Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks

Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a hi...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 121; p. 103795
Main Authors Ardakani, Ali Abbasian, Kanafi, Alireza Rajabzadeh, Acharya, U. Rajendra, Khadem, Nazanin, Mohammadi, Afshin
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. •Ten CNNs were used to distinguish infection of COVID-19 from non-COVID-19 groups.•ResNet-101 and Xception represented the best performance with an AUC of 0.994.•Deep learning technique can be used as an adjuvant tool in diagnosing COVID-19.
AbstractList Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.
Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. •Ten CNNs were used to distinguish infection of COVID-19 from non-COVID-19 groups.•ResNet-101 and Xception represented the best performance with an AUC of 0.994.•Deep learning technique can be used as an adjuvant tool in diagnosing COVID-19.
Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. • Ten CNNs were used to distinguish infection of COVID-19 from non-COVID-19 groups. • ResNet-101 and Xception represented the best performance with an AUC of 0.994. • Deep learning technique can be used as an adjuvant tool in diagnosing COVID-19.
Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.
AbstractFast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.
ArticleNumber 103795
Author Khadem, Nazanin
Acharya, U. Rajendra
Ardakani, Ali Abbasian
Mohammadi, Afshin
Kanafi, Alireza Rajabzadeh
Author_xml – sequence: 1
  givenname: Ali Abbasian
  surname: Ardakani
  fullname: Ardakani, Ali Abbasian
  email: A.ardekani@live.com
  organization: Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
– sequence: 2
  givenname: Alireza Rajabzadeh
  surname: Kanafi
  fullname: Kanafi, Alireza Rajabzadeh
  email: Alireza_r245@yahoo.com
  organization: Department of Radiology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
– sequence: 3
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Nazanin
  surname: Khadem
  fullname: Khadem, Nazanin
  email: Nazanin.khadem74@gmail.com
  organization: Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
– sequence: 5
  givenname: Afshin
  surname: Mohammadi
  fullname: Mohammadi, Afshin
  email: Afshin.mohdi@gmail.com
  organization: Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32568676$$D View this record in MEDLINE/PubMed
BookMark eNqVUl1vEzEQtFARTQN_AVnihZcE23f2XXhAlPBVqVIlKLxaPt9e6vRiX21fUH8Hfxi7aVNAQipPK9mzs7M7c4QOrLOAEKZkTgkVr9Zz7TZDY9wG2jkjLD8X1YI_QhNaV4sZ4UV5gCaEUDIra8YP0VEIa0JISQryBB0WjItaVGKCfh4PQ2-0isZZ7DrcAgy4B-WtsSscQV9YczUCjg5vlFUrwMuz7yfvZ3SBjcXejdFYwLo3NpH0ePBKR6MBjyH3L8-x2aSm8Bp_gTD2MeQZlGDt7Nb1Y56auiyM_qbEH85fhqfocaf6AM9u6xR9-_jhfPl5dnr26WR5fDrTouZx1jatqljJOauhpSXteEfrtlMCFJRC6UawoulU03DK6KLgNQihBKOaFYJTURRT9GbHO4xNOqQGG5MMOfik2V9Lp4z888eaC7lyW1nRBeEsE7y8JfAuHSlEuTFBQ98rC24MkpVUsKqskzlT9OIv6NqNPi2fUdmNuqh4Qj3_XdFeyp1fCVDvANq7EDx0ewglMkdDruV9NGSOhtxF437bfas28cb3tJvpH0LwbkcAyZOtAS-DNmA1tMaDjrJ15j9U7EnusnMJ1xD2R6EyMEnk1xzhnGCWgktFmQne_pvgYRp-AROiCC8
CitedBy_id crossref_primary_10_1016_j_dajour_2023_100243
crossref_primary_10_1520_JTE20200574
crossref_primary_10_47495_okufbed_1220413
crossref_primary_10_1007_s12559_020_09779_5
crossref_primary_10_1016_j_procs_2024_04_007
crossref_primary_10_1088_1742_6596_2386_1_012033
crossref_primary_10_1016_j_heliyon_2024_e26938
crossref_primary_10_1007_s12530_023_09484_2
crossref_primary_10_1016_j_watres_2022_118080
crossref_primary_10_1038_s41598_022_15495_x
crossref_primary_10_32604_iasc_2021_018350
crossref_primary_10_1016_j_compbiomed_2021_104579
crossref_primary_10_3390_app12083895
crossref_primary_10_1016_j_compbiomed_2021_104210
crossref_primary_10_1016_j_eswa_2023_122805
crossref_primary_10_3390_s22228999
crossref_primary_10_1109_ACCESS_2022_3207207
crossref_primary_10_1016_j_asoc_2022_109851
crossref_primary_10_3390_bioengineering11121265
crossref_primary_10_35377_saucis___1309970
crossref_primary_10_1080_10106049_2022_2060319
crossref_primary_10_1111_exsy_13427
crossref_primary_10_1016_j_inffus_2021_02_016
crossref_primary_10_1007_s11063_021_10712_6
crossref_primary_10_3390_diagnostics12123171
crossref_primary_10_1016_j_compbiomed_2021_104348
crossref_primary_10_24012_dumf_812810
crossref_primary_10_3348_jksr_2020_0138
crossref_primary_10_7759_cureus_38373
crossref_primary_10_1111_jfpe_13955
crossref_primary_10_1186_s12911_021_01521_x
crossref_primary_10_1007_s11042_023_15857_1
crossref_primary_10_1007_s11042_023_17642_6
crossref_primary_10_3174_ajnr_A7003
crossref_primary_10_1080_00051144_2021_2014037
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1016_j_asoc_2021_107160
crossref_primary_10_1016_j_compbiomed_2021_104585
crossref_primary_10_2174_1573405618666220803123626
crossref_primary_10_1016_j_ejmp_2021_03_026
crossref_primary_10_2174_0115680266282179240124072121
crossref_primary_10_1109_ACCESS_2024_3378516
crossref_primary_10_3390_bdcc5040074
crossref_primary_10_1016_j_eswa_2021_115805
crossref_primary_10_1016_j_patcog_2021_108071
crossref_primary_10_1109_JBHI_2021_3072076
crossref_primary_10_1016_j_bspc_2022_104297
crossref_primary_10_1111_jocs_15094
crossref_primary_10_1002_ima_22876
crossref_primary_10_1016_j_bdr_2021_100233
crossref_primary_10_1155_2021_9437538
crossref_primary_10_1007_s10489_020_02102_7
crossref_primary_10_1016_j_asoc_2021_107490
crossref_primary_10_1007_s10462_021_10127_8
crossref_primary_10_1088_1361_6560_ad611a
crossref_primary_10_1145_3466690
crossref_primary_10_1007_s13755_021_00147_7
crossref_primary_10_1007_s10278_021_00434_5
crossref_primary_10_1007_s00521_022_07709_0
crossref_primary_10_1007_s42979_022_01326_3
crossref_primary_10_1007_s00277_024_05755_3
crossref_primary_10_3390_s21062215
crossref_primary_10_4015_S1016237224500352
crossref_primary_10_1080_14787210_2021_1836961
crossref_primary_10_1002_hsr2_1244
crossref_primary_10_1002_ima_22627
crossref_primary_10_2196_23693
crossref_primary_10_2196_21394
crossref_primary_10_1016_j_bspc_2021_102814
crossref_primary_10_1016_j_ejmp_2022_05_015
crossref_primary_10_3390_ijerph192416857
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_7717_peerj_cs_306
crossref_primary_10_1007_s11042_024_20153_7
crossref_primary_10_1002_ima_22613
crossref_primary_10_7717_peerj_cs_313
crossref_primary_10_1007_s00500_021_06103_7
crossref_primary_10_1007_s00521_023_08997_w
crossref_primary_10_1007_s12559_021_09915_9
crossref_primary_10_1109_ACCESS_2020_3025010
crossref_primary_10_1007_s11227_022_04775_y
crossref_primary_10_3390_s22207977
crossref_primary_10_1007_s10619_021_07358_7
crossref_primary_10_1016_j_eswa_2024_125277
crossref_primary_10_1007_s00138_020_01101_5
crossref_primary_10_1109_JBHI_2021_3132157
crossref_primary_10_1080_27660400_2023_2270529
crossref_primary_10_1016_j_bspc_2022_104366
crossref_primary_10_1007_s12026_023_09416_x
crossref_primary_10_32604_cmes_2021_016981
crossref_primary_10_1007_s11042_022_11913_4
crossref_primary_10_1016_j_ijleo_2021_167199
crossref_primary_10_3389_fimmu_2022_977443
crossref_primary_10_1007_s13246_021_01075_2
crossref_primary_10_1016_j_asoc_2022_109401
crossref_primary_10_1007_s43681_021_00056_1
crossref_primary_10_21015_vtse_v11i2_1460
crossref_primary_10_1109_ACCESS_2021_3058537
crossref_primary_10_1016_j_jksuci_2023_101754
crossref_primary_10_2196_25535
crossref_primary_10_1016_j_bbe_2021_12_001
crossref_primary_10_1109_MITP_2020_3036820
crossref_primary_10_1007_s13206_022_00078_9
crossref_primary_10_1016_j_asoc_2020_106912
crossref_primary_10_1088_2057_1976_ad1e76
crossref_primary_10_3390_s22187065
crossref_primary_10_1016_j_bspc_2021_102901
crossref_primary_10_3390_ijerph19095099
crossref_primary_10_1186_s43556_024_00238_3
crossref_primary_10_1007_s00217_022_04059_y
crossref_primary_10_1371_journal_pone_0317450
crossref_primary_10_5812_archcid_150150
crossref_primary_10_1155_2021_5544742
crossref_primary_10_3390_ijms21186652
crossref_primary_10_4236_jbise_2020_137014
crossref_primary_10_1016_j_heliyon_2024_e25410
crossref_primary_10_3390_diagnostics13040796
crossref_primary_10_1016_j_bdr_2021_100287
crossref_primary_10_1007_s11042_022_13154_x
crossref_primary_10_54392_irjmt24316
crossref_primary_10_1016_j_smhl_2022_100299
crossref_primary_10_1155_2021_5528144
crossref_primary_10_3390_healthcare11060837
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_3390_math10040564
crossref_primary_10_1109_JBHI_2023_3324333
crossref_primary_10_3390_diagnostics12071608
crossref_primary_10_1007_s11227_022_04349_y
crossref_primary_10_1109_COMST_2023_3256323
crossref_primary_10_1007_s10614_025_10893_5
crossref_primary_10_1007_s00330_020_07087_y
crossref_primary_10_3389_fpubh_2022_969846
crossref_primary_10_2174_1573405619666221222161832
crossref_primary_10_1016_j_asoc_2020_106859
crossref_primary_10_3389_frai_2021_612914
crossref_primary_10_17798_bitlisfen_1346730
crossref_primary_10_1142_S021903032000110X
crossref_primary_10_3389_fmed_2020_608525
crossref_primary_10_5334_jbsr_2330
crossref_primary_10_1016_j_slast_2021_10_011
crossref_primary_10_3390_diagnostics13132274
crossref_primary_10_14201_adcaij_31528
crossref_primary_10_1038_s42256_021_00307_0
crossref_primary_10_3390_healthcare9091099
crossref_primary_10_1007_s11548_022_02769_y
crossref_primary_10_1016_j_imed_2021_09_001
crossref_primary_10_1016_j_jtice_2020_11_024
crossref_primary_10_3389_fphys_2022_1066999
crossref_primary_10_1016_j_compbiomed_2021_105141
crossref_primary_10_3390_diagnostics13091639
crossref_primary_10_4103_joacp_JOACP_558_20
crossref_primary_10_1007_s11051_020_05041_z
crossref_primary_10_3390_su13126900
crossref_primary_10_1155_2023_6070970
crossref_primary_10_1007_s12652_021_03282_x
crossref_primary_10_3390_s22197303
crossref_primary_10_1109_ACCESS_2023_3279402
crossref_primary_10_1007_s10723_024_09742_w
crossref_primary_10_1007_s11042_023_15029_1
crossref_primary_10_7717_peerj_cs_2517
crossref_primary_10_3390_electronics10232901
crossref_primary_10_1038_s41598_022_07954_2
crossref_primary_10_3390_biomedinformatics3030045
crossref_primary_10_2174_1573405617666210713113439
crossref_primary_10_1145_3571728
crossref_primary_10_1016_j_compbiomed_2021_105127
crossref_primary_10_1016_j_robot_2021_103902
crossref_primary_10_1080_08839514_2022_2055398
crossref_primary_10_3390_electronics12030684
crossref_primary_10_1016_j_ijbiomac_2021_11_016
crossref_primary_10_61186_ijrr_22_1_55
crossref_primary_10_3390_diagnostics13182867
crossref_primary_10_1007_s00530_021_00839_w
crossref_primary_10_1016_j_clinimag_2024_110092
crossref_primary_10_1038_s41598_022_25539_x
crossref_primary_10_1007_s11760_023_02561_8
crossref_primary_10_1007_s10278_021_00430_9
crossref_primary_10_1016_j_crad_2022_11_006
crossref_primary_10_1016_j_ijmedinf_2021_104599
crossref_primary_10_55529_jipirs_36_37_50
crossref_primary_10_1016_j_heliyon_2023_e22203
crossref_primary_10_1108_WJE_01_2021_0015
crossref_primary_10_1155_2022_4509394
crossref_primary_10_4018_IJSSMET_323452
crossref_primary_10_1186_s12874_022_01768_6
crossref_primary_10_7717_peerj_cs_655
crossref_primary_10_1007_s42600_021_00135_6
crossref_primary_10_1016_j_measurement_2021_110425
crossref_primary_10_1007_s00521_021_06344_5
crossref_primary_10_1007_s13762_022_04287_5
crossref_primary_10_1016_j_compbiomed_2021_105134
crossref_primary_10_1038_s41598_020_74164_z
crossref_primary_10_1371_journal_pone_0282608
crossref_primary_10_3389_fpubh_2023_1025746
crossref_primary_10_3390_bioengineering10040458
crossref_primary_10_3389_fcvm_2021_638011
crossref_primary_10_18185_erzifbed_1090984
crossref_primary_10_54525_tbbmd_1177223
crossref_primary_10_1007_s10489_020_02076_6
crossref_primary_10_3233_IDT_230222
crossref_primary_10_46475_asean_jr_v24i3_881
crossref_primary_10_1016_j_compeleceng_2021_107411
crossref_primary_10_3390_jcm11051437
crossref_primary_10_3390_make6030078
crossref_primary_10_1007_s00521_023_08450_y
crossref_primary_10_1080_21681163_2021_1889404
crossref_primary_10_3389_fpubh_2022_869238
crossref_primary_10_1007_s11042_020_09894_3
crossref_primary_10_1016_j_ejmp_2022_06_018
crossref_primary_10_1016_j_asoc_2023_110511
crossref_primary_10_1007_s11227_022_04502_7
crossref_primary_10_1007_s11042_022_13183_6
crossref_primary_10_1016_j_compbiomed_2022_105464
crossref_primary_10_1016_j_eswa_2022_117812
crossref_primary_10_1155_2021_5527923
crossref_primary_10_1016_j_matpr_2021_04_224
crossref_primary_10_3390_buildings13071711
crossref_primary_10_1007_s11356_022_23392_z
crossref_primary_10_1007_s13369_021_05880_5
crossref_primary_10_1007_s11042_024_18330_9
crossref_primary_10_3390_s22249891
crossref_primary_10_29130_dubited_976118
crossref_primary_10_3389_fmed_2021_729287
crossref_primary_10_3390_sym14071310
crossref_primary_10_1038_s41746_021_00467_8
crossref_primary_10_3390_s22166312
crossref_primary_10_1016_j_bspc_2022_103787
crossref_primary_10_1080_10106049_2021_1926555
crossref_primary_10_1109_ACCESS_2020_3028012
crossref_primary_10_3389_fpubh_2022_1034772
crossref_primary_10_1007_s00521_023_09194_5
crossref_primary_10_3389_frai_2022_919672
crossref_primary_10_15212_bioi_2020_0015
crossref_primary_10_1038_s41598_022_18535_8
crossref_primary_10_3390_math8091423
crossref_primary_10_4274_imj_galenos_2023_07348
crossref_primary_10_1016_j_compbiomed_2021_105047
crossref_primary_10_3389_fphar_2022_970494
crossref_primary_10_1080_27690911_2023_2220872
crossref_primary_10_4103_jmss_jmss_111_21
crossref_primary_10_1016_j_compbiomed_2022_105244
crossref_primary_10_1093_nsr_nwae186
crossref_primary_10_3390_healthcare9050528
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_1007_s44196_023_00272_z
crossref_primary_10_32604_cmc_2021_013191
crossref_primary_10_2478_amns_2023_1_00414
crossref_primary_10_3389_frai_2021_652669
crossref_primary_10_1007_s10845_024_02416_0
crossref_primary_10_1016_j_inffus_2022_09_023
crossref_primary_10_1016_j_knosys_2022_109278
crossref_primary_10_1002_mp_15549
crossref_primary_10_1016_j_compbiomed_2022_106324
crossref_primary_10_1007_s12652_022_03775_3
crossref_primary_10_3934_mbe_2021475
crossref_primary_10_1016_j_eswa_2023_121226
crossref_primary_10_1016_j_cmpb_2020_105608
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1016_j_irbm_2021_07_002
crossref_primary_10_1183_23120541_00579_2021
crossref_primary_10_1080_0952813X_2021_2021300
crossref_primary_10_1007_s00500_024_10362_5
crossref_primary_10_1016_j_asoc_2021_107946
crossref_primary_10_1142_S0218488522500222
crossref_primary_10_1002_ima_23189
crossref_primary_10_1016_j_health_2021_100008
crossref_primary_10_1007_s40747_021_00424_8
crossref_primary_10_1155_2022_5998042
crossref_primary_10_1007_s10844_022_00707_7
crossref_primary_10_1136_bmj_m1328
crossref_primary_10_16984_saufenbilder_774435
crossref_primary_10_1016_j_bspc_2022_103977
crossref_primary_10_1016_j_asoc_2020_106580
crossref_primary_10_32628_IJSRSET207539
crossref_primary_10_1007_s44196_023_00236_3
crossref_primary_10_1155_2022_1306664
crossref_primary_10_1016_j_ipm_2024_103934
crossref_primary_10_1109_TAI_2021_3104791
crossref_primary_10_1016_j_ipm_2022_103025
crossref_primary_10_3390_diagnostics14141469
crossref_primary_10_1007_s00354_022_00195_x
crossref_primary_10_1016_j_wroa_2024_100228
crossref_primary_10_1016_j_ijtst_2021_06_003
crossref_primary_10_2196_25181
crossref_primary_10_1108_DTA_06_2021_0153
crossref_primary_10_3390_a15020071
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_1111_exsy_12904
crossref_primary_10_1038_s41598_022_20804_5
crossref_primary_10_15446_ing_investig_v42n1_88825
crossref_primary_10_1007_s13042_023_02034_x
crossref_primary_10_1371_journal_pone_0255886
crossref_primary_10_7717_peerj_cs_1375
crossref_primary_10_1007_s11356_021_13823_8
crossref_primary_10_3389_fdgth_2021_637944
crossref_primary_10_1007_s11042_021_11257_5
crossref_primary_10_4103_jcrt_jcrt_325_23
crossref_primary_10_1016_j_knosys_2021_107432
crossref_primary_10_3390_math10214160
crossref_primary_10_3390_electronics11193075
crossref_primary_10_3390_rs15061696
crossref_primary_10_1016_j_bspc_2024_106687
crossref_primary_10_1007_s11042_023_15809_9
crossref_primary_10_1016_j_rser_2023_113748
crossref_primary_10_3390_diagnostics12030696
crossref_primary_10_1016_j_dajour_2021_100007
crossref_primary_10_1038_s41598_021_94501_0
crossref_primary_10_32604_cmc_2022_023418
crossref_primary_10_4015_S1016237223500126
crossref_primary_10_3390_mi14091744
crossref_primary_10_3390_bioengineering11010050
crossref_primary_10_1016_j_patrec_2021_09_012
crossref_primary_10_32604_cmc_2023_033413
crossref_primary_10_1007_s00530_021_00826_1
crossref_primary_10_1016_j_compbiomed_2021_104816
crossref_primary_10_3390_diagnostics12112766
crossref_primary_10_1016_j_ejro_2021_100322
crossref_primary_10_1007_s11042_020_10340_7
crossref_primary_10_1007_s10462_024_10878_0
crossref_primary_10_1016_j_bspc_2021_103415
crossref_primary_10_1016_j_eswa_2022_118628
crossref_primary_10_1038_s41598_021_91761_8
crossref_primary_10_1007_s00521_023_08200_0
crossref_primary_10_1186_s12859_022_04679_x
crossref_primary_10_1002_int_22504
crossref_primary_10_1038_s41598_024_52135_y
crossref_primary_10_1007_s12559_020_09785_7
crossref_primary_10_1038_s41598_023_27697_y
crossref_primary_10_3390_diagnostics14121313
crossref_primary_10_1080_17455030_2021_1998729
crossref_primary_10_3390_electronics11233974
crossref_primary_10_1109_TNNLS_2021_3086570
crossref_primary_10_3233_JIFS_232866
crossref_primary_10_1016_j_aej_2021_01_011
crossref_primary_10_1016_j_compbiomed_2021_104704
crossref_primary_10_1186_s12911_023_02344_8
crossref_primary_10_53898_josse2024415
crossref_primary_10_1145_3462635
crossref_primary_10_3390_app11083414
crossref_primary_10_3390_electronics12010080
crossref_primary_10_1007_s12559_022_10076_6
crossref_primary_10_1007_s00521_023_08344_z
crossref_primary_10_3389_fninf_2021_778552
crossref_primary_10_1016_j_ejmp_2021_06_001
crossref_primary_10_1016_j_compbiomed_2024_108925
crossref_primary_10_1016_j_cmpb_2022_107200
crossref_primary_10_1016_j_eswa_2022_116540
crossref_primary_10_17341_gazimmfd_827921
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1007_s00354_023_00213_6
crossref_primary_10_1109_OJEMB_2021_3127078
crossref_primary_10_1016_j_matpr_2021_12_123
crossref_primary_10_1088_1361_6528_ac189e
crossref_primary_10_3389_fimmu_2023_1225557
crossref_primary_10_1109_JTEHM_2021_3134096
crossref_primary_10_1016_j_compbiomed_2021_104927
crossref_primary_10_1002_cpe_7314
crossref_primary_10_1093_forestry_cpac023
crossref_primary_10_1016_j_ejrad_2023_110846
crossref_primary_10_1016_j_cmpb_2021_106288
crossref_primary_10_2174_18750362_v15_e2207290
crossref_primary_10_1007_s10845_023_02099_z
crossref_primary_10_1016_j_bspc_2022_103848
crossref_primary_10_1155_2022_7672196
crossref_primary_10_1016_j_eswa_2020_113909
crossref_primary_10_1016_j_bspc_2022_103728
crossref_primary_10_2196_23811
crossref_primary_10_3390_diagnostics12061376
crossref_primary_10_2147_JIR_S301866
crossref_primary_10_1016_j_asoc_2021_107669
crossref_primary_10_1016_j_chemolab_2022_104695
crossref_primary_10_1016_j_heliyon_2024_e27509
crossref_primary_10_1016_j_cmpb_2022_106731
crossref_primary_10_3389_frai_2023_1266560
crossref_primary_10_1088_1742_6596_2571_1_012005
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_4018_IJDWM_314155
crossref_primary_10_1038_s41598_022_06854_9
crossref_primary_10_28978_nesciences_868087
crossref_primary_10_1007_s11042_022_13509_4
crossref_primary_10_3390_s23010480
crossref_primary_10_3390_diagnostics11071155
crossref_primary_10_1016_j_chaos_2020_110059
crossref_primary_10_33769_aupse_1227857
crossref_primary_10_1016_j_compeleceng_2023_108711
crossref_primary_10_1007_s11042_024_19046_6
crossref_primary_10_1016_j_cmpbup_2022_100054
crossref_primary_10_1016_j_bspc_2020_102257
crossref_primary_10_1016_j_eswa_2022_118650
crossref_primary_10_1109_ACCESS_2021_3061621
crossref_primary_10_3390_ijerph18157845
crossref_primary_10_1088_1742_6596_2010_1_012175
crossref_primary_10_1371_journal_pone_0265949
crossref_primary_10_28979_jarnas_952700
crossref_primary_10_1007_s11042_023_14642_4
crossref_primary_10_3934_mbe_2023079
crossref_primary_10_1007_s11831_023_09882_4
crossref_primary_10_29130_dubited_903358
crossref_primary_10_3390_app10238606
crossref_primary_10_3390_diagnostics13081491
crossref_primary_10_1016_j_asoc_2021_107645
crossref_primary_10_1016_j_snb_2022_133241
crossref_primary_10_1016_j_aej_2021_03_052
crossref_primary_10_1016_j_compbiomed_2021_104835
crossref_primary_10_1145_3457124
crossref_primary_10_1109_ACCESS_2020_3007939
crossref_primary_10_1007_s11042_024_18437_z
crossref_primary_10_1177_03611981211005470
crossref_primary_10_1109_TEM_2023_3303080
crossref_primary_10_1111_exsy_12759
crossref_primary_10_1016_j_compbiomed_2021_104729
crossref_primary_10_1016_j_lmd_2024_100032
crossref_primary_10_3390_math10193614
crossref_primary_10_3390_s21238045
crossref_primary_10_1155_2020_8828855
crossref_primary_10_15302_J_QB_021_0274
crossref_primary_10_1088_2057_1976_ace4cf
crossref_primary_10_1016_j_imu_2022_100916
crossref_primary_10_15302_J_QB_021_0278
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_36222_ejt_986599
crossref_primary_10_5937_scriptamed52_34457
crossref_primary_10_1007_s10742_024_00324_7
crossref_primary_10_1155_2022_6475808
crossref_primary_10_1007_s11063_021_10449_2
crossref_primary_10_1016_j_compbiomed_2023_107113
crossref_primary_10_1080_13682199_2023_2170768
crossref_primary_10_1007_s10278_024_01011_2
crossref_primary_10_3390_jcm10091961
crossref_primary_10_1155_2022_2564022
crossref_primary_10_3390_life12070958
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1145_3583566
crossref_primary_10_3389_fmed_2021_704256
crossref_primary_10_1016_j_patcog_2021_108135
crossref_primary_10_1016_j_imu_2020_100405
crossref_primary_10_1007_s11042_023_18056_0
crossref_primary_10_1016_j_socscimed_2022_114973
crossref_primary_10_1109_TPEL_2023_3346335
crossref_primary_10_2174_1573405616666201123120417
crossref_primary_10_1177_20552076241232882
crossref_primary_10_1016_j_compbiomed_2021_104895
crossref_primary_10_1007_s10462_021_10106_z
crossref_primary_10_1080_21681163_2022_2099299
crossref_primary_10_52880_sagakaderg_1070774
crossref_primary_10_31590_ejosat_936820
crossref_primary_10_1016_j_neucom_2021_06_024
crossref_primary_10_1016_j_compbiomed_2021_104304
crossref_primary_10_2174_1573405617666210806123720
crossref_primary_10_1007_s42979_024_02998_9
crossref_primary_10_3390_e24081119
crossref_primary_10_1016_j_compbiomed_2021_104781
crossref_primary_10_2196_24048
crossref_primary_10_3390_electronics10070799
crossref_primary_10_1002_jemt_23913
crossref_primary_10_1016_j_bspc_2021_102716
crossref_primary_10_17482_uumfd_1179180
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_4108_eetpht_v8i5_3352
crossref_primary_10_7717_peerj_10086
crossref_primary_10_1002_ima_22552
crossref_primary_10_1007_s11042_023_14960_7
crossref_primary_10_37467_gka_revtechno_v9_2814
crossref_primary_10_1002_ima_22558
crossref_primary_10_1109_JBHI_2020_3042523
crossref_primary_10_1016_j_aiopen_2025_01_003
crossref_primary_10_1016_j_imu_2024_101449
crossref_primary_10_1007_s10548_022_00901_4
crossref_primary_10_1016_j_bspc_2021_102622
crossref_primary_10_1007_s00354_023_00232_3
crossref_primary_10_1038_s41598_022_13039_x
crossref_primary_10_3390_jimaging8120323
crossref_primary_10_3390_s21217286
crossref_primary_10_2196_27468
crossref_primary_10_1007_s00330_021_08334_6
crossref_primary_10_1016_j_gltp_2021_08_027
crossref_primary_10_1016_j_ipemt_2022_100008
crossref_primary_10_1016_j_cmpb_2021_106444
crossref_primary_10_1016_j_jmsy_2023_02_007
crossref_primary_10_30931_jetas_790465
crossref_primary_10_1259_bjro_20220016
crossref_primary_10_1007_s42979_021_00924_x
crossref_primary_10_1002_widm_1461
crossref_primary_10_1007_s00354_023_00220_7
crossref_primary_10_1007_s11042_023_18021_x
crossref_primary_10_1038_s41598_021_93757_w
crossref_primary_10_3390_pathogens13110940
crossref_primary_10_1007_s10916_021_01747_2
crossref_primary_10_1155_2021_6677314
crossref_primary_10_1007_s12553_022_00688_1
Cites_doi 10.1148/radiol.2020200642
10.1007/s11604-019-00826-2
10.1056/NEJMoa2001017
10.1016/j.compbiomed.2017.08.014
10.1016/j.compbiomed.2018.07.017
10.1016/j.compbiomed.2017.08.016
10.1148/radiol.2020200527
10.1016/j.compbiomed.2018.10.011
10.1016/j.compbiomed.2018.03.006
10.1016/j.ejrad.2020.108961
10.1259/bjr.20190043
10.1016/j.compmedimag.2007.02.002
10.1148/radiol.2020200490
10.1148/radiol.2020200330
10.1016/j.compbiomed.2017.11.008
10.1016/j.compbiomed.2018.10.033
10.1016/j.compbiomed.2020.103675
10.1016/S0140-6736(20)30673-5
10.1016/j.compbiomed.2017.04.006
10.1016/j.crad.2004.07.008
10.1148/radiol.2020200463
10.1016/S0140-6736(20)30183-5
10.1148/radiol.2020200905
10.1148/rg.2018170048
10.1111/j.1469-0691.2006.01393.x
10.1148/radiol.2020200230
10.1016/j.jinf.2020.02.016
10.1097/00004424-196601000-00032
10.1016/S0720-048X(97)00157-5
10.1148/radiol.2020200343
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
– notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.compbiomed.2020.103795
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 103795
ExternalDocumentID PMC7190523
32568676
10_1016_j_compbiomed_2020_103795
S0010482520301645
1_s2_0_S0010482520301645
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c685t-dbda7245528ed141f5f18dfa6eae46acb623bfabb51219358e66a621c23651633
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Aug 21 18:18:51 EDT 2025
Fri Jul 11 00:41:02 EDT 2025
Wed Aug 13 07:09:57 EDT 2025
Mon Jul 21 05:50:05 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Tue Jul 01 03:28:36 EDT 2025
Fri Feb 23 02:42:45 EST 2024
Sun Feb 23 10:19:19 EST 2025
Tue Aug 26 16:33:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Deep learning
Pneumonia
Coronavirus infections
Computed tomography
Lung diseases
Machine learning
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c685t-dbda7245528ed141f5f18dfa6eae46acb623bfabb51219358e66a621c23651633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7190523
PMID 32568676
PQID 2425688375
PQPubID 1226355
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7190523
proquest_miscellaneous_2416274810
proquest_journals_2425688375
pubmed_primary_32568676
crossref_primary_10_1016_j_compbiomed_2020_103795
crossref_citationtrail_10_1016_j_compbiomed_2020_103795
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_103795
elsevier_clinicalkeyesjournals_1_s2_0_S0010482520301645
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_103795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu, Wu, Gao, Tan (bib1) 2020; 382
Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (bib24) 2016
Bai, Hsieh, Xiong, Halsey, Choi, Tran, Pan, Shi, Wang, Mei, Jiang, Zeng, Egglin, Hu, Agarwal, Xie, Li, Healey, Atalay, Liao (bib8) 2020
Nihashi, Ishigaki, Satake, Ito, Kaii, Mori, Shimamoto, Fukushima, Suzuki, Umakoshi, Ohashi, Kawaguchi, Naganawa (bib9) 2019; 37
Cunha (bib32) 2006; 12
Chung, Bernheim, Mei, Zhang, Huang, Zeng, Cui, Xu, Yang, Fayad, Jacobi, Li, Li, Shan (bib6) 2020; 295
Lodwick (bib11) 1965; 1
Zhang, Wang, Li, Chen (bib16) 2018; 92
A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, M. Chung, Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology, 0 200463. doi: 10.1148/radiol.2020200463.
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib25) 2015
Bedford, Enria, Giesecke, Heymann, Ihekweazu, Kobinger, Lane, Memish, Oh, Schuchat (bib40) 2020; 395
Van Erkel, Pattynama (bib29) 1998; 27
Sun, Zheng, Qian (bib18) 2017; 89
Sandler, Howard, Zhu, Zhmoginov, Chen (bib26) 2018
Sun, Wang, Pu, Yuan, Guo, Pu, Peng (bib17) 2020; 119
Simonyan, Zisserman (bib23) 2014
Z.Y. Zu, M.D. Jiang, P.P. Xu, W. Chen, Q.Q. Ni, G.M. Lu, L.J. Zhang, Coronavirus disease 2019 (COVID-19): a perspective from China, Radiology, 0 200490. doi: 10.1148/radiol.2020200490.
Kanne, Little, Chung, Elicker, Ketai (bib4) 2020
Krizhevsky, Sutskever, Hinton (bib22) 2012
Yang, Cao, Qin, Wang, Cheng, Pan, Dai, Sun, Zhao, Qu, Yan (bib35) 2020; 80
Long, Xu, Shen, Zhang, Fan, Wang, Zeng, Li, Li, Li (bib33) 2020; 126
Huang, Liu, Huang, Liu, Lei, Xu, Hu, Chen, Liu (bib38) 2020; 295
Chollet (bib28) 2017
L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, J. Xia, Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT, Radiology, 0 200905. doi: 10.1148/radiol.2020200905.
Than, Saba, Noor, Rijal, Kassim, Yunus, Suri, Porcu, Suri (bib14) 2017; 89
Gu, Lu, Yang, Zhang, Yu, Zhao, Gao, Wu, Zhou (bib15) 2018; 103
Barbosa, Simpson, Lee, Tustison, Gee, Shou (bib19) 2017; 89
World Health Organization (WHO) (bib3)
Horáček, Koucký, Hladík (bib21) 2018; 101
Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu, Cheng, Yu, Xia, Wei, Wu, Xie, Yin, Li, Liu, Xiao, Gao, Guo, Xie, Wang, Jiang, Gao, Jin, Wang, Cao (bib2) 2020; 395
Pancaldi, Sebastiani, Cassone, Luppi, Cerri, Della Casa, Manfredi (bib20) 2018; 96
Taylor-Phillips, Stinton (bib10) 2019; 92
Doi (bib12) 2007; 31
He, Zhang, Ren, Sun (bib27) 2016
T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology, 0 200642. doi: 10.1148/radiol.2020200642.
Koo, Lim, Choe, Choi, Sung, Do (bib7) 2018; 38
bib39
Castellano, Bonilha, Li, Cendes (bib13) 2004; 59
Zhang, Jiang, Yang, Gong, Ma, Zhou, Bao, Liu (bib31) 2018; 103
X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, J. Liu, Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing, Radiology, 0 200343. doi: 10.1148/radiol.2020200343.
Doi (10.1016/j.compbiomed.2020.103795_bib12) 2007; 31
Van Erkel (10.1016/j.compbiomed.2020.103795_bib29) 1998; 27
Pancaldi (10.1016/j.compbiomed.2020.103795_bib20) 2018; 96
Than (10.1016/j.compbiomed.2020.103795_bib14) 2017; 89
10.1016/j.compbiomed.2020.103795_bib34
10.1016/j.compbiomed.2020.103795_bib36
Long (10.1016/j.compbiomed.2020.103795_bib33) 2020; 126
10.1016/j.compbiomed.2020.103795_bib37
Chollet (10.1016/j.compbiomed.2020.103795_bib28) 2017
Sun (10.1016/j.compbiomed.2020.103795_bib18) 2017; 89
Castellano (10.1016/j.compbiomed.2020.103795_bib13) 2004; 59
Horáček (10.1016/j.compbiomed.2020.103795_bib21) 2018; 101
Krizhevsky (10.1016/j.compbiomed.2020.103795_bib22) 2012
Zhang (10.1016/j.compbiomed.2020.103795_bib16) 2018; 92
Bai (10.1016/j.compbiomed.2020.103795_bib8) 2020
Gu (10.1016/j.compbiomed.2020.103795_bib15) 2018; 103
Barbosa (10.1016/j.compbiomed.2020.103795_bib19) 2017; 89
Yang (10.1016/j.compbiomed.2020.103795_bib35) 2020; 80
Simonyan (10.1016/j.compbiomed.2020.103795_bib23) 2014
Lodwick (10.1016/j.compbiomed.2020.103795_bib11) 1965; 1
Szegedy (10.1016/j.compbiomed.2020.103795_bib25) 2015
Huang (10.1016/j.compbiomed.2020.103795_bib2) 2020; 395
Koo (10.1016/j.compbiomed.2020.103795_bib7) 2018; 38
10.1016/j.compbiomed.2020.103795_bib30
Iandola (10.1016/j.compbiomed.2020.103795_bib24) 2016
Chung (10.1016/j.compbiomed.2020.103795_bib6) 2020; 295
Cunha (10.1016/j.compbiomed.2020.103795_bib32) 2006; 12
Kanne (10.1016/j.compbiomed.2020.103795_bib4) 2020
Bedford (10.1016/j.compbiomed.2020.103795_bib40) 2020; 395
Taylor-Phillips (10.1016/j.compbiomed.2020.103795_bib10) 2019; 92
Zhu (10.1016/j.compbiomed.2020.103795_bib1) 2020; 382
Sun (10.1016/j.compbiomed.2020.103795_bib17) 2020; 119
Huang (10.1016/j.compbiomed.2020.103795_bib38) 2020; 295
He (10.1016/j.compbiomed.2020.103795_bib27) 2016
Sandler (10.1016/j.compbiomed.2020.103795_bib26) 2018
Nihashi (10.1016/j.compbiomed.2020.103795_bib9) 2019; 37
World Health Organization (WHO) (10.1016/j.compbiomed.2020.103795_bib3)
10.1016/j.compbiomed.2020.103795_bib5
Zhang (10.1016/j.compbiomed.2020.103795_bib31) 2018; 103
References_xml – start-page: 770
  year: 2016
  end-page: 778
  ident: bib27
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 38
  start-page: 719
  year: 2018
  end-page: 739
  ident: bib7
  article-title: Radiographic and CT features of viral pneumonia
  publication-title: Radiographics
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib22
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib25
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 103
  start-page: 287
  year: 2018
  end-page: 300
  ident: bib31
  article-title: Automatic nodule detection for lung cancer in CT images: a review
  publication-title: Comput. Biol. Med.
– ident: bib3
  article-title: Novel Coronavirus. (2019-nCoV) Technical Guidance: Laboratory Guidance. Geneva: WHO
– volume: 31
  start-page: 198
  year: 2007
  end-page: 211
  ident: bib12
  article-title: Computer-aided diagnosis in medical imaging: historical review, current status and future potential
  publication-title: Comput. Med. Imag. Graph.
– volume: 395
  start-page: 1015
  year: 2020
  end-page: 1018
  ident: bib40
  article-title: COVID-19: towards controlling of a pandemic
  publication-title: Lancet
– volume: 37
  start-page: 437
  year: 2019
  end-page: 448
  ident: bib9
  article-title: Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS
  publication-title: Jpn. J. Radiol.
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: bib2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– volume: 96
  start-page: 91
  year: 2018
  end-page: 97
  ident: bib20
  article-title: Analysis of pulmonary sounds for the diagnosis of interstitial lung diseases secondary to rheumatoid arthritis
  publication-title: Comput. Biol. Med.
– year: 2016
  ident: bib24
  article-title: SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters And< 0.5 MB Model Size
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: bib26
  article-title: Mobilenetv2: inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 92
  year: 2019
  ident: bib10
  article-title: Fatigue in radiology: a fertile area for future research
  publication-title: Br. J. Radiol.
– reference: Z.Y. Zu, M.D. Jiang, P.P. Xu, W. Chen, Q.Q. Ni, G.M. Lu, L.J. Zhang, Coronavirus disease 2019 (COVID-19): a perspective from China, Radiology, 0 200490. doi: 10.1148/radiol.2020200490.
– volume: 101
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib21
  article-title: Novel approach to computerized breath detection in lung function diagnostics
  publication-title: Comput. Biol. Med.
– volume: 126
  start-page: 108961
  year: 2020
  ident: bib33
  article-title: Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?
  publication-title: Eur. J. Radiol.
– reference: L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, J. Xia, Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT, Radiology, 0 200905. doi: 10.1148/radiol.2020200905.
– volume: 89
  start-page: 197
  year: 2017
  end-page: 211
  ident: bib14
  article-title: Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework
  publication-title: Comput. Biol. Med.
– volume: 119
  start-page: 103675
  year: 2020
  ident: bib17
  article-title: Spectral analysis for pulmonary nodule detection using the optimal fractional S-Transform
  publication-title: Comput. Biol. Med.
– volume: 12
  start-page: 12
  year: 2006
  end-page: 24
  ident: bib32
  article-title: The atypical pneumonias: clinical diagnosis and importance
  publication-title: Clin. Microbiol. Infect.
– year: 2020
  ident: bib4
  article-title: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel
  publication-title: Radiology
– volume: 295
  start-page: 202
  year: 2020
  end-page: 207
  ident: bib6
  article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV)
  publication-title: Radiology
– year: 2014
  ident: bib23
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 27
  start-page: 88
  year: 1998
  end-page: 94
  ident: bib29
  article-title: Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology
  publication-title: Eur. J. Radiol.
– volume: 1
  start-page: 72
  year: 1965
  end-page: 80
  ident: bib11
  article-title: Computer-aided diagnosis in radiology. A research plan
  publication-title: Invest. Radiol.
– volume: 89
  start-page: 275
  year: 2017
  end-page: 281
  ident: bib19
  article-title: Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation
  publication-title: Comput. Biol. Med.
– reference: A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, M. Chung, Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology, 0 200463. doi: 10.1148/radiol.2020200463.
– reference: X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, J. Liu, Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing, Radiology, 0 200343. doi: 10.1148/radiol.2020200343.
– ident: bib39
  article-title: Fact sheet for healthcare providers: CDC - 2019-nCoV real-time RT-PCR diagnostic panel
– volume: 80
  start-page: 388
  year: 2020
  end-page: 393
  ident: bib35
  article-title: Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang, China
  publication-title: J. Infect.
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bib1
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
– volume: 103
  start-page: 220
  year: 2018
  end-page: 231
  ident: bib15
  article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs
  publication-title: Comput. Biol. Med.
– volume: 295
  start-page: 22
  year: 2020
  end-page: 23
  ident: bib38
  article-title: Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion
  publication-title: Radiology
– volume: 92
  start-page: 64
  year: 2018
  end-page: 72
  ident: bib16
  article-title: 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets
  publication-title: Comput. Biol. Med.
– volume: 89
  start-page: 530
  year: 2017
  end-page: 539
  ident: bib18
  article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
  publication-title: Comput. Biol. Med.
– year: 2020
  ident: bib8
  article-title: Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT
  publication-title: Radiology
– reference: T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology, 0 200642. doi: 10.1148/radiol.2020200642.
– volume: 59
  start-page: 1061
  year: 2004
  end-page: 1069
  ident: bib13
  article-title: Texture analysis of medical images
  publication-title: Clin. Radiol.
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: bib28
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.compbiomed.2020.103795_bib3
– ident: 10.1016/j.compbiomed.2020.103795_bib37
  doi: 10.1148/radiol.2020200642
– volume: 37
  start-page: 437
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103795_bib9
  article-title: Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-019-00826-2
– volume: 382
  start-page: 727
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib1
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 89
  start-page: 197
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103795_bib14
  article-title: Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.014
– volume: 101
  start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103795_bib21
  article-title: Novel approach to computerized breath detection in lung function diagnostics
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.017
– year: 2014
  ident: 10.1016/j.compbiomed.2020.103795_bib23
– volume: 89
  start-page: 275
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103795_bib19
  article-title: Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.016
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib4
  article-title: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel
  publication-title: Radiology
  doi: 10.1148/radiol.2020200527
– year: 2016
  ident: 10.1016/j.compbiomed.2020.103795_bib24
– volume: 103
  start-page: 220
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103795_bib15
  article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.10.011
– volume: 96
  start-page: 91
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103795_bib20
  article-title: Analysis of pulmonary sounds for the diagnosis of interstitial lung diseases secondary to rheumatoid arthritis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.006
– volume: 126
  start-page: 108961
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib33
  article-title: Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.108961
– volume: 92
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103795_bib10
  article-title: Fatigue in radiology: a fertile area for future research
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20190043
– volume: 31
  start-page: 198
  year: 2007
  ident: 10.1016/j.compbiomed.2020.103795_bib12
  article-title: Computer-aided diagnosis in medical imaging: historical review, current status and future potential
  publication-title: Comput. Med. Imag. Graph.
  doi: 10.1016/j.compmedimag.2007.02.002
– ident: 10.1016/j.compbiomed.2020.103795_bib5
  doi: 10.1148/radiol.2020200490
– volume: 295
  start-page: 22
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib38
  article-title: Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion
  publication-title: Radiology
  doi: 10.1148/radiol.2020200330
– start-page: 1251
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103795_bib28
  article-title: Xception: deep learning with depthwise separable convolutions
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103795_bib25
  article-title: Going deeper with convolutions
– volume: 92
  start-page: 64
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103795_bib16
  article-title: 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.11.008
– start-page: 4510
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103795_bib26
  article-title: Mobilenetv2: inverted residuals and linear bottlenecks
– volume: 103
  start-page: 287
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103795_bib31
  article-title: Automatic nodule detection for lung cancer in CT images: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.10.033
– start-page: 1097
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103795_bib22
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 119
  start-page: 103675
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib17
  article-title: Spectral analysis for pulmonary nodule detection using the optimal fractional S-Transform
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103675
– volume: 395
  start-page: 1015
  issue: 10229
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib40
  article-title: COVID-19: towards controlling of a pandemic
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30673-5
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103795_bib27
  article-title: Deep residual learning for image recognition
– volume: 89
  start-page: 530
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103795_bib18
  article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.04.006
– volume: 59
  start-page: 1061
  year: 2004
  ident: 10.1016/j.compbiomed.2020.103795_bib13
  article-title: Texture analysis of medical images
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2004.07.008
– ident: 10.1016/j.compbiomed.2020.103795_bib34
  doi: 10.1148/radiol.2020200463
– volume: 395
  start-page: 497
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– ident: 10.1016/j.compbiomed.2020.103795_bib30
  doi: 10.1148/radiol.2020200905
– volume: 38
  start-page: 719
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103795_bib7
  article-title: Radiographic and CT features of viral pneumonia
  publication-title: Radiographics
  doi: 10.1148/rg.2018170048
– volume: 12
  start-page: 12
  year: 2006
  ident: 10.1016/j.compbiomed.2020.103795_bib32
  article-title: The atypical pneumonias: clinical diagnosis and importance
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/j.1469-0691.2006.01393.x
– volume: 295
  start-page: 202
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib6
  article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV)
  publication-title: Radiology
  doi: 10.1148/radiol.2020200230
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib8
  article-title: Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT
  publication-title: Radiology
– volume: 80
  start-page: 388
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103795_bib35
  article-title: Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang, China
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.02.016
– volume: 1
  start-page: 72
  year: 1965
  ident: 10.1016/j.compbiomed.2020.103795_bib11
  article-title: Computer-aided diagnosis in radiology. A research plan
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-196601000-00032
– volume: 27
  start-page: 88
  year: 1998
  ident: 10.1016/j.compbiomed.2020.103795_bib29
  article-title: Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology
  publication-title: Eur. J. Radiol.
  doi: 10.1016/S0720-048X(97)00157-5
– ident: 10.1016/j.compbiomed.2020.103795_bib36
  doi: 10.1148/radiol.2020200343
SSID ssj0004030
Score 2.6864455
Snippet Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage...
AbstractFast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103795
SubjectTerms Accuracy
Adult
Aged
Aged, 80 and over
Artificial Intelligence
Artificial neural networks
Betacoronavirus
Clinical medicine
Computational Biology
Computed tomography
Control methods
Coronavirus infections
Coronavirus Infections - diagnosis
Coronavirus Infections - diagnostic imaging
Coronaviruses
Cost analysis
COVID-19
Deep Learning
Diagnosis
Diagnostic software
Diagnostic systems
Disease control
Female
Humans
Infections
Internal Medicine
Laboratories
Laboratory tests
Lung - diagnostic imaging
Lung diseases
Machine learning
Male
Middle Aged
Neural networks
Neural Networks, Computer
Other
Pandemics
Performance enhancement
Physicians
Pneumonia
Pneumonia - diagnosis
Pneumonia - diagnostic imaging
Pneumonia, Viral - diagnosis
Pneumonia, Viral - diagnostic imaging
Radiographic Image Interpretation, Computer-Assisted
Radiology
Respiratory diseases
SARS-CoV-2
Sensitivity
Tomography, X-Ray Computed
Viral diseases
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDI5gSIgXxG8OBgoSrxVN2iQ9eEDTwTSQAAk2dG9R0rrj0GiPtfeX8A9jN2mPwYTu6R5aK73EtT_Xn23Gnru8QL-v64R6ZyW5rGTiFZhEoytGh5KVCoZunx_10Un-fqmW8YNbF2mVo00cDHXVlvSN_AVBY11gOKVer38mNDWKsqtxhMZVdo1alxGlyyzNti4yzUIJCtqaHEOhyOQJ_C6ibIcSd4wSZag-pykTl7unf-Hn3yzKP9zS4S12M-JJfhAU4Da7As0ddv1DzJjfZb8Othlq3ta8AljzOCrilE8dXHnf8kBk5YtPX9-9ScScrxp-3qJeNsDH-kk-FlVx4suf8sUxX_1Aoe4l_wzd5qzvaA2RciKzR6VGKWqaOfwMlPPuHjs5fHu8OEriIIak1IXqk8pXzshcKVlAJXJRq1oUVe00OMi1Kz1iKF877xE9CEqsgtZOS1HKTCsEfNl9tte0DTxkPNNlBUIbSAlYYAgrhXdOeJiX3gutZ8yM-2_L2KWchmWc2ZGO9t1uT87SydlwcjMmJsl16NSxg8x8PGI77iTaTovuZAdZc5ksdNEIdFbYTtrUfhl6IKH6SQo_dY6SrybJiHMCftlx3f1RF-201PbtmLFn02W0FJT-cQ20G7pH0KClQqQz9iCo7rRRGYlrQ9t_QamnG6gL-cUrzerb0I3cIKRUMnv0_8d6zG7Qfwgku322159v4AnCud4_Hd7Z35M9SyU
  priority: 102
  providerName: ProQuest
Title Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520301645
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520301645
https://dx.doi.org/10.1016/j.compbiomed.2020.103795
https://www.ncbi.nlm.nih.gov/pubmed/32568676
https://www.proquest.com/docview/2425688375
https://www.proquest.com/docview/2416274810
https://pubmed.ncbi.nlm.nih.gov/PMC7190523
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEN8UxmQkXsNix7FTeCplpQNR0LShvllx4oygkVRL-so_wT_MXeyklO2hEi-JUvvk9Hy5D_l3d4S8SkUCdl8WAdbOCgTPeWBiqwIJphgMSpTFtqv2uZDzc_FxGS_3yLTPhUFYpdf9Tqd32tr_cuS5ebQqS8zxhVACAhyOXr0UmGguhEIpf_1rA_MQYeTSUEDf4GyP5nEYL4RtuzR3iBS5y0DHThM3m6jrLui_SMq_TNPsHrnrfUo6ca99n-zZ6gG5_dmfmj8kvyebU2paFzS3dkV9u4gLOlRxpW1NHZiVTr98O3kfsDEtK3pVg2xWlvY5lLRPrKKImb-g0zNa_gSi5g09tc36sm1wDRZSBLR7wQYqLJzZ3TrYefOInM-Oz6bzwDdjCDKZxG2QmzxVXMQxT2zOBCvigiV5kUqbWiHTzIAfZYrUGPAgGB6uWilTyVnGIxmD0xc9JvtVXdmnhEYyyy2TyoboXEAYy5lJU2bsODOGSTkique_znylcmyYcal7SNoPvdk5jTun3c6NCBsoV65axw40436Ldc9J0J8aTMoOtOomWtt4RdBophuuQ31NWEfk7UC5Je87rnvQy6IelsLgUSZJpGD45TAM2gKPgNLK1mucw7DZUsLCEXniRHdgVITkUiH7t4R6mICVyLdHqvJ7V5FcgVsZ8-jZf_2p5-QOPjkc3gHZb6_W9gV4fK057D5puKqlgmsy-3BIbk1OPs0XcH93vPh6-gd1Tlso
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFAUaCx4jaiZ0UhNDUUVr2gQQd2puxE2frNJKypEL8Hfwf_I3cxXHKYEJ92VMekqtT3_k-cr-7I-SZjhKw-zIPsHdWEPGMB0bYOJBgisGghKmwTbfPPTnej94fiIM18svXwiCs0uvERlFnZYrfyF-gaywTCKfEm_m3AKdGYXbVj9BwYrFtf3yHkK16PdkC_j7nfPR2OhwH7VSBIJWJqIPMZDrmkRA8sRmLWC5ylmS5llbbSOrUgENgcm0MmEKGWUIrpZacpTyUAryXEH73ErkcheEAT1Qyeresw-yHruQFdFsEoVeLHHJ4MoSIu5J6iEq5q3bHqRbnm8N_3d2_UZt_mMHRDXK99V_pphO4m2TNFrfIld02Q3-b_NxcZsRpmdPM2jltR1Mc0q5jLK1L6oCzdPjh82QrYAM6K-hpCeegsNTXa1JfxEURn39Ih1M6-wpE1Uv60VaLk7rCNVifIni-PURAhU06m0sDca_ukP0LYdFdsl6Uhb1PaCjTzDIZ2z46MhAyc2a0ZsYOUmOYlD0S-_1XadsVHYdznCgPfztWS84p5JxynOsR1lHOXWeQFWgGnsXK7yToagXmawXa-DxaW7VKp1JMVVz11aem5xKIH8dwV0ZA-aqjbP0q5y-tuO6Gl0XVLbU8jT3ytLsNmgnTTbqw5QKfYTjYKWH9HrnnRLfbqBDJZYzbf0aouwew6_nZO8XsqOl-HoMLK3j44P-v9YRcHU93d9TOZG_7IbmG_8cB_DbIen26sI_AlazN4-b8UvLlohXGb6Y-iBc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkCZeEP_pGGAkeIxWO7GTghCaWqqVwUCwob55duKMoi0pSyrE5-Db8Om4i-OUwYT6sqc8JFenvvP9yf3ujpCnOkrA7ss8wN5ZQcQzHhhh40CCKQaDEqbCNt0-9-XuYfRmKqZr5JevhUFYpdeJjaLOyhS_kW-jaywTCKfEdt7CIj6Mxq_m3wKcIIWZVj9Ow4nInv3xHcK36uVkBLx-xvn49cFwN2gnDASpTEQdZCbTMY-E4InNWMRykbMky7W02kZSpwacA5NrY8AsMswYWim15CzloRTgyYTwu1fI1TgUDM9YPI2XNZn90JW_gJ6LIAxrUUQOW4ZwcVdeDxEqd5XvOOHiYtP4r-v7N4LzD5M4vkGut74s3XHCd5Os2eIW2XjXZutvk587y-w4LXOaWTun7ZiKY9p1j6V1SR2Ilg7ff56MAjags4KelXAmCkt97Sb1BV0UsfrHdHhAZ6dAVD2nH221OKkrXIP1KQLp2wMFVNiws7k0cPfqDjm8FBbdJetFWdj7hIYyzSyTse2jUwPhM2dGa2bsIDWGSdkjsd9_lbYd0nFQx4nyULivask5hZxTjnM9wjrKuesSsgLNwLNY-Z0Eva3AlK1AG19Ea6tWAVWKqYqrvvrU9F8C8eMY-soIKF90lK2P5XynFdfd8rKouqWWJ7NHnnS3QUth6kkXtlzgMwyHPCWs3yP3nOh2GxUiuYxx-88JdfcAdkA_f6eYfWk6ocfgzgoebv7_tR6TDVAV6u1kf-8BuYZ_x2H9tsh6fbawD8GrrM2j5vhScnTZ-uI3wr6MRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+technique+to+manage+COVID-19+in+routine+clinical+practice+using+CT+images%3A+Results+of+10+convolutional+neural+networks&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ardakani%2C+Ali+Abbasian&rft.au=Kanafi%2C+Alireza+Rajabzadeh&rft.au=Acharya%2C+U+Rajendra&rft.au=Khadem%2C+Nazanin&rft.date=2020-06-01&rft.eissn=1879-0534&rft.volume=121&rft.spage=103795&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.103795&rft_id=info%3Apmid%2F32568676&rft.externalDocID=32568676
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00059%2Fcov150h.gif