High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon
H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H2O2 synthesis. Here, hie...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 23; pp. 6837 - 6841 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.06.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0–70.2 %, most of them >90.0 % at pH 1–4 and >80.0 % at pH 7). High‐yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6–62.0 mmol L−1 (2.5 h) and corresponding H2O2 production rates of 395.7–110.2 mmol h−1 g−1 at pH 1–7 and −0.5 V. Moreover, HPC was energy‐efficient for H2O2 production with current efficiency of 81.8–70.8 %. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp3‐C and defects, large surface area and fast mass transfer.
The electroreduction of O2 is achieved with hierarchically porous carbon (HPC) to give H2O2. It exhibits good selectivity, a high production rate, and current efficiency for the electrosynthesis of H2O2 at a wide range of pH values. The correlation between H2O2 production rate and sp3‐C atoms and defects was explored. This provides an effective method for tuning the activity of carbon materials for the selective electrosynthesis of H2O2. RE=reference electrode. |
---|---|
AbstractList | H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1) g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer. H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1) g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer.H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1) g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer. H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH1-4 and >80.0% at pH7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0mmolL-1 (2.5h) and corresponding H2O2 production rates of 395.7-110.2mmolh-1g-1 at pH1-7 and -0.5V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp3-C and defects, large surface area and fast mass transfer. H 2 O 2 production by electroreduction of O 2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H 2 O 2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H 2 O 2 from O 2 reduction. It exhibited high activity for O 2 reduction and good H 2 O 2 selectivity (95.0–70.2 %, most of them >90.0 % at pH 1–4 and >80.0 % at pH 7). High‐yield H 2 O 2 generation has been achieved on HPC with H 2 O 2 concentrations of 222.6–62.0 mmol L −1 (2.5 h) and corresponding H 2 O 2 production rates of 395.7–110.2 mmol h −1 g −1 at pH 1–7 and −0.5 V. Moreover, HPC was energy‐efficient for H 2 O 2 production with current efficiency of 81.8–70.8 %. The exceptional performance of HPC for electrosynthesis of H 2 O 2 could be attributed to its high content of sp 3 ‐C and defects, large surface area and fast mass transfer. H sub(2)O sub(2) production by electroreduction of O sub(2) is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H sub(2)O sub(2) synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H sub(2)O sub(2) from O sub(2) reduction. It exhibited high activity for O sub(2) reduction and good H sub(2)O sub(2) selectivity (95.0-70.2%, most of them >90.0% at pH1-4 and >80.0% at pH7). High-yield H sub(2)O sub(2) generation has been achieved on HPC with H sub(2)O sub(2) concentrations of 222.6-62.0mmolL super(-1) (2.5h) and corresponding H sub(2)O sub(2) production rates of 395.7-110.2mmolh super(-1)g super(-1) at pH1-7 and -0.5V. Moreover, HPC was energy-efficient for H sub(2)O sub(2) production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H sub(2)O sub(2) could be attributed to its high content of sp super(3)-C and defects, large surface area and fast mass transfer. The electroreduction of O sub(2) is achieved with hierarchically porous carbon (HPC) to give H sub(2)O sub(2). It exhibits good selectivity, a high production rate, and current efficiency for the electrosynthesis of H sub(2)O sub(2) at a wide range of pH values. The correlation between H sub(2)O sub(2) production rate and sp super(3)-C atoms and defects was explored. This provides an effective method for tuning the activity of carbon materials for the selective electrosynthesis of H sub(2)O sub(2). RE=reference electrode. H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0–70.2 %, most of them >90.0 % at pH 1–4 and >80.0 % at pH 7). High‐yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6–62.0 mmol L−1 (2.5 h) and corresponding H2O2 production rates of 395.7–110.2 mmol h−1 g−1 at pH 1–7 and −0.5 V. Moreover, HPC was energy‐efficient for H2O2 production with current efficiency of 81.8–70.8 %. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp3‐C and defects, large surface area and fast mass transfer. The electroreduction of O2 is achieved with hierarchically porous carbon (HPC) to give H2O2. It exhibits good selectivity, a high production rate, and current efficiency for the electrosynthesis of H2O2 at a wide range of pH values. The correlation between H2O2 production rate and sp3‐C atoms and defects was explored. This provides an effective method for tuning the activity of carbon materials for the selective electrosynthesis of H2O2. RE=reference electrode. |
Author | Chen, Shuo Quan, Xie Fan, Xinfei Liu, Yanming Wang, Hua |
Author_xml | – sequence: 1 givenname: Yanming surname: Liu fullname: Liu, Yanming organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China) – sequence: 2 givenname: Xie surname: Quan fullname: Quan, Xie email: quanxie@dlut.edu.cn organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China) – sequence: 3 givenname: Xinfei surname: Fan fullname: Fan, Xinfei organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China) – sequence: 4 givenname: Hua surname: Wang fullname: Wang, Hua organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China) – sequence: 5 givenname: Shuo surname: Chen fullname: Chen, Shuo organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25892325$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9v0zAUxy00xH7AlSOyxIVLih3HP3KcSlm3Vd2EhoCT5Tgvq0caDzsRzX-Pu44KTUI72Xr6fOz3vu8YHXS-A4TeUjKhhOQfTedgkhPKSc5K8QIdUZ7TjEnJDtK9YCyTitNDdBzjXeKVIuIVOsy5KnOW8yPUzN3tKvvhoK3xrAXbBx_Hrl9BdBH7Bs_HOvhb6PA1BL9xNeAm-DW-2ozb4heoB9s73-FqxHMHwQS7cta07YivffBDxFMTKt-9Ri8b00Z483ieoK-fZzfTeba4Ojufni4yK5QUWS2JhYII4IJbykFaQytJhK1oTm3qWeaVyktKKYFU5KIsRG0LrpQhBbWWnaAPu3fvg_81QOz12kULbWs6SN1oKklypRD8eVQoJrkQRCX0_RP0zg-hS4M8UIwSSkSi3j1SQ7WGWt8HtzZh1H_DTsBkB9gUcgzQ7BFK9HabertNvd9mEoongnW92ebdB-Pa_2vlTvvtWhif-USfLs9n_7rZznWxh83eNeGnFjLlob8tz_Ti5vvF5UX5SS_ZHwGQwfM |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_2139_ssrn_3886327 crossref_primary_10_1016_j_nanoen_2017_10_060 crossref_primary_10_1021_acsami_3c06307 crossref_primary_10_1021_jacs_3c00689 crossref_primary_10_1016_j_jallcom_2022_168403 crossref_primary_10_1016_j_seppur_2025_132377 crossref_primary_10_1007_s12274_024_6505_9 crossref_primary_10_1007_s12274_023_5616_z crossref_primary_10_1021_acs_jpcc_7b04959 crossref_primary_10_1039_C8GC01317A crossref_primary_10_1016_j_apcatb_2021_120407 crossref_primary_10_1016_j_jelechem_2021_115197 crossref_primary_10_1002_ange_201812435 crossref_primary_10_1016_j_jenvman_2017_04_095 crossref_primary_10_1016_j_jtice_2017_10_041 crossref_primary_10_1002_ange_202104480 crossref_primary_10_1016_j_cej_2022_134788 crossref_primary_10_1016_j_seppur_2023_124196 crossref_primary_10_1016_j_trechm_2020_07_007 crossref_primary_10_1126_science_aay1844 crossref_primary_10_1007_s10311_022_01453_6 crossref_primary_10_1016_j_micromeso_2023_112842 crossref_primary_10_1016_j_nantod_2023_101792 crossref_primary_10_1016_j_seppur_2024_126996 crossref_primary_10_1016_j_fuel_2024_133472 crossref_primary_10_1039_D1NR04176B crossref_primary_10_1016_j_apcatb_2023_123125 crossref_primary_10_1016_j_cej_2020_125156 crossref_primary_10_1016_j_cej_2024_157070 crossref_primary_10_1021_acscatal_9b02546 crossref_primary_10_1016_j_jechem_2021_12_028 crossref_primary_10_1021_acs_est_3c02987 crossref_primary_10_1016_j_cclet_2021_07_006 crossref_primary_10_1002_cssc_202300699 crossref_primary_10_3390_molecules29071436 crossref_primary_10_1021_acssuschemeng_3c04005 crossref_primary_10_1016_j_jhazmat_2019_121102 crossref_primary_10_1002_anie_202101804 crossref_primary_10_1016_j_seppur_2022_120687 crossref_primary_10_1039_C6RE00195E crossref_primary_10_1016_j_electacta_2019_134569 crossref_primary_10_1016_j_chempr_2017_12_015 crossref_primary_10_1016_j_watres_2019_114933 crossref_primary_10_1021_acsenergylett_8b00318 crossref_primary_10_2166_wst_2019_338 crossref_primary_10_1016_j_talanta_2021_122894 crossref_primary_10_1021_acs_est_3c02877 crossref_primary_10_1039_D0TA01869D crossref_primary_10_1016_j_envpol_2019_113119 crossref_primary_10_1039_C6CC01605G crossref_primary_10_1016_j_envres_2021_111994 crossref_primary_10_1021_acscatal_3c01837 crossref_primary_10_1039_D3TA01859H crossref_primary_10_1016_j_chemosphere_2022_135496 crossref_primary_10_1021_acsestengg_3c00179 crossref_primary_10_1002_cssc_201801583 crossref_primary_10_1016_j_seppur_2025_132571 crossref_primary_10_1039_D1EE02884G crossref_primary_10_1021_acsmaterialslett_3c01036 crossref_primary_10_1016_j_electacta_2024_144533 crossref_primary_10_1002_anie_201812435 crossref_primary_10_1021_jacs_6b05806 crossref_primary_10_1093_nsr_nwaa084 crossref_primary_10_2139_ssrn_3981648 crossref_primary_10_1021_acsami_1c05353 crossref_primary_10_1016_j_carbon_2024_119216 crossref_primary_10_1021_acs_est_6b00265 crossref_primary_10_1016_j_seppur_2025_131590 crossref_primary_10_1007_s10098_022_02323_z crossref_primary_10_1016_j_jhazmat_2021_125859 crossref_primary_10_1039_C9GC04324A crossref_primary_10_1016_j_cej_2023_141657 crossref_primary_10_1016_j_electacta_2020_137287 crossref_primary_10_1016_j_ijhydene_2021_01_195 crossref_primary_10_1007_s00339_021_04574_x crossref_primary_10_1021_acscatal_7b02165 crossref_primary_10_1016_j_apcatb_2021_120332 crossref_primary_10_1016_j_apcatb_2025_125077 crossref_primary_10_1002_smll_201902845 crossref_primary_10_1016_j_ccr_2021_214277 crossref_primary_10_1016_j_apcatb_2023_123533 crossref_primary_10_1016_j_jhazmat_2023_132823 crossref_primary_10_1021_acscatal_7b03464 crossref_primary_10_1002_cssc_201902429 crossref_primary_10_1039_D4GC00387J crossref_primary_10_1016_j_jelechem_2018_01_054 crossref_primary_10_1002_bkcs_12842 crossref_primary_10_1007_s12678_019_00550_5 crossref_primary_10_1016_j_talanta_2017_08_060 crossref_primary_10_1126_science_aad4998 crossref_primary_10_1016_j_molstruc_2023_135971 crossref_primary_10_1016_j_electacta_2019_135206 crossref_primary_10_1002_anie_202307504 crossref_primary_10_1016_j_seppur_2021_119432 crossref_primary_10_1038_s41467_021_26832_5 crossref_primary_10_1021_acs_energyfuels_3c03905 crossref_primary_10_1039_D0TA09122G crossref_primary_10_1016_j_seppur_2024_127451 crossref_primary_10_1002_adma_202205414 crossref_primary_10_1016_j_apcatb_2018_05_079 crossref_primary_10_1021_acs_langmuir_3c00860 crossref_primary_10_1016_j_jece_2024_114591 crossref_primary_10_1016_j_cej_2024_149066 crossref_primary_10_1021_acsami_7b18690 crossref_primary_10_1016_j_jallcom_2023_171264 crossref_primary_10_1088_1742_6596_2174_1_012034 crossref_primary_10_1002_aenm_202003323 crossref_primary_10_1016_j_chemosphere_2019_03_042 crossref_primary_10_1016_j_chemosphere_2020_127463 crossref_primary_10_1016_j_jece_2016_10_006 crossref_primary_10_1016_j_electacta_2019_04_155 crossref_primary_10_1071_CH18328 crossref_primary_10_1021_acsami_2c15467 crossref_primary_10_1016_j_apcatb_2022_121161 crossref_primary_10_1149_1945_7111_ab6fee crossref_primary_10_1039_D1TA03864H crossref_primary_10_1021_acs_jpcc_0c10771 crossref_primary_10_1016_j_apcatb_2016_09_074 crossref_primary_10_1021_acsami_3c03775 crossref_primary_10_1021_acsmaterialslett_1c00263 crossref_primary_10_1021_acsami_9b16236 crossref_primary_10_1016_j_jcat_2019_06_019 crossref_primary_10_1016_j_seppur_2021_118327 crossref_primary_10_1021_acsami_9b07765 crossref_primary_10_1021_acscatal_0c01641 crossref_primary_10_1038_s41563_019_0398_0 crossref_primary_10_1016_j_jcat_2017_11_008 crossref_primary_10_1002_ange_202111075 crossref_primary_10_1002_aenm_202002473 crossref_primary_10_1002_chin_201532010 crossref_primary_10_1016_j_nanoen_2019_103940 crossref_primary_10_1002_advs_202100076 crossref_primary_10_1039_D0TA07900F crossref_primary_10_1016_j_jclepro_2020_122044 crossref_primary_10_1016_j_electacta_2019_04_011 crossref_primary_10_1016_j_apsusc_2020_148148 crossref_primary_10_1016_j_est_2023_108186 crossref_primary_10_1016_j_matpr_2021_01_945 crossref_primary_10_1007_s12274_023_5999_x crossref_primary_10_1016_j_chemosphere_2021_131936 crossref_primary_10_1021_acscatal_7b02548 crossref_primary_10_2174_2213337207999200802025735 crossref_primary_10_1002_sus2_149 crossref_primary_10_1016_S1872_5805_22_60582_1 crossref_primary_10_1016_j_apsusc_2019_144875 crossref_primary_10_1149_1945_7111_abde7e crossref_primary_10_1002_admi_202001360 crossref_primary_10_1016_j_jhazmat_2020_123846 crossref_primary_10_1002_cctc_202002045 crossref_primary_10_1007_s10853_020_05170_9 crossref_primary_10_1016_j_electacta_2018_04_008 crossref_primary_10_1021_acsaem_9b01135 crossref_primary_10_1016_j_seppur_2021_120225 crossref_primary_10_1007_s44246_023_00090_0 crossref_primary_10_1039_D2NJ01679F crossref_primary_10_1016_j_nanoen_2017_12_021 crossref_primary_10_1002_anie_202006422 crossref_primary_10_1016_j_jechem_2020_02_027 crossref_primary_10_1002_smll_202403029 crossref_primary_10_1007_s10562_024_04658_2 crossref_primary_10_1016_j_xcrp_2022_100987 crossref_primary_10_1021_acssuschemeng_1c01468 crossref_primary_10_1021_acscatal_2c01829 crossref_primary_10_1016_j_cej_2022_134863 crossref_primary_10_1016_j_jechem_2018_09_002 crossref_primary_10_1016_j_jhazmat_2023_131925 crossref_primary_10_1039_C6DT04643F crossref_primary_10_1016_j_cej_2019_05_165 crossref_primary_10_1039_D1RA01045J crossref_primary_10_1021_acs_est_2c07752 crossref_primary_10_1016_j_chemosphere_2024_143542 crossref_primary_10_1016_j_memsci_2020_118644 crossref_primary_10_1016_j_jece_2024_113002 crossref_primary_10_1007_s12274_022_5160_2 crossref_primary_10_1016_j_jechem_2021_10_013 crossref_primary_10_1016_j_colsurfa_2022_129657 crossref_primary_10_1002_adma_201808173 crossref_primary_10_1002_anie_202205972 crossref_primary_10_1039_D3CP05492F crossref_primary_10_2166_bgs_2019_911 crossref_primary_10_1002_asia_202100030 crossref_primary_10_1016_j_cattod_2016_12_020 crossref_primary_10_1149_1945_7111_ad1a1f crossref_primary_10_1002_chem_201804462 crossref_primary_10_1016_S1872_2067_21_64007_X crossref_primary_10_1002_ange_202003842 crossref_primary_10_1016_j_apcatb_2021_121036 crossref_primary_10_1016_j_cej_2024_149363 crossref_primary_10_1002_admi_202201325 crossref_primary_10_1002_mame_202200469 crossref_primary_10_1016_j_jmat_2021_04_010 crossref_primary_10_1021_acssuschemeng_2c04746 crossref_primary_10_3390_molecules25214996 crossref_primary_10_1016_j_ijhydene_2023_11_116 crossref_primary_10_1021_acscatal_8b00347 crossref_primary_10_1021_acscatal_8b03734 crossref_primary_10_1039_D2EE01797K crossref_primary_10_1016_j_apcatb_2019_117772 crossref_primary_10_1021_acs_est_9b06266 crossref_primary_10_1039_D2CY01709A crossref_primary_10_1002_ange_202302466 crossref_primary_10_1016_j_electacta_2021_137721 crossref_primary_10_1016_j_jcis_2019_10_053 crossref_primary_10_1089_ees_2020_0064 crossref_primary_10_1007_s41918_022_00163_5 crossref_primary_10_1039_C6RA16606G crossref_primary_10_1088_2515_7655_acbabc crossref_primary_10_1016_j_eng_2023_02_005 crossref_primary_10_1016_j_envres_2022_113508 crossref_primary_10_1039_D1TA10529A crossref_primary_10_3390_w16121658 crossref_primary_10_1021_acscatal_0c05701 crossref_primary_10_1002_anie_202213296 crossref_primary_10_1007_s40843_021_1891_2 crossref_primary_10_1002_adma_201802920 crossref_primary_10_1016_j_seppur_2023_123773 crossref_primary_10_1016_j_apcatb_2022_121457 crossref_primary_10_1016_j_apcatb_2022_121578 crossref_primary_10_1016_j_carbon_2017_06_044 crossref_primary_10_1021_acs_jpcc_8b00679 crossref_primary_10_1002_asia_201700292 crossref_primary_10_1016_j_diamond_2019_107671 crossref_primary_10_1039_D3MH02142D crossref_primary_10_1007_s12274_021_3786_0 crossref_primary_10_1002_ange_202205972 crossref_primary_10_1021_acsestengg_1c00366 crossref_primary_10_1002_anie_201510686 crossref_primary_10_1039_D0NR03178J crossref_primary_10_1016_j_mattod_2023_02_004 crossref_primary_10_1002_cctc_202100805 crossref_primary_10_1016_j_psep_2022_11_037 crossref_primary_10_1016_j_cej_2021_129346 crossref_primary_10_1016_j_apcatb_2022_121688 crossref_primary_10_1149_2_0561807jes crossref_primary_10_1021_acs_iecr_4c03929 crossref_primary_10_1021_acssuschemeng_0c07263 crossref_primary_10_1016_j_chemosphere_2019_124927 crossref_primary_10_1002_advs_202100120 crossref_primary_10_1039_C8CC00957K crossref_primary_10_1002_smll_202105082 crossref_primary_10_1007_s40820_023_01044_2 crossref_primary_10_1016_j_jclepro_2022_134578 crossref_primary_10_1016_j_envpol_2019_112958 crossref_primary_10_1002_adsu_202000134 crossref_primary_10_1021_acssuschemeng_3c02620 crossref_primary_10_1002_anie_202419049 crossref_primary_10_1039_C7CC04819J crossref_primary_10_1021_acsami_1c17727 crossref_primary_10_3390_app11125371 crossref_primary_10_1016_j_cej_2017_09_093 crossref_primary_10_1016_j_jpowsour_2016_12_030 crossref_primary_10_1002_adsu_201900027 crossref_primary_10_1016_j_mtener_2022_101092 crossref_primary_10_2139_ssrn_4086832 crossref_primary_10_1002_smll_202302338 crossref_primary_10_1016_j_checat_2022_04_011 crossref_primary_10_1016_j_hazl_2021_100020 crossref_primary_10_1016_j_electacta_2017_07_085 crossref_primary_10_2139_ssrn_4067094 crossref_primary_10_1016_j_cej_2023_143291 crossref_primary_10_1002_ange_202419049 crossref_primary_10_1007_s11696_022_02258_1 crossref_primary_10_1021_jacs_8b02798 crossref_primary_10_1016_j_chempr_2017_10_013 crossref_primary_10_1002_adma_201904870 crossref_primary_10_1039_C8NR03527J crossref_primary_10_1016_j_jtice_2021_06_028 crossref_primary_10_1016_j_cej_2024_154221 crossref_primary_10_1007_s11581_022_04690_5 crossref_primary_10_1002_adfm_202003321 crossref_primary_10_1002_adma_202008023 crossref_primary_10_1016_j_cclet_2025_111045 crossref_primary_10_1016_j_ijhydene_2018_03_219 crossref_primary_10_1002_aenm_202301543 crossref_primary_10_1016_j_cej_2020_125722 crossref_primary_10_1002_aenm_201801909 crossref_primary_10_1021_acs_chemrev_1c01003 crossref_primary_10_1016_j_cej_2022_139597 crossref_primary_10_1016_j_jhazmat_2023_133261 crossref_primary_10_2139_ssrn_4167605 crossref_primary_10_1016_j_jelechem_2023_117486 crossref_primary_10_1021_acs_chemmater_9b05212 crossref_primary_10_1016_j_apcatb_2022_121523 crossref_primary_10_1021_acs_est_1c06368 crossref_primary_10_1002_smll_202302380 crossref_primary_10_1016_j_jallcom_2024_176091 crossref_primary_10_1016_j_jcis_2019_10_031 crossref_primary_10_1016_j_jechem_2025_01_059 crossref_primary_10_1016_j_cej_2020_127817 crossref_primary_10_1016_j_electacta_2017_05_069 crossref_primary_10_1016_j_cej_2021_131352 crossref_primary_10_1002_ange_201510686 crossref_primary_10_1021_acsestengg_4c00084 crossref_primary_10_1021_acsaem_1c00259 crossref_primary_10_1016_j_jelechem_2021_115938 crossref_primary_10_1002_ange_202307504 crossref_primary_10_1016_j_jechem_2020_05_033 crossref_primary_10_1016_j_watres_2018_03_066 crossref_primary_10_1039_C9CC09987E crossref_primary_10_1021_acsami_9b20920 crossref_primary_10_1016_j_cej_2022_139371 crossref_primary_10_1038_s41467_020_15597_y crossref_primary_10_1016_j_electacta_2022_140460 crossref_primary_10_1021_acsenergylett_8b02138 crossref_primary_10_1021_acscatal_0c00584 crossref_primary_10_1038_s41467_020_19309_4 crossref_primary_10_1016_j_matlet_2016_02_144 crossref_primary_10_1021_jacs_9b05576 crossref_primary_10_1021_acsami_0c05159 crossref_primary_10_1002_cssc_202100055 crossref_primary_10_1021_acsami_4c09949 crossref_primary_10_1016_j_cej_2020_128368 crossref_primary_10_1016_j_seppur_2019_116424 crossref_primary_10_1021_acsami_1c11318 crossref_primary_10_1016_j_jwpe_2022_103103 crossref_primary_10_1002_admi_202002091 crossref_primary_10_1021_acsami_1c11673 crossref_primary_10_1016_j_jpowsour_2017_12_040 crossref_primary_10_1021_jacs_1c03135 crossref_primary_10_1002_elan_202060099 crossref_primary_10_1002_slct_201900070 crossref_primary_10_1016_j_cej_2017_05_113 crossref_primary_10_1016_j_mcat_2023_113076 crossref_primary_10_1039_C8NJ06134C crossref_primary_10_1021_acsestengg_1c00083 crossref_primary_10_1002_ange_202101804 crossref_primary_10_1021_acssuschemeng_0c04021 crossref_primary_10_3390_catal13040674 crossref_primary_10_1016_j_ese_2022_100170 crossref_primary_10_1039_D5MA00111K crossref_primary_10_1016_j_chemosphere_2019_124636 crossref_primary_10_1016_j_cej_2025_160709 crossref_primary_10_1016_j_jwpe_2023_103850 crossref_primary_10_1016_j_joule_2019_09_019 crossref_primary_10_1039_C6TA03300H crossref_primary_10_3390_nano13071188 crossref_primary_10_1016_j_checat_2022_02_002 crossref_primary_10_1016_j_cej_2024_157125 crossref_primary_10_1038_s41467_020_17782_5 crossref_primary_10_1016_j_chemosphere_2023_138645 crossref_primary_10_1021_acs_est_0c03614 crossref_primary_10_1038_s41929_017_0017_x crossref_primary_10_1002_cctc_201500791 crossref_primary_10_1039_D3GC02856A crossref_primary_10_1016_j_cej_2020_126171 crossref_primary_10_1002_cssc_201900238 crossref_primary_10_1016_j_carbon_2022_12_048 crossref_primary_10_1016_j_ces_2017_09_012 crossref_primary_10_1016_j_chempr_2021_08_007 crossref_primary_10_1021_acsami_1c14969 crossref_primary_10_1021_acsami_0c13661 crossref_primary_10_1039_C5TA04721H crossref_primary_10_1021_acscatal_1c03236 crossref_primary_10_1002_anie_202104480 crossref_primary_10_1002_celc_202101692 crossref_primary_10_1039_D3QM00972F crossref_primary_10_1016_j_carbon_2016_10_046 crossref_primary_10_1021_acsaem_0c00093 crossref_primary_10_1088_1361_6528_ad0055 crossref_primary_10_1002_smll_202303156 crossref_primary_10_1007_s10800_024_02161_5 crossref_primary_10_1016_j_colsurfb_2019_04_008 crossref_primary_10_1039_C8TA08479C crossref_primary_10_1016_j_cej_2024_150967 crossref_primary_10_4236_gep_2017_56002 crossref_primary_10_1021_acs_jpclett_2c02684 crossref_primary_10_1016_j_cclet_2023_108291 crossref_primary_10_1039_D0CS00458H crossref_primary_10_1016_j_jhazmat_2021_127896 crossref_primary_10_1007_s40820_023_01052_2 crossref_primary_10_1016_j_gee_2020_08_013 crossref_primary_10_1016_j_envres_2021_112327 crossref_primary_10_1002_ange_202213296 crossref_primary_10_1016_j_seppur_2019_116342 crossref_primary_10_1016_j_cej_2021_132829 crossref_primary_10_1016_j_seppur_2022_121277 crossref_primary_10_1002_anie_202111075 crossref_primary_10_54097_ex006g06 crossref_primary_10_1002_anie_202003842 crossref_primary_10_1016_j_jece_2024_111960 crossref_primary_10_6023_A22010030 crossref_primary_10_1021_acssuschemeng_9b07047 crossref_primary_10_1016_j_jhazmat_2023_131352 crossref_primary_10_1007_s11581_023_05357_5 crossref_primary_10_1016_j_carbon_2020_02_084 crossref_primary_10_1016_j_scitotenv_2025_178444 crossref_primary_10_1016_j_cej_2021_133921 crossref_primary_10_1016_j_dwt_2024_100845 crossref_primary_10_1002_adma_202103266 crossref_primary_10_1016_j_electacta_2022_141708 crossref_primary_10_1002_slct_201601469 crossref_primary_10_1002_asia_202200278 crossref_primary_10_1021_acs_est_5b03147 crossref_primary_10_1039_D3QI00668A crossref_primary_10_1016_j_apcatb_2021_120605 crossref_primary_10_1016_j_cej_2019_123427 crossref_primary_10_1007_s11356_018_2193_x crossref_primary_10_1021_acssuschemeng_2c07479 crossref_primary_10_1016_j_cej_2017_12_104 crossref_primary_10_1016_j_cclet_2025_110909 crossref_primary_10_1007_s40820_023_01067_9 crossref_primary_10_1016_j_jpowsour_2022_232306 crossref_primary_10_1007_s12274_023_5903_8 crossref_primary_10_1039_D3EE03223J crossref_primary_10_1021_acsami_9b16937 crossref_primary_10_1016_j_jhazmat_2020_124262 crossref_primary_10_1039_D4CY00739E crossref_primary_10_1021_acs_jpcc_1c03775 crossref_primary_10_1016_j_cej_2023_147588 crossref_primary_10_1016_j_apsusc_2021_152293 crossref_primary_10_1016_j_cattod_2019_06_034 crossref_primary_10_1016_j_chemosphere_2021_130269 crossref_primary_10_1016_j_electacta_2017_08_191 crossref_primary_10_2139_ssrn_4177595 crossref_primary_10_1016_j_jhazmat_2018_02_018 crossref_primary_10_1021_acs_est_0c01428 crossref_primary_10_1038_srep38454 crossref_primary_10_1016_j_apcatb_2023_123018 crossref_primary_10_1016_j_psep_2022_08_017 crossref_primary_10_1016_j_jcis_2022_05_149 crossref_primary_10_1039_D1CS00219H crossref_primary_10_20964_2020_12_46 crossref_primary_10_1002_anie_202302466 crossref_primary_10_1021_acsami_6b05739 crossref_primary_10_1016_j_scitotenv_2020_144680 crossref_primary_10_1016_j_jcis_2022_04_108 crossref_primary_10_1016_j_nanoen_2022_107046 crossref_primary_10_1039_C9CC02580D crossref_primary_10_1016_j_jechem_2016_01_024 crossref_primary_10_2139_ssrn_3994540 crossref_primary_10_1016_j_apcatb_2023_123380 crossref_primary_10_1016_j_apsusc_2020_146434 crossref_primary_10_12677_NAT_2022_124026 crossref_primary_10_1016_j_jcat_2022_08_025 crossref_primary_10_1016_j_seppur_2024_128041 crossref_primary_10_1016_j_scitotenv_2020_142136 crossref_primary_10_1007_s12209_020_00240_0 crossref_primary_10_1016_j_electacta_2021_139462 crossref_primary_10_1002_ejic_202001151 crossref_primary_10_1002_ange_202006422 crossref_primary_10_1002_adfm_201910539 crossref_primary_10_1021_acs_chemmater_0c02843 crossref_primary_10_1021_acssuschemeng_0c08332 |
Cites_doi | 10.1002/ange.200351343 10.1002/anie.201308067 10.1039/C3EE42918K 10.1002/anie.201304134 10.1021/ja300038p 10.1021/ja206477z 10.1038/nmat3795 10.1002/ange.200704431 10.1039/c3ee43463j 10.1016/j.carbon.2009.03.041 10.1002/ange.200503779 10.1021/ja505708y 10.1002/ange.201307273 10.1016/j.elecom.2013.02.018 10.1016/j.carbon.2013.04.100 10.1016/j.electacta.2012.01.086 10.1002/anie.200351343 10.1002/ange.201308067 10.1021/jp1109702 10.1002/adma.201305254 10.1126/science.1168980 10.1002/anie.200704431 10.1002/ange.201304134 10.1016/j.electacta.2011.06.043 10.1016/j.elecom.2013.12.017 10.1016/j.apcatb.2011.05.042 10.1039/c4ee00517a 10.1002/adma.200400429 10.1021/ac0610558 10.1002/anie.201307273 10.1021/ez500178p 10.1002/anie.200503779 10.1021/nl100616x |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201502396 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 6841 |
ExternalDocumentID | 3695635481 25892325 10_1002_anie_201502396 ANIE201502396 ark_67375_WNG_LTXJKJ9D_N |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2011CB936002 – fundername: National Natural Science Foundation of China funderid: 21437001; PCSIRT 13R05 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ .GJ .HR .Y3 186 31~ 9M8 AANHP AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACRPL ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF H~9 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI UQL VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM YIN 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c6876-d70ce406e565c15e7ca1b706cb121c89272b8291110e6cb56946dc4588a041cc3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:07:41 EDT 2025 Fri Jul 11 06:17:55 EDT 2025 Sun Jul 13 03:08:51 EDT 2025 Wed Feb 19 01:58:31 EST 2025 Tue Jul 01 03:26:52 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Wed Jan 22 16:39:23 EST 2025 Wed Oct 30 09:54:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | porous carbon hydrogen peroxide synthesis electrochemistry electrocatalysis oxygen reduction |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6876-d70ce406e565c15e7ca1b706cb121c89272b8291110e6cb56946dc4588a041cc3 |
Notes | National Basic Research Program of China - No. 2011CB936002 This work was supported by the National Basic Research Program of China (2011CB936002), the National Natural Science Foundation of China (21437001), and PCSIRT 13R05. National Natural Science Foundation of China - No. 21437001; No. PCSIRT 13R05 istex:4D3862F7344373BDBEBE0F4F5A3C6F4E3FA4CA5B ArticleID:ANIE201502396 ark:/67375/WNG-LTXJKJ9D-N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25892325 |
PQID | 1683310106 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1701107665 proquest_miscellaneous_1683756608 proquest_journals_1683310106 pubmed_primary_25892325 crossref_primary_10_1002_anie_201502396 crossref_citationtrail_10_1002_anie_201502396 wiley_primary_10_1002_anie_201502396_ANIE201502396 istex_primary_ark_67375_WNG_LTXJKJ9D_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2015 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: June 1, 2015 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Angew. Chem. 2013, 125, 8604-8607. T. P. Fellinger, F. Hasche, P. Strasser, M. Antonietti, J. Am. Chem. Soc. 2012, 134, 4072-4075 I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 2008, 47, 1900-1902 J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984 Angew. Chem. 2003, 115, 3781-3783. S. Siahrostami, et al., Nat. Mater. 2013, 12, 1137-1143. S. Shibata, T. Suenobu, S. Fukuzumi, Angew. Chem. Int. Ed. 2013, 52, 12327-12331 J. Choi, S. H. Hwang, J. Jang, J. Yoon, Electrochem. Commun. 2013, 30, 95-98. J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432-19441 A. Ueda, D. Kato, N. Sekioka, T. Kamata, R. Kurita, H. Uetsuka, Y. Hattori, S. Hirono, S. Umemura, O. Niwa, Carbon 2009, 47, 1943-1952 G. Zhong, H. Wang, H. Yu, F. Peng, Electrochem. Commun. 2014, 40, 5-8. J. K. Edwards, B. Solsona, E. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Science 2009, 323, 1037-1041. C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318. J. C. Byers, A. G. Guell, P. R. Unwin, J. Am. Chem. Soc. 2014, 136, 11252-11255. Y. Yi, J. Zhou, H. Guo, J. Zhao, J. Su, L. Wang, X. Wang, W. Gong, Angew. Chem. Int. Ed. 2013, 52, 8446-8449 J. K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A. F. Carley, D. J. Morgan, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed. 2014, 53, 2381-2384 C. H. Hsu, S. G. Cloutier, S. Palefsky, J. Xu, Nano Lett. 2010, 10, 3272-3276. G. Srinivas, V. Krungleviciute, Z. X. Guo, T. Yildirim, Energy Environ. Sci. 2014, 7, 335-342. Angew. Chem. 2008, 120, 1926-1928. I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angew. Chem. Int. Ed. 2003, 42, 3653-3655 J. K. Sun, Q. Xu, Energy Environ. Sci. 2014, 7, 2071-2100. J. B. Jia, D. Kato, R. Kurita, Y. Sato, K. Maruyama, K. Suzuki, S. Hirono, T. Ando, O. Niwa, Anal. Chem. 2007, 79, 98-105. A. Wang, A. Bonakdarpour, D. P. Wilkinson, E. Gyenge, Electrochim. Acta 2012, 66, 222-229 D. W. Wang, D. Su, Energy Environ. Sci. 2014, 7, 576-591. F. Yu, M. Zhou, L. Zhou, R. Peng, Environ. Sci. Technol. Lett. 2014, 1, 320-324. Angew. Chem. 2013, 125, 12553-12557 R. B. Valim, R. M. Reis, P. S. Castro, A. S. Lima, R. S. Rocha, M. Bertotti, M. R. V. Lanza, Carbon 2013, 61, 236-244 A. Bonakdarpour, D. Esau, H. Cheng, A. Wang, E. Gyenge, D. P. Wilkinson, Electrochim. Acta 2011, 56, 9074-9081. Angew. Chem. 2014, 126, 2413-2416 T. Murayama, I. Yamanaka, J. Phys. Chem. C 2011, 115, 5792-5799. G. Zhang, S. Wang, S. Zhao, L. Fu, G. Chen, F. Yang, Appl. Catal. B 2011, 106, 370-378. Angew. Chem. 2006, 118, 7116-7139. L. T. Sun, J. L. Gong, D. Z. Zhu, Z. Y. Zhu, S. X. He, Adv. Mater. 2004, 16, 1849-1853. 2014 2014; 53 126 2014; 1 2006 2006; 45 118 2011; 115 2010; 10 2009; 47 2012; 134 2011; 106 2004; 16 2013; 12 2013; 61 2013; 30 2014; 26 2011; 56 2003 2003; 42 115 2008 2008; 47 120 2014; 40 2014; 7 2012; 66 2009; 323 2007; 79 2014; 136 2011; 133 2013 2013; 52 125 e_1_2_2_2_3 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_4_3 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_5_3 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_20_2 e_1_2_2_1_2 e_1_2_2_1_3 e_1_2_2_2_2 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_27_2 e_1_2_2_26_2 e_1_2_2_8_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_12_3 e_1_2_2_13_2 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_16_2 e_1_2_2_15_2 e_1_2_2_14_2 |
References_xml | – reference: J. C. Byers, A. G. Guell, P. R. Unwin, J. Am. Chem. Soc. 2014, 136, 11252-11255. – reference: J. K. Edwards, B. Solsona, E. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Science 2009, 323, 1037-1041. – reference: A. Ueda, D. Kato, N. Sekioka, T. Kamata, R. Kurita, H. Uetsuka, Y. Hattori, S. Hirono, S. Umemura, O. Niwa, Carbon 2009, 47, 1943-1952; – reference: A. Bonakdarpour, D. Esau, H. Cheng, A. Wang, E. Gyenge, D. P. Wilkinson, Electrochim. Acta 2011, 56, 9074-9081. – reference: S. Siahrostami, et al., Nat. Mater. 2013, 12, 1137-1143. – reference: I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angew. Chem. Int. Ed. 2003, 42, 3653-3655; – reference: Angew. Chem. 2013, 125, 12553-12557; – reference: L. T. Sun, J. L. Gong, D. Z. Zhu, Z. Y. Zhu, S. X. He, Adv. Mater. 2004, 16, 1849-1853. – reference: Angew. Chem. 2014, 126, 2413-2416; – reference: T. P. Fellinger, F. Hasche, P. Strasser, M. Antonietti, J. Am. Chem. Soc. 2012, 134, 4072-4075; – reference: F. Yu, M. Zhou, L. Zhou, R. Peng, Environ. Sci. Technol. Lett. 2014, 1, 320-324. – reference: J. K. Sun, Q. Xu, Energy Environ. Sci. 2014, 7, 2071-2100. – reference: Y. Yi, J. Zhou, H. Guo, J. Zhao, J. Su, L. Wang, X. Wang, W. Gong, Angew. Chem. Int. Ed. 2013, 52, 8446-8449; – reference: C. J. Shearer, A. Cherevan, D. Eder, Adv. Mater. 2014, 26, 2295-2318. – reference: G. Srinivas, V. Krungleviciute, Z. X. Guo, T. Yildirim, Energy Environ. Sci. 2014, 7, 335-342. – reference: R. B. Valim, R. M. Reis, P. S. Castro, A. S. Lima, R. S. Rocha, M. Bertotti, M. R. V. Lanza, Carbon 2013, 61, 236-244; – reference: J. B. Jia, D. Kato, R. Kurita, Y. Sato, K. Maruyama, K. Suzuki, S. Hirono, T. Ando, O. Niwa, Anal. Chem. 2007, 79, 98-105. – reference: Angew. Chem. 2003, 115, 3781-3783. – reference: Angew. Chem. 2008, 120, 1926-1928. – reference: I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 2008, 47, 1900-1902; – reference: D. W. Wang, D. Su, Energy Environ. Sci. 2014, 7, 576-591. – reference: G. Zhang, S. Wang, S. Zhao, L. Fu, G. Chen, F. Yang, Appl. Catal. B 2011, 106, 370-378. – reference: J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984; – reference: C. H. Hsu, S. G. Cloutier, S. Palefsky, J. Xu, Nano Lett. 2010, 10, 3272-3276. – reference: Angew. Chem. 2013, 125, 8604-8607. – reference: G. Zhong, H. Wang, H. Yu, F. Peng, Electrochem. Commun. 2014, 40, 5-8. – reference: J. Choi, S. H. Hwang, J. Jang, J. Yoon, Electrochem. Commun. 2013, 30, 95-98. – reference: A. Wang, A. Bonakdarpour, D. P. Wilkinson, E. Gyenge, Electrochim. Acta 2012, 66, 222-229; – reference: Angew. Chem. 2006, 118, 7116-7139. – reference: J. K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A. F. Carley, D. J. Morgan, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed. 2014, 53, 2381-2384; – reference: T. Murayama, I. Yamanaka, J. Phys. Chem. C 2011, 115, 5792-5799. – reference: S. Shibata, T. Suenobu, S. Fukuzumi, Angew. Chem. Int. Ed. 2013, 52, 12327-12331; – reference: J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 2011, 133, 19432-19441; – volume: 323 start-page: 1037 year: 2009 end-page: 1041 publication-title: Science – volume: 47 120 start-page: 1900 1926 year: 2008 2008 end-page: 1902 1928 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 118 start-page: 6962 7116 year: 2006 2006 end-page: 6984 7139 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 4072 year: 2012 end-page: 4075 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 8446 8604 year: 2013 2013 end-page: 8449 8607 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 106 start-page: 370 year: 2011 end-page: 378 publication-title: Appl. Catal. B – volume: 12 start-page: 1137 year: 2013 end-page: 1143 publication-title: Nat. Mater. – volume: 133 start-page: 19432 year: 2011 end-page: 19441 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 5 year: 2014 end-page: 8 publication-title: Electrochem. Commun. – volume: 42 115 start-page: 3653 3781 year: 2003 2003 end-page: 3655 3783 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 start-page: 9074 year: 2011 end-page: 9081 publication-title: Electrochim. Acta – volume: 61 start-page: 236 year: 2013 end-page: 244 publication-title: Carbon – volume: 16 start-page: 1849 year: 2004 end-page: 1853 publication-title: Adv. Mater. – volume: 7 start-page: 2071 year: 2014 end-page: 2100 publication-title: Energy Environ. Sci. – volume: 136 start-page: 11252 year: 2014 end-page: 11255 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 95 year: 2013 end-page: 98 publication-title: Electrochem. Commun. – volume: 1 start-page: 320 year: 2014 end-page: 324 publication-title: Environ. Sci. Technol. Lett. – volume: 79 start-page: 98 year: 2007 end-page: 105 publication-title: Anal. Chem. – volume: 53 126 start-page: 2381 2413 year: 2014 2014 end-page: 2384 2416 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 576 year: 2014 end-page: 591 publication-title: Energy Environ. Sci. – volume: 26 start-page: 2295 year: 2014 end-page: 2318 publication-title: Adv. Mater. – volume: 10 start-page: 3272 year: 2010 end-page: 3276 publication-title: Nano Lett. – volume: 52 125 start-page: 12327 12553 year: 2013 2013 end-page: 12331 12557 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 335 year: 2014 end-page: 342 publication-title: Energy Environ. Sci. – volume: 115 start-page: 5792 year: 2011 end-page: 5799 publication-title: J. Phys. Chem. C – volume: 66 start-page: 222 year: 2012 end-page: 229 publication-title: Electrochim. Acta – volume: 47 start-page: 1943 year: 2009 end-page: 1952 publication-title: Carbon – ident: e_1_2_2_8_3 doi: 10.1002/ange.200351343 – ident: e_1_2_2_4_2 doi: 10.1002/anie.201308067 – ident: e_1_2_2_21_2 doi: 10.1039/C3EE42918K – ident: e_1_2_2_2_2 doi: 10.1002/anie.201304134 – ident: e_1_2_2_11_2 doi: 10.1021/ja300038p – ident: e_1_2_2_3_2 – ident: e_1_2_2_10_2 doi: 10.1021/ja206477z – ident: e_1_2_2_7_2 doi: 10.1038/nmat3795 – ident: e_1_2_2_12_3 doi: 10.1002/ange.200704431 – ident: e_1_2_2_16_2 doi: 10.1039/c3ee43463j – ident: e_1_2_2_9_2 – ident: e_1_2_2_19_2 doi: 10.1016/j.carbon.2009.03.041 – ident: e_1_2_2_1_3 doi: 10.1002/ange.200503779 – ident: e_1_2_2_31_2 doi: 10.1021/ja505708y – ident: e_1_2_2_5_3 doi: 10.1002/ange.201307273 – ident: e_1_2_2_26_2 doi: 10.1016/j.elecom.2013.02.018 – ident: e_1_2_2_24_2 doi: 10.1016/j.carbon.2013.04.100 – ident: e_1_2_2_25_2 doi: 10.1016/j.electacta.2012.01.086 – ident: e_1_2_2_8_2 doi: 10.1002/anie.200351343 – ident: e_1_2_2_4_3 doi: 10.1002/ange.201308067 – ident: e_1_2_2_30_2 doi: 10.1021/jp1109702 – ident: e_1_2_2_14_2 doi: 10.1002/adma.201305254 – ident: e_1_2_2_6_2 doi: 10.1126/science.1168980 – ident: e_1_2_2_12_2 doi: 10.1002/anie.200704431 – ident: e_1_2_2_2_3 doi: 10.1002/ange.201304134 – ident: e_1_2_2_22_2 doi: 10.1016/j.electacta.2011.06.043 – ident: e_1_2_2_20_2 doi: 10.1016/j.elecom.2013.12.017 – ident: e_1_2_2_27_2 doi: 10.1016/j.apcatb.2011.05.042 – ident: e_1_2_2_15_2 doi: 10.1039/c4ee00517a – ident: e_1_2_2_28_2 doi: 10.1002/adma.200400429 – ident: e_1_2_2_29_2 doi: 10.1021/ac0610558 – ident: e_1_2_2_5_2 doi: 10.1002/anie.201307273 – ident: e_1_2_2_23_2 – ident: e_1_2_2_13_2 doi: 10.1021/ez500178p – ident: e_1_2_2_1_2 doi: 10.1002/anie.200503779 – ident: e_1_2_2_17_2 doi: 10.1021/nl100616x – ident: e_1_2_2_18_2 |
SSID | ssj0028806 |
Score | 2.6290872 |
Snippet | H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries... H 2 O 2 production by electroreduction of O 2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical... H sub(2)O sub(2) production by electroreduction of O sub(2) is an attractive alternative to the current anthraquinone process, which is highly desirable for... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6837 |
SubjectTerms | Carbon Current efficiency Defects electrocatalysis electrochemistry Electrodes Electrowinning Energy efficiency Environmental cleanup Hydrogen peroxide hydrogen peroxide synthesis Mass transfer Oxygen oxygen reduction porous carbon Reduction Selectivity Tuning |
Title | High-Yield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon |
URI | https://api.istex.fr/ark:/67375/WNG-LTXJKJ9D-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201502396 https://www.ncbi.nlm.nih.gov/pubmed/25892325 https://www.proquest.com/docview/1683310106 https://www.proquest.com/docview/1683756608 https://www.proquest.com/docview/1701107665 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQkJEQnNLGTpzHsVq2LAssVdWK5WTZjiNWXSUo2ZUaTvwEfiO_hJl4E1jEQ4JbYo8lezy2Pycz3xDyxGij4eqT-UKz2I_CQPmq0IUvcs2sYgXTGUYjv5nFk7NoOhfzH6L4HT_E8MENV0a3X-MCV7o5-E4aihHY6JolMDwTObfRYQtR0cnAH8XBOF14URj6mIW-Z20M-MF2861T6TIq-OJXkHMbwXZH0NF1ovrOO8-T8_31Su-bTz_xOv7P6G6Qaxt8Sg-dQd0kl2x5i1wZ9WnhbpMP6Bny9fOX9-j6Rscui07TlgAkm0VDq4JO2ryuwC7psYWeLnJLMYaFvr1osfAEuWLRGqhu6WSB8c9dOpblsqXHVV2tGzpSta7KO-TsaHw6mvibdA2-iWFP9fMkMBbwgQWMaJiwiVFMJ0EMxsCZSTOecJ1y3FwDC4UizqI4Nxgpq4KIGRPeJTtlVdpdQmHTY9owjfRmkS2yVFueR3h9zWwhIu0Rv58uaTZc5phSYykdCzOXqD856M8jzwb5j47F47eST7vZH8RUfY6-b4mQ72Yv5OvT-fTVNHsuZx7Z681DbpZ9I1mchoCXoZ8eeTxUwwThXxhVWtBhJ5MAiA7SP8gkCMuSOBYeuedMb-gQF6DKkEMN7wzoLwOSh7OX4-Ht_r80ekCu4rNzkNsjO6t6bR8CFFvpR91y-wZ6HSrJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V9lAuvB-BUhaJx8mtd_2KDxyqJMV51FRVKsJp8a7XImpkozgRNSd-An-Fv8JP4Jd0xo6NgnhISD1w9HpsreexO7Oe-YaQp0oqCaGPbziSuYZtmZERJTIxnFgyHbGESR-rkY9CNzi1BxNnskG-1rUwFT5Ec-CGllGu12jgeCC9_wM1FEuwMTfLwfpMd5VXOdTFR4ja8pf9Loj4GeeHvXEnMFaNBQzlgvUbsWcqDTuZBm9GMUd7KmLSM12YNmeq7XOPyzbHZcDUMOi4vu3GCms6I9NmSlnw3itkC9uII1x_96RBrOJgDlVBk2UZ2Pe-xok0-f76fNf2wS0U6fmvnNx1n7nc9A6vk281u6pcl7O95ULuqU8_IUn-V_y8Qa6tXHB6UNnMTbKh01tku1N3vrtN3mPyy_fPX95idh_tVY2C8iIFXzmf5jRLaFDE8wxMjx5rYM001hTLdOjr8wIHTxAOFxWeyoIGUyzxLjvOzGYFPc7m2TKnnWgus_QOOb2UD71LNtMs1fcJhXWdScUkIrjZOvHbUvPYxgjd14ljyxYxav0QagXXjl1DZqICmuYC5SUaebXIi4b-QwVU8lvK56W6NWTR_AzT-zxHvAlfidF4MhgO_K4IW2Sn1kexWtlywdy2BSEBzLNFnjS3QUD4oylKNfCwpPEgTjDbf6Dx0PP0XNdpkXuVrjcT4g6w0uJwh5ca-5cPEgdhv9dcPfiXhx6T7WB8NBKjfjh8SK7ieJUPuEM2F_OlfgSe50LulrZOybvLNoYLPlmGRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKKwEX3tCFAkbicUobO4mzOXCo9sE-yrKqWrGcTOw46qqrpNrsioYTP4Gfwl_hL_BLmEk2QYt4SEg9cIwziex52DPJzDeEPNVKKwh9AstTTFiuY4dWGKvY8iLFTMhipgKsRn49Er1jdzDxJhvkS1ULU-JD1B_c0DKK_RoN_CyK936AhmIFNqZmeVieKVZplUOTf4CgLXvZb4OEn3He7Ry1etaqr4ClBRi_Ffm2NnCQGXBmNPOMr0OmfFvArDnTzYD7XDU57gK2gUFPBK6INJZ0hrbLtHbgvZfIlivsAJtFtA9rwCoO1lDWMzmOhW3vK5hIm--tz3ftGNxCiZ7_ysddd5mLM697nXytuFWmupzuLhdqV3_8CUjyf2LnDXJt5YDT_dJibpINk9wiV1pV37vb5ARTX759-vwOc_top2wTlOUJeMrZNKNpTHt5NE_B8OjYAGemkaFYpEPfnOc4eIhguKjuVOW0N8UC76LfzGyW03E6T5cZbYVzlSZ3yPGFLPQu2UzSxGwTCrs6U5opxG9zTRw0leGRi_F5YGLPVQ1iVeoh9QqsHXuGzGQJM80lykvW8mqQFzX9WQlT8lvK54W21WTh_BST-3xPvh29kgdHk8FwELTlqEF2KnWUq30tk0w0HQgIYJ4N8qS-DQLC30xhYoCHBY0PUYLd_AONj36nL4TXIPdKVa8nxD1gpcPhDi8U9i8Lkvujfqe-uv8vDz0ml8ftrjzoj4YPyFUcLpMBd8jmYr40D8HtXKhHhaVT8v6ibeE7At-E9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Yield+Electrosynthesis+of+Hydrogen+Peroxide+from+Oxygen+Reduction+by+Hierarchically+Porous+Carbon&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Yanming&rft.au=Quan%2C+Xie&rft.au=Fan%2C+Xinfei&rft.au=Wang%2C+Hua&rft.date=2015-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=23&rft.spage=6837&rft_id=info:doi/10.1002%2Fanie.201502396&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3695635481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |