Multifunctional Metal-Organic Frameworks for Photocatalysis
Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water spl...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 26; pp. 3097 - 3112 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.07.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.
Metal–organic frameworks (MOFs) have shown great promise in heterogeneous catalysis for energy and environment applications. This review summarizes the latest development of MOFs as multifunctional materials for photoredox catalysis to operate solar‐to‐chemical‐energy transformations according to their different roles in the photochemical systems, i.e., photocatalysts, co‐catalysts, and hosts. |
---|---|
AbstractList | Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO 2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal–organic frameworks (MOFs) have shown great promise in heterogeneous catalysis for energy and environment applications. This review summarizes the latest development of MOFs as multifunctional materials for photoredox catalysis to operate solar‐to‐chemical‐energy transformations according to their different roles in the photochemical systems, i.e., photocatalysts, co‐catalysts, and hosts. Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO sub(2) reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal-organic frameworks (MOFs) have shown great promise in heterogeneous catalysis for energy and environment applications. This review summarizes the latest development of MOFs as multifunctional materials for photoredox catalysis to operate solar-to-chemical-energy transformations according to their different roles in the photochemical systems, i.e., photocatalysts, co-catalysts, and hosts. |
Author | Wang, Sibo Wang, Xinchen |
Author_xml | – sequence: 1 givenname: Sibo surname: Wang fullname: Wang, Sibo organization: State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350002, Fuzhou, PR China – sequence: 2 givenname: Xinchen surname: Wang fullname: Wang, Xinchen email: xcwang@fzu.edu.cn organization: State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350002, Fuzhou, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25917413$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LHDEchkNRqmt77bEsePEya74zoScRdy3samH9OIZMJmmjmYkmM-j-9852dSlC8ZQcnuflx_uOwE4bWwvANwQnCEJ8nJsQJhgiBiEs6SewjzgiBS-x3Nn-EdwDo5zvICQIU_EZ7GEmkaCI7IMfiz503vWt6XxsdRgvbKdDcZl-69ab8TTpxj7FdJ_HLqbxrz-xi0YPxCr7_AXsOh2y_fr6HoDr6dnV6Xkxv5z9PD2ZF4aXghblcEDFKUMMGYqtrTnDvKpkpSEZLneOaYuQxdQZU5e15RVhAmNHHawJMZocgKNN7kOKj73NnWp8NjYE3drYZ4UElIJjQfHHKJdUcoYEG9DDd-hd7NNQwV-KCEEgXgd-f6X6qrG1eki-0Wml3hocALoBTIo5J-uU8Z1el9kl7YNCUK2HUuuh1HaoQZu8096S_yvIjfDkg119QKvlYj7_1y02rs-dfd66Ot0rLohg6vZipiQl8mJ6s1RL8gJFE7Nx |
CitedBy_id | crossref_primary_10_1016_j_solener_2017_03_045 crossref_primary_10_1039_C5CP05885F crossref_primary_10_1039_C7CS00879A crossref_primary_10_1039_C7TA08268A crossref_primary_10_1002_adfm_201806368 crossref_primary_10_1016_j_ccr_2022_214853 crossref_primary_10_1039_C6RA07100G crossref_primary_10_1039_C8CE01203B crossref_primary_10_1039_D1NR01669E crossref_primary_10_1002_advs_202203941 crossref_primary_10_1039_C8TA09865D crossref_primary_10_1016_j_inoche_2023_110799 crossref_primary_10_1021_acs_chemrev_0c00148 crossref_primary_10_1016_j_cej_2022_135622 crossref_primary_10_1002_asia_201800444 crossref_primary_10_1021_acscatal_6b02923 crossref_primary_10_1039_C8CS00829A crossref_primary_10_1021_acsabm_9b00046 crossref_primary_10_5004_dwt_2018_22080 crossref_primary_10_1016_j_jece_2020_103726 crossref_primary_10_1016_j_optmat_2023_113527 crossref_primary_10_1002_cssc_201501353 crossref_primary_10_1007_s11243_017_0123_2 crossref_primary_10_1039_C7CP05147F crossref_primary_10_1039_C7CC00495H crossref_primary_10_1039_D0NR01696A crossref_primary_10_1002_smll_201600382 crossref_primary_10_1016_j_ccr_2017_12_013 crossref_primary_10_1039_C7CE01012E crossref_primary_10_1007_s11144_019_01689_4 crossref_primary_10_1016_j_jallcom_2022_166590 crossref_primary_10_1021_acs_chemrev_1c00905 crossref_primary_10_1002_anie_202107457 crossref_primary_10_1039_C9QI00965E crossref_primary_10_1039_D3DT02768F crossref_primary_10_1016_j_jssc_2018_03_031 crossref_primary_10_1007_s10904_017_0571_3 crossref_primary_10_1007_s11356_021_17446_x crossref_primary_10_1002_smll_202102201 crossref_primary_10_1002_cssc_202000277 crossref_primary_10_1007_s11664_018_6220_y crossref_primary_10_1016_j_apcatb_2016_06_029 crossref_primary_10_1080_10643389_2021_1975444 crossref_primary_10_1007_s11164_017_3042_0 crossref_primary_10_1021_jacs_9b12229 crossref_primary_10_1002_smtd_201800219 crossref_primary_10_1016_j_jclepro_2020_123408 crossref_primary_10_1002_anie_201800269 crossref_primary_10_1007_s10562_022_03995_4 crossref_primary_10_1016_j_molliq_2021_118274 crossref_primary_10_1021_acsomega_9b01008 crossref_primary_10_3390_molecules26071904 crossref_primary_10_1016_j_seppur_2025_131490 crossref_primary_10_1016_j_molstruc_2017_07_105 crossref_primary_10_1021_acsami_1c06391 crossref_primary_10_1002_slct_202001670 crossref_primary_10_1016_j_poly_2016_09_009 crossref_primary_10_1007_s11243_016_0033_8 crossref_primary_10_1016_j_apcatb_2019_117855 crossref_primary_10_1039_D2CE01123A crossref_primary_10_1039_D0DT02309D crossref_primary_10_1039_C7CE01341H crossref_primary_10_1016_j_jcou_2017_05_019 crossref_primary_10_1021_acscatal_7b02581 crossref_primary_10_1016_j_ceramint_2022_08_076 crossref_primary_10_1016_j_apcatb_2017_09_054 crossref_primary_10_1021_acs_chemmater_9b03968 crossref_primary_10_1039_C8EN01192C crossref_primary_10_1002_aoc_4049 crossref_primary_10_1039_C7TA07911G crossref_primary_10_1021_acssuschemeng_8b03308 crossref_primary_10_1016_j_jcis_2021_12_036 crossref_primary_10_1039_C5TA05440K crossref_primary_10_1039_D4TA09139F crossref_primary_10_1039_D2DT00463A crossref_primary_10_1016_j_poly_2020_114350 crossref_primary_10_1016_j_ccr_2019_02_031 crossref_primary_10_1039_C7SC05296K crossref_primary_10_1039_C8CC01830H crossref_primary_10_3389_fchem_2020_578847 crossref_primary_10_3390_met11030420 crossref_primary_10_1021_jacs_9b03981 crossref_primary_10_1016_j_mattod_2018_10_038 crossref_primary_10_1016_j_fuel_2024_131252 crossref_primary_10_1016_j_mtcomm_2020_101119 crossref_primary_10_1021_jacs_0c03906 crossref_primary_10_1039_C5CY01857A crossref_primary_10_1016_j_matchemphys_2024_129003 crossref_primary_10_1002_adma_201703663 crossref_primary_10_1002_cptc_201700163 crossref_primary_10_1002_solr_202000454 crossref_primary_10_1021_acsanm_2c04942 crossref_primary_10_3390_catal15030208 crossref_primary_10_1002_adma_201803401 crossref_primary_10_1002_smm2_1047 crossref_primary_10_1134_S0023158423040067 crossref_primary_10_1021_acs_cgd_6b00065 crossref_primary_10_1021_acs_inorgchem_2c02386 crossref_primary_10_1039_C8NJ00417J crossref_primary_10_1016_j_solidstatesciences_2018_07_007 crossref_primary_10_1016_j_apcatb_2018_12_051 crossref_primary_10_1021_acsaem_8b01303 crossref_primary_10_3390_catal8090353 crossref_primary_10_1002_ange_202107457 crossref_primary_10_1002_admi_201801062 crossref_primary_10_1016_j_ultsonch_2017_09_039 crossref_primary_10_1080_10643389_2016_1251236 crossref_primary_10_1016_j_cattod_2022_04_030 crossref_primary_10_1016_j_mattod_2018_10_016 crossref_primary_10_1016_j_jphotochem_2023_115244 crossref_primary_10_1039_C7TA02216F crossref_primary_10_1016_j_inoche_2020_107943 crossref_primary_10_1039_C6RA03516G crossref_primary_10_1016_j_poly_2017_06_052 crossref_primary_10_1039_C9SE00972H crossref_primary_10_1039_C9DT04004H crossref_primary_10_1016_j_jcis_2015_12_045 crossref_primary_10_1038_s41598_019_44008_6 crossref_primary_10_1038_s41598_017_16605_w crossref_primary_10_1039_C9TA03892B crossref_primary_10_1039_C9TA10723A crossref_primary_10_1039_C9NR02463H crossref_primary_10_1039_D2TA09061A crossref_primary_10_1016_j_apcatb_2017_10_029 crossref_primary_10_1039_C9SC01866B crossref_primary_10_1002_solr_202000423 crossref_primary_10_1016_j_cej_2024_151268 crossref_primary_10_1002_adma_201705512 crossref_primary_10_1016_j_apcatb_2017_02_025 crossref_primary_10_1016_j_apcatb_2017_02_026 crossref_primary_10_1021_acs_inorgchem_5b02626 crossref_primary_10_1021_acscatal_5b02798 crossref_primary_10_1016_j_electacta_2024_143927 crossref_primary_10_1021_acsami_4c10061 crossref_primary_10_1016_j_mtener_2024_101703 crossref_primary_10_1021_acs_jpcc_2c05594 crossref_primary_10_1039_D1NJ05091E crossref_primary_10_1080_10610278_2019_1592173 crossref_primary_10_1002_ange_201907074 crossref_primary_10_1016_j_apcata_2017_09_021 crossref_primary_10_1016_j_apcatb_2017_10_033 crossref_primary_10_1016_j_ccr_2022_214440 crossref_primary_10_1016_j_poly_2018_08_004 crossref_primary_10_1002_cctc_201900124 crossref_primary_10_1039_C7CE01933E crossref_primary_10_1016_j_apsusc_2018_09_144 crossref_primary_10_1016_j_ica_2020_119926 crossref_primary_10_1016_j_cattod_2018_09_032 crossref_primary_10_1016_j_molliq_2024_124850 crossref_primary_10_1016_j_physb_2024_416230 crossref_primary_10_1016_j_ccr_2022_214445 crossref_primary_10_1039_C6GC03558B crossref_primary_10_1021_acscatal_8b00764 crossref_primary_10_1002_chem_201901939 crossref_primary_10_1002_chem_202400842 crossref_primary_10_1002_slct_202000290 crossref_primary_10_1002_ange_201800269 crossref_primary_10_1016_j_cej_2019_122931 crossref_primary_10_1039_C7CS00315C crossref_primary_10_1002_smll_201503526 crossref_primary_10_1016_j_chemosphere_2024_142518 crossref_primary_10_1002_cplu_202000804 crossref_primary_10_1038_ncomms13169 crossref_primary_10_1021_acs_inorgchem_8b02803 crossref_primary_10_1007_s40820_018_0235_z crossref_primary_10_1016_j_jallcom_2021_163178 crossref_primary_10_1016_j_mtsust_2023_100465 crossref_primary_10_1016_j_ccr_2020_213262 crossref_primary_10_1039_C6NR07801J crossref_primary_10_1039_D3RA06941A crossref_primary_10_1557_jmr_2020_166 crossref_primary_10_1002_chem_201701460 crossref_primary_10_1002_smll_202405533 crossref_primary_10_1039_D2CS00289B crossref_primary_10_1016_j_ccr_2020_213266 crossref_primary_10_1038_s41467_021_27775_7 crossref_primary_10_1016_j_materresbull_2017_03_018 crossref_primary_10_1016_j_cej_2022_141248 crossref_primary_10_1016_j_ccr_2022_214428 crossref_primary_10_1016_j_jphotochem_2019_111862 crossref_primary_10_1039_C7CS00861A crossref_primary_10_1016_j_jcis_2021_08_108 crossref_primary_10_1039_C6CC00805D crossref_primary_10_1039_C7CY01653K crossref_primary_10_1039_C7TA07847A crossref_primary_10_3390_molecules25071598 crossref_primary_10_1007_s40820_021_00681_9 crossref_primary_10_1016_j_ijhydene_2022_02_111 crossref_primary_10_1016_j_jallcom_2023_172219 crossref_primary_10_1016_j_jlumin_2017_08_006 crossref_primary_10_1021_acs_jpcc_6b02966 crossref_primary_10_1016_j_seppur_2024_126450 crossref_primary_10_3389_fchem_2021_686968 crossref_primary_10_54097_hset_v6i_927 crossref_primary_10_1016_j_apcata_2019_117214 crossref_primary_10_1021_acs_inorgchem_0c00615 crossref_primary_10_1039_D1NR00617G crossref_primary_10_1016_j_jcis_2023_11_078 crossref_primary_10_1016_j_electacta_2018_05_162 crossref_primary_10_1016_j_apcata_2015_11_022 crossref_primary_10_1021_acs_jpcc_8b09178 crossref_primary_10_1002_aoc_4325 crossref_primary_10_1039_D2QI00382A crossref_primary_10_1002_adsu_202100493 crossref_primary_10_1016_j_apcata_2020_117668 crossref_primary_10_1016_j_apcatb_2016_08_008 crossref_primary_10_1016_j_ijhydene_2023_11_345 crossref_primary_10_1039_C6CC02377K crossref_primary_10_1002_aoc_6749 crossref_primary_10_3390_molecules26185588 crossref_primary_10_1007_s00339_020_03787_w crossref_primary_10_1016_j_electacta_2021_138926 crossref_primary_10_1039_C7TB00715A crossref_primary_10_1039_C9CC09589F crossref_primary_10_1002_cctc_201901379 crossref_primary_10_1016_j_jiec_2016_05_013 crossref_primary_10_1146_annurev_chembioeng_060817_083953 crossref_primary_10_1016_j_mtsust_2023_100337 crossref_primary_10_1039_C8TA05735D crossref_primary_10_1039_D2CC03110H crossref_primary_10_1088_1757_899X_546_4_042005 crossref_primary_10_1016_j_apcatb_2018_03_039 crossref_primary_10_1021_acs_jpcc_2c04072 crossref_primary_10_1007_s10853_019_03995_7 crossref_primary_10_1007_s40843_015_0100_z crossref_primary_10_1016_j_rechem_2023_100818 crossref_primary_10_1002_anie_201505581 crossref_primary_10_1016_j_apsusc_2019_02_111 crossref_primary_10_1021_acs_cgd_8b01606 crossref_primary_10_3390_jcs4020054 crossref_primary_10_1016_j_ijhydene_2024_07_143 crossref_primary_10_1021_acs_chemrev_6b00075 crossref_primary_10_3389_fchem_2020_616468 crossref_primary_10_1007_s10562_018_2593_z crossref_primary_10_1016_j_jmat_2016_11_001 crossref_primary_10_1016_j_ccr_2024_216179 crossref_primary_10_1016_j_inoche_2021_108805 crossref_primary_10_14233_ajchem_2023_26907 crossref_primary_10_1021_acsanm_2c00831 crossref_primary_10_1002_chem_201803250 crossref_primary_10_1016_j_jcou_2018_01_024 crossref_primary_10_1016_j_jallcom_2021_159711 crossref_primary_10_1002_jctb_5821 crossref_primary_10_1016_j_apcatb_2016_09_038 crossref_primary_10_1016_j_cej_2019_05_151 crossref_primary_10_1039_C7CC07954K crossref_primary_10_1007_s11164_018_3271_x crossref_primary_10_1002_cctc_202001179 crossref_primary_10_1039_D4EE01748J crossref_primary_10_1016_j_mtchem_2023_101680 crossref_primary_10_1021_acs_cgd_7b01523 crossref_primary_10_1021_acscatal_9b00332 crossref_primary_10_1016_j_ijhydene_2019_07_211 crossref_primary_10_1039_C7TA10225A crossref_primary_10_1021_acscatal_8b00104 crossref_primary_10_1039_C6RA26416F crossref_primary_10_1021_acsami_7b08322 crossref_primary_10_1002_adom_202202843 crossref_primary_10_1021_acs_accounts_8b00521 crossref_primary_10_1016_j_colsurfa_2022_130415 crossref_primary_10_1016_j_ccr_2024_215944 crossref_primary_10_1021_acsami_0c19345 crossref_primary_10_1039_C8CC08130A crossref_primary_10_1002_adma_201705112 crossref_primary_10_1021_jacs_1c05032 crossref_primary_10_1016_j_jcis_2019_02_052 crossref_primary_10_1016_j_mtener_2024_101542 crossref_primary_10_1002_adma_201806163 crossref_primary_10_1039_C6RA18013B crossref_primary_10_1002_adma_201904717 crossref_primary_10_1016_j_apcatb_2017_12_024 crossref_primary_10_1007_s11426_019_9658_1 crossref_primary_10_1016_j_jcat_2017_01_014 crossref_primary_10_1063_5_0099758 crossref_primary_10_1021_jacs_7b11788 crossref_primary_10_1039_C5NJ02760H crossref_primary_10_1016_j_jphotochemrev_2017_10_001 crossref_primary_10_1002_eem2_12051 crossref_primary_10_1021_acscatal_6b01293 crossref_primary_10_1016_j_jece_2023_110681 crossref_primary_10_1016_j_ijhydene_2023_06_129 crossref_primary_10_1039_D2TA09819A crossref_primary_10_1016_j_ijhydene_2018_11_016 crossref_primary_10_1016_j_ccr_2018_10_001 crossref_primary_10_1002_gch2_202000082 crossref_primary_10_1021_acsami_8b06272 crossref_primary_10_1002_ange_201911609 crossref_primary_10_1039_D3TA00267E crossref_primary_10_1016_j_cjsc_2022_100001 crossref_primary_10_1002_anie_202424537 crossref_primary_10_1080_24701556_2020_1852255 crossref_primary_10_1021_acsaem_4c01181 crossref_primary_10_1016_j_rser_2018_04_073 crossref_primary_10_1016_j_mtener_2020_100589 crossref_primary_10_1021_acsami_9b13121 crossref_primary_10_1039_D0SC03754K crossref_primary_10_1002_admi_202002151 crossref_primary_10_1007_s11243_018_0274_9 crossref_primary_10_1016_j_ica_2024_122297 crossref_primary_10_1016_j_jphotochem_2017_09_019 crossref_primary_10_1021_acsami_1c11176 crossref_primary_10_1016_j_cej_2021_132652 crossref_primary_10_1016_j_inoche_2021_108685 crossref_primary_10_1016_j_apsusc_2017_12_219 crossref_primary_10_1016_j_colsurfa_2019_124078 crossref_primary_10_1021_acscatal_6b02228 crossref_primary_10_1002_smll_201801037 crossref_primary_10_1016_j_jcis_2020_05_023 crossref_primary_10_1039_C6CS00727A crossref_primary_10_1016_j_apcatb_2019_01_091 crossref_primary_10_1016_j_molstruc_2021_130289 crossref_primary_10_1002_smtd_201700080 crossref_primary_10_1016_j_mcat_2023_112921 crossref_primary_10_1016_j_ica_2021_120474 crossref_primary_10_1016_j_jece_2023_110424 crossref_primary_10_1021_acs_cgd_1c00152 crossref_primary_10_3390_catal8120581 crossref_primary_10_3390_ma11112250 crossref_primary_10_1021_acs_jpcc_7b08532 crossref_primary_10_1039_C7NR03238B crossref_primary_10_1016_j_jallcom_2020_156578 crossref_primary_10_1039_D2SE00621A crossref_primary_10_1039_C7TA04004K crossref_primary_10_1016_j_jcis_2018_09_099 crossref_primary_10_1016_j_ccr_2018_02_008 crossref_primary_10_1002_chem_201600143 crossref_primary_10_1016_j_seppur_2023_123206 crossref_primary_10_1016_j_apcatb_2017_06_082 crossref_primary_10_1021_acscatal_6b03386 crossref_primary_10_1021_acsami_1c10147 crossref_primary_10_3390_ma15020447 crossref_primary_10_1039_C8NR01336E crossref_primary_10_1016_j_molstruc_2017_07_083 crossref_primary_10_1039_C9CC03873F crossref_primary_10_1016_j_inoche_2018_07_035 crossref_primary_10_1016_j_apsusc_2022_152423 crossref_primary_10_1039_C7CE00006E crossref_primary_10_1002_ange_201507145 crossref_primary_10_1016_j_jechem_2020_05_010 crossref_primary_10_1002_adma_201707582 crossref_primary_10_1007_s41918_021_00110_w crossref_primary_10_1080_15533174_2016_1186043 crossref_primary_10_1002_anie_201600395 crossref_primary_10_1039_D1CE00498K crossref_primary_10_1016_j_jssc_2023_124134 crossref_primary_10_1016_j_apcatb_2017_11_035 crossref_primary_10_1016_j_jallcom_2018_09_312 crossref_primary_10_1016_j_jssc_2021_122632 crossref_primary_10_1016_j_apsusc_2019_143836 crossref_primary_10_1021_acs_jpcc_9b06838 crossref_primary_10_1016_j_mtchem_2022_101209 crossref_primary_10_1039_C8CC04891F crossref_primary_10_1134_S1070328418120126 crossref_primary_10_1016_j_ijbiomac_2024_129391 crossref_primary_10_1080_03067319_2022_2038589 crossref_primary_10_1149_2_0051905jes crossref_primary_10_1002_cctc_201600808 crossref_primary_10_1016_j_apcatb_2017_03_018 crossref_primary_10_1002_slct_201700998 crossref_primary_10_31857_S045388112304007X crossref_primary_10_1016_j_apsusc_2018_10_048 crossref_primary_10_1016_j_jmmm_2024_172363 crossref_primary_10_1002_anie_201907074 crossref_primary_10_1002_slct_201901818 crossref_primary_10_1039_C8RA04145H crossref_primary_10_1002_chem_201703682 crossref_primary_10_1016_j_mssp_2019_03_016 crossref_primary_10_1039_C6CY00695G crossref_primary_10_1002_cssc_201702122 crossref_primary_10_1007_s11243_015_9992_4 crossref_primary_10_1021_acssuschemeng_9b02699 crossref_primary_10_1039_D3TA04403C crossref_primary_10_1016_j_inoche_2016_10_001 crossref_primary_10_1039_D2TA09715J crossref_primary_10_1002_ejic_201501242 crossref_primary_10_1016_j_jechem_2018_02_008 crossref_primary_10_1002_advs_202101883 crossref_primary_10_1016_j_apcatb_2017_04_021 crossref_primary_10_1016_j_electacta_2016_12_109 crossref_primary_10_1016_j_ijhydene_2017_09_081 crossref_primary_10_1039_C6DT01554A crossref_primary_10_1039_C9RA08097J crossref_primary_10_1016_j_inoche_2017_06_021 crossref_primary_10_1016_j_matchemphys_2017_03_007 crossref_primary_10_1021_acs_energyfuels_4c01963 crossref_primary_10_1088_2752_5724_aca346 crossref_primary_10_1039_C9RA06984D crossref_primary_10_1039_D3TA04994A crossref_primary_10_1002_smll_202306616 crossref_primary_10_1007_s10904_015_0287_1 crossref_primary_10_1016_S1872_2067_17_62947_4 crossref_primary_10_1039_C8SC02220H crossref_primary_10_1002_anie_201507145 crossref_primary_10_1016_j_molstruc_2023_137357 crossref_primary_10_1016_j_molliq_2019_112427 crossref_primary_10_1021_acs_inorgchem_0c02959 crossref_primary_10_3762_bjoc_13_239 crossref_primary_10_1039_C9CS00806C crossref_primary_10_1016_j_apcatb_2016_10_086 crossref_primary_10_1039_C6CS00250A crossref_primary_10_1016_j_apcatb_2016_04_030 crossref_primary_10_1021_acs_chemmater_8b02467 crossref_primary_10_1039_C6CC00862C crossref_primary_10_1039_C8GC02382D crossref_primary_10_1002_adma_201707377 crossref_primary_10_1021_acssuschemeng_7b01477 crossref_primary_10_1039_D3NR05316D crossref_primary_10_1016_j_apsusc_2018_10_020 crossref_primary_10_1016_j_jece_2024_113825 crossref_primary_10_1039_C6MH00484A crossref_primary_10_1002_ange_201600395 crossref_primary_10_1016_j_ccr_2021_214177 crossref_primary_10_1021_acs_inorgchem_6b01199 crossref_primary_10_1039_D0EE01882A crossref_primary_10_1016_j_clay_2021_106177 crossref_primary_10_1016_j_ijhydene_2020_07_277 crossref_primary_10_1016_j_colsurfa_2022_129282 crossref_primary_10_1021_acs_inorgchem_8b01265 crossref_primary_10_1039_C6NJ02568D crossref_primary_10_1007_s11708_019_0629_8 crossref_primary_10_1016_j_apmt_2023_101831 crossref_primary_10_1016_j_ica_2021_120416 crossref_primary_10_1007_s12598_024_02844_0 crossref_primary_10_1016_j_jwpe_2022_103348 crossref_primary_10_1016_j_jssc_2017_07_035 crossref_primary_10_1039_D2TA09552A crossref_primary_10_1002_smll_201601758 crossref_primary_10_1016_j_chemosphere_2021_132666 crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1002_smll_201603938 crossref_primary_10_1016_j_nanoen_2016_01_029 crossref_primary_10_1007_s11696_023_02889_y crossref_primary_10_1016_j_jcis_2022_07_185 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1002_ange_202424537 crossref_primary_10_1002_smll_202105484 crossref_primary_10_1021_acs_jpcc_6b13068 crossref_primary_10_1016_j_apcatb_2017_05_010 crossref_primary_10_1016_j_ijhydene_2024_03_296 crossref_primary_10_1039_C8NJ04151B crossref_primary_10_3390_catal11030346 crossref_primary_10_1016_j_fuel_2023_130654 crossref_primary_10_1016_j_molstruc_2018_01_028 crossref_primary_10_1002_aenm_201803402 crossref_primary_10_1039_C6CE01995A crossref_primary_10_1016_j_cej_2019_123431 crossref_primary_10_1016_j_cej_2021_129870 crossref_primary_10_1016_j_cej_2020_128022 crossref_primary_10_1039_D4EY00007B crossref_primary_10_1039_C5NJ03477A crossref_primary_10_1016_j_psep_2020_10_025 crossref_primary_10_1002_smll_201805242 crossref_primary_10_1002_ange_201505581 crossref_primary_10_1021_acs_inorgchem_6b01060 crossref_primary_10_1002_cphc_202100083 crossref_primary_10_1039_D4NR03774J crossref_primary_10_1021_acs_inorgchem_2c02733 crossref_primary_10_1016_j_jphotochem_2019_03_001 crossref_primary_10_1021_acsaem_0c00087 crossref_primary_10_1016_j_ceramint_2024_04_344 crossref_primary_10_1002_advs_202100625 crossref_primary_10_1039_C5CP08070C crossref_primary_10_1002_cjoc_201600647 crossref_primary_10_1002_eem2_12229 crossref_primary_10_1002_asia_202100813 crossref_primary_10_26599_CF_2024_9200018 crossref_primary_10_1016_j_inoche_2017_03_025 crossref_primary_10_1021_acsnano_4c16314 crossref_primary_10_1039_C6NR08071E crossref_primary_10_1002_cssc_201801066 crossref_primary_10_1039_C7RA04125J crossref_primary_10_1021_acssuschemeng_7b01313 crossref_primary_10_1039_C9CC01371G crossref_primary_10_1039_D4QI00968A crossref_primary_10_3390_ma15113761 crossref_primary_10_1016_j_apcatb_2019_02_071 crossref_primary_10_1039_C7NR08943K crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1021_acs_cgd_5b00925 crossref_primary_10_1002_cphc_201801147 crossref_primary_10_1021_acs_jpcc_9b05693 crossref_primary_10_1039_C6QI00542J crossref_primary_10_1002_er_5807 crossref_primary_10_1016_j_ccr_2017_09_013 crossref_primary_10_1016_j_jiec_2019_07_028 crossref_primary_10_1016_j_micromeso_2024_113242 crossref_primary_10_1021_acsnano_1c06402 crossref_primary_10_1016_j_molstruc_2021_131510 crossref_primary_10_1007_s11356_021_14834_1 crossref_primary_10_1016_j_apt_2022_103488 crossref_primary_10_1039_C5NJ03572D crossref_primary_10_3762_bjnano_9_35 crossref_primary_10_1016_j_jece_2023_110125 crossref_primary_10_1016_j_optmat_2021_111260 crossref_primary_10_1016_j_cclet_2024_109539 crossref_primary_10_1039_C8CS00341F crossref_primary_10_1039_C8CS00256H crossref_primary_10_1016_j_electacta_2016_10_002 crossref_primary_10_1021_acsami_6b16534 crossref_primary_10_1039_D1NA00818H crossref_primary_10_1016_j_molstruc_2020_129218 crossref_primary_10_1016_j_scib_2018_03_009 crossref_primary_10_1002_smll_202305024 crossref_primary_10_1039_D3NR05664C crossref_primary_10_1039_D3CY00862B crossref_primary_10_1021_acs_inorgchem_6b00909 crossref_primary_10_1016_S1872_2067_15_60984_6 crossref_primary_10_1016_j_jcou_2019_07_011 crossref_primary_10_1039_C9QI00046A crossref_primary_10_1007_s12678_018_0461_7 crossref_primary_10_1021_acsami_6b05746 crossref_primary_10_1002_adma_202005819 crossref_primary_10_1016_j_apcatb_2020_119345 crossref_primary_10_1039_C9SE00749K crossref_primary_10_1016_j_molstruc_2019_03_086 crossref_primary_10_1016_j_molstruc_2021_131627 crossref_primary_10_1021_acs_chemmater_2c01731 crossref_primary_10_1016_j_mcat_2021_111949 crossref_primary_10_1039_D4EN00292J crossref_primary_10_1002_sstr_202200233 crossref_primary_10_1016_j_apcatb_2016_05_055 crossref_primary_10_3390_inorganics5030040 crossref_primary_10_1039_D2CC02740B crossref_primary_10_1039_D3DT04263D crossref_primary_10_1007_s10854_018_9862_x crossref_primary_10_1016_j_chphma_2022_05_003 crossref_primary_10_1016_j_molliq_2020_113201 crossref_primary_10_1038_s41598_017_09347_2 crossref_primary_10_1039_C9EN00460B crossref_primary_10_1016_j_jcou_2021_101715 crossref_primary_10_1002_anie_201911609 crossref_primary_10_1016_j_ccr_2019_03_012 crossref_primary_10_1016_j_jece_2023_110468 crossref_primary_10_1016_j_apsusc_2024_159590 crossref_primary_10_1016_j_ccr_2019_03_019 crossref_primary_10_1007_s10854_020_04492_3 crossref_primary_10_1016_j_apcatb_2016_05_041 crossref_primary_10_1021_acsomega_1c04037 crossref_primary_10_1016_j_cej_2021_133932 crossref_primary_10_1007_s10854_022_07717_9 crossref_primary_10_1016_j_poly_2019_06_004 crossref_primary_10_1016_j_jphotochem_2024_116123 crossref_primary_10_1002_ajoc_201900569 |
Cites_doi | 10.1021/ja903726m 10.1021/ja500403e 10.1002/anie.201209017 10.1021/ar00051a007 10.1002/smll.201401919 10.1038/nchem.157 10.1016/j.apcatb.2014.07.026 10.1002/adma.201102538 10.1039/C4CC03946G 10.1002/smll.201001071 10.1002/anie.200806063 10.1002/chem.200601003 10.1039/C4CP04162C 10.1039/c3ta12645e 10.1021/ja3009902 10.1039/b802352m 10.1002/smll.201302983 10.1021/cr200179u 10.1002/smll.201303836 10.1039/c3ta12433a 10.1021/ja0570032 10.1002/anie.201210294 10.1039/C4EE01299B 10.1039/C4CC01776E 10.1021/cr2003147 10.1016/j.electacta.2012.09.093 10.1039/C4CC02818J 10.1021/jp063600e 10.1021/sc4004295 10.1039/c3ee41548a 10.1016/j.molstruc.2014.11.036 10.1021/cr200252n 10.1021/jp3046005 10.1021/cs500123d 10.1002/anie.200805101 10.1039/C4CY01464B 10.1021/jp803620v 10.1002/anie.201207199 10.1002/chem.200903526 10.1039/C4CC01086H 10.1039/C4CC09407G 10.1002/chem.201304067 10.1002/smll.201202156 10.1039/C3RA45848B 10.1007/s12274‐014‐0690‐x 10.1038/238037a0 10.1021/ja300539p 10.1039/C4EE02853H 10.1039/C4CE00032C 10.1002/chem.201301728 10.1016/j.micromeso.2004.03.034 10.1039/c3dt51479j 10.1039/C3CC46398B 10.1016/j.apcatb.2014.09.054 10.1039/c4cp02173h 10.1039/C4CS00103F 10.1073/pnas.0602439103 10.1021/cr9003924 10.1002/chem.201405047 10.1016/S1389-5567(02)00040-0 10.1021/cr00011a005 10.1016/j.ces.2014.08.052 10.1021/ja305367j 10.1021/ja040162l 10.1126/science.1192160 10.1039/C4CC02994A 10.1002/anie.201108357 10.1021/ic200295h 10.1002/anie.200462786 10.1039/c2cc34620f 10.1039/c3sc51203g 10.1021/ja407176p 10.1002/smll.201100710 10.1021/ar200028a 10.1038/nmat1927 10.1126/science.1217544 10.1039/c4cc02397h 10.1021/ja8057953 10.1002/adma.201400428 10.1002/anie.201102010 10.1002/anie.201206137 10.1021/ja903923s 10.1002/anie.201301327 10.1039/c2ee22989g 10.1021/cr200324t 10.1080/10610278.2010.527976 10.1021/ja311541a 10.1021/ja310074j 10.1073/pnas.0909718106 10.1039/C4TA04622F 10.1002/aenm.201300380 10.1021/ja203564w 10.1039/C3CS60405E 10.1021/cr200205j 10.1021/ja1065625 10.1002/anie.201407319 10.1039/c3ee40507a 10.1039/c1dt10115c 10.1002/anie.201309426 10.1039/C3CS60188A 10.1002/anie.201206534 10.1039/c2cp40823f 10.1002/anie.200701056 10.1039/C4NR02399D 10.1021/cr200139g 10.1021/ja052431t 10.1021/ja503296c 10.1002/asia.201402303 10.1126/science.283.5405.1148 10.1039/b924937k 10.1246/cl.2010.358 10.1021/cr2003272 10.1002/anie.201202471 10.1073/pnas.1118336109 10.1039/C4CS00126E 10.1021/cs501169t 10.1016/j.molcata.2014.04.002 10.1021/cs3005874 10.1002/anie.200601878 10.1039/C4SC02362E 10.1039/b200393g 10.1039/c3cy00211j 10.1021/ja403810k 10.1039/b814539c |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
DOI | 10.1002/smll.201500084 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 3112 |
ExternalDocumentID | 3735204581 25917413 10_1002_smll_201500084 SMLL201500084 ark_67375_WNG_9439NFVS_S |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21425309; 21173043 – fundername: National Basic Research Program of China funderid: 2013CB632405; 2014CB260406 – fundername: Specialized Research Fund for the Doctoral Program of Higher Education funderid: 20133514110003 – fundername: State Key Laboratory of NBC Protection for Civilian funderid: SKLNBC2013–04K |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACYXJ AFWVQ ALVPJ AAYXX ACRPL ADNMO AGHNM AGQPQ AGYGG CITATION NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c6874-8810b645151c42eed6526bb9ba03201ff5ae11e24fccd8de6b35722f4f0d33ca3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 15:20:20 EDT 2025 Fri Jul 11 10:40:37 EDT 2025 Fri Jul 25 12:16:36 EDT 2025 Thu Apr 03 06:58:26 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Tue Jul 01 02:10:18 EDT 2025 Wed Jan 22 16:20:52 EST 2025 Wed Oct 30 09:54:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | water splitting organic transformation photosynthesis MOFs CO2 reduction photocatalysis metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6874-8810b645151c42eed6526bb9ba03201ff5ae11e24fccd8de6b35722f4f0d33ca3 |
Notes | Specialized Research Fund for the Doctoral Program of Higher Education - No. 20133514110003 istex:48E1134B33C9F3027F2A425A44058C40A17209A5 ark:/67375/WNG-9439NFVS-S National Natural Science Foundation of China - No. 21425309; No. 21173043 National Basic Research Program of China - No. 2013CB632405; No. 2014CB260406 State Key Laboratory of NBC Protection for Civilian - No. SKLNBC2013-04K ArticleID:SMLL201500084 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25917413 |
PQID | 1693773022 |
PQPubID | 1046358 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1709762742 proquest_miscellaneous_1694965175 proquest_journals_1693773022 pubmed_primary_25917413 crossref_citationtrail_10_1002_smll_201500084 crossref_primary_10_1002_smll_201500084 wiley_primary_10_1002_smll_201500084_SMLL201500084 istex_primary_ark_67375_WNG_9439NFVS_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501. A. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gándara, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 8863. Y. Kataoka, Y. Miyazaki, K. Sato, T. Saito, Y. Nakanishi, Y. Kiatagwa, T. Kawakami, M. Okumura, K. Yamaguchi, W. Mori, Supramol. Chem. 2011, 23, 287. Y. Chen, J. Zhang, M. Zhang, X. Wang, Chem. Sci. 2013, 4, 3244. J. Lin, Z. Pan, X. Wang, ACS Sustain. Chem. Eng. 2013, 2, 353. Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 11814. S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372. Y. Tamaki, T. Morimoto, K. Koike, O. Ishitani, Proc. Natl. Acad. Sci. USA 2012, 109, 15673. D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502. P. L. Feng, J. J. Perry IV, S. Nikodemski, B. W. Jacobs, S. T. Meek, M. D. Allendorf, J. Am. Chem. Soc. 2010, 132, 15487. X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 2009, 131, 11658. K. Sasan, Q. Lin, C. Y. Mao, P. Feng, Chem. Commun. 2014, 50, 10390. Y. Yang, H. F. Yao, F. G. Xi, E. Q. Gao, J. Mol. Catal. A: Chem. 2014, 390, 198. D. Shi, C. He, B. Qi, C. Chen, J. Niu, C. Duan, Chem. Sci. 2015, 6, 1035. M. Wen, K. Mori, T. Kamegawa, H. Yamashita, Chem. Commun. 2014, 50, 11645. S. Wang, X. Wang, Appl. Catal. B: Environ. 2015, 162, 494. C. G. Silva, A. Corma, H. Garcia, J. Mater. Chem. 2010, 20, 3141. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234. J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 2011, 44, 957. T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982. P. Wang, B. Huang, Y. Dai, M. H. Whangbo, Phys. Chem. Chem. Phys. 2012, 14, 9813. A. Fujishima, K. Honda, Nature 1972, 238, 37. M. H. Xie, X. L. Yang, C. Zou, C. D. Wu, Inorg. Chem. 2011, 50, 5318. S. Wang, J. Lin, X. Wang, Phys. Chem. Chem. Phys. 2014, 16, 14656. R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Chem. Commun. 2014, 50, 8533. T. Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura, M. Matsuoka, Catal. Sci. Technol. 2013, 3, 2092. W. Lin, H. Frei, J. Am. Chem. Soc. 2005, 127, 1610. L. Shen, L. Huang, S. Liang, R. Liang, N. Qina, L. Wu, RSC Adv. 2014, 4, 2546. T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688. A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998. D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 2013, 19, 14279. M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330. A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606. F. Ke, L. Wang, J. Zhu, Nano Res. 2015, DOI 10.1007/s12274-014-0690-x. M. A. Nasalevich, M. G. Goesten, T. J. Savenije, F. Kapteijna, J. Gascon, Chem. Commun. 2013, 49, 10575. C. C. Wang, Y. Q. Zhang, J. Li, P. Wang, J. Mol. Struct. 2015, 1083, 127. J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 2012, 48, 11656. S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 1034. C. C. Wang, J. R. Li, X. L. Lv, Y. Q. Zhang, G. Guo, Energy Environ. Sci. 2014, 7, 2831. X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473. C. G. Silva, I. Luz, F. X. LlabrésiXamena, A. Corma, H. García, Chem. Eur. J. 2010, 16, 11133. M. R. Wasielewski, Chem. Rev. 1992, 92, 435. M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196. C. D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940. H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A.Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424. Y. Kataoka, K. Sato, Y. Miyazaki, Y. Suzuki, H. Tanaka, Y. Kitagawa, T. Kawakami, M. Okumura, W. Mori, Chem. Lett. 2010, 39, 358. S. Abedi, A. Morsali, ACS Catal. 2014, 4, 1398. L. Chen, Y. Peng, H. Wang, Z. Gu, C. Duan, Chem. Commun. 2014, 50, 8651. D. Buso, J. Jasieniak, M. D. H. Lay, P. Schiavuta, P. Scopece, J. Laird, H. Amenitsch, A. J. Hill, P. Falcaro, Small 2012, 8, 80. M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675. L. Shen, S. Liang, W. Wu, R. Lianga, L. Wu, J. Mater. Chem. A 2013, 1, 11473. Y. Liu, S. X. Guo, A. M. Bond, J. Zhang, S. Du, Electrochim. Acta 2013, 101, 201. L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 2015, 17, 117. T. W. Goh, C. Xiao, R. V. Maligal-Ganesh, X. Li, W. Huang, Chem. Eng. Sci. 2015, 124, 45. J. Lin, Y. Hou, Y. Zheng, X. Wang, Chem. Asian. J. 2014, 9, 2468. H. Y. Wang, F. X. Xiao, L. Yu, B. Liu, X. W. Lou, Small 2014, 10, 3181. Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito, W. Mori, Energy Environ. Sci. 2009, 2, 397. D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Chem. Eur. J. 2014, 20, 4780. D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254. A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, W. Fritzsche, Small 2010, 6, 2584. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 2006, 45, 5974. T. Tachikawa, J. R. Choi, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2008, 112, 14090. J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105. J. P. Zhang, Y. B. Zhang, J. B. Lin, X. M. Chen, Chem. Rev. 2011, 112, 1001. R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 2014, 26, 4783. J. L. Wang, C. Wang, W. Lin, ACS Catal. 2012, 2, 2630. C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211. M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon, Energy Environ. Sci. 2015, 8, 364. Z. Jiang, Y. Tang, Q. Tay, Y. Zhang, O. I. Malyi, D. Wang, J. Deng, Y. Lai, H. Zhou, X. Chen, Z. Dong, Z. Chen, Adv. Energy Mater. 2013, 3, 1368. C. Y. Sun, C. Qin, C. G. Wang, Z. M. Su, S. Wang, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, E. B. Wang, Adv. Mater. 2011, 23, 5629. C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P. L. Llewellyn, M. Latroche, Dalton Trans. 2011, 40, 4879. A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141. C. Cui, Y. Liu, H. Xu, S. Li, W. Zhang, P. Cui, F. Huo, Small 2014, 10, 3672. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2011, 112, 724. Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 11926. Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848. Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Angew. Chem. Int. Ed. 2013, 52, 3621. E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606. J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063. S. L. James, Chem. Soc. Rev. 2003, 32, 276. Y. Kou, Y. Nabetani, D. Masui, T. Shimada, S. Takagi, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 2014, 136, 6021. M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, J. Am. Chem. Soc. 2009, 131, 10857. L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649. F. X. Xiao, S. F. Hung, J. Miao, H. Y. Wang, H. Yang, B. Liu, Small 2015, 11, 554. M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garcia, Chem. Eur. J. 2007, 13, 5106. C. Wang, T. Zhang, W. Lin, Chem. Rev. 2012, 112, 1084. A. Morozan, F. Jaouen, Energy Environ. Sci. 2012, 5, 9269. K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186. D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Chem. Commun. 2015, 51, 2056. C. Zhang, L. Ai, J. Jiang, J. Mater. Chem. A 2015, 3, 3074. R. K. Yadav, J. O. Baeg, G. H. Oh, N. J. Park, K. j. Kong, J. Kim, D. W. Hwang, S. K. Biswas, J. Am. Chem. Soc. 2012, 134, 11455. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148. T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang, R. Xu, Energy Environ. Sci. 2013, 6, 3229. B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed. 2009, 48, 500. M. A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 2014, 16, 4919. S. M. Cohen, Chem. Rev. 2012, 112, 970. J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850. C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445. G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, Chem. Eur. J. 2015, 21, 2364. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nat. Mater. 2007, 6, 501. D. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20637. F. X. Llabrés i Xamena, A. Corma, H. Garcia, J. Phys. Chem. C 2007, 111, 80. S. Sato, T. Morikawa, T. Kajino, O. Ishitani, Angew. Chem. Int. Ed. 2013, 52, 988. D. Sun, L. Ye, Z. Li, Appl. Catal. B 2015, 164, 428. Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum, X. Chen, Small 2013, 9, 996. J. L. C. Rowsell, O. M. Yaghi, Micropor. Mesopor. Mater. 2004, 73, 3. A. I. Cooper, M. J. Rosseinsky, Nat. Chem. 2009, 1, 26. A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440. S. Wang, Y. Hou, S. Lin, X. Wang, Nanoscale 2014, 6, 9930. S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997. Z. Lin, X. Wang, Angew. Chem. Int. Ed. 2013, 52, 2013; 3 2010; 16 2013; 4 2013; 1 2013; 2 2014; 26 1999; 283 2012; 14 2013; 6 2014; 136 2011; 112 2009; 48 2013; 9 2012; 51 2014; 20 2013; 19 1992; 92 2010; 20 2004; 73 2014; 4 2012; 134 1995; 28 2013; 52 2010; 110 2014; 16 2003; 3 2007; 6 2011; 23 2008; 112 2014; 9 2012; 335 2014; 7 2014; 50 2014; 6 2010; 6 2014; 10 2014; 53 2015; 162 2015; 6 2015; 17 2015; 5 2010; 329 2015; 3 2013; 49 2015; 51 2015; 124 2010; 39 2015; 11 2011; 40 2015; 164 2013; 42 2013; 101 2014; 390 2009; 131 2015; 8 1972; 238 2005; 44 2007; 13 2003; 32 2011; 133 2014; 43 2012; 109 2012; 2 2012; 112 2006; 45 2007; 111 2005; 127 2011; 50 2015; 21 2010; 132 2011; 44 2013; 135 2015 2012; 48 2015; 1083 2009; 2 2009; 1 2012; 116 2012; 5 2007; 46 2009; 38 2008; 130 2012; 8 2006; 103 2009; 106 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – reference: M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, J. Am. Chem. Soc. 2009, 131, 10857. – reference: Y. Liu, G. Li, X. Li, Y. Cui, Angew. Chem. Int. Ed. 2007, 46, 6301. – reference: L. Chen, Y. Peng, H. Wang, Z. Gu, C. Duan, Chem. Commun. 2014, 50, 8651. – reference: J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 2012, 48, 11656. – reference: D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254. – reference: C. Wang, J. L. Wang, W. Lin, J. Am. Chem. Soc. 2012, 134, 19895. – reference: M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510. – reference: J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670. – reference: L. Shen, L. Huang, S. Liang, R. Liang, N. Qina, L. Wu, RSC Adv. 2014, 4, 2546. – reference: C. Cui, Y. Liu, H. Xu, S. Li, W. Zhang, P. Cui, F. Huo, Small 2014, 10, 3672. – reference: M. A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 2014, 16, 4919. – reference: A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, W. Fritzsche, Small 2010, 6, 2584. – reference: Y. Kou, Y. Nabetani, D. Masui, T. Shimada, S. Takagi, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 2014, 136, 6021. – reference: L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 2015, 17, 117. – reference: W. Lin, H. Frei, J. Am. Chem. Soc. 2005, 127, 1610. – reference: Z. Lin, X. Wang, Angew. Chem. Int. Ed. 2013, 52, 1735. – reference: S. L. James, Chem. Soc. Rev. 2003, 32, 276. – reference: T. Toyao, M. Saito, S. Dohshi, K. Mochizuki, M. Iwata, H. Higashimura, Y. Horiuchi, M. Matsuoka, Chem. Commun. 2014, 50, 6779. – reference: Y. Tamaki, T. Morimoto, K. Koike, O. Ishitani, Proc. Natl. Acad. Sci. USA 2012, 109, 15673. – reference: H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234. – reference: A. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gándara, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 8863. – reference: S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501. – reference: A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141. – reference: H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nat. Mater. 2007, 6, 501. – reference: J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063. – reference: J. Lin, Y. Hou, Y. Zheng, X. Wang, Chem. Asian. J. 2014, 9, 2468. – reference: Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 11814. – reference: R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Chem. Commun. 2014, 50, 8533. – reference: S. M. Cohen, Chem. Rev. 2012, 112, 970. – reference: J. P. Zhang, Y. B. Zhang, J. B. Lin, X. M. Chen, Chem. Rev. 2011, 112, 1001. – reference: P. L. Feng, J. J. Perry IV, S. Nikodemski, B. W. Jacobs, S. T. Meek, M. D. Allendorf, J. Am. Chem. Soc. 2010, 132, 15487. – reference: C. Wang, T. Zhang, W. Lin, Chem. Rev. 2012, 112, 1084. – reference: S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372. – reference: C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211. – reference: K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, J. Am. Chem. Soc. 2013, 135, 4596. – reference: S. Abedi, A. Morsali, ACS Catal. 2014, 4, 1398. – reference: C. C. Wang, J. R. Li, X. L. Lv, Y. Q. Zhang, G. Guo, Energy Environ. Sci. 2014, 7, 2831. – reference: K. Sasan, Q. Lin, C. Y. Mao, P. Feng, Chem. Commun. 2014, 50, 10390. – reference: Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. 2012, 51, 3364. – reference: D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 2013, 19, 14279. – reference: M. R. Wasielewski, Chem. Rev. 1992, 92, 435. – reference: K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186. – reference: C. Y. Sun, C. Qin, C. G. Wang, Z. M. Su, S. Wang, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, E. B. Wang, Adv. Mater. 2011, 23, 5629. – reference: C. G. Silva, A. Corma, H. Garcia, J. Mater. Chem. 2010, 20, 3141. – reference: Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito, W. Mori, Energy Environ. Sci. 2009, 2, 397. – reference: F. Ke, L. Wang, J. Zhu, Nano Res. 2015, DOI 10.1007/s12274-014-0690-x. – reference: Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Angew. Chem. Int. Ed. 2013, 52, 3621. – reference: H. Y. Wang, F. X. Xiao, L. Yu, B. Liu, X. W. Lou, Small 2014, 10, 3181. – reference: D. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20637. – reference: J. L. Wang, C. Wang, W. Lin, ACS Catal. 2012, 2, 2630. – reference: C. Zhang, L. Ai, J. Jiang, J. Mater. Chem. A 2015, 3, 3074. – reference: F. X. Xiao, S. F. Hung, J. Miao, H. Y. Wang, H. Yang, B. Liu, Small 2015, 11, 554. – reference: P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 2006, 45, 5974. – reference: T. Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura, M. Matsuoka, Catal. Sci. Technol. 2013, 3, 2092. – reference: J. Lin, Z. Pan, X. Wang, ACS Sustain. Chem. Eng. 2013, 2, 353. – reference: M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon, Energy Environ. Sci. 2015, 8, 364. – reference: J. L. C. Rowsell, O. M. Yaghi, Micropor. Mesopor. Mater. 2004, 73, 3. – reference: T. W. Goh, C. Xiao, R. V. Maligal-Ganesh, X. Li, W. Huang, Chem. Eng. Sci. 2015, 124, 45. – reference: D. Sun, L. Ye, Z. Li, Appl. Catal. B 2015, 164, 428. – reference: S. Wang, X. Wang, Appl. Catal. B: Environ. 2015, 162, 494. – reference: P. Wu, C. He, J. Wang, X. Peng, X. Li, Y. An, C. Duan, J. Am. Chem. Soc. 2012, 134, 14991. – reference: M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675. – reference: L. Shen, S. Liang, W. Wu, R. Lianga, L. Wu, J. Mater. Chem. A 2013, 1, 11473. – reference: C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P. L. Llewellyn, M. Latroche, Dalton Trans. 2011, 40, 4879. – reference: Y. Liu, S. X. Guo, A. M. Bond, J. Zhang, S. Du, Electrochim. Acta 2013, 101, 201. – reference: A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606. – reference: L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105. – reference: D. Buso, J. Jasieniak, M. D. H. Lay, P. Schiavuta, P. Scopece, J. Laird, H. Amenitsch, A. J. Hill, P. Falcaro, Small 2012, 8, 80. – reference: Z. Jiang, Y. Tang, Q. Tay, Y. Zhang, O. I. Malyi, D. Wang, J. Deng, Y. Lai, H. Zhou, X. Chen, Z. Dong, Z. Chen, Adv. Energy Mater. 2013, 3, 1368. – reference: M. H. Xie, X. L. Yang, C. Zou, C. D. Wu, Inorg. Chem. 2011, 50, 5318. – reference: Q. Liu, Z. X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H. Wang, J. Mater. Chem. A 2013, 1, 11563. – reference: B. Nepal, S. Das, Angew. Chem. Int. Ed. 2013, 52, 7224. – reference: Y. Kataoka, K. Sato, Y. Miyazaki, Y. Suzuki, H. Tanaka, Y. Kitagawa, T. Kawakami, M. Okumura, W. Mori, Chem. Lett. 2010, 39, 358. – reference: M. Matsuoka, M. Anpo, J. Photochem. Photobiol. C 2003, 3, 225. – reference: Y. Yang, H. F. Yao, F. G. Xi, E. Q. Gao, J. Mol. Catal. A: Chem. 2014, 390, 198. – reference: F. X. Llabrés i Xamena, A. Corma, H. Garcia, J. Phys. Chem. C 2007, 111, 80. – reference: S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 1034. – reference: D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502. – reference: S. L. Li, Q. Xu, Energy Environ. Sci. 2013, 6, 1656. – reference: M. Wen, K. Mori, T. Kamegawa, H. Yamashita, Chem. Commun. 2014, 50, 11645. – reference: D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Chem. Commun. 2015, 51, 2056. – reference: S. Sato, T. Morikawa, T. Kajino, O. Ishitani, Angew. Chem. Int. Ed. 2013, 52, 988. – reference: M. A. Nasalevich, M. G. Goesten, T. J. Savenije, F. Kapteijna, J. Gascon, Chem. Commun. 2013, 49, 10575. – reference: S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148. – reference: C. G. Silva, I. Luz, F. X. LlabrésiXamena, A. Corma, H. García, Chem. Eur. J. 2010, 16, 11133. – reference: T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang, R. Xu, Energy Environ. Sci. 2013, 6, 3229. – reference: E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606. – reference: T. Tachikawa, J. R. Choi, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2008, 112, 14090. – reference: J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850. – reference: C. D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940. – reference: A. Morozan, F. Jaouen, Energy Environ. Sci. 2012, 5, 9269. – reference: T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982. – reference: J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 2011, 44, 957. – reference: P. Wang, B. Huang, Y. Dai, M. H. Whangbo, Phys. Chem. Chem. Phys. 2012, 14, 9813. – reference: Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 11926. – reference: A. Fujishima, K. Honda, Nature 1972, 238, 37. – reference: M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330. – reference: C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445. – reference: M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garcia, Chem. Eur. J. 2007, 13, 5106. – reference: X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 2009, 131, 11658. – reference: T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688. – reference: D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Chem. Eur. J. 2014, 20, 4780. – reference: S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997. – reference: D. Shi, C. He, B. Qi, C. Chen, J. Niu, C. Duan, Chem. Sci. 2015, 6, 1035. – reference: D. Wang, Z. Li, Catal. Sci. Technol. 2015, 5, 1623. – reference: R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 2014, 26, 4783. – reference: A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998. – reference: L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649. – reference: R. K. Yadav, J. O. Baeg, G. H. Oh, N. J. Park, K. j. Kong, J. Kim, D. W. Hwang, S. K. Biswas, J. Am. Chem. Soc. 2012, 134, 11455. – reference: Y. Kataoka, Y. Miyazaki, K. Sato, T. Saito, Y. Nakanishi, Y. Kiatagwa, T. Kawakami, M. Okumura, K. Yamaguchi, W. Mori, Supramol. Chem. 2011, 23, 287. – reference: Y. Chen, J. Zhang, M. Zhang, X. Wang, Chem. Sci. 2013, 4, 3244. – reference: Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848. – reference: B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed. 2009, 48, 500. – reference: G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, Chem. Eur. J. 2015, 21, 2364. – reference: A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440. – reference: C. C. Wang, Y. Q. Zhang, J. Li, P. Wang, J. Mol. Struct. 2015, 1083, 127. – reference: M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196. – reference: X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473. – reference: S. Wang, Y. Hou, S. Lin, X. Wang, Nanoscale 2014, 6, 9930. – reference: A. I. Cooper, M. J. Rosseinsky, Nat. Chem. 2009, 1, 26. – reference: S. Wang, J. Lin, X. Wang, Phys. Chem. Chem. Phys. 2014, 16, 14656. – reference: H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A.Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424. – reference: K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2011, 112, 724. – reference: Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum, X. Chen, Small 2013, 9, 996. – volume: 19 start-page: 14279 year: 2013 publication-title: Chem. Eur. J. – year: 2015 publication-title: Nano Res. – volume: 52 start-page: 1735 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1398 year: 2014 publication-title: ACS Catal. – volume: 112 start-page: 1196 year: 2012 publication-title: Chem. Rev. – volume: 127 start-page: 1610 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1034 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 2364 year: 2015 publication-title: Chem. Eur. J. – volume: 101 start-page: 201 year: 2013 publication-title: Electrochim. Acta – volume: 43 start-page: 7501 year: 2014 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 5234 year: 2014 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 5974 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 50 start-page: 8651 year: 2014 publication-title: Chem. Commun. – volume: 23 start-page: 5629 year: 2011 publication-title: Adv. Mater. – volume: 17 start-page: 117 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 4254 year: 2014 publication-title: ACS Catal. – volume: 135 start-page: 16997 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 162 start-page: 494 year: 2015 publication-title: Appl. Catal. B: Environ. – volume: 50 start-page: 10390 year: 2014 publication-title: Chem. Commun. – volume: 6 start-page: 9930 year: 2014 publication-title: Nanoscale – volume: 135 start-page: 4596 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 500 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 103 start-page: 10186 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 364 year: 2015 publication-title: Energy Environ. Sci. – volume: 13 start-page: 5106 year: 2007 publication-title: Chem. Eur. J. – volume: 50 start-page: 5318 year: 2011 publication-title: Inorg. Chem. – volume: 4 start-page: 2546 year: 2014 publication-title: RSC Adv. – volume: 131 start-page: 10857 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 11658 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 11656 year: 2012 publication-title: Chem. Commun. – volume: 7 start-page: 2831 year: 2014 publication-title: Energy Environ. Sci. – volume: 73 start-page: 3 year: 2004 publication-title: Micropor. Mesopor. Mater. – volume: 5 start-page: 1623 year: 2015 publication-title: Catal. Sci. Technol. – volume: 116 start-page: 20848 year: 2012 publication-title: J. Phys. Chem. C – volume: 51 start-page: 7440 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 7063 year: 2014 publication-title: Chem. Commun. – volume: 5 start-page: 9269 year: 2012 publication-title: Energy Environ. Sci. – volume: 124 start-page: 45 year: 2015 publication-title: Chem. Eng. Sci. – volume: 50 start-page: 8533 year: 2014 publication-title: Chem. Commun. – volume: 43 start-page: 473 year: 2014 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 11814 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 11133 year: 2010 publication-title: Chem. Eur. J. – volume: 4 start-page: 3244 year: 2013 publication-title: Chem. Sci. – volume: 110 start-page: 4606 year: 2010 publication-title: Chem. Rev. – volume: 52 start-page: 7372 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 13649 year: 2013 publication-title: Dalton Trans. – volume: 20 start-page: 3141 year: 2010 publication-title: J. Mater. Chem. – volume: 10 start-page: 3672 year: 2014 publication-title: Small – volume: 20 start-page: 4780 year: 2014 publication-title: Chem. Eur. J. – volume: 109 start-page: 15673 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 112 start-page: 675 year: 2012 publication-title: Chem. Rev. – volume: 6 start-page: 1035 year: 2015 publication-title: Chem. Sci. – volume: 127 start-page: 8940 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2092 year: 2013 publication-title: Catal. Sci. Technol. – volume: 136 start-page: 8863 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 17998 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 11473 year: 2013 publication-title: J. Mater. Chem. A – volume: 52 start-page: 3621 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 4879 year: 2011 publication-title: Dalton Trans. – volume: 44 start-page: 957 year: 2011 publication-title: Acc. Chem. Res. – volume: 133 start-page: 13445 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 11645 year: 2014 publication-title: Chem. Commun. – volume: 6 start-page: 1656 year: 2013 publication-title: Energy Environ. Sci. – volume: 16 start-page: 14656 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 50 start-page: 6779 year: 2014 publication-title: Chem. Commun. – volume: 44 start-page: 4670 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 283 start-page: 1148 year: 1999 publication-title: Science – volume: 23 start-page: 287 year: 2011 publication-title: Supramol. Chem. – volume: 16 start-page: 4919 year: 2014 publication-title: CrystEngComm – volume: 3 start-page: 225 year: 2003 publication-title: J. Photochem. Photobiol. C – volume: 2 start-page: 397 year: 2009 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2468 year: 2014 publication-title: Chem. Asian. J. – volume: 48 start-page: 7502 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 11563 year: 2013 publication-title: J. Mater. Chem. A – volume: 52 start-page: 988 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 39 start-page: 358 year: 2010 publication-title: Chem. Lett. – volume: 32 start-page: 276 year: 2003 publication-title: Chem. Soc. Rev. – volume: 164 start-page: 428 year: 2015 publication-title: Appl. Catal. B – volume: 136 start-page: 6021 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 8510 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 3181 year: 2014 publication-title: Small – volume: 6 start-page: 2584 year: 2010 publication-title: Small – volume: 112 start-page: 14090 year: 2008 publication-title: J. Phys. Chem. C – volume: 46 start-page: 6301 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 1330 year: 2009 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 4783 year: 2014 publication-title: Adv. Mater. – volume: 132 start-page: 15487 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2056 year: 2015 publication-title: Chem. Commun. – volume: 112 start-page: 970 year: 2012 publication-title: Chem. Rev. – volume: 112 start-page: 1105 year: 2012 publication-title: Chem. Rev. – volume: 112 start-page: 1001 year: 2011 publication-title: Chem. Rev. – volume: 134 start-page: 11455 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 7224 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 3364 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 335 start-page: 1606 year: 2012 publication-title: Science – volume: 135 start-page: 11688 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 80 year: 2007 publication-title: J. Phys. Chem. C – volume: 6 start-page: 3229 year: 2013 publication-title: Energy Environ. Sci. – volume: 28 start-page: 141 year: 1995 publication-title: Acc. Chem. Res. – volume: 134 start-page: 14991 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 11926 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 1083 start-page: 127 year: 2015 publication-title: J. Mol. Struct. – volume: 92 start-page: 435 year: 1992 publication-title: Chem. Rev. – volume: 3 start-page: 3074 year: 2015 publication-title: J. Mater. Chem. A – volume: 14 start-page: 9813 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 353 year: 2013 publication-title: ACS Sustain. Chem. Eng. – volume: 9 start-page: 996 year: 2013 publication-title: Small – volume: 11 start-page: 554 year: 2015 publication-title: Small – volume: 6 start-page: 501 year: 2007 publication-title: Nat. Mater. – volume: 112 start-page: 1084 year: 2012 publication-title: Chem. Rev. – volume: 49 start-page: 10575 year: 2013 publication-title: Chem. Commun. – volume: 3 start-page: 1368 year: 2013 publication-title: Adv. Energy Mater. – volume: 130 start-page: 13850 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2630 year: 2012 publication-title: ACS Catal. – volume: 1 start-page: 26 year: 2009 publication-title: Nat. Chem. – volume: 390 start-page: 198 year: 2014 publication-title: J. Mol. Catal. A: Chem. – volume: 112 start-page: 724 year: 2011 publication-title: Chem. Rev. – volume: 329 start-page: 424 year: 2010 publication-title: Science – volume: 8 start-page: 80 year: 2012 publication-title: Small – volume: 106 start-page: 20637 year: 2009 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 43 start-page: 5982 year: 2014 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 19895 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 7211 year: 2012 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_53_1 doi: 10.1021/ja903726m – ident: e_1_2_8_15_1 doi: 10.1021/ja500403e – ident: e_1_2_8_102_1 doi: 10.1002/anie.201209017 – ident: e_1_2_8_1_1 doi: 10.1021/ar00051a007 – ident: e_1_2_8_19_1 doi: 10.1002/smll.201401919 – ident: e_1_2_8_28_1 doi: 10.1038/nchem.157 – ident: e_1_2_8_110_1 doi: 10.1016/j.apcatb.2014.07.026 – ident: e_1_2_8_45_1 doi: 10.1002/adma.201102538 – ident: e_1_2_8_119_1 doi: 10.1039/C4CC03946G – ident: e_1_2_8_38_1 doi: 10.1002/smll.201001071 – ident: e_1_2_8_48_1 doi: 10.1002/anie.200806063 – ident: e_1_2_8_52_1 doi: 10.1002/chem.200601003 – ident: e_1_2_8_92_1 doi: 10.1039/C4CP04162C – ident: e_1_2_8_125_1 doi: 10.1039/c3ta12645e – ident: e_1_2_8_3_1 doi: 10.1021/ja3009902 – ident: e_1_2_8_40_1 doi: 10.1039/b802352m – ident: e_1_2_8_36_1 doi: 10.1002/smll.201302983 – ident: e_1_2_8_116_1 doi: 10.1021/cr200179u – ident: e_1_2_8_17_1 doi: 10.1002/smll.201303836 – ident: e_1_2_8_111_1 doi: 10.1039/c3ta12433a – ident: e_1_2_8_30_1 doi: 10.1021/ja0570032 – ident: e_1_2_8_104_1 doi: 10.1002/anie.201210294 – ident: e_1_2_8_50_1 doi: 10.1039/C4EE01299B – ident: e_1_2_8_60_1 doi: 10.1039/C4CC01776E – ident: e_1_2_8_86_1 doi: 10.1021/cr2003147 – ident: e_1_2_8_73_1 doi: 10.1016/j.electacta.2012.09.093 – ident: e_1_2_8_124_1 doi: 10.1039/C4CC02818J – ident: e_1_2_8_55_1 doi: 10.1021/jp063600e – ident: e_1_2_8_108_1 doi: 10.1021/sc4004295 – ident: e_1_2_8_67_1 doi: 10.1039/c3ee41548a – ident: e_1_2_8_49_1 doi: 10.1016/j.molstruc.2014.11.036 – ident: e_1_2_8_37_1 doi: 10.1021/cr200252n – ident: e_1_2_8_62_1 doi: 10.1021/jp3046005 – ident: e_1_2_8_127_1 doi: 10.1021/cs500123d – ident: e_1_2_8_34_1 doi: 10.1002/anie.200805101 – ident: e_1_2_8_83_1 doi: 10.1039/C4CY01464B – ident: e_1_2_8_56_1 doi: 10.1021/jp803620v – ident: e_1_2_8_7_1 doi: 10.1002/anie.201207199 – ident: e_1_2_8_59_1 doi: 10.1002/chem.200903526 – ident: e_1_2_8_61_1 doi: 10.1039/C4CC01086H – ident: e_1_2_8_81_1 doi: 10.1039/C4CC09407G – ident: e_1_2_8_123_1 doi: 10.1002/chem.201304067 – ident: e_1_2_8_8_1 doi: 10.1002/smll.201202156 – ident: e_1_2_8_93_1 doi: 10.1039/C3RA45848B – ident: e_1_2_8_126_1 doi: 10.1007/s12274‐014‐0690‐x – ident: e_1_2_8_6_1 doi: 10.1038/238037a0 – ident: e_1_2_8_118_1 doi: 10.1021/ja300539p – ident: e_1_2_8_120_1 doi: 10.1039/C4EE02853H – ident: e_1_2_8_57_1 doi: 10.1039/C4CE00032C – ident: e_1_2_8_79_1 doi: 10.1002/chem.201301728 – ident: e_1_2_8_29_1 doi: 10.1016/j.micromeso.2004.03.034 – ident: e_1_2_8_89_1 doi: 10.1039/c3dt51479j – ident: e_1_2_8_78_1 doi: 10.1021/ja903726m – ident: e_1_2_8_117_1 doi: 10.1039/C3CC46398B – ident: e_1_2_8_41_1 doi: 10.1002/anie.200805101 – ident: e_1_2_8_82_1 doi: 10.1016/j.apcatb.2014.09.054 – ident: e_1_2_8_101_1 doi: 10.1039/c4cp02173h – ident: e_1_2_8_24_1 doi: 10.1039/C4CS00103F – ident: e_1_2_8_96_1 doi: 10.1073/pnas.0602439103 – ident: e_1_2_8_47_1 doi: 10.1021/cr9003924 – ident: e_1_2_8_69_1 doi: 10.1002/chem.201405047 – ident: e_1_2_8_11_1 doi: 10.1016/S1389-5567(02)00040-0 – ident: e_1_2_8_2_1 doi: 10.1021/cr00011a005 – ident: e_1_2_8_90_1 doi: 10.1016/j.ces.2014.08.052 – ident: e_1_2_8_85_1 doi: 10.1021/ja305367j – ident: e_1_2_8_13_1 doi: 10.1021/ja040162l – ident: e_1_2_8_26_1 doi: 10.1126/science.1192160 – ident: e_1_2_8_64_1 doi: 10.1039/C4CC02994A – ident: e_1_2_8_20_1 doi: 10.1002/anie.201108357 – ident: e_1_2_8_84_1 doi: 10.1021/ic200295h – ident: e_1_2_8_31_1 doi: 10.1002/anie.200462786 – ident: e_1_2_8_88_1 doi: 10.1039/c2cc34620f – ident: e_1_2_8_106_1 doi: 10.1039/c3sc51203g – ident: e_1_2_8_100_1 doi: 10.1021/ja407176p – ident: e_1_2_8_42_1 doi: 10.1002/smll.201100710 – ident: e_1_2_8_43_1 doi: 10.1021/ar200028a – ident: e_1_2_8_95_1 doi: 10.1038/nmat1927 – ident: e_1_2_8_32_1 doi: 10.1126/science.1217544 – ident: e_1_2_8_65_1 doi: 10.1039/c4cc02397h – ident: e_1_2_8_58_1 doi: 10.1021/ja8057953 – ident: e_1_2_8_113_1 doi: 10.1002/adma.201400428 – ident: e_1_2_8_5_1 doi: 10.1002/anie.201102010 – ident: e_1_2_8_14_1 doi: 10.1002/anie.201206137 – ident: e_1_2_8_105_1 doi: 10.1021/ja903923s – ident: e_1_2_8_121_1 doi: 10.1002/anie.201301327 – ident: e_1_2_8_72_1 doi: 10.1039/c2ee22989g – ident: e_1_2_8_35_1 doi: 10.1021/cr200324t – ident: e_1_2_8_98_1 doi: 10.1080/10610278.2010.527976 – ident: e_1_2_8_16_1 doi: 10.1021/ja311541a – ident: e_1_2_8_71_1 doi: 10.1021/ja310074j – ident: e_1_2_8_33_1 doi: 10.1073/pnas.0909718106 – ident: e_1_2_8_68_1 doi: 10.1039/C4TA04622F – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201300380 – ident: e_1_2_8_70_1 doi: 10.1021/ja203564w – ident: e_1_2_8_4_1 doi: 10.1039/C3CS60405E – ident: e_1_2_8_25_1 doi: 10.1021/cr200205j – ident: e_1_2_8_54_1 doi: 10.1021/ja1065625 – ident: e_1_2_8_107_1 doi: 10.1002/anie.201407319 – ident: e_1_2_8_22_1 doi: 10.1039/c3ee40507a – ident: e_1_2_8_77_1 doi: 10.1039/c1dt10115c – ident: e_1_2_8_115_1 doi: 10.1021/cr200205j – ident: e_1_2_8_23_1 doi: 10.1002/anie.201309426 – ident: e_1_2_8_10_1 doi: 10.1039/C3CS60188A – ident: e_1_2_8_103_1 doi: 10.1002/anie.201206534 – ident: e_1_2_8_122_1 doi: 10.1039/c2cp40823f – ident: e_1_2_8_39_1 doi: 10.1002/anie.200701056 – ident: e_1_2_8_74_1 doi: 10.1039/C4NR02399D – ident: e_1_2_8_94_1 doi: 10.1021/cr200139g – ident: e_1_2_8_46_1 doi: 10.1021/ja052431t – ident: e_1_2_8_76_1 doi: 10.1021/ja503296c – ident: e_1_2_8_109_1 doi: 10.1002/asia.201402303 – ident: e_1_2_8_112_1 doi: 10.1126/science.283.5405.1148 – ident: e_1_2_8_51_1 doi: 10.1039/b924937k – ident: e_1_2_8_99_1 doi: 10.1246/cl.2010.358 – ident: e_1_2_8_75_1 doi: 10.1021/cr2003272 – ident: e_1_2_8_66_1 doi: 10.1002/anie.201202471 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.1118336109 – ident: e_1_2_8_18_1 doi: 10.1039/C4CS00126E – ident: e_1_2_8_80_1 doi: 10.1021/cs501169t – ident: e_1_2_8_91_1 doi: 10.1016/j.molcata.2014.04.002 – ident: e_1_2_8_21_1 doi: 10.1021/cs3005874 – ident: e_1_2_8_44_1 doi: 10.1002/anie.200601878 – ident: e_1_2_8_87_1 doi: 10.1039/C4SC02362E – ident: e_1_2_8_27_1 doi: 10.1039/b200393g – ident: e_1_2_8_63_1 doi: 10.1039/c3cy00211j – ident: e_1_2_8_114_1 doi: 10.1021/ja403810k – ident: e_1_2_8_97_1 doi: 10.1039/b814539c |
SSID | ssj0031247 |
Score | 2.6345465 |
SecondaryResourceType | review_article |
Snippet | Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that... Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3097 |
SubjectTerms | Carbon dioxide Catalysis CO2 reduction Ligands Metal-organic frameworks MOFs Nanotechnology organic transformation Photocatalysis Photocatalysts Photochemical photosynthesis Solar energy Transformations Water splitting |
Title | Multifunctional Metal-Organic Frameworks for Photocatalysis |
URI | https://api.istex.fr/ark:/67375/WNG-9439NFVS-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201500084 https://www.ncbi.nlm.nih.gov/pubmed/25917413 https://www.proquest.com/docview/1693773022 https://www.proquest.com/docview/1694965175 https://www.proquest.com/docview/1709762742 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoEDpTxTWhQkBCe3sfOwc-ihqlgq1F0hlkJvlu3EQmq7W3V3JcSJ_8A_5Jd0xt6ELuIhwS1RxpIz9ng-2zPfADzPjFW1tJzVykqGq1_DTOMl40QvpRpjuKLc4eGoOjwu3pyUJ9ey-CM_RH_gRpYR1msycGNnuz9IQ2fnZ3R1wInRXxEhKAVsESp61_NH5ei8QnUV9FmMiLc61sZM7K42X_FKN0nBn38FOVcRbHBBg3UwXedj5MnpzmJud9yXn3gd_-fv7sKdJT5N9-OE2oAb7eQe3L7GWngf9kLSLjnEeI6YDltE8N-_fot5nS4ddAFfsxQhcfr203Q-DcdExH7yAI4Hr94fHLJlFQbmKiULplBvtioQ93BXCHSpVSkqa2trqPY69740LeetKLxzjWrayualFMIXPmvy3Jn8IaxNppP2MaSFN5nyCBBq2xRW8tpzbrJKNU7mNrMiAdaNgnZLinKqlHGmI7my0KQW3aslgZe9_EUk5_it5IswqL2YuTylkDZZ6o-j17pGWDYafBjrcQJb3ajrpTXPNBHWSFwKBfbwWf8Z7ZAuV8yknS6CDFHvIxr7g4zMEP3R5XgCj-KM6juE21DcHPI8ARHmxV9-SI-HR0f92-a_NHoCt-g5xh5vwdr8ctFuI8Ka26fBiq4ALaAcpQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7B7gE48H4EFggSglN2Y8eJnQMHhCgF2grRXdibZTuxkHZp0baVECf-A_-QX8KM3QSKeEhwTDKWnLHH89me-Qbgfm6sqqVlWa2szHD1azLTeJkxopdSjTFMUe7weFIND8SLw7KLJqRcmMgP0R-4kWWE9ZoMnA6k976zhi7eH9PdASNKfyVOwzaV9Q67qtc9g1SB7ivUV0GvlRH1VsfbmPO9zfYbfmmbVPzxV6BzE8MGJzS4ALbrfow9OdpdLe2u-_QTs-N__d9FOL-GqOnjOKcuwal2dhnO_UBceAUehbxd8onxKDEdtwjiv37-ElM7XTroYr4WKaLi9NW7-XIeToqIAOUqHAye7j8ZZutCDJmrlBSZQsXZSiD0YU5w9KpVyStra2uo_DrzvjQtYy0X3rlGNW1li1Jy7oXPm6JwprgGW7P5rL0BqfAmVx4xQm0bYSWrPWMmr1TjZGFzyxPIumHQbs1STsUyjnXkV-aa1KJ7tSTwsJf_EPk5fiv5IIxqL2ZOjiiqTZb67eSZrhGZTQZvpnqawE437Hpt0AtNnDUSV0OOPbzXf0ZTpPsVM2vnqyBD7PsIyP4gI3MEgHQ_nsD1OKX6DuFOFPeHrEiAh4nxlx_S0_Fo1D_d_JdGd-HMcH880qPnk5e34Cy9j6HIO7C1PFm1txFwLe2dYFLfAO3OIMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE48IYGCgQJwSlt7Dixc-CAKKHA7qpiKfRm-RGrUstu1d2VECf-A_-QX4LH3oQu4iHBMclYcsYzns_2zGeAR7nSouaaZLXQPPOzn82UdTwjSC8lrFJEYO3wcFTt7rPXB-XBmSr-yA_Rb7ihZ4T5Gh38xLrtH6Shs4_HeHRAkNFfsPOwzqpcoF3vvO0JpAofvcL1Kj5oZci81dE25nR7tf1KWFpHDX_6FeZchbAhBjVXQHW9j6knR1uLud4yn38idvyf37sKl5cANX0WLeoanGsn1-HSGdrCG_A0VO1iRIwbiemw9RD-25evsbDTpE2X8TVLPSZO9w6n82nYJ0L6k5uw37x493w3W17DkJlKcJYJrzddMQ98iGHUx9SqpJXWtVZ4-TpxrlQtIS1lzhgrbFvpouSUOuZyWxRGFbdgbTKdtBuQMqdy4TxCqLVlmpPaEaLySljDC51rmkDWjYI0S45yvCrjWEZ2ZSpRLbJXSwJPevmTyM7xW8nHYVB7MXV6hDltvJQfRi9l7XHZqHk_luMENrtRl0t3nklkrOF-LqS-hw_7z94R8XRFTdrpIsgg976HY3-Q4bmHf3g6nsDtaFF9h_w61K8OSZEADXbxlx-S4-Fg0D_d-ZdGD-DC3k4jB69Gb-7CRXwd85A3YW1-umjvebQ11_eDQ30HiOEfeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Metal-Organic+Frameworks+for+Photocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Sibo&rft.au=Wang%2C+Xinchen&rft.date=2015-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=26&rft.spage=3097&rft_id=info:doi/10.1002%2Fsmll.201500084&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3735204581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |