High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon

H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H2O2 synthesis. Here, hie...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 23; pp. 6837 - 6841
Main Authors Liu, Yanming, Quan, Xie, Fan, Xinfei, Wang, Hua, Chen, Shuo
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.06.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0–70.2 %, most of them >90.0 % at pH 1–4 and >80.0 % at pH 7). High‐yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6–62.0 mmol L−1 (2.5 h) and corresponding H2O2 production rates of 395.7–110.2 mmol h−1 g−1 at pH 1–7 and −0.5 V. Moreover, HPC was energy‐efficient for H2O2 production with current efficiency of 81.8–70.8 %. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp3‐C and defects, large surface area and fast mass transfer. The electroreduction of O2 is achieved with hierarchically porous carbon (HPC) to give H2O2. It exhibits good selectivity, a high production rate, and current efficiency for the electrosynthesis of H2O2 at a wide range of pH values. The correlation between H2O2 production rate and sp3‐C atoms and defects was explored. This provides an effective method for tuning the activity of carbon materials for the selective electrosynthesis of H2O2. RE=reference electrode.
AbstractList H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1)  g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer.
H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1)  g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer.H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1)  g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer.
H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH1-4 and >80.0% at pH7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0mmolL-1 (2.5h) and corresponding H2O2 production rates of 395.7-110.2mmolh-1g-1 at pH1-7 and -0.5V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp3-C and defects, large surface area and fast mass transfer.
H 2 O 2 production by electroreduction of O 2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H 2 O 2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H 2 O 2 from O 2 reduction. It exhibited high activity for O 2 reduction and good H 2 O 2 selectivity (95.0–70.2 %, most of them >90.0 % at pH 1–4 and >80.0 % at pH 7). High‐yield H 2 O 2 generation has been achieved on HPC with H 2 O 2 concentrations of 222.6–62.0 mmol L −1 (2.5 h) and corresponding H 2 O 2 production rates of 395.7–110.2 mmol h −1  g −1 at pH 1–7 and −0.5 V. Moreover, HPC was energy‐efficient for H 2 O 2 production with current efficiency of 81.8–70.8 %. The exceptional performance of HPC for electrosynthesis of H 2 O 2 could be attributed to its high content of sp 3 ‐C and defects, large surface area and fast mass transfer.
H sub(2)O sub(2) production by electroreduction of O sub(2) is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H sub(2)O sub(2) synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H sub(2)O sub(2) from O sub(2) reduction. It exhibited high activity for O sub(2) reduction and good H sub(2)O sub(2) selectivity (95.0-70.2%, most of them >90.0% at pH1-4 and >80.0% at pH7). High-yield H sub(2)O sub(2) generation has been achieved on HPC with H sub(2)O sub(2) concentrations of 222.6-62.0mmolL super(-1) (2.5h) and corresponding H sub(2)O sub(2) production rates of 395.7-110.2mmolh super(-1)g super(-1) at pH1-7 and -0.5V. Moreover, HPC was energy-efficient for H sub(2)O sub(2) production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H sub(2)O sub(2) could be attributed to its high content of sp super(3)-C and defects, large surface area and fast mass transfer. The electroreduction of O sub(2) is achieved with hierarchically porous carbon (HPC) to give H sub(2)O sub(2). It exhibits good selectivity, a high production rate, and current efficiency for the electrosynthesis of H sub(2)O sub(2) at a wide range of pH values. The correlation between H sub(2)O sub(2) production rate and sp super(3)-C atoms and defects was explored. This provides an effective method for tuning the activity of carbon materials for the selective electrosynthesis of H sub(2)O sub(2). RE=reference electrode.
H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0–70.2 %, most of them >90.0 % at pH 1–4 and >80.0 % at pH 7). High‐yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6–62.0 mmol L−1 (2.5 h) and corresponding H2O2 production rates of 395.7–110.2 mmol h−1 g−1 at pH 1–7 and −0.5 V. Moreover, HPC was energy‐efficient for H2O2 production with current efficiency of 81.8–70.8 %. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp3‐C and defects, large surface area and fast mass transfer. The electroreduction of O2 is achieved with hierarchically porous carbon (HPC) to give H2O2. It exhibits good selectivity, a high production rate, and current efficiency for the electrosynthesis of H2O2 at a wide range of pH values. The correlation between H2O2 production rate and sp3‐C atoms and defects was explored. This provides an effective method for tuning the activity of carbon materials for the selective electrosynthesis of H2O2. RE=reference electrode.
Author Chen, Shuo
Quan, Xie
Fan, Xinfei
Liu, Yanming
Wang, Hua
Author_xml – sequence: 1
  givenname: Yanming
  surname: Liu
  fullname: Liu, Yanming
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)
– sequence: 2
  givenname: Xie
  surname: Quan
  fullname: Quan, Xie
  email: quanxie@dlut.edu.cn
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)
– sequence: 3
  givenname: Xinfei
  surname: Fan
  fullname: Fan, Xinfei
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)
– sequence: 4
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)
– sequence: 5
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25892325$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9v0zAUxy00xH7AlSOyxIVLih3HP3KcSlm3Vd2EhoCT5Tgvq0caDzsRzX-Pu44KTUI72Xr6fOz3vu8YHXS-A4TeUjKhhOQfTedgkhPKSc5K8QIdUZ7TjEnJDtK9YCyTitNDdBzjXeKVIuIVOsy5KnOW8yPUzN3tKvvhoK3xrAXbBx_Hrl9BdBH7Bs_HOvhb6PA1BL9xNeAm-DW-2ozb4heoB9s73-FqxHMHwQS7cta07YivffBDxFMTKt-9Ri8b00Z483ieoK-fZzfTeba4Ojufni4yK5QUWS2JhYII4IJbykFaQytJhK1oTm3qWeaVyktKKYFU5KIsRG0LrpQhBbWWnaAPu3fvg_81QOz12kULbWs6SN1oKklypRD8eVQoJrkQRCX0_RP0zg-hS4M8UIwSSkSi3j1SQ7WGWt8HtzZh1H_DTsBkB9gUcgzQ7BFK9HabertNvd9mEoongnW92ebdB-Pa_2vlTvvtWhif-USfLs9n_7rZznWxh83eNeGnFjLlob8tz_Ti5vvF5UX5SS_ZHwGQwfM
CODEN ACIEAY
CitedBy_id crossref_primary_10_2139_ssrn_3886327
crossref_primary_10_1016_j_nanoen_2017_10_060
crossref_primary_10_1021_acsami_3c06307
crossref_primary_10_1021_jacs_3c00689
crossref_primary_10_1016_j_jallcom_2022_168403
crossref_primary_10_1016_j_seppur_2025_132377
crossref_primary_10_1007_s12274_024_6505_9
crossref_primary_10_1007_s12274_023_5616_z
crossref_primary_10_1021_acs_jpcc_7b04959
crossref_primary_10_1039_C8GC01317A
crossref_primary_10_1016_j_apcatb_2021_120407
crossref_primary_10_1016_j_jelechem_2021_115197
crossref_primary_10_1002_ange_201812435
crossref_primary_10_1016_j_jenvman_2017_04_095
crossref_primary_10_1016_j_jtice_2017_10_041
crossref_primary_10_1002_ange_202104480
crossref_primary_10_1016_j_cej_2022_134788
crossref_primary_10_1016_j_seppur_2023_124196
crossref_primary_10_1016_j_trechm_2020_07_007
crossref_primary_10_1126_science_aay1844
crossref_primary_10_1007_s10311_022_01453_6
crossref_primary_10_1016_j_micromeso_2023_112842
crossref_primary_10_1016_j_nantod_2023_101792
crossref_primary_10_1016_j_seppur_2024_126996
crossref_primary_10_1016_j_fuel_2024_133472
crossref_primary_10_1039_D1NR04176B
crossref_primary_10_1016_j_apcatb_2023_123125
crossref_primary_10_1016_j_cej_2020_125156
crossref_primary_10_1016_j_cej_2024_157070
crossref_primary_10_1021_acscatal_9b02546
crossref_primary_10_1016_j_jechem_2021_12_028
crossref_primary_10_1021_acs_est_3c02987
crossref_primary_10_1016_j_cclet_2021_07_006
crossref_primary_10_1002_cssc_202300699
crossref_primary_10_3390_molecules29071436
crossref_primary_10_1021_acssuschemeng_3c04005
crossref_primary_10_1016_j_jhazmat_2019_121102
crossref_primary_10_1002_anie_202101804
crossref_primary_10_1016_j_seppur_2022_120687
crossref_primary_10_1039_C6RE00195E
crossref_primary_10_1016_j_electacta_2019_134569
crossref_primary_10_1016_j_chempr_2017_12_015
crossref_primary_10_1016_j_watres_2019_114933
crossref_primary_10_1021_acsenergylett_8b00318
crossref_primary_10_2166_wst_2019_338
crossref_primary_10_1016_j_talanta_2021_122894
crossref_primary_10_1021_acs_est_3c02877
crossref_primary_10_1039_D0TA01869D
crossref_primary_10_1016_j_envpol_2019_113119
crossref_primary_10_1039_C6CC01605G
crossref_primary_10_1016_j_envres_2021_111994
crossref_primary_10_1021_acscatal_3c01837
crossref_primary_10_1039_D3TA01859H
crossref_primary_10_1016_j_chemosphere_2022_135496
crossref_primary_10_1021_acsestengg_3c00179
crossref_primary_10_1002_cssc_201801583
crossref_primary_10_1016_j_seppur_2025_132571
crossref_primary_10_1039_D1EE02884G
crossref_primary_10_1021_acsmaterialslett_3c01036
crossref_primary_10_1016_j_electacta_2024_144533
crossref_primary_10_1002_anie_201812435
crossref_primary_10_1021_jacs_6b05806
crossref_primary_10_1093_nsr_nwaa084
crossref_primary_10_2139_ssrn_3981648
crossref_primary_10_1021_acsami_1c05353
crossref_primary_10_1016_j_carbon_2024_119216
crossref_primary_10_1021_acs_est_6b00265
crossref_primary_10_1016_j_seppur_2025_131590
crossref_primary_10_1007_s10098_022_02323_z
crossref_primary_10_1016_j_jhazmat_2021_125859
crossref_primary_10_1039_C9GC04324A
crossref_primary_10_1016_j_cej_2023_141657
crossref_primary_10_1016_j_electacta_2020_137287
crossref_primary_10_1016_j_ijhydene_2021_01_195
crossref_primary_10_1007_s00339_021_04574_x
crossref_primary_10_1021_acscatal_7b02165
crossref_primary_10_1016_j_apcatb_2021_120332
crossref_primary_10_1016_j_apcatb_2025_125077
crossref_primary_10_1002_smll_201902845
crossref_primary_10_1016_j_ccr_2021_214277
crossref_primary_10_1016_j_apcatb_2023_123533
crossref_primary_10_1016_j_jhazmat_2023_132823
crossref_primary_10_1021_acscatal_7b03464
crossref_primary_10_1002_cssc_201902429
crossref_primary_10_1039_D4GC00387J
crossref_primary_10_1016_j_jelechem_2018_01_054
crossref_primary_10_1002_bkcs_12842
crossref_primary_10_1007_s12678_019_00550_5
crossref_primary_10_1016_j_talanta_2017_08_060
crossref_primary_10_1126_science_aad4998
crossref_primary_10_1016_j_molstruc_2023_135971
crossref_primary_10_1016_j_electacta_2019_135206
crossref_primary_10_1002_anie_202307504
crossref_primary_10_1016_j_seppur_2021_119432
crossref_primary_10_1038_s41467_021_26832_5
crossref_primary_10_1021_acs_energyfuels_3c03905
crossref_primary_10_1039_D0TA09122G
crossref_primary_10_1016_j_seppur_2024_127451
crossref_primary_10_1002_adma_202205414
crossref_primary_10_1016_j_apcatb_2018_05_079
crossref_primary_10_1021_acs_langmuir_3c00860
crossref_primary_10_1016_j_jece_2024_114591
crossref_primary_10_1016_j_cej_2024_149066
crossref_primary_10_1021_acsami_7b18690
crossref_primary_10_1016_j_jallcom_2023_171264
crossref_primary_10_1088_1742_6596_2174_1_012034
crossref_primary_10_1002_aenm_202003323
crossref_primary_10_1016_j_chemosphere_2019_03_042
crossref_primary_10_1016_j_chemosphere_2020_127463
crossref_primary_10_1016_j_jece_2016_10_006
crossref_primary_10_1016_j_electacta_2019_04_155
crossref_primary_10_1071_CH18328
crossref_primary_10_1021_acsami_2c15467
crossref_primary_10_1016_j_apcatb_2022_121161
crossref_primary_10_1149_1945_7111_ab6fee
crossref_primary_10_1039_D1TA03864H
crossref_primary_10_1021_acs_jpcc_0c10771
crossref_primary_10_1016_j_apcatb_2016_09_074
crossref_primary_10_1021_acsami_3c03775
crossref_primary_10_1021_acsmaterialslett_1c00263
crossref_primary_10_1021_acsami_9b16236
crossref_primary_10_1016_j_jcat_2019_06_019
crossref_primary_10_1016_j_seppur_2021_118327
crossref_primary_10_1021_acsami_9b07765
crossref_primary_10_1021_acscatal_0c01641
crossref_primary_10_1038_s41563_019_0398_0
crossref_primary_10_1016_j_jcat_2017_11_008
crossref_primary_10_1002_ange_202111075
crossref_primary_10_1002_aenm_202002473
crossref_primary_10_1002_chin_201532010
crossref_primary_10_1016_j_nanoen_2019_103940
crossref_primary_10_1002_advs_202100076
crossref_primary_10_1039_D0TA07900F
crossref_primary_10_1016_j_jclepro_2020_122044
crossref_primary_10_1016_j_electacta_2019_04_011
crossref_primary_10_1016_j_apsusc_2020_148148
crossref_primary_10_1016_j_est_2023_108186
crossref_primary_10_1016_j_matpr_2021_01_945
crossref_primary_10_1007_s12274_023_5999_x
crossref_primary_10_1016_j_chemosphere_2021_131936
crossref_primary_10_1021_acscatal_7b02548
crossref_primary_10_2174_2213337207999200802025735
crossref_primary_10_1002_sus2_149
crossref_primary_10_1016_S1872_5805_22_60582_1
crossref_primary_10_1016_j_apsusc_2019_144875
crossref_primary_10_1149_1945_7111_abde7e
crossref_primary_10_1002_admi_202001360
crossref_primary_10_1016_j_jhazmat_2020_123846
crossref_primary_10_1002_cctc_202002045
crossref_primary_10_1007_s10853_020_05170_9
crossref_primary_10_1016_j_electacta_2018_04_008
crossref_primary_10_1021_acsaem_9b01135
crossref_primary_10_1016_j_seppur_2021_120225
crossref_primary_10_1007_s44246_023_00090_0
crossref_primary_10_1039_D2NJ01679F
crossref_primary_10_1016_j_nanoen_2017_12_021
crossref_primary_10_1002_anie_202006422
crossref_primary_10_1016_j_jechem_2020_02_027
crossref_primary_10_1002_smll_202403029
crossref_primary_10_1007_s10562_024_04658_2
crossref_primary_10_1016_j_xcrp_2022_100987
crossref_primary_10_1021_acssuschemeng_1c01468
crossref_primary_10_1021_acscatal_2c01829
crossref_primary_10_1016_j_cej_2022_134863
crossref_primary_10_1016_j_jechem_2018_09_002
crossref_primary_10_1016_j_jhazmat_2023_131925
crossref_primary_10_1039_C6DT04643F
crossref_primary_10_1016_j_cej_2019_05_165
crossref_primary_10_1039_D1RA01045J
crossref_primary_10_1021_acs_est_2c07752
crossref_primary_10_1016_j_chemosphere_2024_143542
crossref_primary_10_1016_j_memsci_2020_118644
crossref_primary_10_1016_j_jece_2024_113002
crossref_primary_10_1007_s12274_022_5160_2
crossref_primary_10_1016_j_jechem_2021_10_013
crossref_primary_10_1016_j_colsurfa_2022_129657
crossref_primary_10_1002_adma_201808173
crossref_primary_10_1002_anie_202205972
crossref_primary_10_1039_D3CP05492F
crossref_primary_10_2166_bgs_2019_911
crossref_primary_10_1002_asia_202100030
crossref_primary_10_1016_j_cattod_2016_12_020
crossref_primary_10_1149_1945_7111_ad1a1f
crossref_primary_10_1002_chem_201804462
crossref_primary_10_1016_S1872_2067_21_64007_X
crossref_primary_10_1002_ange_202003842
crossref_primary_10_1016_j_apcatb_2021_121036
crossref_primary_10_1016_j_cej_2024_149363
crossref_primary_10_1002_admi_202201325
crossref_primary_10_1002_mame_202200469
crossref_primary_10_1016_j_jmat_2021_04_010
crossref_primary_10_1021_acssuschemeng_2c04746
crossref_primary_10_3390_molecules25214996
crossref_primary_10_1016_j_ijhydene_2023_11_116
crossref_primary_10_1021_acscatal_8b00347
crossref_primary_10_1021_acscatal_8b03734
crossref_primary_10_1039_D2EE01797K
crossref_primary_10_1016_j_apcatb_2019_117772
crossref_primary_10_1021_acs_est_9b06266
crossref_primary_10_1039_D2CY01709A
crossref_primary_10_1002_ange_202302466
crossref_primary_10_1016_j_electacta_2021_137721
crossref_primary_10_1016_j_jcis_2019_10_053
crossref_primary_10_1089_ees_2020_0064
crossref_primary_10_1007_s41918_022_00163_5
crossref_primary_10_1039_C6RA16606G
crossref_primary_10_1088_2515_7655_acbabc
crossref_primary_10_1016_j_eng_2023_02_005
crossref_primary_10_1016_j_envres_2022_113508
crossref_primary_10_1039_D1TA10529A
crossref_primary_10_3390_w16121658
crossref_primary_10_1021_acscatal_0c05701
crossref_primary_10_1002_anie_202213296
crossref_primary_10_1007_s40843_021_1891_2
crossref_primary_10_1002_adma_201802920
crossref_primary_10_1016_j_seppur_2023_123773
crossref_primary_10_1016_j_apcatb_2022_121457
crossref_primary_10_1016_j_apcatb_2022_121578
crossref_primary_10_1016_j_carbon_2017_06_044
crossref_primary_10_1021_acs_jpcc_8b00679
crossref_primary_10_1002_asia_201700292
crossref_primary_10_1016_j_diamond_2019_107671
crossref_primary_10_1039_D3MH02142D
crossref_primary_10_1007_s12274_021_3786_0
crossref_primary_10_1002_ange_202205972
crossref_primary_10_1021_acsestengg_1c00366
crossref_primary_10_1002_anie_201510686
crossref_primary_10_1039_D0NR03178J
crossref_primary_10_1016_j_mattod_2023_02_004
crossref_primary_10_1002_cctc_202100805
crossref_primary_10_1016_j_psep_2022_11_037
crossref_primary_10_1016_j_cej_2021_129346
crossref_primary_10_1016_j_apcatb_2022_121688
crossref_primary_10_1149_2_0561807jes
crossref_primary_10_1021_acs_iecr_4c03929
crossref_primary_10_1021_acssuschemeng_0c07263
crossref_primary_10_1016_j_chemosphere_2019_124927
crossref_primary_10_1002_advs_202100120
crossref_primary_10_1039_C8CC00957K
crossref_primary_10_1002_smll_202105082
crossref_primary_10_1007_s40820_023_01044_2
crossref_primary_10_1016_j_jclepro_2022_134578
crossref_primary_10_1016_j_envpol_2019_112958
crossref_primary_10_1002_adsu_202000134
crossref_primary_10_1021_acssuschemeng_3c02620
crossref_primary_10_1002_anie_202419049
crossref_primary_10_1039_C7CC04819J
crossref_primary_10_1021_acsami_1c17727
crossref_primary_10_3390_app11125371
crossref_primary_10_1016_j_cej_2017_09_093
crossref_primary_10_1016_j_jpowsour_2016_12_030
crossref_primary_10_1002_adsu_201900027
crossref_primary_10_1016_j_mtener_2022_101092
crossref_primary_10_2139_ssrn_4086832
crossref_primary_10_1002_smll_202302338
crossref_primary_10_1016_j_checat_2022_04_011
crossref_primary_10_1016_j_hazl_2021_100020
crossref_primary_10_1016_j_electacta_2017_07_085
crossref_primary_10_2139_ssrn_4067094
crossref_primary_10_1016_j_cej_2023_143291
crossref_primary_10_1002_ange_202419049
crossref_primary_10_1007_s11696_022_02258_1
crossref_primary_10_1021_jacs_8b02798
crossref_primary_10_1016_j_chempr_2017_10_013
crossref_primary_10_1002_adma_201904870
crossref_primary_10_1039_C8NR03527J
crossref_primary_10_1016_j_jtice_2021_06_028
crossref_primary_10_1016_j_cej_2024_154221
crossref_primary_10_1007_s11581_022_04690_5
crossref_primary_10_1002_adfm_202003321
crossref_primary_10_1002_adma_202008023
crossref_primary_10_1016_j_cclet_2025_111045
crossref_primary_10_1016_j_ijhydene_2018_03_219
crossref_primary_10_1002_aenm_202301543
crossref_primary_10_1016_j_cej_2020_125722
crossref_primary_10_1002_aenm_201801909
crossref_primary_10_1021_acs_chemrev_1c01003
crossref_primary_10_1016_j_cej_2022_139597
crossref_primary_10_1016_j_jhazmat_2023_133261
crossref_primary_10_2139_ssrn_4167605
crossref_primary_10_1016_j_jelechem_2023_117486
crossref_primary_10_1021_acs_chemmater_9b05212
crossref_primary_10_1016_j_apcatb_2022_121523
crossref_primary_10_1021_acs_est_1c06368
crossref_primary_10_1002_smll_202302380
crossref_primary_10_1016_j_jallcom_2024_176091
crossref_primary_10_1016_j_jcis_2019_10_031
crossref_primary_10_1016_j_jechem_2025_01_059
crossref_primary_10_1016_j_cej_2020_127817
crossref_primary_10_1016_j_electacta_2017_05_069
crossref_primary_10_1016_j_cej_2021_131352
crossref_primary_10_1002_ange_201510686
crossref_primary_10_1021_acsestengg_4c00084
crossref_primary_10_1021_acsaem_1c00259
crossref_primary_10_1016_j_jelechem_2021_115938
crossref_primary_10_1002_ange_202307504
crossref_primary_10_1016_j_jechem_2020_05_033
crossref_primary_10_1016_j_watres_2018_03_066
crossref_primary_10_1039_C9CC09987E
crossref_primary_10_1021_acsami_9b20920
crossref_primary_10_1016_j_cej_2022_139371
crossref_primary_10_1038_s41467_020_15597_y
crossref_primary_10_1016_j_electacta_2022_140460
crossref_primary_10_1021_acsenergylett_8b02138
crossref_primary_10_1021_acscatal_0c00584
crossref_primary_10_1038_s41467_020_19309_4
crossref_primary_10_1016_j_matlet_2016_02_144
crossref_primary_10_1021_jacs_9b05576
crossref_primary_10_1021_acsami_0c05159
crossref_primary_10_1002_cssc_202100055
crossref_primary_10_1021_acsami_4c09949
crossref_primary_10_1016_j_cej_2020_128368
crossref_primary_10_1016_j_seppur_2019_116424
crossref_primary_10_1021_acsami_1c11318
crossref_primary_10_1016_j_jwpe_2022_103103
crossref_primary_10_1002_admi_202002091
crossref_primary_10_1021_acsami_1c11673
crossref_primary_10_1016_j_jpowsour_2017_12_040
crossref_primary_10_1021_jacs_1c03135
crossref_primary_10_1002_elan_202060099
crossref_primary_10_1002_slct_201900070
crossref_primary_10_1016_j_cej_2017_05_113
crossref_primary_10_1016_j_mcat_2023_113076
crossref_primary_10_1039_C8NJ06134C
crossref_primary_10_1021_acsestengg_1c00083
crossref_primary_10_1002_ange_202101804
crossref_primary_10_1021_acssuschemeng_0c04021
crossref_primary_10_3390_catal13040674
crossref_primary_10_1016_j_ese_2022_100170
crossref_primary_10_1039_D5MA00111K
crossref_primary_10_1016_j_chemosphere_2019_124636
crossref_primary_10_1016_j_cej_2025_160709
crossref_primary_10_1016_j_jwpe_2023_103850
crossref_primary_10_1016_j_joule_2019_09_019
crossref_primary_10_1039_C6TA03300H
crossref_primary_10_3390_nano13071188
crossref_primary_10_1016_j_checat_2022_02_002
crossref_primary_10_1016_j_cej_2024_157125
crossref_primary_10_1038_s41467_020_17782_5
crossref_primary_10_1016_j_chemosphere_2023_138645
crossref_primary_10_1021_acs_est_0c03614
crossref_primary_10_1038_s41929_017_0017_x
crossref_primary_10_1002_cctc_201500791
crossref_primary_10_1039_D3GC02856A
crossref_primary_10_1016_j_cej_2020_126171
crossref_primary_10_1002_cssc_201900238
crossref_primary_10_1016_j_carbon_2022_12_048
crossref_primary_10_1016_j_ces_2017_09_012
crossref_primary_10_1016_j_chempr_2021_08_007
crossref_primary_10_1021_acsami_1c14969
crossref_primary_10_1021_acsami_0c13661
crossref_primary_10_1039_C5TA04721H
crossref_primary_10_1021_acscatal_1c03236
crossref_primary_10_1002_anie_202104480
crossref_primary_10_1002_celc_202101692
crossref_primary_10_1039_D3QM00972F
crossref_primary_10_1016_j_carbon_2016_10_046
crossref_primary_10_1021_acsaem_0c00093
crossref_primary_10_1088_1361_6528_ad0055
crossref_primary_10_1002_smll_202303156
crossref_primary_10_1007_s10800_024_02161_5
crossref_primary_10_1016_j_colsurfb_2019_04_008
crossref_primary_10_1039_C8TA08479C
crossref_primary_10_1016_j_cej_2024_150967
crossref_primary_10_4236_gep_2017_56002
crossref_primary_10_1021_acs_jpclett_2c02684
crossref_primary_10_1016_j_cclet_2023_108291
crossref_primary_10_1039_D0CS00458H
crossref_primary_10_1016_j_jhazmat_2021_127896
crossref_primary_10_1007_s40820_023_01052_2
crossref_primary_10_1016_j_gee_2020_08_013
crossref_primary_10_1016_j_envres_2021_112327
crossref_primary_10_1002_ange_202213296
crossref_primary_10_1016_j_seppur_2019_116342
crossref_primary_10_1016_j_cej_2021_132829
crossref_primary_10_1016_j_seppur_2022_121277
crossref_primary_10_1002_anie_202111075
crossref_primary_10_54097_ex006g06
crossref_primary_10_1002_anie_202003842
crossref_primary_10_1016_j_jece_2024_111960
crossref_primary_10_6023_A22010030
crossref_primary_10_1021_acssuschemeng_9b07047
crossref_primary_10_1016_j_jhazmat_2023_131352
crossref_primary_10_1007_s11581_023_05357_5
crossref_primary_10_1016_j_carbon_2020_02_084
crossref_primary_10_1016_j_scitotenv_2025_178444
crossref_primary_10_1016_j_cej_2021_133921
crossref_primary_10_1016_j_dwt_2024_100845
crossref_primary_10_1002_adma_202103266
crossref_primary_10_1016_j_electacta_2022_141708
crossref_primary_10_1002_slct_201601469
crossref_primary_10_1002_asia_202200278
crossref_primary_10_1021_acs_est_5b03147
crossref_primary_10_1039_D3QI00668A
crossref_primary_10_1016_j_apcatb_2021_120605
crossref_primary_10_1016_j_cej_2019_123427
crossref_primary_10_1007_s11356_018_2193_x
crossref_primary_10_1021_acssuschemeng_2c07479
crossref_primary_10_1016_j_cej_2017_12_104
crossref_primary_10_1016_j_cclet_2025_110909
crossref_primary_10_1007_s40820_023_01067_9
crossref_primary_10_1016_j_jpowsour_2022_232306
crossref_primary_10_1007_s12274_023_5903_8
crossref_primary_10_1039_D3EE03223J
crossref_primary_10_1021_acsami_9b16937
crossref_primary_10_1016_j_jhazmat_2020_124262
crossref_primary_10_1039_D4CY00739E
crossref_primary_10_1021_acs_jpcc_1c03775
crossref_primary_10_1016_j_cej_2023_147588
crossref_primary_10_1016_j_apsusc_2021_152293
crossref_primary_10_1016_j_cattod_2019_06_034
crossref_primary_10_1016_j_chemosphere_2021_130269
crossref_primary_10_1016_j_electacta_2017_08_191
crossref_primary_10_2139_ssrn_4177595
crossref_primary_10_1016_j_jhazmat_2018_02_018
crossref_primary_10_1021_acs_est_0c01428
crossref_primary_10_1038_srep38454
crossref_primary_10_1016_j_apcatb_2023_123018
crossref_primary_10_1016_j_psep_2022_08_017
crossref_primary_10_1016_j_jcis_2022_05_149
crossref_primary_10_1039_D1CS00219H
crossref_primary_10_20964_2020_12_46
crossref_primary_10_1002_anie_202302466
crossref_primary_10_1021_acsami_6b05739
crossref_primary_10_1016_j_scitotenv_2020_144680
crossref_primary_10_1016_j_jcis_2022_04_108
crossref_primary_10_1016_j_nanoen_2022_107046
crossref_primary_10_1039_C9CC02580D
crossref_primary_10_1016_j_jechem_2016_01_024
crossref_primary_10_2139_ssrn_3994540
crossref_primary_10_1016_j_apcatb_2023_123380
crossref_primary_10_1016_j_apsusc_2020_146434
crossref_primary_10_12677_NAT_2022_124026
crossref_primary_10_1016_j_jcat_2022_08_025
crossref_primary_10_1016_j_seppur_2024_128041
crossref_primary_10_1016_j_scitotenv_2020_142136
crossref_primary_10_1007_s12209_020_00240_0
crossref_primary_10_1016_j_electacta_2021_139462
crossref_primary_10_1002_ejic_202001151
crossref_primary_10_1002_ange_202006422
crossref_primary_10_1002_adfm_201910539
crossref_primary_10_1021_acs_chemmater_0c02843
crossref_primary_10_1021_acssuschemeng_0c08332
Cites_doi 10.1002/ange.200351343
10.1002/anie.201308067
10.1039/C3EE42918K
10.1002/anie.201304134
10.1021/ja300038p
10.1021/ja206477z
10.1038/nmat3795
10.1002/ange.200704431
10.1039/c3ee43463j
10.1016/j.carbon.2009.03.041
10.1002/ange.200503779
10.1021/ja505708y
10.1002/ange.201307273
10.1016/j.elecom.2013.02.018
10.1016/j.carbon.2013.04.100
10.1016/j.electacta.2012.01.086
10.1002/anie.200351343
10.1002/ange.201308067
10.1021/jp1109702
10.1002/adma.201305254
10.1126/science.1168980
10.1002/anie.200704431
10.1002/ange.201304134
10.1016/j.electacta.2011.06.043
10.1016/j.elecom.2013.12.017
10.1016/j.apcatb.2011.05.042
10.1039/c4ee00517a
10.1002/adma.200400429
10.1021/ac0610558
10.1002/anie.201307273
10.1021/ez500178p
10.1002/anie.200503779
10.1021/nl100616x
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201502396
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6841
ExternalDocumentID 3695635481
25892325
10_1002_anie_201502396
ANIE201502396
ark_67375_WNG_LTXJKJ9D_N
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2011CB936002
– fundername: National Natural Science Foundation of China
  funderid: 21437001; PCSIRT 13R05
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACRPL
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
H~9
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
UQL
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
YIN
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c6876-d70ce406e565c15e7ca1b706cb121c89272b8291110e6cb56946dc4588a041cc3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:07:41 EDT 2025
Fri Jul 11 06:17:55 EDT 2025
Sun Jul 13 03:08:51 EDT 2025
Wed Feb 19 01:58:31 EST 2025
Tue Jul 01 03:26:52 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Wed Jan 22 16:39:23 EST 2025
Wed Oct 30 09:54:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords porous carbon
hydrogen peroxide synthesis
electrochemistry
electrocatalysis
oxygen reduction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6876-d70ce406e565c15e7ca1b706cb121c89272b8291110e6cb56946dc4588a041cc3
Notes National Basic Research Program of China - No. 2011CB936002
This work was supported by the National Basic Research Program of China (2011CB936002), the National Natural Science Foundation of China (21437001), and PCSIRT 13R05.
National Natural Science Foundation of China - No. 21437001; No. PCSIRT 13R05
istex:4D3862F7344373BDBEBE0F4F5A3C6F4E3FA4CA5B
ArticleID:ANIE201502396
ark:/67375/WNG-LTXJKJ9D-N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25892325
PQID 1683310106
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1701107665
proquest_miscellaneous_1683756608
proquest_journals_1683310106
pubmed_primary_25892325
crossref_primary_10_1002_anie_201502396
crossref_citationtrail_10_1002_anie_201502396
wiley_primary_10_1002_anie_201502396_ANIE201502396
istex_primary_ark_67375_WNG_LTXJKJ9D_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 1, 2015
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Angew. Chem. 2013, 125, 8604-8607.
T. P. Fellinger, F. Hasche, P. Strasser, M. Antonietti, J. Am. Chem. Soc. 2012, 134, 4072-4075
I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 2008, 47, 1900-1902
J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984
Angew. Chem. 2003, 115, 3781-3783.
S. Siahrostami, et al., Nat. Mater. 2013, 12, 1137-1143.
S. Shibata, T. Suenobu, S. Fukuzumi, Angew. Chem. Int. Ed. 2013, 52, 12327-12331
J. Choi, S. H. Hwang, J. Jang, J. Yoon, Electrochem. Commun. 2013, 30, 95-98.
J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432-19441
A. Ueda, D. Kato, N. Sekioka, T. Kamata, R. Kurita, H. Uetsuka, Y. Hattori, S. Hirono, S. Umemura, O. Niwa, Carbon 2009, 47, 1943-1952
G. Zhong, H. Wang, H. Yu, F. Peng, Electrochem. Commun. 2014, 40, 5-8.
J. K. Edwards, B. Solsona, E. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Science 2009, 323, 1037-1041.
C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318.
J. C. Byers, A. G. Guell, P. R. Unwin, J. Am. Chem. Soc. 2014, 136, 11252-11255.
Y. Yi, J. Zhou, H. Guo, J. Zhao, J. Su, L. Wang, X. Wang, W. Gong, Angew. Chem. Int. Ed. 2013, 52, 8446-8449
J. K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A. F. Carley, D. J. Morgan, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed. 2014, 53, 2381-2384
C. H. Hsu, S. G. Cloutier, S. Palefsky, J. Xu, Nano Lett. 2010, 10, 3272-3276.
G. Srinivas, V. Krungleviciute, Z. X. Guo, T. Yildirim, Energy Environ. Sci. 2014, 7, 335-342.
Angew. Chem. 2008, 120, 1926-1928.
I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angew. Chem. Int. Ed. 2003, 42, 3653-3655
J. K. Sun, Q. Xu, Energy Environ. Sci. 2014, 7, 2071-2100.
J. B. Jia, D. Kato, R. Kurita, Y. Sato, K. Maruyama, K. Suzuki, S. Hirono, T. Ando, O. Niwa, Anal. Chem. 2007, 79, 98-105.
A. Wang, A. Bonakdarpour, D. P. Wilkinson, E. Gyenge, Electrochim. Acta 2012, 66, 222-229
D. W. Wang, D. Su, Energy Environ. Sci. 2014, 7, 576-591.
F. Yu, M. Zhou, L. Zhou, R. Peng, Environ. Sci. Technol. Lett. 2014, 1, 320-324.
Angew. Chem. 2013, 125, 12553-12557
R. B. Valim, R. M. Reis, P. S. Castro, A. S. Lima, R. S. Rocha, M. Bertotti, M. R. V. Lanza, Carbon 2013, 61, 236-244
A. Bonakdarpour, D. Esau, H. Cheng, A. Wang, E. Gyenge, D. P. Wilkinson, Electrochim. Acta 2011, 56, 9074-9081.
Angew. Chem. 2014, 126, 2413-2416
T. Murayama, I. Yamanaka, J. Phys. Chem. C 2011, 115, 5792-5799.
G. Zhang, S. Wang, S. Zhao, L. Fu, G. Chen, F. Yang, Appl. Catal. B 2011, 106, 370-378.
Angew. Chem. 2006, 118, 7116-7139.
L. T. Sun, J. L. Gong, D. Z. Zhu, Z. Y. Zhu, S. X. He, Adv. Mater. 2004, 16, 1849-1853.
2014 2014; 53 126
2014; 1
2006 2006; 45 118
2011; 115
2010; 10
2009; 47
2012; 134
2011; 106
2004; 16
2013; 12
2013; 61
2013; 30
2014; 26
2011; 56
2003 2003; 42 115
2008 2008; 47 120
2014; 40
2014; 7
2012; 66
2009; 323
2007; 79
2014; 136
2011; 133
2013 2013; 52 125
e_1_2_2_2_3
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_4_3
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_5_3
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_20_2
e_1_2_2_1_2
e_1_2_2_1_3
e_1_2_2_2_2
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_27_2
e_1_2_2_26_2
e_1_2_2_8_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_12_3
e_1_2_2_13_2
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_10_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_17_2
e_1_2_2_16_2
e_1_2_2_15_2
e_1_2_2_14_2
References_xml – reference: J. C. Byers, A. G. Guell, P. R. Unwin, J. Am. Chem. Soc. 2014, 136, 11252-11255.
– reference: J. K. Edwards, B. Solsona, E. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Science 2009, 323, 1037-1041.
– reference: A. Ueda, D. Kato, N. Sekioka, T. Kamata, R. Kurita, H. Uetsuka, Y. Hattori, S. Hirono, S. Umemura, O. Niwa, Carbon 2009, 47, 1943-1952;
– reference: A. Bonakdarpour, D. Esau, H. Cheng, A. Wang, E. Gyenge, D. P. Wilkinson, Electrochim. Acta 2011, 56, 9074-9081.
– reference: S. Siahrostami, et al., Nat. Mater. 2013, 12, 1137-1143.
– reference: I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angew. Chem. Int. Ed. 2003, 42, 3653-3655;
– reference: Angew. Chem. 2013, 125, 12553-12557;
– reference: L. T. Sun, J. L. Gong, D. Z. Zhu, Z. Y. Zhu, S. X. He, Adv. Mater. 2004, 16, 1849-1853.
– reference: Angew. Chem. 2014, 126, 2413-2416;
– reference: T. P. Fellinger, F. Hasche, P. Strasser, M. Antonietti, J. Am. Chem. Soc. 2012, 134, 4072-4075;
– reference: F. Yu, M. Zhou, L. Zhou, R. Peng, Environ. Sci. Technol. Lett. 2014, 1, 320-324.
– reference: J. K. Sun, Q. Xu, Energy Environ. Sci. 2014, 7, 2071-2100.
– reference: Y. Yi, J. Zhou, H. Guo, J. Zhao, J. Su, L. Wang, X. Wang, W. Gong, Angew. Chem. Int. Ed. 2013, 52, 8446-8449;
– reference: C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318.
– reference: G. Srinivas, V. Krungleviciute, Z. X. Guo, T. Yildirim, Energy Environ. Sci. 2014, 7, 335-342.
– reference: R. B. Valim, R. M. Reis, P. S. Castro, A. S. Lima, R. S. Rocha, M. Bertotti, M. R. V. Lanza, Carbon 2013, 61, 236-244;
– reference: J. B. Jia, D. Kato, R. Kurita, Y. Sato, K. Maruyama, K. Suzuki, S. Hirono, T. Ando, O. Niwa, Anal. Chem. 2007, 79, 98-105.
– reference: Angew. Chem. 2003, 115, 3781-3783.
– reference: Angew. Chem. 2008, 120, 1926-1928.
– reference: I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 2008, 47, 1900-1902;
– reference: D. W. Wang, D. Su, Energy Environ. Sci. 2014, 7, 576-591.
– reference: G. Zhang, S. Wang, S. Zhao, L. Fu, G. Chen, F. Yang, Appl. Catal. B 2011, 106, 370-378.
– reference: J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984;
– reference: C. H. Hsu, S. G. Cloutier, S. Palefsky, J. Xu, Nano Lett. 2010, 10, 3272-3276.
– reference: Angew. Chem. 2013, 125, 8604-8607.
– reference: G. Zhong, H. Wang, H. Yu, F. Peng, Electrochem. Commun. 2014, 40, 5-8.
– reference: J. Choi, S. H. Hwang, J. Jang, J. Yoon, Electrochem. Commun. 2013, 30, 95-98.
– reference: A. Wang, A. Bonakdarpour, D. P. Wilkinson, E. Gyenge, Electrochim. Acta 2012, 66, 222-229;
– reference: Angew. Chem. 2006, 118, 7116-7139.
– reference: J. K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A. F. Carley, D. J. Morgan, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed. 2014, 53, 2381-2384;
– reference: T. Murayama, I. Yamanaka, J. Phys. Chem. C 2011, 115, 5792-5799.
– reference: S. Shibata, T. Suenobu, S. Fukuzumi, Angew. Chem. Int. Ed. 2013, 52, 12327-12331;
– reference: J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432-19441;
– volume: 323
  start-page: 1037
  year: 2009
  end-page: 1041
  publication-title: Science
– volume: 47 120
  start-page: 1900 1926
  year: 2008 2008
  end-page: 1902 1928
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45 118
  start-page: 6962 7116
  year: 2006 2006
  end-page: 6984 7139
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 4072
  year: 2012
  end-page: 4075
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 8446 8604
  year: 2013 2013
  end-page: 8449 8607
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 106
  start-page: 370
  year: 2011
  end-page: 378
  publication-title: Appl. Catal. B
– volume: 12
  start-page: 1137
  year: 2013
  end-page: 1143
  publication-title: Nat. Mater.
– volume: 133
  start-page: 19432
  year: 2011
  end-page: 19441
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 5
  year: 2014
  end-page: 8
  publication-title: Electrochem. Commun.
– volume: 42 115
  start-page: 3653 3781
  year: 2003 2003
  end-page: 3655 3783
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56
  start-page: 9074
  year: 2011
  end-page: 9081
  publication-title: Electrochim. Acta
– volume: 61
  start-page: 236
  year: 2013
  end-page: 244
  publication-title: Carbon
– volume: 16
  start-page: 1849
  year: 2004
  end-page: 1853
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2071
  year: 2014
  end-page: 2100
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 11252
  year: 2014
  end-page: 11255
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 95
  year: 2013
  end-page: 98
  publication-title: Electrochem. Commun.
– volume: 1
  start-page: 320
  year: 2014
  end-page: 324
  publication-title: Environ. Sci. Technol. Lett.
– volume: 79
  start-page: 98
  year: 2007
  end-page: 105
  publication-title: Anal. Chem.
– volume: 53 126
  start-page: 2381 2413
  year: 2014 2014
  end-page: 2384 2416
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 576
  year: 2014
  end-page: 591
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 2295
  year: 2014
  end-page: 2318
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3272
  year: 2010
  end-page: 3276
  publication-title: Nano Lett.
– volume: 52 125
  start-page: 12327 12553
  year: 2013 2013
  end-page: 12331 12557
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 335
  year: 2014
  end-page: 342
  publication-title: Energy Environ. Sci.
– volume: 115
  start-page: 5792
  year: 2011
  end-page: 5799
  publication-title: J. Phys. Chem. C
– volume: 66
  start-page: 222
  year: 2012
  end-page: 229
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 1943
  year: 2009
  end-page: 1952
  publication-title: Carbon
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.200351343
– ident: e_1_2_2_4_2
  doi: 10.1002/anie.201308067
– ident: e_1_2_2_21_2
  doi: 10.1039/C3EE42918K
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201304134
– ident: e_1_2_2_11_2
  doi: 10.1021/ja300038p
– ident: e_1_2_2_3_2
– ident: e_1_2_2_10_2
  doi: 10.1021/ja206477z
– ident: e_1_2_2_7_2
  doi: 10.1038/nmat3795
– ident: e_1_2_2_12_3
  doi: 10.1002/ange.200704431
– ident: e_1_2_2_16_2
  doi: 10.1039/c3ee43463j
– ident: e_1_2_2_9_2
– ident: e_1_2_2_19_2
  doi: 10.1016/j.carbon.2009.03.041
– ident: e_1_2_2_1_3
  doi: 10.1002/ange.200503779
– ident: e_1_2_2_31_2
  doi: 10.1021/ja505708y
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.201307273
– ident: e_1_2_2_26_2
  doi: 10.1016/j.elecom.2013.02.018
– ident: e_1_2_2_24_2
  doi: 10.1016/j.carbon.2013.04.100
– ident: e_1_2_2_25_2
  doi: 10.1016/j.electacta.2012.01.086
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.200351343
– ident: e_1_2_2_4_3
  doi: 10.1002/ange.201308067
– ident: e_1_2_2_30_2
  doi: 10.1021/jp1109702
– ident: e_1_2_2_14_2
  doi: 10.1002/adma.201305254
– ident: e_1_2_2_6_2
  doi: 10.1126/science.1168980
– ident: e_1_2_2_12_2
  doi: 10.1002/anie.200704431
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201304134
– ident: e_1_2_2_22_2
  doi: 10.1016/j.electacta.2011.06.043
– ident: e_1_2_2_20_2
  doi: 10.1016/j.elecom.2013.12.017
– ident: e_1_2_2_27_2
  doi: 10.1016/j.apcatb.2011.05.042
– ident: e_1_2_2_15_2
  doi: 10.1039/c4ee00517a
– ident: e_1_2_2_28_2
  doi: 10.1002/adma.200400429
– ident: e_1_2_2_29_2
  doi: 10.1021/ac0610558
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.201307273
– ident: e_1_2_2_23_2
– ident: e_1_2_2_13_2
  doi: 10.1021/ez500178p
– ident: e_1_2_2_1_2
  doi: 10.1002/anie.200503779
– ident: e_1_2_2_17_2
  doi: 10.1021/nl100616x
– ident: e_1_2_2_18_2
SSID ssj0028806
Score 2.6290872
Snippet H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries...
H 2 O 2 production by electroreduction of O 2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical...
H sub(2)O sub(2) production by electroreduction of O sub(2) is an attractive alternative to the current anthraquinone process, which is highly desirable for...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6837
SubjectTerms Carbon
Current efficiency
Defects
electrocatalysis
electrochemistry
Electrodes
Electrowinning
Energy efficiency
Environmental cleanup
Hydrogen peroxide
hydrogen peroxide synthesis
Mass transfer
Oxygen
oxygen reduction
porous carbon
Reduction
Selectivity
Tuning
Title High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon
URI https://api.istex.fr/ark:/67375/WNG-LTXJKJ9D-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201502396
https://www.ncbi.nlm.nih.gov/pubmed/25892325
https://www.proquest.com/docview/1683310106
https://www.proquest.com/docview/1683756608
https://www.proquest.com/docview/1701107665
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQkJEQnNLGTpzHsVq2LAssVdWK5WTZjiNWXSUo2ZUaTvwEfiO_hJl4E1jEQ4JbYo8lezy2Pycz3xDyxGij4eqT-UKz2I_CQPmq0IUvcs2sYgXTGUYjv5nFk7NoOhfzH6L4HT_E8MENV0a3X-MCV7o5-E4aihHY6JolMDwTObfRYQtR0cnAH8XBOF14URj6mIW-Z20M-MF2861T6TIq-OJXkHMbwXZH0NF1ovrOO8-T8_31Su-bTz_xOv7P6G6Qaxt8Sg-dQd0kl2x5i1wZ9WnhbpMP6Bny9fOX9-j6Rscui07TlgAkm0VDq4JO2ryuwC7psYWeLnJLMYaFvr1osfAEuWLRGqhu6WSB8c9dOpblsqXHVV2tGzpSta7KO-TsaHw6mvibdA2-iWFP9fMkMBbwgQWMaJiwiVFMJ0EMxsCZSTOecJ1y3FwDC4UizqI4Nxgpq4KIGRPeJTtlVdpdQmHTY9owjfRmkS2yVFueR3h9zWwhIu0Rv58uaTZc5phSYykdCzOXqD856M8jzwb5j47F47eST7vZH8RUfY6-b4mQ72Yv5OvT-fTVNHsuZx7Z681DbpZ9I1mchoCXoZ8eeTxUwwThXxhVWtBhJ5MAiA7SP8gkCMuSOBYeuedMb-gQF6DKkEMN7wzoLwOSh7OX4-Ht_r80ekCu4rNzkNsjO6t6bR8CFFvpR91y-wZ6HSrJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V9lAuvB-BUhaJx8mtd_2KDxyqJMV51FRVKsJp8a7XImpkozgRNSd-An-Fv8JP4Jd0xo6NgnhISD1w9HpsreexO7Oe-YaQp0oqCaGPbziSuYZtmZERJTIxnFgyHbGESR-rkY9CNzi1BxNnskG-1rUwFT5Ec-CGllGu12jgeCC9_wM1FEuwMTfLwfpMd5VXOdTFR4ja8pf9Loj4GeeHvXEnMFaNBQzlgvUbsWcqDTuZBm9GMUd7KmLSM12YNmeq7XOPyzbHZcDUMOi4vu3GCms6I9NmSlnw3itkC9uII1x_96RBrOJgDlVBk2UZ2Pe-xok0-f76fNf2wS0U6fmvnNx1n7nc9A6vk281u6pcl7O95ULuqU8_IUn-V_y8Qa6tXHB6UNnMTbKh01tku1N3vrtN3mPyy_fPX95idh_tVY2C8iIFXzmf5jRLaFDE8wxMjx5rYM001hTLdOjr8wIHTxAOFxWeyoIGUyzxLjvOzGYFPc7m2TKnnWgus_QOOb2UD71LNtMs1fcJhXWdScUkIrjZOvHbUvPYxgjd14ljyxYxav0QagXXjl1DZqICmuYC5SUaebXIi4b-QwVU8lvK56W6NWTR_AzT-zxHvAlfidF4MhgO_K4IW2Sn1kexWtlywdy2BSEBzLNFnjS3QUD4oylKNfCwpPEgTjDbf6Dx0PP0XNdpkXuVrjcT4g6w0uJwh5ca-5cPEgdhv9dcPfiXhx6T7WB8NBKjfjh8SK7ieJUPuEM2F_OlfgSe50LulrZOybvLNoYLPlmGRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKKwEX3tCFAkbicUobO4mzOXCo9sE-yrKqWrGcTOw46qqrpNrsioYTP4Gfwl_hL_BLmEk2QYt4SEg9cIwziex52DPJzDeEPNVKKwh9AstTTFiuY4dWGKvY8iLFTMhipgKsRn49Er1jdzDxJhvkS1ULU-JD1B_c0DKK_RoN_CyK936AhmIFNqZmeVieKVZplUOTf4CgLXvZb4OEn3He7Ry1etaqr4ClBRi_Ffm2NnCQGXBmNPOMr0OmfFvArDnTzYD7XDU57gK2gUFPBK6INJZ0hrbLtHbgvZfIlivsAJtFtA9rwCoO1lDWMzmOhW3vK5hIm--tz3ftGNxCiZ7_ysddd5mLM697nXytuFWmupzuLhdqV3_8CUjyf2LnDXJt5YDT_dJibpINk9wiV1pV37vb5ARTX759-vwOc_top2wTlOUJeMrZNKNpTHt5NE_B8OjYAGemkaFYpEPfnOc4eIhguKjuVOW0N8UC76LfzGyW03E6T5cZbYVzlSZ3yPGFLPQu2UzSxGwTCrs6U5opxG9zTRw0leGRi_F5YGLPVQ1iVeoh9QqsHXuGzGQJM80lykvW8mqQFzX9WQlT8lvK54W21WTh_BST-3xPvh29kgdHk8FwELTlqEF2KnWUq30tk0w0HQgIYJ4N8qS-DQLC30xhYoCHBY0PUYLd_AONj36nL4TXIPdKVa8nxD1gpcPhDi8U9i8Lkvujfqe-uv8vDz0ml8ftrjzoj4YPyFUcLpMBd8jmYr40D8HtXKhHhaVT8v6ibeE7At-E9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Yield+Electrosynthesis+of+Hydrogen+Peroxide+from+Oxygen+Reduction+by+Hierarchically+Porous+Carbon&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Yanming&rft.au=Quan%2C+Xie&rft.au=Fan%2C+Xinfei&rft.au=Wang%2C+Hua&rft.date=2015-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=23&rft.spage=6837&rft_id=info:doi/10.1002%2Fanie.201502396&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3695635481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon