Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs)
Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of mac...
Saved in:
Published in | ACTA HISTOCHEMICA ET CYTOCHEMICA Vol. 55; no. 4; pp. 111 - 118 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY
27.08.2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations. |
---|---|
AbstractList | Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations. Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations. |
ArticleNumber | 22-00018 |
Author | Michiba, Ayano Tsukamoto, Tetsuya Yamada, Seiji Shiogama, Kazuya Abe, Masato Hirayama, Masaya |
Author_xml | – sequence: 1 fullname: Yamada, Seiji organization: Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine – sequence: 1 fullname: Shiogama, Kazuya organization: Department of Morphology and Pathology, Fujita Health University Medical Science – sequence: 1 fullname: Abe, Masato organization: Department of Morphology and Pathology, Fujita Health University Medical Science – sequence: 1 fullname: Hirayama, Masaya organization: Department of Morphology and Pathology, Fujita Health University Medical Science – sequence: 1 fullname: Michiba, Ayano organization: Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine – sequence: 1 fullname: Tsukamoto, Tetsuya organization: Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36060293$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEUhS1URNPCjjUaiU2RmGJ7PH6wQCpVKJUasQlr68bxJA7OOLVnIvrv8SRNgEqwsWXf7x6d-zhDJ21oLUKvCb4klIsPsDSXlJYYYyKfoRGpmChrifEJGmHMWFkrRU7RWUqrgchfL9BpxTHHVFUj9GMS4mYZfFg4U1y14B-SS0VoigktJmBi2CxhYQvXFjfehZmH1IU1fCxu223wW7u2bbejf6Pjn10EY73vPcRiGmGTiovJeJrevUTPG_DJvnq8z9H3L-Pp9dfy7tvN7fXVXWm4lF0prCWEE4bnStWCqYpawvNjDpTPG2LUTEhR44oZMALmkmE-k42YNZILwADVOfq01930s7Wdm-wxgteb6NYQH3QAp_-OtG6pF2GrFaOiZiQLXDwKxHDf29TptUtDSdDa0CdNBc5NZUyqjL59gq5CH3MfB6pmNZeU0_9TWGGJlRCZevOn76Phw7QyQPdAbnZK0TbauA46F4YynNcE62EldF4JTanerUROev8k6aD7D_zzHl-lLo_zCEPsnPF2B9e1ZsNxSDoGzRKitm31C1Qczlw |
CitedBy_id | crossref_primary_10_1016_j_xpro_2024_103285 crossref_primary_10_1016_j_xcrm_2024_101482 crossref_primary_10_1089_ars_2023_0329 crossref_primary_10_11620_IJOB_2024_49_2_34 crossref_primary_10_1267_ahc_24_00043 crossref_primary_10_1016_j_bbcan_2023_188931 crossref_primary_10_1007_s13577_025_01181_3 crossref_primary_10_4103_glioma_glioma_4_24 |
Cites_doi | 10.1186/1742-2094-11-98 10.1038/nrn3722 10.1128/IAI.06120-11 10.1111/neup.12354 10.1093/infdis/jit097 10.3389/fimmu.2021.577517 10.1136/jitc-2019-000339 10.1083/jcb.200606027 10.1093/carcin/bgr128 10.1038/s41598-017-04275-7 10.1038/nm.4462 10.1111/j.1582-4934.2009.00926.x 10.1159/000480373 10.12703/P6-13 10.4049/jimmunol.164.12.6166 10.1111/pin.12440 10.1016/j.neulet.2017.02.076 10.1002/path.2370 10.1371/journal.pone.0090042 10.3389/fimmu.2016.00513 10.1093/neuonc/noq082 10.1038/nri978 10.1084/jem.20080108 10.1111/nure.12155 10.1097/MAO.0000000000000879 10.2176/nmc.sup.2017-0001 10.1016/j.micpath.2012.09.007 10.1089/ten.tea.2007.0264 10.1146/annurev-immunol-032713-120240 10.1016/j.wneu.2018.08.133 10.1083/jcb.200806072 10.3389/fimmu.2013.00067 10.1155/2019/2198508 10.1126/science.1092385 10.1267/ahc.16015 10.1267/ahc.16016 10.1267/ahc.16028 |
ContentType | Journal Article |
Copyright | 2022 The Japan Society of Histochemistry and Cytochemistry 2022 The Japan Society of Histochemistry and Cytochemistry. 2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Japan Society of Histochemistry and Cytochemistry 2022 |
Copyright_xml | – notice: 2022 The Japan Society of Histochemistry and Cytochemistry – notice: 2022 The Japan Society of Histochemistry and Cytochemistry. – notice: 2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Japan Society of Histochemistry and Cytochemistry 2022 |
DBID | AAYXX CITATION NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1267/ahc.22-00018 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Chemoreception Abstracts PubMed Chemoreception Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | M2 Macrophage in Glioblastoma |
EISSN | 1347-5800 |
EndPage | 118 |
ExternalDocumentID | PMC9427541 36060293 10_1267_ahc_22_00018 article_ahc_55_4_55_22_00018_article_char_en |
Genre | Journal Article |
GroupedDBID | -~X .55 23M 2WC 53G 5GY ACIWK ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK E3Z F5P GX1 HH5 HYE JSF JSH KQ8 M48 O5R O5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TR2 WOW X7M XSB AAYXX CITATION M~E NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c688t-7ee116140d99574932e160d9da26df1c9b7875034cac7ad8406b8f7bf867a0aa3 |
IEDL.DBID | M48 |
ISSN | 0044-5991 |
IngestDate | Thu Aug 21 18:01:05 EDT 2025 Thu Jul 10 22:18:03 EDT 2025 Mon Jun 30 10:03:04 EDT 2025 Mon Jun 30 10:12:55 EDT 2025 Thu Jan 02 22:30:22 EST 2025 Tue Jul 01 02:15:23 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Wed Sep 03 06:30:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | macrophage extracellular traps (METs) glioblastoma M1 and M2 macrophage microglia |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 2022 The Japan Society of Histochemistry and Cytochemistry. This is an open access article distributed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC-BY-NC), which permits use, distribution and reproduction of the articles in any medium provided that the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c688t-7ee116140d99574932e160d9da26df1c9b7875034cac7ad8406b8f7bf867a0aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1267/ahc.22-00018 |
PMID | 36060293 |
PQID | 2709080977 |
PQPubID | 1966372 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9427541 proquest_miscellaneous_2709914489 proquest_journals_2754568262 proquest_journals_2709080977 pubmed_primary_36060293 crossref_citationtrail_10_1267_ahc_22_00018 crossref_primary_10_1267_ahc_22_00018 jstage_primary_article_ahc_55_4_55_22_00018_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Aug-27 |
PublicationDateYYYYMMDD | 2022-08-27 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Sendai |
PublicationTitle | ACTA HISTOCHEMICA ET CYTOCHEMICA |
PublicationTitleAlternate | Acta Histochem. Cytochem. |
PublicationYear | 2022 |
Publisher | JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY Japan Science and Technology Agency |
Publisher_xml | – name: JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY – name: Japan Science and Technology Agency |
References | 24 Okubo, K., Kurosawa, M., Kamiya, M., Urano, Y., Suzuki, A., Yamamoto, K., et al. (2018) Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 24; 232–238. 13 Hu, L., Hu, X., Long, K., Gao, C., Dong, H. L., Zhong, Q., et al. (2017) Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci. Rep. 7; 4230. 27 Onouchi, T., Shiogama, K., Mizutani, Y., Takaki, T. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: III. Correlative Light and Electron Microscopic Study. Acta Histochem. Cytochem. 49; 141–147. 35 Wong, K. W. and Jacobs, W. R., Jr. (2013) Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis. J. Infect. Dis. 208; 109–119. 32 Takeya, M. and Komohara, Y. (2016) Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol. Int. 66; 491–505. 7 Dong, H., Yang, Y., Gao, C., Sun, H., Wang, H., Hong, C., et al. (2020) Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. J. Immunother. Cancer 8; e000339. 36 Wu, A., Wei, J., Kong, L. Y., Wang, Y., Priebe, W., Qiao, W., et al. (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 12; 1113–1125. 15 Komohara, Y., Ohnishi, K., Kuratsu, J. and Takeya, M. (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216; 15–24. 30 Sasaki, A. (2017) Microglia and brain macrophages: An update. Neuropathology 37; 452–464. 26 Onouchi, T., Shiogama, K., Matsui, T., Mizutani, Y., Sakurai, K., Inada, K., et al. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: II. Ultrastructural Study. Acta Histochem. Cytochem. 49; 117–123. 6 Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., et al. (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14; 2803–2815. 20 Mohanan, S., Horibata, S., McElwee, J. L., Dannenberg, A. J. and Coonrod, S. A. (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front. Immunol. 4; 67. 1 Aulik, N. A., Hellenbrand, K. M. and Czuprynski, C. J. (2012) Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect. Immun. 80; 1923–1933. 17 Liu, P., Wu, X., Liao, C., Liu, X., Du, J., Shi, H., et al. (2014) Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLoS One 9; e90042. 38 Zhang, Y., Lima, C. F. and Rodrigues, L. R. (2014) Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr. Rev. 72; 763–773. 18 Martinez, F. O. and Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6; 13. 10 Gordon, S. (2003) Alternative activation of macrophages. Nat. Rev. Immunol. 3; 23–35. 3 Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303; 1532–1535. 19 Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. and Hill, A. M. (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164; 6166–6173. 25 O’Malley, J. T., Nadol, J. B. Jr. and McKenna, M. J. (2016) Anti CD163+, Iba1+, and CD68+ Cells in the Adult Human Inner Ear: Normal Distribution of an Unappreciated Class of Macrophages/Microglia and Implications for Inflammatory Otopathology in Humans. Otol. Neurotol. 37; 99–108. 8 Doster, R. S., Rogers, L. M., Gaddy, J. A. and Aronoff, D. M. (2018) Macrophage Extracellular Traps: A Scoping Review. J. Innate. Immun. 10; 3–13. 34 Wang, Y., Li, M., Stadler, S., Correll, S., Li, P., Wang, D., et al. (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184; 205–213. 29 REPORT OF BRAIN TUMOR REGISTRY OF JAPAN (2005–2008) 14th Edition. (2017) Brain Tumor Registry of Japan (2005–2008). Neurol. Med. Chir. (Tokyo) 57(Suppl 1); 9–102. 5 Cherry, J. D., Olschowka, J. A. and O’Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11; 98. 16 Lisi, L., Ciotti, G. M., Braun, D., Kalinin, S., Currò, D., Dello Russo, C., et al. (2017) Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci. Lett. 645; 106–112. 22 Nayak, D., Roth, T. L. and McGavern, D. B. (2014) Microglia development and function. Annu. Rev. Immunol. 32; 367–402. 4 Brinkmann, V., Abu Abed, U., Goosmann, C. and Zychlinsky, A. (2016) Immunodetection of NETs in Paraffin-Embedded Tissue. Front. Immunol. 7; 513. 23 Nishie, A., Ono, M., Shono, T., Fukushi, J., Otsubo, M., Onoue, H., et al. (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 5; 1107–1113. 2 Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. and Stewart-Akers, A. M. (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A. 14; 1835–1842. 21 Nakanishi, Y., Nakatsuji, M., Seno, H., Ishizu, S., Akitake-Kawano, R., Kanda, K., et al. (2011) COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32; 1333–1339. 31 Shiogama, K., Onouchi, T., Mizutani, Y., Sakurai, K., Inada, K. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: I. Light Microscopic Study. Acta Histochem. Cytochem. 49; 109–116. 28 Prinz, M. and Priller, J. (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15; 300–312. 33 Tamura, R., Ohara, K., Sasaki, H., Morimoto, Y., Kosugi, K., Yoshida, K., et al. (2018) Difference in Immunosuppressive Cells Between Peritumoral Area and Tumor Core in Glioblastoma. World Neurosurg. 120; e601–e610. 9 Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007) Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176; 231–241. 14 Jiménez-Uribe, A. P., Valencia-Martínez, H., Carballo-Uicab, G., Vallejo-Castillo, L., Medina-Rivero, E., Chacón-Salinas, R., et al. (2019) CD80 Expression Correlates with IL-6 Production in THP-1-Like Macrophages Costimulated with LPS and Dialyzable Leukocyte Extract (Transferon®). J. Immunol. Res. 2019; 2198508. 11 Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., et al. (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205; 1261–1268. 37 Xu, S. S., Li, H., Li, T. J., Li, S., Xia, H. Y., Long, J., et al. (2021) Neutrophil Extracellular Traps and Macrophage Extracellular Traps Predict Postoperative Recurrence in Resectable Nonfunctional Pancreatic Neuroendocrine Tumors. Front. Immunol. 12; 577517. 12 Hellenbrand, K. M., Forsythe, K. M., Rivera-Rivas, J. J., Czuprynski, C. J. and Aulik, N. A. (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb. Pathog. 54; 67–75. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 11 Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., et al. (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205; 1261–1268. – reference: 5 Cherry, J. D., Olschowka, J. A. and O’Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11; 98. – reference: 30 Sasaki, A. (2017) Microglia and brain macrophages: An update. Neuropathology 37; 452–464. – reference: 37 Xu, S. S., Li, H., Li, T. J., Li, S., Xia, H. Y., Long, J., et al. (2021) Neutrophil Extracellular Traps and Macrophage Extracellular Traps Predict Postoperative Recurrence in Resectable Nonfunctional Pancreatic Neuroendocrine Tumors. Front. Immunol. 12; 577517. – reference: 35 Wong, K. W. and Jacobs, W. R., Jr. (2013) Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis. J. Infect. Dis. 208; 109–119. – reference: 19 Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. and Hill, A. M. (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164; 6166–6173. – reference: 1 Aulik, N. A., Hellenbrand, K. M. and Czuprynski, C. J. (2012) Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect. Immun. 80; 1923–1933. – reference: 31 Shiogama, K., Onouchi, T., Mizutani, Y., Sakurai, K., Inada, K. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: I. Light Microscopic Study. Acta Histochem. Cytochem. 49; 109–116. – reference: 6 Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., et al. (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14; 2803–2815. – reference: 18 Martinez, F. O. and Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6; 13. – reference: 36 Wu, A., Wei, J., Kong, L. Y., Wang, Y., Priebe, W., Qiao, W., et al. (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 12; 1113–1125. – reference: 7 Dong, H., Yang, Y., Gao, C., Sun, H., Wang, H., Hong, C., et al. (2020) Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype. J. Immunother. Cancer 8; e000339. – reference: 15 Komohara, Y., Ohnishi, K., Kuratsu, J. and Takeya, M. (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216; 15–24. – reference: 20 Mohanan, S., Horibata, S., McElwee, J. L., Dannenberg, A. J. and Coonrod, S. A. (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front. Immunol. 4; 67. – reference: 23 Nishie, A., Ono, M., Shono, T., Fukushi, J., Otsubo, M., Onoue, H., et al. (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 5; 1107–1113. – reference: 3 Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303; 1532–1535. – reference: 8 Doster, R. S., Rogers, L. M., Gaddy, J. A. and Aronoff, D. M. (2018) Macrophage Extracellular Traps: A Scoping Review. J. Innate. Immun. 10; 3–13. – reference: 27 Onouchi, T., Shiogama, K., Mizutani, Y., Takaki, T. and Tsutsumi, Y. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: III. Correlative Light and Electron Microscopic Study. Acta Histochem. Cytochem. 49; 141–147. – reference: 25 O’Malley, J. T., Nadol, J. B. Jr. and McKenna, M. J. (2016) Anti CD163+, Iba1+, and CD68+ Cells in the Adult Human Inner Ear: Normal Distribution of an Unappreciated Class of Macrophages/Microglia and Implications for Inflammatory Otopathology in Humans. Otol. Neurotol. 37; 99–108. – reference: 10 Gordon, S. (2003) Alternative activation of macrophages. Nat. Rev. Immunol. 3; 23–35. – reference: 22 Nayak, D., Roth, T. L. and McGavern, D. B. (2014) Microglia development and function. Annu. Rev. Immunol. 32; 367–402. – reference: 9 Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., et al. (2007) Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176; 231–241. – reference: 26 Onouchi, T., Shiogama, K., Matsui, T., Mizutani, Y., Sakurai, K., Inada, K., et al. (2016) Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: II. Ultrastructural Study. Acta Histochem. Cytochem. 49; 117–123. – reference: 32 Takeya, M. and Komohara, Y. (2016) Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol. Int. 66; 491–505. – reference: 33 Tamura, R., Ohara, K., Sasaki, H., Morimoto, Y., Kosugi, K., Yoshida, K., et al. (2018) Difference in Immunosuppressive Cells Between Peritumoral Area and Tumor Core in Glioblastoma. World Neurosurg. 120; e601–e610. – reference: 17 Liu, P., Wu, X., Liao, C., Liu, X., Du, J., Shi, H., et al. (2014) Escherichia coli and Candida albicans induced macrophage extracellular trap-like structures with limited microbicidal activity. PLoS One 9; e90042. – reference: 34 Wang, Y., Li, M., Stadler, S., Correll, S., Li, P., Wang, D., et al. (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184; 205–213. – reference: 4 Brinkmann, V., Abu Abed, U., Goosmann, C. and Zychlinsky, A. (2016) Immunodetection of NETs in Paraffin-Embedded Tissue. Front. Immunol. 7; 513. – reference: 24 Okubo, K., Kurosawa, M., Kamiya, M., Urano, Y., Suzuki, A., Yamamoto, K., et al. (2018) Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 24; 232–238. – reference: 21 Nakanishi, Y., Nakatsuji, M., Seno, H., Ishizu, S., Akitake-Kawano, R., Kanda, K., et al. (2011) COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32; 1333–1339. – reference: 2 Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. and Stewart-Akers, A. M. (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A. 14; 1835–1842. – reference: 12 Hellenbrand, K. M., Forsythe, K. M., Rivera-Rivas, J. J., Czuprynski, C. J. and Aulik, N. A. (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb. Pathog. 54; 67–75. – reference: 29 REPORT OF BRAIN TUMOR REGISTRY OF JAPAN (2005–2008) 14th Edition. (2017) Brain Tumor Registry of Japan (2005–2008). Neurol. Med. Chir. (Tokyo) 57(Suppl 1); 9–102. – reference: 16 Lisi, L., Ciotti, G. M., Braun, D., Kalinin, S., Currò, D., Dello Russo, C., et al. (2017) Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci. Lett. 645; 106–112. – reference: 13 Hu, L., Hu, X., Long, K., Gao, C., Dong, H. L., Zhong, Q., et al. (2017) Extraordinarily potent proinflammatory properties of lactoferrin-containing immunocomplexes against human monocytes and macrophages. Sci. Rep. 7; 4230. – reference: 28 Prinz, M. and Priller, J. (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15; 300–312. – reference: 14 Jiménez-Uribe, A. P., Valencia-Martínez, H., Carballo-Uicab, G., Vallejo-Castillo, L., Medina-Rivero, E., Chacón-Salinas, R., et al. (2019) CD80 Expression Correlates with IL-6 Production in THP-1-Like Macrophages Costimulated with LPS and Dialyzable Leukocyte Extract (Transferon®). J. Immunol. Res. 2019; 2198508. – reference: 38 Zhang, Y., Lima, C. F. and Rodrigues, L. R. (2014) Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr. Rev. 72; 763–773. – ident: 5 doi: 10.1186/1742-2094-11-98 – ident: 28 doi: 10.1038/nrn3722 – ident: 1 doi: 10.1128/IAI.06120-11 – ident: 30 doi: 10.1111/neup.12354 – ident: 35 doi: 10.1093/infdis/jit097 – ident: 37 doi: 10.3389/fimmu.2021.577517 – ident: 7 doi: 10.1136/jitc-2019-000339 – ident: 9 doi: 10.1083/jcb.200606027 – ident: 21 doi: 10.1093/carcin/bgr128 – ident: 13 doi: 10.1038/s41598-017-04275-7 – ident: 24 doi: 10.1038/nm.4462 – ident: 6 doi: 10.1111/j.1582-4934.2009.00926.x – ident: 8 doi: 10.1159/000480373 – ident: 18 doi: 10.12703/P6-13 – ident: 19 doi: 10.4049/jimmunol.164.12.6166 – ident: 32 doi: 10.1111/pin.12440 – ident: 16 doi: 10.1016/j.neulet.2017.02.076 – ident: 15 doi: 10.1002/path.2370 – ident: 17 doi: 10.1371/journal.pone.0090042 – ident: 4 doi: 10.3389/fimmu.2016.00513 – ident: 36 doi: 10.1093/neuonc/noq082 – ident: 10 doi: 10.1038/nri978 – ident: 11 doi: 10.1084/jem.20080108 – ident: 38 doi: 10.1111/nure.12155 – ident: 25 doi: 10.1097/MAO.0000000000000879 – ident: 29 doi: 10.2176/nmc.sup.2017-0001 – ident: 12 doi: 10.1016/j.micpath.2012.09.007 – ident: 2 doi: 10.1089/ten.tea.2007.0264 – ident: 22 doi: 10.1146/annurev-immunol-032713-120240 – ident: 33 doi: 10.1016/j.wneu.2018.08.133 – ident: 34 doi: 10.1083/jcb.200806072 – ident: 20 doi: 10.3389/fimmu.2013.00067 – ident: 14 doi: 10.1155/2019/2198508 – ident: 3 doi: 10.1126/science.1092385 – ident: 31 doi: 10.1267/ahc.16015 – ident: 26 doi: 10.1267/ahc.16016 – ident: 27 doi: 10.1267/ahc.16028 – ident: 23 |
SSID | ssj0018004 |
Score | 2.3096561 |
Snippet | Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111 |
SubjectTerms | Brain tumors CD163 antigen Cell death Fibrin Glioblastoma Inflammation Lactoferrin M1 and M2 macrophage macrophage extracellular traps (METs) Macrophages microglia Phagocytes Phenotypes Regular |
Title | Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs) |
URI | https://www.jstage.jst.go.jp/article/ahc/55/4/55_22-00018/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/36060293 https://www.proquest.com/docview/2709080977 https://www.proquest.com/docview/2754568262 https://www.proquest.com/docview/2709914489 https://pubmed.ncbi.nlm.nih.gov/PMC9427541 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ACTA HISTOCHEMICA ET CYTOCHEMICA, 2022/08/27, Vol.55(4), pp.111-118 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rS9xAEB_U9kO_lFbbmvpgC1paSnST7CPbUkTKqW1JoeCB38Jmk3jXnon1TtD_3tnNw54o-CUQdrJZdnZ2frOP3wBsBZEMSspKXytlfMY52hx6ap8ZLiLDaE5dzsjklzgash8n_GQBumyjbQdO7w3tbD6p4cVk5-rf9R4a_FfHjSDkrh6ZHQypLFyJF-EJ-iRpTTRht_sJCIsaPmbGfI6QqD0Cf_frOef09A_is9PiPuh59wTlfy7p4AU8b7Ek2W-U_xIWimoZVvYrjKPPrsl74k53umXzFfib1NijzUxHOiYSUpckCUmibR6vEbaCjCtyOBnXGWJqrER_Jt8rnL8cp_jMSd-KDq6wTXbd3x5kJejzzqfkQzI4nn58BcODwfG3I79NtOAbEcczXxZFgMgPNaMUlwwhXREIfMl1KPIyMCpDs-Y0YkYbqXOMCUUWlzIrYyE11Tp6DUtVXRWrQNDdUyMzmalcMZULZRAw5dzSzgvNRObBp66HU9OykNtkGJPURiOojxT1kYah2xSPPdjupc8b9o0H5L40yuqlWrtzUpynzD466b7QXmzD2cGD9U7DaTcA01BShWga4fEDxRZ6YmwWevCuL0bTtP2uq6K-bKpQGLDGyoM3zXjp2xdh4EgRankg50ZSL2Bpv-dLqvHI0X8rZn8evH3Ef9fgWWiva1CcDeU6LM0uLosNBFGzbBMWf_6ON52V3AAgbhtu |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphologic+Analysis+of+M2+Macrophage+in+Glioblastoma%3A+Involvement+of+Macrophage+Extracellular+Traps+%28METs%29&rft.jtitle=Acta+histochemica+et+cytochemica&rft.au=Michiba%2C+Ayano&rft.au=Shiogama%2C+Kazuya&rft.au=Tsukamoto%2C+Tetsuya&rft.au=Hirayama%2C+Masaya&rft.date=2022-08-27&rft.issn=0044-5991&rft.volume=55&rft.issue=4&rft.spage=111&rft_id=info:doi/10.1267%2Fahc.22-00018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-5991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-5991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-5991&client=summon |