Ferroptosis in Parkinson’s disease: glia–neuron crosstalk
Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activ...
Saved in:
Published in | Trends in molecular medicine Vol. 28; no. 4; pp. 258 - 269 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis.
Iron uptake, storage, efflux, and utilization are essential for maintaining iron homeostasis. Abnormal expression of proteins involved in these processes related to iron homeostasis may cause iron overload and induce subsequent ferroptosis, which is associated with the pathogenesis of neurodegenerative disease.Crosstalk between glia and neurons underlies the ferroptotic alterations in DA neurons and form a vicious circle in promoting PD pathogenesis.Possible mechanisms of iron transfer between glia and neurons include exosomes and tunneling nanotubes. They may determine the efficacy of ferroptosis inhibitors and provide a clue for exploring novel therapeutic interventions for PD.Joint medications with ferroptosis inhibitors and anti-inflammatory medicines may provide a potential strategy for the treatment of PD and related neurodegenerative diseases. |
---|---|
AbstractList | Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis. Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis.Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis. Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis. Iron uptake, storage, efflux, and utilization are essential for maintaining iron homeostasis. Abnormal expression of proteins involved in these processes related to iron homeostasis may cause iron overload and induce subsequent ferroptosis, which is associated with the pathogenesis of neurodegenerative disease.Crosstalk between glia and neurons underlies the ferroptotic alterations in DA neurons and form a vicious circle in promoting PD pathogenesis.Possible mechanisms of iron transfer between glia and neurons include exosomes and tunneling nanotubes. They may determine the efficacy of ferroptosis inhibitors and provide a clue for exploring novel therapeutic interventions for PD.Joint medications with ferroptosis inhibitors and anti-inflammatory medicines may provide a potential strategy for the treatment of PD and related neurodegenerative diseases. |
Author | Li, Jia-Yi Wang, Zhang-Li Yuan, Lin Li, Wen |
Author_xml | – sequence: 1 givenname: Zhang-Li surname: Wang fullname: Wang, Zhang-Li organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China – sequence: 2 givenname: Lin surname: Yuan fullname: Yuan, Lin organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China – sequence: 3 givenname: Wen surname: Li fullname: Li, Wen email: Wli87@cmu.edu.cn organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China – sequence: 4 givenname: Jia-Yi orcidid: 0000-0002-7770-7376 surname: Li fullname: Li, Jia-Yi email: lijiayi@cmu.edu.cn organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35260343$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/e420c7fd-6120-4a74-818a-0a32085af111$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/e420c7fd-6120-4a74-818a-0a32085af111$$DView record from Swedish Publication Index |
BookMark | eNqNUk2LFDEQDbLifug_EOmjlxnz1d2ZRQVZXHdhQA8K3op0ulozk0napFvZ2_4HT_69_SVmtmf3sCAjVEgR3ntVlVfH5MAHj4Q8Z3TOKKtereab4DbYzjnlfE5zUPGIHDFZs5lcLL4e3OdMHpLjlFaUsrKu1RNyKEpeUSHFEXlzjjGGfgjJpsL64pOOa-tT8DfXf1LR2oQ64WnxzVl9c_3b4xiDL0wMKQ3arZ-Sx512CZ_t7hPy5fz957OL2fLjh8uzd8uZqVQ1zBZ1WyGTFWcLITmntek6nh-EVqJsNYp2IbAxRnEmpGyoEkipVlqpssFGUHFC9KSbfmE_NtBHu9HxCoK20IeYW4GIudVovoMbISFklLNGDzb4BCg5NXXXQsU4BalrCYopDVQLTlWpO8ZYrrH8Zw039vk0O-3_lHs5yfUx_BgxDbCxyaBz2mMYE_BK1GUen5cZ-mIHHZts6H3lO5cy4HQC3H58xA6MHW5nG6K2DhiF7UrACqaVgO1KAM1Bt2T5gHynv4f2dqJh9vWnxQjJWPQGWxvRDNAGu0_g9QMB46zPnrg1Xu2n_wXLSeeF |
CitedBy_id | crossref_primary_10_3389_fnagi_2022_1077738 crossref_primary_10_1016_j_intimp_2024_113854 crossref_primary_10_3389_fcell_2024_1510897 crossref_primary_10_1002_cmdc_202200629 crossref_primary_10_1016_j_biopha_2022_113611 crossref_primary_10_1016_j_brainres_2024_148863 crossref_primary_10_1007_s11064_025_04351_9 crossref_primary_10_1016_j_cej_2025_161357 crossref_primary_10_1016_j_ijbiomac_2025_140662 crossref_primary_10_1186_s12920_023_01481_3 crossref_primary_10_2147_DDDT_S458026 crossref_primary_10_1002_anie_202502195 crossref_primary_10_3390_cells11233829 crossref_primary_10_4103_1673_5374_371381 crossref_primary_10_3390_molecules30061211 crossref_primary_10_1016_j_heliyon_2024_e33083 crossref_primary_10_1080_07853890_2025_2472871 crossref_primary_10_2131_jts_49_555 crossref_primary_10_1016_j_heliyon_2025_e42735 crossref_primary_10_31083_j_jin2104102 crossref_primary_10_3892_mmr_2024_13252 crossref_primary_10_1016_j_bbadis_2025_167727 crossref_primary_10_57197_JDR_2024_0001 crossref_primary_10_1016_j_jhazmat_2024_135580 crossref_primary_10_1186_s10020_024_00797_9 crossref_primary_10_3390_ijms252011168 crossref_primary_10_1002_acn3_52292 crossref_primary_10_1111_cns_70067 crossref_primary_10_1097_MD_0000000000038898 crossref_primary_10_1039_D4SC03445G crossref_primary_10_1016_j_cjph_2024_04_002 crossref_primary_10_1016_j_virs_2023_09_001 crossref_primary_10_1002_mco2_298 crossref_primary_10_1111_jnc_70027 crossref_primary_10_1007_s12035_023_03854_2 crossref_primary_10_3389_fimmu_2022_1049936 crossref_primary_10_1016_j_colsurfa_2023_131458 crossref_primary_10_1016_j_fmre_2023_04_002 crossref_primary_10_1016_j_brainresbull_2024_110991 crossref_primary_10_1177_10760296241302082 crossref_primary_10_1002_smll_202206575 crossref_primary_10_3390_cancers15133484 crossref_primary_10_3389_fgene_2023_1231707 crossref_primary_10_3390_antiox12030673 crossref_primary_10_1016_j_freeradbiomed_2025_01_046 crossref_primary_10_1016_j_intimp_2024_113151 crossref_primary_10_1016_j_jep_2023_117196 crossref_primary_10_3389_fnagi_2023_1278323 crossref_primary_10_1016_j_expneurol_2024_115084 crossref_primary_10_1111_jpi_13002 crossref_primary_10_1186_s11658_023_00503_3 crossref_primary_10_1021_acschemneuro_5c00035 crossref_primary_10_1007_s11064_024_04185_x crossref_primary_10_3389_fphar_2024_1480345 crossref_primary_10_20517_and_2024_44 crossref_primary_10_1097_CM9_0000000000003167 crossref_primary_10_1038_s41420_024_02273_z crossref_primary_10_1055_s_0043_1773796 crossref_primary_10_1002_adma_202409329 crossref_primary_10_1016_j_arr_2023_102077 crossref_primary_10_1016_j_neuroscience_2022_11_018 crossref_primary_10_1038_s41392_023_01353_3 crossref_primary_10_1007_s10534_024_00628_8 crossref_primary_10_1016_j_heliyon_2024_e39684 crossref_primary_10_1093_nar_gkac935 crossref_primary_10_3390_ijms241310414 crossref_primary_10_1016_j_prp_2023_154757 crossref_primary_10_1002_bies_202300176 crossref_primary_10_1016_j_heliyon_2024_e29418 crossref_primary_10_1016_j_freeradbiomed_2024_07_018 crossref_primary_10_3390_ijms25073636 crossref_primary_10_1016_j_bioorg_2024_107458 crossref_primary_10_1016_j_biopha_2024_116947 crossref_primary_10_3390_antiox12061289 crossref_primary_10_1002_jmri_28574 crossref_primary_10_1155_2023_4130937 crossref_primary_10_1016_j_patcog_2022_109216 crossref_primary_10_1016_j_jare_2024_03_023 crossref_primary_10_1039_D3RA04057G crossref_primary_10_3389_fnagi_2022_904152 crossref_primary_10_3389_fphar_2025_1570069 crossref_primary_10_3389_fnagi_2024_1451655 crossref_primary_10_1016_j_mcn_2025_103993 crossref_primary_10_1016_j_jep_2024_117850 crossref_primary_10_3389_fonc_2022_939605 crossref_primary_10_1016_j_brainresbull_2024_111065 crossref_primary_10_1038_s41419_024_06691_w crossref_primary_10_1007_s10571_024_01459_4 crossref_primary_10_1021_jacs_3c12588 crossref_primary_10_3390_ijms24087342 crossref_primary_10_1016_j_heliyon_2024_e27786 crossref_primary_10_1002_ptr_8343 crossref_primary_10_3389_fncel_2025_1497555 crossref_primary_10_1016_j_carbon_2025_120152 crossref_primary_10_3390_diagnostics13111924 crossref_primary_10_1021_acs_jmedchem_4c03149 crossref_primary_10_1016_j_arr_2024_102299 crossref_primary_10_1016_j_snb_2025_137264 crossref_primary_10_1016_j_expneurol_2023_114614 crossref_primary_10_1111_bcpt_14011 crossref_primary_10_3390_ijms241814108 crossref_primary_10_1016_j_jnrt_2024_100171 crossref_primary_10_1016_j_mcn_2024_103981 crossref_primary_10_3389_fgene_2022_1010361 crossref_primary_10_1016_j_ejphar_2025_177430 crossref_primary_10_3389_fphar_2025_1528538 crossref_primary_10_1016_j_brainresbull_2024_111076 crossref_primary_10_4103_cjop_CJOP_D_23_00107 crossref_primary_10_1016_j_lfs_2024_123124 crossref_primary_10_1016_j_biopha_2024_116777 crossref_primary_10_1109_ACCESS_2024_3412808 crossref_primary_10_1016_j_nbd_2024_106535 crossref_primary_10_1016_j_neulet_2023_137346 crossref_primary_10_1016_j_intimp_2025_114076 crossref_primary_10_1016_j_freeradbiomed_2024_04_240 crossref_primary_10_1186_s12967_025_06287_8 crossref_primary_10_1002_ange_202502195 crossref_primary_10_3390_cells13181554 crossref_primary_10_3390_molecules29050925 crossref_primary_10_3390_ijms232314753 crossref_primary_10_1007_s10571_023_01343_7 crossref_primary_10_1016_j_freeradbiomed_2024_04_002 crossref_primary_10_1016_j_jmb_2022_167680 crossref_primary_10_1038_s41598_024_82470_z crossref_primary_10_3389_fimmu_2022_943321 crossref_primary_10_1021_acsnano_4c05084 crossref_primary_10_1016_j_molimm_2024_12_008 crossref_primary_10_1186_s40478_024_01771_6 crossref_primary_10_1039_D4RA02336F crossref_primary_10_1021_acs_jafc_3c04801 crossref_primary_10_1007_s12035_023_03468_8 crossref_primary_10_1016_j_arr_2023_102035 crossref_primary_10_1111_ahe_12991 crossref_primary_10_1038_s42003_024_06896_x crossref_primary_10_1016_j_arr_2024_102477 crossref_primary_10_1016_j_arr_2023_102032 crossref_primary_10_1016_j_biomaterials_2024_122622 crossref_primary_10_1016_j_heliyon_2024_e36488 crossref_primary_10_1007_s10787_025_01672_7 crossref_primary_10_3389_fimmu_2022_937555 crossref_primary_10_1016_j_cej_2025_161251 crossref_primary_10_1021_acschemneuro_4c00620 crossref_primary_10_3389_fimmu_2022_920059 crossref_primary_10_1038_s41598_024_54278_4 crossref_primary_10_1007_s12035_025_04815_7 crossref_primary_10_1016_j_ejphar_2024_177075 crossref_primary_10_1016_j_lfs_2024_122650 crossref_primary_10_1016_j_survophthal_2023_11_003 crossref_primary_10_3389_fnagi_2024_1345918 crossref_primary_10_1007_s12035_024_04140_5 crossref_primary_10_1111_cns_14236 crossref_primary_10_1016_j_biopha_2023_114312 crossref_primary_10_1016_j_biopha_2024_116753 crossref_primary_10_3389_fphar_2024_1477938 crossref_primary_10_3389_fnins_2023_1269996 crossref_primary_10_3390_ijms232213678 crossref_primary_10_1515_tnsci_2022_0359 crossref_primary_10_3390_ijms242417203 crossref_primary_10_1016_j_bcp_2024_116633 crossref_primary_10_1186_s12967_024_05881_6 crossref_primary_10_1371_journal_pone_0291192 crossref_primary_10_1002_mco2_479 crossref_primary_10_1016_S1875_5364_23_60449_2 crossref_primary_10_1002_med_21939 crossref_primary_10_31083_j_jin2204090 |
Cites_doi | 10.1016/j.redox.2020.101789 10.1002/ijc.32496 10.1038/s41401-020-00531-1 10.1007/s13311-020-00929-z 10.1194/jlr.M080374 10.1016/j.neuint.2019.02.016 10.1186/s40478-021-01126-5 10.1016/j.bbi.2020.04.007 10.1038/cddiscovery.2017.13 10.1096/fj.14-268615 10.1111/jnc.12244 10.1523/JNEUROSCI.1749-20.2020 10.1016/j.cmet.2020.05.019 10.1016/j.bbi.2021.01.003 10.1186/s12974-019-1430-7 10.1186/s40478-021-01145-2 10.3233/JPD-161040 10.1016/j.cell.2012.03.042 10.1016/j.neurobiolaging.2017.06.017 10.1001/jamaneurol.2014.131 10.1007/s00401-007-0244-3 10.1002/glia.21112 10.1016/j.neulet.2016.02.011 10.1371/annotation/900a5247-7d03-4686-a544-5f7f64c0aac5 10.1002/mds.22401 10.3390/ijms19113543 10.1007/s11064-007-9375-0 10.1007/s12035-021-02320-1 10.1155/2014/581256 10.1038/srep36410 10.1038/s41589-019-0462-8 10.1038/s41467-020-17876-0 10.1038/s41531-021-00199-2 10.1007/s10571-015-0161-2 10.1186/s40478-017-0445-5 10.1038/s41467-020-15065-7 10.1007/s004010050001 10.1093/brain/awab191 10.15252/embj.201593411 10.1002/ana.23817 10.1016/j.neuint.2017.03.014 10.1172/JCI43366 10.1007/s12035-015-9267-2 10.1038/s41418-020-0542-z 10.1016/j.bbadis.2013.01.021 10.1016/j.jns.2012.03.023 10.1007/s12035-015-9146-x 10.1016/j.redox.2021.101896 10.1016/j.nbd.2020.105028 10.1371/journal.pone.0153020 10.1097/00001756-199806220-00003 10.1016/j.nbd.2008.09.013 10.1038/s41588-020-0610-9 10.1074/jbc.M301988200 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7 10.1002/jcph.1008 10.1097/WNF.0b013e31829ae713 10.1016/j.isci.2021.102431 10.1016/j.ijbiomac.2020.06.274 10.1097/WNR.0b013e328354a1f0 10.1007/s00401-003-0766-2 10.1007/s11064-011-0619-7 10.1038/s41467-020-15109-y 10.1016/j.bbrc.2021.06.024 10.1016/j.freeradbiomed.2020.03.015 10.1093/brain/awab084 10.1016/j.neuroscience.2014.09.071 10.1111/j.1471-4159.2008.05570.x 10.1046/j.1471-4159.1996.67031014.x 10.1016/j.parkreldis.2017.01.003 10.1089/ars.2013.5593 10.1002/cpt.1548 10.1038/nature21029 10.1016/j.nbd.2016.05.011 10.1016/j.redox.2017.01.021 10.1038/s41589-020-00734-x 10.1126/science.1227157 10.1182/blood-2017-02-768580 10.1523/JNEUROSCI.23-08-03394.2003 10.1038/s41598-017-01402-2 10.1016/j.tiv.2021.105146 10.1038/ncb3064 10.1186/s40035-021-00242-5 10.3389/fnmol.2017.00455 10.1074/jbc.M107866200 10.1089/ars.2013.5801 10.1136/jnnp-2019-322338 10.1007/s12035-020-02049-3 10.1002/brb3.1536 10.1016/j.semcdb.2019.05.004 10.3390/ijms20030771 10.1016/j.expneurol.2013.03.017 10.3892/ijmm.2021.4894 10.1038/sj.mp.4001937 10.1038/s41419-020-03369-x 10.1038/s41586-019-1705-2 10.1016/j.bbamcr.2014.09.010 10.1016/j.freeradbiomed.2018.09.002 10.1016/j.devcel.2019.10.007 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
CorporateAuthor | MultiPark: Multidisciplinary research focused on Parkinson's disease Lunds universitet Institutionen för experimentell medicinsk vetenskap Profile areas and other strong research environments Lund University Neural plasticitet och reparation Strategiska forskningsområden (SFO) Department of Experimental Medical Science Faculty of Medicine Strategic research areas (SRA) Medicinska fakulteten Neural Plasticity and Repair Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Strategiska forskningsområden (SFO) – name: Department of Experimental Medical Science – name: Neural plasticitet och reparation – name: Strategic research areas (SRA) – name: Lunds universitet – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Institutionen för experimentell medicinsk vetenskap – name: Neural Plasticity and Repair – name: Profile areas and other strong research environments – name: MultiPark: Multidisciplinary research focused on Parkinson's disease |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AGCHP AOWAS D8T D95 ZZAVC |
DOI | 10.1016/j.molmed.2022.02.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1471-499X |
EndPage | 269 |
ExternalDocumentID | oai_portal_research_lu_se_publications_e420c7fd_6120_4a74_818a_0a32085af111 oai_lup_lub_lu_se_e420c7fd_6120_4a74_818a_0a32085af111 35260343 10_1016_j_molmed_2022_02_003 S1471491422000442 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSZ T5K Z5R ~G- 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AEHWI AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RCE RIG SSU AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AGCHP AOWAS D8T D95 ZZAVC |
ID | FETCH-LOGICAL-c686t-97d6e146219342207cff2e143a835dae3d93ebcc821344b083e00a8a885beb303 |
IEDL.DBID | .~1 |
ISSN | 1471-4914 1471-499X |
IngestDate | Sun Aug 24 03:21:16 EDT 2025 Thu Jul 03 04:44:29 EDT 2025 Fri Jul 11 00:06:05 EDT 2025 Mon Jul 21 05:34:05 EDT 2025 Tue Jul 01 04:26:46 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Fri Feb 23 02:39:05 EST 2024 Tue Aug 26 16:33:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | neuron iron Parkinson's disease ferroptosis glia |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c686t-97d6e146219342207cff2e143a835dae3d93ebcc821344b083e00a8a885beb303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7770-7376 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1471491422000442 |
PMID | 35260343 |
PQID | 2637583525 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_e420c7fd_6120_4a74_818a_0a32085af111 swepub_primary_oai_lup_lub_lu_se_e420c7fd_6120_4a74_818a_0a32085af111 proquest_miscellaneous_2637583525 pubmed_primary_35260343 crossref_citationtrail_10_1016_j_molmed_2022_02_003 crossref_primary_10_1016_j_molmed_2022_02_003 elsevier_sciencedirect_doi_10_1016_j_molmed_2022_02_003 elsevier_clinicalkey_doi_10_1016_j_molmed_2022_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in molecular medicine |
PublicationTitleAlternate | Trends Mol Med |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fine (bb0185) 2020; 10 Ishii (bb0360) 2019; 133 Seet (bb0450) 2014; 21 Jiang (bb0460) 2021; 42 Jhelum (bb0295) 2020; 40 Wang (bb0245) 2013; 1832 Castellani (bb0140) 2000; 100 Zhang (bb0035) 2020; 152 Kenkhuis (bb0230) 2021; 9 Subhramanyam (bb0215) 2019; 94 Aguirre (bb0475) 2020; 88 Wang (bb0280) 2015; 35 Si (bb0490) 2021; 567 Ayton (bb0145) 2014; 2014 Golts (bb0155) 2002; 277 Fernández-Mendívil (bb0055) 2021; 38 Hambright (bb0470) 2017; 12 You (bb0275) 2015; 284 Ortega (bb0190) 2016; 53 Bai (bb0115) 2021; 58 Depierreux (bb0020) 2021; 7 Li (bb0175) 2020; 163 Healy (bb0240) 2016; 6 Miyazaki (bb0350) 2011; 59 Holmay (bb0435) 2013; 36 Mischley (bb0110) 2012; 318 Friedrich (bb0235) 2021; 9 Li (bb0485) 2021; 73 Monti (bb0430) 2019; 106 Evans (bb0455) 2019 Venkateshappa (bb0105) 2012; 37 Vida (bb0095) 2019; 20 Xu (bb0260) 2017; 10 Novgorodov (bb0065) 2018; 59 Bersuker (bb0075) 2019; 575 de Farias (bb0090) 2016; 617 Ito (bb0045) 2017; 3 Connor (bb0375) 1996; 17 Song (bb0285) 2017; 58 Do Van (bb0050) 2016; 94 Hauser (bb0495) 2009; 24 Agarwal (bb0220) 2020; 11 Abounit (bb0410) 2016; 35 Sharma (bb0310) 2016; 53 Brown (bb0390) 2019; 51 Mischley (bb0440) 2017; 7 Coles (bb0425) 2018; 58 Dächert (bb0320) 2020; 146 Martin-Bastida (bb0420) 2017; 7 Yauger (bb0315) 2019; 16 Kapralov (bb0335) 2020; 16 Ngolab (bb0405) 2017; 5 Ma (bb0305) 2021; 41 Shih (bb0355) 2003; 23 Luk (bb0135) 2012; 338 Thorburne (bb0380) 1996; 67 Mullett (bb0365) 2009; 33 Febbraro (bb0160) 2012; 23 Sun (bb0040) 2020; 57 Vallerga (bb0100) 2020; 11 Sun (bb0085) 2021; 17 Ayton (bb0270) 2013; 73 Davies (bb0195) 2011; 6 Biondetti (bb0025) 2021; 144 Jankovic (bb0005) 2020; 91 Cao (bb0080) 2020; 11 Taghizadeh (bb0445) 2017; 108 Li (bb0480) 2021; 47 Zhu (bb0060) 2017; 36 Friedmann Angeli (bb0070) 2014; 16 Zhang (bb0290) 2014; 1843 Dixon (bb0030) 2012; 149 Liddelow (bb0015) 2017; 541 Urrutia (bb0250) 2013; 126 McTigue (bb0370) 2008; 107 Braak (bb0210) 2007; 114 Angelova (bb0200) 2020; 27 Kam (bb0010) 2020; 144 Song (bb0345) 2021; 24 Burtey (bb0395) 2015; 29 Devos (bb0415) 2014; 21 Tian (bb0465) 2020; 17 Dringen (bb0255) 2007; 32 Baek (bb0325) 2018; 19 Hansen (bb0130) 2011; 121 Imamura (bb0205) 2003; 106 Beal (bb0500) 2014; 71 Friedlich (bb0170) 2007; 12 Apetri (bb0400) 2016; 11 Mukherjee (bb0300) 2020; 32 Liu (bb0125) 2021; 10 Cui (bb0340) 2021; 93 Yoshida (bb0330) 1998; 9 Jeong (bb0265) 2003; 278 Guo (bb0150) 2021; 12 Febbraro (bb0180) 2013; 247 Truman-Rosentsvit (bb0385) 2018; 131 Wang (bb0165) 2019; 125 Thomas (bb0120) 2021; 144 Bryois (bb0225) 2020; 52 Ngolab (10.1016/j.molmed.2022.02.003_bb0405) 2017; 5 Hambright (10.1016/j.molmed.2022.02.003_bb0470) 2017; 12 Thomas (10.1016/j.molmed.2022.02.003_bb0120) 2021; 144 Dringen (10.1016/j.molmed.2022.02.003_bb0255) 2007; 32 Biondetti (10.1016/j.molmed.2022.02.003_bb0025) 2021; 144 Dächert (10.1016/j.molmed.2022.02.003_bb0320) 2020; 146 Zhang (10.1016/j.molmed.2022.02.003_bb0035) 2020; 152 Bai (10.1016/j.molmed.2022.02.003_bb0115) 2021; 58 Guo (10.1016/j.molmed.2022.02.003_bb0150) 2021; 12 Devos (10.1016/j.molmed.2022.02.003_bb0415) 2014; 21 Thorburne (10.1016/j.molmed.2022.02.003_bb0380) 1996; 67 Braak (10.1016/j.molmed.2022.02.003_bb0210) 2007; 114 Jiang (10.1016/j.molmed.2022.02.003_bb0460) 2021; 42 Healy (10.1016/j.molmed.2022.02.003_bb0240) 2016; 6 Golts (10.1016/j.molmed.2022.02.003_bb0155) 2002; 277 de Farias (10.1016/j.molmed.2022.02.003_bb0090) 2016; 617 Vallerga (10.1016/j.molmed.2022.02.003_bb0100) 2020; 11 Cui (10.1016/j.molmed.2022.02.003_bb0340) 2021; 93 Luk (10.1016/j.molmed.2022.02.003_bb0135) 2012; 338 Taghizadeh (10.1016/j.molmed.2022.02.003_bb0445) 2017; 108 Depierreux (10.1016/j.molmed.2022.02.003_bb0020) 2021; 7 Jhelum (10.1016/j.molmed.2022.02.003_bb0295) 2020; 40 Fine (10.1016/j.molmed.2022.02.003_bb0185) 2020; 10 Li (10.1016/j.molmed.2022.02.003_bb0485) 2021; 73 Hauser (10.1016/j.molmed.2022.02.003_bb0495) 2009; 24 Kenkhuis (10.1016/j.molmed.2022.02.003_bb0230) 2021; 9 Friedrich (10.1016/j.molmed.2022.02.003_bb0235) 2021; 9 Imamura (10.1016/j.molmed.2022.02.003_bb0205) 2003; 106 You (10.1016/j.molmed.2022.02.003_bb0275) 2015; 284 Dixon (10.1016/j.molmed.2022.02.003_bb0030) 2012; 149 Febbraro (10.1016/j.molmed.2022.02.003_bb0160) 2012; 23 Evans (10.1016/j.molmed.2022.02.003_bb0455) 2019 Xu (10.1016/j.molmed.2022.02.003_bb0260) 2017; 10 Friedmann Angeli (10.1016/j.molmed.2022.02.003_bb0070) 2014; 16 Bryois (10.1016/j.molmed.2022.02.003_bb0225) 2020; 52 Coles (10.1016/j.molmed.2022.02.003_bb0425) 2018; 58 Sun (10.1016/j.molmed.2022.02.003_bb0040) 2020; 57 Martin-Bastida (10.1016/j.molmed.2022.02.003_bb0420) 2017; 7 Friedlich (10.1016/j.molmed.2022.02.003_bb0170) 2007; 12 Holmay (10.1016/j.molmed.2022.02.003_bb0435) 2013; 36 Li (10.1016/j.molmed.2022.02.003_bb0480) 2021; 47 Mischley (10.1016/j.molmed.2022.02.003_bb0440) 2017; 7 Ma (10.1016/j.molmed.2022.02.003_bb0305) 2021; 41 Davies (10.1016/j.molmed.2022.02.003_bb0195) 2011; 6 Febbraro (10.1016/j.molmed.2022.02.003_bb0180) 2013; 247 Wang (10.1016/j.molmed.2022.02.003_bb0165) 2019; 125 Cao (10.1016/j.molmed.2022.02.003_bb0080) 2020; 11 Yauger (10.1016/j.molmed.2022.02.003_bb0315) 2019; 16 Aguirre (10.1016/j.molmed.2022.02.003_bb0475) 2020; 88 Miyazaki (10.1016/j.molmed.2022.02.003_bb0350) 2011; 59 Jeong (10.1016/j.molmed.2022.02.003_bb0265) 2003; 278 Apetri (10.1016/j.molmed.2022.02.003_bb0400) 2016; 11 Subhramanyam (10.1016/j.molmed.2022.02.003_bb0215) 2019; 94 Baek (10.1016/j.molmed.2022.02.003_bb0325) 2018; 19 Ito (10.1016/j.molmed.2022.02.003_bb0045) 2017; 3 Wang (10.1016/j.molmed.2022.02.003_bb0245) 2013; 1832 Mukherjee (10.1016/j.molmed.2022.02.003_bb0300) 2020; 32 Angelova (10.1016/j.molmed.2022.02.003_bb0200) 2020; 27 Monti (10.1016/j.molmed.2022.02.003_bb0430) 2019; 106 Song (10.1016/j.molmed.2022.02.003_bb0345) 2021; 24 Burtey (10.1016/j.molmed.2022.02.003_bb0395) 2015; 29 Urrutia (10.1016/j.molmed.2022.02.003_bb0250) 2013; 126 Wang (10.1016/j.molmed.2022.02.003_bb0280) 2015; 35 Si (10.1016/j.molmed.2022.02.003_bb0490) 2021; 567 Hansen (10.1016/j.molmed.2022.02.003_bb0130) 2011; 121 Li (10.1016/j.molmed.2022.02.003_bb0175) 2020; 163 Ortega (10.1016/j.molmed.2022.02.003_bb0190) 2016; 53 Liu (10.1016/j.molmed.2022.02.003_bb0125) 2021; 10 Kam (10.1016/j.molmed.2022.02.003_bb0010) 2020; 144 Connor (10.1016/j.molmed.2022.02.003_bb0375) 1996; 17 Vida (10.1016/j.molmed.2022.02.003_bb0095) 2019; 20 Abounit (10.1016/j.molmed.2022.02.003_bb0410) 2016; 35 Seet (10.1016/j.molmed.2022.02.003_bb0450) 2014; 21 Bersuker (10.1016/j.molmed.2022.02.003_bb0075) 2019; 575 Tian (10.1016/j.molmed.2022.02.003_bb0465) 2020; 17 Agarwal (10.1016/j.molmed.2022.02.003_bb0220) 2020; 11 Zhang (10.1016/j.molmed.2022.02.003_bb0290) 2014; 1843 Jankovic (10.1016/j.molmed.2022.02.003_bb0005) 2020; 91 Brown (10.1016/j.molmed.2022.02.003_bb0390) 2019; 51 Song (10.1016/j.molmed.2022.02.003_bb0285) 2017; 58 Beal (10.1016/j.molmed.2022.02.003_bb0500) 2014; 71 Castellani (10.1016/j.molmed.2022.02.003_bb0140) 2000; 100 Yoshida (10.1016/j.molmed.2022.02.003_bb0330) 1998; 9 Ayton (10.1016/j.molmed.2022.02.003_bb0145) 2014; 2014 Sharma (10.1016/j.molmed.2022.02.003_bb0310) 2016; 53 Mischley (10.1016/j.molmed.2022.02.003_bb0110) 2012; 318 McTigue (10.1016/j.molmed.2022.02.003_bb0370) 2008; 107 Ishii (10.1016/j.molmed.2022.02.003_bb0360) 2019; 133 Truman-Rosentsvit (10.1016/j.molmed.2022.02.003_bb0385) 2018; 131 Shih (10.1016/j.molmed.2022.02.003_bb0355) 2003; 23 Kapralov (10.1016/j.molmed.2022.02.003_bb0335) 2020; 16 Ayton (10.1016/j.molmed.2022.02.003_bb0270) 2013; 73 Fernández-Mendívil (10.1016/j.molmed.2022.02.003_bb0055) 2021; 38 Mullett (10.1016/j.molmed.2022.02.003_bb0365) 2009; 33 Zhu (10.1016/j.molmed.2022.02.003_bb0060) 2017; 36 Sun (10.1016/j.molmed.2022.02.003_bb0085) 2021; 17 Liddelow (10.1016/j.molmed.2022.02.003_bb0015) 2017; 541 Do Van (10.1016/j.molmed.2022.02.003_bb0050) 2016; 94 Novgorodov (10.1016/j.molmed.2022.02.003_bb0065) 2018; 59 Venkateshappa (10.1016/j.molmed.2022.02.003_bb0105) 2012; 37 |
References_xml | – volume: 9 start-page: 47 year: 2021 ident: bb0235 article-title: Cell specific quantitative iron mapping on brain slices by immuno-μPIXE in healthy elderly and Parkinson's disease publication-title: Acta Neuropathol. Commun. – volume: 10 year: 2020 ident: bb0185 article-title: Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement publication-title: Brain Behav. – volume: 7 start-page: 1398 year: 2017 ident: bb0420 article-title: Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease publication-title: Sci. Rep. – volume: 10 start-page: 20 year: 2021 ident: bb0125 article-title: Differential seeding and propagating efficiency of α-synuclein strains generated in different conditions publication-title: Transl. Neurodegener. – volume: 52 start-page: 482 year: 2020 end-page: 493 ident: bb0225 article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease publication-title: Nat. Genet. – volume: 58 start-page: 163 year: 2017 end-page: 179 ident: bb0285 article-title: Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment publication-title: Neurobiol. Aging – volume: 12 start-page: 81 year: 2021 ident: bb0150 article-title: Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of publication-title: Cell Death Dis. – volume: 94 start-page: 112 year: 2019 end-page: 120 ident: bb0215 article-title: Microglia-mediated neuroinflammation in neurodegenerative diseases publication-title: Semin. Cell Dev. Biol. – volume: 47 start-page: 61 year: 2021 ident: bb0480 article-title: miR-335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease publication-title: Int. J. Mol. Med. – volume: 11 start-page: 1238 year: 2020 ident: bb0100 article-title: Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson's disease publication-title: Nat. Commun. – volume: 16 start-page: 278 year: 2020 end-page: 290 ident: bb0335 article-title: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death publication-title: Nat. Chem. Biol. – volume: 575 start-page: 688 year: 2019 end-page: 692 ident: bb0075 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature – volume: 1843 start-page: 2967 year: 2014 end-page: 2975 ident: bb0290 article-title: Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons publication-title: Biochim. Biophys. Acta – volume: 32 start-page: 259 year: 2020 end-page: 272 ident: bb0300 article-title: Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain publication-title: Cell Metab. – volume: 16 start-page: 1180 year: 2014 end-page: 1191 ident: bb0070 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat. Cell Biol. – volume: 125 start-page: 127 year: 2019 end-page: 135 ident: bb0165 article-title: Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2 publication-title: Neurochem. Int. – volume: 23 start-page: 3394 year: 2003 end-page: 3406 ident: bb0355 article-title: Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress publication-title: J. Neurosci. – volume: 278 start-page: 27144 year: 2003 end-page: 27148 ident: bb0265 article-title: Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system publication-title: J. Biol. Chem. – volume: 284 start-page: 234 year: 2015 end-page: 246 ident: bb0275 article-title: Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease publication-title: Neuroscience – volume: 71 start-page: 543 year: 2014 end-page: 552 ident: bb0500 article-title: A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit publication-title: JAMA Neurol. – volume: 73 start-page: 554 year: 2013 end-page: 559 ident: bb0270 article-title: Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease publication-title: Ann. Neurol. – volume: 152 start-page: 227 year: 2020 end-page: 234 ident: bb0035 article-title: Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease publication-title: Free Radic. Biol. Med. – volume: 91 start-page: 795 year: 2020 end-page: 808 ident: bb0005 article-title: Parkinson's disease: etiopathogenesis and treatment publication-title: J. Neurol. Neurosurg. Psychiatry – start-page: 119 year: 2019 end-page: 120 ident: bb0455 article-title: Preliminary evidence of CuATSM treatment benefit in Parkinson's disease publication-title: XXIV World Congress on Parkinson‘s Disease and Related Disorders – volume: 11 start-page: 4183 year: 2020 ident: bb0220 article-title: A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders publication-title: Nat. Commun. – volume: 11 year: 2016 ident: bb0400 article-title: Direct observation of α-synuclein amyloid aggregates in endocytic vesicles of neuroblastoma cells publication-title: PLoS One – volume: 32 start-page: 1884 year: 2007 end-page: 1890 ident: bb0255 article-title: The pivotal role of astrocytes in the metabolism of iron in the brain publication-title: Neurochem. Res. – volume: 144 start-page: 1787 year: 2021 end-page: 1798 ident: bb0120 article-title: Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson’s disease publication-title: Brain – volume: 12 start-page: 222 year: 2007 end-page: 223 ident: bb0170 article-title: The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element publication-title: Mol. Psychiatry – volume: 126 start-page: 541 year: 2013 end-page: 549 ident: bb0250 article-title: Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells publication-title: J. Neurochem. – volume: 35 start-page: 2120 year: 2016 end-page: 2138 ident: bb0410 article-title: Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes publication-title: EMBO J. – volume: 163 start-page: 562 year: 2020 end-page: 573 ident: bb0175 article-title: Copper and iron ions accelerate the prion-like propagation of α-synuclein: a vicious cycle in Parkinson’s disease publication-title: Int. J. Biol. Macromol. – volume: 11 start-page: 1251 year: 2020 ident: bb0080 article-title: DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase publication-title: Nat. Commun. – volume: 133 start-page: 169 year: 2019 end-page: 178 ident: bb0360 article-title: Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis publication-title: Free Radic. Biol. Med. – volume: 57 start-page: 4628 year: 2020 end-page: 4641 ident: bb0040 article-title: Activation of p62–Keap1–Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells publication-title: Mol. Neurobiol. – volume: 7 start-page: 57 year: 2021 ident: bb0020 article-title: Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI publication-title: NPJ Parkinson's Dis. – volume: 59 start-page: 435 year: 2011 end-page: 451 ident: bb0350 article-title: Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity publication-title: Glia – volume: 1832 start-page: 618 year: 2013 end-page: 625 ident: bb0245 article-title: Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons publication-title: Biochim. Biophys. Acta – volume: 33 start-page: 28 year: 2009 end-page: 36 ident: bb0365 article-title: DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone publication-title: Neurobiol. Dis. – volume: 58 start-page: 3187 year: 2021 end-page: 3197 ident: bb0115 article-title: Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4 publication-title: Mol. Neurobiol. – volume: 5 start-page: 46 year: 2017 ident: bb0405 article-title: Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology publication-title: Acta Neuropathol. Commun. – volume: 144 start-page: 3114 year: 2021 end-page: 3125 ident: bb0025 article-title: The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease publication-title: Brain – volume: 36 start-page: 76 year: 2017 end-page: 82 ident: bb0060 article-title: Iron accumulation and microglia activation contribute to substantia nigra hyperechogenicity in the 6-OHDA-induced rat model of Parkinson's disease publication-title: Parkinsonism Relat. Disord. – volume: 9 start-page: 27 year: 2021 ident: bb0230 article-title: Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients publication-title: Acta Neuropathol. Commun. – volume: 2014 year: 2014 ident: bb0145 article-title: Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration publication-title: Biomed. Res. Int. – volume: 93 start-page: 312 year: 2021 end-page: 321 ident: bb0340 article-title: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation publication-title: Brain Behav. Immun. – volume: 40 start-page: 9327 year: 2020 end-page: 9341 ident: bb0295 article-title: Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination publication-title: J. Neurosci. – volume: 24 start-page: 979 year: 2009 end-page: 983 ident: bb0495 article-title: Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease publication-title: Mov. Disord. – volume: 17 start-page: 83 year: 1996 end-page: 93 ident: bb0375 article-title: Relationship of iron to oligodendrocytes and myelination publication-title: Glia – volume: 58 start-page: 158 year: 2018 end-page: 167 ident: bb0425 article-title: Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress publication-title: J. Clin. Pharmacol. – volume: 10 start-page: 455 year: 2017 ident: bb0260 article-title: New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson's disease publication-title: Front. Mol. Neurosci. – volume: 107 start-page: 1 year: 2008 end-page: 19 ident: bb0370 article-title: The life, death, and replacement of oligodendrocytes in the adult CNS publication-title: J. Neurochem. – volume: 7 start-page: 289 year: 2017 end-page: 299 ident: bb0440 article-title: Phase IIb study of intranasal glutathione in Parkinson’s disease publication-title: J. Parkinsons Dis. – volume: 277 start-page: 16116 year: 2002 end-page: 16123 ident: bb0155 article-title: Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein publication-title: J. Biol. Chem. – volume: 121 start-page: 715 year: 2011 end-page: 725 ident: bb0130 article-title: α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells publication-title: J. Clin. Invest. – volume: 17 start-page: 465 year: 2021 end-page: 476 ident: bb0085 article-title: Phospholipase iPLA(2)β averts ferroptosis by eliminating a redox lipid death signal publication-title: Nat. Chem. Biol. – volume: 106 start-page: 518 year: 2003 end-page: 526 ident: bb0205 article-title: Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains publication-title: Acta Neuropathol. – volume: 108 start-page: 183 year: 2017 end-page: 189 ident: bb0445 article-title: The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial publication-title: Neurochem. Int. – volume: 29 start-page: 4695 year: 2015 end-page: 4712 ident: bb0395 article-title: Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes publication-title: FASEB J. – volume: 59 start-page: 312 year: 2018 end-page: 329 ident: bb0065 article-title: Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis publication-title: J. Lipid Res. – volume: 9 start-page: 1929 year: 1998 end-page: 1933 ident: bb0330 article-title: Activated microglia cause iron-dependent lipid peroxidation in the presence of ferritin publication-title: Neuroreport – volume: 100 start-page: 111 year: 2000 end-page: 114 ident: bb0140 article-title: Sequestration of iron by Lewy bodies in Parkinson’s disease publication-title: Acta Neuropathol. – volume: 12 start-page: 8 year: 2017 end-page: 17 ident: bb0470 article-title: Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration publication-title: Redox Biol. – volume: 3 start-page: 17013 year: 2017 ident: bb0045 article-title: MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells publication-title: Cell Death Discov. – volume: 146 start-page: 510 year: 2020 end-page: 520 ident: bb0320 article-title: Targeting ferroptosis in rhabdomyosarcoma cells publication-title: Int. J. Cancer – volume: 21 start-page: 211 year: 2014 end-page: 217 ident: bb0450 article-title: Does high-dose coenzyme Q10 improve oxidative damage and clinical outcomes in Parkinson’s disease? publication-title: Antioxid. Redox Signal. – volume: 41 year: 2021 ident: bb0305 article-title: Parkinson's disease: alterations in iron and redox biology as a key to unlock therapeutic strategies publication-title: Redox Biol. – volume: 38 year: 2021 ident: bb0055 article-title: Protective role of microglial HO-1 blockade in aging: implication of iron metabolism publication-title: Redox Biol. – volume: 17 start-page: 1796 year: 2020 end-page: 1812 ident: bb0465 article-title: FTH1 Inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease publication-title: Neurotherapeutics – volume: 67 start-page: 1014 year: 1996 end-page: 1022 ident: bb0380 article-title: Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress publication-title: J. Neurochem. – volume: 88 start-page: 920 year: 2020 end-page: 924 ident: bb0475 article-title: Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson’s disease increase cellular susceptibility to oxidative stress publication-title: Brain Behav. Immun. – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: bb0030 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 541 start-page: 481 year: 2017 end-page: 487 ident: bb0015 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature – volume: 24 start-page: 102431 year: 2021 ident: bb0345 article-title: Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis publication-title: iScience – volume: 53 start-page: 1925 year: 2016 end-page: 1934 ident: bb0190 article-title: α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons publication-title: Mol. Neurobiol. – volume: 6 start-page: 36410 year: 2016 ident: bb0240 article-title: Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model publication-title: Sci. Rep. – volume: 16 start-page: 41 year: 2019 ident: bb0315 article-title: Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro publication-title: J. Neuroinflammation – volume: 19 start-page: 3543 year: 2018 ident: bb0325 article-title: Inhibition of microglia-derived oxidative stress by ciliary neurotrophic factor protects dopamine neurons in vivo from MPP+ neurotoxicity publication-title: Int. J. Mol. Sci. – volume: 114 start-page: 231 year: 2007 end-page: 241 ident: bb0210 article-title: Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease publication-title: Acta Neuropathol. – volume: 6 year: 2011 ident: bb0195 article-title: Alpha-synuclein is a cellular ferrireductase publication-title: PLoS One – volume: 106 start-page: 884 year: 2019 end-page: 890 ident: bb0430 article-title: N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease publication-title: Clin. Pharmacol. Ther. – volume: 617 start-page: 66 year: 2016 end-page: 71 ident: bb0090 article-title: Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson's disease and its progression: disease and staging biomarkers and new drug targets publication-title: Neurosci. Lett. – volume: 131 start-page: 342 year: 2018 end-page: 352 ident: bb0385 article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways publication-title: Blood – volume: 247 start-page: 45 year: 2013 end-page: 58 ident: bb0180 article-title: Chronic intranasal deferoxamine ameliorates motor defects and pathology in the α-synuclein rAAV Parkinson's model publication-title: Exp. Neurol. – volume: 51 start-page: 575 year: 2019 end-page: 586 ident: bb0390 article-title: Prominin2 drives ferroptosis resistance by stimulating iron export publication-title: Dev. Cell – volume: 318 start-page: 72 year: 2012 end-page: 75 ident: bb0110 article-title: Coenzyme Q10 deficiency in patients with Parkinson’s disease publication-title: J. Neurol. Sci. – volume: 73 year: 2021 ident: bb0485 article-title: p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells publication-title: Toxicol. in Vitro – volume: 23 start-page: 576 year: 2012 end-page: 580 ident: bb0160 article-title: α-Synuclein expression is modulated at the translational level by iron publication-title: Neuroreport – volume: 338 start-page: 949 year: 2012 end-page: 953 ident: bb0135 article-title: Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice publication-title: Science – volume: 36 start-page: 103 year: 2013 end-page: 106 ident: bb0435 article-title: N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases publication-title: Clin. Neuropharmacol. – volume: 20 start-page: 771 year: 2019 ident: bb0095 article-title: Lymphoproliferation impairment and oxidative stress in blood cells from early Parkinson's disease patients publication-title: Int. J. Mol. Sci. – volume: 27 start-page: 2781 year: 2020 end-page: 2796 ident: bb0200 article-title: Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation publication-title: Cell Death Differ. – volume: 21 start-page: 195 year: 2014 end-page: 210 ident: bb0415 article-title: Targeting chelatable iron as a therapeutic modality in Parkinson's disease publication-title: Antioxid. Redox Signal. – volume: 35 start-page: 661 year: 2015 end-page: 668 ident: bb0280 article-title: Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats publication-title: Cell. Mol. Neurobiol. – volume: 94 start-page: 169 year: 2016 end-page: 178 ident: bb0050 article-title: Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC publication-title: Neurobiol. Dis. – volume: 37 start-page: 358 year: 2012 end-page: 369 ident: bb0105 article-title: Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease publication-title: Neurochem. Res. – volume: 144 year: 2020 ident: bb0010 article-title: Microglia and astrocyte dysfunction in Parkinson's disease publication-title: Neurobiol. Dis. – volume: 567 start-page: 35 year: 2021 end-page: 41 ident: bb0490 article-title: Super-enhancer-driven sorting nexin 5 expression promotes dopaminergic neuronal ferroptosis in Parkinson's disease models publication-title: Biochem. Biophys. Res. Commun. – volume: 53 start-page: 3326 year: 2016 end-page: 3337 ident: bb0310 article-title: Apocyanin, a microglial NADPH oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced Parkinson’s disease model publication-title: Mol. Neurobiol. – volume: 42 start-page: 1150 year: 2021 end-page: 1159 ident: bb0460 article-title: The C terminus of DJ-1 determines its homodimerization, MGO detoxification activity and suppression of ferroptosis publication-title: Acta Pharmacol. Sin. – volume: 38 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0055 article-title: Protective role of microglial HO-1 blockade in aging: implication of iron metabolism publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101789 – volume: 146 start-page: 510 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0320 article-title: Targeting ferroptosis in rhabdomyosarcoma cells publication-title: Int. J. Cancer doi: 10.1002/ijc.32496 – volume: 42 start-page: 1150 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0460 article-title: The C terminus of DJ-1 determines its homodimerization, MGO detoxification activity and suppression of ferroptosis publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-020-00531-1 – volume: 17 start-page: 1796 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0465 article-title: FTH1 Inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease publication-title: Neurotherapeutics doi: 10.1007/s13311-020-00929-z – volume: 59 start-page: 312 year: 2018 ident: 10.1016/j.molmed.2022.02.003_bb0065 article-title: Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis publication-title: J. Lipid Res. doi: 10.1194/jlr.M080374 – volume: 125 start-page: 127 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0165 article-title: Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2 publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2019.02.016 – volume: 9 start-page: 27 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0230 article-title: Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-021-01126-5 – volume: 88 start-page: 920 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0475 article-title: Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson’s disease increase cellular susceptibility to oxidative stress publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2020.04.007 – volume: 3 start-page: 17013 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0045 article-title: MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells publication-title: Cell Death Discov. doi: 10.1038/cddiscovery.2017.13 – volume: 29 start-page: 4695 year: 2015 ident: 10.1016/j.molmed.2022.02.003_bb0395 article-title: Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes publication-title: FASEB J. doi: 10.1096/fj.14-268615 – volume: 126 start-page: 541 year: 2013 ident: 10.1016/j.molmed.2022.02.003_bb0250 article-title: Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells publication-title: J. Neurochem. doi: 10.1111/jnc.12244 – volume: 40 start-page: 9327 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0295 article-title: Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1749-20.2020 – volume: 32 start-page: 259 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0300 article-title: Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.05.019 – volume: 93 start-page: 312 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0340 article-title: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2021.01.003 – volume: 16 start-page: 41 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0315 article-title: Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro publication-title: J. Neuroinflammation doi: 10.1186/s12974-019-1430-7 – volume: 9 start-page: 47 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0235 article-title: Cell specific quantitative iron mapping on brain slices by immuno-μPIXE in healthy elderly and Parkinson's disease publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-021-01145-2 – volume: 7 start-page: 289 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0440 article-title: Phase IIb study of intranasal glutathione in Parkinson’s disease publication-title: J. Parkinsons Dis. doi: 10.3233/JPD-161040 – volume: 149 start-page: 1060 year: 2012 ident: 10.1016/j.molmed.2022.02.003_bb0030 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 58 start-page: 163 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0285 article-title: Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2017.06.017 – volume: 71 start-page: 543 year: 2014 ident: 10.1016/j.molmed.2022.02.003_bb0500 article-title: A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2014.131 – volume: 114 start-page: 231 year: 2007 ident: 10.1016/j.molmed.2022.02.003_bb0210 article-title: Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease publication-title: Acta Neuropathol. doi: 10.1007/s00401-007-0244-3 – volume: 59 start-page: 435 year: 2011 ident: 10.1016/j.molmed.2022.02.003_bb0350 article-title: Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity publication-title: Glia doi: 10.1002/glia.21112 – volume: 617 start-page: 66 year: 2016 ident: 10.1016/j.molmed.2022.02.003_bb0090 article-title: Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson's disease and its progression: disease and staging biomarkers and new drug targets publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2016.02.011 – volume: 6 year: 2011 ident: 10.1016/j.molmed.2022.02.003_bb0195 article-title: Alpha-synuclein is a cellular ferrireductase publication-title: PLoS One doi: 10.1371/annotation/900a5247-7d03-4686-a544-5f7f64c0aac5 – volume: 24 start-page: 979 year: 2009 ident: 10.1016/j.molmed.2022.02.003_bb0495 article-title: Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.22401 – volume: 19 start-page: 3543 year: 2018 ident: 10.1016/j.molmed.2022.02.003_bb0325 article-title: Inhibition of microglia-derived oxidative stress by ciliary neurotrophic factor protects dopamine neurons in vivo from MPP+ neurotoxicity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19113543 – volume: 32 start-page: 1884 year: 2007 ident: 10.1016/j.molmed.2022.02.003_bb0255 article-title: The pivotal role of astrocytes in the metabolism of iron in the brain publication-title: Neurochem. Res. doi: 10.1007/s11064-007-9375-0 – volume: 58 start-page: 3187 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0115 article-title: Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4 publication-title: Mol. Neurobiol. doi: 10.1007/s12035-021-02320-1 – volume: 2014 year: 2014 ident: 10.1016/j.molmed.2022.02.003_bb0145 article-title: Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration publication-title: Biomed. Res. Int. doi: 10.1155/2014/581256 – volume: 6 start-page: 36410 year: 2016 ident: 10.1016/j.molmed.2022.02.003_bb0240 article-title: Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model publication-title: Sci. Rep. doi: 10.1038/srep36410 – volume: 16 start-page: 278 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0335 article-title: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0462-8 – volume: 11 start-page: 4183 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0220 article-title: A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders publication-title: Nat. Commun. doi: 10.1038/s41467-020-17876-0 – volume: 7 start-page: 57 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0020 article-title: Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI publication-title: NPJ Parkinson's Dis. doi: 10.1038/s41531-021-00199-2 – volume: 35 start-page: 661 year: 2015 ident: 10.1016/j.molmed.2022.02.003_bb0280 article-title: Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-015-0161-2 – volume: 5 start-page: 46 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0405 article-title: Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-017-0445-5 – volume: 11 start-page: 1238 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0100 article-title: Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson's disease publication-title: Nat. Commun. doi: 10.1038/s41467-020-15065-7 – volume: 100 start-page: 111 year: 2000 ident: 10.1016/j.molmed.2022.02.003_bb0140 article-title: Sequestration of iron by Lewy bodies in Parkinson’s disease publication-title: Acta Neuropathol. doi: 10.1007/s004010050001 – volume: 144 start-page: 3114 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0025 article-title: The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease publication-title: Brain doi: 10.1093/brain/awab191 – volume: 35 start-page: 2120 year: 2016 ident: 10.1016/j.molmed.2022.02.003_bb0410 article-title: Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes publication-title: EMBO J. doi: 10.15252/embj.201593411 – volume: 73 start-page: 554 year: 2013 ident: 10.1016/j.molmed.2022.02.003_bb0270 article-title: Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.23817 – volume: 108 start-page: 183 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0445 article-title: The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2017.03.014 – volume: 121 start-page: 715 year: 2011 ident: 10.1016/j.molmed.2022.02.003_bb0130 article-title: α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells publication-title: J. Clin. Invest. doi: 10.1172/JCI43366 – volume: 53 start-page: 3326 year: 2016 ident: 10.1016/j.molmed.2022.02.003_bb0310 article-title: Apocyanin, a microglial NADPH oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced Parkinson’s disease model publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9267-2 – volume: 27 start-page: 2781 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0200 article-title: Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation publication-title: Cell Death Differ. doi: 10.1038/s41418-020-0542-z – volume: 1832 start-page: 618 year: 2013 ident: 10.1016/j.molmed.2022.02.003_bb0245 article-title: Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.01.021 – volume: 318 start-page: 72 year: 2012 ident: 10.1016/j.molmed.2022.02.003_bb0110 article-title: Coenzyme Q10 deficiency in patients with Parkinson’s disease publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2012.03.023 – volume: 53 start-page: 1925 year: 2016 ident: 10.1016/j.molmed.2022.02.003_bb0190 article-title: α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9146-x – volume: 41 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0305 article-title: Parkinson's disease: alterations in iron and redox biology as a key to unlock therapeutic strategies publication-title: Redox Biol. doi: 10.1016/j.redox.2021.101896 – volume: 144 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0010 article-title: Microglia and astrocyte dysfunction in Parkinson's disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.105028 – volume: 11 year: 2016 ident: 10.1016/j.molmed.2022.02.003_bb0400 article-title: Direct observation of α-synuclein amyloid aggregates in endocytic vesicles of neuroblastoma cells publication-title: PLoS One doi: 10.1371/journal.pone.0153020 – volume: 9 start-page: 1929 year: 1998 ident: 10.1016/j.molmed.2022.02.003_bb0330 article-title: Activated microglia cause iron-dependent lipid peroxidation in the presence of ferritin publication-title: Neuroreport doi: 10.1097/00001756-199806220-00003 – volume: 33 start-page: 28 year: 2009 ident: 10.1016/j.molmed.2022.02.003_bb0365 article-title: DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.09.013 – volume: 52 start-page: 482 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0225 article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease publication-title: Nat. Genet. doi: 10.1038/s41588-020-0610-9 – volume: 278 start-page: 27144 year: 2003 ident: 10.1016/j.molmed.2022.02.003_bb0265 article-title: Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301988200 – volume: 17 start-page: 83 year: 1996 ident: 10.1016/j.molmed.2022.02.003_bb0375 article-title: Relationship of iron to oligodendrocytes and myelination publication-title: Glia doi: 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7 – volume: 58 start-page: 158 year: 2018 ident: 10.1016/j.molmed.2022.02.003_bb0425 article-title: Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress publication-title: J. Clin. Pharmacol. doi: 10.1002/jcph.1008 – volume: 36 start-page: 103 year: 2013 ident: 10.1016/j.molmed.2022.02.003_bb0435 article-title: N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases publication-title: Clin. Neuropharmacol. doi: 10.1097/WNF.0b013e31829ae713 – volume: 24 start-page: 102431 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0345 article-title: Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis publication-title: iScience doi: 10.1016/j.isci.2021.102431 – volume: 163 start-page: 562 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0175 article-title: Copper and iron ions accelerate the prion-like propagation of α-synuclein: a vicious cycle in Parkinson’s disease publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.06.274 – volume: 23 start-page: 576 year: 2012 ident: 10.1016/j.molmed.2022.02.003_bb0160 article-title: α-Synuclein expression is modulated at the translational level by iron publication-title: Neuroreport doi: 10.1097/WNR.0b013e328354a1f0 – volume: 106 start-page: 518 year: 2003 ident: 10.1016/j.molmed.2022.02.003_bb0205 article-title: Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains publication-title: Acta Neuropathol. doi: 10.1007/s00401-003-0766-2 – volume: 37 start-page: 358 year: 2012 ident: 10.1016/j.molmed.2022.02.003_bb0105 article-title: Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease publication-title: Neurochem. Res. doi: 10.1007/s11064-011-0619-7 – volume: 11 start-page: 1251 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0080 article-title: DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase publication-title: Nat. Commun. doi: 10.1038/s41467-020-15109-y – volume: 567 start-page: 35 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0490 article-title: Super-enhancer-driven sorting nexin 5 expression promotes dopaminergic neuronal ferroptosis in Parkinson's disease models publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2021.06.024 – volume: 152 start-page: 227 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0035 article-title: Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.03.015 – start-page: 119 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0455 article-title: Preliminary evidence of CuATSM treatment benefit in Parkinson's disease – volume: 144 start-page: 1787 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0120 article-title: Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awab084 – volume: 284 start-page: 234 year: 2015 ident: 10.1016/j.molmed.2022.02.003_bb0275 article-title: Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.09.071 – volume: 107 start-page: 1 year: 2008 ident: 10.1016/j.molmed.2022.02.003_bb0370 article-title: The life, death, and replacement of oligodendrocytes in the adult CNS publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2008.05570.x – volume: 67 start-page: 1014 year: 1996 ident: 10.1016/j.molmed.2022.02.003_bb0380 article-title: Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1996.67031014.x – volume: 36 start-page: 76 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0060 article-title: Iron accumulation and microglia activation contribute to substantia nigra hyperechogenicity in the 6-OHDA-induced rat model of Parkinson's disease publication-title: Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2017.01.003 – volume: 21 start-page: 195 year: 2014 ident: 10.1016/j.molmed.2022.02.003_bb0415 article-title: Targeting chelatable iron as a therapeutic modality in Parkinson's disease publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5593 – volume: 106 start-page: 884 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0430 article-title: N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1548 – volume: 541 start-page: 481 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0015 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature doi: 10.1038/nature21029 – volume: 94 start-page: 169 year: 2016 ident: 10.1016/j.molmed.2022.02.003_bb0050 article-title: Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2016.05.011 – volume: 12 start-page: 8 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0470 article-title: Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration publication-title: Redox Biol. doi: 10.1016/j.redox.2017.01.021 – volume: 17 start-page: 465 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0085 article-title: Phospholipase iPLA(2)β averts ferroptosis by eliminating a redox lipid death signal publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-00734-x – volume: 338 start-page: 949 year: 2012 ident: 10.1016/j.molmed.2022.02.003_bb0135 article-title: Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice publication-title: Science doi: 10.1126/science.1227157 – volume: 131 start-page: 342 year: 2018 ident: 10.1016/j.molmed.2022.02.003_bb0385 article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways publication-title: Blood doi: 10.1182/blood-2017-02-768580 – volume: 23 start-page: 3394 year: 2003 ident: 10.1016/j.molmed.2022.02.003_bb0355 article-title: Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-08-03394.2003 – volume: 7 start-page: 1398 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0420 article-title: Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease publication-title: Sci. Rep. doi: 10.1038/s41598-017-01402-2 – volume: 73 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0485 article-title: p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2021.105146 – volume: 16 start-page: 1180 year: 2014 ident: 10.1016/j.molmed.2022.02.003_bb0070 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat. Cell Biol. doi: 10.1038/ncb3064 – volume: 10 start-page: 20 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0125 article-title: Differential seeding and propagating efficiency of α-synuclein strains generated in different conditions publication-title: Transl. Neurodegener. doi: 10.1186/s40035-021-00242-5 – volume: 10 start-page: 455 year: 2017 ident: 10.1016/j.molmed.2022.02.003_bb0260 article-title: New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson's disease publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00455 – volume: 277 start-page: 16116 year: 2002 ident: 10.1016/j.molmed.2022.02.003_bb0155 article-title: Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M107866200 – volume: 21 start-page: 211 year: 2014 ident: 10.1016/j.molmed.2022.02.003_bb0450 article-title: Does high-dose coenzyme Q10 improve oxidative damage and clinical outcomes in Parkinson’s disease? publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2013.5801 – volume: 91 start-page: 795 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0005 article-title: Parkinson's disease: etiopathogenesis and treatment publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2019-322338 – volume: 57 start-page: 4628 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0040 article-title: Activation of p62–Keap1–Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02049-3 – volume: 10 year: 2020 ident: 10.1016/j.molmed.2022.02.003_bb0185 article-title: Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement publication-title: Brain Behav. doi: 10.1002/brb3.1536 – volume: 94 start-page: 112 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0215 article-title: Microglia-mediated neuroinflammation in neurodegenerative diseases publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2019.05.004 – volume: 20 start-page: 771 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0095 article-title: Lymphoproliferation impairment and oxidative stress in blood cells from early Parkinson's disease patients publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20030771 – volume: 247 start-page: 45 year: 2013 ident: 10.1016/j.molmed.2022.02.003_bb0180 article-title: Chronic intranasal deferoxamine ameliorates motor defects and pathology in the α-synuclein rAAV Parkinson's model publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2013.03.017 – volume: 47 start-page: 61 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0480 article-title: miR-335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2021.4894 – volume: 12 start-page: 222 year: 2007 ident: 10.1016/j.molmed.2022.02.003_bb0170 article-title: The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element publication-title: Mol. Psychiatry doi: 10.1038/sj.mp.4001937 – volume: 12 start-page: 81 year: 2021 ident: 10.1016/j.molmed.2022.02.003_bb0150 article-title: Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis publication-title: Cell Death Dis. doi: 10.1038/s41419-020-03369-x – volume: 575 start-page: 688 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0075 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 1843 start-page: 2967 year: 2014 ident: 10.1016/j.molmed.2022.02.003_bb0290 article-title: Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2014.09.010 – volume: 133 start-page: 169 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0360 article-title: Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.09.002 – volume: 51 start-page: 575 year: 2019 ident: 10.1016/j.molmed.2022.02.003_bb0390 article-title: Prominin2 drives ferroptosis resistance by stimulating iron export publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.10.007 |
SSID | ssj0015778 |
Score | 2.676873 |
SecondaryResourceType | review_article |
Snippet | Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis... Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 258 |
SubjectTerms | alpha-Synuclein - metabolism Basic Medicine Cell Death - physiology Dopaminergic Neurons - metabolism Ferroptosis glia Humans iron Medical and Health Sciences Medicin och hälsovetenskap Medicinska och farmaceutiska grundvetenskaper Neuroglia - metabolism neuron Neurosciences Neurovetenskaper Parkinson Disease - metabolism Parkinson's disease |
Title | Ferroptosis in Parkinson’s disease: glia–neuron crosstalk |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1471491422000442 https://dx.doi.org/10.1016/j.molmed.2022.02.003 https://www.ncbi.nlm.nih.gov/pubmed/35260343 https://www.proquest.com/docview/2637583525 https://lup.lub.lu.se/record/e420c7fd-6120-4a74-818a-0a32085af111 oai:portal.research.lu.se:publications/e420c7fd-6120-4a74-818a-0a32085af111 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIhAXBOVvC1RB4hrWsZ044VZVrbZF7QUqVVwsO3EgZclGze6hF9R34NTX65N0xnYiftWKQw5JPJYzsT-P7ZlvCHlTlbJmVJewTM1MLExRxUUtZZwWNrF1oVklMd758CibHYuDk_RkjewMsTDoVhmw32O6Q-vwZBq0Oe2aZvohAVwVBe5huGNJxGEhJPbyt99HN48klQ6NsXCMpYfwOefj9Q3d_pEvlDHP3Mn_NT39aX7-xi3q5qO9h-RBMCSjbd_WR2TNthvkrk8teb5B7h2GQ_PHBPeKzxbdctE3fdS0EQY6u5ivq4vLPgonNO-iz_NGX138cASXbeSaB4b51yfkeG_3484sDlkT4jLLs2VcyCqzgH8ARRx1I8u6ZvCAazC2Km15VXBryjJHLjdhwASzlOpc53lqYGVN-VOy3i5a-5xELNE250ZoWqUAqKWWnMvcyDSr0zrh5YTwQVmqDJTimNlirgbfsVPlVaxQxYoypCKdkHiU6jylxg3l0-E_qCFcFABOAebfICdHuV-61C0kXw-_W8FowyMU3drFqlcs47DAQgrZCXnm-8H4DZhpgHIB0ru-Y4xvkMJ7vurgMnCp3iorGIVRUikwMKkSWgoFlpNWVHNMmqprmIIm5NNf6vGrMhWooL6E-rqf9nhvVfnmfyvnBbmPd9576SVZX56t7CswzJZmy428LXJne__97OgadoU4tw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIn4uCAqF5TdIcAzr2EmcIPWAoNWWdnuhlSouxkkcCCzZqNkV6gX1HTj1OXijPgkzsbPiV62Qesgl2Rl5x57xjD3zDcCTIpclZzrHMDXO_DBLCz8tpfSj1ASmTDUvJNU7j3fi0V74ej_aX4LvfS0MpVU6229temet3Zuhk-awqarhmwDtapjSGUZ3LcldZuWWOfyCcVu7tvkKJ_kp5xvruy9Hvmst4OdxEs_8VBaxQSOB-iqIgczLkuMLodEjKbQRRSpMlucJAZ6FGfophjGd6CSJMgw_mUC-F-BiiOaC2iY8-7rIKwki2Zl_Gp1Pw-vr9bqkss9UZ0AApZxbqFDxr_3wT3_3NzDTbgPcuA7XnOfqvbDCuQFLpl6BS7aX5eEKXB67W_qbQIfTB9NmNm2r1qtqjyqruyKzk6Pj1nNXQs-995NKnxx96xA1a68bHkYCn27B3rnIchWW62lt7oDHA20SkYWaFRFa8FxLIWSSySguozIQ-QBELyyVOwxzaqUxUX2y2kdlRaxIxIpxwj4dgL-gaiyGxym_j_p5UH19KlpUhZvMKXRyQffLGj4D5eN-uhWqN93Z6NpM563iscCIjjBrB3DbroPFf6DWBkyESL1uF8biC2GGT-YNPhk-qjXKhJyhWhYKPVqmQi1Dha6aVkwL6tKqS9zzBvD2L3xsGKgc9tQHx6_56VD5TMzv_rdwHsGV0e54W21v7mzdg6v0xaZO3Yfl2cHcPECvcJY97LTQg3fnrfY_AD8sc0s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroptosis+in+Parkinson%27s+disease&rft.jtitle=Trends+in+molecular+medicine&rft.au=Wang%2C+Zhang+Li&rft.au=Yuan%2C+Lin&rft.au=Li%2C+Wen&rft.au=Li%2C+Jia+Yi&rft.date=2022-04-01&rft.issn=1471-4914&rft.volume=28&rft.issue=4&rft.spage=258&rft_id=info:doi/10.1016%2Fj.molmed.2022.02.003&rft.externalDocID=oai_portal_research_lu_se_publications_e420c7fd_6120_4a74_818a_0a32085af111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4914&client=summon |