Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution
The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attentio...
Saved in:
Published in | Analytical Sciences Vol. 37; no. 5; pp. 721 - 726 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
The Japan Society for Analytical Chemistry
10.05.2021
Springer Nature Singapore Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 – 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution. |
---|---|
AbstractList | The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 – 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution. The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 - 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 - 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution. The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, C n - APB ( n = 1 – 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These C n - APB /CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn - APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD ( 3-PB- γ -CyD ), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution. |
Author | TSUCHIDO, Yuji SUGITA, Ko HASHIMOTO, Takeshi KOJIMA, Shohei HAYASHITA, Takashi FUJIWARA, Shoji |
Author_xml | – sequence: 1 fullname: TSUCHIDO, Yuji organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University – sequence: 2 fullname: KOJIMA, Shohei organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University – sequence: 3 fullname: SUGITA, Ko organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University – sequence: 4 fullname: FUJIWARA, Shoji organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University – sequence: 5 fullname: HASHIMOTO, Takeshi organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University – sequence: 6 fullname: HAYASHITA, Takashi organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33455966$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv0zAYhi00xLrBmRuyxIVL1i924iTHqus2pE5UFM6RY39pXaV2sROJ_hV-LY5aijQJLsnhex5_r_3ekCvrLBLyPoU7lqZiKq3sgjJ3DNbzFZSvyCTlWZkwlokrMoEqhUTwDK7JTQg7gJSVjL0h15xneV4JMSG_Fm2LqqeupeuDVOjpEu2m31Jj6ero0WLy7LRpDepktUV77BrnnTWKzpTRdOVdg9P58Z7O3f7Q4U8M1Fn60A3OY1BoFSaNDKjpV1RuY01v4jgue3bWBanUVnqjoxTXzX4M6IZA164bRuwted3G2-G78_-WfH9YfJs_Jcsvj5_ns2WiRFn0SdG0HNuSiSYrAQpIAbQQVZY1oHmDGiAHzCVkiBmA0pppJuJEVLxJ20bxW_LpdO7Buxgh9PXexOhdJ-2Yp2ZZURbx6LyK6McX6M4NfuygZjnPKyjKikXqw5kamj3q-uDNXvpj_efVIzA9Acq7EDy2FySFeuy1Pvdan3uNRv7CUKaX4yv1XpruPx6cvBA32A36v4H_rSxOyi70coOXaNL3RnV44XlR5-Pn7F3mY6U1Wv4bVc3Uqg |
CitedBy_id | crossref_primary_10_5182_jaie_35_31 crossref_primary_10_1007_s44211_022_00222_3 crossref_primary_10_5182_jaie_33_37 |
Cites_doi | 10.1021/ac001363k 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 10.2116/analsci.30.643 10.1039/c3sc51623g 10.1039/C5TB01006C 10.1039/b819938h 10.1021/acs.joc.0c01011 10.1248/cpb.c16-00963 10.1021/jo01088a011 10.1007/s11705-019-1851-y 10.1039/C7AN00439G 10.1021/acs.analchem.5b00998 10.2116/analsci.24.207 10.1021/ja901174k 10.3389/fchem.2019.00806 10.1039/c3cs60148j 10.1039/C9AN00741E 10.2116/analsci.28.121 10.1021/acs.langmuir.6b02917 10.1021/cr500562m 10.1002/anie.199619101 |
ContentType | Journal Article |
Copyright | 2021 by The Japan Society for Analytical Chemistry The Japan Society for Analytical Chemistry 2021 Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 by The Japan Society for Analytical Chemistry – notice: The Japan Society for Analytical Chemistry 2021 – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7X8 |
DOI | 10.2116/analsci.20SCP08 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Aluminium Industry Abstracts Technology Research Database Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1348-2246 |
EndPage | 726 |
ExternalDocumentID | 33455966 10_2116_analsci_20SCP08 article_analsci_37_5_37_20SCP08_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 23M 2WC 406 5GY 6J9 7.U AAJBT AATNV ABJNI ABTKH ACAOD ACGFO ACIWK ACPRK ACZOJ ADBBV ADOXG AEFQL AEMSY AENEX AESKC AFBBN AFRAH AGQEE AIAKS ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAWUL CS3 DIK DPUIP E3Z EBLON EBS EJD F5P GX1 HH5 IWAJR JSF JSH JZLTJ KQ8 LLZTM M~E OK1 P2P RDB RJT RNS RSV RZJ RZV SOJ TN5 TR2 UPT XSB ~02 0R~ 3O- 53G AACDK AASML ABAKF ACDTI ACPIV AGMZJ AI. AIGIU FIGPU NPVJJ ROL SJYHP TKC VH1 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD ABRTQ FR3 H8G JG9 L7M P64 7X8 |
ID | FETCH-LOGICAL-c687t-7bf3ef826b480070100d66944b0d3bed0050e5a04ee400cdd2d26d3b693b1fbc3 |
ISSN | 0910-6340 1348-2246 |
IngestDate | Fri Jul 11 16:12:06 EDT 2025 Wed Aug 27 14:43:45 EDT 2025 Wed Feb 19 02:23:59 EST 2025 Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 01:11:40 EDT 2025 Fri Feb 21 02:42:22 EST 2025 Sun Jul 28 05:07:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Cyclodextrin spacer effect phenylboronic acid pyrene supramolecular complex |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c687t-7bf3ef826b480070100d66944b0d3bed0050e5a04ee400cdd2d26d3b693b1fbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/analsci/37/5/37_20SCP08/_article/-char/en |
PMID | 33455966 |
PQID | 2535907892 |
PQPubID | 1966371 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2478780059 proquest_journals_2535907892 pubmed_primary_33455966 crossref_primary_10_2116_analsci_20SCP08 crossref_citationtrail_10_2116_analsci_20SCP08 springer_journals_10_2116_analsci_20SCP08 jstage_primary_article_analsci_37_5_37_20SCP08_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-May-10 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Switzerland – name: Tokyo |
PublicationTitle | Analytical Sciences |
PublicationTitleAbbrev | ANAL. SCI |
PublicationTitleAlternate | Anal Sci |
PublicationYear | 2021 |
Publisher | The Japan Society for Analytical Chemistry Springer Nature Singapore Nature Publishing Group |
Publisher_xml | – name: The Japan Society for Analytical Chemistry – name: Springer Nature Singapore – name: Nature Publishing Group |
References | 1. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai, Angew. Chem., Int. Ed. Engl., 1996, 35, 1910. 13. X. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, and Y. B. Jiang, Chem. Soc. Rev., 2013, 42, 8032. 18. C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709. 10. M. Mammen, S. K. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, 2754. 20. M. Kumai, S. Kozuka, M. Samizo, T. Hashimoto, I. Suzuki, and T. Hayashita, Anal. Sci., 2012, 28, 121. 6. K. Sugita, Y. Tsuchido, C. Kasahara, M. A. Casulli, S. Fujiwara, T. Hashimoto, and T. Hayashita, Front. Chem., 2019, 7, 806. 5. K. Sato, M. Takahashi, M. Ito, E. Abe, and J. Anzai, J. Mater. Chem. B, 2015, 3, 7796. 12. H. Wang, Z. Bie, C. Lü, and Z. Liu, Chem. Sci., 2013, 4, 4298. 17. H. Kano, D. Tanoue, H. Shimaoka, K. Katano, T. Hashimoto, H. Kunugita, S. Nanbu, T. Hayashita, and K. Ema, Anal. Sci., 2014, 30, 643. 9. Y. Suzuki, A. Ikeda, K. Ohno, T. Fujihara, T. Sugaya, and K. Ishihara, J. Org. Chem., 2020, 85, 9680. 2. J. P. Lorand and J. O. Edwards, J. Org. Chem., 1959, 24, 769. 4. T. Kubo, K. Kanemori, R. Kusumoto, T. Kawai, K. Sueyoshi, T. Naito, and K. Otsuka, Anal. Chem., 2015, 87, 5068. 15. X. Sun and T. D. James, Chem. Rev., 2015, 115, 8001. 16. A.-J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B. D. Smith, and N. Teramae, Anal. Chem., 2001, 73, 1530. 14. X. Wu, X.-X. Chen, and Y.-B. Jiang, Analyst, 2017, 142, 1403. 7. Y. Tsuchido, R. Sato, N. Nodomi, T. Hashimoto, K. Akiyoshi, and T. Hayashita, Langmuir, 2016, 32, 10761. 3. Z. Bian, A. Liu, Y. Li, G. Fang, Q. Yao, G. Zhang, and Z. Wu, Analyst, 2020, 145, 719. 21. R. Ozawa, T. Hashimoto, A. Yamauchi, I. Suzuki, B. D. Smith, and T. Hayashita, Anal. Sci., 2008, 24, 207. 8. Y. Tsuchido, S. Fujiwara, T. Hashimoto, and T. Hayashita, Chem. Pharm. Bull., 2017, 65, 318. 19. T. Hashimoto, M. Kumai, M. Maeda, K. Miyoshi, Y. Tsuchido, S. Fujiwara, and T. Hayashita, Front. Chem. Sci. Eng., 2020, 14, 53. 11. G. M. Pavan, A. Danani, S. Pricl, and D. K. Smith, J. Am. Chem. Soc., 2009, 131, 9686. SuzukiYIkedaAOhnoKFujiharaTSugayaTIshiharaKJ. Org. Chem.20208596801:CAS:528:DC%2BB3cXhtlCmtb3P10.1021/acs.joc.0c0101132639160 JamesT DSandanayakeK R A SShinkaiSAngew. Chem., Int. Ed. Engl.199635191010.1002/anie.199619101 BianZLiuALiYFangGYaoQZhangGWuZAnalyst20201457191:CAS:528:DC%2BC1MXit1alsb7F10.1039/C9AN00741E31829324 TongA-JYamauchiAHayashitaTZhangZ-YSmithB DTeramaeNAnal. Chem.20017315301:CAS:528:DC%2BD3MXhsFKisL0%3D10.1021/ac001363k11321305 LorandJ PEdwardsJ OJ. Org. Chem.1959247691:CAS:528:DyaF3cXksVenuw%3D%3D10.1021/jo01088a011 WangHBieZLüCLiuZChem. Sci.2013442981:CAS:528:DC%2BC3sXhsFegsrrF10.1039/c3sc51623g C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709. SugitaKTsuchidoYKasaharaCCasulliM AFujiwaraSHashimotoTHayashitaTFront. Chem.201978061:CAS:528:DC%2BB3cXhtFOrsbbI10.3389/fchem.2019.00806318280596890849 KumaiMKozukaSSamizoMHashimotoTSuzukiIHayashitaTAnal. Sci.2012281211:CAS:528:DC%2BC38Xjs1aisbY%3D10.2116/analsci.28.12122322803 SunXJamesT DChem. Rev.201511580011:CAS:528:DC%2BC2MXosFartr8%3D10.1021/cr500562m25974371 HashimotoTKumaiMMaedaMMiyoshiKTsuchidoYFujiwaraSHayashitaTFront. Chem. Sci. Eng.202014531:CAS:528:DC%2BC1MXitlynsrnL10.1007/s11705-019-1851-y PavanG MDananiAPriclSSmithD KJ. Am. Chem. Soc.200913196861:CAS:528:DC%2BD1MXns1Ogtbs%3D10.1021/ja901174k19555062 WuXLiZChenX XFosseyJ SJamesT DJiangY BChem. Soc. Rev.20134280321:CAS:528:DC%2BC3sXhsVyrtbjF10.1039/c3cs60148j23860576 MammenMChoiS KWhitesidesG MAngew. Chem. Int. Ed.199837275410.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 KanoHTanoueDShimaokaHKatanoKHashimotoTKunugitaHNanbuSHayashitaTEmaKAnal. Sci.2014306431:CAS:528:DC%2BC2cXhtFWhtLfI10.2116/analsci.30.64324919668 KuboTKanemoriKKusumotoRKawaiTSueyoshiKNaitoTOtsukaKAnal. Chem.20158750681:CAS:528:DC%2BC2MXntVCntbo%3D10.1021/acs.analchem.5b0099825907638 SatoKTakahashiMItoMAbeEAnzaiJJ. Mater. Chem. B2015377961:CAS:528:DC%2BC2MXhsVOmtbnP10.1039/C5TB01006C32264588 TsuchidoYFujiwaraSHashimotoTHayashitaTChem. Pharm. Bull.2017653181:CAS:528:DC%2BC2sXhsVGgt7jL10.1248/cpb.c16-00963 OzawaRHashimotoTYamauchiASuzukiISmithB DHayashitaTAnal. Sci.2008242071:CAS:528:DC%2BD1cXit1Ogu74%3D10.2116/analsci.24.20718270410 TsuchidoYSatoRNodomiNHashimotoTAkiyoshiKHayashitaTLangmuir201632107611:CAS:528:DC%2BC28XhsFGku77E10.1021/acs.langmuir.6b0291727658017 WuXChenX-XJiangY-BAnalyst201714214031:CAS:528:DC%2BC2sXlsFShtr8%3D10.1039/C7AN00439G28425507 R Ozawa (3705003_CR21) 2008; 24 K Sugita (3705003_CR6) 2019; 7 G M Pavan (3705003_CR11) 2009; 131 Z Bian (3705003_CR3) 2020; 145 Y Tsuchido (3705003_CR7) 2016; 32 T D James (3705003_CR1) 1996; 35 T Kubo (3705003_CR4) 2015; 87 X Wu (3705003_CR14) 2017; 142 J P Lorand (3705003_CR2) 1959; 24 X Sun (3705003_CR15) 2015; 115 T Hashimoto (3705003_CR19) 2020; 14 X Wu (3705003_CR13) 2013; 42 3705003_CR18 K Sato (3705003_CR5) 2015; 3 A-J Tong (3705003_CR16) 2001; 73 H Kano (3705003_CR17) 2014; 30 Y Suzuki (3705003_CR9) 2020; 85 H Wang (3705003_CR12) 2013; 4 M Kumai (3705003_CR20) 2012; 28 Y Tsuchido (3705003_CR8) 2017; 65 M Mammen (3705003_CR10) 1998; 37 |
References_xml | – reference: 8. Y. Tsuchido, S. Fujiwara, T. Hashimoto, and T. Hayashita, Chem. Pharm. Bull., 2017, 65, 318. – reference: 20. M. Kumai, S. Kozuka, M. Samizo, T. Hashimoto, I. Suzuki, and T. Hayashita, Anal. Sci., 2012, 28, 121. – reference: 2. J. P. Lorand and J. O. Edwards, J. Org. Chem., 1959, 24, 769. – reference: 13. X. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, and Y. B. Jiang, Chem. Soc. Rev., 2013, 42, 8032. – reference: 21. R. Ozawa, T. Hashimoto, A. Yamauchi, I. Suzuki, B. D. Smith, and T. Hayashita, Anal. Sci., 2008, 24, 207. – reference: 18. C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709. – reference: 19. T. Hashimoto, M. Kumai, M. Maeda, K. Miyoshi, Y. Tsuchido, S. Fujiwara, and T. Hayashita, Front. Chem. Sci. Eng., 2020, 14, 53. – reference: 1. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai, Angew. Chem., Int. Ed. Engl., 1996, 35, 1910. – reference: 9. Y. Suzuki, A. Ikeda, K. Ohno, T. Fujihara, T. Sugaya, and K. Ishihara, J. Org. Chem., 2020, 85, 9680. – reference: 5. K. Sato, M. Takahashi, M. Ito, E. Abe, and J. Anzai, J. Mater. Chem. B, 2015, 3, 7796. – reference: 3. Z. Bian, A. Liu, Y. Li, G. Fang, Q. Yao, G. Zhang, and Z. Wu, Analyst, 2020, 145, 719. – reference: 15. X. Sun and T. D. James, Chem. Rev., 2015, 115, 8001. – reference: 17. H. Kano, D. Tanoue, H. Shimaoka, K. Katano, T. Hashimoto, H. Kunugita, S. Nanbu, T. Hayashita, and K. Ema, Anal. Sci., 2014, 30, 643. – reference: 6. K. Sugita, Y. Tsuchido, C. Kasahara, M. A. Casulli, S. Fujiwara, T. Hashimoto, and T. Hayashita, Front. Chem., 2019, 7, 806. – reference: 7. Y. Tsuchido, R. Sato, N. Nodomi, T. Hashimoto, K. Akiyoshi, and T. Hayashita, Langmuir, 2016, 32, 10761. – reference: 10. M. Mammen, S. K. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, 2754. – reference: 12. H. Wang, Z. Bie, C. Lü, and Z. Liu, Chem. Sci., 2013, 4, 4298. – reference: 4. T. Kubo, K. Kanemori, R. Kusumoto, T. Kawai, K. Sueyoshi, T. Naito, and K. Otsuka, Anal. Chem., 2015, 87, 5068. – reference: 16. A.-J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B. D. Smith, and N. Teramae, Anal. Chem., 2001, 73, 1530. – reference: 11. G. M. Pavan, A. Danani, S. Pricl, and D. K. Smith, J. Am. Chem. Soc., 2009, 131, 9686. – reference: 14. X. Wu, X.-X. Chen, and Y.-B. Jiang, Analyst, 2017, 142, 1403. – reference: TsuchidoYFujiwaraSHashimotoTHayashitaTChem. Pharm. Bull.2017653181:CAS:528:DC%2BC2sXhsVGgt7jL10.1248/cpb.c16-00963 – reference: PavanG MDananiAPriclSSmithD KJ. Am. Chem. Soc.200913196861:CAS:528:DC%2BD1MXns1Ogtbs%3D10.1021/ja901174k19555062 – reference: BianZLiuALiYFangGYaoQZhangGWuZAnalyst20201457191:CAS:528:DC%2BC1MXit1alsb7F10.1039/C9AN00741E31829324 – reference: SugitaKTsuchidoYKasaharaCCasulliM AFujiwaraSHashimotoTHayashitaTFront. Chem.201978061:CAS:528:DC%2BB3cXhtFOrsbbI10.3389/fchem.2019.00806318280596890849 – reference: JamesT DSandanayakeK R A SShinkaiSAngew. Chem., Int. Ed. Engl.199635191010.1002/anie.199619101 – reference: WangHBieZLüCLiuZChem. Sci.2013442981:CAS:528:DC%2BC3sXhsFegsrrF10.1039/c3sc51623g – reference: KumaiMKozukaSSamizoMHashimotoTSuzukiIHayashitaTAnal. Sci.2012281211:CAS:528:DC%2BC38Xjs1aisbY%3D10.2116/analsci.28.12122322803 – reference: MammenMChoiS KWhitesidesG MAngew. Chem. Int. Ed.199837275410.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 – reference: WuXChenX-XJiangY-BAnalyst201714214031:CAS:528:DC%2BC2sXlsFShtr8%3D10.1039/C7AN00439G28425507 – reference: TongA-JYamauchiAHayashitaTZhangZ-YSmithB DTeramaeNAnal. Chem.20017315301:CAS:528:DC%2BD3MXhsFKisL0%3D10.1021/ac001363k11321305 – reference: TsuchidoYSatoRNodomiNHashimotoTAkiyoshiKHayashitaTLangmuir201632107611:CAS:528:DC%2BC28XhsFGku77E10.1021/acs.langmuir.6b0291727658017 – reference: OzawaRHashimotoTYamauchiASuzukiISmithB DHayashitaTAnal. Sci.2008242071:CAS:528:DC%2BD1cXit1Ogu74%3D10.2116/analsci.24.20718270410 – reference: SunXJamesT DChem. Rev.201511580011:CAS:528:DC%2BC2MXosFartr8%3D10.1021/cr500562m25974371 – reference: KanoHTanoueDShimaokaHKatanoKHashimotoTKunugitaHNanbuSHayashitaTEmaKAnal. Sci.2014306431:CAS:528:DC%2BC2cXhtFWhtLfI10.2116/analsci.30.64324919668 – reference: KuboTKanemoriKKusumotoRKawaiTSueyoshiKNaitoTOtsukaKAnal. Chem.20158750681:CAS:528:DC%2BC2MXntVCntbo%3D10.1021/acs.analchem.5b0099825907638 – reference: SatoKTakahashiMItoMAbeEAnzaiJJ. Mater. Chem. B2015377961:CAS:528:DC%2BC2MXhsVOmtbnP10.1039/C5TB01006C32264588 – reference: LorandJ PEdwardsJ OJ. Org. Chem.1959247691:CAS:528:DyaF3cXksVenuw%3D%3D10.1021/jo01088a011 – reference: HashimotoTKumaiMMaedaMMiyoshiKTsuchidoYFujiwaraSHayashitaTFront. Chem. Sci. Eng.202014531:CAS:528:DC%2BC1MXitlynsrnL10.1007/s11705-019-1851-y – reference: SuzukiYIkedaAOhnoKFujiharaTSugayaTIshiharaKJ. Org. Chem.20208596801:CAS:528:DC%2BB3cXhtlCmtb3P10.1021/acs.joc.0c0101132639160 – reference: C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709. – reference: WuXLiZChenX XFosseyJ SJamesT DJiangY BChem. Soc. Rev.20134280321:CAS:528:DC%2BC3sXhsVyrtbjF10.1039/c3cs60148j23860576 – volume: 73 start-page: 1530 year: 2001 ident: 3705003_CR16 publication-title: Anal. Chem. doi: 10.1021/ac001363k – volume: 37 start-page: 2754 year: 1998 ident: 3705003_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 – volume: 30 start-page: 643 year: 2014 ident: 3705003_CR17 publication-title: Anal. Sci. doi: 10.2116/analsci.30.643 – volume: 4 start-page: 4298 year: 2013 ident: 3705003_CR12 publication-title: Chem. Sci. doi: 10.1039/c3sc51623g – volume: 3 start-page: 7796 year: 2015 ident: 3705003_CR5 publication-title: J. Mater. Chem. B doi: 10.1039/C5TB01006C – ident: 3705003_CR18 doi: 10.1039/b819938h – volume: 85 start-page: 9680 year: 2020 ident: 3705003_CR9 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c01011 – volume: 65 start-page: 318 year: 2017 ident: 3705003_CR8 publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.c16-00963 – volume: 24 start-page: 769 year: 1959 ident: 3705003_CR2 publication-title: J. Org. Chem. doi: 10.1021/jo01088a011 – volume: 14 start-page: 53 year: 2020 ident: 3705003_CR19 publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-019-1851-y – volume: 142 start-page: 1403 year: 2017 ident: 3705003_CR14 publication-title: Analyst doi: 10.1039/C7AN00439G – volume: 87 start-page: 5068 year: 2015 ident: 3705003_CR4 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00998 – volume: 24 start-page: 207 year: 2008 ident: 3705003_CR21 publication-title: Anal. Sci. doi: 10.2116/analsci.24.207 – volume: 131 start-page: 9686 year: 2009 ident: 3705003_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901174k – volume: 7 start-page: 806 year: 2019 ident: 3705003_CR6 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00806 – volume: 42 start-page: 8032 year: 2013 ident: 3705003_CR13 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60148j – volume: 145 start-page: 719 year: 2020 ident: 3705003_CR3 publication-title: Analyst doi: 10.1039/C9AN00741E – volume: 28 start-page: 121 year: 2012 ident: 3705003_CR20 publication-title: Anal. Sci. doi: 10.2116/analsci.28.121 – volume: 32 start-page: 10761 year: 2016 ident: 3705003_CR7 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02917 – volume: 115 start-page: 8001 year: 2015 ident: 3705003_CR15 publication-title: Chem. Rev. doi: 10.1021/cr500562m – volume: 35 start-page: 1910 year: 1996 ident: 3705003_CR1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199619101 |
SSID | ssj0012822 |
Score | 2.279459 |
Snippet | The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH... |
SourceID | proquest pubmed crossref springer jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 721 |
SubjectTerms | Analytical Chemistry Aqueous solutions Carbohydrates Chemical perception Chemistry Chemoreception Complex systems Cyclodextrin Cyclodextrins Diabetes mellitus Electron transfer Esterification Fluorescence Fluorescent indicators Inclusion complexes Monosaccharides Original Paper pH effects phenylboronic acid Pyrene Recognition Saccharides Selectivity Sensors spacer effect Spacers supramolecular complex |
Title | Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution |
URI | https://www.jstage.jst.go.jp/article/analsci/37/5/37_20SCP08/_article/-char/en https://link.springer.com/article/10.2116/analsci.20SCP08 https://www.ncbi.nlm.nih.gov/pubmed/33455966 https://www.proquest.com/docview/2535907892 https://www.proquest.com/docview/2478780059 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Analytical Sciences, 2021/05/10, Vol.37(5), pp.721-726 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKQIIXxHUEBjISD6ApXe5pXpCqsmpiZRS1lcpTFCdOm6okqBdB-Rk88ms5x3aS0nVo8BJVtmOnOV_OxT4XQl45FkqlNNIjIzJwtyrVAx6AlZJ4PkuM1PEj4SB74Z2NnPdjd9xo_NzyWlqvWDP-sTeu5H-oCm1AV4yS_QfKVpNCA_wG-sIVKAzXa9FYpR7GuBMwffniuMfzyUrsYfQ3mKtS_1AkWQpapt6f8nwzZ4WseNOOMxEjwDjmx928E2xhzr9zcXjQna-LhUjzFHMdxRyGMCo_I6leAicollGMIVtZIly6jtsgYNCdttxn29Z6ReaTVR2AGdeOi8MlVmNJxIbt5_UsqwRAMcu-CMV2MC2mvGofrCeZVHjPiwp7cN-3aFGOVpOorQzL1EUW1C3uaztAYEvtSfI9bYplyzwxCpruFv_1Zbj1rlwAK1cmRAbCx1nTMgadvtGqRWB57H_xMeyOer1weDoe3iA3LTA9sCrG-af6ZArdboURrx5LpovCBU52pv9D07k1A2V_wvfZMZfO4IVqM7xH7iqbhLYlwO6TBs8fkNudshTgQ_JLAo0WKZVAoxJoNMvpX4FGEWhUAO0EYEYrmNEip5dhRrdghovtwAyXUzCjJcwekVH3dNg501VRDz32Wv5K91lq8xSMWua0MNeUaRiJ5wWOw4zEZjzBhETcjQyHcxAvcZJYieVBjxfYzExZbD8mB3mR8yeEGjDESyIz9iPTiThYOsyO0wgklslATXY10iwJEMYq4z0WXpmHYPkixUJFsVBRTCOvqxu-ymQvVw99KylaDVRcoBpo-6GLF3VD1Y_vDJiXRo5KJISKpSxDy7XdAAtAWBp5WXUDsfEUL8rx_YYWptNqYdC4Rg4lgqpnsG3HdQPP08ibElL15Ff8k6fXWOkZuVN_r0fkYLVY8-egjK_YC_F1_AaKZOlP |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Spacer+Length+in+Pyrene-Modified-Phenylboronic+Acid+Probe%2FCyD+Complexes+on+Fluorescence-based+Recognition+of+Monosaccharides+in+Aqueous+Solution&rft.jtitle=Analytical+sciences&rft.au=Tsuchido%2C+Yuji&rft.au=Kojima%2C+Shohei&rft.au=Sugita%2C+Ko&rft.au=Fujiwara%2C+Shoji&rft.date=2021-05-10&rft.issn=1348-2246&rft.eissn=1348-2246&rft.volume=37&rft.issue=5&rft.spage=721&rft_id=info:doi/10.2116%2Fanalsci.20SCP08&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon |