Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution

The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attentio...

Full description

Saved in:
Bibliographic Details
Published inAnalytical Sciences Vol. 37; no. 5; pp. 721 - 726
Main Authors TSUCHIDO, Yuji, KOJIMA, Shohei, SUGITA, Ko, FUJIWARA, Shoji, HASHIMOTO, Takeshi, HAYASHITA, Takashi
Format Journal Article
LanguageEnglish
Published Singapore The Japan Society for Analytical Chemistry 10.05.2021
Springer Nature Singapore
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 – 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.
AbstractList The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 – 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.
The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 - 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 - 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.
The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, C n - APB ( n = 1 – 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These C n - APB /CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn - APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD ( 3-PB- γ -CyD ), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.
Author TSUCHIDO, Yuji
SUGITA, Ko
HASHIMOTO, Takeshi
KOJIMA, Shohei
HAYASHITA, Takashi
FUJIWARA, Shoji
Author_xml – sequence: 1
  fullname: TSUCHIDO, Yuji
  organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
– sequence: 2
  fullname: KOJIMA, Shohei
  organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
– sequence: 3
  fullname: SUGITA, Ko
  organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
– sequence: 4
  fullname: FUJIWARA, Shoji
  organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
– sequence: 5
  fullname: HASHIMOTO, Takeshi
  organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
– sequence: 6
  fullname: HAYASHITA, Takashi
  organization: Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33455966$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv0zAYhi00xLrBmRuyxIVL1i924iTHqus2pE5UFM6RY39pXaV2sROJ_hV-LY5aijQJLsnhex5_r_3ekCvrLBLyPoU7lqZiKq3sgjJ3DNbzFZSvyCTlWZkwlokrMoEqhUTwDK7JTQg7gJSVjL0h15xneV4JMSG_Fm2LqqeupeuDVOjpEu2m31Jj6ero0WLy7LRpDepktUV77BrnnTWKzpTRdOVdg9P58Z7O3f7Q4U8M1Fn60A3OY1BoFSaNDKjpV1RuY01v4jgue3bWBanUVnqjoxTXzX4M6IZA164bRuwted3G2-G78_-WfH9YfJs_Jcsvj5_ns2WiRFn0SdG0HNuSiSYrAQpIAbQQVZY1oHmDGiAHzCVkiBmA0pppJuJEVLxJ20bxW_LpdO7Buxgh9PXexOhdJ-2Yp2ZZURbx6LyK6McX6M4NfuygZjnPKyjKikXqw5kamj3q-uDNXvpj_efVIzA9Acq7EDy2FySFeuy1Pvdan3uNRv7CUKaX4yv1XpruPx6cvBA32A36v4H_rSxOyi70coOXaNL3RnV44XlR5-Pn7F3mY6U1Wv4bVc3Uqg
CitedBy_id crossref_primary_10_5182_jaie_35_31
crossref_primary_10_1007_s44211_022_00222_3
crossref_primary_10_5182_jaie_33_37
Cites_doi 10.1021/ac001363k
10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
10.2116/analsci.30.643
10.1039/c3sc51623g
10.1039/C5TB01006C
10.1039/b819938h
10.1021/acs.joc.0c01011
10.1248/cpb.c16-00963
10.1021/jo01088a011
10.1007/s11705-019-1851-y
10.1039/C7AN00439G
10.1021/acs.analchem.5b00998
10.2116/analsci.24.207
10.1021/ja901174k
10.3389/fchem.2019.00806
10.1039/c3cs60148j
10.1039/C9AN00741E
10.2116/analsci.28.121
10.1021/acs.langmuir.6b02917
10.1021/cr500562m
10.1002/anie.199619101
ContentType Journal Article
Copyright 2021 by The Japan Society for Analytical Chemistry
The Japan Society for Analytical Chemistry 2021
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 by The Japan Society for Analytical Chemistry
– notice: The Japan Society for Analytical Chemistry 2021
– notice: Copyright Japan Science and Technology Agency 2021
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7X8
DOI 10.2116/analsci.20SCP08
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-2246
EndPage 726
ExternalDocumentID 33455966
10_2116_analsci_20SCP08
article_analsci_37_5_37_20SCP08_article_char_en
Genre Journal Article
GroupedDBID ---
23M
2WC
406
5GY
6J9
7.U
AAJBT
AATNV
ABJNI
ABTKH
ACAOD
ACGFO
ACIWK
ACPRK
ACZOJ
ADBBV
ADOXG
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFRAH
AGQEE
AIAKS
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAWUL
CS3
DIK
DPUIP
E3Z
EBLON
EBS
EJD
F5P
GX1
HH5
IWAJR
JSF
JSH
JZLTJ
KQ8
LLZTM
M~E
OK1
P2P
RDB
RJT
RNS
RSV
RZJ
RZV
SOJ
TN5
TR2
UPT
XSB
~02
0R~
3O-
53G
AACDK
AASML
ABAKF
ACDTI
ACPIV
AGMZJ
AI.
AIGIU
FIGPU
NPVJJ
ROL
SJYHP
TKC
VH1
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
ABRTQ
FR3
H8G
JG9
L7M
P64
7X8
ID FETCH-LOGICAL-c687t-7bf3ef826b480070100d66944b0d3bed0050e5a04ee400cdd2d26d3b693b1fbc3
ISSN 0910-6340
1348-2246
IngestDate Fri Jul 11 16:12:06 EDT 2025
Wed Aug 27 14:43:45 EDT 2025
Wed Feb 19 02:23:59 EST 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 01:11:40 EDT 2025
Fri Feb 21 02:42:22 EST 2025
Sun Jul 28 05:07:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Cyclodextrin
spacer effect
phenylboronic acid
pyrene
supramolecular complex
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c687t-7bf3ef826b480070100d66944b0d3bed0050e5a04ee400cdd2d26d3b693b1fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/analsci/37/5/37_20SCP08/_article/-char/en
PMID 33455966
PQID 2535907892
PQPubID 1966371
PageCount 6
ParticipantIDs proquest_miscellaneous_2478780059
proquest_journals_2535907892
pubmed_primary_33455966
crossref_primary_10_2116_analsci_20SCP08
crossref_citationtrail_10_2116_analsci_20SCP08
springer_journals_10_2116_analsci_20SCP08
jstage_primary_article_analsci_37_5_37_20SCP08_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-May-10
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-10
  day: 10
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Switzerland
– name: Tokyo
PublicationTitle Analytical Sciences
PublicationTitleAbbrev ANAL. SCI
PublicationTitleAlternate Anal Sci
PublicationYear 2021
Publisher The Japan Society for Analytical Chemistry
Springer Nature Singapore
Nature Publishing Group
Publisher_xml – name: The Japan Society for Analytical Chemistry
– name: Springer Nature Singapore
– name: Nature Publishing Group
References 1. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai, Angew. Chem., Int. Ed. Engl., 1996, 35, 1910.
13. X. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, and Y. B. Jiang, Chem. Soc. Rev., 2013, 42, 8032.
18. C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709.
10. M. Mammen, S. K. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, 2754.
20. M. Kumai, S. Kozuka, M. Samizo, T. Hashimoto, I. Suzuki, and T. Hayashita, Anal. Sci., 2012, 28, 121.
6. K. Sugita, Y. Tsuchido, C. Kasahara, M. A. Casulli, S. Fujiwara, T. Hashimoto, and T. Hayashita, Front. Chem., 2019, 7, 806.
5. K. Sato, M. Takahashi, M. Ito, E. Abe, and J. Anzai, J. Mater. Chem. B, 2015, 3, 7796.
12. H. Wang, Z. Bie, C. Lü, and Z. Liu, Chem. Sci., 2013, 4, 4298.
17. H. Kano, D. Tanoue, H. Shimaoka, K. Katano, T. Hashimoto, H. Kunugita, S. Nanbu, T. Hayashita, and K. Ema, Anal. Sci., 2014, 30, 643.
9. Y. Suzuki, A. Ikeda, K. Ohno, T. Fujihara, T. Sugaya, and K. Ishihara, J. Org. Chem., 2020, 85, 9680.
2. J. P. Lorand and J. O. Edwards, J. Org. Chem., 1959, 24, 769.
4. T. Kubo, K. Kanemori, R. Kusumoto, T. Kawai, K. Sueyoshi, T. Naito, and K. Otsuka, Anal. Chem., 2015, 87, 5068.
15. X. Sun and T. D. James, Chem. Rev., 2015, 115, 8001.
16. A.-J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B. D. Smith, and N. Teramae, Anal. Chem., 2001, 73, 1530.
14. X. Wu, X.-X. Chen, and Y.-B. Jiang, Analyst, 2017, 142, 1403.
7. Y. Tsuchido, R. Sato, N. Nodomi, T. Hashimoto, K. Akiyoshi, and T. Hayashita, Langmuir, 2016, 32, 10761.
3. Z. Bian, A. Liu, Y. Li, G. Fang, Q. Yao, G. Zhang, and Z. Wu, Analyst, 2020, 145, 719.
21. R. Ozawa, T. Hashimoto, A. Yamauchi, I. Suzuki, B. D. Smith, and T. Hayashita, Anal. Sci., 2008, 24, 207.
8. Y. Tsuchido, S. Fujiwara, T. Hashimoto, and T. Hayashita, Chem. Pharm. Bull., 2017, 65, 318.
19. T. Hashimoto, M. Kumai, M. Maeda, K. Miyoshi, Y. Tsuchido, S. Fujiwara, and T. Hayashita, Front. Chem. Sci. Eng., 2020, 14, 53.
11. G. M. Pavan, A. Danani, S. Pricl, and D. K. Smith, J. Am. Chem. Soc., 2009, 131, 9686.
SuzukiYIkedaAOhnoKFujiharaTSugayaTIshiharaKJ. Org. Chem.20208596801:CAS:528:DC%2BB3cXhtlCmtb3P10.1021/acs.joc.0c0101132639160
JamesT DSandanayakeK R A SShinkaiSAngew. Chem., Int. Ed. Engl.199635191010.1002/anie.199619101
BianZLiuALiYFangGYaoQZhangGWuZAnalyst20201457191:CAS:528:DC%2BC1MXit1alsb7F10.1039/C9AN00741E31829324
TongA-JYamauchiAHayashitaTZhangZ-YSmithB DTeramaeNAnal. Chem.20017315301:CAS:528:DC%2BD3MXhsFKisL0%3D10.1021/ac001363k11321305
LorandJ PEdwardsJ OJ. Org. Chem.1959247691:CAS:528:DyaF3cXksVenuw%3D%3D10.1021/jo01088a011
WangHBieZLüCLiuZChem. Sci.2013442981:CAS:528:DC%2BC3sXhsFegsrrF10.1039/c3sc51623g
C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709.
SugitaKTsuchidoYKasaharaCCasulliM AFujiwaraSHashimotoTHayashitaTFront. Chem.201978061:CAS:528:DC%2BB3cXhtFOrsbbI10.3389/fchem.2019.00806318280596890849
KumaiMKozukaSSamizoMHashimotoTSuzukiIHayashitaTAnal. Sci.2012281211:CAS:528:DC%2BC38Xjs1aisbY%3D10.2116/analsci.28.12122322803
SunXJamesT DChem. Rev.201511580011:CAS:528:DC%2BC2MXosFartr8%3D10.1021/cr500562m25974371
HashimotoTKumaiMMaedaMMiyoshiKTsuchidoYFujiwaraSHayashitaTFront. Chem. Sci. Eng.202014531:CAS:528:DC%2BC1MXitlynsrnL10.1007/s11705-019-1851-y
PavanG MDananiAPriclSSmithD KJ. Am. Chem. Soc.200913196861:CAS:528:DC%2BD1MXns1Ogtbs%3D10.1021/ja901174k19555062
WuXLiZChenX XFosseyJ SJamesT DJiangY BChem. Soc. Rev.20134280321:CAS:528:DC%2BC3sXhsVyrtbjF10.1039/c3cs60148j23860576
MammenMChoiS KWhitesidesG MAngew. Chem. Int. Ed.199837275410.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
KanoHTanoueDShimaokaHKatanoKHashimotoTKunugitaHNanbuSHayashitaTEmaKAnal. Sci.2014306431:CAS:528:DC%2BC2cXhtFWhtLfI10.2116/analsci.30.64324919668
KuboTKanemoriKKusumotoRKawaiTSueyoshiKNaitoTOtsukaKAnal. Chem.20158750681:CAS:528:DC%2BC2MXntVCntbo%3D10.1021/acs.analchem.5b0099825907638
SatoKTakahashiMItoMAbeEAnzaiJJ. Mater. Chem. B2015377961:CAS:528:DC%2BC2MXhsVOmtbnP10.1039/C5TB01006C32264588
TsuchidoYFujiwaraSHashimotoTHayashitaTChem. Pharm. Bull.2017653181:CAS:528:DC%2BC2sXhsVGgt7jL10.1248/cpb.c16-00963
OzawaRHashimotoTYamauchiASuzukiISmithB DHayashitaTAnal. Sci.2008242071:CAS:528:DC%2BD1cXit1Ogu74%3D10.2116/analsci.24.20718270410
TsuchidoYSatoRNodomiNHashimotoTAkiyoshiKHayashitaTLangmuir201632107611:CAS:528:DC%2BC28XhsFGku77E10.1021/acs.langmuir.6b0291727658017
WuXChenX-XJiangY-BAnalyst201714214031:CAS:528:DC%2BC2sXlsFShtr8%3D10.1039/C7AN00439G28425507
R Ozawa (3705003_CR21) 2008; 24
K Sugita (3705003_CR6) 2019; 7
G M Pavan (3705003_CR11) 2009; 131
Z Bian (3705003_CR3) 2020; 145
Y Tsuchido (3705003_CR7) 2016; 32
T D James (3705003_CR1) 1996; 35
T Kubo (3705003_CR4) 2015; 87
X Wu (3705003_CR14) 2017; 142
J P Lorand (3705003_CR2) 1959; 24
X Sun (3705003_CR15) 2015; 115
T Hashimoto (3705003_CR19) 2020; 14
X Wu (3705003_CR13) 2013; 42
3705003_CR18
K Sato (3705003_CR5) 2015; 3
A-J Tong (3705003_CR16) 2001; 73
H Kano (3705003_CR17) 2014; 30
Y Suzuki (3705003_CR9) 2020; 85
H Wang (3705003_CR12) 2013; 4
M Kumai (3705003_CR20) 2012; 28
Y Tsuchido (3705003_CR8) 2017; 65
M Mammen (3705003_CR10) 1998; 37
References_xml – reference: 8. Y. Tsuchido, S. Fujiwara, T. Hashimoto, and T. Hayashita, Chem. Pharm. Bull., 2017, 65, 318.
– reference: 20. M. Kumai, S. Kozuka, M. Samizo, T. Hashimoto, I. Suzuki, and T. Hayashita, Anal. Sci., 2012, 28, 121.
– reference: 2. J. P. Lorand and J. O. Edwards, J. Org. Chem., 1959, 24, 769.
– reference: 13. X. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, and Y. B. Jiang, Chem. Soc. Rev., 2013, 42, 8032.
– reference: 21. R. Ozawa, T. Hashimoto, A. Yamauchi, I. Suzuki, B. D. Smith, and T. Hayashita, Anal. Sci., 2008, 24, 207.
– reference: 18. C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709.
– reference: 19. T. Hashimoto, M. Kumai, M. Maeda, K. Miyoshi, Y. Tsuchido, S. Fujiwara, and T. Hayashita, Front. Chem. Sci. Eng., 2020, 14, 53.
– reference: 1. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai, Angew. Chem., Int. Ed. Engl., 1996, 35, 1910.
– reference: 9. Y. Suzuki, A. Ikeda, K. Ohno, T. Fujihara, T. Sugaya, and K. Ishihara, J. Org. Chem., 2020, 85, 9680.
– reference: 5. K. Sato, M. Takahashi, M. Ito, E. Abe, and J. Anzai, J. Mater. Chem. B, 2015, 3, 7796.
– reference: 3. Z. Bian, A. Liu, Y. Li, G. Fang, Q. Yao, G. Zhang, and Z. Wu, Analyst, 2020, 145, 719.
– reference: 15. X. Sun and T. D. James, Chem. Rev., 2015, 115, 8001.
– reference: 17. H. Kano, D. Tanoue, H. Shimaoka, K. Katano, T. Hashimoto, H. Kunugita, S. Nanbu, T. Hayashita, and K. Ema, Anal. Sci., 2014, 30, 643.
– reference: 6. K. Sugita, Y. Tsuchido, C. Kasahara, M. A. Casulli, S. Fujiwara, T. Hashimoto, and T. Hayashita, Front. Chem., 2019, 7, 806.
– reference: 7. Y. Tsuchido, R. Sato, N. Nodomi, T. Hashimoto, K. Akiyoshi, and T. Hayashita, Langmuir, 2016, 32, 10761.
– reference: 10. M. Mammen, S. K. Choi, and G. M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, 2754.
– reference: 12. H. Wang, Z. Bie, C. Lü, and Z. Liu, Chem. Sci., 2013, 4, 4298.
– reference: 4. T. Kubo, K. Kanemori, R. Kusumoto, T. Kawai, K. Sueyoshi, T. Naito, and K. Otsuka, Anal. Chem., 2015, 87, 5068.
– reference: 16. A.-J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B. D. Smith, and N. Teramae, Anal. Chem., 2001, 73, 1530.
– reference: 11. G. M. Pavan, A. Danani, S. Pricl, and D. K. Smith, J. Am. Chem. Soc., 2009, 131, 9686.
– reference: 14. X. Wu, X.-X. Chen, and Y.-B. Jiang, Analyst, 2017, 142, 1403.
– reference: TsuchidoYFujiwaraSHashimotoTHayashitaTChem. Pharm. Bull.2017653181:CAS:528:DC%2BC2sXhsVGgt7jL10.1248/cpb.c16-00963
– reference: PavanG MDananiAPriclSSmithD KJ. Am. Chem. Soc.200913196861:CAS:528:DC%2BD1MXns1Ogtbs%3D10.1021/ja901174k19555062
– reference: BianZLiuALiYFangGYaoQZhangGWuZAnalyst20201457191:CAS:528:DC%2BC1MXit1alsb7F10.1039/C9AN00741E31829324
– reference: SugitaKTsuchidoYKasaharaCCasulliM AFujiwaraSHashimotoTHayashitaTFront. Chem.201978061:CAS:528:DC%2BB3cXhtFOrsbbI10.3389/fchem.2019.00806318280596890849
– reference: JamesT DSandanayakeK R A SShinkaiSAngew. Chem., Int. Ed. Engl.199635191010.1002/anie.199619101
– reference: WangHBieZLüCLiuZChem. Sci.2013442981:CAS:528:DC%2BC3sXhsFegsrrF10.1039/c3sc51623g
– reference: KumaiMKozukaSSamizoMHashimotoTSuzukiIHayashitaTAnal. Sci.2012281211:CAS:528:DC%2BC38Xjs1aisbY%3D10.2116/analsci.28.12122322803
– reference: MammenMChoiS KWhitesidesG MAngew. Chem. Int. Ed.199837275410.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
– reference: WuXChenX-XJiangY-BAnalyst201714214031:CAS:528:DC%2BC2sXlsFShtr8%3D10.1039/C7AN00439G28425507
– reference: TongA-JYamauchiAHayashitaTZhangZ-YSmithB DTeramaeNAnal. Chem.20017315301:CAS:528:DC%2BD3MXhsFKisL0%3D10.1021/ac001363k11321305
– reference: TsuchidoYSatoRNodomiNHashimotoTAkiyoshiKHayashitaTLangmuir201632107611:CAS:528:DC%2BC28XhsFGku77E10.1021/acs.langmuir.6b0291727658017
– reference: OzawaRHashimotoTYamauchiASuzukiISmithB DHayashitaTAnal. Sci.2008242071:CAS:528:DC%2BD1cXit1Ogu74%3D10.2116/analsci.24.20718270410
– reference: SunXJamesT DChem. Rev.201511580011:CAS:528:DC%2BC2MXosFartr8%3D10.1021/cr500562m25974371
– reference: KanoHTanoueDShimaokaHKatanoKHashimotoTKunugitaHNanbuSHayashitaTEmaKAnal. Sci.2014306431:CAS:528:DC%2BC2cXhtFWhtLfI10.2116/analsci.30.64324919668
– reference: KuboTKanemoriKKusumotoRKawaiTSueyoshiKNaitoTOtsukaKAnal. Chem.20158750681:CAS:528:DC%2BC2MXntVCntbo%3D10.1021/acs.analchem.5b0099825907638
– reference: SatoKTakahashiMItoMAbeEAnzaiJJ. Mater. Chem. B2015377961:CAS:528:DC%2BC2MXhsVOmtbnP10.1039/C5TB01006C32264588
– reference: LorandJ PEdwardsJ OJ. Org. Chem.1959247691:CAS:528:DyaF3cXksVenuw%3D%3D10.1021/jo01088a011
– reference: HashimotoTKumaiMMaedaMMiyoshiKTsuchidoYFujiwaraSHayashitaTFront. Chem. Sci. Eng.202014531:CAS:528:DC%2BC1MXitlynsrnL10.1007/s11705-019-1851-y
– reference: SuzukiYIkedaAOhnoKFujiharaTSugayaTIshiharaKJ. Org. Chem.20208596801:CAS:528:DC%2BB3cXhtlCmtb3P10.1021/acs.joc.0c0101132639160
– reference: C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, and T. Hayashita, Chem. Commun., 2009, 1709.
– reference: WuXLiZChenX XFosseyJ SJamesT DJiangY BChem. Soc. Rev.20134280321:CAS:528:DC%2BC3sXhsVyrtbjF10.1039/c3cs60148j23860576
– volume: 73
  start-page: 1530
  year: 2001
  ident: 3705003_CR16
  publication-title: Anal. Chem.
  doi: 10.1021/ac001363k
– volume: 37
  start-page: 2754
  year: 1998
  ident: 3705003_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
– volume: 30
  start-page: 643
  year: 2014
  ident: 3705003_CR17
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.30.643
– volume: 4
  start-page: 4298
  year: 2013
  ident: 3705003_CR12
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc51623g
– volume: 3
  start-page: 7796
  year: 2015
  ident: 3705003_CR5
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01006C
– ident: 3705003_CR18
  doi: 10.1039/b819938h
– volume: 85
  start-page: 9680
  year: 2020
  ident: 3705003_CR9
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c01011
– volume: 65
  start-page: 318
  year: 2017
  ident: 3705003_CR8
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.c16-00963
– volume: 24
  start-page: 769
  year: 1959
  ident: 3705003_CR2
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01088a011
– volume: 14
  start-page: 53
  year: 2020
  ident: 3705003_CR19
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-019-1851-y
– volume: 142
  start-page: 1403
  year: 2017
  ident: 3705003_CR14
  publication-title: Analyst
  doi: 10.1039/C7AN00439G
– volume: 87
  start-page: 5068
  year: 2015
  ident: 3705003_CR4
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b00998
– volume: 24
  start-page: 207
  year: 2008
  ident: 3705003_CR21
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.24.207
– volume: 131
  start-page: 9686
  year: 2009
  ident: 3705003_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901174k
– volume: 7
  start-page: 806
  year: 2019
  ident: 3705003_CR6
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00806
– volume: 42
  start-page: 8032
  year: 2013
  ident: 3705003_CR13
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60148j
– volume: 145
  start-page: 719
  year: 2020
  ident: 3705003_CR3
  publication-title: Analyst
  doi: 10.1039/C9AN00741E
– volume: 28
  start-page: 121
  year: 2012
  ident: 3705003_CR20
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.28.121
– volume: 32
  start-page: 10761
  year: 2016
  ident: 3705003_CR7
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b02917
– volume: 115
  start-page: 8001
  year: 2015
  ident: 3705003_CR15
  publication-title: Chem. Rev.
  doi: 10.1021/cr500562m
– volume: 35
  start-page: 1910
  year: 1996
  ident: 3705003_CR1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199619101
SSID ssj0012822
Score 2.279459
Snippet The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH...
SourceID proquest
pubmed
crossref
springer
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 721
SubjectTerms Analytical Chemistry
Aqueous solutions
Carbohydrates
Chemical perception
Chemistry
Chemoreception
Complex systems
Cyclodextrin
Cyclodextrins
Diabetes mellitus
Electron transfer
Esterification
Fluorescence
Fluorescent indicators
Inclusion complexes
Monosaccharides
Original Paper
pH effects
phenylboronic acid
Pyrene
Recognition
Saccharides
Selectivity
Sensors
spacer effect
Spacers
supramolecular complex
Title Effect of Spacer Length in Pyrene-Modified-Phenylboronic Acid Probe/CyD Complexes on Fluorescence-based Recognition of Monosaccharides in Aqueous Solution
URI https://www.jstage.jst.go.jp/article/analsci/37/5/37_20SCP08/_article/-char/en
https://link.springer.com/article/10.2116/analsci.20SCP08
https://www.ncbi.nlm.nih.gov/pubmed/33455966
https://www.proquest.com/docview/2535907892
https://www.proquest.com/docview/2478780059
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Analytical Sciences, 2021/05/10, Vol.37(5), pp.721-726
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKQIIXxHUEBjISD6ApXe5pXpCqsmpiZRS1lcpTFCdOm6okqBdB-Rk88ms5x3aS0nVo8BJVtmOnOV_OxT4XQl45FkqlNNIjIzJwtyrVAx6AlZJ4PkuM1PEj4SB74Z2NnPdjd9xo_NzyWlqvWDP-sTeu5H-oCm1AV4yS_QfKVpNCA_wG-sIVKAzXa9FYpR7GuBMwffniuMfzyUrsYfQ3mKtS_1AkWQpapt6f8nwzZ4WseNOOMxEjwDjmx928E2xhzr9zcXjQna-LhUjzFHMdxRyGMCo_I6leAicollGMIVtZIly6jtsgYNCdttxn29Z6ReaTVR2AGdeOi8MlVmNJxIbt5_UsqwRAMcu-CMV2MC2mvGofrCeZVHjPiwp7cN-3aFGOVpOorQzL1EUW1C3uaztAYEvtSfI9bYplyzwxCpruFv_1Zbj1rlwAK1cmRAbCx1nTMgadvtGqRWB57H_xMeyOer1weDoe3iA3LTA9sCrG-af6ZArdboURrx5LpovCBU52pv9D07k1A2V_wvfZMZfO4IVqM7xH7iqbhLYlwO6TBs8fkNudshTgQ_JLAo0WKZVAoxJoNMvpX4FGEWhUAO0EYEYrmNEip5dhRrdghovtwAyXUzCjJcwekVH3dNg501VRDz32Wv5K91lq8xSMWua0MNeUaRiJ5wWOw4zEZjzBhETcjQyHcxAvcZJYieVBjxfYzExZbD8mB3mR8yeEGjDESyIz9iPTiThYOsyO0wgklslATXY10iwJEMYq4z0WXpmHYPkixUJFsVBRTCOvqxu-ymQvVw99KylaDVRcoBpo-6GLF3VD1Y_vDJiXRo5KJISKpSxDy7XdAAtAWBp5WXUDsfEUL8rx_YYWptNqYdC4Rg4lgqpnsG3HdQPP08ibElL15Ff8k6fXWOkZuVN_r0fkYLVY8-egjK_YC_F1_AaKZOlP
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Spacer+Length+in+Pyrene-Modified-Phenylboronic+Acid+Probe%2FCyD+Complexes+on+Fluorescence-based+Recognition+of+Monosaccharides+in+Aqueous+Solution&rft.jtitle=Analytical+sciences&rft.au=Tsuchido%2C+Yuji&rft.au=Kojima%2C+Shohei&rft.au=Sugita%2C+Ko&rft.au=Fujiwara%2C+Shoji&rft.date=2021-05-10&rft.issn=1348-2246&rft.eissn=1348-2246&rft.volume=37&rft.issue=5&rft.spage=721&rft_id=info:doi/10.2116%2Fanalsci.20SCP08&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon