A Chemically Triggered and Thermally Switched Dielectric Constant Transition in a Metal Cyanide Based Crystal

A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by single‐crystal‐to‐single‐crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] (1) transforms to its semi‐...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 21; pp. 6206 - 6210
Main Authors Shi, Chao, Zhang, Xi, Cai, Ying, Yao, Ye-Feng, Zhang, Wen
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 18.05.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by single‐crystal‐to‐single‐crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] (1) transforms to its semi‐hydrated form 2, accompanying a transition from a low‐dielectric state to a high‐dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room‐ and low‐temperature phases, and which corresponds to high‐ and low‐dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen‐bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states. A dielectric constant transition is observed in (HPy)2[Na(H2O)Co(CN)6] (HPy=pyridinium cation). This transition is chemically triggered by water in a single‐crystal‐to‐single‐crystal transformation (see picture; right) and thermally switched (left) in a structural phase transition.
AbstractList A dielectric constant transition is chemically triggered and thermally switched in (HPy) sub(2)[Na(H sub(2)O)Co(CN) sub(6)] (2, HPy=pyridinium cation) by single-crystal-to-single-crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy) sub(2)[Na(H sub(2)O) sub(2)Co(CN) sub(6)] (1) transforms to its semi-hydrated form 2, accompanying a transition from a low-dielectric state to a high-dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room- and low-temperature phases, and which corresponds to high- and low-dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen-bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states. A dielectric constant transition is observed in (HPy) sub(2)[Na(H sub(2)O)Co(CN) sub(6)] (HPy=pyridinium cation). This transition is chemically triggered by water in a single-crystal-to-single-crystal transformation (see picture; right) and thermally switched (left) in a structural phase transition.
A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by single-crystal-to-single-crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] (1) transforms to its semi-hydrated form 2, accompanying a transition from a low-dielectric state to a high-dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room- and low-temperature phases, and which corresponds to high- and low-dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen-bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states.A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by single-crystal-to-single-crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] (1) transforms to its semi-hydrated form 2, accompanying a transition from a low-dielectric state to a high-dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room- and low-temperature phases, and which corresponds to high- and low-dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen-bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states.
A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by single-crystal-to-single-crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] (1) transforms to its semi-hydrated form 2, accompanying a transition from a low-dielectric state to a high-dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room- and low-temperature phases, and which corresponds to high- and low-dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen-bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states.
A dielectric constant transition is chemically triggered and thermally switched in (HPy) 2 [Na(H 2 O)Co(CN) 6 ] ( 2 , HPy=pyridinium cation) by single‐crystal‐to‐single‐crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy) 2 [Na(H 2 O) 2 Co(CN) 6 ] ( 1 ) transforms to its semi‐hydrated form 2 , accompanying a transition from a low‐dielectric state to a high‐dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room‐ and low‐temperature phases, and which corresponds to high‐ and low‐dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen‐bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states.
A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by single‐crystal‐to‐single‐crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] (1) transforms to its semi‐hydrated form 2, accompanying a transition from a low‐dielectric state to a high‐dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room‐ and low‐temperature phases, and which corresponds to high‐ and low‐dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen‐bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states. A dielectric constant transition is observed in (HPy)2[Na(H2O)Co(CN)6] (HPy=pyridinium cation). This transition is chemically triggered by water in a single‐crystal‐to‐single‐crystal transformation (see picture; right) and thermally switched (left) in a structural phase transition.
Author Cai, Ying
Shi, Chao
Zhang, Xi
Yao, Ye-Feng
Zhang, Wen
Author_xml – sequence: 1
  givenname: Chao
  surname: Shi
  fullname: Shi, Chao
  organization: Ordered Matter Science Research Center, Southeast University, Nanjing 211189, Jiangsu (China)
– sequence: 2
  givenname: Xi
  surname: Zhang
  fullname: Zhang, Xi
  organization: Department of Physics & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (China)
– sequence: 3
  givenname: Ying
  surname: Cai
  fullname: Cai, Ying
  organization: Ordered Matter Science Research Center, Southeast University, Nanjing 211189, Jiangsu (China)
– sequence: 4
  givenname: Ye-Feng
  surname: Yao
  fullname: Yao, Ye-Feng
  email: yfyao@phy.ecnu.edu.cn
  organization: Department of Physics & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (China)
– sequence: 5
  givenname: Wen
  surname: Zhang
  fullname: Zhang, Wen
  email: zhangwen@seu.edu.cn
  organization: Ordered Matter Science Research Center, Southeast University, Nanjing 211189, Jiangsu (China)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25832506$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhiNURD_gyhFF4sIlix1_JccllG6huxxYxNFynEnXxXFa26uSf4-XLStUCfVka_Q8ntczp9mRGx1k2WuMZhih8r1yBmYlwgxhQumz7ASzEhdECHKU7pSQQlQMH2enIdwkvqoQf5Edl6wiJUP8JBvmebOBwWhl7ZSvvbm-Bg9drlyXrzfghz_1b_cm6k0qfzRgQUdvdN6MLkTlYpKUCyaa0eXG5SpfQlQ2b6YUrYP8gwrJa_yUYPsye94rG-DVw3mWff90vm4WxdXXi8tmflVoXglagKgppQw6ImrCS4UFRQhYq3pFdd3WTPeiVyVvUdWJlgNnXc91z2iNmGYtkLPs3f7dWz_ebSFEOZigwVrlYNwGiQXCSHCK-dMor1DqX1Ga0LeP0Jtx6136SKJS0pS1Jol680Bt2wE6eevNoPwk_848AbM9oP0Ygof-gGAkd0uVu6XKw1KTQB8J2kS1G3j0ytj_a_VeuzcWpieayPnq8vxft9i7JkT4dXCV_ym5IILJH6sLuVh-qT6vFqVckt-mCsRJ
CODEN ACIEAY
CitedBy_id crossref_primary_10_1039_C7CC00812K
crossref_primary_10_1002_ange_202204135
crossref_primary_10_1021_acs_cgd_5b01496
crossref_primary_10_1039_C8CE01461B
crossref_primary_10_1039_C6NJ03973A
crossref_primary_10_1021_acs_inorgchem_0c03031
crossref_primary_10_1021_jacs_7b01334
crossref_primary_10_1002_ejic_201700469
crossref_primary_10_1016_j_inoche_2022_110032
crossref_primary_10_1021_acs_jpclett_4c01691
crossref_primary_10_1039_C9CC03267C
crossref_primary_10_1002_adma_201606966
crossref_primary_10_1515_pac_2023_0211
crossref_primary_10_1002_ange_201603030
crossref_primary_10_1039_D2CE00270A
crossref_primary_10_1007_s11172_018_2066_y
crossref_primary_10_1038_ncomms13321
crossref_primary_10_1016_j_inoche_2016_03_001
crossref_primary_10_1039_C7DT03798H
crossref_primary_10_1039_C7DT03855K
crossref_primary_10_1039_D1MA00691F
crossref_primary_10_1039_D2TC01103D
crossref_primary_10_1039_C5CE02364E
crossref_primary_10_3390_cryst9040184
crossref_primary_10_1002_adom_202301148
crossref_primary_10_1039_C6CE00854B
crossref_primary_10_1002_ange_201602028
crossref_primary_10_1021_acs_cgd_0c01708
crossref_primary_10_1021_acs_inorgchem_1c00558
crossref_primary_10_1021_acs_orglett_8b03087
crossref_primary_10_1039_D3QM00800B
crossref_primary_10_1002_asia_201800589
crossref_primary_10_1016_j_inoche_2019_03_013
crossref_primary_10_1039_C7DT01378G
crossref_primary_10_1021_acs_inorgchem_0c02649
crossref_primary_10_1016_j_cclet_2019_11_011
crossref_primary_10_1002_tcr_202200135
crossref_primary_10_1002_asia_201701588
crossref_primary_10_1039_C6TC05105G
crossref_primary_10_1021_acs_inorgchem_6b00413
crossref_primary_10_3390_cryst7090276
crossref_primary_10_1039_C9DT04270A
crossref_primary_10_1039_C8CC07052K
crossref_primary_10_1002_anie_201602028
crossref_primary_10_1039_D0CE01508C
crossref_primary_10_1039_D2QM00134A
crossref_primary_10_1039_C5DT03481G
crossref_primary_10_1016_j_poly_2018_10_029
crossref_primary_10_1039_C6QI00347H
crossref_primary_10_1021_acs_cgd_6b01179
crossref_primary_10_1039_C8TC03517B
crossref_primary_10_1039_C9QM00724E
crossref_primary_10_1021_acs_jpclett_8b00597
crossref_primary_10_1039_C7QI00218A
crossref_primary_10_1016_j_jre_2021_05_010
crossref_primary_10_1016_j_molstruc_2016_07_113
crossref_primary_10_1002_anie_201603030
crossref_primary_10_1016_j_poly_2016_05_005
crossref_primary_10_1002_ejic_202100547
crossref_primary_10_1021_acs_cgd_9b00298
crossref_primary_10_1039_C7RA00689F
crossref_primary_10_1002_adma_201600895
crossref_primary_10_1016_j_ccr_2017_09_020
crossref_primary_10_1039_C9TC02370D
crossref_primary_10_1016_j_polymer_2025_128061
crossref_primary_10_1021_acs_cgd_6b00508
crossref_primary_10_1039_C9CE01739A
crossref_primary_10_1002_chem_202303415
crossref_primary_10_1039_C9CE00312F
crossref_primary_10_1039_D0DT00615G
crossref_primary_10_1039_C6CC09566F
crossref_primary_10_1016_j_cclet_2023_108427
crossref_primary_10_1039_C7CE01096F
crossref_primary_10_1016_j_cplett_2015_10_038
crossref_primary_10_1007_s11172_019_2561_9
crossref_primary_10_1016_j_cclet_2023_108707
crossref_primary_10_1039_C8DT03372B
crossref_primary_10_1021_acs_cgd_6b01404
crossref_primary_10_1039_D3CC01253K
crossref_primary_10_1016_j_cclet_2023_109355
crossref_primary_10_1021_acsami_8b18883
crossref_primary_10_1002_ange_201703768
crossref_primary_10_1038_s41427_019_0115_0
crossref_primary_10_1039_D3QI02685J
crossref_primary_10_1002_chem_201702228
crossref_primary_10_1039_C9DT03553B
crossref_primary_10_5059_yukigoseikyokaishi_80_1036
crossref_primary_10_1039_C7NJ00612H
crossref_primary_10_1016_j_inoche_2017_01_006
crossref_primary_10_1021_acs_inorgchem_2c03740
crossref_primary_10_1002_anie_201703768
crossref_primary_10_1002_anie_202204135
crossref_primary_10_1021_acs_inorgchem_6b01143
crossref_primary_10_1021_acs_inorgchem_0c03008
crossref_primary_10_1039_D4CE00632A
crossref_primary_10_1039_C6CE01421F
crossref_primary_10_1021_acs_inorgchem_6b02508
crossref_primary_10_1021_acs_cgd_7b00154
crossref_primary_10_1021_acs_inorgchem_9b00497
crossref_primary_10_1039_C6CE01485B
crossref_primary_10_1039_D3MA01073B
crossref_primary_10_1039_D1NJ05074E
crossref_primary_10_1002_ejic_202001156
crossref_primary_10_1039_C8CE00089A
crossref_primary_10_1039_C6CE00194G
Cites_doi 10.1007/978-94-009-1920-4
10.1021/ja4088709
10.1038/nchem.444
10.1021/ja00311a014
10.1002/ange.201103265
10.1038/nmat2614
10.1021/ja801952e
10.1021/ja206228n
10.1002/anie.200502309
10.1039/C4CC08693G
10.1021/ja3047427
10.1021/ja411233p
10.1002/anie.201103265
10.1021/ja904156s
10.1002/ange.200502309
10.1038/nchem.2092
10.1021/ja3110335
10.1002/ange.200602205
10.1002/anie.201411005
10.1007/128_012
10.1126/science.1137975
10.1002/chem.201402892
10.1002/anie.201408491
10.1006/jmre.2002.2503
10.1021/ja206891q
10.1002/ange.200453923
10.1002/anie.200602205
10.1063/1.1750343
10.1002/anie.201001208
10.1002/ange.201411005
10.1038/nmat2137
10.1021/ja407135k
10.1039/C3TC31378F
10.1002/ange.201408491
10.1038/nmat2377
10.1073/pnas.0502816102
10.1021/ja408405f
10.1021/ja304406c
10.1021/cr200174w
10.1073/pnas.1008213107
10.1002/anie.200453923
10.1002/ange.201001208
10.1021/ja407654n
10.1021/ja4044517
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/anie.201501344
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6210
ExternalDocumentID 3677938261
25832506
10_1002_anie_201501344
ANIE201501344
ark_67375_WNG_HMK8JNH2_M
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: NSFC
  funderid: 21225102; 21174039
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c6874-e794445ed379362a17400e5bafa4c9b95cf7fa26b08d7b6e65df6cf54905c5be3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:07:47 EDT 2025
Thu Jul 10 17:51:55 EDT 2025
Fri Jul 25 10:29:57 EDT 2025
Wed Feb 19 02:08:26 EST 2025
Tue Jul 01 03:26:51 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Wed Jan 22 16:26:36 EST 2025
Wed Oct 30 09:53:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords phase transitions
cyanide
single-crystal-to-single-crystal transformations
switchable dielectric constant
pyridinium
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6874-e794445ed379362a17400e5bafa4c9b95cf7fa26b08d7b6e65df6cf54905c5be3
Notes ArticleID:ANIE201501344
NSFC - No. 21225102; No. 21174039
istex:00680C6FA280CE2EBF26D39F3B6310146C2122DC
ark:/67375/WNG-HMK8JNH2-M
This work was financially supported by the NSFC (Grant No. 21225102 and 21174039). We thank beamline BL14B (Shanghai Synchrotron Radiation Facility) for providing the beam time.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25832506
PQID 1679393693
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1701076416
proquest_miscellaneous_1680174844
proquest_journals_1679393693
pubmed_primary_25832506
crossref_primary_10_1002_anie_201501344
crossref_citationtrail_10_1002_anie_201501344
wiley_primary_10_1002_anie_201501344_ANIE201501344
istex_primary_ark_67375_WNG_HMK8JNH2_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 18, 2015
PublicationDateYYYYMMDD 2015-05-18
PublicationDate_xml – month: 05
  year: 2015
  text: May 18, 2015
  day: 18
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References X.-H. Zhao, X.-C. Huang, S.-L. Zhang, D. Shao, H.-Y. Wei, X.-Y. Wang, J. Am. Chem. Soc. 2013, 135, 16006
C. Serre, C. Mellot-Draznieks, S. Surble, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828
C. R. Murdock, N. W. McNutt, D. J. Keffer, D. M. Jenkins, J. Am. Chem. Soc. 2014, 136, 671.
P. Parhami, B. M. Fung, J. Am. Chem. Soc. 1985, 107, 7304.
W. Setaka, K. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 14560.
Angew. Chem. 2010, 122, 6758
A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London, 1983.
H. Fröhlich, Theory of dielectrics, 2nd ed., Oxford University Press, Oxford, 1965.
C. L. Chen, A. M. Goforth, M. D. Smith, C.-Y. Su, H. C. zur Loye, Angew. Chem. Int. Ed. 2005, 44, 6673
R. Shang, Z.-M. Wang, S. Gao, Angew. Chem. Int. Ed. 2015, 54, 2534
C. Lemouchi, K. Iliopoulos, L. Zorina, S. Simonov, P. Wzietek, T. Cauchy, A. Rodríguez-Fortea, E. Canadell, J. Kaleta, J. Michl, D. Gindre, M. Chrysos, P. Batail, J. Am. Chem. Soc. 2013, 135, 9366.
D.-W. Fu, W. Zhang, H.-L. Cai, Y. Zhang, J.-Z. Ge, R.-G. Xiong, S. D. Huang, T. Nakamura, Angew. Chem. Int. Ed. 2011, 50, 11947
T. K. Maji, K. Uemura, H.-C. Chang, R. Matsuda, S. Kitagawa, Angew. Chem. Int. Ed. 2004, 43, 3269
W. Zhang, Y. Cai, R.-G. Xiong, H. Yoshikawa, K. Awaga, Angew. Chem. Int. Ed. 2010, 49, 6608
Y. A. Izyumov, V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry, Kluwer, Dordrecht, 1990.
E. Coronado, M. Giménez-Marqués, G. M. Espallargas, F. Rey, I. J. Vitórica-Yrezábal, J. Am. Chem. Soc. 2013, 135, 15986.
S. D. Karlen, H. Reyes, R. E. Taylor, S. I. Khan, M. F. Hawthorne, M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA 2010, 107, 14973.
T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura, Nat. Mater. 2009, 8, 342
Angew. Chem. 2005, 117, 6831
W. Zhang, R. G. Xiong, Chem. Rev. 2012, 112, 1163.
S. D. Karlen, M. A. Garcia-Garibay, Top. Curr. Chem. 2005, 262, 179
Z.-Y. Du, T.-T. Xu, B. Huang, Y.-J. Su, W. Xue, C.-T. He, W.-X. Zhang, X.-M. Chen, Angew. Chem. Int. Ed. 2015, 54, 914
S. F. Liu, J. D. Mao, K. Schmidt-Rohr, J. Magn. Reson. 2002, 155, 15
M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA 2005, 102, 10771
Angew. Chem. 2015, 127, 928
A. Comotti, S. Bracco, A. Yamamoto, M. Beretta, T. Hirukawa, N. Tohnai, M. Miyata, P. Sozzani, J. Am. Chem. Soc. 2014, 136, 618.
J. A. Rodríguez-Velamazán, M. A. González, J. A. Real, M. Castro, M. C. Muñoz, A. B. Gaspar, R. Ohtani, M. Ohba, K. Yoneda, Y. Hijikata, N. Yanai, M. Mizuno, H. Ando, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5083.
Z.-S. Yao, M. Mito, T. Kamachi, Y. Shiota, K. Yoshizawa, N. Azuma, Y. Miyazaki, K. Takahashi, K. Zhang, T. Nakanishi, S. Kang, S. Kanegawa, O. Sato, Nat. Chem. 2014, 6, 1079.
S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
J. G. Kirkwood, J. Chem. Phys. 1939, 7, 911.
O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem. Int. Ed. 2007, 46, 2152
W. Zhang, H.-Y. Ye, R. Graf, H. W. Spiess, Y.-F. Yao, R.-Q. Zhu, R.-G. Xiong, J. Am. Chem. Soc. 2013, 135, 5230
Angew. Chem. 2011, 123, 12153
Angew. Chem. 2004, 116, 3331
Y. Zhang, W. Zhang, S.-H. Li, Q. Ye, H.-L. Cai, F. Deng, R.-G. Xiong, S. D. Huang, J. Am. Chem. Soc. 2012, 134, 11044.
P. Jain, N. S. Dalal, B. H. Toby, H. W. Kroto, A. K. Cheetham, J. Am. Chem. Soc. 2008, 130, 10450
Angew. Chem. 2007, 119, 2200.
B. Wei, R. Shang, X. Zhang, X.-D. Shao, Y.-F. Yao, Z.-M. Wang, R.-G. Xiong, W. Zhang, Chem. Eur. J. 2014, 20, 8269.
G.-C. Xu, W. Zhang, X.-M. Ma, Y.-H. Chen, L. Zhang, H.-L. Cai, Z.-M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948
M. Horie, Y. Suzaki, D. Hashizume, T. Abe, T. Wu, T. Sassa, T. Hosokai, K. Osakada, J. Am. Chem. Soc. 2012, 134, 17932.
O. Kahn, Molecular Magnetism, VCH, New York, 1993
P. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto, A. K. Cheetham, J. Am. Chem. Soc. 2009, 131, 13625
P. Gütlich, H. A. Goodwin, Top. Curr. Chem. 2004, 233.
Angew. Chem. 2015, 127, 2564.
X. Zhang, X.-D. Shao, S.-C. Li, Y. Cai, Y.-F. Yao, R.-G. Xiong, W. Zhang, Chem. Commun. 2015, 51, 4568.
Handbook of Stimuli-Responsive Materials (Ed.: M. W. Urban), Wiley-VCH, Weinheim, 2011.
C.-M. Ji, Z.-H. Sun, S.-Q. Zhang, T.-L. Chen, P. Zhou, J.-H. Luo, J. Mater. Chem. C 2014, 2, 567
S. Horiuchi, Y. Tokura, Nat. Mater. 2008, 7, 357
M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101.
2004 2004; 43 116
2010; 107
2011
2015; 51
2002; 155
2008; 7
2010 2010; 49 122
1993
2004
1985; 107
2009; 131
2014; 136
2011; 133
2014; 20
2012; 112
2005; 262
2012; 134
2014; 2
2007; 315
1990
2005; 102
2007 2007; 46 119
1965
2015 2015; 54 127
2013; 135
2009; 8
2005 2005; 44 117
1983
2011 2011; 50 123
2009; 1
2014; 6
1939; 7
2008; 130
2010; 9
e_1_2_2_24_2
e_1_2_2_4_2
Fröhlich H. (e_1_2_2_20_2) 1965
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_41_3
e_1_2_2_6_3
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_11_3
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_19_3
e_1_2_2_19_2
e_1_2_2_30_2
Jonscher A. K. (e_1_2_2_47_2) 1983
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_15_2
e_1_2_2_34_2
(e_1_2_2_1_2) 2011
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
Kahn O. (e_1_2_2_8_2) 1993
e_1_2_2_21_2
e_1_2_2_40_2
e_1_2_2_29_3
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_42_3
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_2
e_1_2_2_46_2
Gütlich P. (e_1_2_2_9_2) 2004
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – reference: S. Horiuchi, Y. Tokura, Nat. Mater. 2008, 7, 357;
– reference: M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA 2005, 102, 10771;
– reference: Angew. Chem. 2004, 116, 3331;
– reference: Y. A. Izyumov, V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry, Kluwer, Dordrecht, 1990.
– reference: Angew. Chem. 2011, 123, 12153;
– reference: O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem. Int. Ed. 2007, 46, 2152;
– reference: M. Horie, Y. Suzaki, D. Hashizume, T. Abe, T. Wu, T. Sassa, T. Hosokai, K. Osakada, J. Am. Chem. Soc. 2012, 134, 17932.
– reference: G.-C. Xu, W. Zhang, X.-M. Ma, Y.-H. Chen, L. Zhang, H.-L. Cai, Z.-M. Wang, R.-G. Xiong, S. Gao, J. Am. Chem. Soc. 2011, 133, 14948;
– reference: S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
– reference: H. Fröhlich, Theory of dielectrics, 2nd ed., Oxford University Press, Oxford, 1965.
– reference: M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101.
– reference: B. Wei, R. Shang, X. Zhang, X.-D. Shao, Y.-F. Yao, Z.-M. Wang, R.-G. Xiong, W. Zhang, Chem. Eur. J. 2014, 20, 8269.
– reference: Z.-S. Yao, M. Mito, T. Kamachi, Y. Shiota, K. Yoshizawa, N. Azuma, Y. Miyazaki, K. Takahashi, K. Zhang, T. Nakanishi, S. Kang, S. Kanegawa, O. Sato, Nat. Chem. 2014, 6, 1079.
– reference: Z.-Y. Du, T.-T. Xu, B. Huang, Y.-J. Su, W. Xue, C.-T. He, W.-X. Zhang, X.-M. Chen, Angew. Chem. Int. Ed. 2015, 54, 914;
– reference: X. Zhang, X.-D. Shao, S.-C. Li, Y. Cai, Y.-F. Yao, R.-G. Xiong, W. Zhang, Chem. Commun. 2015, 51, 4568.
– reference: A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London, 1983.
– reference: X.-H. Zhao, X.-C. Huang, S.-L. Zhang, D. Shao, H.-Y. Wei, X.-Y. Wang, J. Am. Chem. Soc. 2013, 135, 16006;
– reference: C. Serre, C. Mellot-Draznieks, S. Surble, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828;
– reference: Angew. Chem. 2015, 127, 928;
– reference: Angew. Chem. 2007, 119, 2200.
– reference: W. Zhang, Y. Cai, R.-G. Xiong, H. Yoshikawa, K. Awaga, Angew. Chem. Int. Ed. 2010, 49, 6608;
– reference: A. Comotti, S. Bracco, A. Yamamoto, M. Beretta, T. Hirukawa, N. Tohnai, M. Miyata, P. Sozzani, J. Am. Chem. Soc. 2014, 136, 618.
– reference: C. Lemouchi, K. Iliopoulos, L. Zorina, S. Simonov, P. Wzietek, T. Cauchy, A. Rodríguez-Fortea, E. Canadell, J. Kaleta, J. Michl, D. Gindre, M. Chrysos, P. Batail, J. Am. Chem. Soc. 2013, 135, 9366.
– reference: W. Setaka, K. Yamaguchi, J. Am. Chem. Soc. 2013, 135, 14560.
– reference: W. Zhang, H.-Y. Ye, R. Graf, H. W. Spiess, Y.-F. Yao, R.-Q. Zhu, R.-G. Xiong, J. Am. Chem. Soc. 2013, 135, 5230;
– reference: R. Shang, Z.-M. Wang, S. Gao, Angew. Chem. Int. Ed. 2015, 54, 2534;
– reference: Y. Zhang, W. Zhang, S.-H. Li, Q. Ye, H.-L. Cai, F. Deng, R.-G. Xiong, S. D. Huang, J. Am. Chem. Soc. 2012, 134, 11044.
– reference: S. F. Liu, J. D. Mao, K. Schmidt-Rohr, J. Magn. Reson. 2002, 155, 15;
– reference: Angew. Chem. 2010, 122, 6758;
– reference: S. D. Karlen, H. Reyes, R. E. Taylor, S. I. Khan, M. F. Hawthorne, M. A. Garcia-Garibay, Proc. Natl. Acad. Sci. USA 2010, 107, 14973.
– reference: J. G. Kirkwood, J. Chem. Phys. 1939, 7, 911.
– reference: Handbook of Stimuli-Responsive Materials (Ed.: M. W. Urban), Wiley-VCH, Weinheim, 2011.
– reference: D.-W. Fu, W. Zhang, H.-L. Cai, Y. Zhang, J.-Z. Ge, R.-G. Xiong, S. D. Huang, T. Nakamura, Angew. Chem. Int. Ed. 2011, 50, 11947;
– reference: T. K. Maji, K. Uemura, H.-C. Chang, R. Matsuda, S. Kitagawa, Angew. Chem. Int. Ed. 2004, 43, 3269;
– reference: Angew. Chem. 2005, 117, 6831;
– reference: C. L. Chen, A. M. Goforth, M. D. Smith, C.-Y. Su, H. C. zur Loye, Angew. Chem. Int. Ed. 2005, 44, 6673;
– reference: P. Gütlich, H. A. Goodwin, Top. Curr. Chem. 2004, 233.
– reference: C. R. Murdock, N. W. McNutt, D. J. Keffer, D. M. Jenkins, J. Am. Chem. Soc. 2014, 136, 671.
– reference: T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura, Nat. Mater. 2009, 8, 342;
– reference: P. Jain, V. Ramachandran, R. J. Clark, H. D. Zhou, B. H. Toby, N. S. Dalal, H. W. Kroto, A. K. Cheetham, J. Am. Chem. Soc. 2009, 131, 13625;
– reference: S. D. Karlen, M. A. Garcia-Garibay, Top. Curr. Chem. 2005, 262, 179;
– reference: C.-M. Ji, Z.-H. Sun, S.-Q. Zhang, T.-L. Chen, P. Zhou, J.-H. Luo, J. Mater. Chem. C 2014, 2, 567;
– reference: O. Kahn, Molecular Magnetism, VCH, New York, 1993;
– reference: P. Parhami, B. M. Fung, J. Am. Chem. Soc. 1985, 107, 7304.
– reference: W. Zhang, R. G. Xiong, Chem. Rev. 2012, 112, 1163.
– reference: J. A. Rodríguez-Velamazán, M. A. González, J. A. Real, M. Castro, M. C. Muñoz, A. B. Gaspar, R. Ohtani, M. Ohba, K. Yoneda, Y. Hijikata, N. Yanai, M. Mizuno, H. Ando, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 5083.
– reference: E. Coronado, M. Giménez-Marqués, G. M. Espallargas, F. Rey, I. J. Vitórica-Yrezábal, J. Am. Chem. Soc. 2013, 135, 15986.
– reference: P. Jain, N. S. Dalal, B. H. Toby, H. W. Kroto, A. K. Cheetham, J. Am. Chem. Soc. 2008, 130, 10450;
– reference: Angew. Chem. 2015, 127, 2564.
– year: 2011
– volume: 134
  start-page: 5083
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 46 119
  start-page: 2152 2200
  year: 2007 2007
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 13625
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 10771
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 1983
– volume: 54 127
  start-page: 2534 2564
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 107
  start-page: 14973
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 342
  year: 2009
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1079
  year: 2014
  publication-title: Nat. Chem.
– volume: 135
  start-page: 16006
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 315
  start-page: 1828
  year: 2007
  publication-title: Science
– volume: 1
  start-page: 695
  year: 2009
  publication-title: Nat. Chem.
– volume: 2
  start-page: 567
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 134
  start-page: 17932
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 15986
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 155
  start-page: 15
  year: 2002
  publication-title: J. Magn. Reson.
– volume: 262
  start-page: 179
  year: 2005
  publication-title: Top. Curr. Chem.
– volume: 7
  start-page: 357
  year: 2008
  publication-title: Nat. Mater.
– volume: 49 122
  start-page: 6608 6758
  year: 2010 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 11947 12153
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 112
  start-page: 1163
  year: 2012
  publication-title: Chem. Rev.
– volume: 136
  start-page: 618
  year: 2014
  publication-title: J. Am. Chem. Soc.
– year: 1990
– start-page: 233
  year: 2004
  publication-title: Top. Curr. Chem.
– volume: 133
  start-page: 14948
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 5230
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 911
  year: 1939
  publication-title: J. Chem. Phys.
– volume: 44 117
  start-page: 6673 6831
  year: 2005 2005
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 101
  year: 2010
  publication-title: Nat. Mater.
– volume: 136
  start-page: 671
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 8269
  year: 2014
  publication-title: Chem. Eur. J.
– year: 1965
– volume: 130
  start-page: 10450
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 7304
  year: 1985
  publication-title: J. Am. Chem. Soc.
– volume: 43 116
  start-page: 3269 3331
  year: 2004 2004
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 4568
  year: 2015
  publication-title: Chem. Commun.
– volume: 135
  start-page: 9366
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 14560
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 11044
  year: 2012
  publication-title: J. Am. Chem. Soc.
– year: 1993
– volume: 54 127
  start-page: 914 928
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_21_2
  doi: 10.1007/978-94-009-1920-4
– ident: e_1_2_2_37_2
  doi: 10.1021/ja4088709
– ident: e_1_2_2_3_2
  doi: 10.1038/nchem.444
– ident: e_1_2_2_46_2
  doi: 10.1021/ja00311a014
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.201103265
– ident: e_1_2_2_2_2
  doi: 10.1038/nmat2614
– ident: e_1_2_2_15_2
  doi: 10.1021/ja801952e
– ident: e_1_2_2_33_2
  doi: 10.1021/ja206228n
– ident: e_1_2_2_42_2
  doi: 10.1002/anie.200502309
– volume-title: Dielectric Relaxation in Solids
  year: 1983
  ident: e_1_2_2_47_2
– ident: e_1_2_2_14_2
– ident: e_1_2_2_22_2
– ident: e_1_2_2_13_2
  doi: 10.1039/C4CC08693G
– ident: e_1_2_2_31_2
  doi: 10.1021/ja3047427
– ident: e_1_2_2_38_2
  doi: 10.1021/ja411233p
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.201103265
– ident: e_1_2_2_28_2
  doi: 10.1021/ja904156s
– ident: e_1_2_2_40_2
– ident: e_1_2_2_42_3
  doi: 10.1002/ange.200502309
– ident: e_1_2_2_39_2
  doi: 10.1038/nchem.2092
– ident: e_1_2_2_12_2
  doi: 10.1021/ja3110335
– ident: e_1_2_2_6_3
  doi: 10.1002/ange.200602205
– ident: e_1_2_2_19_2
  doi: 10.1002/anie.201411005
– ident: e_1_2_2_24_2
  doi: 10.1007/128_012
– start-page: 233
  year: 2004
  ident: e_1_2_2_9_2
  publication-title: Top. Curr. Chem.
– ident: e_1_2_2_43_2
  doi: 10.1126/science.1137975
– ident: e_1_2_2_44_2
  doi: 10.1002/chem.201402892
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.201408491
– ident: e_1_2_2_45_2
  doi: 10.1006/jmre.2002.2503
– ident: e_1_2_2_30_2
  doi: 10.1021/ja206891q
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.200453923
– ident: e_1_2_2_6_2
  doi: 10.1002/anie.200602205
– ident: e_1_2_2_48_2
  doi: 10.1063/1.1750343
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.201001208
– ident: e_1_2_2_19_3
  doi: 10.1002/ange.201411005
– ident: e_1_2_2_4_2
  doi: 10.1038/nmat2137
– volume-title: Handbook of Stimuli‐Responsive Materials
  year: 2011
  ident: e_1_2_2_1_2
– ident: e_1_2_2_36_2
  doi: 10.1021/ja407135k
– ident: e_1_2_2_10_2
– ident: e_1_2_2_17_2
  doi: 10.1039/C3TC31378F
– ident: e_1_2_2_7_2
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.201408491
– volume-title: Molecular Magnetism
  year: 1993
  ident: e_1_2_2_8_2
– ident: e_1_2_2_27_2
  doi: 10.1038/nmat2377
– ident: e_1_2_2_23_2
  doi: 10.1073/pnas.0502816102
– ident: e_1_2_2_35_2
  doi: 10.1021/ja408405f
– ident: e_1_2_2_32_2
  doi: 10.1021/ja304406c
– ident: e_1_2_2_5_2
  doi: 10.1021/cr200174w
– ident: e_1_2_2_25_2
  doi: 10.1073/pnas.1008213107
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.200453923
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.201001208
– ident: e_1_2_2_16_2
  doi: 10.1021/ja407654n
– ident: e_1_2_2_34_2
  doi: 10.1021/ja4044517
– volume-title: Theory of dielectrics, 2nd ed.
  year: 1965
  ident: e_1_2_2_20_2
– ident: e_1_2_2_26_2
SSID ssj0028806
Score 2.487706
Snippet A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] (2, HPy=pyridinium cation) by...
A dielectric constant transition is chemically triggered and thermally switched in (HPy) 2 [Na(H 2 O)Co(CN) 6 ] ( 2 , HPy=pyridinium cation) by...
A dielectric constant transition is chemically triggered and thermally switched in (HPy) sub(2)[Na(H sub(2)O)Co(CN) sub(6)] (2, HPy=pyridinium cation) by...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6206
SubjectTerms Cations
Crystals
cyanide
Dehydration
Dielectric constant
Low temperature
Phase transformations
Phase transitions
Pictures
pyridinium
Single crystals
single-crystal-to-single-crystal transformations
switchable dielectric constant
Transformations
Transit
Vices
Title A Chemically Triggered and Thermally Switched Dielectric Constant Transition in a Metal Cyanide Based Crystal
URI https://api.istex.fr/ark:/67375/WNG-HMK8JNH2-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201501344
https://www.ncbi.nlm.nih.gov/pubmed/25832506
https://www.proquest.com/docview/1679393693
https://www.proquest.com/docview/1680174844
https://www.proquest.com/docview/1701076416
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF9yNQkJEQnNxmHdtJjkvashTtHqAVvVl-Ba26pGi7K7r99czEm5RFPCS45TGRbOcb-5tk_A0hL4GyFoPa5IzbsmSikIHZWuZs4LxNg_e1VLh3eDxRo2NxeCJPftjFH_Uh-g9u6BntfI0Obuz57pVoKO7AxtQsCSRGoCAoJmwhK_rQ60dxAGfcXpRlDKvQd6qNKd_dfHxjVbqOA3zxK8q5yWDbJejgNjFd42PmyenOcmF33OVPuo7_07s75Naan9JhBNRdci0098iNqisLd598GdJOZGC2okcQ3H_Gcp_UNJ4C5mCex-sfv00RDp7uTWOhnamjVaSiC9quj22qGJ021NBxgAiAVitojQ_0DayrnlbzFRjPHpDjg_2jasTWNRuYU0UuWAD_FkIGn4HjK24g4EnTIK2pjXClLaWr89pwZdPC51YFJX2tXA1RaiqdtCF7SLaasyY8JtTW3AhplQQoYY1sK50X0pQDwy3EQSYhrHtn2q0FzbGuxkxHKWaucRB1P4gJed3bf41SHr-1fNVCoDcz81NMgMul_jR5q0fj98XhZMT1OCHbHUb02vfPNf7YyrBOYpaQF_1teEv4K8Y04WyJNsAMUMZV_MEmh1g5V8CYE_Io4q9vEJcwE8sU7vAWRX_pkB5O3u33Z0_-5aGn5CYeY-LEoNgmW4v5MjwDPrawz1uf-w6NDis0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V9lAuQHkGSlkkHie3znrXdg4cQtKSNI0PkIrell3vuooaXJQmKuFf8Vf4RczYsVEQDwmpB462x5bXM-P9xp79PoBnCFnjZqYjj5tWyxOxdJ7JZOQ1U2t8Z20mQ1o7PEzC3rE4PJEna_C1WgtT8kPUH9woM4r3NSU4fZDe-8EaSkuwqTdLIooRYtlXOXCLS6zaLl71u-ji55wf7I86PW8pLOClYRwJz2EQCiGdDTA6Q64Rlfu-k0ZnWqQt05JpFmWah8aPbWRCF0qbhWmGpZQvU2lcgNe9BhskI050_d23NWMVx3QoFzQFgUe69xVPpM_3Vu93ZR7cIJd-_hXIXcXMxaR3cBO-VY-r7HU5253PzG765Scmyf_qed6CG0sIztplzmzBmstvw2anUr67Ax_brOJRmCzYaDo-PSVFU6ZzyzCtcCqj_e8uxxTxlnXHpZbQOGWdEm3PWAEBim44Ns6ZZkOHRQ7rLHD01rHXCB0s60wXaDy5C8dXMtp7sJ6f5-4BMJNxLaQJJWYLyYAbmVohdaupucFSTzfAq4JEpUvOdpIOmaiSbZorcpqqndaAl7X9p5Kt5LeWL4qYq8309Ix6_CKp3idvVG84iA-THlfDBmxXQamWr7cLRf_uApKCDBrwtD6MXqK_TTp353OyQfBDTLXiDzaR3_SjEIuCBtwvA76-IS5xspE-HuFF2P5lQKqd9PfrrYf_ctIT2OyNhkfqqJ8MHsF12k99Is14G9Zn07l7jPBzZnaKhGfw4aoz4jt6EYno
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVgIuvB-BAovE4-TWWe-u7QOH4DQkDYkQtGpvy653XUUNbpUmKuFX8Vf4R8z4hYJ4SEg9cLQ9tryeGe839uz3EfIMIGvUznToMRPHHo-E80wmQq-dWuM7azMhce3waCz7-3z3UByuka_1WpiSH6L54IaZUbyvMcFPbbb9gzQUV2Bja5YAEMN51VY5dMtzKNrOXg264OHnjPV29pK-V-kKeKmMQu45iEHOhbMBBKdkGkC57zthdKZ5GptYpFmYaSaNH9nQSCeFzWSaQSXli1QYF8B1L5ENLv0YxSK67xvCKgbZUK5nCgIPZe9rmkifba_e78o0uIEe_fwrjLsKmYs5r3edfKufVtnqcry1mJut9MtPRJL_0-O8Qa5VAJx2yoy5SdZcfotcSWrdu9vkU4fWLArTJd2bTY6OUM-U6txSSCqYyHD_h_MJxrul3UmpJDRJaVJi7TktAEDRC0cnOdV05KDEockSRm8dfQ3AwdJktgTj6R2yfyGjvUvW85Pc3SfUZExzYaSAXEERcCNSy4WO25oZKPR0i3h1jKi0YmxH4ZCpKrmmmUKnqcZpLfKysT8tuUp-a_miCLnGTM-OscMvFOpg_Eb1R8Nod9xnatQim3VMqurldqbwz12AQpBBizxtDoOX8F-Tzt3JAm0A-iBPLf-DTei3_VBCSdAi98p4b26ICZhqhA9HWBG1fxmQ6owHO83Wg3856Qm5_K7bU28H4-FDchV3Y5NIO9ok6_PZwj0C7Dk3j4t0p-TjRSfEdzcaiJc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+chemically+triggered+and+thermally+switched+dielectric+constant+transition+in+a+metal+cyanide+based+crystal&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shi%2C+Chao&rft.au=Zhang%2C+Xi&rft.au=Cai%2C+Ying&rft.au=Yao%2C+Ye-Feng&rft.date=2015-05-18&rft.eissn=1521-3773&rft.volume=54&rft.issue=21&rft.spage=6206&rft_id=info:doi/10.1002%2Fanie.201501344&rft_id=info%3Apmid%2F25832506&rft.externalDocID=25832506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon