Ferroptosis in Parkinson’s disease: glia–neuron crosstalk

Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activ...

Full description

Saved in:
Bibliographic Details
Published inTrends in molecular medicine Vol. 28; no. 4; pp. 258 - 269
Main Authors Wang, Zhang-Li, Yuan, Lin, Li, Wen, Li, Jia-Yi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis. Iron uptake, storage, efflux, and utilization are essential for maintaining iron homeostasis. Abnormal expression of proteins involved in these processes related to iron homeostasis may cause iron overload and induce subsequent ferroptosis, which is associated with the pathogenesis of neurodegenerative disease.Crosstalk between glia and neurons underlies the ferroptotic alterations in DA neurons and form a vicious circle in promoting PD pathogenesis.Possible mechanisms of iron transfer between glia and neurons include exosomes and tunneling nanotubes. They may determine the efficacy of ferroptosis inhibitors and provide a clue for exploring novel therapeutic interventions for PD.Joint medications with ferroptosis inhibitors and anti-inflammatory medicines may provide a potential strategy for the treatment of PD and related neurodegenerative diseases.
AbstractList Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis.
Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis.Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis.
Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis of PD is unknown, iron dyshomeostasis has been proposed as a potential contributing factor. Emerging evidence suggests that glial cell activation plays a pivotal role in ferroptosis and subsequent neurodegeneration. We review the association between iron deposition, glial activation, and neuronal death, and discuss whether and how ferroptosis affects α-synuclein aggregation and DA neuron loss. We examine the possible roles of different types of glia in mediating ferroptosis in neurons. Lastly, we review current PD clinical trials targeting iron homeostasis. Although clinical trials are already evaluating ferroptosis modulation in PD, much remains unknown about metal ion metabolism and regulation in PD pathogenesis. Iron uptake, storage, efflux, and utilization are essential for maintaining iron homeostasis. Abnormal expression of proteins involved in these processes related to iron homeostasis may cause iron overload and induce subsequent ferroptosis, which is associated with the pathogenesis of neurodegenerative disease.Crosstalk between glia and neurons underlies the ferroptotic alterations in DA neurons and form a vicious circle in promoting PD pathogenesis.Possible mechanisms of iron transfer between glia and neurons include exosomes and tunneling nanotubes. They may determine the efficacy of ferroptosis inhibitors and provide a clue for exploring novel therapeutic interventions for PD.Joint medications with ferroptosis inhibitors and anti-inflammatory medicines may provide a potential strategy for the treatment of PD and related neurodegenerative diseases.
Author Li, Jia-Yi
Wang, Zhang-Li
Yuan, Lin
Li, Wen
Author_xml – sequence: 1
  givenname: Zhang-Li
  surname: Wang
  fullname: Wang, Zhang-Li
  organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China
– sequence: 2
  givenname: Lin
  surname: Yuan
  fullname: Yuan, Lin
  organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China
– sequence: 3
  givenname: Wen
  surname: Li
  fullname: Li, Wen
  email: Wli87@cmu.edu.cn
  organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China
– sequence: 4
  givenname: Jia-Yi
  orcidid: 0000-0002-7770-7376
  surname: Li
  fullname: Li, Jia-Yi
  email: lijiayi@cmu.edu.cn
  organization: Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35260343$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/e420c7fd-6120-4a74-818a-0a32085af111$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/e420c7fd-6120-4a74-818a-0a32085af111$$DView record from Swedish Publication Index
BookMark eNqNUk2LFDEQDbLifug_EOmjlxnz1d2ZRQVZXHdhQA8K3op0ulozk0napFvZ2_4HT_69_SVmtmf3sCAjVEgR3ntVlVfH5MAHj4Q8Z3TOKKtereab4DbYzjnlfE5zUPGIHDFZs5lcLL4e3OdMHpLjlFaUsrKu1RNyKEpeUSHFEXlzjjGGfgjJpsL64pOOa-tT8DfXf1LR2oQ64WnxzVl9c_3b4xiDL0wMKQ3arZ-Sx512CZ_t7hPy5fz957OL2fLjh8uzd8uZqVQ1zBZ1WyGTFWcLITmntek6nh-EVqJsNYp2IbAxRnEmpGyoEkipVlqpssFGUHFC9KSbfmE_NtBHu9HxCoK20IeYW4GIudVovoMbISFklLNGDzb4BCg5NXXXQsU4BalrCYopDVQLTlWpO8ZYrrH8Zw039vk0O-3_lHs5yfUx_BgxDbCxyaBz2mMYE_BK1GUen5cZ-mIHHZts6H3lO5cy4HQC3H58xA6MHW5nG6K2DhiF7UrACqaVgO1KAM1Bt2T5gHynv4f2dqJh9vWnxQjJWPQGWxvRDNAGu0_g9QMB46zPnrg1Xu2n_wXLSeeF
CitedBy_id crossref_primary_10_3389_fnagi_2022_1077738
crossref_primary_10_1016_j_intimp_2024_113854
crossref_primary_10_3389_fcell_2024_1510897
crossref_primary_10_1002_cmdc_202200629
crossref_primary_10_1016_j_biopha_2022_113611
crossref_primary_10_1016_j_brainres_2024_148863
crossref_primary_10_1007_s11064_025_04351_9
crossref_primary_10_1016_j_cej_2025_161357
crossref_primary_10_1016_j_ijbiomac_2025_140662
crossref_primary_10_1186_s12920_023_01481_3
crossref_primary_10_2147_DDDT_S458026
crossref_primary_10_1002_anie_202502195
crossref_primary_10_3390_cells11233829
crossref_primary_10_4103_1673_5374_371381
crossref_primary_10_3390_molecules30061211
crossref_primary_10_1016_j_heliyon_2024_e33083
crossref_primary_10_1080_07853890_2025_2472871
crossref_primary_10_2131_jts_49_555
crossref_primary_10_1016_j_heliyon_2025_e42735
crossref_primary_10_31083_j_jin2104102
crossref_primary_10_3892_mmr_2024_13252
crossref_primary_10_1016_j_bbadis_2025_167727
crossref_primary_10_57197_JDR_2024_0001
crossref_primary_10_1016_j_jhazmat_2024_135580
crossref_primary_10_1186_s10020_024_00797_9
crossref_primary_10_3390_ijms252011168
crossref_primary_10_1002_acn3_52292
crossref_primary_10_1111_cns_70067
crossref_primary_10_1097_MD_0000000000038898
crossref_primary_10_1039_D4SC03445G
crossref_primary_10_1016_j_cjph_2024_04_002
crossref_primary_10_1016_j_virs_2023_09_001
crossref_primary_10_1002_mco2_298
crossref_primary_10_1111_jnc_70027
crossref_primary_10_1007_s12035_023_03854_2
crossref_primary_10_3389_fimmu_2022_1049936
crossref_primary_10_1016_j_colsurfa_2023_131458
crossref_primary_10_1016_j_fmre_2023_04_002
crossref_primary_10_1016_j_brainresbull_2024_110991
crossref_primary_10_1177_10760296241302082
crossref_primary_10_1002_smll_202206575
crossref_primary_10_3390_cancers15133484
crossref_primary_10_3389_fgene_2023_1231707
crossref_primary_10_3390_antiox12030673
crossref_primary_10_1016_j_freeradbiomed_2025_01_046
crossref_primary_10_1016_j_intimp_2024_113151
crossref_primary_10_1016_j_jep_2023_117196
crossref_primary_10_3389_fnagi_2023_1278323
crossref_primary_10_1016_j_expneurol_2024_115084
crossref_primary_10_1111_jpi_13002
crossref_primary_10_1186_s11658_023_00503_3
crossref_primary_10_1021_acschemneuro_5c00035
crossref_primary_10_1007_s11064_024_04185_x
crossref_primary_10_3389_fphar_2024_1480345
crossref_primary_10_20517_and_2024_44
crossref_primary_10_1097_CM9_0000000000003167
crossref_primary_10_1038_s41420_024_02273_z
crossref_primary_10_1055_s_0043_1773796
crossref_primary_10_1002_adma_202409329
crossref_primary_10_1016_j_arr_2023_102077
crossref_primary_10_1016_j_neuroscience_2022_11_018
crossref_primary_10_1038_s41392_023_01353_3
crossref_primary_10_1007_s10534_024_00628_8
crossref_primary_10_1016_j_heliyon_2024_e39684
crossref_primary_10_1093_nar_gkac935
crossref_primary_10_3390_ijms241310414
crossref_primary_10_1016_j_prp_2023_154757
crossref_primary_10_1002_bies_202300176
crossref_primary_10_1016_j_heliyon_2024_e29418
crossref_primary_10_1016_j_freeradbiomed_2024_07_018
crossref_primary_10_3390_ijms25073636
crossref_primary_10_1016_j_bioorg_2024_107458
crossref_primary_10_1016_j_biopha_2024_116947
crossref_primary_10_3390_antiox12061289
crossref_primary_10_1002_jmri_28574
crossref_primary_10_1155_2023_4130937
crossref_primary_10_1016_j_patcog_2022_109216
crossref_primary_10_1016_j_jare_2024_03_023
crossref_primary_10_1039_D3RA04057G
crossref_primary_10_3389_fnagi_2022_904152
crossref_primary_10_3389_fphar_2025_1570069
crossref_primary_10_3389_fnagi_2024_1451655
crossref_primary_10_1016_j_mcn_2025_103993
crossref_primary_10_1016_j_jep_2024_117850
crossref_primary_10_3389_fonc_2022_939605
crossref_primary_10_1016_j_brainresbull_2024_111065
crossref_primary_10_1038_s41419_024_06691_w
crossref_primary_10_1007_s10571_024_01459_4
crossref_primary_10_1021_jacs_3c12588
crossref_primary_10_3390_ijms24087342
crossref_primary_10_1016_j_heliyon_2024_e27786
crossref_primary_10_1002_ptr_8343
crossref_primary_10_3389_fncel_2025_1497555
crossref_primary_10_1016_j_carbon_2025_120152
crossref_primary_10_3390_diagnostics13111924
crossref_primary_10_1021_acs_jmedchem_4c03149
crossref_primary_10_1016_j_arr_2024_102299
crossref_primary_10_1016_j_snb_2025_137264
crossref_primary_10_1016_j_expneurol_2023_114614
crossref_primary_10_1111_bcpt_14011
crossref_primary_10_3390_ijms241814108
crossref_primary_10_1016_j_jnrt_2024_100171
crossref_primary_10_1016_j_mcn_2024_103981
crossref_primary_10_3389_fgene_2022_1010361
crossref_primary_10_1016_j_ejphar_2025_177430
crossref_primary_10_3389_fphar_2025_1528538
crossref_primary_10_1016_j_brainresbull_2024_111076
crossref_primary_10_4103_cjop_CJOP_D_23_00107
crossref_primary_10_1016_j_lfs_2024_123124
crossref_primary_10_1016_j_biopha_2024_116777
crossref_primary_10_1109_ACCESS_2024_3412808
crossref_primary_10_1016_j_nbd_2024_106535
crossref_primary_10_1016_j_neulet_2023_137346
crossref_primary_10_1016_j_intimp_2025_114076
crossref_primary_10_1016_j_freeradbiomed_2024_04_240
crossref_primary_10_1186_s12967_025_06287_8
crossref_primary_10_1002_ange_202502195
crossref_primary_10_3390_cells13181554
crossref_primary_10_3390_molecules29050925
crossref_primary_10_3390_ijms232314753
crossref_primary_10_1007_s10571_023_01343_7
crossref_primary_10_1016_j_freeradbiomed_2024_04_002
crossref_primary_10_1016_j_jmb_2022_167680
crossref_primary_10_1038_s41598_024_82470_z
crossref_primary_10_3389_fimmu_2022_943321
crossref_primary_10_1021_acsnano_4c05084
crossref_primary_10_1016_j_molimm_2024_12_008
crossref_primary_10_1186_s40478_024_01771_6
crossref_primary_10_1039_D4RA02336F
crossref_primary_10_1021_acs_jafc_3c04801
crossref_primary_10_1007_s12035_023_03468_8
crossref_primary_10_1016_j_arr_2023_102035
crossref_primary_10_1111_ahe_12991
crossref_primary_10_1038_s42003_024_06896_x
crossref_primary_10_1016_j_arr_2024_102477
crossref_primary_10_1016_j_arr_2023_102032
crossref_primary_10_1016_j_biomaterials_2024_122622
crossref_primary_10_1016_j_heliyon_2024_e36488
crossref_primary_10_1007_s10787_025_01672_7
crossref_primary_10_3389_fimmu_2022_937555
crossref_primary_10_1016_j_cej_2025_161251
crossref_primary_10_1021_acschemneuro_4c00620
crossref_primary_10_3389_fimmu_2022_920059
crossref_primary_10_1038_s41598_024_54278_4
crossref_primary_10_1007_s12035_025_04815_7
crossref_primary_10_1016_j_ejphar_2024_177075
crossref_primary_10_1016_j_lfs_2024_122650
crossref_primary_10_1016_j_survophthal_2023_11_003
crossref_primary_10_3389_fnagi_2024_1345918
crossref_primary_10_1007_s12035_024_04140_5
crossref_primary_10_1111_cns_14236
crossref_primary_10_1016_j_biopha_2023_114312
crossref_primary_10_1016_j_biopha_2024_116753
crossref_primary_10_3389_fphar_2024_1477938
crossref_primary_10_3389_fnins_2023_1269996
crossref_primary_10_3390_ijms232213678
crossref_primary_10_1515_tnsci_2022_0359
crossref_primary_10_3390_ijms242417203
crossref_primary_10_1016_j_bcp_2024_116633
crossref_primary_10_1186_s12967_024_05881_6
crossref_primary_10_1371_journal_pone_0291192
crossref_primary_10_1002_mco2_479
crossref_primary_10_1016_S1875_5364_23_60449_2
crossref_primary_10_1002_med_21939
crossref_primary_10_31083_j_jin2204090
Cites_doi 10.1016/j.redox.2020.101789
10.1002/ijc.32496
10.1038/s41401-020-00531-1
10.1007/s13311-020-00929-z
10.1194/jlr.M080374
10.1016/j.neuint.2019.02.016
10.1186/s40478-021-01126-5
10.1016/j.bbi.2020.04.007
10.1038/cddiscovery.2017.13
10.1096/fj.14-268615
10.1111/jnc.12244
10.1523/JNEUROSCI.1749-20.2020
10.1016/j.cmet.2020.05.019
10.1016/j.bbi.2021.01.003
10.1186/s12974-019-1430-7
10.1186/s40478-021-01145-2
10.3233/JPD-161040
10.1016/j.cell.2012.03.042
10.1016/j.neurobiolaging.2017.06.017
10.1001/jamaneurol.2014.131
10.1007/s00401-007-0244-3
10.1002/glia.21112
10.1016/j.neulet.2016.02.011
10.1371/annotation/900a5247-7d03-4686-a544-5f7f64c0aac5
10.1002/mds.22401
10.3390/ijms19113543
10.1007/s11064-007-9375-0
10.1007/s12035-021-02320-1
10.1155/2014/581256
10.1038/srep36410
10.1038/s41589-019-0462-8
10.1038/s41467-020-17876-0
10.1038/s41531-021-00199-2
10.1007/s10571-015-0161-2
10.1186/s40478-017-0445-5
10.1038/s41467-020-15065-7
10.1007/s004010050001
10.1093/brain/awab191
10.15252/embj.201593411
10.1002/ana.23817
10.1016/j.neuint.2017.03.014
10.1172/JCI43366
10.1007/s12035-015-9267-2
10.1038/s41418-020-0542-z
10.1016/j.bbadis.2013.01.021
10.1016/j.jns.2012.03.023
10.1007/s12035-015-9146-x
10.1016/j.redox.2021.101896
10.1016/j.nbd.2020.105028
10.1371/journal.pone.0153020
10.1097/00001756-199806220-00003
10.1016/j.nbd.2008.09.013
10.1038/s41588-020-0610-9
10.1074/jbc.M301988200
10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7
10.1002/jcph.1008
10.1097/WNF.0b013e31829ae713
10.1016/j.isci.2021.102431
10.1016/j.ijbiomac.2020.06.274
10.1097/WNR.0b013e328354a1f0
10.1007/s00401-003-0766-2
10.1007/s11064-011-0619-7
10.1038/s41467-020-15109-y
10.1016/j.bbrc.2021.06.024
10.1016/j.freeradbiomed.2020.03.015
10.1093/brain/awab084
10.1016/j.neuroscience.2014.09.071
10.1111/j.1471-4159.2008.05570.x
10.1046/j.1471-4159.1996.67031014.x
10.1016/j.parkreldis.2017.01.003
10.1089/ars.2013.5593
10.1002/cpt.1548
10.1038/nature21029
10.1016/j.nbd.2016.05.011
10.1016/j.redox.2017.01.021
10.1038/s41589-020-00734-x
10.1126/science.1227157
10.1182/blood-2017-02-768580
10.1523/JNEUROSCI.23-08-03394.2003
10.1038/s41598-017-01402-2
10.1016/j.tiv.2021.105146
10.1038/ncb3064
10.1186/s40035-021-00242-5
10.3389/fnmol.2017.00455
10.1074/jbc.M107866200
10.1089/ars.2013.5801
10.1136/jnnp-2019-322338
10.1007/s12035-020-02049-3
10.1002/brb3.1536
10.1016/j.semcdb.2019.05.004
10.3390/ijms20030771
10.1016/j.expneurol.2013.03.017
10.3892/ijmm.2021.4894
10.1038/sj.mp.4001937
10.1038/s41419-020-03369-x
10.1038/s41586-019-1705-2
10.1016/j.bbamcr.2014.09.010
10.1016/j.freeradbiomed.2018.09.002
10.1016/j.devcel.2019.10.007
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
CorporateAuthor MultiPark: Multidisciplinary research focused on Parkinson's disease
Lunds universitet
Institutionen för experimentell medicinsk vetenskap
Profile areas and other strong research environments
Lund University
Neural plasticitet och reparation
Strategiska forskningsområden (SFO)
Department of Experimental Medical Science
Faculty of Medicine
Strategic research areas (SRA)
Medicinska fakulteten
Neural Plasticity and Repair
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Department of Experimental Medical Science
– name: Neural plasticitet och reparation
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Institutionen för experimentell medicinsk vetenskap
– name: Neural Plasticity and Repair
– name: Profile areas and other strong research environments
– name: MultiPark: Multidisciplinary research focused on Parkinson's disease
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1016/j.molmed.2022.02.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1471-499X
EndPage 269
ExternalDocumentID oai_portal_research_lu_se_publications_e420c7fd_6120_4a74_818a_0a32085af111
oai_lup_lub_lu_se_e420c7fd_6120_4a74_818a_0a32085af111
35260343
10_1016_j_molmed_2022_02_003
S1471491422000442
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSZ
T5K
Z5R
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AEHWI
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RCE
RIG
SSU
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c686t-97d6e146219342207cff2e143a835dae3d93ebcc821344b083e00a8a885beb303
IEDL.DBID .~1
ISSN 1471-4914
1471-499X
IngestDate Sun Aug 24 03:21:16 EDT 2025
Thu Jul 03 04:44:29 EDT 2025
Fri Jul 11 00:06:05 EDT 2025
Mon Jul 21 05:34:05 EDT 2025
Tue Jul 01 04:26:46 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Fri Feb 23 02:39:05 EST 2024
Tue Aug 26 16:33:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neuron
iron
Parkinson's disease
ferroptosis
glia
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c686t-97d6e146219342207cff2e143a835dae3d93ebcc821344b083e00a8a885beb303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7770-7376
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1471491422000442
PMID 35260343
PQID 2637583525
PQPubID 23479
PageCount 12
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_e420c7fd_6120_4a74_818a_0a32085af111
swepub_primary_oai_lup_lub_lu_se_e420c7fd_6120_4a74_818a_0a32085af111
proquest_miscellaneous_2637583525
pubmed_primary_35260343
crossref_citationtrail_10_1016_j_molmed_2022_02_003
crossref_primary_10_1016_j_molmed_2022_02_003
elsevier_sciencedirect_doi_10_1016_j_molmed_2022_02_003
elsevier_clinicalkey_doi_10_1016_j_molmed_2022_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in molecular medicine
PublicationTitleAlternate Trends Mol Med
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fine (bb0185) 2020; 10
Ishii (bb0360) 2019; 133
Seet (bb0450) 2014; 21
Jiang (bb0460) 2021; 42
Jhelum (bb0295) 2020; 40
Wang (bb0245) 2013; 1832
Castellani (bb0140) 2000; 100
Zhang (bb0035) 2020; 152
Kenkhuis (bb0230) 2021; 9
Subhramanyam (bb0215) 2019; 94
Aguirre (bb0475) 2020; 88
Wang (bb0280) 2015; 35
Si (bb0490) 2021; 567
Ayton (bb0145) 2014; 2014
Golts (bb0155) 2002; 277
Fernández-Mendívil (bb0055) 2021; 38
Hambright (bb0470) 2017; 12
You (bb0275) 2015; 284
Ortega (bb0190) 2016; 53
Bai (bb0115) 2021; 58
Depierreux (bb0020) 2021; 7
Li (bb0175) 2020; 163
Healy (bb0240) 2016; 6
Miyazaki (bb0350) 2011; 59
Holmay (bb0435) 2013; 36
Mischley (bb0110) 2012; 318
Friedrich (bb0235) 2021; 9
Li (bb0485) 2021; 73
Monti (bb0430) 2019; 106
Evans (bb0455) 2019
Venkateshappa (bb0105) 2012; 37
Vida (bb0095) 2019; 20
Xu (bb0260) 2017; 10
Novgorodov (bb0065) 2018; 59
Bersuker (bb0075) 2019; 575
de Farias (bb0090) 2016; 617
Ito (bb0045) 2017; 3
Connor (bb0375) 1996; 17
Song (bb0285) 2017; 58
Do Van (bb0050) 2016; 94
Hauser (bb0495) 2009; 24
Agarwal (bb0220) 2020; 11
Abounit (bb0410) 2016; 35
Sharma (bb0310) 2016; 53
Brown (bb0390) 2019; 51
Mischley (bb0440) 2017; 7
Coles (bb0425) 2018; 58
Dächert (bb0320) 2020; 146
Martin-Bastida (bb0420) 2017; 7
Yauger (bb0315) 2019; 16
Kapralov (bb0335) 2020; 16
Ngolab (bb0405) 2017; 5
Ma (bb0305) 2021; 41
Shih (bb0355) 2003; 23
Luk (bb0135) 2012; 338
Thorburne (bb0380) 1996; 67
Mullett (bb0365) 2009; 33
Febbraro (bb0160) 2012; 23
Sun (bb0040) 2020; 57
Vallerga (bb0100) 2020; 11
Sun (bb0085) 2021; 17
Ayton (bb0270) 2013; 73
Davies (bb0195) 2011; 6
Biondetti (bb0025) 2021; 144
Jankovic (bb0005) 2020; 91
Cao (bb0080) 2020; 11
Taghizadeh (bb0445) 2017; 108
Li (bb0480) 2021; 47
Zhu (bb0060) 2017; 36
Friedmann Angeli (bb0070) 2014; 16
Zhang (bb0290) 2014; 1843
Dixon (bb0030) 2012; 149
Liddelow (bb0015) 2017; 541
Urrutia (bb0250) 2013; 126
McTigue (bb0370) 2008; 107
Braak (bb0210) 2007; 114
Angelova (bb0200) 2020; 27
Kam (bb0010) 2020; 144
Song (bb0345) 2021; 24
Burtey (bb0395) 2015; 29
Devos (bb0415) 2014; 21
Tian (bb0465) 2020; 17
Dringen (bb0255) 2007; 32
Baek (bb0325) 2018; 19
Hansen (bb0130) 2011; 121
Imamura (bb0205) 2003; 106
Beal (bb0500) 2014; 71
Friedlich (bb0170) 2007; 12
Apetri (bb0400) 2016; 11
Mukherjee (bb0300) 2020; 32
Liu (bb0125) 2021; 10
Cui (bb0340) 2021; 93
Yoshida (bb0330) 1998; 9
Jeong (bb0265) 2003; 278
Guo (bb0150) 2021; 12
Febbraro (bb0180) 2013; 247
Truman-Rosentsvit (bb0385) 2018; 131
Wang (bb0165) 2019; 125
Thomas (bb0120) 2021; 144
Bryois (bb0225) 2020; 52
Ngolab (10.1016/j.molmed.2022.02.003_bb0405) 2017; 5
Hambright (10.1016/j.molmed.2022.02.003_bb0470) 2017; 12
Thomas (10.1016/j.molmed.2022.02.003_bb0120) 2021; 144
Dringen (10.1016/j.molmed.2022.02.003_bb0255) 2007; 32
Biondetti (10.1016/j.molmed.2022.02.003_bb0025) 2021; 144
Dächert (10.1016/j.molmed.2022.02.003_bb0320) 2020; 146
Zhang (10.1016/j.molmed.2022.02.003_bb0035) 2020; 152
Bai (10.1016/j.molmed.2022.02.003_bb0115) 2021; 58
Guo (10.1016/j.molmed.2022.02.003_bb0150) 2021; 12
Devos (10.1016/j.molmed.2022.02.003_bb0415) 2014; 21
Thorburne (10.1016/j.molmed.2022.02.003_bb0380) 1996; 67
Braak (10.1016/j.molmed.2022.02.003_bb0210) 2007; 114
Jiang (10.1016/j.molmed.2022.02.003_bb0460) 2021; 42
Healy (10.1016/j.molmed.2022.02.003_bb0240) 2016; 6
Golts (10.1016/j.molmed.2022.02.003_bb0155) 2002; 277
de Farias (10.1016/j.molmed.2022.02.003_bb0090) 2016; 617
Vallerga (10.1016/j.molmed.2022.02.003_bb0100) 2020; 11
Cui (10.1016/j.molmed.2022.02.003_bb0340) 2021; 93
Luk (10.1016/j.molmed.2022.02.003_bb0135) 2012; 338
Taghizadeh (10.1016/j.molmed.2022.02.003_bb0445) 2017; 108
Depierreux (10.1016/j.molmed.2022.02.003_bb0020) 2021; 7
Jhelum (10.1016/j.molmed.2022.02.003_bb0295) 2020; 40
Fine (10.1016/j.molmed.2022.02.003_bb0185) 2020; 10
Li (10.1016/j.molmed.2022.02.003_bb0485) 2021; 73
Hauser (10.1016/j.molmed.2022.02.003_bb0495) 2009; 24
Kenkhuis (10.1016/j.molmed.2022.02.003_bb0230) 2021; 9
Friedrich (10.1016/j.molmed.2022.02.003_bb0235) 2021; 9
Imamura (10.1016/j.molmed.2022.02.003_bb0205) 2003; 106
You (10.1016/j.molmed.2022.02.003_bb0275) 2015; 284
Dixon (10.1016/j.molmed.2022.02.003_bb0030) 2012; 149
Febbraro (10.1016/j.molmed.2022.02.003_bb0160) 2012; 23
Evans (10.1016/j.molmed.2022.02.003_bb0455) 2019
Xu (10.1016/j.molmed.2022.02.003_bb0260) 2017; 10
Friedmann Angeli (10.1016/j.molmed.2022.02.003_bb0070) 2014; 16
Bryois (10.1016/j.molmed.2022.02.003_bb0225) 2020; 52
Coles (10.1016/j.molmed.2022.02.003_bb0425) 2018; 58
Sun (10.1016/j.molmed.2022.02.003_bb0040) 2020; 57
Martin-Bastida (10.1016/j.molmed.2022.02.003_bb0420) 2017; 7
Friedlich (10.1016/j.molmed.2022.02.003_bb0170) 2007; 12
Holmay (10.1016/j.molmed.2022.02.003_bb0435) 2013; 36
Li (10.1016/j.molmed.2022.02.003_bb0480) 2021; 47
Mischley (10.1016/j.molmed.2022.02.003_bb0440) 2017; 7
Ma (10.1016/j.molmed.2022.02.003_bb0305) 2021; 41
Davies (10.1016/j.molmed.2022.02.003_bb0195) 2011; 6
Febbraro (10.1016/j.molmed.2022.02.003_bb0180) 2013; 247
Wang (10.1016/j.molmed.2022.02.003_bb0165) 2019; 125
Cao (10.1016/j.molmed.2022.02.003_bb0080) 2020; 11
Yauger (10.1016/j.molmed.2022.02.003_bb0315) 2019; 16
Aguirre (10.1016/j.molmed.2022.02.003_bb0475) 2020; 88
Miyazaki (10.1016/j.molmed.2022.02.003_bb0350) 2011; 59
Jeong (10.1016/j.molmed.2022.02.003_bb0265) 2003; 278
Apetri (10.1016/j.molmed.2022.02.003_bb0400) 2016; 11
Subhramanyam (10.1016/j.molmed.2022.02.003_bb0215) 2019; 94
Baek (10.1016/j.molmed.2022.02.003_bb0325) 2018; 19
Ito (10.1016/j.molmed.2022.02.003_bb0045) 2017; 3
Wang (10.1016/j.molmed.2022.02.003_bb0245) 2013; 1832
Mukherjee (10.1016/j.molmed.2022.02.003_bb0300) 2020; 32
Angelova (10.1016/j.molmed.2022.02.003_bb0200) 2020; 27
Monti (10.1016/j.molmed.2022.02.003_bb0430) 2019; 106
Song (10.1016/j.molmed.2022.02.003_bb0345) 2021; 24
Burtey (10.1016/j.molmed.2022.02.003_bb0395) 2015; 29
Urrutia (10.1016/j.molmed.2022.02.003_bb0250) 2013; 126
Wang (10.1016/j.molmed.2022.02.003_bb0280) 2015; 35
Si (10.1016/j.molmed.2022.02.003_bb0490) 2021; 567
Hansen (10.1016/j.molmed.2022.02.003_bb0130) 2011; 121
Li (10.1016/j.molmed.2022.02.003_bb0175) 2020; 163
Ortega (10.1016/j.molmed.2022.02.003_bb0190) 2016; 53
Liu (10.1016/j.molmed.2022.02.003_bb0125) 2021; 10
Kam (10.1016/j.molmed.2022.02.003_bb0010) 2020; 144
Connor (10.1016/j.molmed.2022.02.003_bb0375) 1996; 17
Vida (10.1016/j.molmed.2022.02.003_bb0095) 2019; 20
Abounit (10.1016/j.molmed.2022.02.003_bb0410) 2016; 35
Seet (10.1016/j.molmed.2022.02.003_bb0450) 2014; 21
Bersuker (10.1016/j.molmed.2022.02.003_bb0075) 2019; 575
Tian (10.1016/j.molmed.2022.02.003_bb0465) 2020; 17
Agarwal (10.1016/j.molmed.2022.02.003_bb0220) 2020; 11
Zhang (10.1016/j.molmed.2022.02.003_bb0290) 2014; 1843
Jankovic (10.1016/j.molmed.2022.02.003_bb0005) 2020; 91
Brown (10.1016/j.molmed.2022.02.003_bb0390) 2019; 51
Song (10.1016/j.molmed.2022.02.003_bb0285) 2017; 58
Beal (10.1016/j.molmed.2022.02.003_bb0500) 2014; 71
Castellani (10.1016/j.molmed.2022.02.003_bb0140) 2000; 100
Yoshida (10.1016/j.molmed.2022.02.003_bb0330) 1998; 9
Ayton (10.1016/j.molmed.2022.02.003_bb0145) 2014; 2014
Sharma (10.1016/j.molmed.2022.02.003_bb0310) 2016; 53
Mischley (10.1016/j.molmed.2022.02.003_bb0110) 2012; 318
McTigue (10.1016/j.molmed.2022.02.003_bb0370) 2008; 107
Ishii (10.1016/j.molmed.2022.02.003_bb0360) 2019; 133
Truman-Rosentsvit (10.1016/j.molmed.2022.02.003_bb0385) 2018; 131
Shih (10.1016/j.molmed.2022.02.003_bb0355) 2003; 23
Kapralov (10.1016/j.molmed.2022.02.003_bb0335) 2020; 16
Ayton (10.1016/j.molmed.2022.02.003_bb0270) 2013; 73
Fernández-Mendívil (10.1016/j.molmed.2022.02.003_bb0055) 2021; 38
Mullett (10.1016/j.molmed.2022.02.003_bb0365) 2009; 33
Zhu (10.1016/j.molmed.2022.02.003_bb0060) 2017; 36
Sun (10.1016/j.molmed.2022.02.003_bb0085) 2021; 17
Liddelow (10.1016/j.molmed.2022.02.003_bb0015) 2017; 541
Do Van (10.1016/j.molmed.2022.02.003_bb0050) 2016; 94
Novgorodov (10.1016/j.molmed.2022.02.003_bb0065) 2018; 59
Venkateshappa (10.1016/j.molmed.2022.02.003_bb0105) 2012; 37
References_xml – volume: 9
  start-page: 47
  year: 2021
  ident: bb0235
  article-title: Cell specific quantitative iron mapping on brain slices by immuno-μPIXE in healthy elderly and Parkinson's disease
  publication-title: Acta Neuropathol. Commun.
– volume: 10
  year: 2020
  ident: bb0185
  article-title: Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement
  publication-title: Brain Behav.
– volume: 7
  start-page: 1398
  year: 2017
  ident: bb0420
  article-title: Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease
  publication-title: Sci. Rep.
– volume: 10
  start-page: 20
  year: 2021
  ident: bb0125
  article-title: Differential seeding and propagating efficiency of α-synuclein strains generated in different conditions
  publication-title: Transl. Neurodegener.
– volume: 52
  start-page: 482
  year: 2020
  end-page: 493
  ident: bb0225
  article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  publication-title: Nat. Genet.
– volume: 58
  start-page: 163
  year: 2017
  end-page: 179
  ident: bb0285
  article-title: Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment
  publication-title: Neurobiol. Aging
– volume: 12
  start-page: 81
  year: 2021
  ident: bb0150
  article-title: Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of
  publication-title: Cell Death Dis.
– volume: 94
  start-page: 112
  year: 2019
  end-page: 120
  ident: bb0215
  article-title: Microglia-mediated neuroinflammation in neurodegenerative diseases
  publication-title: Semin. Cell Dev. Biol.
– volume: 47
  start-page: 61
  year: 2021
  ident: bb0480
  article-title: miR-335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease
  publication-title: Int. J. Mol. Med.
– volume: 11
  start-page: 1238
  year: 2020
  ident: bb0100
  article-title: Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson's disease
  publication-title: Nat. Commun.
– volume: 16
  start-page: 278
  year: 2020
  end-page: 290
  ident: bb0335
  article-title: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death
  publication-title: Nat. Chem. Biol.
– volume: 575
  start-page: 688
  year: 2019
  end-page: 692
  ident: bb0075
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
– volume: 1843
  start-page: 2967
  year: 2014
  end-page: 2975
  ident: bb0290
  article-title: Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons
  publication-title: Biochim. Biophys. Acta
– volume: 32
  start-page: 259
  year: 2020
  end-page: 272
  ident: bb0300
  article-title: Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain
  publication-title: Cell Metab.
– volume: 16
  start-page: 1180
  year: 2014
  end-page: 1191
  ident: bb0070
  article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
  publication-title: Nat. Cell Biol.
– volume: 125
  start-page: 127
  year: 2019
  end-page: 135
  ident: bb0165
  article-title: Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2
  publication-title: Neurochem. Int.
– volume: 23
  start-page: 3394
  year: 2003
  end-page: 3406
  ident: bb0355
  article-title: Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress
  publication-title: J. Neurosci.
– volume: 278
  start-page: 27144
  year: 2003
  end-page: 27148
  ident: bb0265
  article-title: Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system
  publication-title: J. Biol. Chem.
– volume: 284
  start-page: 234
  year: 2015
  end-page: 246
  ident: bb0275
  article-title: Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease
  publication-title: Neuroscience
– volume: 71
  start-page: 543
  year: 2014
  end-page: 552
  ident: bb0500
  article-title: A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit
  publication-title: JAMA Neurol.
– volume: 73
  start-page: 554
  year: 2013
  end-page: 559
  ident: bb0270
  article-title: Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease
  publication-title: Ann. Neurol.
– volume: 152
  start-page: 227
  year: 2020
  end-page: 234
  ident: bb0035
  article-title: Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease
  publication-title: Free Radic. Biol. Med.
– volume: 91
  start-page: 795
  year: 2020
  end-page: 808
  ident: bb0005
  article-title: Parkinson's disease: etiopathogenesis and treatment
  publication-title: J. Neurol. Neurosurg. Psychiatry
– start-page: 119
  year: 2019
  end-page: 120
  ident: bb0455
  article-title: Preliminary evidence of CuATSM treatment benefit in Parkinson's disease
  publication-title: XXIV World Congress on Parkinson‘s Disease and Related Disorders
– volume: 11
  start-page: 4183
  year: 2020
  ident: bb0220
  article-title: A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders
  publication-title: Nat. Commun.
– volume: 11
  year: 2016
  ident: bb0400
  article-title: Direct observation of α-synuclein amyloid aggregates in endocytic vesicles of neuroblastoma cells
  publication-title: PLoS One
– volume: 32
  start-page: 1884
  year: 2007
  end-page: 1890
  ident: bb0255
  article-title: The pivotal role of astrocytes in the metabolism of iron in the brain
  publication-title: Neurochem. Res.
– volume: 144
  start-page: 1787
  year: 2021
  end-page: 1798
  ident: bb0120
  article-title: Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson’s disease
  publication-title: Brain
– volume: 12
  start-page: 222
  year: 2007
  end-page: 223
  ident: bb0170
  article-title: The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element
  publication-title: Mol. Psychiatry
– volume: 126
  start-page: 541
  year: 2013
  end-page: 549
  ident: bb0250
  article-title: Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells
  publication-title: J. Neurochem.
– volume: 35
  start-page: 2120
  year: 2016
  end-page: 2138
  ident: bb0410
  article-title: Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes
  publication-title: EMBO J.
– volume: 163
  start-page: 562
  year: 2020
  end-page: 573
  ident: bb0175
  article-title: Copper and iron ions accelerate the prion-like propagation of α-synuclein: a vicious cycle in Parkinson’s disease
  publication-title: Int. J. Biol. Macromol.
– volume: 11
  start-page: 1251
  year: 2020
  ident: bb0080
  article-title: DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase
  publication-title: Nat. Commun.
– volume: 133
  start-page: 169
  year: 2019
  end-page: 178
  ident: bb0360
  article-title: Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis
  publication-title: Free Radic. Biol. Med.
– volume: 57
  start-page: 4628
  year: 2020
  end-page: 4641
  ident: bb0040
  article-title: Activation of p62–Keap1–Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells
  publication-title: Mol. Neurobiol.
– volume: 7
  start-page: 57
  year: 2021
  ident: bb0020
  article-title: Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI
  publication-title: NPJ Parkinson's Dis.
– volume: 59
  start-page: 435
  year: 2011
  end-page: 451
  ident: bb0350
  article-title: Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity
  publication-title: Glia
– volume: 1832
  start-page: 618
  year: 2013
  end-page: 625
  ident: bb0245
  article-title: Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons
  publication-title: Biochim. Biophys. Acta
– volume: 33
  start-page: 28
  year: 2009
  end-page: 36
  ident: bb0365
  article-title: DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone
  publication-title: Neurobiol. Dis.
– volume: 58
  start-page: 3187
  year: 2021
  end-page: 3197
  ident: bb0115
  article-title: Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4
  publication-title: Mol. Neurobiol.
– volume: 5
  start-page: 46
  year: 2017
  ident: bb0405
  article-title: Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology
  publication-title: Acta Neuropathol. Commun.
– volume: 144
  start-page: 3114
  year: 2021
  end-page: 3125
  ident: bb0025
  article-title: The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease
  publication-title: Brain
– volume: 36
  start-page: 76
  year: 2017
  end-page: 82
  ident: bb0060
  article-title: Iron accumulation and microglia activation contribute to substantia nigra hyperechogenicity in the 6-OHDA-induced rat model of Parkinson's disease
  publication-title: Parkinsonism Relat. Disord.
– volume: 9
  start-page: 27
  year: 2021
  ident: bb0230
  article-title: Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients
  publication-title: Acta Neuropathol. Commun.
– volume: 2014
  year: 2014
  ident: bb0145
  article-title: Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration
  publication-title: Biomed. Res. Int.
– volume: 93
  start-page: 312
  year: 2021
  end-page: 321
  ident: bb0340
  article-title: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation
  publication-title: Brain Behav. Immun.
– volume: 40
  start-page: 9327
  year: 2020
  end-page: 9341
  ident: bb0295
  article-title: Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination
  publication-title: J. Neurosci.
– volume: 24
  start-page: 979
  year: 2009
  end-page: 983
  ident: bb0495
  article-title: Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease
  publication-title: Mov. Disord.
– volume: 17
  start-page: 83
  year: 1996
  end-page: 93
  ident: bb0375
  article-title: Relationship of iron to oligodendrocytes and myelination
  publication-title: Glia
– volume: 58
  start-page: 158
  year: 2018
  end-page: 167
  ident: bb0425
  article-title: Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress
  publication-title: J. Clin. Pharmacol.
– volume: 10
  start-page: 455
  year: 2017
  ident: bb0260
  article-title: New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson's disease
  publication-title: Front. Mol. Neurosci.
– volume: 107
  start-page: 1
  year: 2008
  end-page: 19
  ident: bb0370
  article-title: The life, death, and replacement of oligodendrocytes in the adult CNS
  publication-title: J. Neurochem.
– volume: 7
  start-page: 289
  year: 2017
  end-page: 299
  ident: bb0440
  article-title: Phase IIb study of intranasal glutathione in Parkinson’s disease
  publication-title: J. Parkinsons Dis.
– volume: 277
  start-page: 16116
  year: 2002
  end-page: 16123
  ident: bb0155
  article-title: Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein
  publication-title: J. Biol. Chem.
– volume: 121
  start-page: 715
  year: 2011
  end-page: 725
  ident: bb0130
  article-title: α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells
  publication-title: J. Clin. Invest.
– volume: 17
  start-page: 465
  year: 2021
  end-page: 476
  ident: bb0085
  article-title: Phospholipase iPLA(2)β averts ferroptosis by eliminating a redox lipid death signal
  publication-title: Nat. Chem. Biol.
– volume: 106
  start-page: 518
  year: 2003
  end-page: 526
  ident: bb0205
  article-title: Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains
  publication-title: Acta Neuropathol.
– volume: 108
  start-page: 183
  year: 2017
  end-page: 189
  ident: bb0445
  article-title: The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial
  publication-title: Neurochem. Int.
– volume: 29
  start-page: 4695
  year: 2015
  end-page: 4712
  ident: bb0395
  article-title: Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes
  publication-title: FASEB J.
– volume: 59
  start-page: 312
  year: 2018
  end-page: 329
  ident: bb0065
  article-title: Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis
  publication-title: J. Lipid Res.
– volume: 9
  start-page: 1929
  year: 1998
  end-page: 1933
  ident: bb0330
  article-title: Activated microglia cause iron-dependent lipid peroxidation in the presence of ferritin
  publication-title: Neuroreport
– volume: 100
  start-page: 111
  year: 2000
  end-page: 114
  ident: bb0140
  article-title: Sequestration of iron by Lewy bodies in Parkinson’s disease
  publication-title: Acta Neuropathol.
– volume: 12
  start-page: 8
  year: 2017
  end-page: 17
  ident: bb0470
  article-title: Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration
  publication-title: Redox Biol.
– volume: 3
  start-page: 17013
  year: 2017
  ident: bb0045
  article-title: MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells
  publication-title: Cell Death Discov.
– volume: 146
  start-page: 510
  year: 2020
  end-page: 520
  ident: bb0320
  article-title: Targeting ferroptosis in rhabdomyosarcoma cells
  publication-title: Int. J. Cancer
– volume: 21
  start-page: 211
  year: 2014
  end-page: 217
  ident: bb0450
  article-title: Does high-dose coenzyme Q10 improve oxidative damage and clinical outcomes in Parkinson’s disease?
  publication-title: Antioxid. Redox Signal.
– volume: 41
  year: 2021
  ident: bb0305
  article-title: Parkinson's disease: alterations in iron and redox biology as a key to unlock therapeutic strategies
  publication-title: Redox Biol.
– volume: 38
  year: 2021
  ident: bb0055
  article-title: Protective role of microglial HO-1 blockade in aging: implication of iron metabolism
  publication-title: Redox Biol.
– volume: 17
  start-page: 1796
  year: 2020
  end-page: 1812
  ident: bb0465
  article-title: FTH1 Inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease
  publication-title: Neurotherapeutics
– volume: 67
  start-page: 1014
  year: 1996
  end-page: 1022
  ident: bb0380
  article-title: Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress
  publication-title: J. Neurochem.
– volume: 88
  start-page: 920
  year: 2020
  end-page: 924
  ident: bb0475
  article-title: Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson’s disease increase cellular susceptibility to oxidative stress
  publication-title: Brain Behav. Immun.
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  ident: bb0030
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 541
  start-page: 481
  year: 2017
  end-page: 487
  ident: bb0015
  article-title: Neurotoxic reactive astrocytes are induced by activated microglia
  publication-title: Nature
– volume: 24
  start-page: 102431
  year: 2021
  ident: bb0345
  article-title: Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis
  publication-title: iScience
– volume: 53
  start-page: 1925
  year: 2016
  end-page: 1934
  ident: bb0190
  article-title: α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons
  publication-title: Mol. Neurobiol.
– volume: 6
  start-page: 36410
  year: 2016
  ident: bb0240
  article-title: Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model
  publication-title: Sci. Rep.
– volume: 16
  start-page: 41
  year: 2019
  ident: bb0315
  article-title: Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro
  publication-title: J. Neuroinflammation
– volume: 19
  start-page: 3543
  year: 2018
  ident: bb0325
  article-title: Inhibition of microglia-derived oxidative stress by ciliary neurotrophic factor protects dopamine neurons in vivo from MPP+ neurotoxicity
  publication-title: Int. J. Mol. Sci.
– volume: 114
  start-page: 231
  year: 2007
  end-page: 241
  ident: bb0210
  article-title: Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease
  publication-title: Acta Neuropathol.
– volume: 6
  year: 2011
  ident: bb0195
  article-title: Alpha-synuclein is a cellular ferrireductase
  publication-title: PLoS One
– volume: 106
  start-page: 884
  year: 2019
  end-page: 890
  ident: bb0430
  article-title: N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease
  publication-title: Clin. Pharmacol. Ther.
– volume: 617
  start-page: 66
  year: 2016
  end-page: 71
  ident: bb0090
  article-title: Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson's disease and its progression: disease and staging biomarkers and new drug targets
  publication-title: Neurosci. Lett.
– volume: 131
  start-page: 342
  year: 2018
  end-page: 352
  ident: bb0385
  article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways
  publication-title: Blood
– volume: 247
  start-page: 45
  year: 2013
  end-page: 58
  ident: bb0180
  article-title: Chronic intranasal deferoxamine ameliorates motor defects and pathology in the α-synuclein rAAV Parkinson's model
  publication-title: Exp. Neurol.
– volume: 51
  start-page: 575
  year: 2019
  end-page: 586
  ident: bb0390
  article-title: Prominin2 drives ferroptosis resistance by stimulating iron export
  publication-title: Dev. Cell
– volume: 318
  start-page: 72
  year: 2012
  end-page: 75
  ident: bb0110
  article-title: Coenzyme Q10 deficiency in patients with Parkinson’s disease
  publication-title: J. Neurol. Sci.
– volume: 73
  year: 2021
  ident: bb0485
  article-title: p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells
  publication-title: Toxicol. in Vitro
– volume: 23
  start-page: 576
  year: 2012
  end-page: 580
  ident: bb0160
  article-title: α-Synuclein expression is modulated at the translational level by iron
  publication-title: Neuroreport
– volume: 338
  start-page: 949
  year: 2012
  end-page: 953
  ident: bb0135
  article-title: Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice
  publication-title: Science
– volume: 36
  start-page: 103
  year: 2013
  end-page: 106
  ident: bb0435
  article-title: N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases
  publication-title: Clin. Neuropharmacol.
– volume: 20
  start-page: 771
  year: 2019
  ident: bb0095
  article-title: Lymphoproliferation impairment and oxidative stress in blood cells from early Parkinson's disease patients
  publication-title: Int. J. Mol. Sci.
– volume: 27
  start-page: 2781
  year: 2020
  end-page: 2796
  ident: bb0200
  article-title: Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation
  publication-title: Cell Death Differ.
– volume: 21
  start-page: 195
  year: 2014
  end-page: 210
  ident: bb0415
  article-title: Targeting chelatable iron as a therapeutic modality in Parkinson's disease
  publication-title: Antioxid. Redox Signal.
– volume: 35
  start-page: 661
  year: 2015
  end-page: 668
  ident: bb0280
  article-title: Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats
  publication-title: Cell. Mol. Neurobiol.
– volume: 94
  start-page: 169
  year: 2016
  end-page: 178
  ident: bb0050
  article-title: Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC
  publication-title: Neurobiol. Dis.
– volume: 37
  start-page: 358
  year: 2012
  end-page: 369
  ident: bb0105
  article-title: Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease
  publication-title: Neurochem. Res.
– volume: 144
  year: 2020
  ident: bb0010
  article-title: Microglia and astrocyte dysfunction in Parkinson's disease
  publication-title: Neurobiol. Dis.
– volume: 567
  start-page: 35
  year: 2021
  end-page: 41
  ident: bb0490
  article-title: Super-enhancer-driven sorting nexin 5 expression promotes dopaminergic neuronal ferroptosis in Parkinson's disease models
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 53
  start-page: 3326
  year: 2016
  end-page: 3337
  ident: bb0310
  article-title: Apocyanin, a microglial NADPH oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced Parkinson’s disease model
  publication-title: Mol. Neurobiol.
– volume: 42
  start-page: 1150
  year: 2021
  end-page: 1159
  ident: bb0460
  article-title: The C terminus of DJ-1 determines its homodimerization, MGO detoxification activity and suppression of ferroptosis
  publication-title: Acta Pharmacol. Sin.
– volume: 38
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0055
  article-title: Protective role of microglial HO-1 blockade in aging: implication of iron metabolism
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101789
– volume: 146
  start-page: 510
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0320
  article-title: Targeting ferroptosis in rhabdomyosarcoma cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32496
– volume: 42
  start-page: 1150
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0460
  article-title: The C terminus of DJ-1 determines its homodimerization, MGO detoxification activity and suppression of ferroptosis
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-020-00531-1
– volume: 17
  start-page: 1796
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0465
  article-title: FTH1 Inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-020-00929-z
– volume: 59
  start-page: 312
  year: 2018
  ident: 10.1016/j.molmed.2022.02.003_bb0065
  article-title: Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M080374
– volume: 125
  start-page: 127
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0165
  article-title: Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2019.02.016
– volume: 9
  start-page: 27
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0230
  article-title: Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-021-01126-5
– volume: 88
  start-page: 920
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0475
  article-title: Two single nucleotide polymorphisms in IL13 and IL13RA1 from individuals with idiopathic Parkinson’s disease increase cellular susceptibility to oxidative stress
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2020.04.007
– volume: 3
  start-page: 17013
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0045
  article-title: MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells
  publication-title: Cell Death Discov.
  doi: 10.1038/cddiscovery.2017.13
– volume: 29
  start-page: 4695
  year: 2015
  ident: 10.1016/j.molmed.2022.02.003_bb0395
  article-title: Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes
  publication-title: FASEB J.
  doi: 10.1096/fj.14-268615
– volume: 126
  start-page: 541
  year: 2013
  ident: 10.1016/j.molmed.2022.02.003_bb0250
  article-title: Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.12244
– volume: 40
  start-page: 9327
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0295
  article-title: Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1749-20.2020
– volume: 32
  start-page: 259
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0300
  article-title: Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.05.019
– volume: 93
  start-page: 312
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0340
  article-title: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2021.01.003
– volume: 16
  start-page: 41
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0315
  article-title: Iron accentuated reactive oxygen species release by NADPH oxidase in activated microglia contributes to oxidative stress in vitro
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-019-1430-7
– volume: 9
  start-page: 47
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0235
  article-title: Cell specific quantitative iron mapping on brain slices by immuno-μPIXE in healthy elderly and Parkinson's disease
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-021-01145-2
– volume: 7
  start-page: 289
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0440
  article-title: Phase IIb study of intranasal glutathione in Parkinson’s disease
  publication-title: J. Parkinsons Dis.
  doi: 10.3233/JPD-161040
– volume: 149
  start-page: 1060
  year: 2012
  ident: 10.1016/j.molmed.2022.02.003_bb0030
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 58
  start-page: 163
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0285
  article-title: Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2017.06.017
– volume: 71
  start-page: 543
  year: 2014
  ident: 10.1016/j.molmed.2022.02.003_bb0500
  article-title: A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2014.131
– volume: 114
  start-page: 231
  year: 2007
  ident: 10.1016/j.molmed.2022.02.003_bb0210
  article-title: Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-007-0244-3
– volume: 59
  start-page: 435
  year: 2011
  ident: 10.1016/j.molmed.2022.02.003_bb0350
  article-title: Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity
  publication-title: Glia
  doi: 10.1002/glia.21112
– volume: 617
  start-page: 66
  year: 2016
  ident: 10.1016/j.molmed.2022.02.003_bb0090
  article-title: Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson's disease and its progression: disease and staging biomarkers and new drug targets
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2016.02.011
– volume: 6
  year: 2011
  ident: 10.1016/j.molmed.2022.02.003_bb0195
  article-title: Alpha-synuclein is a cellular ferrireductase
  publication-title: PLoS One
  doi: 10.1371/annotation/900a5247-7d03-4686-a544-5f7f64c0aac5
– volume: 24
  start-page: 979
  year: 2009
  ident: 10.1016/j.molmed.2022.02.003_bb0495
  article-title: Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22401
– volume: 19
  start-page: 3543
  year: 2018
  ident: 10.1016/j.molmed.2022.02.003_bb0325
  article-title: Inhibition of microglia-derived oxidative stress by ciliary neurotrophic factor protects dopamine neurons in vivo from MPP+ neurotoxicity
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19113543
– volume: 32
  start-page: 1884
  year: 2007
  ident: 10.1016/j.molmed.2022.02.003_bb0255
  article-title: The pivotal role of astrocytes in the metabolism of iron in the brain
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-007-9375-0
– volume: 58
  start-page: 3187
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0115
  article-title: Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-021-02320-1
– volume: 2014
  year: 2014
  ident: 10.1016/j.molmed.2022.02.003_bb0145
  article-title: Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2014/581256
– volume: 6
  start-page: 36410
  year: 2016
  ident: 10.1016/j.molmed.2022.02.003_bb0240
  article-title: Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model
  publication-title: Sci. Rep.
  doi: 10.1038/srep36410
– volume: 16
  start-page: 278
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0335
  article-title: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0462-8
– volume: 11
  start-page: 4183
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0220
  article-title: A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17876-0
– volume: 7
  start-page: 57
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0020
  article-title: Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI
  publication-title: NPJ Parkinson's Dis.
  doi: 10.1038/s41531-021-00199-2
– volume: 35
  start-page: 661
  year: 2015
  ident: 10.1016/j.molmed.2022.02.003_bb0280
  article-title: Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-015-0161-2
– volume: 5
  start-page: 46
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0405
  article-title: Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-017-0445-5
– volume: 11
  start-page: 1238
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0100
  article-title: Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson's disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15065-7
– volume: 100
  start-page: 111
  year: 2000
  ident: 10.1016/j.molmed.2022.02.003_bb0140
  article-title: Sequestration of iron by Lewy bodies in Parkinson’s disease
  publication-title: Acta Neuropathol.
  doi: 10.1007/s004010050001
– volume: 144
  start-page: 3114
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0025
  article-title: The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/awab191
– volume: 35
  start-page: 2120
  year: 2016
  ident: 10.1016/j.molmed.2022.02.003_bb0410
  article-title: Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes
  publication-title: EMBO J.
  doi: 10.15252/embj.201593411
– volume: 73
  start-page: 554
  year: 2013
  ident: 10.1016/j.molmed.2022.02.003_bb0270
  article-title: Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23817
– volume: 108
  start-page: 183
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0445
  article-title: The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2017.03.014
– volume: 121
  start-page: 715
  year: 2011
  ident: 10.1016/j.molmed.2022.02.003_bb0130
  article-title: α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI43366
– volume: 53
  start-page: 3326
  year: 2016
  ident: 10.1016/j.molmed.2022.02.003_bb0310
  article-title: Apocyanin, a microglial NADPH oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced Parkinson’s disease model
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9267-2
– volume: 27
  start-page: 2781
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0200
  article-title: Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-0542-z
– volume: 1832
  start-page: 618
  year: 2013
  ident: 10.1016/j.molmed.2022.02.003_bb0245
  article-title: Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2013.01.021
– volume: 318
  start-page: 72
  year: 2012
  ident: 10.1016/j.molmed.2022.02.003_bb0110
  article-title: Coenzyme Q10 deficiency in patients with Parkinson’s disease
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2012.03.023
– volume: 53
  start-page: 1925
  year: 2016
  ident: 10.1016/j.molmed.2022.02.003_bb0190
  article-title: α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9146-x
– volume: 41
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0305
  article-title: Parkinson's disease: alterations in iron and redox biology as a key to unlock therapeutic strategies
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2021.101896
– volume: 144
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0010
  article-title: Microglia and astrocyte dysfunction in Parkinson's disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2020.105028
– volume: 11
  year: 2016
  ident: 10.1016/j.molmed.2022.02.003_bb0400
  article-title: Direct observation of α-synuclein amyloid aggregates in endocytic vesicles of neuroblastoma cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153020
– volume: 9
  start-page: 1929
  year: 1998
  ident: 10.1016/j.molmed.2022.02.003_bb0330
  article-title: Activated microglia cause iron-dependent lipid peroxidation in the presence of ferritin
  publication-title: Neuroreport
  doi: 10.1097/00001756-199806220-00003
– volume: 33
  start-page: 28
  year: 2009
  ident: 10.1016/j.molmed.2022.02.003_bb0365
  article-title: DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.09.013
– volume: 52
  start-page: 482
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0225
  article-title: Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0610-9
– volume: 278
  start-page: 27144
  year: 2003
  ident: 10.1016/j.molmed.2022.02.003_bb0265
  article-title: Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301988200
– volume: 17
  start-page: 83
  year: 1996
  ident: 10.1016/j.molmed.2022.02.003_bb0375
  article-title: Relationship of iron to oligodendrocytes and myelination
  publication-title: Glia
  doi: 10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7
– volume: 58
  start-page: 158
  year: 2018
  ident: 10.1016/j.molmed.2022.02.003_bb0425
  article-title: Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress
  publication-title: J. Clin. Pharmacol.
  doi: 10.1002/jcph.1008
– volume: 36
  start-page: 103
  year: 2013
  ident: 10.1016/j.molmed.2022.02.003_bb0435
  article-title: N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases
  publication-title: Clin. Neuropharmacol.
  doi: 10.1097/WNF.0b013e31829ae713
– volume: 24
  start-page: 102431
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0345
  article-title: Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102431
– volume: 163
  start-page: 562
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0175
  article-title: Copper and iron ions accelerate the prion-like propagation of α-synuclein: a vicious cycle in Parkinson’s disease
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.06.274
– volume: 23
  start-page: 576
  year: 2012
  ident: 10.1016/j.molmed.2022.02.003_bb0160
  article-title: α-Synuclein expression is modulated at the translational level by iron
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e328354a1f0
– volume: 106
  start-page: 518
  year: 2003
  ident: 10.1016/j.molmed.2022.02.003_bb0205
  article-title: Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-003-0766-2
– volume: 37
  start-page: 358
  year: 2012
  ident: 10.1016/j.molmed.2022.02.003_bb0105
  article-title: Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-011-0619-7
– volume: 11
  start-page: 1251
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0080
  article-title: DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15109-y
– volume: 567
  start-page: 35
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0490
  article-title: Super-enhancer-driven sorting nexin 5 expression promotes dopaminergic neuronal ferroptosis in Parkinson's disease models
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2021.06.024
– volume: 152
  start-page: 227
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0035
  article-title: Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.03.015
– start-page: 119
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0455
  article-title: Preliminary evidence of CuATSM treatment benefit in Parkinson's disease
– volume: 144
  start-page: 1787
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0120
  article-title: Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awab084
– volume: 284
  start-page: 234
  year: 2015
  ident: 10.1016/j.molmed.2022.02.003_bb0275
  article-title: Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.09.071
– volume: 107
  start-page: 1
  year: 2008
  ident: 10.1016/j.molmed.2022.02.003_bb0370
  article-title: The life, death, and replacement of oligodendrocytes in the adult CNS
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2008.05570.x
– volume: 67
  start-page: 1014
  year: 1996
  ident: 10.1016/j.molmed.2022.02.003_bb0380
  article-title: Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1996.67031014.x
– volume: 36
  start-page: 76
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0060
  article-title: Iron accumulation and microglia activation contribute to substantia nigra hyperechogenicity in the 6-OHDA-induced rat model of Parkinson's disease
  publication-title: Parkinsonism Relat. Disord.
  doi: 10.1016/j.parkreldis.2017.01.003
– volume: 21
  start-page: 195
  year: 2014
  ident: 10.1016/j.molmed.2022.02.003_bb0415
  article-title: Targeting chelatable iron as a therapeutic modality in Parkinson's disease
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2013.5593
– volume: 106
  start-page: 884
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0430
  article-title: N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.1548
– volume: 541
  start-page: 481
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0015
  article-title: Neurotoxic reactive astrocytes are induced by activated microglia
  publication-title: Nature
  doi: 10.1038/nature21029
– volume: 94
  start-page: 169
  year: 2016
  ident: 10.1016/j.molmed.2022.02.003_bb0050
  article-title: Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2016.05.011
– volume: 12
  start-page: 8
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0470
  article-title: Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.01.021
– volume: 17
  start-page: 465
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0085
  article-title: Phospholipase iPLA(2)β averts ferroptosis by eliminating a redox lipid death signal
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-00734-x
– volume: 338
  start-page: 949
  year: 2012
  ident: 10.1016/j.molmed.2022.02.003_bb0135
  article-title: Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice
  publication-title: Science
  doi: 10.1126/science.1227157
– volume: 131
  start-page: 342
  year: 2018
  ident: 10.1016/j.molmed.2022.02.003_bb0385
  article-title: Ferritin is secreted via 2 distinct nonclassical vesicular pathways
  publication-title: Blood
  doi: 10.1182/blood-2017-02-768580
– volume: 23
  start-page: 3394
  year: 2003
  ident: 10.1016/j.molmed.2022.02.003_bb0355
  article-title: Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-08-03394.2003
– volume: 7
  start-page: 1398
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0420
  article-title: Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01402-2
– volume: 73
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0485
  article-title: p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2021.105146
– volume: 16
  start-page: 1180
  year: 2014
  ident: 10.1016/j.molmed.2022.02.003_bb0070
  article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3064
– volume: 10
  start-page: 20
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0125
  article-title: Differential seeding and propagating efficiency of α-synuclein strains generated in different conditions
  publication-title: Transl. Neurodegener.
  doi: 10.1186/s40035-021-00242-5
– volume: 10
  start-page: 455
  year: 2017
  ident: 10.1016/j.molmed.2022.02.003_bb0260
  article-title: New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson's disease
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2017.00455
– volume: 277
  start-page: 16116
  year: 2002
  ident: 10.1016/j.molmed.2022.02.003_bb0155
  article-title: Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M107866200
– volume: 21
  start-page: 211
  year: 2014
  ident: 10.1016/j.molmed.2022.02.003_bb0450
  article-title: Does high-dose coenzyme Q10 improve oxidative damage and clinical outcomes in Parkinson’s disease?
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2013.5801
– volume: 91
  start-page: 795
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0005
  article-title: Parkinson's disease: etiopathogenesis and treatment
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2019-322338
– volume: 57
  start-page: 4628
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0040
  article-title: Activation of p62–Keap1–Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-020-02049-3
– volume: 10
  year: 2020
  ident: 10.1016/j.molmed.2022.02.003_bb0185
  article-title: Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement
  publication-title: Brain Behav.
  doi: 10.1002/brb3.1536
– volume: 94
  start-page: 112
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0215
  article-title: Microglia-mediated neuroinflammation in neurodegenerative diseases
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2019.05.004
– volume: 20
  start-page: 771
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0095
  article-title: Lymphoproliferation impairment and oxidative stress in blood cells from early Parkinson's disease patients
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20030771
– volume: 247
  start-page: 45
  year: 2013
  ident: 10.1016/j.molmed.2022.02.003_bb0180
  article-title: Chronic intranasal deferoxamine ameliorates motor defects and pathology in the α-synuclein rAAV Parkinson's model
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2013.03.017
– volume: 47
  start-page: 61
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0480
  article-title: miR-335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2021.4894
– volume: 12
  start-page: 222
  year: 2007
  ident: 10.1016/j.molmed.2022.02.003_bb0170
  article-title: The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4001937
– volume: 12
  start-page: 81
  year: 2021
  ident: 10.1016/j.molmed.2022.02.003_bb0150
  article-title: Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-03369-x
– volume: 575
  start-page: 688
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0075
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
  doi: 10.1038/s41586-019-1705-2
– volume: 1843
  start-page: 2967
  year: 2014
  ident: 10.1016/j.molmed.2022.02.003_bb0290
  article-title: Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2014.09.010
– volume: 133
  start-page: 169
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0360
  article-title: Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.09.002
– volume: 51
  start-page: 575
  year: 2019
  ident: 10.1016/j.molmed.2022.02.003_bb0390
  article-title: Prominin2 drives ferroptosis resistance by stimulating iron export
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.10.007
SSID ssj0015778
Score 2.676873
SecondaryResourceType review_article
Snippet Parkinson’s disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis...
Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss and the formation of cytoplasmic protein inclusions. Although the exact pathogenesis...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 258
SubjectTerms alpha-Synuclein - metabolism
Basic Medicine
Cell Death - physiology
Dopaminergic Neurons - metabolism
Ferroptosis
glia
Humans
iron
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Neuroglia - metabolism
neuron
Neurosciences
Neurovetenskaper
Parkinson Disease - metabolism
Parkinson's disease
Title Ferroptosis in Parkinson’s disease: glia–neuron crosstalk
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1471491422000442
https://dx.doi.org/10.1016/j.molmed.2022.02.003
https://www.ncbi.nlm.nih.gov/pubmed/35260343
https://www.proquest.com/docview/2637583525
https://lup.lub.lu.se/record/e420c7fd-6120-4a74-818a-0a32085af111
oai:portal.research.lu.se:publications/e420c7fd-6120-4a74-818a-0a32085af111
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIhAXBOVvC1RB4hrWsZ044VZVrbZF7QUqVVwsO3EgZclGze6hF9R34NTX65N0xnYiftWKQw5JPJYzsT-P7ZlvCHlTlbJmVJewTM1MLExRxUUtZZwWNrF1oVklMd758CibHYuDk_RkjewMsTDoVhmw32O6Q-vwZBq0Oe2aZvohAVwVBe5huGNJxGEhJPbyt99HN48klQ6NsXCMpYfwOefj9Q3d_pEvlDHP3Mn_NT39aX7-xi3q5qO9h-RBMCSjbd_WR2TNthvkrk8teb5B7h2GQ_PHBPeKzxbdctE3fdS0EQY6u5ivq4vLPgonNO-iz_NGX138cASXbeSaB4b51yfkeG_3484sDlkT4jLLs2VcyCqzgH8ARRx1I8u6ZvCAazC2Km15VXBryjJHLjdhwASzlOpc53lqYGVN-VOy3i5a-5xELNE250ZoWqUAqKWWnMvcyDSr0zrh5YTwQVmqDJTimNlirgbfsVPlVaxQxYoypCKdkHiU6jylxg3l0-E_qCFcFABOAebfICdHuV-61C0kXw-_W8FowyMU3drFqlcs47DAQgrZCXnm-8H4DZhpgHIB0ru-Y4xvkMJ7vurgMnCp3iorGIVRUikwMKkSWgoFlpNWVHNMmqprmIIm5NNf6vGrMhWooL6E-rqf9nhvVfnmfyvnBbmPd9576SVZX56t7CswzJZmy428LXJne__97OgadoU4tw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIn4uCAqF5TdIcAzr2EmcIPWAoNWWdnuhlSouxkkcCCzZqNkV6gX1HTj1OXijPgkzsbPiV62Qesgl2Rl5x57xjD3zDcCTIpclZzrHMDXO_DBLCz8tpfSj1ASmTDUvJNU7j3fi0V74ej_aX4LvfS0MpVU6229temet3Zuhk-awqarhmwDtapjSGUZ3LcldZuWWOfyCcVu7tvkKJ_kp5xvruy9Hvmst4OdxEs_8VBaxQSOB-iqIgczLkuMLodEjKbQRRSpMlucJAZ6FGfophjGd6CSJMgw_mUC-F-BiiOaC2iY8-7rIKwki2Zl_Gp1Pw-vr9bqkss9UZ0AApZxbqFDxr_3wT3_3NzDTbgPcuA7XnOfqvbDCuQFLpl6BS7aX5eEKXB67W_qbQIfTB9NmNm2r1qtqjyqruyKzk6Pj1nNXQs-995NKnxx96xA1a68bHkYCn27B3rnIchWW62lt7oDHA20SkYWaFRFa8FxLIWSSySguozIQ-QBELyyVOwxzaqUxUX2y2kdlRaxIxIpxwj4dgL-gaiyGxym_j_p5UH19KlpUhZvMKXRyQffLGj4D5eN-uhWqN93Z6NpM563iscCIjjBrB3DbroPFf6DWBkyESL1uF8biC2GGT-YNPhk-qjXKhJyhWhYKPVqmQi1Dha6aVkwL6tKqS9zzBvD2L3xsGKgc9tQHx6_56VD5TMzv_rdwHsGV0e54W21v7mzdg6v0xaZO3Yfl2cHcPECvcJY97LTQg3fnrfY_AD8sc0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroptosis+in+Parkinson%27s+disease&rft.jtitle=Trends+in+molecular+medicine&rft.au=Wang%2C+Zhang+Li&rft.au=Yuan%2C+Lin&rft.au=Li%2C+Wen&rft.au=Li%2C+Jia+Yi&rft.date=2022-04-01&rft.issn=1471-4914&rft.volume=28&rft.issue=4&rft.spage=258&rft_id=info:doi/10.1016%2Fj.molmed.2022.02.003&rft.externalDocID=oai_portal_research_lu_se_publications_e420c7fd_6120_4a74_818a_0a32085af111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-4914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-4914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-4914&client=summon