An engineered PET depolymerase to break down and recycle plastic bottles

Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150–200 million tons accumulate in landfill or in the natural environment 2 . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annuall...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 580; no. 7802; pp. 216 - 219
Main Authors Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.-L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., Marty, A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150–200 million tons accumulate in landfill or in the natural environment 2 . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging 3 . The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties 4 . Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units—which reduce chain mobility—PET is a polyester that is extremely difficult to hydrolyse 5 . Several PET hydrolase enzymes have been reported, but show limited productivity 6 , 7 . Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme 8 , 9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme 10 ) and related improved variants 11 – 14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles.
AbstractList Present estimates suggest that of the 359 million tons of plastics produced annually worldwide.sup.1, 150-200 million tons accumulate in landfill or in the natural environment.sup.2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging.sup.3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties.sup.4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units--which reduce chain mobility--PET is a polyester that is extremely difficult to hydrolyse.sup.5. Several PET hydrolase enzymes have been reported, but show limited productivity.sup.6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme.sup.8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme.sup.10) and related improved variants.sup.11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the natural environment(2). Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging(3). The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties(4). Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse(5). Several PET hydrolase enzymes have been reported, but show limited productivity(6,7). Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme(8,9) from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme(10)) and related improved variants(11-14) that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150–200 million tons accumulate in landfill or in the natural environment 2 . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging 3 . The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties 4 . Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units—which reduce chain mobility—PET is a polyester that is extremely difficult to hydrolyse 5 . Several PET hydrolase enzymes have been reported, but show limited productivity 6 , 7 . Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme 8 , 9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme 10 ) and related improved variants 11 – 14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles.
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide , 150-200 million tons accumulate in landfill or in the natural environment . Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging . The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties . Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse . Several PET hydrolase enzymes have been reported, but show limited productivity . Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme ) and related improved variants that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
Present estimates suggest that ofthe 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural environment2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse5. Several PET hydrolase enzymes have been reported, but show limited productivity6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams ofterephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme10) and related improved variants11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide.sup.1, 150-200 million tons accumulate in landfill or in the natural environment.sup.2. Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging.sup.3. The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties.sup.4. Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units--which reduce chain mobility--PET is a polyester that is extremely difficult to hydrolyse.sup.5. Several PET hydrolase enzymes have been reported, but show limited productivity.sup.6,7. Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme.sup.8,9 from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme.sup.10) and related improved variants.sup.11-14 that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy. Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles.
Audience Academic
Author Texier, H.
Gilles, A.
Folgoas, C.
André, I.
Topham, C. M.
Desrousseaux, M.-L.
Duquesne, S.
Tournier, V.
Moya-Leclair, E.
Cioci, G.
Chateau, M.
David, B.
Dalibey, M.
Marty, A.
Nomme, J.
Gavalda, S.
Guémard, E.
Barbe, S.
Kamionka, E.
Cot, M.
Author_xml – sequence: 1
  givenname: V.
  surname: Tournier
  fullname: Tournier, V.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 2
  givenname: C. M.
  orcidid: 0000-0002-9147-0184
  surname: Topham
  fullname: Topham, C. M.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 3
  givenname: A.
  surname: Gilles
  fullname: Gilles, A.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 4
  givenname: B.
  surname: David
  fullname: David, B.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 5
  givenname: C.
  surname: Folgoas
  fullname: Folgoas, C.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 6
  givenname: E.
  surname: Moya-Leclair
  fullname: Moya-Leclair, E.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 7
  givenname: E.
  surname: Kamionka
  fullname: Kamionka, E.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 8
  givenname: M.-L.
  surname: Desrousseaux
  fullname: Desrousseaux, M.-L.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 9
  givenname: H.
  surname: Texier
  fullname: Texier, H.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 10
  givenname: S.
  surname: Gavalda
  fullname: Gavalda, S.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 11
  givenname: M.
  surname: Cot
  fullname: Cot, M.
  organization: CRITT Bio-Industries, INSA
– sequence: 12
  givenname: E.
  surname: Guémard
  fullname: Guémard, E.
  organization: Carbios, Biopôle Clermont Limagne
– sequence: 13
  givenname: M.
  surname: Dalibey
  fullname: Dalibey, M.
  organization: Carbios, Biopôle Clermont Limagne
– sequence: 14
  givenname: J.
  surname: Nomme
  fullname: Nomme, J.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 15
  givenname: G.
  surname: Cioci
  fullname: Cioci, G.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 16
  givenname: S.
  surname: Barbe
  fullname: Barbe, S.
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 17
  givenname: M.
  surname: Chateau
  fullname: Chateau, M.
  organization: Carbios, Biopôle Clermont Limagne
– sequence: 18
  givenname: I.
  orcidid: 0000-0001-6280-4109
  surname: André
  fullname: André, I.
  email: isabelle.andre@insa-toulouse.fr
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 19
  givenname: S.
  surname: Duquesne
  fullname: Duquesne, S.
  email: sophie.duquesne@insa-toulouse.fr
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA
– sequence: 20
  givenname: A.
  surname: Marty
  fullname: Marty, A.
  email: alain.marty@carbios.fr
  organization: TBI, Université de Toulouse, CNRS, INRAE, INSA, Carbios, Biopôle Clermont Limagne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32269349$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02545880$$DView record in HAL
BookMark eNp90tFvEyEcB3BiZlw3_QN8MRd9cTE3gYO747Fppl3SqNEaHwlwv6tMCh1c1f730nRzdukMDyTk8_0F-P1O0JEPHhB6TvA5wVX7NjHC27rEFJeUMFGyR2hEWFOXrG6bIzTCmLYlbqv6GJ2kdIUx5qRhT9BxRWktKiZGaDr2BfiF9QARuuLTxbzoYBXcZglRJSiGUOgI6kfRhV--UL4rIpiNcVCsnEqDNYUOw-AgPUWPe-USPLvZT9HXdxfzybScfXx_ORnPSlO37VASSpXRoLjRWosmX6nvFOU90X2lGhCM9zw_odG0Z5pTTQVnuiNAa0YazNrqFJ3t6n5XTq6iXaq4kUFZOR3P5PYMU8542-KfJNvXO7uK4XoNaZBLmww4pzyEdZK0yg5XgjWZvrpHr8I6-vySrASueU2q6k4tlANpfR-GqMy2qBzXRLRMCC6yKg-oBfj8pS53sLf5eM-_PODNyl7Lf9H5AZRXB0trDlY92wtkM8DvYaHWKcnLL5_37ZuH7Xj-bfJhX7-4-au1XkL3twu3U5VBswMmhpQi9NLYQQ02V43KOkmw3M6v3M1v7hiW2_mVLCfJveRt8f9l6C6TsvULiHetezj0B5qn-fA
CitedBy_id crossref_primary_10_1021_acsestwater_1c00025
crossref_primary_10_1016_j_cec_2024_100077
crossref_primary_10_1128_aem_00632_23
crossref_primary_10_1007_s13205_023_03557_4
crossref_primary_10_1002_bit_28305
crossref_primary_10_1007_s00203_024_04170_6
crossref_primary_10_1002_biot_202300723
crossref_primary_10_1002_cctc_202401626
crossref_primary_10_1007_s41101_024_00275_7
crossref_primary_10_1016_j_cnd_2024_06_008
crossref_primary_10_1177_0734242X221105415
crossref_primary_10_1016_j_biortech_2024_131461
crossref_primary_10_1038_s42003_024_06414_z
crossref_primary_10_1016_j_wasman_2021_09_009
crossref_primary_10_1128_mBio_02155_21
crossref_primary_10_1038_s41467_024_49146_8
crossref_primary_10_1002_prot_26468
crossref_primary_10_1002_cctc_202400765
crossref_primary_10_1021_acscatal_1c05800
crossref_primary_10_2139_ssrn_4194763
crossref_primary_10_1021_acscatal_1c01204
crossref_primary_10_1002_ange_202011063
crossref_primary_10_1039_D5GC00355E
crossref_primary_10_1021_acs_macromol_1c02338
crossref_primary_10_3389_fmicb_2022_888343
crossref_primary_10_1038_s41587_024_02401_1
crossref_primary_10_1039_D2CS00509C
crossref_primary_10_1016_j_scitotenv_2023_165154
crossref_primary_10_1016_j_envres_2024_120140
crossref_primary_10_1039_D3EY00147D
crossref_primary_10_1016_j_apcata_2022_118936
crossref_primary_10_1038_s41586_024_07891_2
crossref_primary_10_1016_j_jece_2023_110092
crossref_primary_10_3390_su14116821
crossref_primary_10_3390_fermentation8020047
crossref_primary_10_1016_j_crstbi_2024_100130
crossref_primary_10_1016_j_xcrp_2021_100514
crossref_primary_10_3389_fmicb_2022_821629
crossref_primary_10_1016_j_cej_2023_141326
crossref_primary_10_1016_j_ymben_2021_07_005
crossref_primary_10_1021_jasms_3c00097
crossref_primary_10_1016_j_eti_2023_103316
crossref_primary_10_1021_acs_jafc_4c11907
crossref_primary_10_3389_fbioe_2021_656465
crossref_primary_10_1016_j_engreg_2022_01_003
crossref_primary_10_1038_s41586_021_04350_0
crossref_primary_10_1186_s12302_020_00447_x
crossref_primary_10_1038_s41893_023_01118_4
crossref_primary_10_1002_cssc_202301781
crossref_primary_10_1039_D4GC03127J
crossref_primary_10_1186_s40643_024_00793_1
crossref_primary_10_3389_fmicb_2024_1426509
crossref_primary_10_1557_s43581_021_00015_7
crossref_primary_10_1038_s41598_024_64938_0
crossref_primary_10_3390_polym14061203
crossref_primary_10_1038_s41467_021_25048_x
crossref_primary_10_1142_S0217984921501554
crossref_primary_10_1093_protein_gzac009
crossref_primary_10_1021_acs_jafc_0c07469
crossref_primary_10_1016_j_cjsc_2023_100042
crossref_primary_10_1128_aem_01704_22
crossref_primary_10_1016_j_jhazmat_2025_137441
crossref_primary_10_1021_jacs_3c08291
crossref_primary_10_1021_acssuschemeng_3c05222
crossref_primary_10_1016_j_ijbiomac_2024_138437
crossref_primary_10_1016_j_scitotenv_2020_141368
crossref_primary_10_1016_j_jhazmat_2023_132632
crossref_primary_10_1016_j_jmapro_2024_06_041
crossref_primary_10_1002_anie_202414162
crossref_primary_10_1016_j_micres_2023_127507
crossref_primary_10_1021_acscatal_4c00299
crossref_primary_10_1021_acsomega_4c05488
crossref_primary_10_1016_j_cogsc_2023_100822
crossref_primary_10_3390_polym13091475
crossref_primary_10_1007_s40820_023_01181_8
crossref_primary_10_1007_s12268_022_1828_0
crossref_primary_10_1128_aem_02242_23
crossref_primary_10_1038_s41467_022_35237_x
crossref_primary_10_3390_ijms22052332
crossref_primary_10_1038_s42004_024_01154_x
crossref_primary_10_1039_D3GC01878D
crossref_primary_10_1016_j_isci_2022_104326
crossref_primary_10_1039_D2RA00612J
crossref_primary_10_1016_j_jenvman_2021_113267
crossref_primary_10_1039_D0EM00446D
crossref_primary_10_1021_acscatal_0c04014
crossref_primary_10_1016_j_cej_2024_152727
crossref_primary_10_1038_s42256_024_00935_2
crossref_primary_10_1039_D1RA08217E
crossref_primary_10_1021_jacs_1c12278
crossref_primary_10_1007_s12274_024_6955_0
crossref_primary_10_1016_j_envres_2022_114342
crossref_primary_10_1186_s12934_024_02551_6
crossref_primary_10_1016_j_jcis_2023_05_017
crossref_primary_10_1093_protein_gzae009
crossref_primary_10_1002_eom2_12107
crossref_primary_10_1016_j_resenv_2023_100118
crossref_primary_10_1002_cctc_202100443
crossref_primary_10_1016_j_jhazmat_2024_135380
crossref_primary_10_1007_s00253_024_13222_2
crossref_primary_10_1016_j_cell_2024_12_029
crossref_primary_10_1016_j_jclepro_2022_132985
crossref_primary_10_1016_j_ijbiomac_2024_136479
crossref_primary_10_2139_ssrn_4110033
crossref_primary_10_1002_cssc_202301350
crossref_primary_10_1016_j_future_2024_06_034
crossref_primary_10_1007_s10924_023_02891_1
crossref_primary_10_1007_s10924_023_02925_8
crossref_primary_10_1002_bit_28523
crossref_primary_10_1038_s41598_024_84177_7
crossref_primary_10_1039_D4SU00233D
crossref_primary_10_1002_smll_202305094
crossref_primary_10_1007_s11356_021_14925_z
crossref_primary_10_1016_j_jhazmat_2021_126814
crossref_primary_10_1021_acsapm_4c00832
crossref_primary_10_1021_acscatal_0c05126
crossref_primary_10_1016_j_ecolind_2023_111058
crossref_primary_10_70322_sbe_2025_10002
crossref_primary_10_1002_cssc_202101932
crossref_primary_10_3390_molecules28227503
crossref_primary_10_1016_S1872_2067_23_64470_5
crossref_primary_10_1021_acsmacrolett_4c00463
crossref_primary_10_1016_j_jclepro_2023_138924
crossref_primary_10_1016_j_jhazmat_2025_137644
crossref_primary_10_1002_ange_202203061
crossref_primary_10_1016_j_enzmictec_2023_110353
crossref_primary_10_2115_fiber_80_P_114
crossref_primary_10_1039_D3RE00056G
crossref_primary_10_1016_j_chemosphere_2024_141541
crossref_primary_10_1016_j_cscm_2025_e04432
crossref_primary_10_1038_s41467_023_40233_w
crossref_primary_10_1039_D3CP04519F
crossref_primary_10_3390_polym14224788
crossref_primary_10_1093_bbb_zbac129
crossref_primary_10_3390_molecules27010119
crossref_primary_10_1186_s12951_022_01321_z
crossref_primary_10_1016_j_eurpolymj_2021_110445
crossref_primary_10_1016_j_clet_2025_100905
crossref_primary_10_1073_pnas_2203346119
crossref_primary_10_1016_j_scib_2023_06_024
crossref_primary_10_1021_acscatal_4c05352
crossref_primary_10_1038_s41598_020_79031_5
crossref_primary_10_1007_s42824_020_00014_y
crossref_primary_10_1061_JHTRBP_HZENG_1359
crossref_primary_10_1016_j_polymdegradstab_2024_110698
crossref_primary_10_1271_kagakutoseibutsu_62_82
crossref_primary_10_1002_anie_202216963
crossref_primary_10_1002_adma_202005192
crossref_primary_10_1002_adma_202007371
crossref_primary_10_1016_j_ab_2024_115598
crossref_primary_10_1039_D3GC02308G
crossref_primary_10_1002_ange_202214609
crossref_primary_10_1016_j_marpolbul_2023_115157
crossref_primary_10_1016_j_biotechadv_2025_108544
crossref_primary_10_1016_j_jhazmat_2024_134493
crossref_primary_10_1021_acs_estlett_2c00332
crossref_primary_10_1021_acscatal_2c05270
crossref_primary_10_1042_BCJ20190720
crossref_primary_10_1039_D1GC00931A
crossref_primary_10_1016_j_ijbiomac_2024_134014
crossref_primary_10_1021_acs_jcim_4c00079
crossref_primary_10_1021_acscatal_4c05363
crossref_primary_10_1016_j_jaap_2025_107052
crossref_primary_10_1039_D3GC01872E
crossref_primary_10_1126_science_abj3476
crossref_primary_10_1038_s41467_023_38998_1
crossref_primary_10_1016_j_bej_2021_108151
crossref_primary_10_1016_j_jhazmat_2022_128267
crossref_primary_10_1002_cssc_202402416
crossref_primary_10_1007_s10895_022_03132_9
crossref_primary_10_1016_j_cej_2022_141230
crossref_primary_10_1016_j_ymben_2022_12_008
crossref_primary_10_1073_pnas_2407355121
crossref_primary_10_1016_j_eti_2022_102822
crossref_primary_10_1016_j_eehl_2022_02_001
crossref_primary_10_1016_S1872_2067_23_64628_5
crossref_primary_10_1039_D1GC02298A
crossref_primary_10_3390_catal13020278
crossref_primary_10_1016_j_carbpol_2023_121337
crossref_primary_10_1039_D1CY01032H
crossref_primary_10_1002_adma_202418959
crossref_primary_10_1002_ange_202404492
crossref_primary_10_1021_jacs_2c11861
crossref_primary_10_1021_acs_chemrev_3c00848
crossref_primary_10_1016_j_biotechadv_2021_107772
crossref_primary_10_1016_j_enzmictec_2022_110004
crossref_primary_10_1002_cssc_202401350
crossref_primary_10_1016_j_jhazmat_2025_137837
crossref_primary_10_1016_j_biotechadv_2021_107770
crossref_primary_10_1021_acsmaterialsau_3c00091
crossref_primary_10_1002_anie_202300768
crossref_primary_10_1002_cbic_202000841
crossref_primary_10_1016_j_cej_2024_152105
crossref_primary_10_1002_cbic_202300661
crossref_primary_10_1038_s41893_023_01234_1
crossref_primary_10_1002_cssc_202100400
crossref_primary_10_1021_acsomega_3c03805
crossref_primary_10_1016_j_resconrec_2022_106387
crossref_primary_10_1016_j_ecoenv_2024_116540
crossref_primary_10_3390_polym14224996
crossref_primary_10_1002_ange_202300094
crossref_primary_10_1039_D3SU00311F
crossref_primary_10_1039_D1GC04567A
crossref_primary_10_1007_s13197_023_05802_3
crossref_primary_10_1039_D3GC03663D
crossref_primary_10_1002_anie_202422183
crossref_primary_10_1021_acssuschemeng_4c05734
crossref_primary_10_1007_s40843_021_1823_9
crossref_primary_10_3390_catal13091234
crossref_primary_10_1016_j_matt_2023_07_025
crossref_primary_10_1016_j_jhazmat_2022_129789
crossref_primary_10_1016_j_scitotenv_2021_145111
crossref_primary_10_1016_j_nbt_2022_02_006
crossref_primary_10_1039_D3SE00173C
crossref_primary_10_1002_ange_202407580
crossref_primary_10_1007_s13205_024_04041_3
crossref_primary_10_1021_acssuschemeng_2c02352
crossref_primary_10_1111_1758_2229_12878
crossref_primary_10_3390_molecules28186502
crossref_primary_10_1007_s11274_021_03089_0
crossref_primary_10_1002_adfm_202404848
crossref_primary_10_1039_D3GC03337F
crossref_primary_10_1002_sus2_140
crossref_primary_10_1002_cbic_202400084
crossref_primary_10_1080_07388551_2024_2340530
crossref_primary_10_1021_acs_jcim_1c00394
crossref_primary_10_1007_s40820_025_01682_8
crossref_primary_10_1016_j_heliyon_2024_e31130
crossref_primary_10_4491_KSEE_2022_44_8_249
crossref_primary_10_1016_j_mtchem_2023_101576
crossref_primary_10_3389_fmicb_2023_1170880
crossref_primary_10_1016_j_crmicr_2022_100159
crossref_primary_10_1016_j_ymben_2021_05_001
crossref_primary_10_1016_j_nbt_2024_12_005
crossref_primary_10_1039_D2GC03663K
crossref_primary_10_1016_j_cej_2023_144401
crossref_primary_10_1002_nadc_20244141920
crossref_primary_10_1177_08927057231190065
crossref_primary_10_1021_acs_jcim_4c01369
crossref_primary_10_1021_acs_joc_4c01789
crossref_primary_10_1002_smll_202404477
crossref_primary_10_1038_d41586_021_00391_7
crossref_primary_10_33070_etars_4_2021_05
crossref_primary_10_1002_cssc_202301752
crossref_primary_10_1016_j_bbrc_2022_07_103
crossref_primary_10_1139_er_2020_0117
crossref_primary_10_1016_j_joule_2021_06_015
crossref_primary_10_1021_acssuschemeng_4c09039
crossref_primary_10_1039_D2GC02244C
crossref_primary_10_1002_cbic_202300412
crossref_primary_10_1021_acs_biochem_2c00619
crossref_primary_10_1002_ange_202314448
crossref_primary_10_1016_j_psep_2023_06_013
crossref_primary_10_1002_adfm_202424435
crossref_primary_10_1016_j_biortech_2024_131837
crossref_primary_10_1007_s42114_024_00829_2
crossref_primary_10_1016_j_saa_2022_122178
crossref_primary_10_1016_j_jhazmat_2024_134480
crossref_primary_10_1021_acsapm_4c01525
crossref_primary_10_1016_j_scitotenv_2025_179075
crossref_primary_10_1016_j_jece_2021_106277
crossref_primary_10_1021_acscatal_4c03194
crossref_primary_10_3390_catal15020147
crossref_primary_10_1093_femsyr_foaf006
crossref_primary_10_1038_s42003_022_04319_3
crossref_primary_10_1002_anie_202402316
crossref_primary_10_1016_j_jbc_2023_102958
crossref_primary_10_1016_j_biotechadv_2021_107730
crossref_primary_10_1016_j_procbio_2023_10_020
crossref_primary_10_1039_D0QI00788A
crossref_primary_10_1016_j_biotechadv_2024_108462
crossref_primary_10_1016_j_tibtech_2022_06_012
crossref_primary_10_1039_D3GC04888H
crossref_primary_10_3389_fmicb_2021_778828
crossref_primary_10_3390_ijms23073976
crossref_primary_10_1016_j_resconrec_2023_107102
crossref_primary_10_1002_ange_202419535
crossref_primary_10_1680_jenes_22_00088
crossref_primary_10_1002_cssc_202102628
crossref_primary_10_3390_catal14080543
crossref_primary_10_54939_1859_1043_j_mst_98_2024_94_100
crossref_primary_10_1002_anie_202006648
crossref_primary_10_1016_j_xcrp_2024_102145
crossref_primary_10_1021_jacsau_4c00388
crossref_primary_10_1002_ange_202315524
crossref_primary_10_1002_ange_202218390
crossref_primary_10_1016_j_biortech_2023_129008
crossref_primary_10_1007_s10532_023_10048_z
crossref_primary_10_1016_j_fmre_2024_05_014
crossref_primary_10_1134_S0003683824020091
crossref_primary_10_1038_s41522_023_00440_1
crossref_primary_10_1016_j_ymben_2021_12_006
crossref_primary_10_1016_j_tibtech_2022_12_014
crossref_primary_10_1021_acsmacrolett_0c00437
crossref_primary_10_1016_j_jhazmat_2025_137806
crossref_primary_10_1016_j_csbj_2023_06_004
crossref_primary_10_1002_adma_202411148
crossref_primary_10_3390_bioengineering9030098
crossref_primary_10_1126_science_abg4503
crossref_primary_10_1016_j_jenvman_2024_121258
crossref_primary_10_1021_acscatal_3c02142
crossref_primary_10_1039_D0GC02630A
crossref_primary_10_1039_D4TA08522A
crossref_primary_10_1016_j_bej_2022_108709
crossref_primary_10_1016_j_ijbiomac_2021_08_012
crossref_primary_10_1016_j_jhazmat_2023_133173
crossref_primary_10_1186_s13568_022_01474_y
crossref_primary_10_3390_gels11020092
crossref_primary_10_1016_j_cej_2024_157777
crossref_primary_10_3389_fmicb_2023_1265139
crossref_primary_10_1002_adom_202201229
crossref_primary_10_1016_j_aiepr_2021_06_005
crossref_primary_10_1016_j_jhazmat_2021_126075
crossref_primary_10_1186_s42269_021_00563_5
crossref_primary_10_1002_advs_202103764
crossref_primary_10_1177_14777606231195399
crossref_primary_10_1016_j_progpolymsci_2023_101783
crossref_primary_10_1016_j_bej_2023_109074
crossref_primary_10_1016_j_cattod_2024_114516
crossref_primary_10_1016_j_biortech_2024_131903
crossref_primary_10_1039_D2RA04713F
crossref_primary_10_3390_polym15010183
crossref_primary_10_1007_s42765_022_00149_4
crossref_primary_10_1016_j_celrep_2022_111908
crossref_primary_10_1061_JMCEE7_MTENG_16483
crossref_primary_10_1016_j_jclepro_2023_140180
crossref_primary_10_1016_j_jhazmat_2024_134532
crossref_primary_10_1080_10643389_2023_2284785
crossref_primary_10_1007_s40820_022_00993_4
crossref_primary_10_1021_jacs_3c03261
crossref_primary_10_1002_anie_202309305
crossref_primary_10_1016_j_jclepro_2024_141875
crossref_primary_10_1007_s11157_024_09688_1
crossref_primary_10_57634_RCR5069
crossref_primary_10_1039_D4FD00014E
crossref_primary_10_1002_aenm_202404877
crossref_primary_10_1071_MA23013
crossref_primary_10_1088_1757_899X_1257_1_012007
crossref_primary_10_1186_s13068_024_02568_4
crossref_primary_10_1002_aic_18539
crossref_primary_10_1021_acsomega_4c09053
crossref_primary_10_1016_j_jhazmat_2024_135414
crossref_primary_10_1016_j_bej_2021_108205
crossref_primary_10_1007_s10924_021_02301_4
crossref_primary_10_1139_er_2023_0107
crossref_primary_10_1038_s41529_022_00305_6
crossref_primary_10_3390_su13158218
crossref_primary_10_1002_jctb_6955
crossref_primary_10_1016_j_polymdegradstab_2023_110593
crossref_primary_10_1016_j_scp_2024_101595
crossref_primary_10_1021_acsomega_4c04843
crossref_primary_10_1007_s10924_024_03223_7
crossref_primary_10_1016_j_progpolymsci_2023_101764
crossref_primary_10_1007_s42768_023_00134_6
crossref_primary_10_1039_D2PY01613C
crossref_primary_10_1038_s41929_022_00821_3
crossref_primary_10_1002_pts_2632
crossref_primary_10_3390_polym14122366
crossref_primary_10_1016_j_biotechadv_2024_108439
crossref_primary_10_1039_D4SC06688J
crossref_primary_10_1038_s41467_023_39201_1
crossref_primary_10_3390_en14217306
crossref_primary_10_1016_j_seppur_2023_124658
crossref_primary_10_1016_j_scitotenv_2024_174876
crossref_primary_10_1021_acs_jpcb_3c00600
crossref_primary_10_1111_1462_2920_15774
crossref_primary_10_1016_j_ijbiomac_2023_127656
crossref_primary_10_1021_acscatal_2c02775
crossref_primary_10_1016_j_jhazmat_2022_129820
crossref_primary_10_1016_j_ccst_2025_100382
crossref_primary_10_1016_j_bej_2024_109328
crossref_primary_10_1016_j_cej_2021_131570
crossref_primary_10_1039_D4PY00025K
crossref_primary_10_1016_j_envint_2022_107644
crossref_primary_10_1002_adma_202403728
crossref_primary_10_1016_j_jhazmat_2023_132046
crossref_primary_10_1002_anie_202203061
crossref_primary_10_1016_j_susmat_2021_e00251
crossref_primary_10_1007_s42823_024_00734_0
crossref_primary_10_1016_j_polymdegradstab_2021_109807
crossref_primary_10_1016_j_aac_2023_12_001
crossref_primary_10_1007_s40726_024_00298_7
crossref_primary_10_3390_su142315898
crossref_primary_10_1016_j_trac_2024_117971
crossref_primary_10_1016_j_cej_2023_145697
crossref_primary_10_1038_s42003_024_06516_8
crossref_primary_10_1016_j_jconrel_2021_03_012
crossref_primary_10_1007_s40009_022_01174_y
crossref_primary_10_1016_j_bej_2024_109573
crossref_primary_10_1016_j_tet_2022_132966
crossref_primary_10_1002_cssc_202401759
crossref_primary_10_1016_j_envint_2020_106144
crossref_primary_10_1016_j_compositesb_2023_110652
crossref_primary_10_1016_j_ymben_2021_03_011
crossref_primary_10_1038_s41598_021_82983_x
crossref_primary_10_1016_j_matt_2022_02_002
crossref_primary_10_1016_j_tim_2021_03_002
crossref_primary_10_1021_acssuschemeng_2c01093
crossref_primary_10_1021_acs_jpcb_4c02207
crossref_primary_10_1016_j_engmic_2021_100003
crossref_primary_10_1007_s10800_025_02265_6
crossref_primary_10_1016_j_jhazmat_2023_132297
crossref_primary_10_1016_j_scitotenv_2023_166722
crossref_primary_10_3390_synbio2020009
crossref_primary_10_1002_ange_202112576
crossref_primary_10_1002_adma_202210758
crossref_primary_10_1021_acs_jafc_4c01973
crossref_primary_10_1007_s10570_024_06182_3
crossref_primary_10_1002_jctb_6745
crossref_primary_10_1002_cssc_202402614
crossref_primary_10_1021_acsapm_1c00648
crossref_primary_10_1021_acscatal_2c03605
crossref_primary_10_1016_j_chemosphere_2024_141749
crossref_primary_10_1016_j_chemosphere_2024_141508
crossref_primary_10_1021_jacs_3c05486
crossref_primary_10_1038_s44286_024_00171_w
crossref_primary_10_1080_15685551_2022_2041784
crossref_primary_10_1360_TB_2024_0996
crossref_primary_10_1016_j_colsurfb_2021_111606
crossref_primary_10_1021_acs_macromol_4c01107
crossref_primary_10_1186_s12934_024_02547_2
crossref_primary_10_1016_j_marpolbul_2022_113949
crossref_primary_10_1016_j_ces_2024_120398
crossref_primary_10_1021_acs_macromol_3c00602
crossref_primary_10_1016_j_cej_2023_144350
crossref_primary_10_1016_j_scitotenv_2024_171338
crossref_primary_10_1038_s41564_023_01529_1
crossref_primary_10_1016_j_cej_2023_147853
crossref_primary_10_1103_PhysRevMaterials_7_120302
crossref_primary_10_1002_cbic_202400456
crossref_primary_10_1021_acs_biochem_0c00457
crossref_primary_10_1039_D4FD00127C
crossref_primary_10_1039_D4GC02727B
crossref_primary_10_1002_adma_202419058
crossref_primary_10_3390_bioengineering10111253
crossref_primary_10_1088_1402_4896_ac237f
crossref_primary_10_1016_j_checat_2022_11_004
crossref_primary_10_1016_j_resconrec_2022_106236
crossref_primary_10_1039_D1GC00887K
crossref_primary_10_1002_cssc_202400698
crossref_primary_10_1016_j_tibtech_2022_08_010
crossref_primary_10_1016_j_cell_2024_07_051
crossref_primary_10_1016_j_eng_2021_12_009
crossref_primary_10_1016_j_enzmictec_2020_109715
crossref_primary_10_1021_jacs_4c05828
crossref_primary_10_1007_s10924_024_03298_2
crossref_primary_10_1021_acs_est_0c04952
crossref_primary_10_1021_acsomega_2c05324
crossref_primary_10_2142_biophys_60_342
crossref_primary_10_1007_s00253_024_13212_4
crossref_primary_10_4014_jmb_2208_08048
crossref_primary_10_1111_1751_7915_14445
crossref_primary_10_1039_D2GC01965E
crossref_primary_10_1002_adma_202211417
crossref_primary_10_1016_j_jhazmat_2023_131399
crossref_primary_10_1021_jacsau_2c00204
crossref_primary_10_1038_s41467_024_52515_y
crossref_primary_10_1002_anie_202407580
crossref_primary_10_1016_j_envres_2024_118468
crossref_primary_10_1063_5_0243325
crossref_primary_10_1016_j_tibtech_2020_05_004
crossref_primary_10_1002_chem_202005151
crossref_primary_10_1021_acs_jcim_4c00877
crossref_primary_10_1002_celc_202400696
crossref_primary_10_1002_anie_202313633
crossref_primary_10_1002_anie_202117528
crossref_primary_10_1111_1751_7915_14457
crossref_primary_10_1039_D4CC04780J
crossref_primary_10_1021_envhealth_4c00013
crossref_primary_10_3390_microorganisms10010039
crossref_primary_10_1016_j_wasman_2021_07_011
crossref_primary_10_1038_s42003_023_05470_1
crossref_primary_10_1039_D4GC00528G
crossref_primary_10_1002_ange_202216220
crossref_primary_10_1016_j_apcata_2022_118681
crossref_primary_10_1038_s41598_023_37227_5
crossref_primary_10_1039_D3RA01708G
crossref_primary_10_2139_ssrn_4072296
crossref_primary_10_1002_cssc_202100196
crossref_primary_10_1016_j_apmt_2020_100910
crossref_primary_10_1039_D3GC02145A
crossref_primary_10_1021_acssuschemeng_2c01961
crossref_primary_10_1039_D3SU00089C
crossref_primary_10_1080_10298436_2024_2400547
crossref_primary_10_1016_j_mec_2024_e00250
crossref_primary_10_1016_j_mec_2024_e00253
crossref_primary_10_1016_j_mec_2024_e00254
crossref_primary_10_3390_app11177901
crossref_primary_10_1016_j_jhazmat_2024_134964
crossref_primary_10_1016_j_polymdegradstab_2025_111246
crossref_primary_10_3390_fermentation9070594
crossref_primary_10_1016_j_cej_2025_159810
crossref_primary_10_1039_D1CP01519B
crossref_primary_10_1039_D4RA00844H
crossref_primary_10_1039_D2GC01834A
crossref_primary_10_1002_cssc_202300291
crossref_primary_10_1016_j_jclepro_2023_139423
crossref_primary_10_1039_D4CC06411A
crossref_primary_10_1038_s41467_023_37415_x
crossref_primary_10_3390_su16104033
crossref_primary_10_1016_j_tibtech_2024_10_018
crossref_primary_10_1016_j_ecoenv_2023_114982
crossref_primary_10_1021_acscatal_1c01062
crossref_primary_10_3390_polym17050628
crossref_primary_10_1002_anie_202312564
crossref_primary_10_1016_j_mtcomm_2020_101857
crossref_primary_10_1016_j_jhazmat_2023_131386
crossref_primary_10_1016_j_mec_2024_e00256
crossref_primary_10_1002_cssc_202101062
crossref_primary_10_1016_j_pep_2023_106415
crossref_primary_10_3390_microorganisms11071661
crossref_primary_10_1016_j_ceja_2024_100624
crossref_primary_10_1016_j_gce_2021_11_008
crossref_primary_10_1021_acs_analchem_2c05477
crossref_primary_10_1016_j_tibtech_2024_10_020
crossref_primary_10_1016_j_scitotenv_2025_178879
crossref_primary_10_1038_s41589_024_01713_2
crossref_primary_10_1016_j_ymben_2023_06_012
crossref_primary_10_1016_j_fuel_2025_134358
crossref_primary_10_1038_s41578_021_00382_0
crossref_primary_10_1002_anie_202419535
crossref_primary_10_1016_j_jenvman_2024_122543
crossref_primary_10_1371_journal_pbio_3001979
crossref_primary_10_1016_j_jbiotec_2021_09_007
crossref_primary_10_1002_cbic_202200516
crossref_primary_10_1016_j_cej_2024_154062
crossref_primary_10_1002_anie_202218390
crossref_primary_10_1128_aem_02118_24
crossref_primary_10_1016_j_bej_2022_108504
crossref_primary_10_1002_cssc_202002666
crossref_primary_10_1002_ange_202422183
crossref_primary_10_1016_j_jhazmat_2023_131356
crossref_primary_10_1016_j_jhazmat_2023_132449
crossref_primary_10_1002_ange_202007423
crossref_primary_10_1146_annurev_chembioeng_100521_085846
crossref_primary_10_1515_gps_2023_0244
crossref_primary_10_1016_j_jclepro_2023_138312
crossref_primary_10_1186_s43094_024_00645_x
crossref_primary_10_1016_j_jhazmat_2022_128900
crossref_primary_10_1126_sciadv_adi6813
crossref_primary_10_1080_09593330_2024_2371079
crossref_primary_10_1002_adma_202104581
crossref_primary_10_1002_cnl2_116
crossref_primary_10_1016_j_mattod_2021_07_024
crossref_primary_10_1016_j_mser_2024_100829
crossref_primary_10_1016_j_enzmictec_2021_109868
crossref_primary_10_1007_s13726_024_01429_z
crossref_primary_10_1021_acs_est_4c09107
crossref_primary_10_4062_biomolther_2024_195
crossref_primary_10_1016_j_apenergy_2023_120692
crossref_primary_10_1021_acsnano_4c04219
crossref_primary_10_1007_s11705_024_2500_7
crossref_primary_10_1016_j_enzmictec_2024_110479
crossref_primary_10_1515_auto_2024_0067
crossref_primary_10_1016_j_resconrec_2022_106854
crossref_primary_10_1039_D4TA02737J
crossref_primary_10_3390_app142411942
crossref_primary_10_1016_j_enzmictec_2024_110476
crossref_primary_10_1002_cssc_202201613
crossref_primary_10_1002_prot_26155
crossref_primary_10_1016_j_cej_2023_145292
crossref_primary_10_1002_mame_202100591
crossref_primary_10_3389_fbioe_2022_982975
crossref_primary_10_20935_AcadEnvSci7521
crossref_primary_10_1002_marc_202200247
crossref_primary_10_1016_j_ijbiomac_2024_129538
crossref_primary_10_1016_j_jcis_2025_02_171
crossref_primary_10_1016_j_scitotenv_2022_154841
crossref_primary_10_3390_ijms242216434
crossref_primary_10_1038_s41467_023_40777_x
crossref_primary_10_1016_j_biortech_2023_129913
crossref_primary_10_1016_j_cjche_2023_06_015
crossref_primary_10_1021_acscatal_1c05856
crossref_primary_10_1039_D3CS00822C
crossref_primary_10_1038_s41929_021_00648_4
crossref_primary_10_1038_s41578_021_00407_8
crossref_primary_10_1007_s12274_023_5772_1
crossref_primary_10_1016_j_apcatb_2024_124307
crossref_primary_10_3389_fmicb_2020_571265
crossref_primary_10_1016_j_mtphys_2023_101192
crossref_primary_10_1080_10643389_2021_1966254
crossref_primary_10_1016_j_rser_2022_112966
crossref_primary_10_1016_j_seppur_2024_129374
crossref_primary_10_1016_j_jhazmat_2023_131574
crossref_primary_10_1016_j_rsurfi_2024_100221
crossref_primary_10_1038_s41467_024_45662_9
crossref_primary_10_1360_TB_2024_0921
crossref_primary_10_1021_acs_iecr_1c04743
crossref_primary_10_1021_acsaenm_4c00743
crossref_primary_10_3389_fbioe_2023_1263996
crossref_primary_10_1002_ange_202402316
crossref_primary_10_3390_biom13091407
crossref_primary_10_1016_j_biortech_2021_126058
crossref_primary_10_1002_pol_20240785
crossref_primary_10_1016_j_tibtech_2023_03_016
crossref_primary_10_1016_j_resconrec_2022_106639
crossref_primary_10_1016_j_envpol_2023_121106
crossref_primary_10_1002_marc_202100929
crossref_primary_10_1016_j_enzmictec_2024_110498
crossref_primary_10_1039_D0EM00340A
crossref_primary_10_3390_jof7110931
crossref_primary_10_1002_prot_26174
crossref_primary_10_1016_S1002_0160_21_60060_7
crossref_primary_10_1021_acssuschemeng_4c09372
crossref_primary_10_1007_s13762_022_04646_2
crossref_primary_10_1039_D4GC02791D
crossref_primary_10_1186_s12934_024_02585_w
crossref_primary_10_2174_0929866530666230509141807
crossref_primary_10_1007_s13399_020_01042_z
crossref_primary_10_1017_plc_2024_26
crossref_primary_10_1002_anie_202315524
crossref_primary_10_1016_j_cej_2023_143649
crossref_primary_10_14233_ajchem_2023_26928
crossref_primary_10_1002_ange_202312564
crossref_primary_10_1016_j_apcatb_2023_123236
crossref_primary_10_1186_s44314_024_00007_0
crossref_primary_10_1016_j_tim_2023_04_002
crossref_primary_10_1016_j_copbio_2024_103093
crossref_primary_10_1007_s00449_021_02603_w
crossref_primary_10_3389_fbioe_2021_771133
crossref_primary_10_1007_s12257_022_0191_9
crossref_primary_10_1021_acs_macromol_0c02814
crossref_primary_10_1039_D1TA04981J
crossref_primary_10_1016_j_enmm_2024_101007
crossref_primary_10_1016_j_gee_2024_06_003
crossref_primary_10_3390_app13063686
crossref_primary_10_1002_cssc_202100909
crossref_primary_10_1016_j_procbio_2024_06_018
crossref_primary_10_1002_anie_202314448
crossref_primary_10_1016_j_nxmate_2025_100599
crossref_primary_10_1021_acs_macromol_3c01668
crossref_primary_10_1016_j_coelec_2022_100963
crossref_primary_10_1002_advs_202500859
crossref_primary_10_1002_cssc_202100904
crossref_primary_10_1007_s10965_024_03883_y
crossref_primary_10_1016_j_polymer_2023_126370
crossref_primary_10_1016_j_envpol_2021_116461
crossref_primary_10_1002_cjoc_202400343
crossref_primary_10_1007_s13205_021_02884_8
crossref_primary_10_1186_s40643_020_00324_8
crossref_primary_10_3390_catal13030591
crossref_primary_10_1002_cssc_202100912
crossref_primary_10_1016_j_seppur_2022_120564
crossref_primary_10_1021_acscatal_2c02275
crossref_primary_10_3390_synbio1010004
crossref_primary_10_1039_D4QI01372G
crossref_primary_10_3390_molecules27010098
crossref_primary_10_1016_j_cej_2023_144712
crossref_primary_10_1016_j_jece_2024_114891
crossref_primary_10_1002_eem2_12762
crossref_primary_10_1016_j_enzmictec_2021_109937
crossref_primary_10_1126_science_adu2454
crossref_primary_10_3390_suschem3030024
crossref_primary_10_1016_j_psep_2022_07_010
crossref_primary_10_1016_j_scitotenv_2022_157161
crossref_primary_10_1038_s41467_024_50702_5
crossref_primary_10_1039_D3GC03145D
crossref_primary_10_1016_j_copbio_2024_103079
crossref_primary_10_3390_micro2020017
crossref_primary_10_1016_j_jclepro_2022_131989
crossref_primary_10_1039_D3GC02051G
crossref_primary_10_3390_polym16060796
crossref_primary_10_1016_j_enzmictec_2024_110562
crossref_primary_10_1016_j_jhazmat_2022_129287
crossref_primary_10_1128_aem_01477_23
crossref_primary_10_1016_j_mtsust_2024_100936
crossref_primary_10_3390_catal11020206
crossref_primary_10_1002_anie_202404492
crossref_primary_10_1016_j_chempr_2020_12_006
crossref_primary_10_3390_macromol3020009
crossref_primary_10_1016_j_cej_2025_159304
crossref_primary_10_1038_s41467_022_29446_7
crossref_primary_10_1016_j_nbt_2023_11_001
crossref_primary_10_1021_acssuschemeng_4c02986
crossref_primary_10_1002_bit_28691
crossref_primary_10_1016_j_jcou_2022_102199
crossref_primary_10_1021_acs_jpclett_1c03658
crossref_primary_10_3390_polym14245551
crossref_primary_10_1021_acscatal_3c02922
crossref_primary_10_1016_j_mex_2022_101815
crossref_primary_10_1021_acscatal_3c02740
crossref_primary_10_1021_acs_chemrev_0c01282
crossref_primary_10_1016_j_ese_2024_100407
crossref_primary_10_1016_j_tibs_2024_07_006
crossref_primary_10_1111_1751_7915_14121
crossref_primary_10_3389_fmars_2022_980705
crossref_primary_10_1002_anie_202011063
crossref_primary_10_1128_jb_00543_21
crossref_primary_10_1093_protein_gzad022
crossref_primary_10_1007_s42452_021_04851_7
crossref_primary_10_3390_molecules27103353
crossref_primary_10_3390_su16146206
crossref_primary_10_1002_cssc_202300154
crossref_primary_10_1016_j_jcis_2024_06_214
crossref_primary_10_1016_j_bpj_2022_07_002
crossref_primary_10_1016_j_jhazmat_2023_132965
crossref_primary_10_1038_s44222_023_00142_5
crossref_primary_10_1039_D2GC04747K
crossref_primary_10_1038_s41578_021_00376_y
crossref_primary_10_1073_pnas_2026452118
crossref_primary_10_1007_s10529_024_03467_2
crossref_primary_10_1002_ange_202414162
crossref_primary_10_1002_jctb_7035
crossref_primary_10_1016_j_resconrec_2024_107706
crossref_primary_10_1016_j_scitotenv_2023_161948
crossref_primary_10_1111_1751_7915_14135
crossref_primary_10_1016_j_ijbiomac_2024_138785
crossref_primary_10_1016_j_ijbiomac_2024_136597
crossref_primary_10_1088_2515_7655_ac01ef
crossref_primary_10_1093_nsr_nwac011
crossref_primary_10_1021_acs_jctc_3c01395
crossref_primary_10_1038_s41586_020_2495_2
crossref_primary_10_1021_acsomega_3c09084
crossref_primary_10_1021_acsomega_4c05142
crossref_primary_10_1016_j_cej_2025_160754
crossref_primary_10_1016_j_scitotenv_2022_157358
crossref_primary_10_1016_j_biortech_2024_131556
crossref_primary_10_1002_ange_202313633
crossref_primary_10_1016_j_biortech_2024_131557
crossref_primary_10_1021_acsapm_2c01945
crossref_primary_10_1016_j_copbio_2023_102938
crossref_primary_10_1016_j_chemosphere_2024_143029
crossref_primary_10_1016_j_cjph_2023_05_022
crossref_primary_10_1016_j_cej_2024_157275
crossref_primary_10_1016_j_tibtech_2021_02_008
crossref_primary_10_1016_j_apcatb_2022_121198
crossref_primary_10_1016_j_csbj_2023_11_006
crossref_primary_10_1016_j_mattod_2022_12_005
crossref_primary_10_1016_j_jhazmat_2024_136389
crossref_primary_10_3390_polym13213693
crossref_primary_10_1007_s11274_022_03270_z
crossref_primary_10_1021_acs_biochem_2c00323
crossref_primary_10_1002_anie_202214609
crossref_primary_10_1016_j_enzmictec_2024_110521
crossref_primary_10_1021_acscatal_4c04321
crossref_primary_10_1002_adfm_202408274
crossref_primary_10_1016_j_pecs_2020_100901
crossref_primary_10_1021_acs_iecr_2c04451
crossref_primary_10_1021_acssuschemeng_4c08256
crossref_primary_10_1039_D1RA04288B
crossref_primary_10_1016_j_cossms_2020_100896
crossref_primary_10_2142_biophysico_bppb_v18_018
crossref_primary_10_1021_acs_jcim_4c00776
crossref_primary_10_1126_science_adp5637
crossref_primary_10_1016_j_ijbiomac_2024_137672
crossref_primary_10_1016_j_jclepro_2024_141025
crossref_primary_10_1111_1751_7915_14114
crossref_primary_10_1038_s41467_024_45749_3
crossref_primary_10_1021_acscatal_1c03963
crossref_primary_10_1002_adma_202100843
crossref_primary_10_1016_j_efmat_2025_01_004
crossref_primary_10_1016_j_jbiotec_2022_08_019
crossref_primary_10_35534_sbe_2024_10009
crossref_primary_10_1155_2024_5561077
crossref_primary_10_1007_s11157_022_09631_2
crossref_primary_10_3390_molecules30020299
crossref_primary_10_1016_j_apcata_2025_120119
crossref_primary_10_3390_ijms23010264
crossref_primary_10_1016_j_jclepro_2024_142346
crossref_primary_10_1016_j_envres_2023_117427
crossref_primary_10_1016_j_jwpe_2024_106736
crossref_primary_10_1016_j_ecoinf_2022_101716
crossref_primary_10_1039_D4GC01662A
crossref_primary_10_1021_acssuschemeng_1c02627
crossref_primary_10_20517_cs_2023_67
crossref_primary_10_1049_enb2_12020
crossref_primary_10_1002_pen_27040
crossref_primary_10_1016_j_biotechadv_2022_107952
crossref_primary_10_1002_bit_28819
crossref_primary_10_1002_cssc_202100740
crossref_primary_10_1016_j_enzmictec_2022_110142
crossref_primary_10_1021_acsmacrolett_0c00789
crossref_primary_10_1002_gch2_202400163
crossref_primary_10_1016_j_etap_2022_104045
crossref_primary_10_1002_bit_27984
crossref_primary_10_1039_D2GC02588D
crossref_primary_10_3390_microorganisms10061180
crossref_primary_10_1016_j_csbj_2021_01_019
crossref_primary_10_1016_j_wasman_2023_08_048
crossref_primary_10_1021_acssuschemeng_1c03721
crossref_primary_10_1002_cssc_202300742
crossref_primary_10_1016_j_jenvman_2021_113975
crossref_primary_10_1021_acssuschemeng_4c00143
crossref_primary_10_1016_j_apcatb_2023_123404
crossref_primary_10_1002_cbic_202300578
crossref_primary_10_1016_j_xcrp_2024_102295
crossref_primary_10_1038_s41557_021_00763_6
crossref_primary_10_1038_s43586_022_00124_8
crossref_primary_10_1002_cssc_202100752
crossref_primary_10_1016_j_jhazmat_2021_128086
crossref_primary_10_1021_cbe_4c00125
crossref_primary_10_1016_j_trechm_2020_06_005
crossref_primary_10_3390_catal15030265
crossref_primary_10_1002_anie_202007423
crossref_primary_10_1002_cssc_202101607
crossref_primary_10_1039_D1NR03571A
crossref_primary_10_1016_j_biortech_2024_131759
crossref_primary_10_1002_anie_202309949
crossref_primary_10_1007_s11426_024_2432_5
crossref_primary_10_3390_polym14010109
crossref_primary_10_1016_j_checat_2022_09_027
crossref_primary_10_1016_j_checat_2022_09_029
crossref_primary_10_3390_w16131837
crossref_primary_10_1016_j_biortech_2022_127931
crossref_primary_10_1002_cssc_202401470
crossref_primary_10_1016_j_bej_2025_109708
crossref_primary_10_1016_j_scitotenv_2023_162159
crossref_primary_10_1016_j_ijbiomac_2021_03_058
crossref_primary_10_1016_j_wasman_2020_09_031
crossref_primary_10_1021_acssusresmgt_4c00430
crossref_primary_10_1021_acssynbio_1c00275
crossref_primary_10_1016_j_jclepro_2023_136831
crossref_primary_10_1146_annurev_chembioeng_100522_115850
crossref_primary_10_1007_s11051_022_05665_3
crossref_primary_10_1038_s41929_020_00521_w
crossref_primary_10_4014_jmb_2206_06021
crossref_primary_10_1021_acs_macromol_4c02109
crossref_primary_10_1038_s41467_022_32903_y
crossref_primary_10_1016_j_jhazmat_2023_130968
crossref_primary_10_3390_catal11020286
crossref_primary_10_1007_s10965_023_03740_4
crossref_primary_10_1016_j_resconrec_2023_107268
crossref_primary_10_1021_acssuschemeng_2c05998
crossref_primary_10_1021_acs_chemrev_3c00739
crossref_primary_10_1038_s41467_023_39929_w
crossref_primary_10_1128_aem_00721_22
crossref_primary_10_1038_s41598_023_43042_9
crossref_primary_10_1049_enb2_12018
crossref_primary_10_1016_j_apcatb_2022_121143
crossref_primary_10_1021_acs_est_4c01495
crossref_primary_10_1039_D4PY00068D
crossref_primary_10_21285_2227_2925_2022_12_2_238_253
crossref_primary_10_1016_j_procbio_2022_01_011
crossref_primary_10_1016_j_resconrec_2022_106279
crossref_primary_10_1039_D4MA00411F
crossref_primary_10_3390_molecules30030727
crossref_primary_10_1016_j_eng_2024_10_015
crossref_primary_10_1021_acssuschemeng_1c02420
crossref_primary_10_1016_j_chempr_2024_09_026
crossref_primary_10_1146_annurev_matsci_081320_032344
crossref_primary_10_1002_ange_202117528
crossref_primary_10_1002_smll_202406767
crossref_primary_10_1021_acs_macromol_4c02130
crossref_primary_10_1021_acs_est_4c02132
crossref_primary_10_1016_j_apcatb_2023_122744
crossref_primary_10_1016_j_checat_2022_09_043
crossref_primary_10_1016_j_scitotenv_2022_156890
crossref_primary_10_1111_1462_2920_16460
crossref_primary_10_3390_su16188247
crossref_primary_10_1021_acs_chemrev_2c00644
crossref_primary_10_3390_ma14174782
crossref_primary_10_1016_j_eurpolymj_2024_113249
crossref_primary_10_1021_acssuschemeng_4c10171
crossref_primary_10_1002_cjoc_202200527
crossref_primary_10_1177_0734242X241276089
crossref_primary_10_1016_j_biotechadv_2022_107927
crossref_primary_10_1016_j_bej_2024_109615
crossref_primary_10_1039_D4CY00468J
crossref_primary_10_1128_Spectrum_00976_21
crossref_primary_10_1038_s41467_023_37374_3
crossref_primary_10_1021_acssynbio_3c00385
crossref_primary_10_1016_j_biotechadv_2023_108276
crossref_primary_10_3390_molecules29235772
crossref_primary_10_3390_nano11112810
crossref_primary_10_1021_acssuschemeng_3c02695
crossref_primary_10_1002_smm2_1202
crossref_primary_10_1016_j_polymdegradstab_2022_110245
crossref_primary_10_1080_14693062_2021_1922340
crossref_primary_10_3390_md22100441
crossref_primary_10_1186_s12199_020_00870_9
crossref_primary_10_1039_D1GC02929K
crossref_primary_10_1016_j_jobab_2022_09_004
crossref_primary_10_1186_s12934_022_01849_7
crossref_primary_10_1038_s41467_023_41997_x
crossref_primary_10_1016_j_jhazmat_2024_136540
crossref_primary_10_1016_j_checat_2022_07_018
crossref_primary_10_1021_acs_jpca_0c07605
crossref_primary_10_1002_smll_202404124
crossref_primary_10_1021_acssuschemeng_4c02551
crossref_primary_10_1021_acssuschemeng_3c01575
crossref_primary_10_1021_acs_macromol_2c02054
crossref_primary_10_1016_j_wasman_2023_11_002
crossref_primary_10_1002_cssc_202300516
crossref_primary_10_1021_acscatal_0c01708
crossref_primary_10_1016_j_checat_2023_100677
crossref_primary_10_1038_s42004_023_00998_z
crossref_primary_10_1038_s41467_022_34908_z
crossref_primary_10_1002_cssc_202301612
crossref_primary_10_1093_femsyr_foae024
crossref_primary_10_1021_acssuschemeng_4c00363
crossref_primary_10_1002_elsc_202100105
crossref_primary_10_3389_fbioe_2024_1349010
crossref_primary_10_1016_j_emcon_2025_100488
crossref_primary_10_1021_acs_biomac_4c01652
crossref_primary_10_1016_j_jclepro_2022_134429
crossref_primary_10_1021_acsnano_3c01862
crossref_primary_10_1016_j_bej_2021_108096
crossref_primary_10_1146_annurev_chembioeng_092120_091054
crossref_primary_10_1016_j_biortech_2023_130108
crossref_primary_10_1021_acsapm_2c00212
crossref_primary_10_1016_j_ijhydene_2025_02_093
crossref_primary_10_1039_D1CC03705F
crossref_primary_10_1002_cssc_202102750
crossref_primary_10_1016_j_ijbiomac_2022_11_126
crossref_primary_10_1016_j_cej_2021_132509
crossref_primary_10_1038_s41929_023_01072_6
crossref_primary_10_1007_s00284_022_03139_2
crossref_primary_10_1016_j_seppur_2023_124505
crossref_primary_10_1016_j_envpol_2024_124131
crossref_primary_10_1016_j_jclepro_2023_140048
crossref_primary_10_1016_j_jece_2025_115684
crossref_primary_10_1002_anie_202414842
crossref_primary_10_1007_s11270_024_07464_z
crossref_primary_10_1016_j_cej_2023_148418
crossref_primary_10_1016_j_copbio_2021_06_007
crossref_primary_10_1186_s12302_021_00536_5
crossref_primary_10_1016_j_biortech_2024_130929
crossref_primary_10_1039_D3RE00028A
crossref_primary_10_1016_j_cej_2024_155472
crossref_primary_10_1038_s41467_024_45523_5
crossref_primary_10_1080_07388551_2023_2170861
crossref_primary_10_1007_s00449_025_03131_7
crossref_primary_10_3390_polym16192770
crossref_primary_10_1021_acs_chemmater_2c00625
crossref_primary_10_1016_j_jmrt_2023_06_152
crossref_primary_10_1021_acsami_3c15703
crossref_primary_10_1016_j_susmat_2024_e01022
crossref_primary_10_1002_ange_202309949
crossref_primary_10_1002_adma_202500090
crossref_primary_10_1016_j_jclepro_2022_134792
crossref_primary_10_3390_polym13223883
crossref_primary_10_1016_j_csbj_2021_11_023
crossref_primary_10_1016_j_polymdegradstab_2023_110450
crossref_primary_10_1016_j_jenvman_2024_122217
crossref_primary_10_1016_j_jhazmat_2022_129517
crossref_primary_10_1186_s40793_020_00371_w
crossref_primary_10_1002_anie_202216220
crossref_primary_10_3390_ijms25105536
crossref_primary_10_1016_j_envint_2020_106067
crossref_primary_10_1016_j_horiz_2022_100016
crossref_primary_10_1002_cbic_202400555
crossref_primary_10_1038_s42003_023_05523_5
crossref_primary_10_1016_j_biotechadv_2023_108239
crossref_primary_10_1016_j_copbio_2023_103021
crossref_primary_10_1098_rsta_2019_0273
crossref_primary_10_1007_s13205_021_02988_1
crossref_primary_10_1016_j_polymdegradstab_2022_110168
crossref_primary_10_1038_s41467_021_26508_0
crossref_primary_10_1007_s10924_023_03118_z
crossref_primary_10_1021_acscatal_3c05535
crossref_primary_10_1002_ange_202418157
crossref_primary_10_1016_j_biotechadv_2021_107811
crossref_primary_10_1016_j_coisb_2023_100482
crossref_primary_10_1016_j_cclet_2023_108465
crossref_primary_10_1021_acssynbio_4c00077
crossref_primary_10_1021_acssuschemeng_3c08286
crossref_primary_10_3389_fmicb_2025_1541913
crossref_primary_10_3389_fbioe_2021_696040
crossref_primary_10_1021_jacs_1c08888
crossref_primary_10_1021_acsapm_4c01570
crossref_primary_10_1002_cssc_202100243
crossref_primary_10_1002_cssc_202202019
crossref_primary_10_1016_j_jhazmat_2021_127023
crossref_primary_10_2139_ssrn_4071692
crossref_primary_10_1016_j_ceja_2022_100310
crossref_primary_10_1016_j_cej_2023_144032
crossref_primary_10_1016_j_cej_2023_147781
crossref_primary_10_1007_s11426_024_2278_9
crossref_primary_10_1016_j_csbj_2021_12_042
crossref_primary_10_1021_acscatal_3c05509
crossref_primary_10_1186_s40643_023_00648_1
crossref_primary_10_1016_j_chemosphere_2025_144108
crossref_primary_10_1016_j_jhazmat_2021_127017
crossref_primary_10_1007_s11270_024_07122_4
crossref_primary_10_1021_acs_iecr_3c04000
crossref_primary_10_3390_ijms231910997
crossref_primary_10_1039_D4GC05916F
crossref_primary_10_1016_j_trac_2023_117106
crossref_primary_10_1002_ange_202216963
crossref_primary_10_1002_cbic_202000793
crossref_primary_10_1016_j_apcatb_2022_121667
crossref_primary_10_1038_s41467_024_50446_2
crossref_primary_10_1016_j_dwt_2024_100201
crossref_primary_10_1039_D3CP03590E
crossref_primary_10_1186_s40643_023_00715_7
crossref_primary_10_1039_D1CS00100K
crossref_primary_10_1038_s41586_022_04599_z
crossref_primary_10_1016_j_ijbiomac_2023_128627
crossref_primary_10_1016_j_gce_2024_12_001
crossref_primary_10_1016_j_jclepro_2023_140088
crossref_primary_10_1016_j_jare_2022_09_004
crossref_primary_10_1021_acssuschemeng_0c01638
crossref_primary_10_1111_febs_16736
crossref_primary_10_1016_j_jece_2021_105326
crossref_primary_10_1021_acs_biochem_3c00554
crossref_primary_10_1021_acs_jpcc_1c06658
crossref_primary_10_3390_molecules30061255
crossref_primary_10_1002_cctc_202401252
crossref_primary_10_1016_j_dwt_2024_100432
crossref_primary_10_1002_pi_6369
crossref_primary_10_1016_j_biortech_2023_128772
crossref_primary_10_1002_pi_6123
crossref_primary_10_1007_s42824_021_00038_y
crossref_primary_10_1021_acs_langmuir_4c00364
crossref_primary_10_1007_s42824_022_00055_5
crossref_primary_10_1016_j_jobe_2024_110846
crossref_primary_10_1016_j_jmb_2021_166964
crossref_primary_10_1016_j_csbj_2025_03_006
crossref_primary_10_3390_polym17060763
crossref_primary_10_1016_j_measurement_2021_109855
crossref_primary_10_1515_psr_2023_0014
crossref_primary_10_3390_app11188315
crossref_primary_10_1021_acs_chemrev_4c00032
crossref_primary_10_1039_D4RE00349G
crossref_primary_10_1021_acssuschemeng_4c00060
crossref_primary_10_1007_s00203_024_04165_3
crossref_primary_10_1111_1462_2920_16512
crossref_primary_10_1039_D3GC04728H
crossref_primary_10_1016_j_cej_2023_146413
crossref_primary_10_1016_j_checat_2024_100902
crossref_primary_10_1021_acs_jctc_3c00602
crossref_primary_10_1038_s44160_023_00417_0
crossref_primary_10_1016_j_bej_2024_109420
crossref_primary_10_1016_j_scitotenv_2024_171464
crossref_primary_10_3390_ijms25010593
crossref_primary_10_1016_j_biortech_2022_128026
crossref_primary_10_1039_D4FD00139G
crossref_primary_10_1016_j_bej_2024_109429
crossref_primary_10_1021_acssuschemeng_2c03142
crossref_primary_10_1039_D4SU00722K
crossref_primary_10_1016_j_jhazmat_2025_137196
crossref_primary_10_1038_s41893_021_00743_1
crossref_primary_10_1002_cbic_202000767
crossref_primary_10_1016_j_jhazmat_2023_131295
crossref_primary_10_1016_j_jhazmat_2023_131054
crossref_primary_10_1016_j_eurpolymj_2020_109873
crossref_primary_10_1002_anie_202401746
crossref_primary_10_1002_cssc_202400105
crossref_primary_10_1002_anie_202418157
crossref_primary_10_1016_j_cclet_2022_06_015
crossref_primary_10_1016_j_cej_2022_140470
crossref_primary_10_1016_j_chempr_2021_02_003
crossref_primary_10_1016_j_eurpolymj_2024_113621
crossref_primary_10_1016_j_saa_2024_125411
crossref_primary_10_1016_j_biortech_2023_129884
crossref_primary_10_1002_ange_202401746
crossref_primary_10_1016_j_cattod_2024_114659
crossref_primary_10_1021_acscatal_4c00400
crossref_primary_10_1002_anie_202112576
crossref_primary_10_1016_j_scitotenv_2024_176920
crossref_primary_10_1186_s12934_022_02007_9
crossref_primary_10_1002_jctb_6882
crossref_primary_10_3917_pls_512_0007
crossref_primary_10_1016_j_marpolbul_2020_111950
crossref_primary_10_1080_09593330_2022_2052359
crossref_primary_10_1016_j_watres_2021_117144
crossref_primary_10_1039_D2CS00688J
crossref_primary_10_1093_sumbio_qvae012
crossref_primary_10_1016_j_ymben_2022_05_001
crossref_primary_10_1039_D4SU00745J
crossref_primary_10_1002_mame_202400013
crossref_primary_10_1002_biot_202300119
crossref_primary_10_1111_febs_15850
crossref_primary_10_1016_j_cej_2024_153223
crossref_primary_10_1016_j_pmatsci_2022_101035
crossref_primary_10_1021_acssuschemeng_0c01664
crossref_primary_10_1007_s11483_021_09698_4
crossref_primary_10_1002_cssc_202402515
crossref_primary_10_1016_j_scitotenv_2024_174978
crossref_primary_10_1039_D3GC04174C
crossref_primary_10_1016_j_jpowsour_2020_228814
crossref_primary_10_1111_jam_15203
crossref_primary_10_1016_j_copbio_2021_08_017
crossref_primary_10_1080_07388551_2022_2039590
crossref_primary_10_1016_j_eehl_2023_07_004
crossref_primary_10_1016_j_jhazmat_2022_128816
crossref_primary_10_1016_j_bbadva_2023_100111
crossref_primary_10_1016_j_bioorg_2023_107047
crossref_primary_10_1016_S1872_2067_23_64435_3
crossref_primary_10_3390_ijms232012644
crossref_primary_10_1002_bit_28261
crossref_primary_10_1039_D0RE00385A
crossref_primary_10_1002_ange_202309305
crossref_primary_10_1039_D2RA03394A
crossref_primary_10_1021_acscatal_2c03772
crossref_primary_10_1042_EBC20220255
crossref_primary_10_3389_fbioe_2022_930140
crossref_primary_10_1007_s10924_022_02480_8
crossref_primary_10_3390_ijms242015181
crossref_primary_10_3390_polym16162262
crossref_primary_10_1111_1751_7915_14331
crossref_primary_10_1021_acsbiomedchemau_4c00089
crossref_primary_10_1016_j_checat_2022_02_003
crossref_primary_10_1016_j_rser_2021_111866
crossref_primary_10_1002_mame_202400033
crossref_primary_10_1039_D4SC00070F
crossref_primary_10_1002_ange_202006648
crossref_primary_10_1002_anie_202300094
crossref_primary_10_1016_j_scitotenv_2024_177129
crossref_primary_10_1007_s10904_024_03299_7
crossref_primary_10_1021_jacs_3c04427
crossref_primary_10_1002_cssc_202201576
crossref_primary_10_1038_s41467_024_52789_2
crossref_primary_10_1002_pro_4757
crossref_primary_10_1016_j_chempr_2022_09_008
crossref_primary_10_1016_j_chempr_2022_09_009
crossref_primary_10_1002_pro_4997
crossref_primary_10_5650_oleoscience_22_495
crossref_primary_10_1093_femsre_fuae027
crossref_primary_10_1016_j_jece_2024_112507
crossref_primary_10_1016_j_jhazmat_2024_134603
crossref_primary_10_1002_cctc_202400835
crossref_primary_10_1016_j_seppur_2024_131373
crossref_primary_10_1002_ange_202414842
crossref_primary_10_1016_j_marpolbul_2022_113460
crossref_primary_10_3390_ijms222011257
crossref_primary_10_1021_acs_biochem_4c00165
crossref_primary_10_1039_D2GC02162E
crossref_primary_10_1016_j_joule_2020_08_015
crossref_primary_10_1126_science_adh8615
crossref_primary_10_1016_j_jhazmat_2021_127417
crossref_primary_10_1021_acscatal_4c00444
crossref_primary_10_1016_j_ese_2023_100238
crossref_primary_10_1016_j_gce_2023_06_002
crossref_primary_10_1016_j_scitotenv_2023_163908
crossref_primary_10_3390_microorganisms11061514
crossref_primary_10_1039_D3CC01555F
crossref_primary_10_1016_j_cjche_2021_10_028
crossref_primary_10_1002_pro_4500
crossref_primary_10_1021_acscatal_1c05548
crossref_primary_10_3389_fbioe_2022_865787
crossref_primary_10_1002_ange_202300768
crossref_primary_10_1515_ci_2023_0403
crossref_primary_10_3390_polym15204111
crossref_primary_10_1007_s12010_022_04129_7
crossref_primary_10_1016_j_jhazmat_2024_134838
crossref_primary_10_1016_j_watres_2023_120270
crossref_primary_10_1016_j_bpj_2024_04_026
crossref_primary_10_1007_s00449_022_02690_3
crossref_primary_10_1016_j_polymdegradstab_2022_109815
crossref_primary_10_1016_j_rsma_2022_102647
crossref_primary_10_4014_jmb_2404_04030
crossref_primary_10_1016_j_cclet_2024_109893
crossref_primary_10_1021_jacs_4c03320
crossref_primary_10_1016_j_cej_2024_154183
crossref_primary_10_32604_jrm_2023_025032
crossref_primary_10_1016_j_jclepro_2021_129325
crossref_primary_10_1021_acssuschemeng_4c00915
crossref_primary_10_1039_D3RA08500G
crossref_primary_10_1039_D0GC02770G
crossref_primary_10_1016_j_copbio_2023_103053
crossref_primary_10_1016_j_scitotenv_2023_162414
crossref_primary_10_3390_ijms24043877
crossref_primary_10_1016_j_jece_2024_112926
crossref_primary_10_1016_j_jclepro_2024_143083
crossref_primary_10_1016_j_toxlet_2024_08_002
crossref_primary_10_1021_jacsau_4c00718
crossref_primary_10_3390_polym15122653
crossref_primary_10_1021_acs_nanolett_1c02315
crossref_primary_10_1016_j_polymdegradstab_2025_111341
crossref_primary_10_1007_s12598_024_02714_9
crossref_primary_10_1021_acs_biochem_4c00149
crossref_primary_10_1016_j_ecoenv_2024_116046
crossref_primary_10_1016_j_jece_2023_110482
crossref_primary_10_1038_s41929_021_00616_y
crossref_primary_10_1557_mre_2020_28
crossref_primary_10_1016_j_eehl_2024_01_010
crossref_primary_10_1016_j_greenca_2025_02_003
crossref_primary_10_1021_acs_accounts_2c00308
crossref_primary_10_1016_j_synbio_2021_06_001
crossref_primary_10_1021_acssuschemeng_1c08656
crossref_primary_10_1039_D4FD00067F
crossref_primary_10_1093_jb_mvaa102
crossref_primary_10_1007_s10311_024_01714_6
crossref_primary_10_3389_fbioe_2021_762854
crossref_primary_10_1038_s41929_023_01048_6
crossref_primary_10_1002_chem_202403879
crossref_primary_10_1039_D1GC02767K
crossref_primary_10_1002_prot_26034
crossref_primary_10_1016_j_oneear_2024_02_005
crossref_primary_10_1016_j_scitotenv_2023_167098
crossref_primary_10_1021_acsestengg_4c00253
crossref_primary_10_1002_app_56177
crossref_primary_10_1039_D4FD00022F
crossref_primary_10_3389_fbioe_2020_602325
crossref_primary_10_1039_D4GC00911H
crossref_primary_10_1080_10889868_2021_1900053
crossref_primary_10_1039_D3GC04460B
crossref_primary_10_3389_fbioe_2021_642023
crossref_primary_10_1016_j_cscee_2024_100673
crossref_primary_10_1039_D3EY00017F
crossref_primary_10_3390_molecules26051389
crossref_primary_10_1021_acscatal_3c00259
crossref_primary_10_1007_s10532_024_10070_9
crossref_primary_10_1016_j_coisb_2024_100515
crossref_primary_10_1016_j_chempr_2024_102395
crossref_primary_10_1016_j_eti_2023_103347
crossref_primary_10_1128_spectrum_00362_23
crossref_primary_10_1073_pnas_2121426119
crossref_primary_10_3390_ijms24032780
crossref_primary_10_1021_jacs_4c16655
crossref_primary_10_1016_j_reactfunctpolym_2022_105465
crossref_primary_10_3390_su122410449
crossref_primary_10_1016_j_scitotenv_2022_154947
crossref_primary_10_1038_s41586_021_03408_3
Cites_doi 10.1093/protein/3.2.95
10.1016/j.polymdegradstab.2004.12.001
10.1038/s41467-017-02255-z
10.1021/bi401561p
10.1038/s41467-019-09326-3
10.1073/pnas.1718804115
10.1002/marc.200500410
10.1016/j.polymdegradstab.2012.02.003
10.1002/2211-5463.12053
10.1126/science.aad6359
10.1016/j.wasman.2017.07.044
10.1007/s00449-015-1497-1
10.1126/sciadv.1700782
10.1002/biot.201400620
10.1002/bit.21329
10.1016/j.eurpolymj.2005.02.005
10.1002/advs.201900491
10.1016/j.jbiosc.2017.02.007
10.1126/science.aaf2853
10.1016/j.jbiotec.2005.06.015
10.1038/s41467-018-02881-1
10.1007/s00253-019-09717-y
10.1111/1751-7915.12710
10.1016/j.biotechadv.2013.09.005
10.1016/B978-0-12-800259-9.00007-X
10.1590/S1516-14392013005000168
10.1002/pola.22952
10.1128/AEM.06725-11
10.1021/ma9005318
10.1021/acscatal.8b05171
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Apr 9, 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 9, 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
1XC
VOOES
DOI 10.1038/s41586-020-2149-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic

MEDLINE


Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 219
ExternalDocumentID oai_HAL_hal_02545880v1
A619849959
32269349
10_1038_s41586_020_2149_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
SOI
7X8
1XC
AGQPQ
UMC
VOOES
ID FETCH-LOGICAL-c688t-122acbea5cbbb97000fda25f1bf3a7e945f51477b2f4b52b2954bd1e264170483
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Fri May 09 12:20:52 EDT 2025
Thu Jul 10 19:10:34 EDT 2025
Sat Aug 23 12:54:16 EDT 2025
Tue Jun 17 21:04:56 EDT 2025
Thu Jun 12 23:18:06 EDT 2025
Tue Jun 10 15:32:04 EDT 2025
Tue Jun 10 20:38:22 EDT 2025
Fri Jun 27 04:38:48 EDT 2025
Fri Jun 27 04:05:45 EDT 2025
Thu Apr 03 08:16:40 EDT 2025
Tue Jul 01 01:21:22 EDT 2025
Thu Apr 24 22:53:04 EDT 2025
Fri Feb 21 02:38:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7802
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c688t-122acbea5cbbb97000fda25f1bf3a7e945f51477b2f4b52b2954bd1e264170483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6280-4109
0000-0002-9147-0184
0000-0002-5520-8613
0000-0001-9829-9394
0000-0001-5709-6945
0000-0003-2581-5022
OpenAccessLink https://hal.inrae.fr/hal-02545880
PMID 32269349
PQID 2390656133
PQPubID 40569
PageCount 4
ParticipantIDs hal_primary_oai_HAL_hal_02545880v1
proquest_miscellaneous_2388003947
proquest_journals_2390656133
gale_infotracmisc_A619849959
gale_infotracgeneralonefile_A619849959
gale_infotraccpiq_619849959
gale_infotracacademiconefile_A619849959
gale_incontextgauss_ISR_A619849959
gale_incontextgauss_ATWCN_A619849959
pubmed_primary_32269349
crossref_citationtrail_10_1038_s41586_020_2149_4
crossref_primary_10_1038_s41586_020_2149_4
springer_journals_10_1038_s41586_020_2149_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KawaiFKawabataTOdaMCurrent knowledge on enzymatic PET degradation and its possible application to waste stream management and other fieldsAppl. Microbiol. Biotechnol.2019103425342681:CAS:528:DC%2BC1MXovFakurw%3D10.1007/s00253-019-09717-y
VertommenMANierstraszVAvan der VeerMWarmoeskerkenMMEnzymatic surface modification of poly(ethylene terephthalate)J. Biotechnol.20051203763861:CAS:528:DC%2BD2MXht1egsrrL10.1016/j.jbiotec.2005.06.015
MüllerRJSchraderHProfeJDreslerKDeckwerW-DEnzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fuscaMacromol. Rapid Commun.2005261400140510.1002/marc.200500410
TaniguchiIBiodegradation of PET: current status and application aspectsACS Catal.20199408941051:CAS:528:DC%2BC1MXmslOrtr0%3D10.1021/acscatal.8b05171
JooSStructural insight into molecular mechanism of poly(ethylene terephthalate) degradationNat. Commun.201892018NatCo...9..382J10.1038/s41467-018-02881-1
ChenSSuLChenJWuJCutinase: characteristics, preparation, and applicationBiotechnol. Adv.201331175417671:CAS:528:DC%2BC3sXhsFGqt7vN10.1016/j.biotechadv.2013.09.005
ThenJA disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalateFEBS Open Bio201664254321:CAS:528:DC%2BC28Xht1Kru7rM10.1002/2211-5463.12053
AwajaFPavelDRecycling of PETEur. Polym. J.200541145314771:CAS:528:DC%2BD2MXjslOgtbY%3D10.1016/j.eurpolymj.2005.02.005
AustinHPCharacterization and engineering of a plastic-degrading aromatic polyesteraseProc. Natl Acad. Sci. USA2018115E4350E43571:CAS:528:DC%2BC1cXhvVGhtLnF10.1073/pnas.1718804115
Barboza NetoESCoelhoLAFForteMMCAmicoSCFerreiraCAProcessing of a LLDPE/HDPE pressure vessel liner by rotomoldingMater. Res.2014172362411:CAS:528:DC%2BC2cXptFyhur0%3D10.1590/S1516-14392013005000168
Meyer, D. H. Process for purifying terephthalic acid. US patent 3,288,849 (1966).
YoshidaSA bacterium that degrades and assimilates poly(ethylene terephthalate)Science2016351119611992016Sci...351.1196Y1:CAS:528:DC%2BC28Xjs12gtr4%3D10.1126/science.aad6359
GusakovAVDesign of highly efficient cellulase mixtures for enzymatic hydrolysis of celluloseBiotechnol. Bioeng.200797102810381:CAS:528:DC%2BD2sXnvFahu74%3D10.1002/bit.21329
SulaimanSYouDJKanayaEKogaYKanayaSCrystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinaseBiochemistry201453185818691:CAS:528:DC%2BC2cXjsVehs7w%3D10.1021/bi401561p
WeiRZimmermannWMicrobial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?Microb. Biotechnol.201710130813221:CAS:528:DC%2BC2sXhslCntLbF10.1111/1751-7915.12710
PalmGJStructure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrateNat. Commun.2019102019NatCo..10.1717P10.1038/s41467-019-09326-3
KawabataTOdaMKawaiFMutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalateJ. Biosci. Bioeng.201712428351:CAS:528:DC%2BC2sXjtFKnurs%3D10.1016/j.jbiosc.2017.02.007
HanXStructural insight into catalytic mechanism of PET hydrolaseNat. Commun.201782017NatCo...8.2106H10.1038/s41467-017-02255-z
ZimmermannWBilligSEnzymes for the biofunctionalization of poly(ethylene terephthalate)Adv. Biochem. Eng. Biotechnol.201012597120
WeiRBiocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructuresAdv. Sci.20196190049110.1002/advs.201900491
PET polymer: chemical economics handbook. IHS Markit https://ihsmarkit.com/products/pet-polymer-chemical-economics-handbook.html (2018).
GeyerRJambeckJRLawKLProduction, use, and fate of all plastics ever madeSci. Adv.20173e17007822017SciA....3E0782G10.1126/sciadv.1700782
SulaimanSIsolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomics approachAppl. Environ. Microbiol.201278155615621:CAS:528:DC%2BC38XjtVSntLY%3D10.1128/AEM.06725-11
WeiROeserTZimmermannWSynthetic polyester-hydrolyzing enzymes from thermophilic actinomycetesAdv. Appl. Microbiol.20148926730510.1016/B978-0-12-800259-9.00007-X
PlasticsEurope. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data. PlasticsEuropehttps://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (2019).
ThenJCa2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fuscaBiotechnol. J.2015105925981:CAS:528:DC%2BC2MXhtFKgtbc%3D10.1002/biot.201400620
BornscheuerUTFeeding on plasticScience2016351115411552016Sci...351.1154B1:CAS:528:DC%2BC28XksVGntL4%3D10.1126/science.aaf2853
Fullbrook, P. D. in Glucose Syrups, Science and Technology (eds Dziedzic, S. Z. & Kearsley, M. W.) 65–115 (Elsevier, 1984).
Merchant Research and Consulting. Sodium sulfate: 2020 world market outlook and forecast up to 2029. https://mcgroup.co.uk/researches/sodium-sulphate (2019).
SowdhaminiRStereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesisProtein Eng.19893951031:CAS:528:DyaK3cXpsV2gtQ%3D%3D10.1093/protein/3.2.95
RagaertKDelvaLVan GeemKMechanical and chemical recycling of solid plastic wasteWaste Manag.20176924581:CAS:528:DC%2BC2sXhtlOhtLrO10.1016/j.wasman.2017.07.044
LiuGZhangJBaoJCost evaluation of cellulose enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modelingBioprocess Biosyst. Eng.20163913314010.1007/s00449-015-1497-1
RonkvistASMXieWLuWGrossRACutinase-catalyzed hydrolysis of poly(ethylene terephthalate)Macromolecules200942512851382009MaMol..42.5128R1:CAS:528:DC%2BD1MXotVGksb0%3D10.1021/ma9005318
BruecknerTEberlAHeumannSRabeMGuebitzGMEnzymatic and chemical hydrolysis of poly (ethylene terephthalate) fabricsJ. Polym. Sci. A200846643564431:CAS:528:DC%2BD1cXht1SnsLfE10.1002/pola.22952
KitadokoroKCrystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolutionPolym. Degrad. Stabil.2012977717751:CAS:528:DC%2BC38Xjt1elsrY%3D10.1016/j.polymdegradstab.2012.02.003
MartenEMüllerR-JDeckwerW-DStudies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyestersPolym. Degrad. Stabil.2005883713811:CAS:528:DC%2BD2MXisVCks7g%3D10.1016/j.polymdegradstab.2004.12.001
Mohammad-KhahAAnsariRActivated charcoal: preparation, characterization and applications: a review articleInt. J. Chemtech Res.20141859864
R Geyer (2149_CR2) 2017; 3
T Brueckner (2149_CR15) 2008; 46
MA Vertommen (2149_CR16) 2005; 120
A Mohammad-Khah (2149_CR33) 2014; 1
K Kitadokoro (2149_CR20) 2012; 97
I Taniguchi (2149_CR14) 2019; 9
ASM Ronkvist (2149_CR18) 2009; 42
S Yoshida (2149_CR8) 2016; 351
R Wei (2149_CR17) 2019; 6
E Marten (2149_CR5) 2005; 88
S Joo (2149_CR12) 2018; 9
R Wei (2149_CR6) 2017; 10
J Then (2149_CR23) 2015; 10
W Zimmermann (2149_CR19) 2010; 125
X Han (2149_CR11) 2017; 8
S Chen (2149_CR21) 2013; 31
F Awaja (2149_CR28) 2005; 41
S Sulaiman (2149_CR25) 2014; 53
GJ Palm (2149_CR10) 2019; 10
RJ Müller (2149_CR36) 2005; 26
J Then (2149_CR26) 2016; 6
S Sulaiman (2149_CR37) 2012; 78
UT Bornscheuer (2149_CR9) 2016; 351
2149_CR1
K Ragaert (2149_CR4) 2017; 69
HP Austin (2149_CR13) 2018; 115
2149_CR34
F Kawai (2149_CR7) 2019; 103
2149_CR35
R Sowdhamini (2149_CR27) 1989; 3
R Wei (2149_CR22) 2014; 89
G Liu (2149_CR32) 2016; 39
T Kawabata (2149_CR24) 2017; 124
2149_CR3
ES Barboza Neto (2149_CR29) 2014; 17
2149_CR30
AV Gusakov (2149_CR31) 2007; 97
References_xml – reference: AustinHPCharacterization and engineering of a plastic-degrading aromatic polyesteraseProc. Natl Acad. Sci. USA2018115E4350E43571:CAS:528:DC%2BC1cXhvVGhtLnF10.1073/pnas.1718804115
– reference: SulaimanSYouDJKanayaEKogaYKanayaSCrystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinaseBiochemistry201453185818691:CAS:528:DC%2BC2cXjsVehs7w%3D10.1021/bi401561p
– reference: GusakovAVDesign of highly efficient cellulase mixtures for enzymatic hydrolysis of celluloseBiotechnol. Bioeng.200797102810381:CAS:528:DC%2BD2sXnvFahu74%3D10.1002/bit.21329
– reference: RagaertKDelvaLVan GeemKMechanical and chemical recycling of solid plastic wasteWaste Manag.20176924581:CAS:528:DC%2BC2sXhtlOhtLrO10.1016/j.wasman.2017.07.044
– reference: WeiRZimmermannWMicrobial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?Microb. Biotechnol.201710130813221:CAS:528:DC%2BC2sXhslCntLbF10.1111/1751-7915.12710
– reference: ChenSSuLChenJWuJCutinase: characteristics, preparation, and applicationBiotechnol. Adv.201331175417671:CAS:528:DC%2BC3sXhsFGqt7vN10.1016/j.biotechadv.2013.09.005
– reference: MartenEMüllerR-JDeckwerW-DStudies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyestersPolym. Degrad. Stabil.2005883713811:CAS:528:DC%2BD2MXisVCks7g%3D10.1016/j.polymdegradstab.2004.12.001
– reference: MüllerRJSchraderHProfeJDreslerKDeckwerW-DEnzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fuscaMacromol. Rapid Commun.2005261400140510.1002/marc.200500410
– reference: GeyerRJambeckJRLawKLProduction, use, and fate of all plastics ever madeSci. Adv.20173e17007822017SciA....3E0782G10.1126/sciadv.1700782
– reference: KitadokoroKCrystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolutionPolym. Degrad. Stabil.2012977717751:CAS:528:DC%2BC38Xjt1elsrY%3D10.1016/j.polymdegradstab.2012.02.003
– reference: JooSStructural insight into molecular mechanism of poly(ethylene terephthalate) degradationNat. Commun.201892018NatCo...9..382J10.1038/s41467-018-02881-1
– reference: HanXStructural insight into catalytic mechanism of PET hydrolaseNat. Commun.201782017NatCo...8.2106H10.1038/s41467-017-02255-z
– reference: ThenJCa2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fuscaBiotechnol. J.2015105925981:CAS:528:DC%2BC2MXhtFKgtbc%3D10.1002/biot.201400620
– reference: Mohammad-KhahAAnsariRActivated charcoal: preparation, characterization and applications: a review articleInt. J. Chemtech Res.20141859864
– reference: VertommenMANierstraszVAvan der VeerMWarmoeskerkenMMEnzymatic surface modification of poly(ethylene terephthalate)J. Biotechnol.20051203763861:CAS:528:DC%2BD2MXht1egsrrL10.1016/j.jbiotec.2005.06.015
– reference: KawabataTOdaMKawaiFMutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalateJ. Biosci. Bioeng.201712428351:CAS:528:DC%2BC2sXjtFKnurs%3D10.1016/j.jbiosc.2017.02.007
– reference: KawaiFKawabataTOdaMCurrent knowledge on enzymatic PET degradation and its possible application to waste stream management and other fieldsAppl. Microbiol. Biotechnol.2019103425342681:CAS:528:DC%2BC1MXovFakurw%3D10.1007/s00253-019-09717-y
– reference: Meyer, D. H. Process for purifying terephthalic acid. US patent 3,288,849 (1966).
– reference: BornscheuerUTFeeding on plasticScience2016351115411552016Sci...351.1154B1:CAS:528:DC%2BC28XksVGntL4%3D10.1126/science.aaf2853
– reference: WeiRBiocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructuresAdv. Sci.20196190049110.1002/advs.201900491
– reference: TaniguchiIBiodegradation of PET: current status and application aspectsACS Catal.20199408941051:CAS:528:DC%2BC1MXmslOrtr0%3D10.1021/acscatal.8b05171
– reference: Merchant Research and Consulting. Sodium sulfate: 2020 world market outlook and forecast up to 2029. https://mcgroup.co.uk/researches/sodium-sulphate (2019).
– reference: RonkvistASMXieWLuWGrossRACutinase-catalyzed hydrolysis of poly(ethylene terephthalate)Macromolecules200942512851382009MaMol..42.5128R1:CAS:528:DC%2BD1MXotVGksb0%3D10.1021/ma9005318
– reference: PalmGJStructure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrateNat. Commun.2019102019NatCo..10.1717P10.1038/s41467-019-09326-3
– reference: WeiROeserTZimmermannWSynthetic polyester-hydrolyzing enzymes from thermophilic actinomycetesAdv. Appl. Microbiol.20148926730510.1016/B978-0-12-800259-9.00007-X
– reference: PlasticsEurope. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data. PlasticsEuropehttps://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (2019).
– reference: BruecknerTEberlAHeumannSRabeMGuebitzGMEnzymatic and chemical hydrolysis of poly (ethylene terephthalate) fabricsJ. Polym. Sci. A200846643564431:CAS:528:DC%2BD1cXht1SnsLfE10.1002/pola.22952
– reference: LiuGZhangJBaoJCost evaluation of cellulose enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modelingBioprocess Biosyst. Eng.20163913314010.1007/s00449-015-1497-1
– reference: SulaimanSIsolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomics approachAppl. Environ. Microbiol.201278155615621:CAS:528:DC%2BC38XjtVSntLY%3D10.1128/AEM.06725-11
– reference: Barboza NetoESCoelhoLAFForteMMCAmicoSCFerreiraCAProcessing of a LLDPE/HDPE pressure vessel liner by rotomoldingMater. Res.2014172362411:CAS:528:DC%2BC2cXptFyhur0%3D10.1590/S1516-14392013005000168
– reference: AwajaFPavelDRecycling of PETEur. Polym. J.200541145314771:CAS:528:DC%2BD2MXjslOgtbY%3D10.1016/j.eurpolymj.2005.02.005
– reference: Fullbrook, P. D. in Glucose Syrups, Science and Technology (eds Dziedzic, S. Z. & Kearsley, M. W.) 65–115 (Elsevier, 1984).
– reference: PET polymer: chemical economics handbook. IHS Markit https://ihsmarkit.com/products/pet-polymer-chemical-economics-handbook.html (2018).
– reference: YoshidaSA bacterium that degrades and assimilates poly(ethylene terephthalate)Science2016351119611992016Sci...351.1196Y1:CAS:528:DC%2BC28Xjs12gtr4%3D10.1126/science.aad6359
– reference: ZimmermannWBilligSEnzymes for the biofunctionalization of poly(ethylene terephthalate)Adv. Biochem. Eng. Biotechnol.201012597120
– reference: ThenJA disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalateFEBS Open Bio201664254321:CAS:528:DC%2BC28Xht1Kru7rM10.1002/2211-5463.12053
– reference: SowdhaminiRStereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesisProtein Eng.19893951031:CAS:528:DyaK3cXpsV2gtQ%3D%3D10.1093/protein/3.2.95
– volume: 3
  start-page: 95
  year: 1989
  ident: 2149_CR27
  publication-title: Protein Eng.
  doi: 10.1093/protein/3.2.95
– ident: 2149_CR35
– volume: 88
  start-page: 371
  year: 2005
  ident: 2149_CR5
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.12.001
– volume: 8
  year: 2017
  ident: 2149_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02255-z
– volume: 53
  start-page: 1858
  year: 2014
  ident: 2149_CR25
  publication-title: Biochemistry
  doi: 10.1021/bi401561p
– volume: 10
  year: 2019
  ident: 2149_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09326-3
– volume: 115
  start-page: E4350
  year: 2018
  ident: 2149_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1718804115
– volume: 26
  start-page: 1400
  year: 2005
  ident: 2149_CR36
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200500410
– volume: 97
  start-page: 771
  year: 2012
  ident: 2149_CR20
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2012.02.003
– volume: 6
  start-page: 425
  year: 2016
  ident: 2149_CR26
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12053
– ident: 2149_CR3
– volume: 351
  start-page: 1196
  year: 2016
  ident: 2149_CR8
  publication-title: Science
  doi: 10.1126/science.aad6359
– ident: 2149_CR1
– volume: 69
  start-page: 24
  year: 2017
  ident: 2149_CR4
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.07.044
– volume: 39
  start-page: 133
  year: 2016
  ident: 2149_CR32
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-015-1497-1
– volume: 3
  start-page: e1700782
  year: 2017
  ident: 2149_CR2
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 10
  start-page: 592
  year: 2015
  ident: 2149_CR23
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400620
– volume: 97
  start-page: 1028
  year: 2007
  ident: 2149_CR31
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21329
– volume: 41
  start-page: 1453
  year: 2005
  ident: 2149_CR28
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2005.02.005
– volume: 6
  start-page: 1900491
  year: 2019
  ident: 2149_CR17
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900491
– volume: 124
  start-page: 28
  year: 2017
  ident: 2149_CR24
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2017.02.007
– volume: 351
  start-page: 1154
  year: 2016
  ident: 2149_CR9
  publication-title: Science
  doi: 10.1126/science.aaf2853
– volume: 1
  start-page: 859
  year: 2014
  ident: 2149_CR33
  publication-title: Int. J. Chemtech Res.
– volume: 120
  start-page: 376
  year: 2005
  ident: 2149_CR16
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2005.06.015
– volume: 125
  start-page: 97
  year: 2010
  ident: 2149_CR19
  publication-title: Adv. Biochem. Eng. Biotechnol.
– ident: 2149_CR34
– volume: 9
  year: 2018
  ident: 2149_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02881-1
– volume: 103
  start-page: 4253
  year: 2019
  ident: 2149_CR7
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09717-y
– ident: 2149_CR30
– volume: 10
  start-page: 1308
  year: 2017
  ident: 2149_CR6
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12710
– volume: 31
  start-page: 1754
  year: 2013
  ident: 2149_CR21
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.09.005
– volume: 89
  start-page: 267
  year: 2014
  ident: 2149_CR22
  publication-title: Adv. Appl. Microbiol.
  doi: 10.1016/B978-0-12-800259-9.00007-X
– volume: 17
  start-page: 236
  year: 2014
  ident: 2149_CR29
  publication-title: Mater. Res.
  doi: 10.1590/S1516-14392013005000168
– volume: 46
  start-page: 6435
  year: 2008
  ident: 2149_CR15
  publication-title: J. Polym. Sci. A
  doi: 10.1002/pola.22952
– volume: 78
  start-page: 1556
  year: 2012
  ident: 2149_CR37
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06725-11
– volume: 42
  start-page: 5128
  year: 2009
  ident: 2149_CR18
  publication-title: Macromolecules
  doi: 10.1021/ma9005318
– volume: 9
  start-page: 4089
  year: 2019
  ident: 2149_CR14
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05171
SSID ssj0005174
Score 2.72972
Snippet Present estimates suggest that of the 359 million tons of plastics produced annually worldwide 1 , 150–200 million tons accumulate in landfill or in the...
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide , 150-200 million tons accumulate in landfill or in the natural...
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide.sup.1, 150-200 million tons accumulate in landfill or in the...
Present estimates suggest that ofthe 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural...
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide1, 150-200 million tons accumulate in landfill or in the natural...
Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the...
SourceID hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 216
SubjectTerms 631/45/603
631/61/338
639/638/77/603
82
Actinobacteria - enzymology
Amino acids
Analysis
Binding sites
Biotechnology
Bottles
Burkholderiales - enzymology
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - metabolism
Chain mobility
Computer-aided design
Depolymerization
Disulfides - chemistry
Disulfides - metabolism
Enzyme Assays
Enzyme Stability
Enzymes
Fusarium - enzymology
Humanities and Social Sciences
Hydrolase
Hydrolases - chemistry
Hydrolases - metabolism
Landfills
Life Sciences
Materials
Methods
Models, Molecular
Monomers
multidisciplinary
Mutagenesis
Mutation
Petrochemicals
Petrochemicals industry
Phthalic Acids - metabolism
Plastic bottles
Plastics
Plastics - chemistry
Plastics - metabolism
Polyethylene terephthalate
Polyethylene Terephthalates - chemistry
Polyethylene Terephthalates - metabolism
Polymerase chain reaction
Polymerization
Polymers
Protein Engineering
Recycling
Science
Science (multidisciplinary)
Textiles
Thermobifida
Thermomechanical treatment
Waste disposal sites
Waste management
Title An engineered PET depolymerase to break down and recycle plastic bottles
URI https://link.springer.com/article/10.1038/s41586-020-2149-4
https://www.ncbi.nlm.nih.gov/pubmed/32269349
https://www.proquest.com/docview/2390656133
https://www.proquest.com/docview/2388003947
https://hal.inrae.fr/hal-02545880
Volume 580
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoJiReEBtfYaMyaOJT0ZrESZwnFKqWgqCaRif6ZsWOPRBV0pEWaf89d4nTEjb2kof4cnHO9vnOd_kdIUeR4YpzJt04QFBtpZUrtee7KjKh5hwchAR_Tv4yjSZn7NM8nNsDt8qmVbY6sVbUeanwjPzYB-c8Qms3eLe8cLFqFEZXbQmNHtn1YKfBlC4-_rBN8fgHhbmNagb8uIKNi2P67cD1wUlwWWdfstq59x2TI69anleipvVmNL5H7lorkqbNsO-RW7rYJ7frbE5V7ZM9u2Ir-srCSr--TyZpQbVFH9Q5PRnNaA7W9-ISj6UqTVclBfc4-0lzcMxpVuQUlOElsKdLsLDhRRSrji109YCcjUez4cS1dRRA4pyvXM_3MyV1FiopZRKDYEye-aHxpAmyWCcsNGA2xbH0DZOhLzH0J3NPg63kxQg5_5DsFGWhHxOqsoRxA14SjzTzDPjPySBLQqNilfsBCxwyaKUolAUZx1oXC1EHuwMuGsELELxAwQvmkDebR5YNwsZNxEc4NAKRKwpMjTnP1lUl0tm34VSk4AxyhgBqDnl-HdnHr6cdopeWyJTQR5XZHxLgSxETq0N50KFUyx8X4q_WF53W82Zgr2Nz2CGEhay6nYb5tpEB4n5P0s8C7yFkQQia9rcHPNrpKKy2qcR2bTjk2aYZ2WMGXaHLNdLA84MgYbFDHjXTePMqUOpREjDowdt2Xm-Z_3csntzclQNyx8flVWc5HZKd1a-1fgoG3Er2SS-ex3DlQ69fr9g-2X0_mp6c_gFJIj2f
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQQviI2vsgEGjW9FaxwncR4QqsZKy7oKQSf2ZmLHHogq6UjL1H-Kv5G7fLSEjb3tNb6cnfP5PuLzz4RsB1ZoIbhyQg9BtbXRjjIuc3RgfSMEJAgRHk4-GAa9Q_7hyD9aIb_rszBYVlnbxMJQJ5nGf-Q7DJLzAKNd7-3kxMFbo3B3tb5Co1SLfTM_hZQtf9N_B_P7lLHu3mi351S3CkD_Qkwdl7FYKxP7WikVhWASbBIz37rKenFoIu5bCCLCUDHLlc8UboSpxDUQObghArAD31VyhXvgyfFkevf9sqTkH9TnehfVEzs5OEqB5b5th0FS4vCGH6y8weo3LMY8G-me2aUtnF_3JrlRRa20U6rZOlkx6Qa5WlSP6nyDrFcWIqcvKhjrl7dIr5NSU6EdmoR-3BvRBKL98Rx_g-WGTjMK6Xj8gybZaUrjNKFgfOfAnk4gooeOKN5yNjb5bXJ4KRK-Q9bSLDX3CNVxxIWFrEwEhrsW8vWoHUe-1aFOmMe9FmnXUpS6AjXHuzXGsthc94QsBS9B8BIFL3mLvFq8MikRPS4i3sapkYiUkWIpznE8y3PZGX3ZHcoOJJ-CI2Bbizw5j6z_-VOD6HlFZDMYo46rAxDwpYjB1aDcbFDqyfcT-Vfrs0brcTmx57HZahCC4dDNQYO-LWSAOOO9zkDiM4RI8MGy_3KBR62OsrJuuVyuxRZ5vGhG9lixl5pshjTwftuLeNgid0s1XnQFTiSIPA4jeF3r9ZL5f-fi_sVDeUSu9UYHAznoD_c3yXWGS62osNoia9OfM_MAgsepelisWEq-XraJ-AP-6Xc5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IRAviI2vsgEGjW9FbRwncR4QqrpVLRvTxDqxNxM79kBUSUdapv5r_HXc5aNb2NjbXuvL5Xo-30d8_pmQzcAKLQRXTughqLY22lHGZY4OrG-EgAIhwsPJn_eCwSH_dOQfLZE_9VkYbKusfWLhqJNM4zfyNoPiPMBs12vbqi1if6v_cXLi4A1SuNNaX6dRmsiOmZ9C-ZZ_GG7BXL9krL896g2c6oYBkEWIqeMyFmtlYl8rpaIQ3INNYuZbV1kvDk3EfQsJRRgqZrnymcJNMZW4BrIIN0QwduC7TG6EXihwjYneufaSfxCg6x1VT7RzCJoCW387DoMCxeGNmFhFhuXv2Jh5Meu9sGNbBML-XXKnymBptzS5VbJk0jVys-gk1fkaWa28RU7fVJDWb--RQTelpkI-NAnd3x7RBDL_8Rw_ieWGTjMKpXn8kybZaUrjNKHgiOfAnk4gu4cXUbzxbGzy--TwWjT8gKykWWoeEarjiAsLFZoIDHct1O5RJ458q0OdMI97LdKptSh1BXCO92yMZbHR7glZKl6C4iUqXvIWebd4ZFKie1xFvIlTIxE1I0X7O45neS67o6-9PdmFQlRwBG9rkReXkQ0PvjSIXldENgMZdVwdhoB_inhcDcr1BqWe_DiR50ZfNUaPy4m9jM1GgxCciG4KDfa20AFijg-6uxJ_Q7gEH7z8bxd41OYoK0-Xy7N12SLPF8PIHrv3UpPNkAae73gRD1vkYWnGi1dBQAkij4ME72u7PmP-37l4fLUoz8gtcA5yd7i3s05uM1xpRbPVBlmZ_pqZJ5BHTtXTYsFS8u26PcRfpHV7Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+engineered+PET+depolymerase+to+break+down+and+recycle+plastic+bottles&rft.jtitle=Nature+%28London%29&rft.au=Tournier%2C+V.&rft.au=Topham%2C+C.&rft.au=Gilles%2C+A.&rft.au=David%2C+B.&rft.date=2020-04-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=580&rft.issue=7802&rft.spage=216&rft.epage=219&rft_id=info:doi/10.1038%2Fs41586-020-2149-4&rft_id=info%3Apmid%2F32269349&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02545880v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon