Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development

Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endo...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 16; no. 7; pp. 803 - 812
Main Authors Aoshima, Keisuke, Inoue, Erina, Sawa, Hirofumi, Okada, Yuki
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.07.2015
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. Synopsis In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers. Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development. Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA. Graphical Abstract In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers.
AbstractList Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. Synopsis In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers. Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development. Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA. In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers.
Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K-M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K-M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice.
Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K-M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K-M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. Synopsis In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4-dependent H3K4 monomethylation likely at enhancers. Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development. Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA.
Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. Synopsis In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers. Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development. Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA. Graphical Abstract In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers.
Author Inoue, Erina
Aoshima, Keisuke
Sawa, Hirofumi
Okada, Yuki
Author_xml – sequence: 1
  givenname: Keisuke
  surname: Aoshima
  fullname: Aoshima, Keisuke
  organization: Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-kuTokyo, Japan
– sequence: 2
  givenname: Erina
  surname: Inoue
  fullname: Inoue, Erina
  organization: Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-kuTokyo, Japan
– sequence: 3
  givenname: Hirofumi
  surname: Sawa
  fullname: Sawa, Hirofumi
  organization: Division of Molecular Pathobiology, Center for Zoonosis Control, Hokkaido University, Kita-kuSapporo, Japan
– sequence: 4
  givenname: Yuki
  surname: Okada
  fullname: Okada, Yuki
  email: ytokada@iam.u-tokyo.ac.jp
  organization: Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-kuTokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25925669$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxSNURD_gzA1Z4sIlre3Eic0BCarSRRRYCqjcLCeZbF0ce2tnF8Jfj3ezrJZKwMW25N-bNzPvMNmzzkKSPCb4mDDK6Al0lT-mmOSZKDG-lxyQvBBpRkq-t3lTSr7uJ4ch3GCMmSj5g2SfMkFZUYiDpJuqHrxVBk2ytznqoL8ejOq1s0gH5OF2oT00qHUeddrG8-cwc72u0QwsIFX3ejnSyjYIlDcD6twiAFo1NjgbyQaWYNy8A9s_TO63ygR4tLmPki-vzz6fTtKLD-dvTl9epHXBS5zyrOKYKUEarAiIrMJVBZxDm1W0LolocsUajgvSFK3ArRBV3oi8aqlqAdqyyY6SF2Pd-aLqoKmjtVdGzr3ulB-kU1r--WP1tZy5pcwZYYTiWODZpoB3twsIvex0qMEYZSGOJ0khspIQzvOIPr2D3rjFaqNrihac5ZRF6sluR9tWficRgZMRqL0LwUO7RQiW66zlaqVym3VUsDuKWvfrMOJI2vxD93zUfdcGhv_ZyLN3ry53xXgUh6izM_A70_7VLx0lOvTwY-un_DdZlFnJ5NX7c_mx-DS9nFxNJc5-ASVy4Mc
CODEN ERMEAX
CitedBy_id crossref_primary_10_15252_embr_201846240
crossref_primary_10_1093_biolre_ioz155
crossref_primary_10_1016_j_celrep_2017_07_011
crossref_primary_10_1038_s41598_020_63010_x
crossref_primary_10_1038_s41598_021_89334_w
crossref_primary_10_1016_j_tcb_2017_10_008
crossref_primary_10_3390_biom13121750
crossref_primary_10_1016_j_devcel_2016_08_004
crossref_primary_10_1242_dev_157453
crossref_primary_10_1093_advances_nmab038
crossref_primary_10_1093_abbs_gmab068
crossref_primary_10_1242_dev_141390
crossref_primary_10_1080_19396368_2019_1666435
crossref_primary_10_1111_andr_12926
crossref_primary_10_1007_s00018_019_03360_6
crossref_primary_10_1038_s41598_024_74270_2
crossref_primary_10_1096_fj_201700955R
crossref_primary_10_1016_j_celrep_2018_12_046
crossref_primary_10_1002_jez_b_22943
crossref_primary_10_1007_s11427_016_5006_9
crossref_primary_10_5534_wjmh_190034
crossref_primary_10_1016_j_canlet_2019_05_024
crossref_primary_10_1071_RD15365
crossref_primary_10_1007_s00418_021_02036_2
crossref_primary_10_1093_biolre_iox020
crossref_primary_10_1016_j_theriogenology_2020_02_036
crossref_primary_10_3892_ijmm_2017_3115
crossref_primary_10_1016_j_gde_2021_01_008
crossref_primary_10_3390_ijms25031459
crossref_primary_10_1038_s41467_023_37820_2
crossref_primary_10_5713_ab_23_0401
crossref_primary_10_1242_dev_202169
crossref_primary_10_1289_EHP12013
crossref_primary_10_1242_dev_161471
crossref_primary_10_5653_cerm_2016_43_2_59
crossref_primary_10_1007_s00018_016_2447_z
crossref_primary_10_1262_jrd_2019_139
crossref_primary_10_1159_000529336
crossref_primary_10_3389_fcell_2020_610773
crossref_primary_10_1111_andr_13277
crossref_primary_10_1002_wsbm_1588
crossref_primary_10_1242_dev_143347
crossref_primary_10_1016_j_celrep_2024_115148
crossref_primary_10_1016_j_gene_2023_147256
crossref_primary_10_3390_jcm9030640
crossref_primary_10_1016_j_cdev_2023_203859
crossref_primary_10_1016_j_devcel_2017_07_026
crossref_primary_10_1530_REP_17_0488
crossref_primary_10_1530_REP_18_0495
crossref_primary_10_1016_j_devcel_2021_01_014
crossref_primary_10_1038_nature19360
crossref_primary_10_1016_j_biomaterials_2019_119604
crossref_primary_10_1080_15384101_2015_1060774
crossref_primary_10_1038_s41467_024_55441_1
crossref_primary_10_1093_nar_gkaa712
crossref_primary_10_1016_j_bbamcr_2020_118648
crossref_primary_10_1038_s41580_018_0008_z
crossref_primary_10_7554_eLife_39381
crossref_primary_10_1093_nar_gkaa082
crossref_primary_10_1038_s41588_019_0398_7
Cites_doi 10.7554/eLife.01503
10.1038/nature08732
10.1242/dev.095513
10.1186/gb-2002-3-7-research0034
10.1038/nsmb.2839
10.1186/1471-213X-7-14
10.1128/MCB.06092-11
10.1016/S1534-5807(03)00373-3
10.1242/dev.112.4.921
10.1242/dev.124.22.4615
10.1101/gad.201327.112
10.1038/nature11800
10.1016/j.devcel.2014.06.022
10.1186/1471-213X-4-12
10.1262/jrd.17078
10.1387/ijdb.052073mt
10.1101/gad.2015411
10.1371/journal.pbio.1000453
10.1038/28615
10.1038/ncb2089
10.1242/dev.01116
10.1038/nature07829
10.1146/annurev-biochem-051710-134100
10.1007/s00018-014-1605-4
10.1006/dbio.2001.0501
10.1006/dbio.1996.8466
10.1016/j.celrep.2014.02.018
10.1002/gene.20158
10.1016/j.mod.2005.04.009
10.1016/j.ydbio.2009.08.017
10.1093/nar/gku1001
10.1002/jez.1401860211
10.3389/fcell.2014.00030
10.1101/gad.227926.113
10.1101/gad.1435106
10.1016/j.stem.2013.12.015
10.1038/248678a0
10.1126/science.1232245
10.1016/j.molcel.2013.01.038
10.1006/excr.1995.1130
10.4161/epi.20584
10.1016/S0092-8674(03)01064-X
10.1038/nature09692
ContentType Journal Article
Copyright The Authors 2015
2015 The Authors
2015 The Authors.
2015 EMBO
2015 The Authors 2015
Copyright_xml – notice: The Authors 2015
– notice: 2015 The Authors
– notice: 2015 The Authors.
– notice: 2015 EMBO
– notice: 2015 The Authors 2015
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.201439700
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 812
ExternalDocumentID PMC4515120
3732017531
25925669
10_15252_embr_201439700
EMBR201439700
ark_67375_WNG_Q6SPRHWP_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Promoting Science and Technology of MEXT
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan
  grantid: 22125007
– fundername: The Naito Foundation Subsidy for Female Researchers after Maternity Leave
– fundername: Research Fellowships of Japan Society for the Promotion of Science for Young Scientists
– fundername: JST PRESTO program
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan
  funderid: 22125007
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
24P
29G
2WC
33P
36B
39C
3O-
3V.
53G
5GY
5VS
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PQQKQ
PROAC
PSQYO
Q2X
R.K
RHF
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
WYJ
X7M
ZGI
ZZTAW
AAJSJ
AAYCA
ACYXJ
AFWVQ
AANHP
ACRPL
ADNMO
AEUYN
AASML
AAYXX
AGQPQ
CITATION
NAO
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6870-83b805a91d0a1e93b0bbe88ef3b2c719d4a5d8061d6f90f99b4d94bf2afeef7d3
IEDL.DBID C6C
ISSN 1469-221X
IngestDate Thu Aug 21 18:24:22 EDT 2025
Fri Jul 11 06:04:17 EDT 2025
Fri Jul 25 10:57:43 EDT 2025
Mon Jul 21 06:00:33 EDT 2025
Tue Jul 01 02:52:14 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Wed Jan 22 16:22:11 EST 2025
Fri Feb 21 02:36:36 EST 2025
Wed Oct 30 09:55:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords histone methylation
Mll3/4
minor ZGA
K‐M mutant
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6870-83b805a91d0a1e93b0bbe88ef3b2c719d4a5d8061d6f90f99b4d94bf2afeef7d3
Notes Supplementary InformationReview Process File
The Naito Foundation Subsidy for Female Researchers after Maternity Leave
JST PRESTO program
Research Fellowships of Japan Society for the Promotion of Science for Young Scientists
Promoting Science and Technology of MEXT
ark:/67375/WNG-Q6SPRHWP-0
istex:FEB2FB2F613663CA3E40BBF3F65C3271E508CDD5
ArticleID:EMBR201439700
Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan - No. 22125007
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Subject Categories Development & Differentiation; Chromatin, Epigenetics, Genomics & Functional Genomics
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embr.201439700
PMID 25925669
PQID 1692685425
PQPubID 26169
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4515120
proquest_miscellaneous_1693711884
proquest_journals_1692685425
pubmed_primary_25925669
crossref_primary_10_15252_embr_201439700
crossref_citationtrail_10_15252_embr_201439700
wiley_primary_10_15252_embr_201439700_EMBR201439700
springer_journals_10_15252_embr_201439700
istex_primary_ark_67375_WNG_Q6SPRHWP_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Chichester, UK
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO rep
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley & Sons, Ltd
References Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470: 279-283
Liu W, Yin J, Kou X, Jiang Y, Gao H, Zhao Y, Huang B, He W, Wang H, Han Z et al (2014) Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes. Cell Rep 6: 1008-1016
Latham KE, Garrels JI, Chang C, Solter D (1991) Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112: 921-932
Park SJ, Shirahige K, Ohsugi M, Nakai K (2015) DBTMEE: a database of transcriptome in mouse early embryos. Nucleic Acids Res 43: D771-D776
Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51-61
Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12: 853-862
Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, Matzuk MM (2010) MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 8: e1000453
Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46: 317-320
Lin CJ, Conti M, Ramalho-Santos M (2013) Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140: 3624-3634
Makino Y, Inoue E, Hada M, Aoshima K, Kitano S, Miyachi H, Okada Y (2014) Generation of a dual-color reporter mouse line to monitor spermatogenesis in vivo. Front Cell Dev Biol 2: 30
van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122: 1008-1022
Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340: 857-861
Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31: 4310-4318
Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26: 2604-2620
Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y et al (2014) Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14: 217-227
Boskovic A, Bender A, Gall L, Ziegler-Birling C, Beaujean N, Torres-Padilla ME (2012) Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Epigenetics 7: 747-757
Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339: 240-249
Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK (2014) Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 71: 3439-3463
Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124: 4615-4625
Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181: 296-307
Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218: 57-62
Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463: 554-558
Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394: 369-374
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
Warner CM, Versteegh LR (1974) In vivo and in vitro effect of alpha-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248: 678-680
Lin CJ, Koh FM, Wong P, Conti M, Ramalho-Santos M (2014) Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell 30: 268-279
Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6: 117-131
Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81: 65-95
Liu H, Kim JM, Aoki F (2004) Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131: 2269-2280
Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20: 1744-1754
Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49: 825-837
Smith E, Lin C, Shilatifard A (2011) The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25: 661-672
Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4: 12
Inoue A, Zhang Y (2014) Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21: 609-616
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108-112
Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2: e01503
Mamo S, Gal AB, Bodo S, Dinnyes A (2007) Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol 7: 14
Golbus MS, Calarco PG, Epstein CJ (1973) The effects of inhibitors of RNA synthesis (alpha-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool 186: 207-216
Miki H, Ogonuki N, Inoue K, Baba T, Ogura A (2006) Improvement of cumulus-free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice. J Reprod Dev 52: 239-248
Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50: 455-461
Yamagata K, Yamazaki T, Yamashita M, Hara Y, Ogonuki N, Ogura A (2005) Noninvasive visualization of molecular events in the mammalian zygote. Genesis 43: 71-79
Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA et al (2013) Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493: 632-637
Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241: 172-182
Park SJ, Komata M, Inoue F, Yamada K, Nakai K, Ohsugi M, Shirahige K (2013) Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev 27: 2736-2748
Miki, Ogonuki, Inoue, Baba, Ogura (CR37) 2006; 52
Shilatifard (CR29) 2012; 81
Santenard, Ziegler‐Birling, Koch, Tora, Bannister, Torres‐Padilla (CR6) 2010; 12
Smith, Lin, Shilatifard (CR21) 2011; 25
Lee, Wang, Xu, Cho, Wang, Feng, Baldridge, Sartorelli, Zhuang, Peng (CR28) 2013; 2
Park, Shirahige, Ohsugi, Nakai (CR25) 2015; 43
Calo, Wysocka (CR34) 2013; 49
Yamagata, Yamazaki, Yamashita, Hara, Ogonuki, Ogura (CR39) 2005; 43
Bouniol, Nguyen, Debey (CR13) 1995; 218
Okada, Yamagata, Hong, Wakayama, Zhang (CR31) 2010; 463
Lewis, Müller, Koletsky, Cordero, Lin, Banaszynski, Garcia, Muir, Becher, Allis (CR16) 2013; 340
Santos, Hendrich, Reik, Dean (CR3) 2002; 241
Torres‐Padilla, Bannister, Hurd, Kouzarides, Zernicka‐Goetz (CR5) 2006; 50
Lin, Conti, Ramalho‐Santos (CR9) 2013; 140
Warner, Versteegh (CR11) 1974; 248
Paull, Emmanuele, Weiss, Treff, Stewart, Hua, Zimmer, Kahler, Goland, Noggle (CR44) 2013; 493
Mohan, Herz, Smith, Zhang, Jackson, Washburn, Florens, Eissenberg, Shilatifard (CR26) 2011; 31
Liu, Yin, Kou, Jiang, Gao, Zhao, Huang, He, Wang, Han (CR15) 2014; 6
Park, Komata, Inoue, Yamada, Nakai, Ohsugi, Shirahige (CR24) 2013; 27
Tagami, Ray‐Gallet, Almouzni, Nakatani (CR38) 2004; 116
Vandesompele, De Preter, Pattyn, Poppe, Van Roy, De Paepe, Speleman (CR41) 2002; 3
Latham, Garrels, Chang, Solter (CR12) 1991; 112
Heintzman, Hon, Hawkins, Kheradpour, Stark, Harp, Ye, Lee, Stuart, Ching (CR32) 2009; 459
Andreu‐Vieyra, Chen, Agno, Glaser, Anastassiadis, Stewart, Matzuk (CR23) 2010; 8
Deb, Kar, Sengupta, Shilpi, Parbin, Rath, Londhe, Patra (CR22) 2014; 71
Hamatani, Carter, Sharov, Ko (CR36) 2004; 6
Adenot, Mercier, Renard, Thompson (CR1) 1997; 124
Liu, Kim, Aoki (CR30) 2004; 131
Boskovic, Bender, Gall, Ziegler‐Birling, Beaujean, Torres‐Padilla (CR7) 2012; 7
Makino, Inoue, Hada, Aoshima, Kitano, Miyachi, Okada (CR19) 2014; 2
Eissenberg, Shilatifard (CR20) 2010; 339
Shinagawa, Takagi, Tsukamoto, Tomaru, Huynh, Sivaraman, Kumarevel, Inoue, Nakato, Katou (CR42) 2014; 14
Golbus, Calarco, Epstein (CR10) 1973; 186
Herz, Mohan, Garruss, Liang, Takahashi, Mickey, Voets, Verrijzer, Shilatifard (CR27) 2012; 26
Aoki, Worrad, Schultz (CR14) 1997; 181
Lin, Koh, Wong, Conti, Ramalho‐Santos (CR18) 2014; 30
van der Heijden, Dieker, Derijck, Muller, Berden, Braat, van der Vlag, de Boer (CR8) 2005; 122
Bultman, Gebuhr, Pan, Svoboda, Schultz, Magnuson (CR35) 2006; 20
Mamo, Gal, Bodo, Dinnyes (CR40) 2007; 7
Rada‐Iglesias, Bajpai, Swigut, Brugmann, Flynn, Wysocka (CR33) 2011; 470
Wakayama, Perry, Zuccotti, Johnson, Yanagimachi (CR43) 1998; 394
Inoue, Zhang (CR17) 2014; 21
Arney, Bao, Bannister, Kouzarides, Surani (CR2) 2002; 46
Lepikhov, Walter (CR4) 2004; 4
2010; 12
2012; 81
2006; 52
2006; 50
1991; 112
2013; 27
2013; 2
2013; 49
1973; 186
1995; 218
2004; 4
2011; 31
1974; 248
2010; 463
2004; 6
2002; 3
2005; 43
2013; 140
1997; 181
2013; 340
2009; 459
2011; 470
2014; 21
1998; 394
1997; 124
2004; 131
2004; 116
2006; 20
2014; 2
2002; 241
2005; 122
2010; 339
2002; 46
2015; 43
2014; 14
2007; 7
2013; 493
2011; 25
2012; 26
2014; 30
2012; 7
2014; 6
2014; 71
2010; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Arney KL (e_1_2_7_3_1) 2002; 46
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Latham KE (e_1_2_7_13_1) 1991; 112
19703438 - Dev Biol. 2010 Mar 15;339(2):240-9
16415523 - J Reprod Dev. 2006 Apr;52(2):239-48
17341302 - BMC Dev Biol. 2007;7:14
21875999 - Mol Cell Biol. 2011 Nov;31(21):4310-8
23166019 - Genes Dev. 2012 Dec 1;26(23):2604-20
15383155 - BMC Dev Biol. 2004 Sep 21;4:12
12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
20676102 - Nat Cell Biol. 2010 Sep;12(9):853-62
4833268 - Nature. 1974 Apr 19;248(5450):678-80
24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27
23903189 - Development. 2013 Sep;140(17):3624-34
14718166 - Cell. 2004 Jan 9;116(1):51-61
23539183 - Science. 2013 May 17;340(6134):857-61
21160473 - Nature. 2011 Feb 10;470(7333):279-83
7537698 - Exp Cell Res. 1995 May;218(1):57-62
24352427 - Genes Dev. 2013 Dec 15;27(24):2736-48
23473601 - Mol Cell. 2013 Mar 7;49(5):825-37
9013938 - Dev Biol. 1997 Jan 15;181(2):296-307
25364737 - Front Cell Dev Biol. 2014 Jul 23;2:30
9690471 - Nature. 1998 Jul 23;394(6691):369-74
12068953 - Int J Dev Biol. 2002 May;46(3):317-20
9409678 - Development. 1997 Nov;124(22):4615-25
23254936 - Nature. 2013 Jan 31;493(7434):632-7
15922569 - Mech Dev. 2005 Sep;122(9):1008-22
15102709 - Development. 2004 May;131(10):2269-80
24630997 - Cell Rep. 2014 Mar 27;6(6):1008-16
22647320 - Epigenetics. 2012 Jul;7(7):747-57
21460034 - Genes Dev. 2011 Apr 1;25(7):661-72
20808952 - PLoS Biol. 2010;8(8). pii: e1000453. doi: 10.1371/journal.pbio.1000453
11784103 - Dev Biol. 2002 Jan 1;241(1):172-82
24908396 - Nat Struct Mol Biol. 2014 Jul;21(7):609-16
16818606 - Genes Dev. 2006 Jul 1;20(13):1744-54
26065875 - Cell Cycle. 2015;14(16):2541-2
25087892 - Dev Cell. 2014 Aug 11;30(3):268-79
16586346 - Int J Dev Biol. 2006;50(5):455-61
25336621 - Nucleic Acids Res. 2015 Jan;43(Database issue):D771-6
20054296 - Nature. 2010 Jan 28;463(7280):554-8
19295514 - Nature. 2009 May 7;459(7243):108-12
24368734 - Elife. 2013;2:e01503
16100711 - Genesis. 2005 Oct;43(2):71-9
14723852 - Dev Cell. 2004 Jan;6(1):117-31
22663077 - Annu Rev Biochem. 2012;81:65-95
24676717 - Cell Mol Life Sci. 2014 Sep;71(18):3439-63
1935701 - Development. 1991 Aug;112(4):921-32
4795793 - J Exp Zool. 1973 Nov;186(2):207-16
References_xml – reference: Park SJ, Shirahige K, Ohsugi M, Nakai K (2015) DBTMEE: a database of transcriptome in mouse early embryos. Nucleic Acids Res 43: D771-D776
– reference: Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463: 554-558
– reference: Mamo S, Gal AB, Bodo S, Dinnyes A (2007) Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol 7: 14
– reference: Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y et al (2014) Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14: 217-227
– reference: Park SJ, Komata M, Inoue F, Yamada K, Nakai K, Ohsugi M, Shirahige K (2013) Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev 27: 2736-2748
– reference: Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181: 296-307
– reference: Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218: 57-62
– reference: Lin CJ, Conti M, Ramalho-Santos M (2013) Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140: 3624-3634
– reference: Latham KE, Garrels JI, Chang C, Solter D (1991) Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112: 921-932
– reference: Golbus MS, Calarco PG, Epstein CJ (1973) The effects of inhibitors of RNA synthesis (alpha-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool 186: 207-216
– reference: Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51-61
– reference: Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50: 455-461
– reference: Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4: 12
– reference: Inoue A, Zhang Y (2014) Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21: 609-616
– reference: Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA et al (2013) Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493: 632-637
– reference: Miki H, Ogonuki N, Inoue K, Baba T, Ogura A (2006) Improvement of cumulus-free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice. J Reprod Dev 52: 239-248
– reference: Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108-112
– reference: Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394: 369-374
– reference: Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340: 857-861
– reference: Lin CJ, Koh FM, Wong P, Conti M, Ramalho-Santos M (2014) Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell 30: 268-279
– reference: Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470: 279-283
– reference: Smith E, Lin C, Shilatifard A (2011) The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25: 661-672
– reference: Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81: 65-95
– reference: Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26: 2604-2620
– reference: Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124: 4615-4625
– reference: van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122: 1008-1022
– reference: Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31: 4310-4318
– reference: Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46: 317-320
– reference: Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
– reference: Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6: 117-131
– reference: Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK (2014) Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 71: 3439-3463
– reference: Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20: 1744-1754
– reference: Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2: e01503
– reference: Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, Matzuk MM (2010) MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 8: e1000453
– reference: Boskovic A, Bender A, Gall L, Ziegler-Birling C, Beaujean N, Torres-Padilla ME (2012) Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Epigenetics 7: 747-757
– reference: Yamagata K, Yamazaki T, Yamashita M, Hara Y, Ogonuki N, Ogura A (2005) Noninvasive visualization of molecular events in the mammalian zygote. Genesis 43: 71-79
– reference: Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12: 853-862
– reference: Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339: 240-249
– reference: Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49: 825-837
– reference: Warner CM, Versteegh LR (1974) In vivo and in vitro effect of alpha-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248: 678-680
– reference: Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241: 172-182
– reference: Makino Y, Inoue E, Hada M, Aoshima K, Kitano S, Miyachi H, Okada Y (2014) Generation of a dual-color reporter mouse line to monitor spermatogenesis in vivo. Front Cell Dev Biol 2: 30
– reference: Liu H, Kim JM, Aoki F (2004) Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131: 2269-2280
– reference: Liu W, Yin J, Kou X, Jiang Y, Gao H, Zhao Y, Huang B, He W, Wang H, Han Z et al (2014) Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes. Cell Rep 6: 1008-1016
– volume: 31
  start-page: 4310
  year: 2011
  end-page: 4318
  ident: CR26
  article-title: The COMPASS family of H3K4 methylases in Drosophila
  publication-title: Mol Cell Biol
– volume: 27
  start-page: 2736
  year: 2013
  end-page: 2748
  ident: CR24
  article-title: Inferring the choreography of parental genomes during fertilization from ultralarge‐scale whole‐transcriptome analysis
  publication-title: Genes Dev
– volume: 186
  start-page: 207
  year: 1973
  end-page: 216
  ident: CR10
  article-title: The effects of inhibitors of RNA synthesis (alpha‐amanitin and actinomycin D) on preimplantation mouse embryogenesis
  publication-title: J Exp Zool
– volume: 25
  start-page: 661
  year: 2011
  end-page: 672
  ident: CR21
  article-title: The super elongation complex (SEC) and MLL in development and disease
  publication-title: Genes Dev
– volume: 124
  start-page: 4615
  year: 1997
  end-page: 4625
  ident: CR1
  article-title: Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1‐cell mouse embryos
  publication-title: Development
– volume: 46
  start-page: 317
  year: 2002
  end-page: 320
  ident: CR2
  article-title: Histone methylation defines epigenetic asymmetry in the mouse zygote
  publication-title: Int J Dev Biol
– volume: 181
  start-page: 296
  year: 1997
  end-page: 307
  ident: CR14
  article-title: Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo
  publication-title: Dev Biol
– volume: 339
  start-page: 240
  year: 2010
  end-page: 249
  ident: CR20
  article-title: Histone H3 lysine 4 (H3K4) methylation in development and differentiation
  publication-title: Dev Biol
– volume: 470
  start-page: 279
  year: 2011
  end-page: 283
  ident: CR33
  article-title: A unique chromatin signature uncovers early developmental enhancers in humans
  publication-title: Nature
– volume: 6
  start-page: 1008
  year: 2014
  end-page: 1016
  ident: CR15
  article-title: Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes
  publication-title: Cell Rep
– volume: 493
  start-page: 632
  year: 2013
  end-page: 637
  ident: CR44
  article-title: Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants
  publication-title: Nature
– volume: 241
  start-page: 172
  year: 2002
  end-page: 182
  ident: CR3
  article-title: Dynamic reprogramming of DNA methylation in the early mouse embryo
  publication-title: Dev Biol
– volume: 248
  start-page: 678
  year: 1974
  end-page: 680
  ident: CR11
  article-title: In vivo and in vitro effect of alpha‐amanitin on preimplantation mouse embryo RNA polymerase
  publication-title: Nature
– volume: 50
  start-page: 455
  year: 2006
  end-page: 461
  ident: CR5
  article-title: Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos
  publication-title: Int J Dev Biol
– volume: 122
  start-page: 1008
  year: 2005
  end-page: 1022
  ident: CR8
  article-title: Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote
  publication-title: Mech Dev
– volume: 8
  start-page: e1000453
  year: 2010
  ident: CR23
  article-title: MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing
  publication-title: PLoS Biol
– volume: 140
  start-page: 3624
  year: 2013
  end-page: 3634
  ident: CR9
  article-title: Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development
  publication-title: Development
– volume: 71
  start-page: 3439
  year: 2014
  end-page: 3463
  ident: CR22
  article-title: Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer
  publication-title: Cell Mol Life Sci
– volume: 43
  start-page: 71
  year: 2005
  end-page: 79
  ident: CR39
  article-title: Noninvasive visualization of molecular events in the mammalian zygote
  publication-title: Genesis
– volume: 7
  start-page: 14
  year: 2007
  ident: CR40
  article-title: Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro
  publication-title: BMC Dev Biol
– volume: 20
  start-page: 1744
  year: 2006
  end-page: 1754
  ident: CR35
  article-title: Maternal BRG1 regulates zygotic genome activation in the mouse
  publication-title: Genes Dev
– volume: 2
  start-page: e01503
  year: 2013
  ident: CR28
  article-title: H3K4 mono‐ and di‐methyltransferase MLL4 is required for enhancer activation during cell differentiation
  publication-title: Elife
– volume: 52
  start-page: 239
  year: 2006
  end-page: 248
  ident: CR37
  article-title: Improvement of cumulus‐free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice
  publication-title: J Reprod Dev
– volume: 116
  start-page: 51
  year: 2004
  end-page: 61
  ident: CR38
  article-title: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis
  publication-title: Cell
– volume: 12
  start-page: 853
  year: 2010
  end-page: 862
  ident: CR6
  article-title: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3
  publication-title: Nat Cell Biol
– volume: 6
  start-page: 117
  year: 2004
  end-page: 131
  ident: CR36
  article-title: Dynamics of global gene expression changes during mouse preimplantation development
  publication-title: Dev Cell
– volume: 131
  start-page: 2269
  year: 2004
  end-page: 2280
  ident: CR30
  article-title: Regulation of histone H3 lysine 9 methylation in oocytes and early pre‐implantation embryos
  publication-title: Development
– volume: 7
  start-page: 747
  year: 2012
  end-page: 757
  ident: CR7
  article-title: Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation
  publication-title: Epigenetics
– volume: 81
  start-page: 65
  year: 2012
  end-page: 95
  ident: CR29
  article-title: The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis
  publication-title: Annu Rev Biochem
– volume: 21
  start-page: 609
  year: 2014
  end-page: 616
  ident: CR17
  article-title: Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes
  publication-title: Nat Struct Mol Biol
– volume: 43
  start-page: D771
  year: 2015
  end-page: D776
  ident: CR25
  article-title: DBTMEE: a database of transcriptome in mouse early embryos
  publication-title: Nucleic Acids Res
– volume: 340
  start-page: 857
  year: 2013
  end-page: 861
  ident: CR16
  article-title: Inhibition of PRC2 activity by a gain‐of‐function H3 mutation found in pediatric glioblastoma
  publication-title: Science
– volume: 2
  start-page: 30
  year: 2014
  ident: CR19
  article-title: Generation of a dual‐color reporter mouse line to monitor spermatogenesis in vivo
  publication-title: Front Cell Dev Biol
– volume: 463
  start-page: 554
  year: 2010
  end-page: 558
  ident: CR31
  article-title: A role for the elongator complex in zygotic paternal genome demethylation
  publication-title: Nature
– volume: 112
  start-page: 921
  year: 1991
  end-page: 932
  ident: CR12
  article-title: Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one‐ and two‐cell stages
  publication-title: Development
– volume: 49
  start-page: 825
  year: 2013
  end-page: 837
  ident: CR34
  article-title: Modification of enhancer chromatin: what, how, and why?
  publication-title: Mol Cell
– volume: 3
  start-page: RESEARCH0034
  year: 2002
  ident: CR41
  article-title: Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes
  publication-title: Genome Biol
– volume: 26
  start-page: 2604
  year: 2012
  end-page: 2620
  ident: CR27
  article-title: Enhancer‐associated H3K4 monomethylation by Trithorax‐related, the Drosophila homolog of mammalian Mll3/Mll4
  publication-title: Genes Dev
– volume: 218
  start-page: 57
  year: 1995
  end-page: 62
  ident: CR13
  article-title: Endogenous transcription occurs at the 1‐cell stage in the mouse embryo
  publication-title: Exp Cell Res
– volume: 459
  start-page: 108
  year: 2009
  end-page: 112
  ident: CR32
  article-title: Histone modifications at human enhancers reflect global cell‐type‐specific gene expression
  publication-title: Nature
– volume: 14
  start-page: 217
  year: 2014
  end-page: 227
  ident: CR42
  article-title: Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 12
  year: 2004
  ident: CR4
  article-title: Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote
  publication-title: BMC Dev Biol
– volume: 30
  start-page: 268
  year: 2014
  end-page: 279
  ident: CR18
  article-title: Hira‐mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote
  publication-title: Dev Cell
– volume: 394
  start-page: 369
  year: 1998
  end-page: 374
  ident: CR43
  article-title: Full‐term development of mice from enucleated oocytes injected with cumulus cell nuclei
  publication-title: Nature
– volume: 463
  start-page: 554
  year: 2010
  end-page: 558
  article-title: A role for the elongator complex in zygotic paternal genome demethylation
  publication-title: Nature
– volume: 122
  start-page: 1008
  year: 2005
  end-page: 1022
  article-title: Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote
  publication-title: Mech Dev
– volume: 2
  start-page: e01503
  year: 2013
  article-title: H3K4 mono‐ and di‐methyltransferase MLL4 is required for enhancer activation during cell differentiation
  publication-title: Elife
– volume: 46
  start-page: 317
  year: 2002
  end-page: 320
  article-title: Histone methylation defines epigenetic asymmetry in the mouse zygote
  publication-title: Int J Dev Biol
– volume: 186
  start-page: 207
  year: 1973
  end-page: 216
  article-title: The effects of inhibitors of RNA synthesis (alpha‐amanitin and actinomycin D) on preimplantation mouse embryogenesis
  publication-title: J Exp Zool
– volume: 459
  start-page: 108
  year: 2009
  end-page: 112
  article-title: Histone modifications at human enhancers reflect global cell‐type‐specific gene expression
  publication-title: Nature
– volume: 493
  start-page: 632
  year: 2013
  end-page: 637
  article-title: Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants
  publication-title: Nature
– volume: 7
  start-page: 747
  year: 2012
  end-page: 757
  article-title: Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation
  publication-title: Epigenetics
– volume: 140
  start-page: 3624
  year: 2013
  end-page: 3634
  article-title: Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development
  publication-title: Development
– volume: 218
  start-page: 57
  year: 1995
  end-page: 62
  article-title: Endogenous transcription occurs at the 1‐cell stage in the mouse embryo
  publication-title: Exp Cell Res
– volume: 52
  start-page: 239
  year: 2006
  end-page: 248
  article-title: Improvement of cumulus‐free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice
  publication-title: J Reprod Dev
– volume: 4
  start-page: 12
  year: 2004
  article-title: Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote
  publication-title: BMC Dev Biol
– volume: 21
  start-page: 609
  year: 2014
  end-page: 616
  article-title: Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes
  publication-title: Nat Struct Mol Biol
– volume: 71
  start-page: 3439
  year: 2014
  end-page: 3463
  article-title: Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer
  publication-title: Cell Mol Life Sci
– volume: 50
  start-page: 455
  year: 2006
  end-page: 461
  article-title: Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos
  publication-title: Int J Dev Biol
– volume: 20
  start-page: 1744
  year: 2006
  end-page: 1754
  article-title: Maternal BRG1 regulates zygotic genome activation in the mouse
  publication-title: Genes Dev
– volume: 7
  start-page: 14
  year: 2007
  article-title: Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro
  publication-title: BMC Dev Biol
– volume: 131
  start-page: 2269
  year: 2004
  end-page: 2280
  article-title: Regulation of histone H3 lysine 9 methylation in oocytes and early pre‐implantation embryos
  publication-title: Development
– volume: 116
  start-page: 51
  year: 2004
  end-page: 61
  article-title: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis
  publication-title: Cell
– volume: 27
  start-page: 2736
  year: 2013
  end-page: 2748
  article-title: Inferring the choreography of parental genomes during fertilization from ultralarge‐scale whole‐transcriptome analysis
  publication-title: Genes Dev
– volume: 470
  start-page: 279
  year: 2011
  end-page: 283
  article-title: A unique chromatin signature uncovers early developmental enhancers in humans
  publication-title: Nature
– volume: 26
  start-page: 2604
  year: 2012
  end-page: 2620
  article-title: Enhancer‐associated H3K4 monomethylation by Trithorax‐related, the Drosophila homolog of mammalian Mll3/Mll4
  publication-title: Genes Dev
– volume: 2
  start-page: 30
  year: 2014
  article-title: Generation of a dual‐color reporter mouse line to monitor spermatogenesis in vivo
  publication-title: Front Cell Dev Biol
– volume: 14
  start-page: 217
  year: 2014
  end-page: 227
  article-title: Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 124
  start-page: 4615
  year: 1997
  end-page: 4625
  article-title: Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1‐cell mouse embryos
  publication-title: Development
– volume: 8
  start-page: e1000453
  year: 2010
  article-title: MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing
  publication-title: PLoS Biol
– volume: 339
  start-page: 240
  year: 2010
  end-page: 249
  article-title: Histone H3 lysine 4 (H3K4) methylation in development and differentiation
  publication-title: Dev Biol
– volume: 31
  start-page: 4310
  year: 2011
  end-page: 4318
  article-title: The COMPASS family of H3K4 methylases in Drosophila
  publication-title: Mol Cell Biol
– volume: 248
  start-page: 678
  year: 1974
  end-page: 680
  article-title: In vivo and in vitro effect of alpha‐amanitin on preimplantation mouse embryo RNA polymerase
  publication-title: Nature
– volume: 6
  start-page: 117
  year: 2004
  end-page: 131
  article-title: Dynamics of global gene expression changes during mouse preimplantation development
  publication-title: Dev Cell
– volume: 43
  start-page: 71
  year: 2005
  end-page: 79
  article-title: Noninvasive visualization of molecular events in the mammalian zygote
  publication-title: Genesis
– volume: 241
  start-page: 172
  year: 2002
  end-page: 182
  article-title: Dynamic reprogramming of DNA methylation in the early mouse embryo
  publication-title: Dev Biol
– volume: 6
  start-page: 1008
  year: 2014
  end-page: 1016
  article-title: Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes
  publication-title: Cell Rep
– volume: 394
  start-page: 369
  year: 1998
  end-page: 374
  article-title: Full‐term development of mice from enucleated oocytes injected with cumulus cell nuclei
  publication-title: Nature
– volume: 12
  start-page: 853
  year: 2010
  end-page: 862
  article-title: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3
  publication-title: Nat Cell Biol
– volume: 25
  start-page: 661
  year: 2011
  end-page: 672
  article-title: The super elongation complex (SEC) and MLL in development and disease
  publication-title: Genes Dev
– volume: 3
  start-page: RESEARCH0034
  year: 2002
  article-title: Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes
  publication-title: Genome Biol
– volume: 43
  start-page: D771
  year: 2015
  end-page: D776
  article-title: DBTMEE: a database of transcriptome in mouse early embryos
  publication-title: Nucleic Acids Res
– volume: 49
  start-page: 825
  year: 2013
  end-page: 837
  article-title: Modification of enhancer chromatin: what, how, and why?
  publication-title: Mol Cell
– volume: 181
  start-page: 296
  year: 1997
  end-page: 307
  article-title: Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo
  publication-title: Dev Biol
– volume: 340
  start-page: 857
  year: 2013
  end-page: 861
  article-title: Inhibition of PRC2 activity by a gain‐of‐function H3 mutation found in pediatric glioblastoma
  publication-title: Science
– volume: 112
  start-page: 921
  year: 1991
  end-page: 932
  article-title: Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one‐ and two‐cell stages
  publication-title: Development
– volume: 30
  start-page: 268
  year: 2014
  end-page: 279
  article-title: Hira‐mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote
  publication-title: Dev Cell
– volume: 81
  start-page: 65
  year: 2012
  end-page: 95
  article-title: The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis
  publication-title: Annu Rev Biochem
– ident: e_1_2_7_29_1
  doi: 10.7554/eLife.01503
– ident: e_1_2_7_32_1
  doi: 10.1038/nature08732
– ident: e_1_2_7_10_1
  doi: 10.1242/dev.095513
– ident: e_1_2_7_42_1
  doi: 10.1186/gb-2002-3-7-research0034
– ident: e_1_2_7_18_1
  doi: 10.1038/nsmb.2839
– ident: e_1_2_7_41_1
  doi: 10.1186/1471-213X-7-14
– ident: e_1_2_7_27_1
  doi: 10.1128/MCB.06092-11
– ident: e_1_2_7_37_1
  doi: 10.1016/S1534-5807(03)00373-3
– volume: 112
  start-page: 921
  year: 1991
  ident: e_1_2_7_13_1
  article-title: Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one‐ and two‐cell stages
  publication-title: Development
  doi: 10.1242/dev.112.4.921
– ident: e_1_2_7_2_1
  doi: 10.1242/dev.124.22.4615
– ident: e_1_2_7_28_1
  doi: 10.1101/gad.201327.112
– ident: e_1_2_7_45_1
  doi: 10.1038/nature11800
– ident: e_1_2_7_19_1
  doi: 10.1016/j.devcel.2014.06.022
– ident: e_1_2_7_5_1
  doi: 10.1186/1471-213X-4-12
– ident: e_1_2_7_38_1
  doi: 10.1262/jrd.17078
– ident: e_1_2_7_6_1
  doi: 10.1387/ijdb.052073mt
– ident: e_1_2_7_22_1
  doi: 10.1101/gad.2015411
– ident: e_1_2_7_24_1
  doi: 10.1371/journal.pbio.1000453
– ident: e_1_2_7_44_1
  doi: 10.1038/28615
– ident: e_1_2_7_7_1
  doi: 10.1038/ncb2089
– ident: e_1_2_7_31_1
  doi: 10.1242/dev.01116
– ident: e_1_2_7_33_1
  doi: 10.1038/nature07829
– volume: 46
  start-page: 317
  year: 2002
  ident: e_1_2_7_3_1
  article-title: Histone methylation defines epigenetic asymmetry in the mouse zygote
  publication-title: Int J Dev Biol
– ident: e_1_2_7_30_1
  doi: 10.1146/annurev-biochem-051710-134100
– ident: e_1_2_7_23_1
  doi: 10.1007/s00018-014-1605-4
– ident: e_1_2_7_4_1
  doi: 10.1006/dbio.2001.0501
– ident: e_1_2_7_15_1
  doi: 10.1006/dbio.1996.8466
– ident: e_1_2_7_16_1
  doi: 10.1016/j.celrep.2014.02.018
– ident: e_1_2_7_40_1
  doi: 10.1002/gene.20158
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mod.2005.04.009
– ident: e_1_2_7_21_1
  doi: 10.1016/j.ydbio.2009.08.017
– ident: e_1_2_7_26_1
  doi: 10.1093/nar/gku1001
– ident: e_1_2_7_11_1
  doi: 10.1002/jez.1401860211
– ident: e_1_2_7_20_1
  doi: 10.3389/fcell.2014.00030
– ident: e_1_2_7_25_1
  doi: 10.1101/gad.227926.113
– ident: e_1_2_7_36_1
  doi: 10.1101/gad.1435106
– ident: e_1_2_7_43_1
  doi: 10.1016/j.stem.2013.12.015
– ident: e_1_2_7_12_1
  doi: 10.1038/248678a0
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1232245
– ident: e_1_2_7_35_1
  doi: 10.1016/j.molcel.2013.01.038
– ident: e_1_2_7_14_1
  doi: 10.1006/excr.1995.1130
– ident: e_1_2_7_8_1
  doi: 10.4161/epi.20584
– ident: e_1_2_7_39_1
  doi: 10.1016/S0092-8674(03)01064-X
– ident: e_1_2_7_34_1
  doi: 10.1038/nature09692
– reference: 15922569 - Mech Dev. 2005 Sep;122(9):1008-22
– reference: 4795793 - J Exp Zool. 1973 Nov;186(2):207-16
– reference: 25087892 - Dev Cell. 2014 Aug 11;30(3):268-79
– reference: 14718166 - Cell. 2004 Jan 9;116(1):51-61
– reference: 20054296 - Nature. 2010 Jan 28;463(7280):554-8
– reference: 17341302 - BMC Dev Biol. 2007;7:14
– reference: 26065875 - Cell Cycle. 2015;14(16):2541-2
– reference: 14723852 - Dev Cell. 2004 Jan;6(1):117-31
– reference: 1935701 - Development. 1991 Aug;112(4):921-32
– reference: 25364737 - Front Cell Dev Biol. 2014 Jul 23;2:30
– reference: 16415523 - J Reprod Dev. 2006 Apr;52(2):239-48
– reference: 9690471 - Nature. 1998 Jul 23;394(6691):369-74
– reference: 24676717 - Cell Mol Life Sci. 2014 Sep;71(18):3439-63
– reference: 15383155 - BMC Dev Biol. 2004 Sep 21;4:12
– reference: 23903189 - Development. 2013 Sep;140(17):3624-34
– reference: 19703438 - Dev Biol. 2010 Mar 15;339(2):240-9
– reference: 16586346 - Int J Dev Biol. 2006;50(5):455-61
– reference: 23166019 - Genes Dev. 2012 Dec 1;26(23):2604-20
– reference: 22647320 - Epigenetics. 2012 Jul;7(7):747-57
– reference: 24352427 - Genes Dev. 2013 Dec 15;27(24):2736-48
– reference: 11784103 - Dev Biol. 2002 Jan 1;241(1):172-82
– reference: 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37
– reference: 24630997 - Cell Rep. 2014 Mar 27;6(6):1008-16
– reference: 24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27
– reference: 24908396 - Nat Struct Mol Biol. 2014 Jul;21(7):609-16
– reference: 7537698 - Exp Cell Res. 1995 May;218(1):57-62
– reference: 12068953 - Int J Dev Biol. 2002 May;46(3):317-20
– reference: 16100711 - Genesis. 2005 Oct;43(2):71-9
– reference: 23539183 - Science. 2013 May 17;340(6134):857-61
– reference: 23254936 - Nature. 2013 Jan 31;493(7434):632-7
– reference: 24368734 - Elife. 2013;2:e01503
– reference: 22663077 - Annu Rev Biochem. 2012;81:65-95
– reference: 21160473 - Nature. 2011 Feb 10;470(7333):279-83
– reference: 25336621 - Nucleic Acids Res. 2015 Jan;43(Database issue):D771-6
– reference: 21875999 - Mol Cell Biol. 2011 Nov;31(21):4310-8
– reference: 20808952 - PLoS Biol. 2010;8(8). pii: e1000453. doi: 10.1371/journal.pbio.1000453
– reference: 4833268 - Nature. 1974 Apr 19;248(5450):678-80
– reference: 15102709 - Development. 2004 May;131(10):2269-80
– reference: 9409678 - Development. 1997 Nov;124(22):4615-25
– reference: 9013938 - Dev Biol. 1997 Jan 15;181(2):296-307
– reference: 21460034 - Genes Dev. 2011 Apr 1;25(7):661-72
– reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
– reference: 16818606 - Genes Dev. 2006 Jul 1;20(13):1744-54
– reference: 20676102 - Nat Cell Biol. 2010 Sep;12(9):853-62
– reference: 19295514 - Nature. 2009 May 7;459(7243):108-12
SSID ssj0005978
Score 2.4159384
SecondaryResourceType review_article
Snippet Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 803
SubjectTerms Animals
Chromatin
DNA methylation
EMBO09
EMBO11
Embryonic Development - genetics
Embryonic growth stage
Enzymes
Epigenesis, Genetic
Fathers
Female
Fertilization - genetics
Fertilization in Vitro
Gene expression
histone methylation
Histones - genetics
Histones - metabolism
K-M mutant
Lysine - metabolism
Male
Methylation
Mice
minor ZGA
Mll3/4
Mutation
Pregnancy
Scientific Report
Scientific Reports
Spermatozoa
Transcriptional Activation
Zygote - physiology
Title Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development
URI https://api.istex.fr/ark:/67375/WNG-Q6SPRHWP-0/fulltext.pdf
https://link.springer.com/article/10.15252/embr.201439700
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201439700
https://www.ncbi.nlm.nih.gov/pubmed/25925669
https://www.proquest.com/docview/1692685425
https://www.proquest.com/docview/1693711884
https://pubmed.ncbi.nlm.nih.gov/PMC4515120
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQJhAvaBtfYWMyEkLwEEjij8SPUG1UoI5pYlrfLLs-jwqaoW5IlL-euyTNVm0T4iVK5Iu_7s4-2-ffMfYyFD5K0CIlOLBUQg6py2JIJxp89BqiUXTBeXSgh8fy01iNO5Akugtz9fxeFap4BzNPsJ05TZwZrs3XVS5KitEw0INLXw7TDLmo9SYtinzcYfjckMHK9LNOPfn7Jtvyuotkf066asU209D-BnvQ2Y_8fcvwTXYH6i12t40oudhi90bdWflDNjt0LcAzH4rPklOo6EXr-Man53wO5AIMgaPRymfTGp9_FqdnmCtHkQJO9x3a3Vru6sCBcJA5bRMAp6YuCFGXh0uPo0fseH_v62CYdsEVkA2oo2klfJUpZ_KQuRyM8Jn3UFUQhS8mZW6CdCpUONsHHU0WjfEyGOlj4SJALIN4zNbqsxqeMq4wB9pPjRTfz6jCgHIOx42gShFkFAl7u-xzO-mQxykAxg9LKxBikqWa255JCXvd__CzBd24nfRVw8Sezs2_k69aqezJwUdLUAFHw5NDi4Q7Sy7bTk3Pba5NoSuF41bCXvTJqGB0auJqwF4lGlHiMqySCXvSCkVfGK4d0WTUJmHlirj0BATevZpST781IN5Ska2F1XqzFKwr1bqtraKRvH_1id0bfTjqv579Rwnb7D6-q9YdeYetXcx_wXM0ui78bqNwu7SH-eUvXTAl2w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VRDwuCMproYCRAMFhYV_eXR84BGhJkyaqSqvmZuzYhgiyRUkRhH_DP2Vmd7MlohXi0EukZCe21zMej-3P3wA8NpF2iU1jn-jA_MSG1leBM_44tdrp1DrB6YLzYJh2D5LeiI_W4NfyLkyJdl8eSZaeus7RE720U00EniFNoUFQ4yj7dvEdV2nzV9tvUaVPomhrc_9N168TCWCVaI9-Hus84EqEJlChFbEOtLZ5bl2so3EWCpMobnKc2UzqROCE0IkRiXaRcta6zMRY7gVo5zzNeQvanU7vfe8ERyJKd48eR_hRFI5q_qBTmrwy9bVJiz9Oi2v_hmc2Z7SrEXQ5BW5dg6t17Mo6lbFdhzVbrMPFKpvlYh0uDepz-hsw3VUVuTTrxv2EUZrqRQW6Y5M5m1mCH1vDMGBm00mBnz8XH4-wVIbmbBndtah2ipkqDLPEwcxoi8IyetUFsfkyc4J2ugkH56KPW9Aqjgp7BxjHEmgv11FuQcEjYblS6LMMz2KTuNiDF8s-l-Oa9ZySb3yRtPohJUlquWyU5MGz5g9fK8KPs0Wflkps5NTsM-HkMi4Ph-8k0RTsdQ93JQpuLLUsaxcxl2EqIrQn9JkePGoe4-CmExtVWOxVkokzXALmiQe3K6NoKsN1K4arqfAgWzGXRoCIw1efFJNPJYF4winOw2Y9XxrWH806613j0vL-1Sdyc_B6r_l29z9qeAiXu_uDHbmzPezfgyv4O69g0RvQOp59s_cx-DvWD-rhx-DDeY_43xtHaJs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKyouCMorUMBIgOCwdF_eXR84QNqQEhJFFVVzc-14DBFkWyVBEP4T_5GZfZWIVohDLyvt7qzt9YzHM_b4G8ae2tC4GJLIIzgwL4YAPO07640TMM4k4KSgA879QdI9jN-PxGiN_arPwhTR7vWWZHmmgVCa8sXOqXV1vp5wB6aGwDwDmk59v4qp7MHyO3ps89f7u8jeZ2HY2fvY7npVUgGsHmXTyyKT-ULLwPo6ABkZ3xjIMnCRCcdpIG2shc1wlrOJk76T0sRWxsaF2gG41EZY7hW2gW5RQL5eO2mfRZTIQvGj7pFeGAajCknonAavTIIbxM8f51m4fwdqNru1q7Z0MRl2brDrlRXL35Rid5OtQb7FrpZ5LZdbbLNf7djfYtOhLmGmeTfqxZwSVi_L8Ds-mfMZUCAyWI6mM59Ocrz-XH46wVI5CjZwOnVRrhlznVsOhMbMabECOP3qknB9uT2Le7rNDi-FG3fYen6Swz3GBZZAq7qOsgxKEUoQWqP2siKNbOyiFntV97kaV_jnlIbjqyI_iJikqOWqYVKLvWg-OC2hPy4mfV4wsaHTsy8UMZcKdTR4pwiw4KB7NFRIuF1zWVXKYq6CRIZJJlB7ttiT5jUOc9q70TlgrxJNlKIzmMUtdrcUiqYy9GDRcE1ki6Ur4tIQEIT46pt88rmAEo8FWXzYrJe1YP3RrIv-NSok7199ovb6bw-au_v_UcNjtjnc7agP-4PeA3YNH4syPnqbrS9m3-AhWoEL86gYe5wdX_Zg_w1IHWt1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paternal+H3K4+methylation+is+required+for+minor+zygotic+gene+activation+and+early+mouse+embryonic+development&rft.jtitle=EMBO+reports&rft.au=Aoshima%2C+Keisuke&rft.au=Inoue%2C+Erina&rft.au=Sawa%2C+Hirofumi&rft.au=Okada%2C+Yuki&rft.date=2015-07-01&rft.eissn=1469-3178&rft.volume=16&rft.issue=7&rft.spage=803&rft_id=info:doi/10.15252%2Fembr.201439700&rft_id=info%3Apmid%2F25925669&rft.externalDocID=25925669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon