An engineered PET depolymerase to break down and recycle plastic bottles
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150–200 million tons accumulate in landfill or in the natural environment 2 . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annuall...
Saved in:
Published in | Nature (London) Vol. 580; no. 7802; pp. 216 - 219 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Present estimates suggest that of the 359 million tons of plastics produced annually worldwide
1
, 150–200 million tons accumulate in landfill or in the natural environment
2
. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging
3
. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties
4
. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units—which reduce chain mobility—PET is a polyester that is extremely difficult to hydrolyse
5
. Several PET hydrolase enzymes have been reported, but show limited productivity
6
,
7
. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme
8
,
9
from the bacterium
Ideonella sakaiensis
strain 201-F6 (even assisted by a secondary enzyme
10
) and related improved variants
11
–
14
that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles. |
---|---|
AbstractList | Present estimates suggest that of the 359 million tons of plastics produced annually worldwide.sup.1, 150-200 million tons accumulate in landfill or in the natural environment.sup.2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging.sup.3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties.sup.4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units--which reduce chain mobility--PET is a polyester that is extremely difficult to hydrolyse.sup.5. Several PET hydrolase enzymes have been reported, but show limited productivity.sup.6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme.sup.8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme.sup.10) and related improved variants.sup.11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the natural environment(2). Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging(3). The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties(4). Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse(5). Several PET hydrolase enzymes have been reported, but show limited productivity(6,7). Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme(8,9) from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme(10)) and related improved variants(11-14) that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150–200 million tons accumulate in landfill or in the natural environment 2 . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging 3 . The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties 4 . Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units—which reduce chain mobility—PET is a polyester that is extremely difficult to hydrolyse 5 . Several PET hydrolase enzymes have been reported, but show limited productivity 6 , 7 . Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme 8 , 9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme 10 ) and related improved variants 11 – 14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles. Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Present estimates suggest that of the 359 million tons of plastics produced annually worldwide , 150-200 million tons accumulate in landfill or in the natural environment . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging . The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties . Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse . Several PET hydrolase enzymes have been reported, but show limited productivity . Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme ) and related improved variants that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Present estimates suggest that ofthe 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams ofterephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Present estimates suggest that of the 359 million tons of plastics produced annually worldwide.sup.1, 150-200 million tons accumulate in landfill or in the natural environment.sup.2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging.sup.3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties.sup.4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units--which reduce chain mobility--PET is a polyester that is extremely difficult to hydrolyse.sup.5. Several PET hydrolase enzymes have been reported, but show limited productivity.sup.6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme.sup.8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme.sup.10) and related improved variants.sup.11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles. |
Audience | Academic |
Author | Texier, H. Gilles, A. Folgoas, C. André, I. Topham, C. M. Desrousseaux, M.-L. Duquesne, S. Tournier, V. Moya-Leclair, E. Cioci, G. Chateau, M. David, B. Dalibey, M. Marty, A. Nomme, J. Gavalda, S. Guémard, E. Barbe, S. Kamionka, E. Cot, M. |
Author_xml | – sequence: 1 givenname: V. surname: Tournier fullname: Tournier, V. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 2 givenname: C. M. orcidid: 0000-0002-9147-0184 surname: Topham fullname: Topham, C. M. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 3 givenname: A. surname: Gilles fullname: Gilles, A. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 4 givenname: B. surname: David fullname: David, B. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 5 givenname: C. surname: Folgoas fullname: Folgoas, C. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 6 givenname: E. surname: Moya-Leclair fullname: Moya-Leclair, E. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 7 givenname: E. surname: Kamionka fullname: Kamionka, E. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 8 givenname: M.-L. surname: Desrousseaux fullname: Desrousseaux, M.-L. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 9 givenname: H. surname: Texier fullname: Texier, H. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 10 givenname: S. surname: Gavalda fullname: Gavalda, S. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 11 givenname: M. surname: Cot fullname: Cot, M. organization: CRITT Bio-Industries, INSA – sequence: 12 givenname: E. surname: Guémard fullname: Guémard, E. organization: Carbios, Biopôle Clermont Limagne – sequence: 13 givenname: M. surname: Dalibey fullname: Dalibey, M. organization: Carbios, Biopôle Clermont Limagne – sequence: 14 givenname: J. surname: Nomme fullname: Nomme, J. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 15 givenname: G. surname: Cioci fullname: Cioci, G. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 16 givenname: S. surname: Barbe fullname: Barbe, S. organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 17 givenname: M. surname: Chateau fullname: Chateau, M. organization: Carbios, Biopôle Clermont Limagne – sequence: 18 givenname: I. orcidid: 0000-0001-6280-4109 surname: André fullname: André, I. email: isabelle.andre@insa-toulouse.fr organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 19 givenname: S. surname: Duquesne fullname: Duquesne, S. email: sophie.duquesne@insa-toulouse.fr organization: TBI, Université de Toulouse, CNRS, INRAE, INSA – sequence: 20 givenname: A. surname: Marty fullname: Marty, A. email: alain.marty@carbios.fr organization: TBI, Université de Toulouse, CNRS, INRAE, INSA, Carbios, Biopôle Clermont Limagne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32269349$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02545880$$DView record in HAL |
BookMark | eNp90tFvEyEcB3BiZlw3_QN8MRd9cTE3gYO747Fppl3SqNEaHwlwv6tMCh1c1f730nRzdukMDyTk8_0F-P1O0JEPHhB6TvA5wVX7NjHC27rEFJeUMFGyR2hEWFOXrG6bIzTCmLYlbqv6GJ2kdIUx5qRhT9BxRWktKiZGaDr2BfiF9QARuuLTxbzoYBXcZglRJSiGUOgI6kfRhV--UL4rIpiNcVCsnEqDNYUOw-AgPUWPe-USPLvZT9HXdxfzybScfXx_ORnPSlO37VASSpXRoLjRWosmX6nvFOU90X2lGhCM9zw_odG0Z5pTTQVnuiNAa0YazNrqFJ3t6n5XTq6iXaq4kUFZOR3P5PYMU8542-KfJNvXO7uK4XoNaZBLmww4pzyEdZK0yg5XgjWZvrpHr8I6-vySrASueU2q6k4tlANpfR-GqMy2qBzXRLRMCC6yKg-oBfj8pS53sLf5eM-_PODNyl7Lf9H5AZRXB0trDlY92wtkM8DvYaHWKcnLL5_37ZuH7Xj-bfJhX7-4-au1XkL3twu3U5VBswMmhpQi9NLYQQ02V43KOkmw3M6v3M1v7hiW2_mVLCfJveRt8f9l6C6TsvULiHetezj0B5qn-fA |
CitedBy_id | crossref_primary_10_1021_acsestwater_1c00025 crossref_primary_10_1016_j_cec_2024_100077 crossref_primary_10_1128_aem_00632_23 crossref_primary_10_1007_s13205_023_03557_4 crossref_primary_10_1002_bit_28305 crossref_primary_10_1007_s00203_024_04170_6 crossref_primary_10_1002_biot_202300723 crossref_primary_10_1002_cctc_202401626 crossref_primary_10_1007_s41101_024_00275_7 crossref_primary_10_1016_j_cnd_2024_06_008 crossref_primary_10_1177_0734242X221105415 crossref_primary_10_1016_j_biortech_2024_131461 crossref_primary_10_1038_s42003_024_06414_z crossref_primary_10_1016_j_wasman_2021_09_009 crossref_primary_10_1128_mBio_02155_21 crossref_primary_10_1038_s41467_024_49146_8 crossref_primary_10_1002_prot_26468 crossref_primary_10_1002_cctc_202400765 crossref_primary_10_1021_acscatal_1c05800 crossref_primary_10_2139_ssrn_4194763 crossref_primary_10_1021_acscatal_1c01204 crossref_primary_10_1002_ange_202011063 crossref_primary_10_1039_D5GC00355E crossref_primary_10_1021_acs_macromol_1c02338 crossref_primary_10_3389_fmicb_2022_888343 crossref_primary_10_1038_s41587_024_02401_1 crossref_primary_10_1039_D2CS00509C crossref_primary_10_1016_j_scitotenv_2023_165154 crossref_primary_10_1016_j_envres_2024_120140 crossref_primary_10_1039_D3EY00147D crossref_primary_10_1016_j_apcata_2022_118936 crossref_primary_10_1038_s41586_024_07891_2 crossref_primary_10_1016_j_jece_2023_110092 crossref_primary_10_3390_su14116821 crossref_primary_10_3390_fermentation8020047 crossref_primary_10_1016_j_crstbi_2024_100130 crossref_primary_10_1016_j_xcrp_2021_100514 crossref_primary_10_3389_fmicb_2022_821629 crossref_primary_10_1016_j_cej_2023_141326 crossref_primary_10_1016_j_ymben_2021_07_005 crossref_primary_10_1021_jasms_3c00097 crossref_primary_10_1016_j_eti_2023_103316 crossref_primary_10_1021_acs_jafc_4c11907 crossref_primary_10_3389_fbioe_2021_656465 crossref_primary_10_1016_j_engreg_2022_01_003 crossref_primary_10_1038_s41586_021_04350_0 crossref_primary_10_1186_s12302_020_00447_x crossref_primary_10_1038_s41893_023_01118_4 crossref_primary_10_1002_cssc_202301781 crossref_primary_10_1039_D4GC03127J crossref_primary_10_1186_s40643_024_00793_1 crossref_primary_10_3389_fmicb_2024_1426509 crossref_primary_10_1557_s43581_021_00015_7 crossref_primary_10_1038_s41598_024_64938_0 crossref_primary_10_3390_polym14061203 crossref_primary_10_1038_s41467_021_25048_x crossref_primary_10_1142_S0217984921501554 crossref_primary_10_1093_protein_gzac009 crossref_primary_10_1021_acs_jafc_0c07469 crossref_primary_10_1016_j_cjsc_2023_100042 crossref_primary_10_1128_aem_01704_22 crossref_primary_10_1016_j_jhazmat_2025_137441 crossref_primary_10_1021_jacs_3c08291 crossref_primary_10_1021_acssuschemeng_3c05222 crossref_primary_10_1016_j_ijbiomac_2024_138437 crossref_primary_10_1016_j_scitotenv_2020_141368 crossref_primary_10_1016_j_jhazmat_2023_132632 crossref_primary_10_1016_j_jmapro_2024_06_041 crossref_primary_10_1002_anie_202414162 crossref_primary_10_1016_j_micres_2023_127507 crossref_primary_10_1021_acscatal_4c00299 crossref_primary_10_1021_acsomega_4c05488 crossref_primary_10_1016_j_cogsc_2023_100822 crossref_primary_10_3390_polym13091475 crossref_primary_10_1007_s40820_023_01181_8 crossref_primary_10_1007_s12268_022_1828_0 crossref_primary_10_1128_aem_02242_23 crossref_primary_10_1038_s41467_022_35237_x crossref_primary_10_3390_ijms22052332 crossref_primary_10_1038_s42004_024_01154_x crossref_primary_10_1039_D3GC01878D crossref_primary_10_1016_j_isci_2022_104326 crossref_primary_10_1039_D2RA00612J crossref_primary_10_1016_j_jenvman_2021_113267 crossref_primary_10_1039_D0EM00446D crossref_primary_10_1021_acscatal_0c04014 crossref_primary_10_1016_j_cej_2024_152727 crossref_primary_10_1038_s42256_024_00935_2 crossref_primary_10_1039_D1RA08217E crossref_primary_10_1021_jacs_1c12278 crossref_primary_10_1007_s12274_024_6955_0 crossref_primary_10_1016_j_envres_2022_114342 crossref_primary_10_1186_s12934_024_02551_6 crossref_primary_10_1016_j_jcis_2023_05_017 crossref_primary_10_1093_protein_gzae009 crossref_primary_10_1002_eom2_12107 crossref_primary_10_1016_j_resenv_2023_100118 crossref_primary_10_1002_cctc_202100443 crossref_primary_10_1016_j_jhazmat_2024_135380 crossref_primary_10_1007_s00253_024_13222_2 crossref_primary_10_1016_j_cell_2024_12_029 crossref_primary_10_1016_j_jclepro_2022_132985 crossref_primary_10_1016_j_ijbiomac_2024_136479 crossref_primary_10_2139_ssrn_4110033 crossref_primary_10_1002_cssc_202301350 crossref_primary_10_1016_j_future_2024_06_034 crossref_primary_10_1007_s10924_023_02891_1 crossref_primary_10_1007_s10924_023_02925_8 crossref_primary_10_1002_bit_28523 crossref_primary_10_1038_s41598_024_84177_7 crossref_primary_10_1039_D4SU00233D crossref_primary_10_1002_smll_202305094 crossref_primary_10_1007_s11356_021_14925_z crossref_primary_10_1016_j_jhazmat_2021_126814 crossref_primary_10_1021_acsapm_4c00832 crossref_primary_10_1021_acscatal_0c05126 crossref_primary_10_1016_j_ecolind_2023_111058 crossref_primary_10_70322_sbe_2025_10002 crossref_primary_10_1002_cssc_202101932 crossref_primary_10_3390_molecules28227503 crossref_primary_10_1016_S1872_2067_23_64470_5 crossref_primary_10_1021_acsmacrolett_4c00463 crossref_primary_10_1016_j_jclepro_2023_138924 crossref_primary_10_1016_j_jhazmat_2025_137644 crossref_primary_10_1002_ange_202203061 crossref_primary_10_1016_j_enzmictec_2023_110353 crossref_primary_10_2115_fiber_80_P_114 crossref_primary_10_1039_D3RE00056G crossref_primary_10_1016_j_chemosphere_2024_141541 crossref_primary_10_1016_j_cscm_2025_e04432 crossref_primary_10_1038_s41467_023_40233_w crossref_primary_10_1039_D3CP04519F crossref_primary_10_3390_polym14224788 crossref_primary_10_1093_bbb_zbac129 crossref_primary_10_3390_molecules27010119 crossref_primary_10_1186_s12951_022_01321_z crossref_primary_10_1016_j_eurpolymj_2021_110445 crossref_primary_10_1016_j_clet_2025_100905 crossref_primary_10_1073_pnas_2203346119 crossref_primary_10_1016_j_scib_2023_06_024 crossref_primary_10_1021_acscatal_4c05352 crossref_primary_10_1038_s41598_020_79031_5 crossref_primary_10_1007_s42824_020_00014_y crossref_primary_10_1061_JHTRBP_HZENG_1359 crossref_primary_10_1016_j_polymdegradstab_2024_110698 crossref_primary_10_1271_kagakutoseibutsu_62_82 crossref_primary_10_1002_anie_202216963 crossref_primary_10_1002_adma_202005192 crossref_primary_10_1002_adma_202007371 crossref_primary_10_1016_j_ab_2024_115598 crossref_primary_10_1039_D3GC02308G crossref_primary_10_1002_ange_202214609 crossref_primary_10_1016_j_marpolbul_2023_115157 crossref_primary_10_1016_j_biotechadv_2025_108544 crossref_primary_10_1016_j_jhazmat_2024_134493 crossref_primary_10_1021_acs_estlett_2c00332 crossref_primary_10_1021_acscatal_2c05270 crossref_primary_10_1042_BCJ20190720 crossref_primary_10_1039_D1GC00931A crossref_primary_10_1016_j_ijbiomac_2024_134014 crossref_primary_10_1021_acs_jcim_4c00079 crossref_primary_10_1021_acscatal_4c05363 crossref_primary_10_1016_j_jaap_2025_107052 crossref_primary_10_1039_D3GC01872E crossref_primary_10_1126_science_abj3476 crossref_primary_10_1038_s41467_023_38998_1 crossref_primary_10_1016_j_bej_2021_108151 crossref_primary_10_1016_j_jhazmat_2022_128267 crossref_primary_10_1002_cssc_202402416 crossref_primary_10_1007_s10895_022_03132_9 crossref_primary_10_1016_j_cej_2022_141230 crossref_primary_10_1016_j_ymben_2022_12_008 crossref_primary_10_1073_pnas_2407355121 crossref_primary_10_1016_j_eti_2022_102822 crossref_primary_10_1016_j_eehl_2022_02_001 crossref_primary_10_1016_S1872_2067_23_64628_5 crossref_primary_10_1039_D1GC02298A crossref_primary_10_3390_catal13020278 crossref_primary_10_1016_j_carbpol_2023_121337 crossref_primary_10_1039_D1CY01032H crossref_primary_10_1002_adma_202418959 crossref_primary_10_1002_ange_202404492 crossref_primary_10_1021_jacs_2c11861 crossref_primary_10_1021_acs_chemrev_3c00848 crossref_primary_10_1016_j_biotechadv_2021_107772 crossref_primary_10_1016_j_enzmictec_2022_110004 crossref_primary_10_1002_cssc_202401350 crossref_primary_10_1016_j_jhazmat_2025_137837 crossref_primary_10_1016_j_biotechadv_2021_107770 crossref_primary_10_1021_acsmaterialsau_3c00091 crossref_primary_10_1002_anie_202300768 crossref_primary_10_1002_cbic_202000841 crossref_primary_10_1016_j_cej_2024_152105 crossref_primary_10_1002_cbic_202300661 crossref_primary_10_1038_s41893_023_01234_1 crossref_primary_10_1002_cssc_202100400 crossref_primary_10_1021_acsomega_3c03805 crossref_primary_10_1016_j_resconrec_2022_106387 crossref_primary_10_1016_j_ecoenv_2024_116540 crossref_primary_10_3390_polym14224996 crossref_primary_10_1002_ange_202300094 crossref_primary_10_1039_D3SU00311F crossref_primary_10_1039_D1GC04567A crossref_primary_10_1007_s13197_023_05802_3 crossref_primary_10_1039_D3GC03663D crossref_primary_10_1002_anie_202422183 crossref_primary_10_1021_acssuschemeng_4c05734 crossref_primary_10_1007_s40843_021_1823_9 crossref_primary_10_3390_catal13091234 crossref_primary_10_1016_j_matt_2023_07_025 crossref_primary_10_1016_j_jhazmat_2022_129789 crossref_primary_10_1016_j_scitotenv_2021_145111 crossref_primary_10_1016_j_nbt_2022_02_006 crossref_primary_10_1039_D3SE00173C crossref_primary_10_1002_ange_202407580 crossref_primary_10_1007_s13205_024_04041_3 crossref_primary_10_1021_acssuschemeng_2c02352 crossref_primary_10_1111_1758_2229_12878 crossref_primary_10_3390_molecules28186502 crossref_primary_10_1007_s11274_021_03089_0 crossref_primary_10_1002_adfm_202404848 crossref_primary_10_1039_D3GC03337F crossref_primary_10_1002_sus2_140 crossref_primary_10_1002_cbic_202400084 crossref_primary_10_1080_07388551_2024_2340530 crossref_primary_10_1021_acs_jcim_1c00394 crossref_primary_10_1007_s40820_025_01682_8 crossref_primary_10_1016_j_heliyon_2024_e31130 crossref_primary_10_4491_KSEE_2022_44_8_249 crossref_primary_10_1016_j_mtchem_2023_101576 crossref_primary_10_3389_fmicb_2023_1170880 crossref_primary_10_1016_j_crmicr_2022_100159 crossref_primary_10_1016_j_ymben_2021_05_001 crossref_primary_10_1016_j_nbt_2024_12_005 crossref_primary_10_1039_D2GC03663K crossref_primary_10_1016_j_cej_2023_144401 crossref_primary_10_1002_nadc_20244141920 crossref_primary_10_1177_08927057231190065 crossref_primary_10_1021_acs_jcim_4c01369 crossref_primary_10_1021_acs_joc_4c01789 crossref_primary_10_1002_smll_202404477 crossref_primary_10_1038_d41586_021_00391_7 crossref_primary_10_33070_etars_4_2021_05 crossref_primary_10_1002_cssc_202301752 crossref_primary_10_1016_j_bbrc_2022_07_103 crossref_primary_10_1139_er_2020_0117 crossref_primary_10_1016_j_joule_2021_06_015 crossref_primary_10_1021_acssuschemeng_4c09039 crossref_primary_10_1039_D2GC02244C crossref_primary_10_1002_cbic_202300412 crossref_primary_10_1021_acs_biochem_2c00619 crossref_primary_10_1002_ange_202314448 crossref_primary_10_1016_j_psep_2023_06_013 crossref_primary_10_1002_adfm_202424435 crossref_primary_10_1016_j_biortech_2024_131837 crossref_primary_10_1007_s42114_024_00829_2 crossref_primary_10_1016_j_saa_2022_122178 crossref_primary_10_1016_j_jhazmat_2024_134480 crossref_primary_10_1021_acsapm_4c01525 crossref_primary_10_1016_j_scitotenv_2025_179075 crossref_primary_10_1016_j_jece_2021_106277 crossref_primary_10_1021_acscatal_4c03194 crossref_primary_10_3390_catal15020147 crossref_primary_10_1093_femsyr_foaf006 crossref_primary_10_1038_s42003_022_04319_3 crossref_primary_10_1002_anie_202402316 crossref_primary_10_1016_j_jbc_2023_102958 crossref_primary_10_1016_j_biotechadv_2021_107730 crossref_primary_10_1016_j_procbio_2023_10_020 crossref_primary_10_1039_D0QI00788A crossref_primary_10_1016_j_biotechadv_2024_108462 crossref_primary_10_1016_j_tibtech_2022_06_012 crossref_primary_10_1039_D3GC04888H crossref_primary_10_3389_fmicb_2021_778828 crossref_primary_10_3390_ijms23073976 crossref_primary_10_1016_j_resconrec_2023_107102 crossref_primary_10_1002_ange_202419535 crossref_primary_10_1680_jenes_22_00088 crossref_primary_10_1002_cssc_202102628 crossref_primary_10_3390_catal14080543 crossref_primary_10_54939_1859_1043_j_mst_98_2024_94_100 crossref_primary_10_1002_anie_202006648 crossref_primary_10_1016_j_xcrp_2024_102145 crossref_primary_10_1021_jacsau_4c00388 crossref_primary_10_1002_ange_202315524 crossref_primary_10_1002_ange_202218390 crossref_primary_10_1016_j_biortech_2023_129008 crossref_primary_10_1007_s10532_023_10048_z crossref_primary_10_1016_j_fmre_2024_05_014 crossref_primary_10_1134_S0003683824020091 crossref_primary_10_1038_s41522_023_00440_1 crossref_primary_10_1016_j_ymben_2021_12_006 crossref_primary_10_1016_j_tibtech_2022_12_014 crossref_primary_10_1021_acsmacrolett_0c00437 crossref_primary_10_1016_j_jhazmat_2025_137806 crossref_primary_10_1016_j_csbj_2023_06_004 crossref_primary_10_1002_adma_202411148 crossref_primary_10_3390_bioengineering9030098 crossref_primary_10_1126_science_abg4503 crossref_primary_10_1016_j_jenvman_2024_121258 crossref_primary_10_1021_acscatal_3c02142 crossref_primary_10_1039_D0GC02630A crossref_primary_10_1039_D4TA08522A crossref_primary_10_1016_j_bej_2022_108709 crossref_primary_10_1016_j_ijbiomac_2021_08_012 crossref_primary_10_1016_j_jhazmat_2023_133173 crossref_primary_10_1186_s13568_022_01474_y crossref_primary_10_3390_gels11020092 crossref_primary_10_1016_j_cej_2024_157777 crossref_primary_10_3389_fmicb_2023_1265139 crossref_primary_10_1002_adom_202201229 crossref_primary_10_1016_j_aiepr_2021_06_005 crossref_primary_10_1016_j_jhazmat_2021_126075 crossref_primary_10_1186_s42269_021_00563_5 crossref_primary_10_1002_advs_202103764 crossref_primary_10_1177_14777606231195399 crossref_primary_10_1016_j_progpolymsci_2023_101783 crossref_primary_10_1016_j_bej_2023_109074 crossref_primary_10_1016_j_cattod_2024_114516 crossref_primary_10_1016_j_biortech_2024_131903 crossref_primary_10_1039_D2RA04713F crossref_primary_10_3390_polym15010183 crossref_primary_10_1007_s42765_022_00149_4 crossref_primary_10_1016_j_celrep_2022_111908 crossref_primary_10_1061_JMCEE7_MTENG_16483 crossref_primary_10_1016_j_jclepro_2023_140180 crossref_primary_10_1016_j_jhazmat_2024_134532 crossref_primary_10_1080_10643389_2023_2284785 crossref_primary_10_1007_s40820_022_00993_4 crossref_primary_10_1021_jacs_3c03261 crossref_primary_10_1002_anie_202309305 crossref_primary_10_1016_j_jclepro_2024_141875 crossref_primary_10_1007_s11157_024_09688_1 crossref_primary_10_57634_RCR5069 crossref_primary_10_1039_D4FD00014E crossref_primary_10_1002_aenm_202404877 crossref_primary_10_1071_MA23013 crossref_primary_10_1088_1757_899X_1257_1_012007 crossref_primary_10_1186_s13068_024_02568_4 crossref_primary_10_1002_aic_18539 crossref_primary_10_1021_acsomega_4c09053 crossref_primary_10_1016_j_jhazmat_2024_135414 crossref_primary_10_1016_j_bej_2021_108205 crossref_primary_10_1007_s10924_021_02301_4 crossref_primary_10_1139_er_2023_0107 crossref_primary_10_1038_s41529_022_00305_6 crossref_primary_10_3390_su13158218 crossref_primary_10_1002_jctb_6955 crossref_primary_10_1016_j_polymdegradstab_2023_110593 crossref_primary_10_1016_j_scp_2024_101595 crossref_primary_10_1021_acsomega_4c04843 crossref_primary_10_1007_s10924_024_03223_7 crossref_primary_10_1016_j_progpolymsci_2023_101764 crossref_primary_10_1007_s42768_023_00134_6 crossref_primary_10_1039_D2PY01613C crossref_primary_10_1038_s41929_022_00821_3 crossref_primary_10_1002_pts_2632 crossref_primary_10_3390_polym14122366 crossref_primary_10_1016_j_biotechadv_2024_108439 crossref_primary_10_1039_D4SC06688J crossref_primary_10_1038_s41467_023_39201_1 crossref_primary_10_3390_en14217306 crossref_primary_10_1016_j_seppur_2023_124658 crossref_primary_10_1016_j_scitotenv_2024_174876 crossref_primary_10_1021_acs_jpcb_3c00600 crossref_primary_10_1111_1462_2920_15774 crossref_primary_10_1016_j_ijbiomac_2023_127656 crossref_primary_10_1021_acscatal_2c02775 crossref_primary_10_1016_j_jhazmat_2022_129820 crossref_primary_10_1016_j_ccst_2025_100382 crossref_primary_10_1016_j_bej_2024_109328 crossref_primary_10_1016_j_cej_2021_131570 crossref_primary_10_1039_D4PY00025K crossref_primary_10_1016_j_envint_2022_107644 crossref_primary_10_1002_adma_202403728 crossref_primary_10_1016_j_jhazmat_2023_132046 crossref_primary_10_1002_anie_202203061 crossref_primary_10_1016_j_susmat_2021_e00251 crossref_primary_10_1007_s42823_024_00734_0 crossref_primary_10_1016_j_polymdegradstab_2021_109807 crossref_primary_10_1016_j_aac_2023_12_001 crossref_primary_10_1007_s40726_024_00298_7 crossref_primary_10_3390_su142315898 crossref_primary_10_1016_j_trac_2024_117971 crossref_primary_10_1016_j_cej_2023_145697 crossref_primary_10_1038_s42003_024_06516_8 crossref_primary_10_1016_j_jconrel_2021_03_012 crossref_primary_10_1007_s40009_022_01174_y crossref_primary_10_1016_j_bej_2024_109573 crossref_primary_10_1016_j_tet_2022_132966 crossref_primary_10_1002_cssc_202401759 crossref_primary_10_1016_j_envint_2020_106144 crossref_primary_10_1016_j_compositesb_2023_110652 crossref_primary_10_1016_j_ymben_2021_03_011 crossref_primary_10_1038_s41598_021_82983_x crossref_primary_10_1016_j_matt_2022_02_002 crossref_primary_10_1016_j_tim_2021_03_002 crossref_primary_10_1021_acssuschemeng_2c01093 crossref_primary_10_1021_acs_jpcb_4c02207 crossref_primary_10_1016_j_engmic_2021_100003 crossref_primary_10_1007_s10800_025_02265_6 crossref_primary_10_1016_j_jhazmat_2023_132297 crossref_primary_10_1016_j_scitotenv_2023_166722 crossref_primary_10_3390_synbio2020009 crossref_primary_10_1002_ange_202112576 crossref_primary_10_1002_adma_202210758 crossref_primary_10_1021_acs_jafc_4c01973 crossref_primary_10_1007_s10570_024_06182_3 crossref_primary_10_1002_jctb_6745 crossref_primary_10_1002_cssc_202402614 crossref_primary_10_1021_acsapm_1c00648 crossref_primary_10_1021_acscatal_2c03605 crossref_primary_10_1016_j_chemosphere_2024_141749 crossref_primary_10_1016_j_chemosphere_2024_141508 crossref_primary_10_1021_jacs_3c05486 crossref_primary_10_1038_s44286_024_00171_w crossref_primary_10_1080_15685551_2022_2041784 crossref_primary_10_1360_TB_2024_0996 crossref_primary_10_1016_j_colsurfb_2021_111606 crossref_primary_10_1021_acs_macromol_4c01107 crossref_primary_10_1186_s12934_024_02547_2 crossref_primary_10_1016_j_marpolbul_2022_113949 crossref_primary_10_1016_j_ces_2024_120398 crossref_primary_10_1021_acs_macromol_3c00602 crossref_primary_10_1016_j_cej_2023_144350 crossref_primary_10_1016_j_scitotenv_2024_171338 crossref_primary_10_1038_s41564_023_01529_1 crossref_primary_10_1016_j_cej_2023_147853 crossref_primary_10_1103_PhysRevMaterials_7_120302 crossref_primary_10_1002_cbic_202400456 crossref_primary_10_1021_acs_biochem_0c00457 crossref_primary_10_1039_D4FD00127C crossref_primary_10_1039_D4GC02727B crossref_primary_10_1002_adma_202419058 crossref_primary_10_3390_bioengineering10111253 crossref_primary_10_1088_1402_4896_ac237f crossref_primary_10_1016_j_checat_2022_11_004 crossref_primary_10_1016_j_resconrec_2022_106236 crossref_primary_10_1039_D1GC00887K crossref_primary_10_1002_cssc_202400698 crossref_primary_10_1016_j_tibtech_2022_08_010 crossref_primary_10_1016_j_cell_2024_07_051 crossref_primary_10_1016_j_eng_2021_12_009 crossref_primary_10_1016_j_enzmictec_2020_109715 crossref_primary_10_1021_jacs_4c05828 crossref_primary_10_1007_s10924_024_03298_2 crossref_primary_10_1021_acs_est_0c04952 crossref_primary_10_1021_acsomega_2c05324 crossref_primary_10_2142_biophys_60_342 crossref_primary_10_1007_s00253_024_13212_4 crossref_primary_10_4014_jmb_2208_08048 crossref_primary_10_1111_1751_7915_14445 crossref_primary_10_1039_D2GC01965E crossref_primary_10_1002_adma_202211417 crossref_primary_10_1016_j_jhazmat_2023_131399 crossref_primary_10_1021_jacsau_2c00204 crossref_primary_10_1038_s41467_024_52515_y crossref_primary_10_1002_anie_202407580 crossref_primary_10_1016_j_envres_2024_118468 crossref_primary_10_1063_5_0243325 crossref_primary_10_1016_j_tibtech_2020_05_004 crossref_primary_10_1002_chem_202005151 crossref_primary_10_1021_acs_jcim_4c00877 crossref_primary_10_1002_celc_202400696 crossref_primary_10_1002_anie_202313633 crossref_primary_10_1002_anie_202117528 crossref_primary_10_1111_1751_7915_14457 crossref_primary_10_1039_D4CC04780J crossref_primary_10_1021_envhealth_4c00013 crossref_primary_10_3390_microorganisms10010039 crossref_primary_10_1016_j_wasman_2021_07_011 crossref_primary_10_1038_s42003_023_05470_1 crossref_primary_10_1039_D4GC00528G crossref_primary_10_1002_ange_202216220 crossref_primary_10_1016_j_apcata_2022_118681 crossref_primary_10_1038_s41598_023_37227_5 crossref_primary_10_1039_D3RA01708G crossref_primary_10_2139_ssrn_4072296 crossref_primary_10_1002_cssc_202100196 crossref_primary_10_1016_j_apmt_2020_100910 crossref_primary_10_1039_D3GC02145A crossref_primary_10_1021_acssuschemeng_2c01961 crossref_primary_10_1039_D3SU00089C crossref_primary_10_1080_10298436_2024_2400547 crossref_primary_10_1016_j_mec_2024_e00250 crossref_primary_10_1016_j_mec_2024_e00253 crossref_primary_10_1016_j_mec_2024_e00254 crossref_primary_10_3390_app11177901 crossref_primary_10_1016_j_jhazmat_2024_134964 crossref_primary_10_1016_j_polymdegradstab_2025_111246 crossref_primary_10_3390_fermentation9070594 crossref_primary_10_1016_j_cej_2025_159810 crossref_primary_10_1039_D1CP01519B crossref_primary_10_1039_D4RA00844H crossref_primary_10_1039_D2GC01834A crossref_primary_10_1002_cssc_202300291 crossref_primary_10_1016_j_jclepro_2023_139423 crossref_primary_10_1039_D4CC06411A crossref_primary_10_1038_s41467_023_37415_x crossref_primary_10_3390_su16104033 crossref_primary_10_1016_j_tibtech_2024_10_018 crossref_primary_10_1016_j_ecoenv_2023_114982 crossref_primary_10_1021_acscatal_1c01062 crossref_primary_10_3390_polym17050628 crossref_primary_10_1002_anie_202312564 crossref_primary_10_1016_j_mtcomm_2020_101857 crossref_primary_10_1016_j_jhazmat_2023_131386 crossref_primary_10_1016_j_mec_2024_e00256 crossref_primary_10_1002_cssc_202101062 crossref_primary_10_1016_j_pep_2023_106415 crossref_primary_10_3390_microorganisms11071661 crossref_primary_10_1016_j_ceja_2024_100624 crossref_primary_10_1016_j_gce_2021_11_008 crossref_primary_10_1021_acs_analchem_2c05477 crossref_primary_10_1016_j_tibtech_2024_10_020 crossref_primary_10_1016_j_scitotenv_2025_178879 crossref_primary_10_1038_s41589_024_01713_2 crossref_primary_10_1016_j_ymben_2023_06_012 crossref_primary_10_1016_j_fuel_2025_134358 crossref_primary_10_1038_s41578_021_00382_0 crossref_primary_10_1002_anie_202419535 crossref_primary_10_1016_j_jenvman_2024_122543 crossref_primary_10_1371_journal_pbio_3001979 crossref_primary_10_1016_j_jbiotec_2021_09_007 crossref_primary_10_1002_cbic_202200516 crossref_primary_10_1016_j_cej_2024_154062 crossref_primary_10_1002_anie_202218390 crossref_primary_10_1128_aem_02118_24 crossref_primary_10_1016_j_bej_2022_108504 crossref_primary_10_1002_cssc_202002666 crossref_primary_10_1002_ange_202422183 crossref_primary_10_1016_j_jhazmat_2023_131356 crossref_primary_10_1016_j_jhazmat_2023_132449 crossref_primary_10_1002_ange_202007423 crossref_primary_10_1146_annurev_chembioeng_100521_085846 crossref_primary_10_1515_gps_2023_0244 crossref_primary_10_1016_j_jclepro_2023_138312 crossref_primary_10_1186_s43094_024_00645_x crossref_primary_10_1016_j_jhazmat_2022_128900 crossref_primary_10_1126_sciadv_adi6813 crossref_primary_10_1080_09593330_2024_2371079 crossref_primary_10_1002_adma_202104581 crossref_primary_10_1002_cnl2_116 crossref_primary_10_1016_j_mattod_2021_07_024 crossref_primary_10_1016_j_mser_2024_100829 crossref_primary_10_1016_j_enzmictec_2021_109868 crossref_primary_10_1007_s13726_024_01429_z crossref_primary_10_1021_acs_est_4c09107 crossref_primary_10_4062_biomolther_2024_195 crossref_primary_10_1016_j_apenergy_2023_120692 crossref_primary_10_1021_acsnano_4c04219 crossref_primary_10_1007_s11705_024_2500_7 crossref_primary_10_1016_j_enzmictec_2024_110479 crossref_primary_10_1515_auto_2024_0067 crossref_primary_10_1016_j_resconrec_2022_106854 crossref_primary_10_1039_D4TA02737J crossref_primary_10_3390_app142411942 crossref_primary_10_1016_j_enzmictec_2024_110476 crossref_primary_10_1002_cssc_202201613 crossref_primary_10_1002_prot_26155 crossref_primary_10_1016_j_cej_2023_145292 crossref_primary_10_1002_mame_202100591 crossref_primary_10_3389_fbioe_2022_982975 crossref_primary_10_20935_AcadEnvSci7521 crossref_primary_10_1002_marc_202200247 crossref_primary_10_1016_j_ijbiomac_2024_129538 crossref_primary_10_1016_j_jcis_2025_02_171 crossref_primary_10_1016_j_scitotenv_2022_154841 crossref_primary_10_3390_ijms242216434 crossref_primary_10_1038_s41467_023_40777_x crossref_primary_10_1016_j_biortech_2023_129913 crossref_primary_10_1016_j_cjche_2023_06_015 crossref_primary_10_1021_acscatal_1c05856 crossref_primary_10_1039_D3CS00822C crossref_primary_10_1038_s41929_021_00648_4 crossref_primary_10_1038_s41578_021_00407_8 crossref_primary_10_1007_s12274_023_5772_1 crossref_primary_10_1016_j_apcatb_2024_124307 crossref_primary_10_3389_fmicb_2020_571265 crossref_primary_10_1016_j_mtphys_2023_101192 crossref_primary_10_1080_10643389_2021_1966254 crossref_primary_10_1016_j_rser_2022_112966 crossref_primary_10_1016_j_seppur_2024_129374 crossref_primary_10_1016_j_jhazmat_2023_131574 crossref_primary_10_1016_j_rsurfi_2024_100221 crossref_primary_10_1038_s41467_024_45662_9 crossref_primary_10_1360_TB_2024_0921 crossref_primary_10_1021_acs_iecr_1c04743 crossref_primary_10_1021_acsaenm_4c00743 crossref_primary_10_3389_fbioe_2023_1263996 crossref_primary_10_1002_ange_202402316 crossref_primary_10_3390_biom13091407 crossref_primary_10_1016_j_biortech_2021_126058 crossref_primary_10_1002_pol_20240785 crossref_primary_10_1016_j_tibtech_2023_03_016 crossref_primary_10_1016_j_resconrec_2022_106639 crossref_primary_10_1016_j_envpol_2023_121106 crossref_primary_10_1002_marc_202100929 crossref_primary_10_1016_j_enzmictec_2024_110498 crossref_primary_10_1039_D0EM00340A crossref_primary_10_3390_jof7110931 crossref_primary_10_1002_prot_26174 crossref_primary_10_1016_S1002_0160_21_60060_7 crossref_primary_10_1021_acssuschemeng_4c09372 crossref_primary_10_1007_s13762_022_04646_2 crossref_primary_10_1039_D4GC02791D crossref_primary_10_1186_s12934_024_02585_w crossref_primary_10_2174_0929866530666230509141807 crossref_primary_10_1007_s13399_020_01042_z crossref_primary_10_1017_plc_2024_26 crossref_primary_10_1002_anie_202315524 crossref_primary_10_1016_j_cej_2023_143649 crossref_primary_10_14233_ajchem_2023_26928 crossref_primary_10_1002_ange_202312564 crossref_primary_10_1016_j_apcatb_2023_123236 crossref_primary_10_1186_s44314_024_00007_0 crossref_primary_10_1016_j_tim_2023_04_002 crossref_primary_10_1016_j_copbio_2024_103093 crossref_primary_10_1007_s00449_021_02603_w crossref_primary_10_3389_fbioe_2021_771133 crossref_primary_10_1007_s12257_022_0191_9 crossref_primary_10_1021_acs_macromol_0c02814 crossref_primary_10_1039_D1TA04981J crossref_primary_10_1016_j_enmm_2024_101007 crossref_primary_10_1016_j_gee_2024_06_003 crossref_primary_10_3390_app13063686 crossref_primary_10_1002_cssc_202100909 crossref_primary_10_1016_j_procbio_2024_06_018 crossref_primary_10_1002_anie_202314448 crossref_primary_10_1016_j_nxmate_2025_100599 crossref_primary_10_1021_acs_macromol_3c01668 crossref_primary_10_1016_j_coelec_2022_100963 crossref_primary_10_1002_advs_202500859 crossref_primary_10_1002_cssc_202100904 crossref_primary_10_1007_s10965_024_03883_y crossref_primary_10_1016_j_polymer_2023_126370 crossref_primary_10_1016_j_envpol_2021_116461 crossref_primary_10_1002_cjoc_202400343 crossref_primary_10_1007_s13205_021_02884_8 crossref_primary_10_1186_s40643_020_00324_8 crossref_primary_10_3390_catal13030591 crossref_primary_10_1002_cssc_202100912 crossref_primary_10_1016_j_seppur_2022_120564 crossref_primary_10_1021_acscatal_2c02275 crossref_primary_10_3390_synbio1010004 crossref_primary_10_1039_D4QI01372G crossref_primary_10_3390_molecules27010098 crossref_primary_10_1016_j_cej_2023_144712 crossref_primary_10_1016_j_jece_2024_114891 crossref_primary_10_1002_eem2_12762 crossref_primary_10_1016_j_enzmictec_2021_109937 crossref_primary_10_1126_science_adu2454 crossref_primary_10_3390_suschem3030024 crossref_primary_10_1016_j_psep_2022_07_010 crossref_primary_10_1016_j_scitotenv_2022_157161 crossref_primary_10_1038_s41467_024_50702_5 crossref_primary_10_1039_D3GC03145D crossref_primary_10_1016_j_copbio_2024_103079 crossref_primary_10_3390_micro2020017 crossref_primary_10_1016_j_jclepro_2022_131989 crossref_primary_10_1039_D3GC02051G crossref_primary_10_3390_polym16060796 crossref_primary_10_1016_j_enzmictec_2024_110562 crossref_primary_10_1016_j_jhazmat_2022_129287 crossref_primary_10_1128_aem_01477_23 crossref_primary_10_1016_j_mtsust_2024_100936 crossref_primary_10_3390_catal11020206 crossref_primary_10_1002_anie_202404492 crossref_primary_10_1016_j_chempr_2020_12_006 crossref_primary_10_3390_macromol3020009 crossref_primary_10_1016_j_cej_2025_159304 crossref_primary_10_1038_s41467_022_29446_7 crossref_primary_10_1016_j_nbt_2023_11_001 crossref_primary_10_1021_acssuschemeng_4c02986 crossref_primary_10_1002_bit_28691 crossref_primary_10_1016_j_jcou_2022_102199 crossref_primary_10_1021_acs_jpclett_1c03658 crossref_primary_10_3390_polym14245551 crossref_primary_10_1021_acscatal_3c02922 crossref_primary_10_1016_j_mex_2022_101815 crossref_primary_10_1021_acscatal_3c02740 crossref_primary_10_1021_acs_chemrev_0c01282 crossref_primary_10_1016_j_ese_2024_100407 crossref_primary_10_1016_j_tibs_2024_07_006 crossref_primary_10_1111_1751_7915_14121 crossref_primary_10_3389_fmars_2022_980705 crossref_primary_10_1002_anie_202011063 crossref_primary_10_1128_jb_00543_21 crossref_primary_10_1093_protein_gzad022 crossref_primary_10_1007_s42452_021_04851_7 crossref_primary_10_3390_molecules27103353 crossref_primary_10_3390_su16146206 crossref_primary_10_1002_cssc_202300154 crossref_primary_10_1016_j_jcis_2024_06_214 crossref_primary_10_1016_j_bpj_2022_07_002 crossref_primary_10_1016_j_jhazmat_2023_132965 crossref_primary_10_1038_s44222_023_00142_5 crossref_primary_10_1039_D2GC04747K crossref_primary_10_1038_s41578_021_00376_y crossref_primary_10_1073_pnas_2026452118 crossref_primary_10_1007_s10529_024_03467_2 crossref_primary_10_1002_ange_202414162 crossref_primary_10_1002_jctb_7035 crossref_primary_10_1016_j_resconrec_2024_107706 crossref_primary_10_1016_j_scitotenv_2023_161948 crossref_primary_10_1111_1751_7915_14135 crossref_primary_10_1016_j_ijbiomac_2024_138785 crossref_primary_10_1016_j_ijbiomac_2024_136597 crossref_primary_10_1088_2515_7655_ac01ef crossref_primary_10_1093_nsr_nwac011 crossref_primary_10_1021_acs_jctc_3c01395 crossref_primary_10_1038_s41586_020_2495_2 crossref_primary_10_1021_acsomega_3c09084 crossref_primary_10_1021_acsomega_4c05142 crossref_primary_10_1016_j_cej_2025_160754 crossref_primary_10_1016_j_scitotenv_2022_157358 crossref_primary_10_1016_j_biortech_2024_131556 crossref_primary_10_1002_ange_202313633 crossref_primary_10_1016_j_biortech_2024_131557 crossref_primary_10_1021_acsapm_2c01945 crossref_primary_10_1016_j_copbio_2023_102938 crossref_primary_10_1016_j_chemosphere_2024_143029 crossref_primary_10_1016_j_cjph_2023_05_022 crossref_primary_10_1016_j_cej_2024_157275 crossref_primary_10_1016_j_tibtech_2021_02_008 crossref_primary_10_1016_j_apcatb_2022_121198 crossref_primary_10_1016_j_csbj_2023_11_006 crossref_primary_10_1016_j_mattod_2022_12_005 crossref_primary_10_1016_j_jhazmat_2024_136389 crossref_primary_10_3390_polym13213693 crossref_primary_10_1007_s11274_022_03270_z crossref_primary_10_1021_acs_biochem_2c00323 crossref_primary_10_1002_anie_202214609 crossref_primary_10_1016_j_enzmictec_2024_110521 crossref_primary_10_1021_acscatal_4c04321 crossref_primary_10_1002_adfm_202408274 crossref_primary_10_1016_j_pecs_2020_100901 crossref_primary_10_1021_acs_iecr_2c04451 crossref_primary_10_1021_acssuschemeng_4c08256 crossref_primary_10_1039_D1RA04288B crossref_primary_10_1016_j_cossms_2020_100896 crossref_primary_10_2142_biophysico_bppb_v18_018 crossref_primary_10_1021_acs_jcim_4c00776 crossref_primary_10_1126_science_adp5637 crossref_primary_10_1016_j_ijbiomac_2024_137672 crossref_primary_10_1016_j_jclepro_2024_141025 crossref_primary_10_1111_1751_7915_14114 crossref_primary_10_1038_s41467_024_45749_3 crossref_primary_10_1021_acscatal_1c03963 crossref_primary_10_1002_adma_202100843 crossref_primary_10_1016_j_efmat_2025_01_004 crossref_primary_10_1016_j_jbiotec_2022_08_019 crossref_primary_10_35534_sbe_2024_10009 crossref_primary_10_1155_2024_5561077 crossref_primary_10_1007_s11157_022_09631_2 crossref_primary_10_3390_molecules30020299 crossref_primary_10_1016_j_apcata_2025_120119 crossref_primary_10_3390_ijms23010264 crossref_primary_10_1016_j_jclepro_2024_142346 crossref_primary_10_1016_j_envres_2023_117427 crossref_primary_10_1016_j_jwpe_2024_106736 crossref_primary_10_1016_j_ecoinf_2022_101716 crossref_primary_10_1039_D4GC01662A crossref_primary_10_1021_acssuschemeng_1c02627 crossref_primary_10_20517_cs_2023_67 crossref_primary_10_1049_enb2_12020 crossref_primary_10_1002_pen_27040 crossref_primary_10_1016_j_biotechadv_2022_107952 crossref_primary_10_1002_bit_28819 crossref_primary_10_1002_cssc_202100740 crossref_primary_10_1016_j_enzmictec_2022_110142 crossref_primary_10_1021_acsmacrolett_0c00789 crossref_primary_10_1002_gch2_202400163 crossref_primary_10_1016_j_etap_2022_104045 crossref_primary_10_1002_bit_27984 crossref_primary_10_1039_D2GC02588D crossref_primary_10_3390_microorganisms10061180 crossref_primary_10_1016_j_csbj_2021_01_019 crossref_primary_10_1016_j_wasman_2023_08_048 crossref_primary_10_1021_acssuschemeng_1c03721 crossref_primary_10_1002_cssc_202300742 crossref_primary_10_1016_j_jenvman_2021_113975 crossref_primary_10_1021_acssuschemeng_4c00143 crossref_primary_10_1016_j_apcatb_2023_123404 crossref_primary_10_1002_cbic_202300578 crossref_primary_10_1016_j_xcrp_2024_102295 crossref_primary_10_1038_s41557_021_00763_6 crossref_primary_10_1038_s43586_022_00124_8 crossref_primary_10_1002_cssc_202100752 crossref_primary_10_1016_j_jhazmat_2021_128086 crossref_primary_10_1021_cbe_4c00125 crossref_primary_10_1016_j_trechm_2020_06_005 crossref_primary_10_3390_catal15030265 crossref_primary_10_1002_anie_202007423 crossref_primary_10_1002_cssc_202101607 crossref_primary_10_1039_D1NR03571A crossref_primary_10_1016_j_biortech_2024_131759 crossref_primary_10_1002_anie_202309949 crossref_primary_10_1007_s11426_024_2432_5 crossref_primary_10_3390_polym14010109 crossref_primary_10_1016_j_checat_2022_09_027 crossref_primary_10_1016_j_checat_2022_09_029 crossref_primary_10_3390_w16131837 crossref_primary_10_1016_j_biortech_2022_127931 crossref_primary_10_1002_cssc_202401470 crossref_primary_10_1016_j_bej_2025_109708 crossref_primary_10_1016_j_scitotenv_2023_162159 crossref_primary_10_1016_j_ijbiomac_2021_03_058 crossref_primary_10_1016_j_wasman_2020_09_031 crossref_primary_10_1021_acssusresmgt_4c00430 crossref_primary_10_1021_acssynbio_1c00275 crossref_primary_10_1016_j_jclepro_2023_136831 crossref_primary_10_1146_annurev_chembioeng_100522_115850 crossref_primary_10_1007_s11051_022_05665_3 crossref_primary_10_1038_s41929_020_00521_w crossref_primary_10_4014_jmb_2206_06021 crossref_primary_10_1021_acs_macromol_4c02109 crossref_primary_10_1038_s41467_022_32903_y crossref_primary_10_1016_j_jhazmat_2023_130968 crossref_primary_10_3390_catal11020286 crossref_primary_10_1007_s10965_023_03740_4 crossref_primary_10_1016_j_resconrec_2023_107268 crossref_primary_10_1021_acssuschemeng_2c05998 crossref_primary_10_1021_acs_chemrev_3c00739 crossref_primary_10_1038_s41467_023_39929_w crossref_primary_10_1128_aem_00721_22 crossref_primary_10_1038_s41598_023_43042_9 crossref_primary_10_1049_enb2_12018 crossref_primary_10_1016_j_apcatb_2022_121143 crossref_primary_10_1021_acs_est_4c01495 crossref_primary_10_1039_D4PY00068D crossref_primary_10_21285_2227_2925_2022_12_2_238_253 crossref_primary_10_1016_j_procbio_2022_01_011 crossref_primary_10_1016_j_resconrec_2022_106279 crossref_primary_10_1039_D4MA00411F crossref_primary_10_3390_molecules30030727 crossref_primary_10_1016_j_eng_2024_10_015 crossref_primary_10_1021_acssuschemeng_1c02420 crossref_primary_10_1016_j_chempr_2024_09_026 crossref_primary_10_1146_annurev_matsci_081320_032344 crossref_primary_10_1002_ange_202117528 crossref_primary_10_1002_smll_202406767 crossref_primary_10_1021_acs_macromol_4c02130 crossref_primary_10_1021_acs_est_4c02132 crossref_primary_10_1016_j_apcatb_2023_122744 crossref_primary_10_1016_j_checat_2022_09_043 crossref_primary_10_1016_j_scitotenv_2022_156890 crossref_primary_10_1111_1462_2920_16460 crossref_primary_10_3390_su16188247 crossref_primary_10_1021_acs_chemrev_2c00644 crossref_primary_10_3390_ma14174782 crossref_primary_10_1016_j_eurpolymj_2024_113249 crossref_primary_10_1021_acssuschemeng_4c10171 crossref_primary_10_1002_cjoc_202200527 crossref_primary_10_1177_0734242X241276089 crossref_primary_10_1016_j_biotechadv_2022_107927 crossref_primary_10_1016_j_bej_2024_109615 crossref_primary_10_1039_D4CY00468J crossref_primary_10_1128_Spectrum_00976_21 crossref_primary_10_1038_s41467_023_37374_3 crossref_primary_10_1021_acssynbio_3c00385 crossref_primary_10_1016_j_biotechadv_2023_108276 crossref_primary_10_3390_molecules29235772 crossref_primary_10_3390_nano11112810 crossref_primary_10_1021_acssuschemeng_3c02695 crossref_primary_10_1002_smm2_1202 crossref_primary_10_1016_j_polymdegradstab_2022_110245 crossref_primary_10_1080_14693062_2021_1922340 crossref_primary_10_3390_md22100441 crossref_primary_10_1186_s12199_020_00870_9 crossref_primary_10_1039_D1GC02929K crossref_primary_10_1016_j_jobab_2022_09_004 crossref_primary_10_1186_s12934_022_01849_7 crossref_primary_10_1038_s41467_023_41997_x crossref_primary_10_1016_j_jhazmat_2024_136540 crossref_primary_10_1016_j_checat_2022_07_018 crossref_primary_10_1021_acs_jpca_0c07605 crossref_primary_10_1002_smll_202404124 crossref_primary_10_1021_acssuschemeng_4c02551 crossref_primary_10_1021_acssuschemeng_3c01575 crossref_primary_10_1021_acs_macromol_2c02054 crossref_primary_10_1016_j_wasman_2023_11_002 crossref_primary_10_1002_cssc_202300516 crossref_primary_10_1021_acscatal_0c01708 crossref_primary_10_1016_j_checat_2023_100677 crossref_primary_10_1038_s42004_023_00998_z crossref_primary_10_1038_s41467_022_34908_z crossref_primary_10_1002_cssc_202301612 crossref_primary_10_1093_femsyr_foae024 crossref_primary_10_1021_acssuschemeng_4c00363 crossref_primary_10_1002_elsc_202100105 crossref_primary_10_3389_fbioe_2024_1349010 crossref_primary_10_1016_j_emcon_2025_100488 crossref_primary_10_1021_acs_biomac_4c01652 crossref_primary_10_1016_j_jclepro_2022_134429 crossref_primary_10_1021_acsnano_3c01862 crossref_primary_10_1016_j_bej_2021_108096 crossref_primary_10_1146_annurev_chembioeng_092120_091054 crossref_primary_10_1016_j_biortech_2023_130108 crossref_primary_10_1021_acsapm_2c00212 crossref_primary_10_1016_j_ijhydene_2025_02_093 crossref_primary_10_1039_D1CC03705F crossref_primary_10_1002_cssc_202102750 crossref_primary_10_1016_j_ijbiomac_2022_11_126 crossref_primary_10_1016_j_cej_2021_132509 crossref_primary_10_1038_s41929_023_01072_6 crossref_primary_10_1007_s00284_022_03139_2 crossref_primary_10_1016_j_seppur_2023_124505 crossref_primary_10_1016_j_envpol_2024_124131 crossref_primary_10_1016_j_jclepro_2023_140048 crossref_primary_10_1016_j_jece_2025_115684 crossref_primary_10_1002_anie_202414842 crossref_primary_10_1007_s11270_024_07464_z crossref_primary_10_1016_j_cej_2023_148418 crossref_primary_10_1016_j_copbio_2021_06_007 crossref_primary_10_1186_s12302_021_00536_5 crossref_primary_10_1016_j_biortech_2024_130929 crossref_primary_10_1039_D3RE00028A crossref_primary_10_1016_j_cej_2024_155472 crossref_primary_10_1038_s41467_024_45523_5 crossref_primary_10_1080_07388551_2023_2170861 crossref_primary_10_1007_s00449_025_03131_7 crossref_primary_10_3390_polym16192770 crossref_primary_10_1021_acs_chemmater_2c00625 crossref_primary_10_1016_j_jmrt_2023_06_152 crossref_primary_10_1021_acsami_3c15703 crossref_primary_10_1016_j_susmat_2024_e01022 crossref_primary_10_1002_ange_202309949 crossref_primary_10_1002_adma_202500090 crossref_primary_10_1016_j_jclepro_2022_134792 crossref_primary_10_3390_polym13223883 crossref_primary_10_1016_j_csbj_2021_11_023 crossref_primary_10_1016_j_polymdegradstab_2023_110450 crossref_primary_10_1016_j_jenvman_2024_122217 crossref_primary_10_1016_j_jhazmat_2022_129517 crossref_primary_10_1186_s40793_020_00371_w crossref_primary_10_1002_anie_202216220 crossref_primary_10_3390_ijms25105536 crossref_primary_10_1016_j_envint_2020_106067 crossref_primary_10_1016_j_horiz_2022_100016 crossref_primary_10_1002_cbic_202400555 crossref_primary_10_1038_s42003_023_05523_5 crossref_primary_10_1016_j_biotechadv_2023_108239 crossref_primary_10_1016_j_copbio_2023_103021 crossref_primary_10_1098_rsta_2019_0273 crossref_primary_10_1007_s13205_021_02988_1 crossref_primary_10_1016_j_polymdegradstab_2022_110168 crossref_primary_10_1038_s41467_021_26508_0 crossref_primary_10_1007_s10924_023_03118_z crossref_primary_10_1021_acscatal_3c05535 crossref_primary_10_1002_ange_202418157 crossref_primary_10_1016_j_biotechadv_2021_107811 crossref_primary_10_1016_j_coisb_2023_100482 crossref_primary_10_1016_j_cclet_2023_108465 crossref_primary_10_1021_acssynbio_4c00077 crossref_primary_10_1021_acssuschemeng_3c08286 crossref_primary_10_3389_fmicb_2025_1541913 crossref_primary_10_3389_fbioe_2021_696040 crossref_primary_10_1021_jacs_1c08888 crossref_primary_10_1021_acsapm_4c01570 crossref_primary_10_1002_cssc_202100243 crossref_primary_10_1002_cssc_202202019 crossref_primary_10_1016_j_jhazmat_2021_127023 crossref_primary_10_2139_ssrn_4071692 crossref_primary_10_1016_j_ceja_2022_100310 crossref_primary_10_1016_j_cej_2023_144032 crossref_primary_10_1016_j_cej_2023_147781 crossref_primary_10_1007_s11426_024_2278_9 crossref_primary_10_1016_j_csbj_2021_12_042 crossref_primary_10_1021_acscatal_3c05509 crossref_primary_10_1186_s40643_023_00648_1 crossref_primary_10_1016_j_chemosphere_2025_144108 crossref_primary_10_1016_j_jhazmat_2021_127017 crossref_primary_10_1007_s11270_024_07122_4 crossref_primary_10_1021_acs_iecr_3c04000 crossref_primary_10_3390_ijms231910997 crossref_primary_10_1039_D4GC05916F crossref_primary_10_1016_j_trac_2023_117106 crossref_primary_10_1002_ange_202216963 crossref_primary_10_1002_cbic_202000793 crossref_primary_10_1016_j_apcatb_2022_121667 crossref_primary_10_1038_s41467_024_50446_2 crossref_primary_10_1016_j_dwt_2024_100201 crossref_primary_10_1039_D3CP03590E crossref_primary_10_1186_s40643_023_00715_7 crossref_primary_10_1039_D1CS00100K crossref_primary_10_1038_s41586_022_04599_z crossref_primary_10_1016_j_ijbiomac_2023_128627 crossref_primary_10_1016_j_gce_2024_12_001 crossref_primary_10_1016_j_jclepro_2023_140088 crossref_primary_10_1016_j_jare_2022_09_004 crossref_primary_10_1021_acssuschemeng_0c01638 crossref_primary_10_1111_febs_16736 crossref_primary_10_1016_j_jece_2021_105326 crossref_primary_10_1021_acs_biochem_3c00554 crossref_primary_10_1021_acs_jpcc_1c06658 crossref_primary_10_3390_molecules30061255 crossref_primary_10_1002_cctc_202401252 crossref_primary_10_1016_j_dwt_2024_100432 crossref_primary_10_1002_pi_6369 crossref_primary_10_1016_j_biortech_2023_128772 crossref_primary_10_1002_pi_6123 crossref_primary_10_1007_s42824_021_00038_y crossref_primary_10_1021_acs_langmuir_4c00364 crossref_primary_10_1007_s42824_022_00055_5 crossref_primary_10_1016_j_jobe_2024_110846 crossref_primary_10_1016_j_jmb_2021_166964 crossref_primary_10_1016_j_csbj_2025_03_006 crossref_primary_10_3390_polym17060763 crossref_primary_10_1016_j_measurement_2021_109855 crossref_primary_10_1515_psr_2023_0014 crossref_primary_10_3390_app11188315 crossref_primary_10_1021_acs_chemrev_4c00032 crossref_primary_10_1039_D4RE00349G crossref_primary_10_1021_acssuschemeng_4c00060 crossref_primary_10_1007_s00203_024_04165_3 crossref_primary_10_1111_1462_2920_16512 crossref_primary_10_1039_D3GC04728H crossref_primary_10_1016_j_cej_2023_146413 crossref_primary_10_1016_j_checat_2024_100902 crossref_primary_10_1021_acs_jctc_3c00602 crossref_primary_10_1038_s44160_023_00417_0 crossref_primary_10_1016_j_bej_2024_109420 crossref_primary_10_1016_j_scitotenv_2024_171464 crossref_primary_10_3390_ijms25010593 crossref_primary_10_1016_j_biortech_2022_128026 crossref_primary_10_1039_D4FD00139G crossref_primary_10_1016_j_bej_2024_109429 crossref_primary_10_1021_acssuschemeng_2c03142 crossref_primary_10_1039_D4SU00722K crossref_primary_10_1016_j_jhazmat_2025_137196 crossref_primary_10_1038_s41893_021_00743_1 crossref_primary_10_1002_cbic_202000767 crossref_primary_10_1016_j_jhazmat_2023_131295 crossref_primary_10_1016_j_jhazmat_2023_131054 crossref_primary_10_1016_j_eurpolymj_2020_109873 crossref_primary_10_1002_anie_202401746 crossref_primary_10_1002_cssc_202400105 crossref_primary_10_1002_anie_202418157 crossref_primary_10_1016_j_cclet_2022_06_015 crossref_primary_10_1016_j_cej_2022_140470 crossref_primary_10_1016_j_chempr_2021_02_003 crossref_primary_10_1016_j_eurpolymj_2024_113621 crossref_primary_10_1016_j_saa_2024_125411 crossref_primary_10_1016_j_biortech_2023_129884 crossref_primary_10_1002_ange_202401746 crossref_primary_10_1016_j_cattod_2024_114659 crossref_primary_10_1021_acscatal_4c00400 crossref_primary_10_1002_anie_202112576 crossref_primary_10_1016_j_scitotenv_2024_176920 crossref_primary_10_1186_s12934_022_02007_9 crossref_primary_10_1002_jctb_6882 crossref_primary_10_3917_pls_512_0007 crossref_primary_10_1016_j_marpolbul_2020_111950 crossref_primary_10_1080_09593330_2022_2052359 crossref_primary_10_1016_j_watres_2021_117144 crossref_primary_10_1039_D2CS00688J crossref_primary_10_1093_sumbio_qvae012 crossref_primary_10_1016_j_ymben_2022_05_001 crossref_primary_10_1039_D4SU00745J crossref_primary_10_1002_mame_202400013 crossref_primary_10_1002_biot_202300119 crossref_primary_10_1111_febs_15850 crossref_primary_10_1016_j_cej_2024_153223 crossref_primary_10_1016_j_pmatsci_2022_101035 crossref_primary_10_1021_acssuschemeng_0c01664 crossref_primary_10_1007_s11483_021_09698_4 crossref_primary_10_1002_cssc_202402515 crossref_primary_10_1016_j_scitotenv_2024_174978 crossref_primary_10_1039_D3GC04174C crossref_primary_10_1016_j_jpowsour_2020_228814 crossref_primary_10_1111_jam_15203 crossref_primary_10_1016_j_copbio_2021_08_017 crossref_primary_10_1080_07388551_2022_2039590 crossref_primary_10_1016_j_eehl_2023_07_004 crossref_primary_10_1016_j_jhazmat_2022_128816 crossref_primary_10_1016_j_bbadva_2023_100111 crossref_primary_10_1016_j_bioorg_2023_107047 crossref_primary_10_1016_S1872_2067_23_64435_3 crossref_primary_10_3390_ijms232012644 crossref_primary_10_1002_bit_28261 crossref_primary_10_1039_D0RE00385A crossref_primary_10_1002_ange_202309305 crossref_primary_10_1039_D2RA03394A crossref_primary_10_1021_acscatal_2c03772 crossref_primary_10_1042_EBC20220255 crossref_primary_10_3389_fbioe_2022_930140 crossref_primary_10_1007_s10924_022_02480_8 crossref_primary_10_3390_ijms242015181 crossref_primary_10_3390_polym16162262 crossref_primary_10_1111_1751_7915_14331 crossref_primary_10_1021_acsbiomedchemau_4c00089 crossref_primary_10_1016_j_checat_2022_02_003 crossref_primary_10_1016_j_rser_2021_111866 crossref_primary_10_1002_mame_202400033 crossref_primary_10_1039_D4SC00070F crossref_primary_10_1002_ange_202006648 crossref_primary_10_1002_anie_202300094 crossref_primary_10_1016_j_scitotenv_2024_177129 crossref_primary_10_1007_s10904_024_03299_7 crossref_primary_10_1021_jacs_3c04427 crossref_primary_10_1002_cssc_202201576 crossref_primary_10_1038_s41467_024_52789_2 crossref_primary_10_1002_pro_4757 crossref_primary_10_1016_j_chempr_2022_09_008 crossref_primary_10_1016_j_chempr_2022_09_009 crossref_primary_10_1002_pro_4997 crossref_primary_10_5650_oleoscience_22_495 crossref_primary_10_1093_femsre_fuae027 crossref_primary_10_1016_j_jece_2024_112507 crossref_primary_10_1016_j_jhazmat_2024_134603 crossref_primary_10_1002_cctc_202400835 crossref_primary_10_1016_j_seppur_2024_131373 crossref_primary_10_1002_ange_202414842 crossref_primary_10_1016_j_marpolbul_2022_113460 crossref_primary_10_3390_ijms222011257 crossref_primary_10_1021_acs_biochem_4c00165 crossref_primary_10_1039_D2GC02162E crossref_primary_10_1016_j_joule_2020_08_015 crossref_primary_10_1126_science_adh8615 crossref_primary_10_1016_j_jhazmat_2021_127417 crossref_primary_10_1021_acscatal_4c00444 crossref_primary_10_1016_j_ese_2023_100238 crossref_primary_10_1016_j_gce_2023_06_002 crossref_primary_10_1016_j_scitotenv_2023_163908 crossref_primary_10_3390_microorganisms11061514 crossref_primary_10_1039_D3CC01555F crossref_primary_10_1016_j_cjche_2021_10_028 crossref_primary_10_1002_pro_4500 crossref_primary_10_1021_acscatal_1c05548 crossref_primary_10_3389_fbioe_2022_865787 crossref_primary_10_1002_ange_202300768 crossref_primary_10_1515_ci_2023_0403 crossref_primary_10_3390_polym15204111 crossref_primary_10_1007_s12010_022_04129_7 crossref_primary_10_1016_j_jhazmat_2024_134838 crossref_primary_10_1016_j_watres_2023_120270 crossref_primary_10_1016_j_bpj_2024_04_026 crossref_primary_10_1007_s00449_022_02690_3 crossref_primary_10_1016_j_polymdegradstab_2022_109815 crossref_primary_10_1016_j_rsma_2022_102647 crossref_primary_10_4014_jmb_2404_04030 crossref_primary_10_1016_j_cclet_2024_109893 crossref_primary_10_1021_jacs_4c03320 crossref_primary_10_1016_j_cej_2024_154183 crossref_primary_10_32604_jrm_2023_025032 crossref_primary_10_1016_j_jclepro_2021_129325 crossref_primary_10_1021_acssuschemeng_4c00915 crossref_primary_10_1039_D3RA08500G crossref_primary_10_1039_D0GC02770G crossref_primary_10_1016_j_copbio_2023_103053 crossref_primary_10_1016_j_scitotenv_2023_162414 crossref_primary_10_3390_ijms24043877 crossref_primary_10_1016_j_jece_2024_112926 crossref_primary_10_1016_j_jclepro_2024_143083 crossref_primary_10_1016_j_toxlet_2024_08_002 crossref_primary_10_1021_jacsau_4c00718 crossref_primary_10_3390_polym15122653 crossref_primary_10_1021_acs_nanolett_1c02315 crossref_primary_10_1016_j_polymdegradstab_2025_111341 crossref_primary_10_1007_s12598_024_02714_9 crossref_primary_10_1021_acs_biochem_4c00149 crossref_primary_10_1016_j_ecoenv_2024_116046 crossref_primary_10_1016_j_jece_2023_110482 crossref_primary_10_1038_s41929_021_00616_y crossref_primary_10_1557_mre_2020_28 crossref_primary_10_1016_j_eehl_2024_01_010 crossref_primary_10_1016_j_greenca_2025_02_003 crossref_primary_10_1021_acs_accounts_2c00308 crossref_primary_10_1016_j_synbio_2021_06_001 crossref_primary_10_1021_acssuschemeng_1c08656 crossref_primary_10_1039_D4FD00067F crossref_primary_10_1093_jb_mvaa102 crossref_primary_10_1007_s10311_024_01714_6 crossref_primary_10_3389_fbioe_2021_762854 crossref_primary_10_1038_s41929_023_01048_6 crossref_primary_10_1002_chem_202403879 crossref_primary_10_1039_D1GC02767K crossref_primary_10_1002_prot_26034 crossref_primary_10_1016_j_oneear_2024_02_005 crossref_primary_10_1016_j_scitotenv_2023_167098 crossref_primary_10_1021_acsestengg_4c00253 crossref_primary_10_1002_app_56177 crossref_primary_10_1039_D4FD00022F crossref_primary_10_3389_fbioe_2020_602325 crossref_primary_10_1039_D4GC00911H crossref_primary_10_1080_10889868_2021_1900053 crossref_primary_10_1039_D3GC04460B crossref_primary_10_3389_fbioe_2021_642023 crossref_primary_10_1016_j_cscee_2024_100673 crossref_primary_10_1039_D3EY00017F crossref_primary_10_3390_molecules26051389 crossref_primary_10_1021_acscatal_3c00259 crossref_primary_10_1007_s10532_024_10070_9 crossref_primary_10_1016_j_coisb_2024_100515 crossref_primary_10_1016_j_chempr_2024_102395 crossref_primary_10_1016_j_eti_2023_103347 crossref_primary_10_1128_spectrum_00362_23 crossref_primary_10_1073_pnas_2121426119 crossref_primary_10_3390_ijms24032780 crossref_primary_10_1021_jacs_4c16655 crossref_primary_10_1016_j_reactfunctpolym_2022_105465 crossref_primary_10_3390_su122410449 crossref_primary_10_1016_j_scitotenv_2022_154947 crossref_primary_10_1038_s41586_021_03408_3 |
Cites_doi | 10.1093/protein/3.2.95 10.1016/j.polymdegradstab.2004.12.001 10.1038/s41467-017-02255-z 10.1021/bi401561p 10.1038/s41467-019-09326-3 10.1073/pnas.1718804115 10.1002/marc.200500410 10.1016/j.polymdegradstab.2012.02.003 10.1002/2211-5463.12053 10.1126/science.aad6359 10.1016/j.wasman.2017.07.044 10.1007/s00449-015-1497-1 10.1126/sciadv.1700782 10.1002/biot.201400620 10.1002/bit.21329 10.1016/j.eurpolymj.2005.02.005 10.1002/advs.201900491 10.1016/j.jbiosc.2017.02.007 10.1126/science.aaf2853 10.1016/j.jbiotec.2005.06.015 10.1038/s41467-018-02881-1 10.1007/s00253-019-09717-y 10.1111/1751-7915.12710 10.1016/j.biotechadv.2013.09.005 10.1016/B978-0-12-800259-9.00007-X 10.1590/S1516-14392013005000168 10.1002/pola.22952 10.1128/AEM.06725-11 10.1021/ma9005318 10.1021/acscatal.8b05171 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Apr 9, 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 9, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC VOOES |
DOI | 10.1038/s41586-020-2149-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 219 |
ExternalDocumentID | oai_HAL_hal_02545880v1 A619849959 32269349 10_1038_s41586_020_2149_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 SOI 7X8 1XC AGQPQ UMC VOOES |
ID | FETCH-LOGICAL-c688t-122acbea5cbbb97000fda25f1bf3a7e945f51477b2f4b52b2954bd1e264170483 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri May 09 12:20:52 EDT 2025 Thu Jul 10 19:10:34 EDT 2025 Sat Aug 23 12:54:16 EDT 2025 Tue Jun 17 21:04:56 EDT 2025 Thu Jun 12 23:18:06 EDT 2025 Tue Jun 10 15:32:04 EDT 2025 Tue Jun 10 20:38:22 EDT 2025 Fri Jun 27 04:38:48 EDT 2025 Fri Jun 27 04:05:45 EDT 2025 Thu Apr 03 08:16:40 EDT 2025 Tue Jul 01 01:21:22 EDT 2025 Thu Apr 24 22:53:04 EDT 2025 Fri Feb 21 02:38:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7802 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c688t-122acbea5cbbb97000fda25f1bf3a7e945f51477b2f4b52b2954bd1e264170483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6280-4109 0000-0002-9147-0184 0000-0002-5520-8613 0000-0001-9829-9394 0000-0001-5709-6945 0000-0003-2581-5022 |
OpenAccessLink | https://hal.inrae.fr/hal-02545880 |
PMID | 32269349 |
PQID | 2390656133 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | hal_primary_oai_HAL_hal_02545880v1 proquest_miscellaneous_2388003947 proquest_journals_2390656133 gale_infotracmisc_A619849959 gale_infotracgeneralonefile_A619849959 gale_infotraccpiq_619849959 gale_infotracacademiconefile_A619849959 gale_incontextgauss_ISR_A619849959 gale_incontextgauss_ATWCN_A619849959 pubmed_primary_32269349 crossref_citationtrail_10_1038_s41586_020_2149_4 crossref_primary_10_1038_s41586_020_2149_4 springer_journals_10_1038_s41586_020_2149_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KawaiFKawabataTOdaMCurrent knowledge on enzymatic PET degradation and its possible application to waste stream management and other fieldsAppl. Microbiol. Biotechnol.2019103425342681:CAS:528:DC%2BC1MXovFakurw%3D10.1007/s00253-019-09717-y VertommenMANierstraszVAvan der VeerMWarmoeskerkenMMEnzymatic surface modification of poly(ethylene terephthalate)J. Biotechnol.20051203763861:CAS:528:DC%2BD2MXht1egsrrL10.1016/j.jbiotec.2005.06.015 MüllerRJSchraderHProfeJDreslerKDeckwerW-DEnzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fuscaMacromol. Rapid Commun.2005261400140510.1002/marc.200500410 TaniguchiIBiodegradation of PET: current status and application aspectsACS Catal.20199408941051:CAS:528:DC%2BC1MXmslOrtr0%3D10.1021/acscatal.8b05171 JooSStructural insight into molecular mechanism of poly(ethylene terephthalate) degradationNat. Commun.201892018NatCo...9..382J10.1038/s41467-018-02881-1 ChenSSuLChenJWuJCutinase: characteristics, preparation, and applicationBiotechnol. Adv.201331175417671:CAS:528:DC%2BC3sXhsFGqt7vN10.1016/j.biotechadv.2013.09.005 ThenJA disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalateFEBS Open Bio201664254321:CAS:528:DC%2BC28Xht1Kru7rM10.1002/2211-5463.12053 AwajaFPavelDRecycling of PETEur. Polym. J.200541145314771:CAS:528:DC%2BD2MXjslOgtbY%3D10.1016/j.eurpolymj.2005.02.005 AustinHPCharacterization and engineering of a plastic-degrading aromatic polyesteraseProc. Natl Acad. Sci. USA2018115E4350E43571:CAS:528:DC%2BC1cXhvVGhtLnF10.1073/pnas.1718804115 Barboza NetoESCoelhoLAFForteMMCAmicoSCFerreiraCAProcessing of a LLDPE/HDPE pressure vessel liner by rotomoldingMater. Res.2014172362411:CAS:528:DC%2BC2cXptFyhur0%3D10.1590/S1516-14392013005000168 Meyer, D. H. Process for purifying terephthalic acid. US patent 3,288,849 (1966). YoshidaSA bacterium that degrades and assimilates poly(ethylene terephthalate)Science2016351119611992016Sci...351.1196Y1:CAS:528:DC%2BC28Xjs12gtr4%3D10.1126/science.aad6359 GusakovAVDesign of highly efficient cellulase mixtures for enzymatic hydrolysis of celluloseBiotechnol. Bioeng.200797102810381:CAS:528:DC%2BD2sXnvFahu74%3D10.1002/bit.21329 SulaimanSYouDJKanayaEKogaYKanayaSCrystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinaseBiochemistry201453185818691:CAS:528:DC%2BC2cXjsVehs7w%3D10.1021/bi401561p WeiRZimmermannWMicrobial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?Microb. Biotechnol.201710130813221:CAS:528:DC%2BC2sXhslCntLbF10.1111/1751-7915.12710 PalmGJStructure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrateNat. Commun.2019102019NatCo..10.1717P10.1038/s41467-019-09326-3 KawabataTOdaMKawaiFMutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalateJ. Biosci. Bioeng.201712428351:CAS:528:DC%2BC2sXjtFKnurs%3D10.1016/j.jbiosc.2017.02.007 HanXStructural insight into catalytic mechanism of PET hydrolaseNat. Commun.201782017NatCo...8.2106H10.1038/s41467-017-02255-z ZimmermannWBilligSEnzymes for the biofunctionalization of poly(ethylene terephthalate)Adv. Biochem. Eng. Biotechnol.201012597120 WeiRBiocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructuresAdv. Sci.20196190049110.1002/advs.201900491 PET polymer: chemical economics handbook. IHS Markit https://ihsmarkit.com/products/pet-polymer-chemical-economics-handbook.html (2018). GeyerRJambeckJRLawKLProduction, use, and fate of all plastics ever madeSci. Adv.20173e17007822017SciA....3E0782G10.1126/sciadv.1700782 SulaimanSIsolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomics approachAppl. Environ. Microbiol.201278155615621:CAS:528:DC%2BC38XjtVSntLY%3D10.1128/AEM.06725-11 WeiROeserTZimmermannWSynthetic polyester-hydrolyzing enzymes from thermophilic actinomycetesAdv. Appl. Microbiol.20148926730510.1016/B978-0-12-800259-9.00007-X PlasticsEurope. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data. PlasticsEuropehttps://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (2019). ThenJCa2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fuscaBiotechnol. J.2015105925981:CAS:528:DC%2BC2MXhtFKgtbc%3D10.1002/biot.201400620 BornscheuerUTFeeding on plasticScience2016351115411552016Sci...351.1154B1:CAS:528:DC%2BC28XksVGntL4%3D10.1126/science.aaf2853 Fullbrook, P. D. in Glucose Syrups, Science and Technology (eds Dziedzic, S. Z. & Kearsley, M. W.) 65–115 (Elsevier, 1984). Merchant Research and Consulting. Sodium sulfate: 2020 world market outlook and forecast up to 2029. https://mcgroup.co.uk/researches/sodium-sulphate (2019). SowdhaminiRStereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesisProtein Eng.19893951031:CAS:528:DyaK3cXpsV2gtQ%3D%3D10.1093/protein/3.2.95 RagaertKDelvaLVan GeemKMechanical and chemical recycling of solid plastic wasteWaste Manag.20176924581:CAS:528:DC%2BC2sXhtlOhtLrO10.1016/j.wasman.2017.07.044 LiuGZhangJBaoJCost evaluation of cellulose enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modelingBioprocess Biosyst. Eng.20163913314010.1007/s00449-015-1497-1 RonkvistASMXieWLuWGrossRACutinase-catalyzed hydrolysis of poly(ethylene terephthalate)Macromolecules200942512851382009MaMol..42.5128R1:CAS:528:DC%2BD1MXotVGksb0%3D10.1021/ma9005318 BruecknerTEberlAHeumannSRabeMGuebitzGMEnzymatic and chemical hydrolysis of poly (ethylene terephthalate) fabricsJ. Polym. Sci. A200846643564431:CAS:528:DC%2BD1cXht1SnsLfE10.1002/pola.22952 KitadokoroKCrystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolutionPolym. Degrad. Stabil.2012977717751:CAS:528:DC%2BC38Xjt1elsrY%3D10.1016/j.polymdegradstab.2012.02.003 MartenEMüllerR-JDeckwerW-DStudies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyestersPolym. Degrad. Stabil.2005883713811:CAS:528:DC%2BD2MXisVCks7g%3D10.1016/j.polymdegradstab.2004.12.001 Mohammad-KhahAAnsariRActivated charcoal: preparation, characterization and applications: a review articleInt. J. Chemtech Res.20141859864 R Geyer (2149_CR2) 2017; 3 T Brueckner (2149_CR15) 2008; 46 MA Vertommen (2149_CR16) 2005; 120 A Mohammad-Khah (2149_CR33) 2014; 1 K Kitadokoro (2149_CR20) 2012; 97 I Taniguchi (2149_CR14) 2019; 9 ASM Ronkvist (2149_CR18) 2009; 42 S Yoshida (2149_CR8) 2016; 351 R Wei (2149_CR17) 2019; 6 E Marten (2149_CR5) 2005; 88 S Joo (2149_CR12) 2018; 9 R Wei (2149_CR6) 2017; 10 J Then (2149_CR23) 2015; 10 W Zimmermann (2149_CR19) 2010; 125 X Han (2149_CR11) 2017; 8 S Chen (2149_CR21) 2013; 31 F Awaja (2149_CR28) 2005; 41 S Sulaiman (2149_CR25) 2014; 53 GJ Palm (2149_CR10) 2019; 10 RJ Müller (2149_CR36) 2005; 26 J Then (2149_CR26) 2016; 6 S Sulaiman (2149_CR37) 2012; 78 UT Bornscheuer (2149_CR9) 2016; 351 2149_CR1 K Ragaert (2149_CR4) 2017; 69 HP Austin (2149_CR13) 2018; 115 2149_CR34 F Kawai (2149_CR7) 2019; 103 2149_CR35 R Sowdhamini (2149_CR27) 1989; 3 R Wei (2149_CR22) 2014; 89 G Liu (2149_CR32) 2016; 39 T Kawabata (2149_CR24) 2017; 124 2149_CR3 ES Barboza Neto (2149_CR29) 2014; 17 2149_CR30 AV Gusakov (2149_CR31) 2007; 97 |
References_xml | – reference: AustinHPCharacterization and engineering of a plastic-degrading aromatic polyesteraseProc. Natl Acad. Sci. USA2018115E4350E43571:CAS:528:DC%2BC1cXhvVGhtLnF10.1073/pnas.1718804115 – reference: SulaimanSYouDJKanayaEKogaYKanayaSCrystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinaseBiochemistry201453185818691:CAS:528:DC%2BC2cXjsVehs7w%3D10.1021/bi401561p – reference: GusakovAVDesign of highly efficient cellulase mixtures for enzymatic hydrolysis of celluloseBiotechnol. Bioeng.200797102810381:CAS:528:DC%2BD2sXnvFahu74%3D10.1002/bit.21329 – reference: RagaertKDelvaLVan GeemKMechanical and chemical recycling of solid plastic wasteWaste Manag.20176924581:CAS:528:DC%2BC2sXhtlOhtLrO10.1016/j.wasman.2017.07.044 – reference: WeiRZimmermannWMicrobial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?Microb. Biotechnol.201710130813221:CAS:528:DC%2BC2sXhslCntLbF10.1111/1751-7915.12710 – reference: ChenSSuLChenJWuJCutinase: characteristics, preparation, and applicationBiotechnol. Adv.201331175417671:CAS:528:DC%2BC3sXhsFGqt7vN10.1016/j.biotechadv.2013.09.005 – reference: MartenEMüllerR-JDeckwerW-DStudies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyestersPolym. Degrad. Stabil.2005883713811:CAS:528:DC%2BD2MXisVCks7g%3D10.1016/j.polymdegradstab.2004.12.001 – reference: MüllerRJSchraderHProfeJDreslerKDeckwerW-DEnzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fuscaMacromol. Rapid Commun.2005261400140510.1002/marc.200500410 – reference: GeyerRJambeckJRLawKLProduction, use, and fate of all plastics ever madeSci. Adv.20173e17007822017SciA....3E0782G10.1126/sciadv.1700782 – reference: KitadokoroKCrystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolutionPolym. Degrad. Stabil.2012977717751:CAS:528:DC%2BC38Xjt1elsrY%3D10.1016/j.polymdegradstab.2012.02.003 – reference: JooSStructural insight into molecular mechanism of poly(ethylene terephthalate) degradationNat. Commun.201892018NatCo...9..382J10.1038/s41467-018-02881-1 – reference: HanXStructural insight into catalytic mechanism of PET hydrolaseNat. Commun.201782017NatCo...8.2106H10.1038/s41467-017-02255-z – reference: ThenJCa2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fuscaBiotechnol. J.2015105925981:CAS:528:DC%2BC2MXhtFKgtbc%3D10.1002/biot.201400620 – reference: Mohammad-KhahAAnsariRActivated charcoal: preparation, characterization and applications: a review articleInt. J. Chemtech Res.20141859864 – reference: VertommenMANierstraszVAvan der VeerMWarmoeskerkenMMEnzymatic surface modification of poly(ethylene terephthalate)J. Biotechnol.20051203763861:CAS:528:DC%2BD2MXht1egsrrL10.1016/j.jbiotec.2005.06.015 – reference: KawabataTOdaMKawaiFMutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalateJ. Biosci. Bioeng.201712428351:CAS:528:DC%2BC2sXjtFKnurs%3D10.1016/j.jbiosc.2017.02.007 – reference: KawaiFKawabataTOdaMCurrent knowledge on enzymatic PET degradation and its possible application to waste stream management and other fieldsAppl. Microbiol. Biotechnol.2019103425342681:CAS:528:DC%2BC1MXovFakurw%3D10.1007/s00253-019-09717-y – reference: Meyer, D. H. Process for purifying terephthalic acid. US patent 3,288,849 (1966). – reference: BornscheuerUTFeeding on plasticScience2016351115411552016Sci...351.1154B1:CAS:528:DC%2BC28XksVGntL4%3D10.1126/science.aaf2853 – reference: WeiRBiocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructuresAdv. Sci.20196190049110.1002/advs.201900491 – reference: TaniguchiIBiodegradation of PET: current status and application aspectsACS Catal.20199408941051:CAS:528:DC%2BC1MXmslOrtr0%3D10.1021/acscatal.8b05171 – reference: Merchant Research and Consulting. Sodium sulfate: 2020 world market outlook and forecast up to 2029. https://mcgroup.co.uk/researches/sodium-sulphate (2019). – reference: RonkvistASMXieWLuWGrossRACutinase-catalyzed hydrolysis of poly(ethylene terephthalate)Macromolecules200942512851382009MaMol..42.5128R1:CAS:528:DC%2BD1MXotVGksb0%3D10.1021/ma9005318 – reference: PalmGJStructure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrateNat. Commun.2019102019NatCo..10.1717P10.1038/s41467-019-09326-3 – reference: WeiROeserTZimmermannWSynthetic polyester-hydrolyzing enzymes from thermophilic actinomycetesAdv. Appl. Microbiol.20148926730510.1016/B978-0-12-800259-9.00007-X – reference: PlasticsEurope. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data. PlasticsEuropehttps://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (2019). – reference: BruecknerTEberlAHeumannSRabeMGuebitzGMEnzymatic and chemical hydrolysis of poly (ethylene terephthalate) fabricsJ. Polym. Sci. A200846643564431:CAS:528:DC%2BD1cXht1SnsLfE10.1002/pola.22952 – reference: LiuGZhangJBaoJCost evaluation of cellulose enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modelingBioprocess Biosyst. Eng.20163913314010.1007/s00449-015-1497-1 – reference: SulaimanSIsolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomics approachAppl. Environ. Microbiol.201278155615621:CAS:528:DC%2BC38XjtVSntLY%3D10.1128/AEM.06725-11 – reference: Barboza NetoESCoelhoLAFForteMMCAmicoSCFerreiraCAProcessing of a LLDPE/HDPE pressure vessel liner by rotomoldingMater. Res.2014172362411:CAS:528:DC%2BC2cXptFyhur0%3D10.1590/S1516-14392013005000168 – reference: AwajaFPavelDRecycling of PETEur. Polym. J.200541145314771:CAS:528:DC%2BD2MXjslOgtbY%3D10.1016/j.eurpolymj.2005.02.005 – reference: Fullbrook, P. D. in Glucose Syrups, Science and Technology (eds Dziedzic, S. Z. & Kearsley, M. W.) 65–115 (Elsevier, 1984). – reference: PET polymer: chemical economics handbook. IHS Markit https://ihsmarkit.com/products/pet-polymer-chemical-economics-handbook.html (2018). – reference: YoshidaSA bacterium that degrades and assimilates poly(ethylene terephthalate)Science2016351119611992016Sci...351.1196Y1:CAS:528:DC%2BC28Xjs12gtr4%3D10.1126/science.aad6359 – reference: ZimmermannWBilligSEnzymes for the biofunctionalization of poly(ethylene terephthalate)Adv. Biochem. Eng. Biotechnol.201012597120 – reference: ThenJA disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalateFEBS Open Bio201664254321:CAS:528:DC%2BC28Xht1Kru7rM10.1002/2211-5463.12053 – reference: SowdhaminiRStereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesisProtein Eng.19893951031:CAS:528:DyaK3cXpsV2gtQ%3D%3D10.1093/protein/3.2.95 – volume: 3 start-page: 95 year: 1989 ident: 2149_CR27 publication-title: Protein Eng. doi: 10.1093/protein/3.2.95 – ident: 2149_CR35 – volume: 88 start-page: 371 year: 2005 ident: 2149_CR5 publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.12.001 – volume: 8 year: 2017 ident: 2149_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02255-z – volume: 53 start-page: 1858 year: 2014 ident: 2149_CR25 publication-title: Biochemistry doi: 10.1021/bi401561p – volume: 10 year: 2019 ident: 2149_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09326-3 – volume: 115 start-page: E4350 year: 2018 ident: 2149_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1718804115 – volume: 26 start-page: 1400 year: 2005 ident: 2149_CR36 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200500410 – volume: 97 start-page: 771 year: 2012 ident: 2149_CR20 publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.02.003 – volume: 6 start-page: 425 year: 2016 ident: 2149_CR26 publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12053 – ident: 2149_CR3 – volume: 351 start-page: 1196 year: 2016 ident: 2149_CR8 publication-title: Science doi: 10.1126/science.aad6359 – ident: 2149_CR1 – volume: 69 start-page: 24 year: 2017 ident: 2149_CR4 publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.07.044 – volume: 39 start-page: 133 year: 2016 ident: 2149_CR32 publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-015-1497-1 – volume: 3 start-page: e1700782 year: 2017 ident: 2149_CR2 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 10 start-page: 592 year: 2015 ident: 2149_CR23 publication-title: Biotechnol. J. doi: 10.1002/biot.201400620 – volume: 97 start-page: 1028 year: 2007 ident: 2149_CR31 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21329 – volume: 41 start-page: 1453 year: 2005 ident: 2149_CR28 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2005.02.005 – volume: 6 start-page: 1900491 year: 2019 ident: 2149_CR17 publication-title: Adv. Sci. doi: 10.1002/advs.201900491 – volume: 124 start-page: 28 year: 2017 ident: 2149_CR24 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2017.02.007 – volume: 351 start-page: 1154 year: 2016 ident: 2149_CR9 publication-title: Science doi: 10.1126/science.aaf2853 – volume: 1 start-page: 859 year: 2014 ident: 2149_CR33 publication-title: Int. J. Chemtech Res. – volume: 120 start-page: 376 year: 2005 ident: 2149_CR16 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2005.06.015 – volume: 125 start-page: 97 year: 2010 ident: 2149_CR19 publication-title: Adv. Biochem. Eng. Biotechnol. – ident: 2149_CR34 – volume: 9 year: 2018 ident: 2149_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02881-1 – volume: 103 start-page: 4253 year: 2019 ident: 2149_CR7 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09717-y – ident: 2149_CR30 – volume: 10 start-page: 1308 year: 2017 ident: 2149_CR6 publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12710 – volume: 31 start-page: 1754 year: 2013 ident: 2149_CR21 publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.09.005 – volume: 89 start-page: 267 year: 2014 ident: 2149_CR22 publication-title: Adv. Appl. Microbiol. doi: 10.1016/B978-0-12-800259-9.00007-X – volume: 17 start-page: 236 year: 2014 ident: 2149_CR29 publication-title: Mater. Res. doi: 10.1590/S1516-14392013005000168 – volume: 46 start-page: 6435 year: 2008 ident: 2149_CR15 publication-title: J. Polym. Sci. A doi: 10.1002/pola.22952 – volume: 78 start-page: 1556 year: 2012 ident: 2149_CR37 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.06725-11 – volume: 42 start-page: 5128 year: 2009 ident: 2149_CR18 publication-title: Macromolecules doi: 10.1021/ma9005318 – volume: 9 start-page: 4089 year: 2019 ident: 2149_CR14 publication-title: ACS Catal. doi: 10.1021/acscatal.8b05171 |
SSID | ssj0005174 |
Score | 2.72972 |
Snippet | Present estimates suggest that of the 359 million tons of plastics produced annually worldwide
1
, 150–200 million tons accumulate in landfill or in the... Present estimates suggest that of the 359 million tons of plastics produced annually worldwide , 150-200 million tons accumulate in landfill or in the natural... Present estimates suggest that of the 359 million tons of plastics produced annually worldwide.sup.1, 150-200 million tons accumulate in landfill or in the... Present estimates suggest that ofthe 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural... Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural... Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the... |
SourceID | hal proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 216 |
SubjectTerms | 631/45/603 631/61/338 639/638/77/603 82 Actinobacteria - enzymology Amino acids Analysis Binding sites Biotechnology Bottles Burkholderiales - enzymology Carboxylic Ester Hydrolases - chemistry Carboxylic Ester Hydrolases - metabolism Chain mobility Computer-aided design Depolymerization Disulfides - chemistry Disulfides - metabolism Enzyme Assays Enzyme Stability Enzymes Fusarium - enzymology Humanities and Social Sciences Hydrolase Hydrolases - chemistry Hydrolases - metabolism Landfills Life Sciences Materials Methods Models, Molecular Monomers multidisciplinary Mutagenesis Mutation Petrochemicals Petrochemicals industry Phthalic Acids - metabolism Plastic bottles Plastics Plastics - chemistry Plastics - metabolism Polyethylene terephthalate Polyethylene Terephthalates - chemistry Polyethylene Terephthalates - metabolism Polymerase chain reaction Polymerization Polymers Protein Engineering Recycling Science Science (multidisciplinary) Textiles Thermobifida Thermomechanical treatment Waste disposal sites Waste management |
Title | An engineered PET depolymerase to break down and recycle plastic bottles |
URI | https://link.springer.com/article/10.1038/s41586-020-2149-4 https://www.ncbi.nlm.nih.gov/pubmed/32269349 https://www.proquest.com/docview/2390656133 https://www.proquest.com/docview/2388003947 https://hal.inrae.fr/hal-02545880 |
Volume | 580 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoJiReEBtfYaMyaOJT0ZrESZwnFKqWgqCaRif6ZsWOPRBV0pEWaf89d4nTEjb2kof4cnHO9vnOd_kdIUeR4YpzJt04QFBtpZUrtee7KjKh5hwchAR_Tv4yjSZn7NM8nNsDt8qmVbY6sVbUeanwjPzYB-c8Qms3eLe8cLFqFEZXbQmNHtn1YKfBlC4-_rBN8fgHhbmNagb8uIKNi2P67cD1wUlwWWdfstq59x2TI69anleipvVmNL5H7lorkqbNsO-RW7rYJ7frbE5V7ZM9u2Ir-srCSr--TyZpQbVFH9Q5PRnNaA7W9-ISj6UqTVclBfc4-0lzcMxpVuQUlOElsKdLsLDhRRSrji109YCcjUez4cS1dRRA4pyvXM_3MyV1FiopZRKDYEye-aHxpAmyWCcsNGA2xbH0DZOhLzH0J3NPg63kxQg5_5DsFGWhHxOqsoRxA14SjzTzDPjPySBLQqNilfsBCxwyaKUolAUZx1oXC1EHuwMuGsELELxAwQvmkDebR5YNwsZNxEc4NAKRKwpMjTnP1lUl0tm34VSk4AxyhgBqDnl-HdnHr6cdopeWyJTQR5XZHxLgSxETq0N50KFUyx8X4q_WF53W82Zgr2Nz2CGEhay6nYb5tpEB4n5P0s8C7yFkQQia9rcHPNrpKKy2qcR2bTjk2aYZ2WMGXaHLNdLA84MgYbFDHjXTePMqUOpREjDowdt2Xm-Z_3csntzclQNyx8flVWc5HZKd1a-1fgoG3Er2SS-ex3DlQ69fr9g-2X0_mp6c_gFJIj2f |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQQviI2vsgEGjW9FaxwncR4QqsZKy7oKQSf2ZmLHHogq6UjL1H-Kv5G7fLSEjb3tNb6cnfP5PuLzz4RsB1ZoIbhyQg9BtbXRjjIuc3RgfSMEJAgRHk4-GAa9Q_7hyD9aIb_rszBYVlnbxMJQJ5nGf-Q7DJLzAKNd7-3kxMFbo3B3tb5Co1SLfTM_hZQtf9N_B_P7lLHu3mi351S3CkD_Qkwdl7FYKxP7WikVhWASbBIz37rKenFoIu5bCCLCUDHLlc8UboSpxDUQObghArAD31VyhXvgyfFkevf9sqTkH9TnehfVEzs5OEqB5b5th0FS4vCGH6y8weo3LMY8G-me2aUtnF_3JrlRRa20U6rZOlkx6Qa5WlSP6nyDrFcWIqcvKhjrl7dIr5NSU6EdmoR-3BvRBKL98Rx_g-WGTjMK6Xj8gybZaUrjNKFgfOfAnk4gooeOKN5yNjb5bXJ4KRK-Q9bSLDX3CNVxxIWFrEwEhrsW8vWoHUe-1aFOmMe9FmnXUpS6AjXHuzXGsthc94QsBS9B8BIFL3mLvFq8MikRPS4i3sapkYiUkWIpznE8y3PZGX3ZHcoOJJ-CI2Bbizw5j6z_-VOD6HlFZDMYo46rAxDwpYjB1aDcbFDqyfcT-Vfrs0brcTmx57HZahCC4dDNQYO-LWSAOOO9zkDiM4RI8MGy_3KBR62OsrJuuVyuxRZ5vGhG9lixl5pshjTwftuLeNgid0s1XnQFTiSIPA4jeF3r9ZL5f-fi_sVDeUSu9UYHAznoD_c3yXWGS62osNoia9OfM_MAgsepelisWEq-XraJ-AP-6Xc5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IRAviI2vsgEGjW9FbRwncR4QqrpVLRvTxDqxNxM79kBUSUdapv5r_HXc5aNb2NjbXuvL5Xo-30d8_pmQzcAKLQRXTughqLY22lHGZY4OrG-EgAIhwsPJn_eCwSH_dOQfLZE_9VkYbKusfWLhqJNM4zfyNoPiPMBs12vbqi1if6v_cXLi4A1SuNNaX6dRmsiOmZ9C-ZZ_GG7BXL9krL896g2c6oYBkEWIqeMyFmtlYl8rpaIQ3INNYuZbV1kvDk3EfQsJRRgqZrnymcJNMZW4BrIIN0QwduC7TG6EXihwjYneufaSfxCg6x1VT7RzCJoCW387DoMCxeGNmFhFhuXv2Jh5Meu9sGNbBML-XXKnymBptzS5VbJk0jVys-gk1fkaWa28RU7fVJDWb--RQTelpkI-NAnd3x7RBDL_8Rw_ieWGTjMKpXn8kybZaUrjNKHgiOfAnk4gu4cXUbzxbGzy--TwWjT8gKykWWoeEarjiAsLFZoIDHct1O5RJ458q0OdMI97LdKptSh1BXCO92yMZbHR7glZKl6C4iUqXvIWebd4ZFKie1xFvIlTIxE1I0X7O45neS67o6-9PdmFQlRwBG9rkReXkQ0PvjSIXldENgMZdVwdhoB_inhcDcr1BqWe_DiR50ZfNUaPy4m9jM1GgxCciG4KDfa20AFijg-6uxJ_Q7gEH7z8bxd41OYoK0-Xy7N12SLPF8PIHrv3UpPNkAae73gRD1vkYWnGi1dBQAkij4ME72u7PmP-37l4fLUoz8gtcA5yd7i3s05uM1xpRbPVBlmZ_pqZJ5BHTtXTYsFS8u26PcRfpHV7Og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+engineered+PET+depolymerase+to+break+down+and+recycle+plastic+bottles&rft.jtitle=Nature+%28London%29&rft.au=Tournier%2C+V.&rft.au=Topham%2C+C.&rft.au=Gilles%2C+A.&rft.au=David%2C+B.&rft.date=2020-04-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=580&rft.issue=7802&rft.spage=216&rft.epage=219&rft_id=info:doi/10.1038%2Fs41586-020-2149-4&rft_id=info%3Apmid%2F32269349&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02545880v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |