Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development
Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endo...
Saved in:
Published in | EMBO reports Vol. 16; no. 7; pp. 803 - 812 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
01.07.2015
Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice.
Synopsis
In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers.
Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development.
Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA.
Graphical Abstract
In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers. |
---|---|
AbstractList | Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice.
Synopsis
In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers.
Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development.
Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA.
In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers. Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K-M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K-M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K-M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K-M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. Synopsis In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4-dependent H3K4 monomethylation likely at enhancers. Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development. Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA. Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K‐M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K‐M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. Synopsis In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers. Overexpression of H3.3 K4M mutant in the zygote causes global reduction of paternal H3K4 methylation, minor zygotic transcription, and subsequent embryonic development. Mll3/4, responsible enzymes for H3K4 monomethylation at enhancer regions, are involved in paternal minor ZGA. Graphical Abstract In the mouse zygote, transcriptional properties are asymmetric between male and female pronuclei. This study shows that in the male pronucleus, minor zygotic gene activation requires Mll3/4‐dependent H3K4 monomethylation likely at enhancers. |
Author | Inoue, Erina Aoshima, Keisuke Sawa, Hirofumi Okada, Yuki |
Author_xml | – sequence: 1 givenname: Keisuke surname: Aoshima fullname: Aoshima, Keisuke organization: Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-kuTokyo, Japan – sequence: 2 givenname: Erina surname: Inoue fullname: Inoue, Erina organization: Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-kuTokyo, Japan – sequence: 3 givenname: Hirofumi surname: Sawa fullname: Sawa, Hirofumi organization: Division of Molecular Pathobiology, Center for Zoonosis Control, Hokkaido University, Kita-kuSapporo, Japan – sequence: 4 givenname: Yuki surname: Okada fullname: Okada, Yuki email: ytokada@iam.u-tokyo.ac.jp organization: Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-kuTokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25925669$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxSNURD_gzA1Z4sIlre3Eic0BCarSRRRYCqjcLCeZbF0ce2tnF8Jfj3ezrJZKwMW25N-bNzPvMNmzzkKSPCb4mDDK6Al0lT-mmOSZKDG-lxyQvBBpRkq-t3lTSr7uJ4ch3GCMmSj5g2SfMkFZUYiDpJuqHrxVBk2ytznqoL8ejOq1s0gH5OF2oT00qHUeddrG8-cwc72u0QwsIFX3ejnSyjYIlDcD6twiAFo1NjgbyQaWYNy8A9s_TO63ygR4tLmPki-vzz6fTtKLD-dvTl9epHXBS5zyrOKYKUEarAiIrMJVBZxDm1W0LolocsUajgvSFK3ArRBV3oi8aqlqAdqyyY6SF2Pd-aLqoKmjtVdGzr3ulB-kU1r--WP1tZy5pcwZYYTiWODZpoB3twsIvex0qMEYZSGOJ0khspIQzvOIPr2D3rjFaqNrihac5ZRF6sluR9tWficRgZMRqL0LwUO7RQiW66zlaqVym3VUsDuKWvfrMOJI2vxD93zUfdcGhv_ZyLN3ry53xXgUh6izM_A70_7VLx0lOvTwY-un_DdZlFnJ5NX7c_mx-DS9nFxNJc5-ASVy4Mc |
CODEN | ERMEAX |
CitedBy_id | crossref_primary_10_15252_embr_201846240 crossref_primary_10_1093_biolre_ioz155 crossref_primary_10_1016_j_celrep_2017_07_011 crossref_primary_10_1038_s41598_020_63010_x crossref_primary_10_1038_s41598_021_89334_w crossref_primary_10_1016_j_tcb_2017_10_008 crossref_primary_10_3390_biom13121750 crossref_primary_10_1016_j_devcel_2016_08_004 crossref_primary_10_1242_dev_157453 crossref_primary_10_1093_advances_nmab038 crossref_primary_10_1093_abbs_gmab068 crossref_primary_10_1242_dev_141390 crossref_primary_10_1080_19396368_2019_1666435 crossref_primary_10_1111_andr_12926 crossref_primary_10_1007_s00018_019_03360_6 crossref_primary_10_1038_s41598_024_74270_2 crossref_primary_10_1096_fj_201700955R crossref_primary_10_1016_j_celrep_2018_12_046 crossref_primary_10_1002_jez_b_22943 crossref_primary_10_1007_s11427_016_5006_9 crossref_primary_10_5534_wjmh_190034 crossref_primary_10_1016_j_canlet_2019_05_024 crossref_primary_10_1071_RD15365 crossref_primary_10_1007_s00418_021_02036_2 crossref_primary_10_1093_biolre_iox020 crossref_primary_10_1016_j_theriogenology_2020_02_036 crossref_primary_10_3892_ijmm_2017_3115 crossref_primary_10_1016_j_gde_2021_01_008 crossref_primary_10_3390_ijms25031459 crossref_primary_10_1038_s41467_023_37820_2 crossref_primary_10_5713_ab_23_0401 crossref_primary_10_1242_dev_202169 crossref_primary_10_1289_EHP12013 crossref_primary_10_1242_dev_161471 crossref_primary_10_5653_cerm_2016_43_2_59 crossref_primary_10_1007_s00018_016_2447_z crossref_primary_10_1262_jrd_2019_139 crossref_primary_10_1159_000529336 crossref_primary_10_3389_fcell_2020_610773 crossref_primary_10_1111_andr_13277 crossref_primary_10_1002_wsbm_1588 crossref_primary_10_1242_dev_143347 crossref_primary_10_1016_j_celrep_2024_115148 crossref_primary_10_1016_j_gene_2023_147256 crossref_primary_10_3390_jcm9030640 crossref_primary_10_1016_j_cdev_2023_203859 crossref_primary_10_1016_j_devcel_2017_07_026 crossref_primary_10_1530_REP_17_0488 crossref_primary_10_1530_REP_18_0495 crossref_primary_10_1016_j_devcel_2021_01_014 crossref_primary_10_1038_nature19360 crossref_primary_10_1016_j_biomaterials_2019_119604 crossref_primary_10_1080_15384101_2015_1060774 crossref_primary_10_1038_s41467_024_55441_1 crossref_primary_10_1093_nar_gkaa712 crossref_primary_10_1016_j_bbamcr_2020_118648 crossref_primary_10_1038_s41580_018_0008_z crossref_primary_10_7554_eLife_39381 crossref_primary_10_1093_nar_gkaa082 crossref_primary_10_1038_s41588_019_0398_7 |
Cites_doi | 10.7554/eLife.01503 10.1038/nature08732 10.1242/dev.095513 10.1186/gb-2002-3-7-research0034 10.1038/nsmb.2839 10.1186/1471-213X-7-14 10.1128/MCB.06092-11 10.1016/S1534-5807(03)00373-3 10.1242/dev.112.4.921 10.1242/dev.124.22.4615 10.1101/gad.201327.112 10.1038/nature11800 10.1016/j.devcel.2014.06.022 10.1186/1471-213X-4-12 10.1262/jrd.17078 10.1387/ijdb.052073mt 10.1101/gad.2015411 10.1371/journal.pbio.1000453 10.1038/28615 10.1038/ncb2089 10.1242/dev.01116 10.1038/nature07829 10.1146/annurev-biochem-051710-134100 10.1007/s00018-014-1605-4 10.1006/dbio.2001.0501 10.1006/dbio.1996.8466 10.1016/j.celrep.2014.02.018 10.1002/gene.20158 10.1016/j.mod.2005.04.009 10.1016/j.ydbio.2009.08.017 10.1093/nar/gku1001 10.1002/jez.1401860211 10.3389/fcell.2014.00030 10.1101/gad.227926.113 10.1101/gad.1435106 10.1016/j.stem.2013.12.015 10.1038/248678a0 10.1126/science.1232245 10.1016/j.molcel.2013.01.038 10.1006/excr.1995.1130 10.4161/epi.20584 10.1016/S0092-8674(03)01064-X 10.1038/nature09692 |
ContentType | Journal Article |
Copyright | The Authors 2015 2015 The Authors 2015 The Authors. 2015 EMBO 2015 The Authors 2015 |
Copyright_xml | – notice: The Authors 2015 – notice: 2015 The Authors – notice: 2015 The Authors. – notice: 2015 EMBO – notice: 2015 The Authors 2015 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embr.201439700 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1469-3178 |
EndPage | 812 |
ExternalDocumentID | PMC4515120 3732017531 25925669 10_15252_embr_201439700 EMBR201439700 ark_67375_WNG_Q6SPRHWP_0 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Promoting Science and Technology of MEXT – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan grantid: 22125007 – fundername: The Naito Foundation Subsidy for Female Researchers after Maternity Leave – fundername: Research Fellowships of Japan Society for the Promotion of Science for Young Scientists – fundername: JST PRESTO program – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan funderid: 22125007 |
GroupedDBID | --- -DZ -Q- .55 0R~ 1OC 24P 29G 2WC 33P 36B 39C 3O- 3V. 53G 5GY 5VS 70F 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 DCZOG DIK DPXWK DRFUL DRSTM DWQXO E3Z EBLON EBS EJD EMB EMOBN F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HK~ HMCUK HVGLF HYE H~9 KQ8 L7B LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M0L M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P2P P2W PQQKQ PROAC PSQYO Q2X R.K RHF RHI RIG RNI RNS ROL RPM RZO SV3 TR2 UKHRP WBKPD WIH WIK WIN WOHZO WOQ WXSBR WYJ X7M ZGI ZZTAW AAJSJ AAYCA ACYXJ AFWVQ AANHP ACRPL ADNMO AEUYN AASML AAYXX AGQPQ CITATION NAO PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6870-83b805a91d0a1e93b0bbe88ef3b2c719d4a5d8061d6f90f99b4d94bf2afeef7d3 |
IEDL.DBID | C6C |
ISSN | 1469-221X |
IngestDate | Thu Aug 21 18:24:22 EDT 2025 Fri Jul 11 06:04:17 EDT 2025 Fri Jul 25 10:57:43 EDT 2025 Mon Jul 21 06:00:33 EDT 2025 Tue Jul 01 02:52:14 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Wed Jan 22 16:22:11 EST 2025 Fri Feb 21 02:36:36 EST 2025 Wed Oct 30 09:55:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | histone methylation Mll3/4 minor ZGA K‐M mutant |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6870-83b805a91d0a1e93b0bbe88ef3b2c719d4a5d8061d6f90f99b4d94bf2afeef7d3 |
Notes | Supplementary InformationReview Process File The Naito Foundation Subsidy for Female Researchers after Maternity Leave JST PRESTO program Research Fellowships of Japan Society for the Promotion of Science for Young Scientists Promoting Science and Technology of MEXT ark:/67375/WNG-Q6SPRHWP-0 istex:FEB2FB2F613663CA3E40BBF3F65C3271E508CDD5 ArticleID:EMBR201439700 Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan - No. 22125007 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Subject Categories Development & Differentiation; Chromatin, Epigenetics, Genomics & Functional Genomics |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embr.201439700 |
PMID | 25925669 |
PQID | 1692685425 |
PQPubID | 26169 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4515120 proquest_miscellaneous_1693711884 proquest_journals_1692685425 pubmed_primary_25925669 crossref_primary_10_15252_embr_201439700 crossref_citationtrail_10_15252_embr_201439700 wiley_primary_10_15252_embr_201439700_EMBR201439700 springer_journals_10_15252_embr_201439700 istex_primary_ark_67375_WNG_Q6SPRHWP_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Chichester, UK |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO rep |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley & Sons, Ltd |
References | Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470: 279-283 Liu W, Yin J, Kou X, Jiang Y, Gao H, Zhao Y, Huang B, He W, Wang H, Han Z et al (2014) Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes. Cell Rep 6: 1008-1016 Latham KE, Garrels JI, Chang C, Solter D (1991) Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112: 921-932 Park SJ, Shirahige K, Ohsugi M, Nakai K (2015) DBTMEE: a database of transcriptome in mouse early embryos. Nucleic Acids Res 43: D771-D776 Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51-61 Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12: 853-862 Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, Matzuk MM (2010) MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 8: e1000453 Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46: 317-320 Lin CJ, Conti M, Ramalho-Santos M (2013) Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140: 3624-3634 Makino Y, Inoue E, Hada M, Aoshima K, Kitano S, Miyachi H, Okada Y (2014) Generation of a dual-color reporter mouse line to monitor spermatogenesis in vivo. Front Cell Dev Biol 2: 30 van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122: 1008-1022 Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340: 857-861 Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31: 4310-4318 Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26: 2604-2620 Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y et al (2014) Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14: 217-227 Boskovic A, Bender A, Gall L, Ziegler-Birling C, Beaujean N, Torres-Padilla ME (2012) Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Epigenetics 7: 747-757 Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339: 240-249 Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK (2014) Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 71: 3439-3463 Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124: 4615-4625 Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181: 296-307 Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218: 57-62 Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463: 554-558 Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394: 369-374 Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034. Warner CM, Versteegh LR (1974) In vivo and in vitro effect of alpha-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248: 678-680 Lin CJ, Koh FM, Wong P, Conti M, Ramalho-Santos M (2014) Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell 30: 268-279 Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6: 117-131 Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81: 65-95 Liu H, Kim JM, Aoki F (2004) Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131: 2269-2280 Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20: 1744-1754 Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49: 825-837 Smith E, Lin C, Shilatifard A (2011) The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25: 661-672 Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4: 12 Inoue A, Zhang Y (2014) Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21: 609-616 Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108-112 Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2: e01503 Mamo S, Gal AB, Bodo S, Dinnyes A (2007) Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol 7: 14 Golbus MS, Calarco PG, Epstein CJ (1973) The effects of inhibitors of RNA synthesis (alpha-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool 186: 207-216 Miki H, Ogonuki N, Inoue K, Baba T, Ogura A (2006) Improvement of cumulus-free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice. J Reprod Dev 52: 239-248 Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50: 455-461 Yamagata K, Yamazaki T, Yamashita M, Hara Y, Ogonuki N, Ogura A (2005) Noninvasive visualization of molecular events in the mammalian zygote. Genesis 43: 71-79 Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA et al (2013) Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493: 632-637 Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241: 172-182 Park SJ, Komata M, Inoue F, Yamada K, Nakai K, Ohsugi M, Shirahige K (2013) Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev 27: 2736-2748 Miki, Ogonuki, Inoue, Baba, Ogura (CR37) 2006; 52 Shilatifard (CR29) 2012; 81 Santenard, Ziegler‐Birling, Koch, Tora, Bannister, Torres‐Padilla (CR6) 2010; 12 Smith, Lin, Shilatifard (CR21) 2011; 25 Lee, Wang, Xu, Cho, Wang, Feng, Baldridge, Sartorelli, Zhuang, Peng (CR28) 2013; 2 Park, Shirahige, Ohsugi, Nakai (CR25) 2015; 43 Calo, Wysocka (CR34) 2013; 49 Yamagata, Yamazaki, Yamashita, Hara, Ogonuki, Ogura (CR39) 2005; 43 Bouniol, Nguyen, Debey (CR13) 1995; 218 Okada, Yamagata, Hong, Wakayama, Zhang (CR31) 2010; 463 Lewis, Müller, Koletsky, Cordero, Lin, Banaszynski, Garcia, Muir, Becher, Allis (CR16) 2013; 340 Santos, Hendrich, Reik, Dean (CR3) 2002; 241 Torres‐Padilla, Bannister, Hurd, Kouzarides, Zernicka‐Goetz (CR5) 2006; 50 Lin, Conti, Ramalho‐Santos (CR9) 2013; 140 Warner, Versteegh (CR11) 1974; 248 Paull, Emmanuele, Weiss, Treff, Stewart, Hua, Zimmer, Kahler, Goland, Noggle (CR44) 2013; 493 Mohan, Herz, Smith, Zhang, Jackson, Washburn, Florens, Eissenberg, Shilatifard (CR26) 2011; 31 Liu, Yin, Kou, Jiang, Gao, Zhao, Huang, He, Wang, Han (CR15) 2014; 6 Park, Komata, Inoue, Yamada, Nakai, Ohsugi, Shirahige (CR24) 2013; 27 Tagami, Ray‐Gallet, Almouzni, Nakatani (CR38) 2004; 116 Vandesompele, De Preter, Pattyn, Poppe, Van Roy, De Paepe, Speleman (CR41) 2002; 3 Latham, Garrels, Chang, Solter (CR12) 1991; 112 Heintzman, Hon, Hawkins, Kheradpour, Stark, Harp, Ye, Lee, Stuart, Ching (CR32) 2009; 459 Andreu‐Vieyra, Chen, Agno, Glaser, Anastassiadis, Stewart, Matzuk (CR23) 2010; 8 Deb, Kar, Sengupta, Shilpi, Parbin, Rath, Londhe, Patra (CR22) 2014; 71 Hamatani, Carter, Sharov, Ko (CR36) 2004; 6 Adenot, Mercier, Renard, Thompson (CR1) 1997; 124 Liu, Kim, Aoki (CR30) 2004; 131 Boskovic, Bender, Gall, Ziegler‐Birling, Beaujean, Torres‐Padilla (CR7) 2012; 7 Makino, Inoue, Hada, Aoshima, Kitano, Miyachi, Okada (CR19) 2014; 2 Eissenberg, Shilatifard (CR20) 2010; 339 Shinagawa, Takagi, Tsukamoto, Tomaru, Huynh, Sivaraman, Kumarevel, Inoue, Nakato, Katou (CR42) 2014; 14 Golbus, Calarco, Epstein (CR10) 1973; 186 Herz, Mohan, Garruss, Liang, Takahashi, Mickey, Voets, Verrijzer, Shilatifard (CR27) 2012; 26 Aoki, Worrad, Schultz (CR14) 1997; 181 Lin, Koh, Wong, Conti, Ramalho‐Santos (CR18) 2014; 30 van der Heijden, Dieker, Derijck, Muller, Berden, Braat, van der Vlag, de Boer (CR8) 2005; 122 Bultman, Gebuhr, Pan, Svoboda, Schultz, Magnuson (CR35) 2006; 20 Mamo, Gal, Bodo, Dinnyes (CR40) 2007; 7 Rada‐Iglesias, Bajpai, Swigut, Brugmann, Flynn, Wysocka (CR33) 2011; 470 Wakayama, Perry, Zuccotti, Johnson, Yanagimachi (CR43) 1998; 394 Inoue, Zhang (CR17) 2014; 21 Arney, Bao, Bannister, Kouzarides, Surani (CR2) 2002; 46 Lepikhov, Walter (CR4) 2004; 4 2010; 12 2012; 81 2006; 52 2006; 50 1991; 112 2013; 27 2013; 2 2013; 49 1973; 186 1995; 218 2004; 4 2011; 31 1974; 248 2010; 463 2004; 6 2002; 3 2005; 43 2013; 140 1997; 181 2013; 340 2009; 459 2011; 470 2014; 21 1998; 394 1997; 124 2004; 131 2004; 116 2006; 20 2014; 2 2002; 241 2005; 122 2010; 339 2002; 46 2015; 43 2014; 14 2007; 7 2013; 493 2011; 25 2012; 26 2014; 30 2012; 7 2014; 6 2014; 71 2010; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Arney KL (e_1_2_7_3_1) 2002; 46 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Latham KE (e_1_2_7_13_1) 1991; 112 19703438 - Dev Biol. 2010 Mar 15;339(2):240-9 16415523 - J Reprod Dev. 2006 Apr;52(2):239-48 17341302 - BMC Dev Biol. 2007;7:14 21875999 - Mol Cell Biol. 2011 Nov;31(21):4310-8 23166019 - Genes Dev. 2012 Dec 1;26(23):2604-20 15383155 - BMC Dev Biol. 2004 Sep 21;4:12 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 20676102 - Nat Cell Biol. 2010 Sep;12(9):853-62 4833268 - Nature. 1974 Apr 19;248(5450):678-80 24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27 23903189 - Development. 2013 Sep;140(17):3624-34 14718166 - Cell. 2004 Jan 9;116(1):51-61 23539183 - Science. 2013 May 17;340(6134):857-61 21160473 - Nature. 2011 Feb 10;470(7333):279-83 7537698 - Exp Cell Res. 1995 May;218(1):57-62 24352427 - Genes Dev. 2013 Dec 15;27(24):2736-48 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37 9013938 - Dev Biol. 1997 Jan 15;181(2):296-307 25364737 - Front Cell Dev Biol. 2014 Jul 23;2:30 9690471 - Nature. 1998 Jul 23;394(6691):369-74 12068953 - Int J Dev Biol. 2002 May;46(3):317-20 9409678 - Development. 1997 Nov;124(22):4615-25 23254936 - Nature. 2013 Jan 31;493(7434):632-7 15922569 - Mech Dev. 2005 Sep;122(9):1008-22 15102709 - Development. 2004 May;131(10):2269-80 24630997 - Cell Rep. 2014 Mar 27;6(6):1008-16 22647320 - Epigenetics. 2012 Jul;7(7):747-57 21460034 - Genes Dev. 2011 Apr 1;25(7):661-72 20808952 - PLoS Biol. 2010;8(8). pii: e1000453. doi: 10.1371/journal.pbio.1000453 11784103 - Dev Biol. 2002 Jan 1;241(1):172-82 24908396 - Nat Struct Mol Biol. 2014 Jul;21(7):609-16 16818606 - Genes Dev. 2006 Jul 1;20(13):1744-54 26065875 - Cell Cycle. 2015;14(16):2541-2 25087892 - Dev Cell. 2014 Aug 11;30(3):268-79 16586346 - Int J Dev Biol. 2006;50(5):455-61 25336621 - Nucleic Acids Res. 2015 Jan;43(Database issue):D771-6 20054296 - Nature. 2010 Jan 28;463(7280):554-8 19295514 - Nature. 2009 May 7;459(7243):108-12 24368734 - Elife. 2013;2:e01503 16100711 - Genesis. 2005 Oct;43(2):71-9 14723852 - Dev Cell. 2004 Jan;6(1):117-31 22663077 - Annu Rev Biochem. 2012;81:65-95 24676717 - Cell Mol Life Sci. 2014 Sep;71(18):3439-63 1935701 - Development. 1991 Aug;112(4):921-32 4795793 - J Exp Zool. 1973 Nov;186(2):207-16 |
References_xml | – reference: Park SJ, Shirahige K, Ohsugi M, Nakai K (2015) DBTMEE: a database of transcriptome in mouse early embryos. Nucleic Acids Res 43: D771-D776 – reference: Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463: 554-558 – reference: Mamo S, Gal AB, Bodo S, Dinnyes A (2007) Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol 7: 14 – reference: Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y et al (2014) Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14: 217-227 – reference: Park SJ, Komata M, Inoue F, Yamada K, Nakai K, Ohsugi M, Shirahige K (2013) Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev 27: 2736-2748 – reference: Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181: 296-307 – reference: Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218: 57-62 – reference: Lin CJ, Conti M, Ramalho-Santos M (2013) Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140: 3624-3634 – reference: Latham KE, Garrels JI, Chang C, Solter D (1991) Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112: 921-932 – reference: Golbus MS, Calarco PG, Epstein CJ (1973) The effects of inhibitors of RNA synthesis (alpha-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J Exp Zool 186: 207-216 – reference: Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51-61 – reference: Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50: 455-461 – reference: Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4: 12 – reference: Inoue A, Zhang Y (2014) Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21: 609-616 – reference: Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA et al (2013) Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493: 632-637 – reference: Miki H, Ogonuki N, Inoue K, Baba T, Ogura A (2006) Improvement of cumulus-free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice. J Reprod Dev 52: 239-248 – reference: Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108-112 – reference: Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394: 369-374 – reference: Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340: 857-861 – reference: Lin CJ, Koh FM, Wong P, Conti M, Ramalho-Santos M (2014) Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell 30: 268-279 – reference: Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470: 279-283 – reference: Smith E, Lin C, Shilatifard A (2011) The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25: 661-672 – reference: Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81: 65-95 – reference: Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26: 2604-2620 – reference: Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124: 4615-4625 – reference: van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122: 1008-1022 – reference: Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31: 4310-4318 – reference: Arney KL, Bao S, Bannister AJ, Kouzarides T, Surani MA (2002) Histone methylation defines epigenetic asymmetry in the mouse zygote. Int J Dev Biol 46: 317-320 – reference: Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034. – reference: Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6: 117-131 – reference: Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK (2014) Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 71: 3439-3463 – reference: Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20: 1744-1754 – reference: Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2: e01503 – reference: Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, Matzuk MM (2010) MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 8: e1000453 – reference: Boskovic A, Bender A, Gall L, Ziegler-Birling C, Beaujean N, Torres-Padilla ME (2012) Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Epigenetics 7: 747-757 – reference: Yamagata K, Yamazaki T, Yamashita M, Hara Y, Ogonuki N, Ogura A (2005) Noninvasive visualization of molecular events in the mammalian zygote. Genesis 43: 71-79 – reference: Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12: 853-862 – reference: Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339: 240-249 – reference: Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49: 825-837 – reference: Warner CM, Versteegh LR (1974) In vivo and in vitro effect of alpha-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248: 678-680 – reference: Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241: 172-182 – reference: Makino Y, Inoue E, Hada M, Aoshima K, Kitano S, Miyachi H, Okada Y (2014) Generation of a dual-color reporter mouse line to monitor spermatogenesis in vivo. Front Cell Dev Biol 2: 30 – reference: Liu H, Kim JM, Aoki F (2004) Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131: 2269-2280 – reference: Liu W, Yin J, Kou X, Jiang Y, Gao H, Zhao Y, Huang B, He W, Wang H, Han Z et al (2014) Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes. Cell Rep 6: 1008-1016 – volume: 31 start-page: 4310 year: 2011 end-page: 4318 ident: CR26 article-title: The COMPASS family of H3K4 methylases in Drosophila publication-title: Mol Cell Biol – volume: 27 start-page: 2736 year: 2013 end-page: 2748 ident: CR24 article-title: Inferring the choreography of parental genomes during fertilization from ultralarge‐scale whole‐transcriptome analysis publication-title: Genes Dev – volume: 186 start-page: 207 year: 1973 end-page: 216 ident: CR10 article-title: The effects of inhibitors of RNA synthesis (alpha‐amanitin and actinomycin D) on preimplantation mouse embryogenesis publication-title: J Exp Zool – volume: 25 start-page: 661 year: 2011 end-page: 672 ident: CR21 article-title: The super elongation complex (SEC) and MLL in development and disease publication-title: Genes Dev – volume: 124 start-page: 4615 year: 1997 end-page: 4625 ident: CR1 article-title: Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1‐cell mouse embryos publication-title: Development – volume: 46 start-page: 317 year: 2002 end-page: 320 ident: CR2 article-title: Histone methylation defines epigenetic asymmetry in the mouse zygote publication-title: Int J Dev Biol – volume: 181 start-page: 296 year: 1997 end-page: 307 ident: CR14 article-title: Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo publication-title: Dev Biol – volume: 339 start-page: 240 year: 2010 end-page: 249 ident: CR20 article-title: Histone H3 lysine 4 (H3K4) methylation in development and differentiation publication-title: Dev Biol – volume: 470 start-page: 279 year: 2011 end-page: 283 ident: CR33 article-title: A unique chromatin signature uncovers early developmental enhancers in humans publication-title: Nature – volume: 6 start-page: 1008 year: 2014 end-page: 1016 ident: CR15 article-title: Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes publication-title: Cell Rep – volume: 493 start-page: 632 year: 2013 end-page: 637 ident: CR44 article-title: Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants publication-title: Nature – volume: 241 start-page: 172 year: 2002 end-page: 182 ident: CR3 article-title: Dynamic reprogramming of DNA methylation in the early mouse embryo publication-title: Dev Biol – volume: 248 start-page: 678 year: 1974 end-page: 680 ident: CR11 article-title: In vivo and in vitro effect of alpha‐amanitin on preimplantation mouse embryo RNA polymerase publication-title: Nature – volume: 50 start-page: 455 year: 2006 end-page: 461 ident: CR5 article-title: Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos publication-title: Int J Dev Biol – volume: 122 start-page: 1008 year: 2005 end-page: 1022 ident: CR8 article-title: Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote publication-title: Mech Dev – volume: 8 start-page: e1000453 year: 2010 ident: CR23 article-title: MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing publication-title: PLoS Biol – volume: 140 start-page: 3624 year: 2013 end-page: 3634 ident: CR9 article-title: Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development publication-title: Development – volume: 71 start-page: 3439 year: 2014 end-page: 3463 ident: CR22 article-title: Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer publication-title: Cell Mol Life Sci – volume: 43 start-page: 71 year: 2005 end-page: 79 ident: CR39 article-title: Noninvasive visualization of molecular events in the mammalian zygote publication-title: Genesis – volume: 7 start-page: 14 year: 2007 ident: CR40 article-title: Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro publication-title: BMC Dev Biol – volume: 20 start-page: 1744 year: 2006 end-page: 1754 ident: CR35 article-title: Maternal BRG1 regulates zygotic genome activation in the mouse publication-title: Genes Dev – volume: 2 start-page: e01503 year: 2013 ident: CR28 article-title: H3K4 mono‐ and di‐methyltransferase MLL4 is required for enhancer activation during cell differentiation publication-title: Elife – volume: 52 start-page: 239 year: 2006 end-page: 248 ident: CR37 article-title: Improvement of cumulus‐free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice publication-title: J Reprod Dev – volume: 116 start-page: 51 year: 2004 end-page: 61 ident: CR38 article-title: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis publication-title: Cell – volume: 12 start-page: 853 year: 2010 end-page: 862 ident: CR6 article-title: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 publication-title: Nat Cell Biol – volume: 6 start-page: 117 year: 2004 end-page: 131 ident: CR36 article-title: Dynamics of global gene expression changes during mouse preimplantation development publication-title: Dev Cell – volume: 131 start-page: 2269 year: 2004 end-page: 2280 ident: CR30 article-title: Regulation of histone H3 lysine 9 methylation in oocytes and early pre‐implantation embryos publication-title: Development – volume: 7 start-page: 747 year: 2012 end-page: 757 ident: CR7 article-title: Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation publication-title: Epigenetics – volume: 81 start-page: 65 year: 2012 end-page: 95 ident: CR29 article-title: The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis publication-title: Annu Rev Biochem – volume: 21 start-page: 609 year: 2014 end-page: 616 ident: CR17 article-title: Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes publication-title: Nat Struct Mol Biol – volume: 43 start-page: D771 year: 2015 end-page: D776 ident: CR25 article-title: DBTMEE: a database of transcriptome in mouse early embryos publication-title: Nucleic Acids Res – volume: 340 start-page: 857 year: 2013 end-page: 861 ident: CR16 article-title: Inhibition of PRC2 activity by a gain‐of‐function H3 mutation found in pediatric glioblastoma publication-title: Science – volume: 2 start-page: 30 year: 2014 ident: CR19 article-title: Generation of a dual‐color reporter mouse line to monitor spermatogenesis in vivo publication-title: Front Cell Dev Biol – volume: 463 start-page: 554 year: 2010 end-page: 558 ident: CR31 article-title: A role for the elongator complex in zygotic paternal genome demethylation publication-title: Nature – volume: 112 start-page: 921 year: 1991 end-page: 932 ident: CR12 article-title: Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one‐ and two‐cell stages publication-title: Development – volume: 49 start-page: 825 year: 2013 end-page: 837 ident: CR34 article-title: Modification of enhancer chromatin: what, how, and why? publication-title: Mol Cell – volume: 3 start-page: RESEARCH0034 year: 2002 ident: CR41 article-title: Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes publication-title: Genome Biol – volume: 26 start-page: 2604 year: 2012 end-page: 2620 ident: CR27 article-title: Enhancer‐associated H3K4 monomethylation by Trithorax‐related, the Drosophila homolog of mammalian Mll3/Mll4 publication-title: Genes Dev – volume: 218 start-page: 57 year: 1995 end-page: 62 ident: CR13 article-title: Endogenous transcription occurs at the 1‐cell stage in the mouse embryo publication-title: Exp Cell Res – volume: 459 start-page: 108 year: 2009 end-page: 112 ident: CR32 article-title: Histone modifications at human enhancers reflect global cell‐type‐specific gene expression publication-title: Nature – volume: 14 start-page: 217 year: 2014 end-page: 227 ident: CR42 article-title: Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 4 start-page: 12 year: 2004 ident: CR4 article-title: Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote publication-title: BMC Dev Biol – volume: 30 start-page: 268 year: 2014 end-page: 279 ident: CR18 article-title: Hira‐mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote publication-title: Dev Cell – volume: 394 start-page: 369 year: 1998 end-page: 374 ident: CR43 article-title: Full‐term development of mice from enucleated oocytes injected with cumulus cell nuclei publication-title: Nature – volume: 463 start-page: 554 year: 2010 end-page: 558 article-title: A role for the elongator complex in zygotic paternal genome demethylation publication-title: Nature – volume: 122 start-page: 1008 year: 2005 end-page: 1022 article-title: Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote publication-title: Mech Dev – volume: 2 start-page: e01503 year: 2013 article-title: H3K4 mono‐ and di‐methyltransferase MLL4 is required for enhancer activation during cell differentiation publication-title: Elife – volume: 46 start-page: 317 year: 2002 end-page: 320 article-title: Histone methylation defines epigenetic asymmetry in the mouse zygote publication-title: Int J Dev Biol – volume: 186 start-page: 207 year: 1973 end-page: 216 article-title: The effects of inhibitors of RNA synthesis (alpha‐amanitin and actinomycin D) on preimplantation mouse embryogenesis publication-title: J Exp Zool – volume: 459 start-page: 108 year: 2009 end-page: 112 article-title: Histone modifications at human enhancers reflect global cell‐type‐specific gene expression publication-title: Nature – volume: 493 start-page: 632 year: 2013 end-page: 637 article-title: Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants publication-title: Nature – volume: 7 start-page: 747 year: 2012 end-page: 757 article-title: Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation publication-title: Epigenetics – volume: 140 start-page: 3624 year: 2013 end-page: 3634 article-title: Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development publication-title: Development – volume: 218 start-page: 57 year: 1995 end-page: 62 article-title: Endogenous transcription occurs at the 1‐cell stage in the mouse embryo publication-title: Exp Cell Res – volume: 52 start-page: 239 year: 2006 end-page: 248 article-title: Improvement of cumulus‐free oocyte maturation in vitro and its application to microinsemination with primary spermatocytes in mice publication-title: J Reprod Dev – volume: 4 start-page: 12 year: 2004 article-title: Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote publication-title: BMC Dev Biol – volume: 21 start-page: 609 year: 2014 end-page: 616 article-title: Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes publication-title: Nat Struct Mol Biol – volume: 71 start-page: 3439 year: 2014 end-page: 3463 article-title: Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer publication-title: Cell Mol Life Sci – volume: 50 start-page: 455 year: 2006 end-page: 461 article-title: Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos publication-title: Int J Dev Biol – volume: 20 start-page: 1744 year: 2006 end-page: 1754 article-title: Maternal BRG1 regulates zygotic genome activation in the mouse publication-title: Genes Dev – volume: 7 start-page: 14 year: 2007 article-title: Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro publication-title: BMC Dev Biol – volume: 131 start-page: 2269 year: 2004 end-page: 2280 article-title: Regulation of histone H3 lysine 9 methylation in oocytes and early pre‐implantation embryos publication-title: Development – volume: 116 start-page: 51 year: 2004 end-page: 61 article-title: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis publication-title: Cell – volume: 27 start-page: 2736 year: 2013 end-page: 2748 article-title: Inferring the choreography of parental genomes during fertilization from ultralarge‐scale whole‐transcriptome analysis publication-title: Genes Dev – volume: 470 start-page: 279 year: 2011 end-page: 283 article-title: A unique chromatin signature uncovers early developmental enhancers in humans publication-title: Nature – volume: 26 start-page: 2604 year: 2012 end-page: 2620 article-title: Enhancer‐associated H3K4 monomethylation by Trithorax‐related, the Drosophila homolog of mammalian Mll3/Mll4 publication-title: Genes Dev – volume: 2 start-page: 30 year: 2014 article-title: Generation of a dual‐color reporter mouse line to monitor spermatogenesis in vivo publication-title: Front Cell Dev Biol – volume: 14 start-page: 217 year: 2014 end-page: 227 article-title: Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 124 start-page: 4615 year: 1997 end-page: 4625 article-title: Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1‐cell mouse embryos publication-title: Development – volume: 8 start-page: e1000453 year: 2010 article-title: MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing publication-title: PLoS Biol – volume: 339 start-page: 240 year: 2010 end-page: 249 article-title: Histone H3 lysine 4 (H3K4) methylation in development and differentiation publication-title: Dev Biol – volume: 31 start-page: 4310 year: 2011 end-page: 4318 article-title: The COMPASS family of H3K4 methylases in Drosophila publication-title: Mol Cell Biol – volume: 248 start-page: 678 year: 1974 end-page: 680 article-title: In vivo and in vitro effect of alpha‐amanitin on preimplantation mouse embryo RNA polymerase publication-title: Nature – volume: 6 start-page: 117 year: 2004 end-page: 131 article-title: Dynamics of global gene expression changes during mouse preimplantation development publication-title: Dev Cell – volume: 43 start-page: 71 year: 2005 end-page: 79 article-title: Noninvasive visualization of molecular events in the mammalian zygote publication-title: Genesis – volume: 241 start-page: 172 year: 2002 end-page: 182 article-title: Dynamic reprogramming of DNA methylation in the early mouse embryo publication-title: Dev Biol – volume: 6 start-page: 1008 year: 2014 end-page: 1016 article-title: Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes publication-title: Cell Rep – volume: 394 start-page: 369 year: 1998 end-page: 374 article-title: Full‐term development of mice from enucleated oocytes injected with cumulus cell nuclei publication-title: Nature – volume: 12 start-page: 853 year: 2010 end-page: 862 article-title: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 publication-title: Nat Cell Biol – volume: 25 start-page: 661 year: 2011 end-page: 672 article-title: The super elongation complex (SEC) and MLL in development and disease publication-title: Genes Dev – volume: 3 start-page: RESEARCH0034 year: 2002 article-title: Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes publication-title: Genome Biol – volume: 43 start-page: D771 year: 2015 end-page: D776 article-title: DBTMEE: a database of transcriptome in mouse early embryos publication-title: Nucleic Acids Res – volume: 49 start-page: 825 year: 2013 end-page: 837 article-title: Modification of enhancer chromatin: what, how, and why? publication-title: Mol Cell – volume: 181 start-page: 296 year: 1997 end-page: 307 article-title: Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo publication-title: Dev Biol – volume: 340 start-page: 857 year: 2013 end-page: 861 article-title: Inhibition of PRC2 activity by a gain‐of‐function H3 mutation found in pediatric glioblastoma publication-title: Science – volume: 112 start-page: 921 year: 1991 end-page: 932 article-title: Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one‐ and two‐cell stages publication-title: Development – volume: 30 start-page: 268 year: 2014 end-page: 279 article-title: Hira‐mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote publication-title: Dev Cell – volume: 81 start-page: 65 year: 2012 end-page: 95 article-title: The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis publication-title: Annu Rev Biochem – ident: e_1_2_7_29_1 doi: 10.7554/eLife.01503 – ident: e_1_2_7_32_1 doi: 10.1038/nature08732 – ident: e_1_2_7_10_1 doi: 10.1242/dev.095513 – ident: e_1_2_7_42_1 doi: 10.1186/gb-2002-3-7-research0034 – ident: e_1_2_7_18_1 doi: 10.1038/nsmb.2839 – ident: e_1_2_7_41_1 doi: 10.1186/1471-213X-7-14 – ident: e_1_2_7_27_1 doi: 10.1128/MCB.06092-11 – ident: e_1_2_7_37_1 doi: 10.1016/S1534-5807(03)00373-3 – volume: 112 start-page: 921 year: 1991 ident: e_1_2_7_13_1 article-title: Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one‐ and two‐cell stages publication-title: Development doi: 10.1242/dev.112.4.921 – ident: e_1_2_7_2_1 doi: 10.1242/dev.124.22.4615 – ident: e_1_2_7_28_1 doi: 10.1101/gad.201327.112 – ident: e_1_2_7_45_1 doi: 10.1038/nature11800 – ident: e_1_2_7_19_1 doi: 10.1016/j.devcel.2014.06.022 – ident: e_1_2_7_5_1 doi: 10.1186/1471-213X-4-12 – ident: e_1_2_7_38_1 doi: 10.1262/jrd.17078 – ident: e_1_2_7_6_1 doi: 10.1387/ijdb.052073mt – ident: e_1_2_7_22_1 doi: 10.1101/gad.2015411 – ident: e_1_2_7_24_1 doi: 10.1371/journal.pbio.1000453 – ident: e_1_2_7_44_1 doi: 10.1038/28615 – ident: e_1_2_7_7_1 doi: 10.1038/ncb2089 – ident: e_1_2_7_31_1 doi: 10.1242/dev.01116 – ident: e_1_2_7_33_1 doi: 10.1038/nature07829 – volume: 46 start-page: 317 year: 2002 ident: e_1_2_7_3_1 article-title: Histone methylation defines epigenetic asymmetry in the mouse zygote publication-title: Int J Dev Biol – ident: e_1_2_7_30_1 doi: 10.1146/annurev-biochem-051710-134100 – ident: e_1_2_7_23_1 doi: 10.1007/s00018-014-1605-4 – ident: e_1_2_7_4_1 doi: 10.1006/dbio.2001.0501 – ident: e_1_2_7_15_1 doi: 10.1006/dbio.1996.8466 – ident: e_1_2_7_16_1 doi: 10.1016/j.celrep.2014.02.018 – ident: e_1_2_7_40_1 doi: 10.1002/gene.20158 – ident: e_1_2_7_9_1 doi: 10.1016/j.mod.2005.04.009 – ident: e_1_2_7_21_1 doi: 10.1016/j.ydbio.2009.08.017 – ident: e_1_2_7_26_1 doi: 10.1093/nar/gku1001 – ident: e_1_2_7_11_1 doi: 10.1002/jez.1401860211 – ident: e_1_2_7_20_1 doi: 10.3389/fcell.2014.00030 – ident: e_1_2_7_25_1 doi: 10.1101/gad.227926.113 – ident: e_1_2_7_36_1 doi: 10.1101/gad.1435106 – ident: e_1_2_7_43_1 doi: 10.1016/j.stem.2013.12.015 – ident: e_1_2_7_12_1 doi: 10.1038/248678a0 – ident: e_1_2_7_17_1 doi: 10.1126/science.1232245 – ident: e_1_2_7_35_1 doi: 10.1016/j.molcel.2013.01.038 – ident: e_1_2_7_14_1 doi: 10.1006/excr.1995.1130 – ident: e_1_2_7_8_1 doi: 10.4161/epi.20584 – ident: e_1_2_7_39_1 doi: 10.1016/S0092-8674(03)01064-X – ident: e_1_2_7_34_1 doi: 10.1038/nature09692 – reference: 15922569 - Mech Dev. 2005 Sep;122(9):1008-22 – reference: 4795793 - J Exp Zool. 1973 Nov;186(2):207-16 – reference: 25087892 - Dev Cell. 2014 Aug 11;30(3):268-79 – reference: 14718166 - Cell. 2004 Jan 9;116(1):51-61 – reference: 20054296 - Nature. 2010 Jan 28;463(7280):554-8 – reference: 17341302 - BMC Dev Biol. 2007;7:14 – reference: 26065875 - Cell Cycle. 2015;14(16):2541-2 – reference: 14723852 - Dev Cell. 2004 Jan;6(1):117-31 – reference: 1935701 - Development. 1991 Aug;112(4):921-32 – reference: 25364737 - Front Cell Dev Biol. 2014 Jul 23;2:30 – reference: 16415523 - J Reprod Dev. 2006 Apr;52(2):239-48 – reference: 9690471 - Nature. 1998 Jul 23;394(6691):369-74 – reference: 24676717 - Cell Mol Life Sci. 2014 Sep;71(18):3439-63 – reference: 15383155 - BMC Dev Biol. 2004 Sep 21;4:12 – reference: 23903189 - Development. 2013 Sep;140(17):3624-34 – reference: 19703438 - Dev Biol. 2010 Mar 15;339(2):240-9 – reference: 16586346 - Int J Dev Biol. 2006;50(5):455-61 – reference: 23166019 - Genes Dev. 2012 Dec 1;26(23):2604-20 – reference: 22647320 - Epigenetics. 2012 Jul;7(7):747-57 – reference: 24352427 - Genes Dev. 2013 Dec 15;27(24):2736-48 – reference: 11784103 - Dev Biol. 2002 Jan 1;241(1):172-82 – reference: 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37 – reference: 24630997 - Cell Rep. 2014 Mar 27;6(6):1008-16 – reference: 24506885 - Cell Stem Cell. 2014 Feb 6;14(2):217-27 – reference: 24908396 - Nat Struct Mol Biol. 2014 Jul;21(7):609-16 – reference: 7537698 - Exp Cell Res. 1995 May;218(1):57-62 – reference: 12068953 - Int J Dev Biol. 2002 May;46(3):317-20 – reference: 16100711 - Genesis. 2005 Oct;43(2):71-9 – reference: 23539183 - Science. 2013 May 17;340(6134):857-61 – reference: 23254936 - Nature. 2013 Jan 31;493(7434):632-7 – reference: 24368734 - Elife. 2013;2:e01503 – reference: 22663077 - Annu Rev Biochem. 2012;81:65-95 – reference: 21160473 - Nature. 2011 Feb 10;470(7333):279-83 – reference: 25336621 - Nucleic Acids Res. 2015 Jan;43(Database issue):D771-6 – reference: 21875999 - Mol Cell Biol. 2011 Nov;31(21):4310-8 – reference: 20808952 - PLoS Biol. 2010;8(8). pii: e1000453. doi: 10.1371/journal.pbio.1000453 – reference: 4833268 - Nature. 1974 Apr 19;248(5450):678-80 – reference: 15102709 - Development. 2004 May;131(10):2269-80 – reference: 9409678 - Development. 1997 Nov;124(22):4615-25 – reference: 9013938 - Dev Biol. 1997 Jan 15;181(2):296-307 – reference: 21460034 - Genes Dev. 2011 Apr 1;25(7):661-72 – reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 – reference: 16818606 - Genes Dev. 2006 Jul 1;20(13):1744-54 – reference: 20676102 - Nat Cell Biol. 2010 Sep;12(9):853-62 – reference: 19295514 - Nature. 2009 May 7;459(7243):108-12 |
SSID | ssj0005978 |
Score | 2.4159384 |
SecondaryResourceType | review_article |
Snippet | Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 803 |
SubjectTerms | Animals Chromatin DNA methylation EMBO09 EMBO11 Embryonic Development - genetics Embryonic growth stage Enzymes Epigenesis, Genetic Fathers Female Fertilization - genetics Fertilization in Vitro Gene expression histone methylation Histones - genetics Histones - metabolism K-M mutant Lysine - metabolism Male Methylation Mice minor ZGA Mll3/4 Mutation Pregnancy Scientific Report Scientific Reports Spermatozoa Transcriptional Activation Zygote - physiology |
Title | Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development |
URI | https://api.istex.fr/ark:/67375/WNG-Q6SPRHWP-0/fulltext.pdf https://link.springer.com/article/10.15252/embr.201439700 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201439700 https://www.ncbi.nlm.nih.gov/pubmed/25925669 https://www.proquest.com/docview/1692685425 https://www.proquest.com/docview/1693711884 https://pubmed.ncbi.nlm.nih.gov/PMC4515120 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQJhAvaBtfYWMyEkLwEEjij8SPUG1UoI5pYlrfLLs-jwqaoW5IlL-euyTNVm0T4iVK5Iu_7s4-2-ffMfYyFD5K0CIlOLBUQg6py2JIJxp89BqiUXTBeXSgh8fy01iNO5Akugtz9fxeFap4BzNPsJ05TZwZrs3XVS5KitEw0INLXw7TDLmo9SYtinzcYfjckMHK9LNOPfn7Jtvyuotkf066asU209D-BnvQ2Y_8fcvwTXYH6i12t40oudhi90bdWflDNjt0LcAzH4rPklOo6EXr-Man53wO5AIMgaPRymfTGp9_FqdnmCtHkQJO9x3a3Vru6sCBcJA5bRMAp6YuCFGXh0uPo0fseH_v62CYdsEVkA2oo2klfJUpZ_KQuRyM8Jn3UFUQhS8mZW6CdCpUONsHHU0WjfEyGOlj4SJALIN4zNbqsxqeMq4wB9pPjRTfz6jCgHIOx42gShFkFAl7u-xzO-mQxykAxg9LKxBikqWa255JCXvd__CzBd24nfRVw8Sezs2_k69aqezJwUdLUAFHw5NDi4Q7Sy7bTk3Pba5NoSuF41bCXvTJqGB0auJqwF4lGlHiMqySCXvSCkVfGK4d0WTUJmHlirj0BATevZpST781IN5Ska2F1XqzFKwr1bqtraKRvH_1id0bfTjqv579Rwnb7D6-q9YdeYetXcx_wXM0ui78bqNwu7SH-eUvXTAl2w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VRDwuCMproYCRAMFhYV_eXR84BGhJkyaqSqvmZuzYhgiyRUkRhH_DP2Vmd7MlohXi0EukZCe21zMej-3P3wA8NpF2iU1jn-jA_MSG1leBM_44tdrp1DrB6YLzYJh2D5LeiI_W4NfyLkyJdl8eSZaeus7RE720U00EniFNoUFQ4yj7dvEdV2nzV9tvUaVPomhrc_9N168TCWCVaI9-Hus84EqEJlChFbEOtLZ5bl2so3EWCpMobnKc2UzqROCE0IkRiXaRcta6zMRY7gVo5zzNeQvanU7vfe8ERyJKd48eR_hRFI5q_qBTmrwy9bVJiz9Oi2v_hmc2Z7SrEXQ5BW5dg6t17Mo6lbFdhzVbrMPFKpvlYh0uDepz-hsw3VUVuTTrxv2EUZrqRQW6Y5M5m1mCH1vDMGBm00mBnz8XH4-wVIbmbBndtah2ipkqDLPEwcxoi8IyetUFsfkyc4J2ugkH56KPW9Aqjgp7BxjHEmgv11FuQcEjYblS6LMMz2KTuNiDF8s-l-Oa9ZySb3yRtPohJUlquWyU5MGz5g9fK8KPs0Wflkps5NTsM-HkMi4Ph-8k0RTsdQ93JQpuLLUsaxcxl2EqIrQn9JkePGoe4-CmExtVWOxVkokzXALmiQe3K6NoKsN1K4arqfAgWzGXRoCIw1efFJNPJYF4winOw2Y9XxrWH806613j0vL-1Sdyc_B6r_l29z9qeAiXu_uDHbmzPezfgyv4O69g0RvQOp59s_cx-DvWD-rhx-DDeY_43xtHaJs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKyouCMorUMBIgOCwdF_eXR84QNqQEhJFFVVzc-14DBFkWyVBEP4T_5GZfZWIVohDLyvt7qzt9YzHM_b4G8ae2tC4GJLIIzgwL4YAPO07640TMM4k4KSgA879QdI9jN-PxGiN_arPwhTR7vWWZHmmgVCa8sXOqXV1vp5wB6aGwDwDmk59v4qp7MHyO3ps89f7u8jeZ2HY2fvY7npVUgGsHmXTyyKT-ULLwPo6ABkZ3xjIMnCRCcdpIG2shc1wlrOJk76T0sRWxsaF2gG41EZY7hW2gW5RQL5eO2mfRZTIQvGj7pFeGAajCknonAavTIIbxM8f51m4fwdqNru1q7Z0MRl2brDrlRXL35Rid5OtQb7FrpZ5LZdbbLNf7djfYtOhLmGmeTfqxZwSVi_L8Ds-mfMZUCAyWI6mM59Ocrz-XH46wVI5CjZwOnVRrhlznVsOhMbMabECOP3qknB9uT2Le7rNDi-FG3fYen6Swz3GBZZAq7qOsgxKEUoQWqP2siKNbOyiFntV97kaV_jnlIbjqyI_iJikqOWqYVKLvWg-OC2hPy4mfV4wsaHTsy8UMZcKdTR4pwiw4KB7NFRIuF1zWVXKYq6CRIZJJlB7ttiT5jUOc9q70TlgrxJNlKIzmMUtdrcUiqYy9GDRcE1ki6Ur4tIQEIT46pt88rmAEo8FWXzYrJe1YP3RrIv-NSok7199ovb6bw-au_v_UcNjtjnc7agP-4PeA3YNH4syPnqbrS9m3-AhWoEL86gYe5wdX_Zg_w1IHWt1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paternal+H3K4+methylation+is+required+for+minor+zygotic+gene+activation+and+early+mouse+embryonic+development&rft.jtitle=EMBO+reports&rft.au=Aoshima%2C+Keisuke&rft.au=Inoue%2C+Erina&rft.au=Sawa%2C+Hirofumi&rft.au=Okada%2C+Yuki&rft.date=2015-07-01&rft.eissn=1469-3178&rft.volume=16&rft.issue=7&rft.spage=803&rft_id=info:doi/10.15252%2Fembr.201439700&rft_id=info%3Apmid%2F25925669&rft.externalDocID=25925669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon |