Multifunctional Metal-Organic Frameworks for Photocatalysis

Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water spl...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 26; pp. 3097 - 3112
Main Authors Wang, Sibo, Wang, Xinchen
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal–organic frameworks (MOFs) have shown great promise in heterogeneous catalysis for energy and environment applications. This review summarizes the latest development of MOFs as multifunctional materials for photoredox catalysis to operate solar‐to‐chemical‐energy transformations according to their different roles in the photochemical systems, i.e., photocatalysts, co‐catalysts, and hosts.
AbstractList Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.
Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO 2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.
Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world‐wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF‐involved solar‐to‐chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co‐catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal–organic frameworks (MOFs) have shown great promise in heterogeneous catalysis for energy and environment applications. This review summarizes the latest development of MOFs as multifunctional materials for photoredox catalysis to operate solar‐to‐chemical‐energy transformations according to their different roles in the photochemical systems, i.e., photocatalysts, co‐catalysts, and hosts.
Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO2 reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated.
Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that allow their innovative application in various research fields. Recently, the application of MOFs in heterogeneous photocatalysis for water splitting, CO sub(2) reduction, and organic transformation have emerged, aiming at providing alternative solutions to address the world-wide energy and environmental problems by taking advantage of the unique porous structure together with ample physicochemical properties of the metal centers and organic ligands in MOFs. In this review, the latest progress in MOF-involved solar-to-chemical energy conversion reactions are summarized according to their different roles in the photoredox chemical systems, e.g., photocatalysts, co-catalysts, and hosts. The achieved progress and existing problems are evaluated and proposed, and the opportunities and challenges of MOFs and their related materials for their advanced development in photocatalysis are discussed and anticipated. Metal-organic frameworks (MOFs) have shown great promise in heterogeneous catalysis for energy and environment applications. This review summarizes the latest development of MOFs as multifunctional materials for photoredox catalysis to operate solar-to-chemical-energy transformations according to their different roles in the photochemical systems, i.e., photocatalysts, co-catalysts, and hosts.
Author Wang, Sibo
Wang, Xinchen
Author_xml – sequence: 1
  givenname: Sibo
  surname: Wang
  fullname: Wang, Sibo
  organization: State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350002, Fuzhou, PR China
– sequence: 2
  givenname: Xinchen
  surname: Wang
  fullname: Wang, Xinchen
  email: xcwang@fzu.edu.cn
  organization: State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350002, Fuzhou, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25917413$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LHDEchkNRqmt77bEsePEya74zoScRdy3samH9OIZMJmmjmYkmM-j-9852dSlC8ZQcnuflx_uOwE4bWwvANwQnCEJ8nJsQJhgiBiEs6SewjzgiBS-x3Nn-EdwDo5zvICQIU_EZ7GEmkaCI7IMfiz503vWt6XxsdRgvbKdDcZl-69ab8TTpxj7FdJ_HLqbxrz-xi0YPxCr7_AXsOh2y_fr6HoDr6dnV6Xkxv5z9PD2ZF4aXghblcEDFKUMMGYqtrTnDvKpkpSEZLneOaYuQxdQZU5e15RVhAmNHHawJMZocgKNN7kOKj73NnWp8NjYE3drYZ4UElIJjQfHHKJdUcoYEG9DDd-hd7NNQwV-KCEEgXgd-f6X6qrG1eki-0Wml3hocALoBTIo5J-uU8Z1el9kl7YNCUK2HUuuh1HaoQZu8096S_yvIjfDkg119QKvlYj7_1y02rs-dfd66Ot0rLohg6vZipiQl8mJ6s1RL8gJFE7Nx
CitedBy_id crossref_primary_10_1016_j_solener_2017_03_045
crossref_primary_10_1039_C5CP05885F
crossref_primary_10_1039_C7CS00879A
crossref_primary_10_1039_C7TA08268A
crossref_primary_10_1002_adfm_201806368
crossref_primary_10_1016_j_ccr_2022_214853
crossref_primary_10_1039_C6RA07100G
crossref_primary_10_1039_C8CE01203B
crossref_primary_10_1039_D1NR01669E
crossref_primary_10_1002_advs_202203941
crossref_primary_10_1039_C8TA09865D
crossref_primary_10_1016_j_inoche_2023_110799
crossref_primary_10_1021_acs_chemrev_0c00148
crossref_primary_10_1016_j_cej_2022_135622
crossref_primary_10_1002_asia_201800444
crossref_primary_10_1021_acscatal_6b02923
crossref_primary_10_1039_C8CS00829A
crossref_primary_10_1021_acsabm_9b00046
crossref_primary_10_5004_dwt_2018_22080
crossref_primary_10_1016_j_jece_2020_103726
crossref_primary_10_1016_j_optmat_2023_113527
crossref_primary_10_1002_cssc_201501353
crossref_primary_10_1007_s11243_017_0123_2
crossref_primary_10_1039_C7CP05147F
crossref_primary_10_1039_C7CC00495H
crossref_primary_10_1039_D0NR01696A
crossref_primary_10_1002_smll_201600382
crossref_primary_10_1016_j_ccr_2017_12_013
crossref_primary_10_1039_C7CE01012E
crossref_primary_10_1007_s11144_019_01689_4
crossref_primary_10_1016_j_jallcom_2022_166590
crossref_primary_10_1021_acs_chemrev_1c00905
crossref_primary_10_1002_anie_202107457
crossref_primary_10_1039_C9QI00965E
crossref_primary_10_1039_D3DT02768F
crossref_primary_10_1016_j_jssc_2018_03_031
crossref_primary_10_1007_s10904_017_0571_3
crossref_primary_10_1007_s11356_021_17446_x
crossref_primary_10_1002_smll_202102201
crossref_primary_10_1002_cssc_202000277
crossref_primary_10_1007_s11664_018_6220_y
crossref_primary_10_1016_j_apcatb_2016_06_029
crossref_primary_10_1080_10643389_2021_1975444
crossref_primary_10_1007_s11164_017_3042_0
crossref_primary_10_1021_jacs_9b12229
crossref_primary_10_1002_smtd_201800219
crossref_primary_10_1016_j_jclepro_2020_123408
crossref_primary_10_1002_anie_201800269
crossref_primary_10_1007_s10562_022_03995_4
crossref_primary_10_1016_j_molliq_2021_118274
crossref_primary_10_1021_acsomega_9b01008
crossref_primary_10_3390_molecules26071904
crossref_primary_10_1016_j_seppur_2025_131490
crossref_primary_10_1016_j_molstruc_2017_07_105
crossref_primary_10_1021_acsami_1c06391
crossref_primary_10_1002_slct_202001670
crossref_primary_10_1016_j_poly_2016_09_009
crossref_primary_10_1007_s11243_016_0033_8
crossref_primary_10_1016_j_apcatb_2019_117855
crossref_primary_10_1039_D2CE01123A
crossref_primary_10_1039_D0DT02309D
crossref_primary_10_1039_C7CE01341H
crossref_primary_10_1016_j_jcou_2017_05_019
crossref_primary_10_1021_acscatal_7b02581
crossref_primary_10_1016_j_ceramint_2022_08_076
crossref_primary_10_1016_j_apcatb_2017_09_054
crossref_primary_10_1021_acs_chemmater_9b03968
crossref_primary_10_1039_C8EN01192C
crossref_primary_10_1002_aoc_4049
crossref_primary_10_1039_C7TA07911G
crossref_primary_10_1021_acssuschemeng_8b03308
crossref_primary_10_1016_j_jcis_2021_12_036
crossref_primary_10_1039_C5TA05440K
crossref_primary_10_1039_D4TA09139F
crossref_primary_10_1039_D2DT00463A
crossref_primary_10_1016_j_poly_2020_114350
crossref_primary_10_1016_j_ccr_2019_02_031
crossref_primary_10_1039_C7SC05296K
crossref_primary_10_1039_C8CC01830H
crossref_primary_10_3389_fchem_2020_578847
crossref_primary_10_3390_met11030420
crossref_primary_10_1021_jacs_9b03981
crossref_primary_10_1016_j_mattod_2018_10_038
crossref_primary_10_1016_j_fuel_2024_131252
crossref_primary_10_1016_j_mtcomm_2020_101119
crossref_primary_10_1021_jacs_0c03906
crossref_primary_10_1039_C5CY01857A
crossref_primary_10_1016_j_matchemphys_2024_129003
crossref_primary_10_1002_adma_201703663
crossref_primary_10_1002_cptc_201700163
crossref_primary_10_1002_solr_202000454
crossref_primary_10_1021_acsanm_2c04942
crossref_primary_10_3390_catal15030208
crossref_primary_10_1002_adma_201803401
crossref_primary_10_1002_smm2_1047
crossref_primary_10_1134_S0023158423040067
crossref_primary_10_1021_acs_cgd_6b00065
crossref_primary_10_1021_acs_inorgchem_2c02386
crossref_primary_10_1039_C8NJ00417J
crossref_primary_10_1016_j_solidstatesciences_2018_07_007
crossref_primary_10_1016_j_apcatb_2018_12_051
crossref_primary_10_1021_acsaem_8b01303
crossref_primary_10_3390_catal8090353
crossref_primary_10_1002_ange_202107457
crossref_primary_10_1002_admi_201801062
crossref_primary_10_1016_j_ultsonch_2017_09_039
crossref_primary_10_1080_10643389_2016_1251236
crossref_primary_10_1016_j_cattod_2022_04_030
crossref_primary_10_1016_j_mattod_2018_10_016
crossref_primary_10_1016_j_jphotochem_2023_115244
crossref_primary_10_1039_C7TA02216F
crossref_primary_10_1016_j_inoche_2020_107943
crossref_primary_10_1039_C6RA03516G
crossref_primary_10_1016_j_poly_2017_06_052
crossref_primary_10_1039_C9SE00972H
crossref_primary_10_1039_C9DT04004H
crossref_primary_10_1016_j_jcis_2015_12_045
crossref_primary_10_1038_s41598_019_44008_6
crossref_primary_10_1038_s41598_017_16605_w
crossref_primary_10_1039_C9TA03892B
crossref_primary_10_1039_C9TA10723A
crossref_primary_10_1039_C9NR02463H
crossref_primary_10_1039_D2TA09061A
crossref_primary_10_1016_j_apcatb_2017_10_029
crossref_primary_10_1039_C9SC01866B
crossref_primary_10_1002_solr_202000423
crossref_primary_10_1016_j_cej_2024_151268
crossref_primary_10_1002_adma_201705512
crossref_primary_10_1016_j_apcatb_2017_02_025
crossref_primary_10_1016_j_apcatb_2017_02_026
crossref_primary_10_1021_acs_inorgchem_5b02626
crossref_primary_10_1021_acscatal_5b02798
crossref_primary_10_1016_j_electacta_2024_143927
crossref_primary_10_1021_acsami_4c10061
crossref_primary_10_1016_j_mtener_2024_101703
crossref_primary_10_1021_acs_jpcc_2c05594
crossref_primary_10_1039_D1NJ05091E
crossref_primary_10_1080_10610278_2019_1592173
crossref_primary_10_1002_ange_201907074
crossref_primary_10_1016_j_apcata_2017_09_021
crossref_primary_10_1016_j_apcatb_2017_10_033
crossref_primary_10_1016_j_ccr_2022_214440
crossref_primary_10_1016_j_poly_2018_08_004
crossref_primary_10_1002_cctc_201900124
crossref_primary_10_1039_C7CE01933E
crossref_primary_10_1016_j_apsusc_2018_09_144
crossref_primary_10_1016_j_ica_2020_119926
crossref_primary_10_1016_j_cattod_2018_09_032
crossref_primary_10_1016_j_molliq_2024_124850
crossref_primary_10_1016_j_physb_2024_416230
crossref_primary_10_1016_j_ccr_2022_214445
crossref_primary_10_1039_C6GC03558B
crossref_primary_10_1021_acscatal_8b00764
crossref_primary_10_1002_chem_201901939
crossref_primary_10_1002_chem_202400842
crossref_primary_10_1002_slct_202000290
crossref_primary_10_1002_ange_201800269
crossref_primary_10_1016_j_cej_2019_122931
crossref_primary_10_1039_C7CS00315C
crossref_primary_10_1002_smll_201503526
crossref_primary_10_1016_j_chemosphere_2024_142518
crossref_primary_10_1002_cplu_202000804
crossref_primary_10_1038_ncomms13169
crossref_primary_10_1021_acs_inorgchem_8b02803
crossref_primary_10_1007_s40820_018_0235_z
crossref_primary_10_1016_j_jallcom_2021_163178
crossref_primary_10_1016_j_mtsust_2023_100465
crossref_primary_10_1016_j_ccr_2020_213262
crossref_primary_10_1039_C6NR07801J
crossref_primary_10_1039_D3RA06941A
crossref_primary_10_1557_jmr_2020_166
crossref_primary_10_1002_chem_201701460
crossref_primary_10_1002_smll_202405533
crossref_primary_10_1039_D2CS00289B
crossref_primary_10_1016_j_ccr_2020_213266
crossref_primary_10_1038_s41467_021_27775_7
crossref_primary_10_1016_j_materresbull_2017_03_018
crossref_primary_10_1016_j_cej_2022_141248
crossref_primary_10_1016_j_ccr_2022_214428
crossref_primary_10_1016_j_jphotochem_2019_111862
crossref_primary_10_1039_C7CS00861A
crossref_primary_10_1016_j_jcis_2021_08_108
crossref_primary_10_1039_C6CC00805D
crossref_primary_10_1039_C7CY01653K
crossref_primary_10_1039_C7TA07847A
crossref_primary_10_3390_molecules25071598
crossref_primary_10_1007_s40820_021_00681_9
crossref_primary_10_1016_j_ijhydene_2022_02_111
crossref_primary_10_1016_j_jallcom_2023_172219
crossref_primary_10_1016_j_jlumin_2017_08_006
crossref_primary_10_1021_acs_jpcc_6b02966
crossref_primary_10_1016_j_seppur_2024_126450
crossref_primary_10_3389_fchem_2021_686968
crossref_primary_10_54097_hset_v6i_927
crossref_primary_10_1016_j_apcata_2019_117214
crossref_primary_10_1021_acs_inorgchem_0c00615
crossref_primary_10_1039_D1NR00617G
crossref_primary_10_1016_j_jcis_2023_11_078
crossref_primary_10_1016_j_electacta_2018_05_162
crossref_primary_10_1016_j_apcata_2015_11_022
crossref_primary_10_1021_acs_jpcc_8b09178
crossref_primary_10_1002_aoc_4325
crossref_primary_10_1039_D2QI00382A
crossref_primary_10_1002_adsu_202100493
crossref_primary_10_1016_j_apcata_2020_117668
crossref_primary_10_1016_j_apcatb_2016_08_008
crossref_primary_10_1016_j_ijhydene_2023_11_345
crossref_primary_10_1039_C6CC02377K
crossref_primary_10_1002_aoc_6749
crossref_primary_10_3390_molecules26185588
crossref_primary_10_1007_s00339_020_03787_w
crossref_primary_10_1016_j_electacta_2021_138926
crossref_primary_10_1039_C7TB00715A
crossref_primary_10_1039_C9CC09589F
crossref_primary_10_1002_cctc_201901379
crossref_primary_10_1016_j_jiec_2016_05_013
crossref_primary_10_1146_annurev_chembioeng_060817_083953
crossref_primary_10_1016_j_mtsust_2023_100337
crossref_primary_10_1039_C8TA05735D
crossref_primary_10_1039_D2CC03110H
crossref_primary_10_1088_1757_899X_546_4_042005
crossref_primary_10_1016_j_apcatb_2018_03_039
crossref_primary_10_1021_acs_jpcc_2c04072
crossref_primary_10_1007_s10853_019_03995_7
crossref_primary_10_1007_s40843_015_0100_z
crossref_primary_10_1016_j_rechem_2023_100818
crossref_primary_10_1002_anie_201505581
crossref_primary_10_1016_j_apsusc_2019_02_111
crossref_primary_10_1021_acs_cgd_8b01606
crossref_primary_10_3390_jcs4020054
crossref_primary_10_1016_j_ijhydene_2024_07_143
crossref_primary_10_1021_acs_chemrev_6b00075
crossref_primary_10_3389_fchem_2020_616468
crossref_primary_10_1007_s10562_018_2593_z
crossref_primary_10_1016_j_jmat_2016_11_001
crossref_primary_10_1016_j_ccr_2024_216179
crossref_primary_10_1016_j_inoche_2021_108805
crossref_primary_10_14233_ajchem_2023_26907
crossref_primary_10_1021_acsanm_2c00831
crossref_primary_10_1002_chem_201803250
crossref_primary_10_1016_j_jcou_2018_01_024
crossref_primary_10_1016_j_jallcom_2021_159711
crossref_primary_10_1002_jctb_5821
crossref_primary_10_1016_j_apcatb_2016_09_038
crossref_primary_10_1016_j_cej_2019_05_151
crossref_primary_10_1039_C7CC07954K
crossref_primary_10_1007_s11164_018_3271_x
crossref_primary_10_1002_cctc_202001179
crossref_primary_10_1039_D4EE01748J
crossref_primary_10_1016_j_mtchem_2023_101680
crossref_primary_10_1021_acs_cgd_7b01523
crossref_primary_10_1021_acscatal_9b00332
crossref_primary_10_1016_j_ijhydene_2019_07_211
crossref_primary_10_1039_C7TA10225A
crossref_primary_10_1021_acscatal_8b00104
crossref_primary_10_1039_C6RA26416F
crossref_primary_10_1021_acsami_7b08322
crossref_primary_10_1002_adom_202202843
crossref_primary_10_1021_acs_accounts_8b00521
crossref_primary_10_1016_j_colsurfa_2022_130415
crossref_primary_10_1016_j_ccr_2024_215944
crossref_primary_10_1021_acsami_0c19345
crossref_primary_10_1039_C8CC08130A
crossref_primary_10_1002_adma_201705112
crossref_primary_10_1021_jacs_1c05032
crossref_primary_10_1016_j_jcis_2019_02_052
crossref_primary_10_1016_j_mtener_2024_101542
crossref_primary_10_1002_adma_201806163
crossref_primary_10_1039_C6RA18013B
crossref_primary_10_1002_adma_201904717
crossref_primary_10_1016_j_apcatb_2017_12_024
crossref_primary_10_1007_s11426_019_9658_1
crossref_primary_10_1016_j_jcat_2017_01_014
crossref_primary_10_1063_5_0099758
crossref_primary_10_1021_jacs_7b11788
crossref_primary_10_1039_C5NJ02760H
crossref_primary_10_1016_j_jphotochemrev_2017_10_001
crossref_primary_10_1002_eem2_12051
crossref_primary_10_1021_acscatal_6b01293
crossref_primary_10_1016_j_jece_2023_110681
crossref_primary_10_1016_j_ijhydene_2023_06_129
crossref_primary_10_1039_D2TA09819A
crossref_primary_10_1016_j_ijhydene_2018_11_016
crossref_primary_10_1016_j_ccr_2018_10_001
crossref_primary_10_1002_gch2_202000082
crossref_primary_10_1021_acsami_8b06272
crossref_primary_10_1002_ange_201911609
crossref_primary_10_1039_D3TA00267E
crossref_primary_10_1016_j_cjsc_2022_100001
crossref_primary_10_1002_anie_202424537
crossref_primary_10_1080_24701556_2020_1852255
crossref_primary_10_1021_acsaem_4c01181
crossref_primary_10_1016_j_rser_2018_04_073
crossref_primary_10_1016_j_mtener_2020_100589
crossref_primary_10_1021_acsami_9b13121
crossref_primary_10_1039_D0SC03754K
crossref_primary_10_1002_admi_202002151
crossref_primary_10_1007_s11243_018_0274_9
crossref_primary_10_1016_j_ica_2024_122297
crossref_primary_10_1016_j_jphotochem_2017_09_019
crossref_primary_10_1021_acsami_1c11176
crossref_primary_10_1016_j_cej_2021_132652
crossref_primary_10_1016_j_inoche_2021_108685
crossref_primary_10_1016_j_apsusc_2017_12_219
crossref_primary_10_1016_j_colsurfa_2019_124078
crossref_primary_10_1021_acscatal_6b02228
crossref_primary_10_1002_smll_201801037
crossref_primary_10_1016_j_jcis_2020_05_023
crossref_primary_10_1039_C6CS00727A
crossref_primary_10_1016_j_apcatb_2019_01_091
crossref_primary_10_1016_j_molstruc_2021_130289
crossref_primary_10_1002_smtd_201700080
crossref_primary_10_1016_j_mcat_2023_112921
crossref_primary_10_1016_j_ica_2021_120474
crossref_primary_10_1016_j_jece_2023_110424
crossref_primary_10_1021_acs_cgd_1c00152
crossref_primary_10_3390_catal8120581
crossref_primary_10_3390_ma11112250
crossref_primary_10_1021_acs_jpcc_7b08532
crossref_primary_10_1039_C7NR03238B
crossref_primary_10_1016_j_jallcom_2020_156578
crossref_primary_10_1039_D2SE00621A
crossref_primary_10_1039_C7TA04004K
crossref_primary_10_1016_j_jcis_2018_09_099
crossref_primary_10_1016_j_ccr_2018_02_008
crossref_primary_10_1002_chem_201600143
crossref_primary_10_1016_j_seppur_2023_123206
crossref_primary_10_1016_j_apcatb_2017_06_082
crossref_primary_10_1021_acscatal_6b03386
crossref_primary_10_1021_acsami_1c10147
crossref_primary_10_3390_ma15020447
crossref_primary_10_1039_C8NR01336E
crossref_primary_10_1016_j_molstruc_2017_07_083
crossref_primary_10_1039_C9CC03873F
crossref_primary_10_1016_j_inoche_2018_07_035
crossref_primary_10_1016_j_apsusc_2022_152423
crossref_primary_10_1039_C7CE00006E
crossref_primary_10_1002_ange_201507145
crossref_primary_10_1016_j_jechem_2020_05_010
crossref_primary_10_1002_adma_201707582
crossref_primary_10_1007_s41918_021_00110_w
crossref_primary_10_1080_15533174_2016_1186043
crossref_primary_10_1002_anie_201600395
crossref_primary_10_1039_D1CE00498K
crossref_primary_10_1016_j_jssc_2023_124134
crossref_primary_10_1016_j_apcatb_2017_11_035
crossref_primary_10_1016_j_jallcom_2018_09_312
crossref_primary_10_1016_j_jssc_2021_122632
crossref_primary_10_1016_j_apsusc_2019_143836
crossref_primary_10_1021_acs_jpcc_9b06838
crossref_primary_10_1016_j_mtchem_2022_101209
crossref_primary_10_1039_C8CC04891F
crossref_primary_10_1134_S1070328418120126
crossref_primary_10_1016_j_ijbiomac_2024_129391
crossref_primary_10_1080_03067319_2022_2038589
crossref_primary_10_1149_2_0051905jes
crossref_primary_10_1002_cctc_201600808
crossref_primary_10_1016_j_apcatb_2017_03_018
crossref_primary_10_1002_slct_201700998
crossref_primary_10_31857_S045388112304007X
crossref_primary_10_1016_j_apsusc_2018_10_048
crossref_primary_10_1016_j_jmmm_2024_172363
crossref_primary_10_1002_anie_201907074
crossref_primary_10_1002_slct_201901818
crossref_primary_10_1039_C8RA04145H
crossref_primary_10_1002_chem_201703682
crossref_primary_10_1016_j_mssp_2019_03_016
crossref_primary_10_1039_C6CY00695G
crossref_primary_10_1002_cssc_201702122
crossref_primary_10_1007_s11243_015_9992_4
crossref_primary_10_1021_acssuschemeng_9b02699
crossref_primary_10_1039_D3TA04403C
crossref_primary_10_1016_j_inoche_2016_10_001
crossref_primary_10_1039_D2TA09715J
crossref_primary_10_1002_ejic_201501242
crossref_primary_10_1016_j_jechem_2018_02_008
crossref_primary_10_1002_advs_202101883
crossref_primary_10_1016_j_apcatb_2017_04_021
crossref_primary_10_1016_j_electacta_2016_12_109
crossref_primary_10_1016_j_ijhydene_2017_09_081
crossref_primary_10_1039_C6DT01554A
crossref_primary_10_1039_C9RA08097J
crossref_primary_10_1016_j_inoche_2017_06_021
crossref_primary_10_1016_j_matchemphys_2017_03_007
crossref_primary_10_1021_acs_energyfuels_4c01963
crossref_primary_10_1088_2752_5724_aca346
crossref_primary_10_1039_C9RA06984D
crossref_primary_10_1039_D3TA04994A
crossref_primary_10_1002_smll_202306616
crossref_primary_10_1007_s10904_015_0287_1
crossref_primary_10_1016_S1872_2067_17_62947_4
crossref_primary_10_1039_C8SC02220H
crossref_primary_10_1002_anie_201507145
crossref_primary_10_1016_j_molstruc_2023_137357
crossref_primary_10_1016_j_molliq_2019_112427
crossref_primary_10_1021_acs_inorgchem_0c02959
crossref_primary_10_3762_bjoc_13_239
crossref_primary_10_1039_C9CS00806C
crossref_primary_10_1016_j_apcatb_2016_10_086
crossref_primary_10_1039_C6CS00250A
crossref_primary_10_1016_j_apcatb_2016_04_030
crossref_primary_10_1021_acs_chemmater_8b02467
crossref_primary_10_1039_C6CC00862C
crossref_primary_10_1039_C8GC02382D
crossref_primary_10_1002_adma_201707377
crossref_primary_10_1021_acssuschemeng_7b01477
crossref_primary_10_1039_D3NR05316D
crossref_primary_10_1016_j_apsusc_2018_10_020
crossref_primary_10_1016_j_jece_2024_113825
crossref_primary_10_1039_C6MH00484A
crossref_primary_10_1002_ange_201600395
crossref_primary_10_1016_j_ccr_2021_214177
crossref_primary_10_1021_acs_inorgchem_6b01199
crossref_primary_10_1039_D0EE01882A
crossref_primary_10_1016_j_clay_2021_106177
crossref_primary_10_1016_j_ijhydene_2020_07_277
crossref_primary_10_1016_j_colsurfa_2022_129282
crossref_primary_10_1021_acs_inorgchem_8b01265
crossref_primary_10_1039_C6NJ02568D
crossref_primary_10_1007_s11708_019_0629_8
crossref_primary_10_1016_j_apmt_2023_101831
crossref_primary_10_1016_j_ica_2021_120416
crossref_primary_10_1007_s12598_024_02844_0
crossref_primary_10_1016_j_jwpe_2022_103348
crossref_primary_10_1016_j_jssc_2017_07_035
crossref_primary_10_1039_D2TA09552A
crossref_primary_10_1002_smll_201601758
crossref_primary_10_1016_j_chemosphere_2021_132666
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1002_smll_201603938
crossref_primary_10_1016_j_nanoen_2016_01_029
crossref_primary_10_1007_s11696_023_02889_y
crossref_primary_10_1016_j_jcis_2022_07_185
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1002_ange_202424537
crossref_primary_10_1002_smll_202105484
crossref_primary_10_1021_acs_jpcc_6b13068
crossref_primary_10_1016_j_apcatb_2017_05_010
crossref_primary_10_1016_j_ijhydene_2024_03_296
crossref_primary_10_1039_C8NJ04151B
crossref_primary_10_3390_catal11030346
crossref_primary_10_1016_j_fuel_2023_130654
crossref_primary_10_1016_j_molstruc_2018_01_028
crossref_primary_10_1002_aenm_201803402
crossref_primary_10_1039_C6CE01995A
crossref_primary_10_1016_j_cej_2019_123431
crossref_primary_10_1016_j_cej_2021_129870
crossref_primary_10_1016_j_cej_2020_128022
crossref_primary_10_1039_D4EY00007B
crossref_primary_10_1039_C5NJ03477A
crossref_primary_10_1016_j_psep_2020_10_025
crossref_primary_10_1002_smll_201805242
crossref_primary_10_1002_ange_201505581
crossref_primary_10_1021_acs_inorgchem_6b01060
crossref_primary_10_1002_cphc_202100083
crossref_primary_10_1039_D4NR03774J
crossref_primary_10_1021_acs_inorgchem_2c02733
crossref_primary_10_1016_j_jphotochem_2019_03_001
crossref_primary_10_1021_acsaem_0c00087
crossref_primary_10_1016_j_ceramint_2024_04_344
crossref_primary_10_1002_advs_202100625
crossref_primary_10_1039_C5CP08070C
crossref_primary_10_1002_cjoc_201600647
crossref_primary_10_1002_eem2_12229
crossref_primary_10_1002_asia_202100813
crossref_primary_10_26599_CF_2024_9200018
crossref_primary_10_1016_j_inoche_2017_03_025
crossref_primary_10_1021_acsnano_4c16314
crossref_primary_10_1039_C6NR08071E
crossref_primary_10_1002_cssc_201801066
crossref_primary_10_1039_C7RA04125J
crossref_primary_10_1021_acssuschemeng_7b01313
crossref_primary_10_1039_C9CC01371G
crossref_primary_10_1039_D4QI00968A
crossref_primary_10_3390_ma15113761
crossref_primary_10_1016_j_apcatb_2019_02_071
crossref_primary_10_1039_C7NR08943K
crossref_primary_10_1002_smtd_202201258
crossref_primary_10_1021_acs_cgd_5b00925
crossref_primary_10_1002_cphc_201801147
crossref_primary_10_1021_acs_jpcc_9b05693
crossref_primary_10_1039_C6QI00542J
crossref_primary_10_1002_er_5807
crossref_primary_10_1016_j_ccr_2017_09_013
crossref_primary_10_1016_j_jiec_2019_07_028
crossref_primary_10_1016_j_micromeso_2024_113242
crossref_primary_10_1021_acsnano_1c06402
crossref_primary_10_1016_j_molstruc_2021_131510
crossref_primary_10_1007_s11356_021_14834_1
crossref_primary_10_1016_j_apt_2022_103488
crossref_primary_10_1039_C5NJ03572D
crossref_primary_10_3762_bjnano_9_35
crossref_primary_10_1016_j_jece_2023_110125
crossref_primary_10_1016_j_optmat_2021_111260
crossref_primary_10_1016_j_cclet_2024_109539
crossref_primary_10_1039_C8CS00341F
crossref_primary_10_1039_C8CS00256H
crossref_primary_10_1016_j_electacta_2016_10_002
crossref_primary_10_1021_acsami_6b16534
crossref_primary_10_1039_D1NA00818H
crossref_primary_10_1016_j_molstruc_2020_129218
crossref_primary_10_1016_j_scib_2018_03_009
crossref_primary_10_1002_smll_202305024
crossref_primary_10_1039_D3NR05664C
crossref_primary_10_1039_D3CY00862B
crossref_primary_10_1021_acs_inorgchem_6b00909
crossref_primary_10_1016_S1872_2067_15_60984_6
crossref_primary_10_1016_j_jcou_2019_07_011
crossref_primary_10_1039_C9QI00046A
crossref_primary_10_1007_s12678_018_0461_7
crossref_primary_10_1021_acsami_6b05746
crossref_primary_10_1002_adma_202005819
crossref_primary_10_1016_j_apcatb_2020_119345
crossref_primary_10_1039_C9SE00749K
crossref_primary_10_1016_j_molstruc_2019_03_086
crossref_primary_10_1016_j_molstruc_2021_131627
crossref_primary_10_1021_acs_chemmater_2c01731
crossref_primary_10_1016_j_mcat_2021_111949
crossref_primary_10_1039_D4EN00292J
crossref_primary_10_1002_sstr_202200233
crossref_primary_10_1016_j_apcatb_2016_05_055
crossref_primary_10_3390_inorganics5030040
crossref_primary_10_1039_D2CC02740B
crossref_primary_10_1039_D3DT04263D
crossref_primary_10_1007_s10854_018_9862_x
crossref_primary_10_1016_j_chphma_2022_05_003
crossref_primary_10_1016_j_molliq_2020_113201
crossref_primary_10_1038_s41598_017_09347_2
crossref_primary_10_1039_C9EN00460B
crossref_primary_10_1016_j_jcou_2021_101715
crossref_primary_10_1002_anie_201911609
crossref_primary_10_1016_j_ccr_2019_03_012
crossref_primary_10_1016_j_jece_2023_110468
crossref_primary_10_1016_j_apsusc_2024_159590
crossref_primary_10_1016_j_ccr_2019_03_019
crossref_primary_10_1007_s10854_020_04492_3
crossref_primary_10_1016_j_apcatb_2016_05_041
crossref_primary_10_1021_acsomega_1c04037
crossref_primary_10_1016_j_cej_2021_133932
crossref_primary_10_1007_s10854_022_07717_9
crossref_primary_10_1016_j_poly_2019_06_004
crossref_primary_10_1016_j_jphotochem_2024_116123
crossref_primary_10_1002_ajoc_201900569
Cites_doi 10.1021/ja903726m
10.1021/ja500403e
10.1002/anie.201209017
10.1021/ar00051a007
10.1002/smll.201401919
10.1038/nchem.157
10.1016/j.apcatb.2014.07.026
10.1002/adma.201102538
10.1039/C4CC03946G
10.1002/smll.201001071
10.1002/anie.200806063
10.1002/chem.200601003
10.1039/C4CP04162C
10.1039/c3ta12645e
10.1021/ja3009902
10.1039/b802352m
10.1002/smll.201302983
10.1021/cr200179u
10.1002/smll.201303836
10.1039/c3ta12433a
10.1021/ja0570032
10.1002/anie.201210294
10.1039/C4EE01299B
10.1039/C4CC01776E
10.1021/cr2003147
10.1016/j.electacta.2012.09.093
10.1039/C4CC02818J
10.1021/jp063600e
10.1021/sc4004295
10.1039/c3ee41548a
10.1016/j.molstruc.2014.11.036
10.1021/cr200252n
10.1021/jp3046005
10.1021/cs500123d
10.1002/anie.200805101
10.1039/C4CY01464B
10.1021/jp803620v
10.1002/anie.201207199
10.1002/chem.200903526
10.1039/C4CC01086H
10.1039/C4CC09407G
10.1002/chem.201304067
10.1002/smll.201202156
10.1039/C3RA45848B
10.1007/s12274‐014‐0690‐x
10.1038/238037a0
10.1021/ja300539p
10.1039/C4EE02853H
10.1039/C4CE00032C
10.1002/chem.201301728
10.1016/j.micromeso.2004.03.034
10.1039/c3dt51479j
10.1039/C3CC46398B
10.1016/j.apcatb.2014.09.054
10.1039/c4cp02173h
10.1039/C4CS00103F
10.1073/pnas.0602439103
10.1021/cr9003924
10.1002/chem.201405047
10.1016/S1389-5567(02)00040-0
10.1021/cr00011a005
10.1016/j.ces.2014.08.052
10.1021/ja305367j
10.1021/ja040162l
10.1126/science.1192160
10.1039/C4CC02994A
10.1002/anie.201108357
10.1021/ic200295h
10.1002/anie.200462786
10.1039/c2cc34620f
10.1039/c3sc51203g
10.1021/ja407176p
10.1002/smll.201100710
10.1021/ar200028a
10.1038/nmat1927
10.1126/science.1217544
10.1039/c4cc02397h
10.1021/ja8057953
10.1002/adma.201400428
10.1002/anie.201102010
10.1002/anie.201206137
10.1021/ja903923s
10.1002/anie.201301327
10.1039/c2ee22989g
10.1021/cr200324t
10.1080/10610278.2010.527976
10.1021/ja311541a
10.1021/ja310074j
10.1073/pnas.0909718106
10.1039/C4TA04622F
10.1002/aenm.201300380
10.1021/ja203564w
10.1039/C3CS60405E
10.1021/cr200205j
10.1021/ja1065625
10.1002/anie.201407319
10.1039/c3ee40507a
10.1039/c1dt10115c
10.1002/anie.201309426
10.1039/C3CS60188A
10.1002/anie.201206534
10.1039/c2cp40823f
10.1002/anie.200701056
10.1039/C4NR02399D
10.1021/cr200139g
10.1021/ja052431t
10.1021/ja503296c
10.1002/asia.201402303
10.1126/science.283.5405.1148
10.1039/b924937k
10.1246/cl.2010.358
10.1021/cr2003272
10.1002/anie.201202471
10.1073/pnas.1118336109
10.1039/C4CS00126E
10.1021/cs501169t
10.1016/j.molcata.2014.04.002
10.1021/cs3005874
10.1002/anie.200601878
10.1039/C4SC02362E
10.1039/b200393g
10.1039/c3cy00211j
10.1021/ja403810k
10.1039/b814539c
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
DOI 10.1002/smll.201500084
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 3112
ExternalDocumentID 3735204581
25917413
10_1002_smll_201500084
SMLL201500084
ark_67375_WNG_9439NFVS_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21425309; 21173043
– fundername: National Basic Research Program of China
  funderid: 2013CB632405; 2014CB260406
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education
  funderid: 20133514110003
– fundername: State Key Laboratory of NBC Protection for Civilian
  funderid: SKLNBC2013–04K
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
ACRPL
ADNMO
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
F28
FR3
ID FETCH-LOGICAL-c6874-8810b645151c42eed6526bb9ba03201ff5ae11e24fccd8de6b35722f4f0d33ca3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 15:20:20 EDT 2025
Fri Jul 11 10:40:37 EDT 2025
Fri Jul 25 12:16:36 EDT 2025
Thu Apr 03 06:58:26 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Tue Jul 01 02:10:18 EDT 2025
Wed Jan 22 16:20:52 EST 2025
Wed Oct 30 09:54:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords water splitting
organic transformation
photosynthesis
MOFs
CO2 reduction
photocatalysis
metal-organic frameworks
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6874-8810b645151c42eed6526bb9ba03201ff5ae11e24fccd8de6b35722f4f0d33ca3
Notes Specialized Research Fund for the Doctoral Program of Higher Education - No. 20133514110003
istex:48E1134B33C9F3027F2A425A44058C40A17209A5
ark:/67375/WNG-9439NFVS-S
National Natural Science Foundation of China - No. 21425309; No. 21173043
National Basic Research Program of China - No. 2013CB632405; No. 2014CB260406
State Key Laboratory of NBC Protection for Civilian - No. SKLNBC2013-04K
ArticleID:SMLL201500084
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25917413
PQID 1693773022
PQPubID 1046358
PageCount 16
ParticipantIDs proquest_miscellaneous_1709762742
proquest_miscellaneous_1694965175
proquest_journals_1693773022
pubmed_primary_25917413
crossref_citationtrail_10_1002_smll_201500084
crossref_primary_10_1002_smll_201500084
wiley_primary_10_1002_smll_201500084_SMLL201500084
istex_primary_ark_67375_WNG_9439NFVS_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501.
A. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gándara, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 8863.
Y. Kataoka, Y. Miyazaki, K. Sato, T. Saito, Y. Nakanishi, Y. Kiatagwa, T. Kawakami, M. Okumura, K. Yamaguchi, W. Mori, Supramol. Chem. 2011, 23, 287.
Y. Chen, J. Zhang, M. Zhang, X. Wang, Chem. Sci. 2013, 4, 3244.
J. Lin, Z. Pan, X. Wang, ACS Sustain. Chem. Eng. 2013, 2, 353.
Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 11814.
S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372.
Y. Tamaki, T. Morimoto, K. Koike, O. Ishitani, Proc. Natl. Acad. Sci. USA 2012, 109, 15673.
D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502.
P. L. Feng, J. J. Perry IV, S. Nikodemski, B. W. Jacobs, S. T. Meek, M. D. Allendorf, J. Am. Chem. Soc. 2010, 132, 15487.
X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 2009, 131, 11658.
K. Sasan, Q. Lin, C. Y. Mao, P. Feng, Chem. Commun. 2014, 50, 10390.
Y. Yang, H. F. Yao, F. G. Xi, E. Q. Gao, J. Mol. Catal. A: Chem. 2014, 390, 198.
D. Shi, C. He, B. Qi, C. Chen, J. Niu, C. Duan, Chem. Sci. 2015, 6, 1035.
M. Wen, K. Mori, T. Kamegawa, H. Yamashita, Chem. Commun. 2014, 50, 11645.
S. Wang, X. Wang, Appl. Catal. B: Environ. 2015, 162, 494.
C. G. Silva, A. Corma, H. Garcia, J. Mater. Chem. 2010, 20, 3141.
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234.
J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 2011, 44, 957.
T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982.
P. Wang, B. Huang, Y. Dai, M. H. Whangbo, Phys. Chem. Chem. Phys. 2012, 14, 9813.
A. Fujishima, K. Honda, Nature 1972, 238, 37.
M. H. Xie, X. L. Yang, C. Zou, C. D. Wu, Inorg. Chem. 2011, 50, 5318.
S. Wang, J. Lin, X. Wang, Phys. Chem. Chem. Phys. 2014, 16, 14656.
R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Chem. Commun. 2014, 50, 8533.
T. Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura, M. Matsuoka, Catal. Sci. Technol. 2013, 3, 2092.
W. Lin, H. Frei, J. Am. Chem. Soc. 2005, 127, 1610.
L. Shen, L. Huang, S. Liang, R. Liang, N. Qina, L. Wu, RSC Adv. 2014, 4, 2546.
T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688.
A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998.
D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 2013, 19, 14279.
M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510.
M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606.
F. Ke, L. Wang, J. Zhu, Nano Res. 2015, DOI 10.1007/s12274-014-0690-x.
M. A. Nasalevich, M. G. Goesten, T. J. Savenije, F. Kapteijna, J. Gascon, Chem. Commun. 2013, 49, 10575.
C. C. Wang, Y. Q. Zhang, J. Li, P. Wang, J. Mol. Struct. 2015, 1083, 127.
J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 2012, 48, 11656.
S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 1034.
C. C. Wang, J. R. Li, X. L. Lv, Y. Q. Zhang, G. Guo, Energy Environ. Sci. 2014, 7, 2831.
X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473.
C. G. Silva, I. Luz, F. X. LlabrésiXamena, A. Corma, H. García, Chem. Eur. J. 2010, 16, 11133.
M. R. Wasielewski, Chem. Rev. 1992, 92, 435.
M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196.
C. D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A.Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424.
Y. Kataoka, K. Sato, Y. Miyazaki, Y. Suzuki, H. Tanaka, Y. Kitagawa, T. Kawakami, M. Okumura, W. Mori, Chem. Lett. 2010, 39, 358.
S. Abedi, A. Morsali, ACS Catal. 2014, 4, 1398.
L. Chen, Y. Peng, H. Wang, Z. Gu, C. Duan, Chem. Commun. 2014, 50, 8651.
D. Buso, J. Jasieniak, M. D. H. Lay, P. Schiavuta, P. Scopece, J. Laird, H. Amenitsch, A. J. Hill, P. Falcaro, Small 2012, 8, 80.
M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
L. Shen, S. Liang, W. Wu, R. Lianga, L. Wu, J. Mater. Chem. A 2013, 1, 11473.
Y. Liu, S. X. Guo, A. M. Bond, J. Zhang, S. Du, Electrochim. Acta 2013, 101, 201.
L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 2015, 17, 117.
T. W. Goh, C. Xiao, R. V. Maligal-Ganesh, X. Li, W. Huang, Chem. Eng. Sci. 2015, 124, 45.
J. Lin, Y. Hou, Y. Zheng, X. Wang, Chem. Asian. J. 2014, 9, 2468.
H. Y. Wang, F. X. Xiao, L. Yu, B. Liu, X. W. Lou, Small 2014, 10, 3181.
Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito, W. Mori, Energy Environ. Sci. 2009, 2, 397.
D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Chem. Eur. J. 2014, 20, 4780.
D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254.
A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, W. Fritzsche, Small 2010, 6, 2584.
P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 2006, 45, 5974.
T. Tachikawa, J. R. Choi, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2008, 112, 14090.
J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670.
L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
J. P. Zhang, Y. B. Zhang, J. B. Lin, X. M. Chen, Chem. Rev. 2011, 112, 1001.
R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 2014, 26, 4783.
J. L. Wang, C. Wang, W. Lin, ACS Catal. 2012, 2, 2630.
C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211.
M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon, Energy Environ. Sci. 2015, 8, 364.
Z. Jiang, Y. Tang, Q. Tay, Y. Zhang, O. I. Malyi, D. Wang, J. Deng, Y. Lai, H. Zhou, X. Chen, Z. Dong, Z. Chen, Adv. Energy Mater. 2013, 3, 1368.
C. Y. Sun, C. Qin, C. G. Wang, Z. M. Su, S. Wang, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, E. B. Wang, Adv. Mater. 2011, 23, 5629.
C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P. L. Llewellyn, M. Latroche, Dalton Trans. 2011, 40, 4879.
A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141.
C. Cui, Y. Liu, H. Xu, S. Li, W. Zhang, P. Cui, F. Huo, Small 2014, 10, 3672.
K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2011, 112, 724.
Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 11926.
Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848.
Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Angew. Chem. Int. Ed. 2013, 52, 3621.
E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606.
J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063.
S. L. James, Chem. Soc. Rev. 2003, 32, 276.
Y. Kou, Y. Nabetani, D. Masui, T. Shimada, S. Takagi, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 2014, 136, 6021.
M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, J. Am. Chem. Soc. 2009, 131, 10857.
L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649.
F. X. Xiao, S. F. Hung, J. Miao, H. Y. Wang, H. Yang, B. Liu, Small 2015, 11, 554.
M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garcia, Chem. Eur. J. 2007, 13, 5106.
C. Wang, T. Zhang, W. Lin, Chem. Rev. 2012, 112, 1084.
A. Morozan, F. Jaouen, Energy Environ. Sci. 2012, 5, 9269.
K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186.
D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Chem. Commun. 2015, 51, 2056.
C. Zhang, L. Ai, J. Jiang, J. Mater. Chem. A 2015, 3, 3074.
R. K. Yadav, J. O. Baeg, G. H. Oh, N. J. Park, K. j. Kong, J. Kim, D. W. Hwang, S. K. Biswas, J. Am. Chem. Soc. 2012, 134, 11455.
S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148.
T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang, R. Xu, Energy Environ. Sci. 2013, 6, 3229.
B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed. 2009, 48, 500.
M. A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 2014, 16, 4919.
S. M. Cohen, Chem. Rev. 2012, 112, 970.
J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445.
G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, Chem. Eur. J. 2015, 21, 2364.
H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nat. Mater. 2007, 6, 501.
D. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20637.
F. X. Llabrés i Xamena, A. Corma, H. Garcia, J. Phys. Chem. C 2007, 111, 80.
S. Sato, T. Morikawa, T. Kajino, O. Ishitani, Angew. Chem. Int. Ed. 2013, 52, 988.
D. Sun, L. Ye, Z. Li, Appl. Catal. B 2015, 164, 428.
Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum, X. Chen, Small 2013, 9, 996.
J. L. C. Rowsell, O. M. Yaghi, Micropor. Mesopor. Mater. 2004, 73, 3.
A. I. Cooper, M. J. Rosseinsky, Nat. Chem. 2009, 1, 26.
A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440.
S. Wang, Y. Hou, S. Lin, X. Wang, Nanoscale 2014, 6, 9930.
S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997.
Z. Lin, X. Wang, Angew. Chem. Int. Ed. 2013, 52,
2013; 3
2010; 16
2013; 4
2013; 1
2013; 2
2014; 26
1999; 283
2012; 14
2013; 6
2014; 136
2011; 112
2009; 48
2013; 9
2012; 51
2014; 20
2013; 19
1992; 92
2010; 20
2004; 73
2014; 4
2012; 134
1995; 28
2013; 52
2010; 110
2014; 16
2003; 3
2007; 6
2011; 23
2008; 112
2014; 9
2012; 335
2014; 7
2014; 50
2014; 6
2010; 6
2014; 10
2014; 53
2015; 162
2015; 6
2015; 17
2015; 5
2010; 329
2015; 3
2013; 49
2015; 51
2015; 124
2010; 39
2015; 11
2011; 40
2015; 164
2013; 42
2013; 101
2014; 390
2009; 131
2015; 8
1972; 238
2005; 44
2007; 13
2003; 32
2011; 133
2014; 43
2012; 109
2012; 2
2012; 112
2006; 45
2007; 111
2005; 127
2011; 50
2015; 21
2010; 132
2011; 44
2013; 135
2015
2012; 48
2015; 1083
2009; 2
2009; 1
2012; 116
2012; 5
2007; 46
2009; 38
2008; 130
2012; 8
2006; 103
2009; 106
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – reference: M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, J. Am. Chem. Soc. 2009, 131, 10857.
– reference: Y. Liu, G. Li, X. Li, Y. Cui, Angew. Chem. Int. Ed. 2007, 46, 6301.
– reference: L. Chen, Y. Peng, H. Wang, Z. Gu, C. Duan, Chem. Commun. 2014, 50, 8651.
– reference: J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 2012, 48, 11656.
– reference: D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254.
– reference: C. Wang, J. L. Wang, W. Lin, J. Am. Chem. Soc. 2012, 134, 19895.
– reference: M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510.
– reference: J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670.
– reference: L. Shen, L. Huang, S. Liang, R. Liang, N. Qina, L. Wu, RSC Adv. 2014, 4, 2546.
– reference: C. Cui, Y. Liu, H. Xu, S. Li, W. Zhang, P. Cui, F. Huo, Small 2014, 10, 3672.
– reference: M. A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 2014, 16, 4919.
– reference: A. Csaki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, W. Fritzsche, Small 2010, 6, 2584.
– reference: Y. Kou, Y. Nabetani, D. Masui, T. Shimada, S. Takagi, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 2014, 136, 6021.
– reference: L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 2015, 17, 117.
– reference: W. Lin, H. Frei, J. Am. Chem. Soc. 2005, 127, 1610.
– reference: Z. Lin, X. Wang, Angew. Chem. Int. Ed. 2013, 52, 1735.
– reference: S. L. James, Chem. Soc. Rev. 2003, 32, 276.
– reference: T. Toyao, M. Saito, S. Dohshi, K. Mochizuki, M. Iwata, H. Higashimura, Y. Horiuchi, M. Matsuoka, Chem. Commun. 2014, 50, 6779.
– reference: Y. Tamaki, T. Morimoto, K. Koike, O. Ishitani, Proc. Natl. Acad. Sci. USA 2012, 109, 15673.
– reference: H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234.
– reference: A. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gándara, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 8863.
– reference: S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501.
– reference: A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141.
– reference: H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nat. Mater. 2007, 6, 501.
– reference: J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063.
– reference: J. Lin, Y. Hou, Y. Zheng, X. Wang, Chem. Asian. J. 2014, 9, 2468.
– reference: Y. Cui, Z. Ding, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 11814.
– reference: R. Lin, L. Shen, Z. Ren, W. Wu, Y. Tan, H. Fu, J. Zhang, L. Wu, Chem. Commun. 2014, 50, 8533.
– reference: S. M. Cohen, Chem. Rev. 2012, 112, 970.
– reference: J. P. Zhang, Y. B. Zhang, J. B. Lin, X. M. Chen, Chem. Rev. 2011, 112, 1001.
– reference: P. L. Feng, J. J. Perry IV, S. Nikodemski, B. W. Jacobs, S. T. Meek, M. D. Allendorf, J. Am. Chem. Soc. 2010, 132, 15487.
– reference: C. Wang, T. Zhang, W. Lin, Chem. Rev. 2012, 112, 1084.
– reference: S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372.
– reference: C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211.
– reference: K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, J. Am. Chem. Soc. 2013, 135, 4596.
– reference: S. Abedi, A. Morsali, ACS Catal. 2014, 4, 1398.
– reference: C. C. Wang, J. R. Li, X. L. Lv, Y. Q. Zhang, G. Guo, Energy Environ. Sci. 2014, 7, 2831.
– reference: K. Sasan, Q. Lin, C. Y. Mao, P. Feng, Chem. Commun. 2014, 50, 10390.
– reference: Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. 2012, 51, 3364.
– reference: D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 2013, 19, 14279.
– reference: M. R. Wasielewski, Chem. Rev. 1992, 92, 435.
– reference: K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186.
– reference: C. Y. Sun, C. Qin, C. G. Wang, Z. M. Su, S. Wang, X. L. Wang, G. S. Yang, K. Z. Shao, Y. Q. Lan, E. B. Wang, Adv. Mater. 2011, 23, 5629.
– reference: C. G. Silva, A. Corma, H. Garcia, J. Mater. Chem. 2010, 20, 3141.
– reference: Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito, W. Mori, Energy Environ. Sci. 2009, 2, 397.
– reference: F. Ke, L. Wang, J. Zhu, Nano Res. 2015, DOI 10.1007/s12274-014-0690-x.
– reference: Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I. Chorkendorff, Angew. Chem. Int. Ed. 2013, 52, 3621.
– reference: H. Y. Wang, F. X. Xiao, L. Yu, B. Liu, X. W. Lou, Small 2014, 10, 3181.
– reference: D. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20637.
– reference: J. L. Wang, C. Wang, W. Lin, ACS Catal. 2012, 2, 2630.
– reference: C. Zhang, L. Ai, J. Jiang, J. Mater. Chem. A 2015, 3, 3074.
– reference: F. X. Xiao, S. F. Hung, J. Miao, H. Y. Wang, H. Yang, B. Liu, Small 2015, 11, 554.
– reference: P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 2006, 45, 5974.
– reference: T. Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura, M. Matsuoka, Catal. Sci. Technol. 2013, 3, 2092.
– reference: J. Lin, Z. Pan, X. Wang, ACS Sustain. Chem. Eng. 2013, 2, 353.
– reference: M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon, Energy Environ. Sci. 2015, 8, 364.
– reference: J. L. C. Rowsell, O. M. Yaghi, Micropor. Mesopor. Mater. 2004, 73, 3.
– reference: T. W. Goh, C. Xiao, R. V. Maligal-Ganesh, X. Li, W. Huang, Chem. Eng. Sci. 2015, 124, 45.
– reference: D. Sun, L. Ye, Z. Li, Appl. Catal. B 2015, 164, 428.
– reference: S. Wang, X. Wang, Appl. Catal. B: Environ. 2015, 162, 494.
– reference: P. Wu, C. He, J. Wang, X. Peng, X. Li, Y. An, C. Duan, J. Am. Chem. Soc. 2012, 134, 14991.
– reference: M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
– reference: L. Shen, S. Liang, W. Wu, R. Lianga, L. Wu, J. Mater. Chem. A 2013, 1, 11473.
– reference: C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada, T. Devic, E. Magnier, F. Cuevas, G. Ferey, P. L. Llewellyn, M. Latroche, Dalton Trans. 2011, 40, 4879.
– reference: Y. Liu, S. X. Guo, A. M. Bond, J. Zhang, S. Du, Electrochim. Acta 2013, 101, 201.
– reference: A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606.
– reference: L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
– reference: D. Buso, J. Jasieniak, M. D. H. Lay, P. Schiavuta, P. Scopece, J. Laird, H. Amenitsch, A. J. Hill, P. Falcaro, Small 2012, 8, 80.
– reference: Z. Jiang, Y. Tang, Q. Tay, Y. Zhang, O. I. Malyi, D. Wang, J. Deng, Y. Lai, H. Zhou, X. Chen, Z. Dong, Z. Chen, Adv. Energy Mater. 2013, 3, 1368.
– reference: M. H. Xie, X. L. Yang, C. Zou, C. D. Wu, Inorg. Chem. 2011, 50, 5318.
– reference: Q. Liu, Z. X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H. Wang, J. Mater. Chem. A 2013, 1, 11563.
– reference: B. Nepal, S. Das, Angew. Chem. Int. Ed. 2013, 52, 7224.
– reference: Y. Kataoka, K. Sato, Y. Miyazaki, Y. Suzuki, H. Tanaka, Y. Kitagawa, T. Kawakami, M. Okumura, W. Mori, Chem. Lett. 2010, 39, 358.
– reference: M. Matsuoka, M. Anpo, J. Photochem. Photobiol. C 2003, 3, 225.
– reference: Y. Yang, H. F. Yao, F. G. Xi, E. Q. Gao, J. Mol. Catal. A: Chem. 2014, 390, 198.
– reference: F. X. Llabrés i Xamena, A. Corma, H. Garcia, J. Phys. Chem. C 2007, 111, 80.
– reference: S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 1034.
– reference: D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502.
– reference: S. L. Li, Q. Xu, Energy Environ. Sci. 2013, 6, 1656.
– reference: M. Wen, K. Mori, T. Kamegawa, H. Yamashita, Chem. Commun. 2014, 50, 11645.
– reference: D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Chem. Commun. 2015, 51, 2056.
– reference: S. Sato, T. Morikawa, T. Kajino, O. Ishitani, Angew. Chem. Int. Ed. 2013, 52, 988.
– reference: M. A. Nasalevich, M. G. Goesten, T. J. Savenije, F. Kapteijna, J. Gascon, Chem. Commun. 2013, 49, 10575.
– reference: S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148.
– reference: C. G. Silva, I. Luz, F. X. LlabrésiXamena, A. Corma, H. García, Chem. Eur. J. 2010, 16, 11133.
– reference: T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang, R. Xu, Energy Environ. Sci. 2013, 6, 3229.
– reference: E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606.
– reference: T. Tachikawa, J. R. Choi, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2008, 112, 14090.
– reference: J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
– reference: C. D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
– reference: A. Morozan, F. Jaouen, Energy Environ. Sci. 2012, 5, 9269.
– reference: T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982.
– reference: J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 2011, 44, 957.
– reference: P. Wang, B. Huang, Y. Dai, M. H. Whangbo, Phys. Chem. Chem. Phys. 2012, 14, 9813.
– reference: Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 11926.
– reference: A. Fujishima, K. Honda, Nature 1972, 238, 37.
– reference: M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
– reference: C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445.
– reference: M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garcia, Chem. Eur. J. 2007, 13, 5106.
– reference: X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 2009, 131, 11658.
– reference: T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688.
– reference: D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Chem. Eur. J. 2014, 20, 4780.
– reference: S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997.
– reference: D. Shi, C. He, B. Qi, C. Chen, J. Niu, C. Duan, Chem. Sci. 2015, 6, 1035.
– reference: D. Wang, Z. Li, Catal. Sci. Technol. 2015, 5, 1623.
– reference: R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 2014, 26, 4783.
– reference: A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998.
– reference: L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649.
– reference: R. K. Yadav, J. O. Baeg, G. H. Oh, N. J. Park, K. j. Kong, J. Kim, D. W. Hwang, S. K. Biswas, J. Am. Chem. Soc. 2012, 134, 11455.
– reference: Y. Kataoka, Y. Miyazaki, K. Sato, T. Saito, Y. Nakanishi, Y. Kiatagwa, T. Kawakami, M. Okumura, K. Yamaguchi, W. Mori, Supramol. Chem. 2011, 23, 287.
– reference: Y. Chen, J. Zhang, M. Zhang, X. Wang, Chem. Sci. 2013, 4, 3244.
– reference: Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848.
– reference: B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed. 2009, 48, 500.
– reference: G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, Chem. Eur. J. 2015, 21, 2364.
– reference: A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440.
– reference: C. C. Wang, Y. Q. Zhang, J. Li, P. Wang, J. Mol. Struct. 2015, 1083, 127.
– reference: M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196.
– reference: X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473.
– reference: S. Wang, Y. Hou, S. Lin, X. Wang, Nanoscale 2014, 6, 9930.
– reference: A. I. Cooper, M. J. Rosseinsky, Nat. Chem. 2009, 1, 26.
– reference: S. Wang, J. Lin, X. Wang, Phys. Chem. Chem. Phys. 2014, 16, 14656.
– reference: H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A.Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424.
– reference: K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2011, 112, 724.
– reference: Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum, X. Chen, Small 2013, 9, 996.
– volume: 19
  start-page: 14279
  year: 2013
  publication-title: Chem. Eur. J.
– year: 2015
  publication-title: Nano Res.
– volume: 52
  start-page: 1735
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1398
  year: 2014
  publication-title: ACS Catal.
– volume: 112
  start-page: 1196
  year: 2012
  publication-title: Chem. Rev.
– volume: 127
  start-page: 1610
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 1034
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 2364
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 101
  start-page: 201
  year: 2013
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 7501
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 5234
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 5974
  year: 2006
  publication-title: Angew. Chem. Int. Ed.
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 50
  start-page: 8651
  year: 2014
  publication-title: Chem. Commun.
– volume: 23
  start-page: 5629
  year: 2011
  publication-title: Adv. Mater.
– volume: 17
  start-page: 117
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 4254
  year: 2014
  publication-title: ACS Catal.
– volume: 135
  start-page: 16997
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 162
  start-page: 494
  year: 2015
  publication-title: Appl. Catal. B: Environ.
– volume: 50
  start-page: 10390
  year: 2014
  publication-title: Chem. Commun.
– volume: 6
  start-page: 9930
  year: 2014
  publication-title: Nanoscale
– volume: 135
  start-page: 4596
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 500
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 103
  start-page: 10186
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 364
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 5106
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 50
  start-page: 5318
  year: 2011
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 2546
  year: 2014
  publication-title: RSC Adv.
– volume: 131
  start-page: 10857
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 11658
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 11656
  year: 2012
  publication-title: Chem. Commun.
– volume: 7
  start-page: 2831
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 73
  start-page: 3
  year: 2004
  publication-title: Micropor. Mesopor. Mater.
– volume: 5
  start-page: 1623
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 116
  start-page: 20848
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 51
  start-page: 7440
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 7063
  year: 2014
  publication-title: Chem. Commun.
– volume: 5
  start-page: 9269
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 124
  start-page: 45
  year: 2015
  publication-title: Chem. Eng. Sci.
– volume: 50
  start-page: 8533
  year: 2014
  publication-title: Chem. Commun.
– volume: 43
  start-page: 473
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 11814
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 11133
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 3244
  year: 2013
  publication-title: Chem. Sci.
– volume: 110
  start-page: 4606
  year: 2010
  publication-title: Chem. Rev.
– volume: 52
  start-page: 7372
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 13649
  year: 2013
  publication-title: Dalton Trans.
– volume: 20
  start-page: 3141
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 3672
  year: 2014
  publication-title: Small
– volume: 20
  start-page: 4780
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 109
  start-page: 15673
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 112
  start-page: 675
  year: 2012
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1035
  year: 2015
  publication-title: Chem. Sci.
– volume: 127
  start-page: 8940
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2092
  year: 2013
  publication-title: Catal. Sci. Technol.
– volume: 136
  start-page: 8863
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 17998
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 11473
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 3621
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 4879
  year: 2011
  publication-title: Dalton Trans.
– volume: 44
  start-page: 957
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 133
  start-page: 13445
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 11645
  year: 2014
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1656
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 14656
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 50
  start-page: 6779
  year: 2014
  publication-title: Chem. Commun.
– volume: 44
  start-page: 4670
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 283
  start-page: 1148
  year: 1999
  publication-title: Science
– volume: 23
  start-page: 287
  year: 2011
  publication-title: Supramol. Chem.
– volume: 16
  start-page: 4919
  year: 2014
  publication-title: CrystEngComm
– volume: 3
  start-page: 225
  year: 2003
  publication-title: J. Photochem. Photobiol. C
– volume: 2
  start-page: 397
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2468
  year: 2014
  publication-title: Chem. Asian. J.
– volume: 48
  start-page: 7502
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 11563
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 988
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 39
  start-page: 358
  year: 2010
  publication-title: Chem. Lett.
– volume: 32
  start-page: 276
  year: 2003
  publication-title: Chem. Soc. Rev.
– volume: 164
  start-page: 428
  year: 2015
  publication-title: Appl. Catal. B
– volume: 136
  start-page: 6021
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 8510
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 3181
  year: 2014
  publication-title: Small
– volume: 6
  start-page: 2584
  year: 2010
  publication-title: Small
– volume: 112
  start-page: 14090
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 6301
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  start-page: 1330
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 4783
  year: 2014
  publication-title: Adv. Mater.
– volume: 132
  start-page: 15487
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2056
  year: 2015
  publication-title: Chem. Commun.
– volume: 112
  start-page: 970
  year: 2012
  publication-title: Chem. Rev.
– volume: 112
  start-page: 1105
  year: 2012
  publication-title: Chem. Rev.
– volume: 112
  start-page: 1001
  year: 2011
  publication-title: Chem. Rev.
– volume: 134
  start-page: 11455
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 7224
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 51
  start-page: 3364
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 335
  start-page: 1606
  year: 2012
  publication-title: Science
– volume: 135
  start-page: 11688
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 80
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 3229
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 141
  year: 1995
  publication-title: Acc. Chem. Res.
– volume: 134
  start-page: 14991
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 11926
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 1083
  start-page: 127
  year: 2015
  publication-title: J. Mol. Struct.
– volume: 92
  start-page: 435
  year: 1992
  publication-title: Chem. Rev.
– volume: 3
  start-page: 3074
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 9813
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 353
  year: 2013
  publication-title: ACS Sustain. Chem. Eng.
– volume: 9
  start-page: 996
  year: 2013
  publication-title: Small
– volume: 11
  start-page: 554
  year: 2015
  publication-title: Small
– volume: 6
  start-page: 501
  year: 2007
  publication-title: Nat. Mater.
– volume: 112
  start-page: 1084
  year: 2012
  publication-title: Chem. Rev.
– volume: 49
  start-page: 10575
  year: 2013
  publication-title: Chem. Commun.
– volume: 3
  start-page: 1368
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 130
  start-page: 13850
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2630
  year: 2012
  publication-title: ACS Catal.
– volume: 1
  start-page: 26
  year: 2009
  publication-title: Nat. Chem.
– volume: 390
  start-page: 198
  year: 2014
  publication-title: J. Mol. Catal. A: Chem.
– volume: 112
  start-page: 724
  year: 2011
  publication-title: Chem. Rev.
– volume: 329
  start-page: 424
  year: 2010
  publication-title: Science
– volume: 8
  start-page: 80
  year: 2012
  publication-title: Small
– volume: 106
  start-page: 20637
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 43
  start-page: 5982
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 19895
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 7211
  year: 2012
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_53_1
  doi: 10.1021/ja903726m
– ident: e_1_2_8_15_1
  doi: 10.1021/ja500403e
– ident: e_1_2_8_102_1
  doi: 10.1002/anie.201209017
– ident: e_1_2_8_1_1
  doi: 10.1021/ar00051a007
– ident: e_1_2_8_19_1
  doi: 10.1002/smll.201401919
– ident: e_1_2_8_28_1
  doi: 10.1038/nchem.157
– ident: e_1_2_8_110_1
  doi: 10.1016/j.apcatb.2014.07.026
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.201102538
– ident: e_1_2_8_119_1
  doi: 10.1039/C4CC03946G
– ident: e_1_2_8_38_1
  doi: 10.1002/smll.201001071
– ident: e_1_2_8_48_1
  doi: 10.1002/anie.200806063
– ident: e_1_2_8_52_1
  doi: 10.1002/chem.200601003
– ident: e_1_2_8_92_1
  doi: 10.1039/C4CP04162C
– ident: e_1_2_8_125_1
  doi: 10.1039/c3ta12645e
– ident: e_1_2_8_3_1
  doi: 10.1021/ja3009902
– ident: e_1_2_8_40_1
  doi: 10.1039/b802352m
– ident: e_1_2_8_36_1
  doi: 10.1002/smll.201302983
– ident: e_1_2_8_116_1
  doi: 10.1021/cr200179u
– ident: e_1_2_8_17_1
  doi: 10.1002/smll.201303836
– ident: e_1_2_8_111_1
  doi: 10.1039/c3ta12433a
– ident: e_1_2_8_30_1
  doi: 10.1021/ja0570032
– ident: e_1_2_8_104_1
  doi: 10.1002/anie.201210294
– ident: e_1_2_8_50_1
  doi: 10.1039/C4EE01299B
– ident: e_1_2_8_60_1
  doi: 10.1039/C4CC01776E
– ident: e_1_2_8_86_1
  doi: 10.1021/cr2003147
– ident: e_1_2_8_73_1
  doi: 10.1016/j.electacta.2012.09.093
– ident: e_1_2_8_124_1
  doi: 10.1039/C4CC02818J
– ident: e_1_2_8_55_1
  doi: 10.1021/jp063600e
– ident: e_1_2_8_108_1
  doi: 10.1021/sc4004295
– ident: e_1_2_8_67_1
  doi: 10.1039/c3ee41548a
– ident: e_1_2_8_49_1
  doi: 10.1016/j.molstruc.2014.11.036
– ident: e_1_2_8_37_1
  doi: 10.1021/cr200252n
– ident: e_1_2_8_62_1
  doi: 10.1021/jp3046005
– ident: e_1_2_8_127_1
  doi: 10.1021/cs500123d
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.200805101
– ident: e_1_2_8_83_1
  doi: 10.1039/C4CY01464B
– ident: e_1_2_8_56_1
  doi: 10.1021/jp803620v
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201207199
– ident: e_1_2_8_59_1
  doi: 10.1002/chem.200903526
– ident: e_1_2_8_61_1
  doi: 10.1039/C4CC01086H
– ident: e_1_2_8_81_1
  doi: 10.1039/C4CC09407G
– ident: e_1_2_8_123_1
  doi: 10.1002/chem.201304067
– ident: e_1_2_8_8_1
  doi: 10.1002/smll.201202156
– ident: e_1_2_8_93_1
  doi: 10.1039/C3RA45848B
– ident: e_1_2_8_126_1
  doi: 10.1007/s12274‐014‐0690‐x
– ident: e_1_2_8_6_1
  doi: 10.1038/238037a0
– ident: e_1_2_8_118_1
  doi: 10.1021/ja300539p
– ident: e_1_2_8_120_1
  doi: 10.1039/C4EE02853H
– ident: e_1_2_8_57_1
  doi: 10.1039/C4CE00032C
– ident: e_1_2_8_79_1
  doi: 10.1002/chem.201301728
– ident: e_1_2_8_29_1
  doi: 10.1016/j.micromeso.2004.03.034
– ident: e_1_2_8_89_1
  doi: 10.1039/c3dt51479j
– ident: e_1_2_8_78_1
  doi: 10.1021/ja903726m
– ident: e_1_2_8_117_1
  doi: 10.1039/C3CC46398B
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.200805101
– ident: e_1_2_8_82_1
  doi: 10.1016/j.apcatb.2014.09.054
– ident: e_1_2_8_101_1
  doi: 10.1039/c4cp02173h
– ident: e_1_2_8_24_1
  doi: 10.1039/C4CS00103F
– ident: e_1_2_8_96_1
  doi: 10.1073/pnas.0602439103
– ident: e_1_2_8_47_1
  doi: 10.1021/cr9003924
– ident: e_1_2_8_69_1
  doi: 10.1002/chem.201405047
– ident: e_1_2_8_11_1
  doi: 10.1016/S1389-5567(02)00040-0
– ident: e_1_2_8_2_1
  doi: 10.1021/cr00011a005
– ident: e_1_2_8_90_1
  doi: 10.1016/j.ces.2014.08.052
– ident: e_1_2_8_85_1
  doi: 10.1021/ja305367j
– ident: e_1_2_8_13_1
  doi: 10.1021/ja040162l
– ident: e_1_2_8_26_1
  doi: 10.1126/science.1192160
– ident: e_1_2_8_64_1
  doi: 10.1039/C4CC02994A
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201108357
– ident: e_1_2_8_84_1
  doi: 10.1021/ic200295h
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.200462786
– ident: e_1_2_8_88_1
  doi: 10.1039/c2cc34620f
– ident: e_1_2_8_106_1
  doi: 10.1039/c3sc51203g
– ident: e_1_2_8_100_1
  doi: 10.1021/ja407176p
– ident: e_1_2_8_42_1
  doi: 10.1002/smll.201100710
– ident: e_1_2_8_43_1
  doi: 10.1021/ar200028a
– ident: e_1_2_8_95_1
  doi: 10.1038/nmat1927
– ident: e_1_2_8_32_1
  doi: 10.1126/science.1217544
– ident: e_1_2_8_65_1
  doi: 10.1039/c4cc02397h
– ident: e_1_2_8_58_1
  doi: 10.1021/ja8057953
– ident: e_1_2_8_113_1
  doi: 10.1002/adma.201400428
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201102010
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.201206137
– ident: e_1_2_8_105_1
  doi: 10.1021/ja903923s
– ident: e_1_2_8_121_1
  doi: 10.1002/anie.201301327
– ident: e_1_2_8_72_1
  doi: 10.1039/c2ee22989g
– ident: e_1_2_8_35_1
  doi: 10.1021/cr200324t
– ident: e_1_2_8_98_1
  doi: 10.1080/10610278.2010.527976
– ident: e_1_2_8_16_1
  doi: 10.1021/ja311541a
– ident: e_1_2_8_71_1
  doi: 10.1021/ja310074j
– ident: e_1_2_8_33_1
  doi: 10.1073/pnas.0909718106
– ident: e_1_2_8_68_1
  doi: 10.1039/C4TA04622F
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201300380
– ident: e_1_2_8_70_1
  doi: 10.1021/ja203564w
– ident: e_1_2_8_4_1
  doi: 10.1039/C3CS60405E
– ident: e_1_2_8_25_1
  doi: 10.1021/cr200205j
– ident: e_1_2_8_54_1
  doi: 10.1021/ja1065625
– ident: e_1_2_8_107_1
  doi: 10.1002/anie.201407319
– ident: e_1_2_8_22_1
  doi: 10.1039/c3ee40507a
– ident: e_1_2_8_77_1
  doi: 10.1039/c1dt10115c
– ident: e_1_2_8_115_1
  doi: 10.1021/cr200205j
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.201309426
– ident: e_1_2_8_10_1
  doi: 10.1039/C3CS60188A
– ident: e_1_2_8_103_1
  doi: 10.1002/anie.201206534
– ident: e_1_2_8_122_1
  doi: 10.1039/c2cp40823f
– ident: e_1_2_8_39_1
  doi: 10.1002/anie.200701056
– ident: e_1_2_8_74_1
  doi: 10.1039/C4NR02399D
– ident: e_1_2_8_94_1
  doi: 10.1021/cr200139g
– ident: e_1_2_8_46_1
  doi: 10.1021/ja052431t
– ident: e_1_2_8_76_1
  doi: 10.1021/ja503296c
– ident: e_1_2_8_109_1
  doi: 10.1002/asia.201402303
– ident: e_1_2_8_112_1
  doi: 10.1126/science.283.5405.1148
– ident: e_1_2_8_51_1
  doi: 10.1039/b924937k
– ident: e_1_2_8_99_1
  doi: 10.1246/cl.2010.358
– ident: e_1_2_8_75_1
  doi: 10.1021/cr2003272
– ident: e_1_2_8_66_1
  doi: 10.1002/anie.201202471
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.1118336109
– ident: e_1_2_8_18_1
  doi: 10.1039/C4CS00126E
– ident: e_1_2_8_80_1
  doi: 10.1021/cs501169t
– ident: e_1_2_8_91_1
  doi: 10.1016/j.molcata.2014.04.002
– ident: e_1_2_8_21_1
  doi: 10.1021/cs3005874
– ident: e_1_2_8_44_1
  doi: 10.1002/anie.200601878
– ident: e_1_2_8_87_1
  doi: 10.1039/C4SC02362E
– ident: e_1_2_8_27_1
  doi: 10.1039/b200393g
– ident: e_1_2_8_63_1
  doi: 10.1039/c3cy00211j
– ident: e_1_2_8_114_1
  doi: 10.1021/ja403810k
– ident: e_1_2_8_97_1
  doi: 10.1039/b814539c
SSID ssj0031247
Score 2.6345465
SecondaryResourceType review_article
Snippet Metal–organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that...
Metal-organic frameworks (MOFs) have attracted significant research attention in diverse areas due to their unique physical and chemical characteristics that...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3097
SubjectTerms Carbon dioxide
Catalysis
CO2 reduction
Ligands
Metal-organic frameworks
MOFs
Nanotechnology
organic transformation
Photocatalysis
Photocatalysts
Photochemical
photosynthesis
Solar energy
Transformations
Water splitting
Title Multifunctional Metal-Organic Frameworks for Photocatalysis
URI https://api.istex.fr/ark:/67375/WNG-9439NFVS-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201500084
https://www.ncbi.nlm.nih.gov/pubmed/25917413
https://www.proquest.com/docview/1693773022
https://www.proquest.com/docview/1694965175
https://www.proquest.com/docview/1709762742
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoEDpTxTWhQkBCe3sfOwc-ihqlgq1F0hlkJvlu3EQmq7W3V3JcSJ_8A_5Jd0xt6ELuIhwS1RxpIz9ng-2zPfADzPjFW1tJzVykqGq1_DTOMl40QvpRpjuKLc4eGoOjwu3pyUJ9ey-CM_RH_gRpYR1msycGNnuz9IQ2fnZ3R1wInRXxEhKAVsESp61_NH5ei8QnUV9FmMiLc61sZM7K42X_FKN0nBn38FOVcRbHBBg3UwXedj5MnpzmJud9yXn3gd_-fv7sKdJT5N9-OE2oAb7eQe3L7GWngf9kLSLjnEeI6YDltE8N-_fot5nS4ddAFfsxQhcfr203Q-DcdExH7yAI4Hr94fHLJlFQbmKiULplBvtioQ93BXCHSpVSkqa2trqPY69740LeetKLxzjWrayualFMIXPmvy3Jn8IaxNppP2MaSFN5nyCBBq2xRW8tpzbrJKNU7mNrMiAdaNgnZLinKqlHGmI7my0KQW3aslgZe9_EUk5_it5IswqL2YuTylkDZZ6o-j17pGWDYafBjrcQJb3ajrpTXPNBHWSFwKBfbwWf8Z7ZAuV8yknS6CDFHvIxr7g4zMEP3R5XgCj-KM6juE21DcHPI8ARHmxV9-SI-HR0f92-a_NHoCt-g5xh5vwdr8ctFuI8Ka26fBiq4ALaAcpQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7B7gE48H4EFggSglN2Y8eJnQMHhCgF2grRXdibZTuxkHZp0baVECf-A_-QX8KM3QSKeEhwTDKWnLHH89me-Qbgfm6sqqVlWa2szHD1azLTeJkxopdSjTFMUe7weFIND8SLw7KLJqRcmMgP0R-4kWWE9ZoMnA6k976zhi7eH9PdASNKfyVOwzaV9Q67qtc9g1SB7ivUV0GvlRH1VsfbmPO9zfYbfmmbVPzxV6BzE8MGJzS4ALbrfow9OdpdLe2u-_QTs-N__d9FOL-GqOnjOKcuwal2dhnO_UBceAUehbxd8onxKDEdtwjiv37-ElM7XTroYr4WKaLi9NW7-XIeToqIAOUqHAye7j8ZZutCDJmrlBSZQsXZSiD0YU5w9KpVyStra2uo_DrzvjQtYy0X3rlGNW1li1Jy7oXPm6JwprgGW7P5rL0BqfAmVx4xQm0bYSWrPWMmr1TjZGFzyxPIumHQbs1STsUyjnXkV-aa1KJ7tSTwsJf_EPk5fiv5IIxqL2ZOjiiqTZb67eSZrhGZTQZvpnqawE437Hpt0AtNnDUSV0OOPbzXf0ZTpPsVM2vnqyBD7PsIyP4gI3MEgHQ_nsD1OKX6DuFOFPeHrEiAh4nxlx_S0_Fo1D_d_JdGd-HMcH880qPnk5e34Cy9j6HIO7C1PFm1txFwLe2dYFLfAO3OIMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE48IYGCgQJwSlt7Dixc-CAKKHA7qpiKfRm-RGrUstu1d2VECf-A_-QX4LH3oQu4iHBMclYcsYzns_2zGeAR7nSouaaZLXQPPOzn82UdTwjSC8lrFJEYO3wcFTt7rPXB-XBmSr-yA_Rb7ihZ4T5Gh38xLrtH6Shs4_HeHRAkNFfsPOwzqpcoF3vvO0JpAofvcL1Kj5oZci81dE25nR7tf1KWFpHDX_6FeZchbAhBjVXQHW9j6knR1uLud4yn38idvyf37sKl5cANX0WLeoanGsn1-HSGdrCG_A0VO1iRIwbiemw9RD-25evsbDTpE2X8TVLPSZO9w6n82nYJ0L6k5uw37x493w3W17DkJlKcJYJrzddMQ98iGHUx9SqpJXWtVZ4-TpxrlQtIS1lzhgrbFvpouSUOuZyWxRGFbdgbTKdtBuQMqdy4TxCqLVlmpPaEaLySljDC51rmkDWjYI0S45yvCrjWEZ2ZSpRLbJXSwJPevmTyM7xW8nHYVB7MXV6hDltvJQfRi9l7XHZqHk_luMENrtRl0t3nklkrOF-LqS-hw_7z94R8XRFTdrpIsgg976HY3-Q4bmHf3g6nsDtaFF9h_w61K8OSZEADXbxlx-S4-Fg0D_d-ZdGD-DC3k4jB69Gb-7CRXwd85A3YW1-umjvebQ11_eDQ30HiOEfeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Metal-Organic+Frameworks+for+Photocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Sibo&rft.au=Wang%2C+Xinchen&rft.date=2015-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=26&rft.spage=3097&rft_id=info:doi/10.1002%2Fsmll.201500084&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3735204581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon