Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs)

Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of mac...

Full description

Saved in:
Bibliographic Details
Published inACTA HISTOCHEMICA ET CYTOCHEMICA Vol. 55; no. 4; pp. 111 - 118
Main Authors Yamada, Seiji, Shiogama, Kazuya, Abe, Masato, Hirayama, Masaya, Michiba, Ayano, Tsukamoto, Tetsuya
Format Journal Article
LanguageEnglish
Published Japan JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY 27.08.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.
AbstractList Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.
Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.
ArticleNumber 22-00018
Author Michiba, Ayano
Tsukamoto, Tetsuya
Yamada, Seiji
Shiogama, Kazuya
Abe, Masato
Hirayama, Masaya
Author_xml – sequence: 1
  fullname: Yamada, Seiji
  organization: Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
– sequence: 1
  fullname: Shiogama, Kazuya
  organization: Department of Morphology and Pathology, Fujita Health University Medical Science
– sequence: 1
  fullname: Abe, Masato
  organization: Department of Morphology and Pathology, Fujita Health University Medical Science
– sequence: 1
  fullname: Hirayama, Masaya
  organization: Department of Morphology and Pathology, Fujita Health University Medical Science
– sequence: 1
  fullname: Michiba, Ayano
  organization: Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
– sequence: 1
  fullname: Tsukamoto, Tetsuya
  organization: Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36060293$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhS1URNPCjjUaiU2RmGJ7PH6wQCpVKJUasQlr68bxJA7OOLVnIvrv8SRNgEqwsWXf7x6d-zhDJ21oLUKvCb4klIsPsDSXlJYYYyKfoRGpmChrifEJGmHMWFkrRU7RWUqrgchfL9BpxTHHVFUj9GMS4mYZfFg4U1y14B-SS0VoigktJmBi2CxhYQvXFjfehZmH1IU1fCxu223wW7u2bbejf6Pjn10EY73vPcRiGmGTiovJeJrevUTPG_DJvnq8z9H3L-Pp9dfy7tvN7fXVXWm4lF0prCWEE4bnStWCqYpawvNjDpTPG2LUTEhR44oZMALmkmE-k42YNZILwADVOfq01930s7Wdm-wxgteb6NYQH3QAp_-OtG6pF2GrFaOiZiQLXDwKxHDf29TptUtDSdDa0CdNBc5NZUyqjL59gq5CH3MfB6pmNZeU0_9TWGGJlRCZevOn76Phw7QyQPdAbnZK0TbauA46F4YynNcE62EldF4JTanerUROev8k6aD7D_zzHl-lLo_zCEPsnPF2B9e1ZsNxSDoGzRKitm31C1Qczlw
CitedBy_id crossref_primary_10_1016_j_xpro_2024_103285
crossref_primary_10_1016_j_xcrm_2024_101482
crossref_primary_10_1089_ars_2023_0329
crossref_primary_10_11620_IJOB_2024_49_2_34
crossref_primary_10_1267_ahc_24_00043
crossref_primary_10_1016_j_bbcan_2023_188931
crossref_primary_10_1007_s13577_025_01181_3
crossref_primary_10_4103_glioma_glioma_4_24
Cites_doi 10.1186/1742-2094-11-98
10.1038/nrn3722
10.1128/IAI.06120-11
10.1111/neup.12354
10.1093/infdis/jit097
10.3389/fimmu.2021.577517
10.1136/jitc-2019-000339
10.1083/jcb.200606027
10.1093/carcin/bgr128
10.1038/s41598-017-04275-7
10.1038/nm.4462
10.1111/j.1582-4934.2009.00926.x
10.1159/000480373
10.12703/P6-13
10.4049/jimmunol.164.12.6166
10.1111/pin.12440
10.1016/j.neulet.2017.02.076
10.1002/path.2370
10.1371/journal.pone.0090042
10.3389/fimmu.2016.00513
10.1093/neuonc/noq082
10.1038/nri978
10.1084/jem.20080108
10.1111/nure.12155
10.1097/MAO.0000000000000879
10.2176/nmc.sup.2017-0001
10.1016/j.micpath.2012.09.007
10.1089/ten.tea.2007.0264
10.1146/annurev-immunol-032713-120240
10.1016/j.wneu.2018.08.133
10.1083/jcb.200806072
10.3389/fimmu.2013.00067
10.1155/2019/2198508
10.1126/science.1092385
10.1267/ahc.16015
10.1267/ahc.16016
10.1267/ahc.16028
ContentType Journal Article
Copyright 2022 The Japan Society of Histochemistry and Cytochemistry
2022 The Japan Society of Histochemistry and Cytochemistry.
2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Japan Society of Histochemistry and Cytochemistry 2022
Copyright_xml – notice: 2022 The Japan Society of Histochemistry and Cytochemistry
– notice: 2022 The Japan Society of Histochemistry and Cytochemistry.
– notice: 2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Japan Society of Histochemistry and Cytochemistry 2022
DBID AAYXX
CITATION
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1267/ahc.22-00018
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Chemoreception Abstracts
PubMed

Chemoreception Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate M2 Macrophage in Glioblastoma
EISSN 1347-5800
EndPage 118
ExternalDocumentID PMC9427541
36060293
10_1267_ahc_22_00018
article_ahc_55_4_55_22_00018_article_char_en
Genre Journal Article
GroupedDBID -~X
.55
23M
2WC
53G
5GY
ACIWK
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
E3Z
F5P
GX1
HH5
HYE
JSF
JSH
KQ8
M48
O5R
O5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TR2
WOW
X7M
XSB
AAYXX
CITATION
M~E
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c688t-7ee116140d99574932e160d9da26df1c9b7875034cac7ad8406b8f7bf867a0aa3
IEDL.DBID M48
ISSN 0044-5991
IngestDate Thu Aug 21 18:01:05 EDT 2025
Thu Jul 10 22:18:03 EDT 2025
Mon Jun 30 10:03:04 EDT 2025
Mon Jun 30 10:12:55 EDT 2025
Thu Jan 02 22:30:22 EST 2025
Tue Jul 01 02:15:23 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Wed Sep 03 06:30:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords macrophage extracellular traps (METs)
glioblastoma
M1 and M2 macrophage
microglia
Language English
License https://creativecommons.org/licenses/by-nc/4.0
2022 The Japan Society of Histochemistry and Cytochemistry.
This is an open access article distributed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC-BY-NC), which permits use, distribution and reproduction of the articles in any medium provided that the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c688t-7ee116140d99574932e160d9da26df1c9b7875034cac7ad8406b8f7bf867a0aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1267/ahc.22-00018
PMID 36060293
PQID 2709080977
PQPubID 1966372
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9427541
proquest_miscellaneous_2709914489
proquest_journals_2754568262
proquest_journals_2709080977
pubmed_primary_36060293
crossref_citationtrail_10_1267_ahc_22_00018
crossref_primary_10_1267_ahc_22_00018
jstage_primary_article_ahc_55_4_55_22_00018_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Aug-27
PublicationDateYYYYMMDD 2022-08-27
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug-27
  day: 27
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Sendai
PublicationTitle ACTA HISTOCHEMICA ET CYTOCHEMICA
PublicationTitleAlternate Acta Histochem. Cytochem.
PublicationYear 2022
Publisher JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY
Japan Science and Technology Agency
Publisher_xml – name: JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY
– name: Japan Science and Technology Agency
References 24 Okubo, K., Kurosawa, M., Kamiya, M., Urano, Y., Suzuki, A., Yamamoto, K., et al. (2018) Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 24; 232–238.
13 Hu, L., Hu, X., Long, K., Gao, C., Dong, H. L., Zhong, Q., et al. (2017) Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci. Rep. 7; 4230.
27 Onouchi, T., Shiogama, K., Mizutani, Y., Takaki, T. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: III. Correlative Light and Electron Microscopic Study. Acta Histochem. Cytochem. 49; 141–147.
35 Wong, K. W. and Jacobs, W. R., Jr. (2013) Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis. J. Infect. Dis. 208; 109–119.
32 Takeya, M. and Komohara, Y. (2016) Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol. Int. 66; 491–505.
7 Dong, H., Yang, Y., Gao, C., Sun, H., Wang, H., Hong, C., et al. (2020) Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. J. Immunother. Cancer 8; e000339.
36 Wu, A., Wei, J., Kong, L. Y., Wang, Y., Priebe, W., Qiao, W., et al. (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 12; 1113–1125.
15 Komohara, Y., Ohnishi, K., Kuratsu, J. and Takeya, M. (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216; 15–24.
30 Sasaki, A. (2017) Microglia and brain macrophages: An update. Neuropathology 37; 452–464.
26 Onouchi, T., Shiogama, K., Matsui, T., Mizutani, Y., Sakurai, K., Inada, K., et al. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: II. Ultrastructural Study. Acta Histochem. Cytochem. 49; 117–123.
6 Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., et al. (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14; 2803–2815.
20 Mohanan, S., Horibata, S., McElwee, J. L., Dannenberg, A. J. and Coonrod, S. A. (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front. Immunol. 4; 67.
1 Aulik, N. A., Hellenbrand, K. M. and Czuprynski, C. J. (2012) Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect. Immun. 80; 1923–1933.
17 Liu, P., Wu, X., Liao, C., Liu, X., Du, J., Shi, H., et al. (2014) Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLoS One 9; e90042.
38 Zhang, Y., Lima, C. F. and Rodrigues, L. R. (2014) Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr. Rev. 72; 763–773.
18 Martinez, F. O. and Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6; 13.
10 Gordon, S. (2003) Alternative activation of macrophages. Nat. Rev. Immunol. 3; 23–35.
3 Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303; 1532–1535.
19 Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. and Hill, A. M. (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164; 6166–6173.
25 O’Malley, J. T., Nadol, J. B. Jr. and McKenna, M. J. (2016) Anti CD163+, Iba1+, and CD68+ Cells in the Adult Human Inner Ear: Normal Distribution of an Unappreciated Class of Macrophages/Microglia and Implications for Inflammatory Otopathology in Humans. Otol. Neurotol. 37; 99–108.
8 Doster, R. S., Rogers, L. M., Gaddy, J. A. and Aronoff, D. M. (2018) Macrophage Extracellular Traps: A Scoping Review. J. Innate. Immun. 10; 3–13.
34 Wang, Y., Li, M., Stadler, S., Correll, S., Li, P., Wang, D., et al. (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184; 205–213.
29 REPORT OF BRAIN TUMOR REGISTRY OF JAPAN (2005–2008) 14th Edition. (2017) Brain Tumor Registry of Japan (2005–2008). Neurol. Med. Chir. (Tokyo) 57(Suppl 1); 9–102.
5 Cherry, J. D., Olschowka, J. A. and O’Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11; 98.
16 Lisi, L., Ciotti, G. M., Braun, D., Kalinin, S., Currò, D., Dello Russo, C., et al. (2017) Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci. Lett. 645; 106–112.
22 Nayak, D., Roth, T. L. and McGavern, D. B. (2014) Microglia development and function. Annu. Rev. Immunol. 32; 367–402.
4 Brinkmann, V., Abu Abed, U., Goosmann, C. and Zychlinsky, A. (2016) Immunodetection of NETs in Paraffin-Embedded Tissue. Front. Immunol. 7; 513.
23 Nishie, A., Ono, M., Shono, T., Fukushi, J., Otsubo, M., Onoue, H., et al. (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 5; 1107–1113.
2 Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. and Stewart-Akers, A. M. (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A. 14; 1835–1842.
21 Nakanishi, Y., Nakatsuji, M., Seno, H., Ishizu, S., Akitake-Kawano, R., Kanda, K., et al. (2011) COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32; 1333–1339.
31 Shiogama, K., Onouchi, T., Mizutani, Y., Sakurai, K., Inada, K. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: I. Light Microscopic Study. Acta Histochem. Cytochem. 49; 109–116.
28 Prinz, M. and Priller, J. (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15; 300–312.
33 Tamura, R., Ohara, K., Sasaki, H., Morimoto, Y., Kosugi, K., Yoshida, K., et al. (2018) Difference in Immunosuppressive Cells Between Peritumoral Area and Tumor Core in Glioblastoma. World Neurosurg. 120; e601–e610.
9 Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007) Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176; 231–241.
14 Jiménez-Uribe, A. P., Valencia-Martínez, H., Carballo-Uicab, G., Vallejo-Castillo, L., Medina-Rivero, E., Chacón-Salinas, R., et al. (2019) CD80 Expression Correlates with IL-6 Production in THP-1-Like Macrophages Costimulated with LPS and Dialyzable Leukocyte Extract (Transferon®). J. Immunol. Res. 2019; 2198508.
11 Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., et al. (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205; 1261–1268.
37 Xu, S. S., Li, H., Li, T. J., Li, S., Xia, H. Y., Long, J., et al. (2021) Neutrophil Extracellular Traps and Macrophage Extracellular Traps Predict Postoperative Recurrence in Resectable Nonfunctional Pancreatic Neuroendocrine Tumors. Front. Immunol. 12; 577517.
12 Hellenbrand, K. M., Forsythe, K. M., Rivera-Rivas, J. J., Czuprynski, C. J. and Aulik, N. A. (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb. Pathog. 54; 67–75.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 11 Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., et al. (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205; 1261–1268.
– reference: 5 Cherry, J. D., Olschowka, J. A. and O’Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11; 98.
– reference: 30 Sasaki, A. (2017) Microglia and brain macrophages: An update. Neuropathology 37; 452–464.
– reference: 37 Xu, S. S., Li, H., Li, T. J., Li, S., Xia, H. Y., Long, J., et al. (2021) Neutrophil Extracellular Traps and Macrophage Extracellular Traps Predict Postoperative Recurrence in Resectable Nonfunctional Pancreatic Neuroendocrine Tumors. Front. Immunol. 12; 577517.
– reference: 35 Wong, K. W. and Jacobs, W. R., Jr. (2013) Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis. J. Infect. Dis. 208; 109–119.
– reference: 19 Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. and Hill, A. M. (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164; 6166–6173.
– reference: 1 Aulik, N. A., Hellenbrand, K. M. and Czuprynski, C. J. (2012) Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect. Immun. 80; 1923–1933.
– reference: 31 Shiogama, K., Onouchi, T., Mizutani, Y., Sakurai, K., Inada, K. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: I. Light Microscopic Study. Acta Histochem. Cytochem. 49; 109–116.
– reference: 6 Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., et al. (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14; 2803–2815.
– reference: 18 Martinez, F. O. and Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6; 13.
– reference: 36 Wu, A., Wei, J., Kong, L. Y., Wang, Y., Priebe, W., Qiao, W., et al. (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 12; 1113–1125.
– reference: 7 Dong, H., Yang, Y., Gao, C., Sun, H., Wang, H., Hong, C., et al. (2020) Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. J. Immunother. Cancer 8; e000339.
– reference: 15 Komohara, Y., Ohnishi, K., Kuratsu, J. and Takeya, M. (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216; 15–24.
– reference: 20 Mohanan, S., Horibata, S., McElwee, J. L., Dannenberg, A. J. and Coonrod, S. A. (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front. Immunol. 4; 67.
– reference: 23 Nishie, A., Ono, M., Shono, T., Fukushi, J., Otsubo, M., Onoue, H., et al. (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 5; 1107–1113.
– reference: 3 Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303; 1532–1535.
– reference: 8 Doster, R. S., Rogers, L. M., Gaddy, J. A. and Aronoff, D. M. (2018) Macrophage Extracellular Traps: A Scoping Review. J. Innate. Immun. 10; 3–13.
– reference: 27 Onouchi, T., Shiogama, K., Mizutani, Y., Takaki, T. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: III. Correlative Light and Electron Microscopic Study. Acta Histochem. Cytochem. 49; 141–147.
– reference: 25 O’Malley, J. T., Nadol, J. B. Jr. and McKenna, M. J. (2016) Anti CD163+, Iba1+, and CD68+ Cells in the Adult Human Inner Ear: Normal Distribution of an Unappreciated Class of Macrophages/Microglia and Implications for Inflammatory Otopathology in Humans. Otol. Neurotol. 37; 99–108.
– reference: 10 Gordon, S. (2003) Alternative activation of macrophages. Nat. Rev. Immunol. 3; 23–35.
– reference: 22 Nayak, D., Roth, T. L. and McGavern, D. B. (2014) Microglia development and function. Annu. Rev. Immunol. 32; 367–402.
– reference: 9 Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007) Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176; 231–241.
– reference: 26 Onouchi, T., Shiogama, K., Matsui, T., Mizutani, Y., Sakurai, K., Inada, K., et al. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: II. Ultrastructural Study. Acta Histochem. Cytochem. 49; 117–123.
– reference: 32 Takeya, M. and Komohara, Y. (2016) Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol. Int. 66; 491–505.
– reference: 33 Tamura, R., Ohara, K., Sasaki, H., Morimoto, Y., Kosugi, K., Yoshida, K., et al. (2018) Difference in Immunosuppressive Cells Between Peritumoral Area and Tumor Core in Glioblastoma. World Neurosurg. 120; e601–e610.
– reference: 17 Liu, P., Wu, X., Liao, C., Liu, X., Du, J., Shi, H., et al. (2014) Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLoS One 9; e90042.
– reference: 34 Wang, Y., Li, M., Stadler, S., Correll, S., Li, P., Wang, D., et al. (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184; 205–213.
– reference: 4 Brinkmann, V., Abu Abed, U., Goosmann, C. and Zychlinsky, A. (2016) Immunodetection of NETs in Paraffin-Embedded Tissue. Front. Immunol. 7; 513.
– reference: 24 Okubo, K., Kurosawa, M., Kamiya, M., Urano, Y., Suzuki, A., Yamamoto, K., et al. (2018) Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 24; 232–238.
– reference: 21 Nakanishi, Y., Nakatsuji, M., Seno, H., Ishizu, S., Akitake-Kawano, R., Kanda, K., et al. (2011) COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32; 1333–1339.
– reference: 2 Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. and Stewart-Akers, A. M. (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A. 14; 1835–1842.
– reference: 12 Hellenbrand, K. M., Forsythe, K. M., Rivera-Rivas, J. J., Czuprynski, C. J. and Aulik, N. A. (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb. Pathog. 54; 67–75.
– reference: 29 REPORT OF BRAIN TUMOR REGISTRY OF JAPAN (2005–2008) 14th Edition. (2017) Brain Tumor Registry of Japan (2005–2008). Neurol. Med. Chir. (Tokyo) 57(Suppl 1); 9–102.
– reference: 16 Lisi, L., Ciotti, G. M., Braun, D., Kalinin, S., Currò, D., Dello Russo, C., et al. (2017) Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci. Lett. 645; 106–112.
– reference: 13 Hu, L., Hu, X., Long, K., Gao, C., Dong, H. L., Zhong, Q., et al. (2017) Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci. Rep. 7; 4230.
– reference: 28 Prinz, M. and Priller, J. (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15; 300–312.
– reference: 14 Jiménez-Uribe, A. P., Valencia-Martínez, H., Carballo-Uicab, G., Vallejo-Castillo, L., Medina-Rivero, E., Chacón-Salinas, R., et al. (2019) CD80 Expression Correlates with IL-6 Production in THP-1-Like Macrophages Costimulated with LPS and Dialyzable Leukocyte Extract (Transferon®). J. Immunol. Res. 2019; 2198508.
– reference: 38 Zhang, Y., Lima, C. F. and Rodrigues, L. R. (2014) Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr. Rev. 72; 763–773.
– ident: 5
  doi: 10.1186/1742-2094-11-98
– ident: 28
  doi: 10.1038/nrn3722
– ident: 1
  doi: 10.1128/IAI.06120-11
– ident: 30
  doi: 10.1111/neup.12354
– ident: 35
  doi: 10.1093/infdis/jit097
– ident: 37
  doi: 10.3389/fimmu.2021.577517
– ident: 7
  doi: 10.1136/jitc-2019-000339
– ident: 9
  doi: 10.1083/jcb.200606027
– ident: 21
  doi: 10.1093/carcin/bgr128
– ident: 13
  doi: 10.1038/s41598-017-04275-7
– ident: 24
  doi: 10.1038/nm.4462
– ident: 6
  doi: 10.1111/j.1582-4934.2009.00926.x
– ident: 8
  doi: 10.1159/000480373
– ident: 18
  doi: 10.12703/P6-13
– ident: 19
  doi: 10.4049/jimmunol.164.12.6166
– ident: 32
  doi: 10.1111/pin.12440
– ident: 16
  doi: 10.1016/j.neulet.2017.02.076
– ident: 15
  doi: 10.1002/path.2370
– ident: 17
  doi: 10.1371/journal.pone.0090042
– ident: 4
  doi: 10.3389/fimmu.2016.00513
– ident: 36
  doi: 10.1093/neuonc/noq082
– ident: 10
  doi: 10.1038/nri978
– ident: 11
  doi: 10.1084/jem.20080108
– ident: 38
  doi: 10.1111/nure.12155
– ident: 25
  doi: 10.1097/MAO.0000000000000879
– ident: 29
  doi: 10.2176/nmc.sup.2017-0001
– ident: 12
  doi: 10.1016/j.micpath.2012.09.007
– ident: 2
  doi: 10.1089/ten.tea.2007.0264
– ident: 22
  doi: 10.1146/annurev-immunol-032713-120240
– ident: 33
  doi: 10.1016/j.wneu.2018.08.133
– ident: 34
  doi: 10.1083/jcb.200806072
– ident: 20
  doi: 10.3389/fimmu.2013.00067
– ident: 14
  doi: 10.1155/2019/2198508
– ident: 3
  doi: 10.1126/science.1092385
– ident: 31
  doi: 10.1267/ahc.16015
– ident: 26
  doi: 10.1267/ahc.16016
– ident: 27
  doi: 10.1267/ahc.16028
– ident: 23
SSID ssj0018004
Score 2.3096561
Snippet Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms Brain tumors
CD163 antigen
Cell death
Fibrin
Glioblastoma
Inflammation
Lactoferrin
M1 and M2 macrophage
macrophage extracellular traps (METs)
Macrophages
microglia
Phagocytes
Phenotypes
Regular
Title Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs)
URI https://www.jstage.jst.go.jp/article/ahc/55/4/55_22-00018/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/36060293
https://www.proquest.com/docview/2709080977
https://www.proquest.com/docview/2754568262
https://www.proquest.com/docview/2709914489
https://pubmed.ncbi.nlm.nih.gov/PMC9427541
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ACTA HISTOCHEMICA ET CYTOCHEMICA, 2022/08/27, Vol.55(4), pp.111-118
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rS9xAEB_U9kO_lFbbmvpgC1paSnST7CPbUkTKqW1JoeCB38Jmk3jXnon1TtD_3tnNw54o-CUQdrJZdnZ2frOP3wBsBZEMSspKXytlfMY52hx6ap8ZLiLDaE5dzsjklzgash8n_GQBumyjbQdO7w3tbD6p4cVk5-rf9R4a_FfHjSDkrh6ZHQypLFyJF-EJ-iRpTTRht_sJCIsaPmbGfI6QqD0Cf_frOef09A_is9PiPuh59wTlfy7p4AU8b7Ek2W-U_xIWimoZVvYrjKPPrsl74k53umXzFfib1NijzUxHOiYSUpckCUmibR6vEbaCjCtyOBnXGWJqrER_Jt8rnL8cp_jMSd-KDq6wTXbd3x5kJejzzqfkQzI4nn58BcODwfG3I79NtOAbEcczXxZFgMgPNaMUlwwhXREIfMl1KPIyMCpDs-Y0YkYbqXOMCUUWlzIrYyE11Tp6DUtVXRWrQNDdUyMzmalcMZULZRAw5dzSzgvNRObBp66HU9OykNtkGJPURiOojxT1kYah2xSPPdjupc8b9o0H5L40yuqlWrtzUpynzD466b7QXmzD2cGD9U7DaTcA01BShWga4fEDxRZ6YmwWevCuL0bTtP2uq6K-bKpQGLDGyoM3zXjp2xdh4EgRankg50ZSL2Bpv-dLqvHI0X8rZn8evH3Ef9fgWWiva1CcDeU6LM0uLosNBFGzbBMWf_6ON52V3AAgbhtu
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphologic+Analysis+of+M2+Macrophage+in+Glioblastoma%3A+Involvement+of+Macrophage+Extracellular+Traps+%28METs%29&rft.jtitle=Acta+histochemica+et+cytochemica&rft.au=Michiba%2C+Ayano&rft.au=Shiogama%2C+Kazuya&rft.au=Tsukamoto%2C+Tetsuya&rft.au=Hirayama%2C+Masaya&rft.date=2022-08-27&rft.issn=0044-5991&rft.volume=55&rft.issue=4&rft.spage=111&rft_id=info:doi/10.1267%2Fahc.22-00018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-5991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-5991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-5991&client=summon