 https://www.proquest.com/docview/1034820833 https://www.proquest.com/docview/885910810 https://pubmed.ncbi.nlm.nih.gov/PMC3586812 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRISQrwJLYtBIE5RE9vrOCdUqlYFiYJKi_YW2Y69rdQmYbOLxL9nJvGmCqVccvEofs3Ynz3jbwh5qwwvWVr6GPbKLBYuZ3GurYzTTENJ6VTi8aD45UgenorPs-ksxOa0IaxyvSZ2C3VZW7wj31E55kkGAPyh-Rlj0ih0roYMGrfJJjKXYURXNhvOW-i27F_CSTwmoZeyTy3E1U41Bw3JR3tRWJHvNbqF0fF9Wot_4c7r4ZN_-VC7rengAbkfMCXd7ZXgIbnlqkfkTp9l8vfjLpM8RS7WS0drTwHxUViRF-6ybs5gTaAWphcDXOgJBoWC8Z9jRBRt9OLX6kI_IacH-yd7h3HImhBbqdQytkpZzQHYpJppmcM3NYktjcgtm3omWSnKJNFgy7lhQgFcdLkyils4GHovLX9KNqq6cs8JTb3IHRipLzMnWGlMpgE_MpEpM5WOu4i8W49fYQOlOGa2uCg61zZXRTUvYJwj8mqQa3oSjWsSb3D4C2SkqDDkZa5XbVt8-vqj2GUyw3uqRNwk9P14JPQ-CPka2mJ1eGYAPUKmq5Hk9kgS7MqOiicjVRhajq5iKVJo89ZaN4pg-G0xqGlEXg-l-GecucrVqxa7LQB3Kc4jQm-QUUgrCGgticizXtmuqk8R00moIBup4SCAhOHjkur8rCMO51OFdHNQ7Vphrxo-no8X_-3bFrnbX61jqN022VguVu4lYLOlmXQWCF-1l07I5sf9o2_HfwBBsTqT |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVggkhHgTWlqDqDhFTWyv4xwQKtBql7YLKtuqt-A4zrZSmyybXVB_FP-RmbyqUMqtl1w8il_jeXjG8xHyRsU8YX6SuqArA1fYkLmhNtL1Aw0tiVVeio7i_kgODsXn4_7xEvndvIXBtMpGJpaCOskN3pFvqhBxksEAfj_94SJoFAZXGwSNiit27cUv8NiKd8NPsL0bjO1sjz8O3BpUwDVSqblrlDKag973NdMyhK8feyaJRWhYP2WSJSLxPA2sHsZMKLCmbKhixQ34TWkqDYf_3iLLgoMn0yPLH7ZHXw_asAXCN5fhVYmOGcZFKzAjrjazCfBk2NF-tQ64N9UF7EdaAWn8y9K9mrD5V9S2VIY7D8j92oqlWxXbPSRLNntEble4lhePS-x6itVfzy3NUwo2JgUdMLPn-fQEpBA1wFCYUkPHmIYK4uYUc7DoVM9-Ls70E3J4I0v6lPSyPLPPCfVTEVoQC2kSWMGSOA40WKxMBCruS8utQzaa9YtMXcQcsTTOojKYzlWUTSJYZ4est3TTqmzHFYrXuPwR1sDIMMlmohdFEQ2_HEVbTAZ4M-aJ64i-HXSI3tZEaQ5jMbp-2AAzwtpaHcrVDiWcZNNpXuuwQjtyDE5L4cOYVxreiGpRU0TtwXDIq7YV_4w7l9l8UeC0BVh6inOH0GtoFBYyBPvQc8izitkuu_fRipTQQdBhw5YAS5R3W7LTk7JUOe8rLHAH3TYMeznw7n68-O_c1smdwXh_L9objnZXyN3qYh8T_VZJbz5b2JdgGc7jtfo8UvL9pkXAH4M_dVM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQgJId6EltYgKk7RJrbXcQ4IVZRVl0JB0KK9Bcext5XaZNnsgvrT-HfM5FWFUm695OJRbI9nxp894xlCXqqUZyzMnA97ZeQLGzM_1kb6YaShJbMqcHhQ_Lgvdw_F-8lwskJ-t29hMKyytYmVoc4Kg3fkAxVjnWQAwAPXREV83hm9mf3wsYAUOlrbahq1hOzZs19weitfj3dgqbcYG707eLvrNwUGfCOVWvhGKaM5YIBQMy1j-IZpYLJUxIYNHZMsE1kQaBD7OGVCAbKysUoVN3CGck4aDv-9Rq5HfBiiikWT7qyHLtP6FZ7EIxp6SOuyRlwN8ilIZ9zbB5vd4PZMl7Ayri6p8S_MezF08y__bbUtju6SOw2epdu1AN4jKza_T27UFS7PHlRV7CnmgT21tHAU0CYFns7taTE7AntEDYgWBtfQAwxIBcNzjNFYdKbnP5cn-iE5vBKGPiKreZHbJ4SGTsQWDITLIitYlqaRBuzKRKTSobTcemSr5V9imnTmWFXjJKnc6lwl-TQBPntks6Ob1Qk8LlC8QPYnmA0jR8Ga6mVZJuNP35JtJiO8IwvEZURfv_SIXjVEroCxGN08cYAZYZatHuV6jxJ02vSaN3qi0I0c3dRShDDmtVY2ksbolEmnIh553rXin3HlclssS5y2AMynOPcIvYRGYUpDQIqBRx7XwnbefYh4UkIHUU8MOwJMVt5vyY-PqqTlfKgw1R102wrs-cD76_H0v3PbJDdB8ZMP4_29NXKrvuHHiL91srqYL-0zgIiLdKNSRkq-X7X2_wG5M3gj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+genome+of+the+extremophile+crucifer+Thellungiella+parvula&rft.jtitle=Nature+genetics&rft.au=Dassanayake%2C+Maheshi&rft.au=Oh%2C+Dong-Ha&rft.au=Haas%2C+Jeffrey+S&rft.au=Hernandez%2C+Alvaro&rft.date=2011-09-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=43&rft.issue=9&rft.spage=913&rft.epage=918&rft_id=info:doi/10.1038%2Fng.889&rft.externalDocID=10_1038_ng_889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon |