Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks
Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a hi...
Saved in:
Published in | Computers in biology and medicine Vol. 121; p. 103795 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.06.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.
•Ten CNNs were used to distinguish infection of COVID-19 from non-COVID-19 groups.•ResNet-101 and Xception represented the best performance with an AUC of 0.994.•Deep learning technique can be used as an adjuvant tool in diagnosing COVID-19. |
---|---|
AbstractList | Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. •Ten CNNs were used to distinguish infection of COVID-19 from non-COVID-19 groups.•ResNet-101 and Xception represented the best performance with an AUC of 0.994.•Deep learning technique can be used as an adjuvant tool in diagnosing COVID-19. Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. • Ten CNNs were used to distinguish infection of COVID-19 from non-COVID-19 groups. • ResNet-101 and Xception represented the best performance with an AUC of 0.994. • Deep learning technique can be used as an adjuvant tool in diagnosing COVID-19. Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. AbstractFast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments. |
ArticleNumber | 103795 |
Author | Khadem, Nazanin Acharya, U. Rajendra Ardakani, Ali Abbasian Mohammadi, Afshin Kanafi, Alireza Rajabzadeh |
Author_xml | – sequence: 1 givenname: Ali Abbasian surname: Ardakani fullname: Ardakani, Ali Abbasian email: A.ardekani@live.com organization: Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran – sequence: 2 givenname: Alireza Rajabzadeh surname: Kanafi fullname: Kanafi, Alireza Rajabzadeh email: Alireza_r245@yahoo.com organization: Department of Radiology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran – sequence: 3 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: aru@np.edu.sg organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Nazanin surname: Khadem fullname: Khadem, Nazanin email: Nazanin.khadem74@gmail.com organization: Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran – sequence: 5 givenname: Afshin surname: Mohammadi fullname: Mohammadi, Afshin email: Afshin.mohdi@gmail.com organization: Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32568676$$D View this record in MEDLINE/PubMed |
BookMark | eNqVUl1vEzEQtFARTQN_AVnihZcE23f2XXhAlPBVqVIlKLxaPt9e6vRiX21fUH8Hfxi7aVNAQipPK9mzs7M7c4QOrLOAEKZkTgkVr9Zz7TZDY9wG2jkjLD8X1YI_QhNaV4sZ4UV5gCaEUDIra8YP0VEIa0JISQryBB0WjItaVGKCfh4PQ2-0isZZ7DrcAgy4B-WtsSscQV9YczUCjg5vlFUrwMuz7yfvZ3SBjcXejdFYwLo3NpH0ePBKR6MBjyH3L8-x2aSm8Bp_gTD2MeQZlGDt7Nb1Y56auiyM_qbEH85fhqfocaf6AM9u6xR9-_jhfPl5dnr26WR5fDrTouZx1jatqljJOauhpSXteEfrtlMCFJRC6UawoulU03DK6KLgNQihBKOaFYJTURRT9GbHO4xNOqQGG5MMOfik2V9Lp4z888eaC7lyW1nRBeEsE7y8JfAuHSlEuTFBQ98rC24MkpVUsKqskzlT9OIv6NqNPi2fUdmNuqh4Qj3_XdFeyp1fCVDvANq7EDx0ewglMkdDruV9NGSOhtxF437bfas28cb3tJvpH0LwbkcAyZOtAS-DNmA1tMaDjrJ15j9U7EnusnMJ1xD2R6EyMEnk1xzhnGCWgktFmQne_pvgYRp-AROiCC8 |
CitedBy_id | crossref_primary_10_1016_j_dajour_2023_100243 crossref_primary_10_1520_JTE20200574 crossref_primary_10_47495_okufbed_1220413 crossref_primary_10_1007_s12559_020_09779_5 crossref_primary_10_1016_j_procs_2024_04_007 crossref_primary_10_1088_1742_6596_2386_1_012033 crossref_primary_10_1016_j_heliyon_2024_e26938 crossref_primary_10_1007_s12530_023_09484_2 crossref_primary_10_1016_j_watres_2022_118080 crossref_primary_10_1038_s41598_022_15495_x crossref_primary_10_32604_iasc_2021_018350 crossref_primary_10_1016_j_compbiomed_2021_104579 crossref_primary_10_3390_app12083895 crossref_primary_10_1016_j_compbiomed_2021_104210 crossref_primary_10_1016_j_eswa_2023_122805 crossref_primary_10_3390_s22228999 crossref_primary_10_1109_ACCESS_2022_3207207 crossref_primary_10_1016_j_asoc_2022_109851 crossref_primary_10_3390_bioengineering11121265 crossref_primary_10_35377_saucis___1309970 crossref_primary_10_1080_10106049_2022_2060319 crossref_primary_10_1111_exsy_13427 crossref_primary_10_1016_j_inffus_2021_02_016 crossref_primary_10_1007_s11063_021_10712_6 crossref_primary_10_3390_diagnostics12123171 crossref_primary_10_1016_j_compbiomed_2021_104348 crossref_primary_10_24012_dumf_812810 crossref_primary_10_3348_jksr_2020_0138 crossref_primary_10_7759_cureus_38373 crossref_primary_10_1111_jfpe_13955 crossref_primary_10_1186_s12911_021_01521_x crossref_primary_10_1007_s11042_023_15857_1 crossref_primary_10_1007_s11042_023_17642_6 crossref_primary_10_3174_ajnr_A7003 crossref_primary_10_1080_00051144_2021_2014037 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_1016_j_asoc_2021_107160 crossref_primary_10_1016_j_compbiomed_2021_104585 crossref_primary_10_2174_1573405618666220803123626 crossref_primary_10_1016_j_ejmp_2021_03_026 crossref_primary_10_2174_0115680266282179240124072121 crossref_primary_10_1109_ACCESS_2024_3378516 crossref_primary_10_3390_bdcc5040074 crossref_primary_10_1016_j_eswa_2021_115805 crossref_primary_10_1016_j_patcog_2021_108071 crossref_primary_10_1109_JBHI_2021_3072076 crossref_primary_10_1016_j_bspc_2022_104297 crossref_primary_10_1111_jocs_15094 crossref_primary_10_1002_ima_22876 crossref_primary_10_1016_j_bdr_2021_100233 crossref_primary_10_1155_2021_9437538 crossref_primary_10_1007_s10489_020_02102_7 crossref_primary_10_1016_j_asoc_2021_107490 crossref_primary_10_1007_s10462_021_10127_8 crossref_primary_10_1088_1361_6560_ad611a crossref_primary_10_1145_3466690 crossref_primary_10_1007_s13755_021_00147_7 crossref_primary_10_1007_s10278_021_00434_5 crossref_primary_10_1007_s00521_022_07709_0 crossref_primary_10_1007_s42979_022_01326_3 crossref_primary_10_1007_s00277_024_05755_3 crossref_primary_10_3390_s21062215 crossref_primary_10_4015_S1016237224500352 crossref_primary_10_1080_14787210_2021_1836961 crossref_primary_10_1002_hsr2_1244 crossref_primary_10_1002_ima_22627 crossref_primary_10_2196_23693 crossref_primary_10_2196_21394 crossref_primary_10_1016_j_bspc_2021_102814 crossref_primary_10_1016_j_ejmp_2022_05_015 crossref_primary_10_3390_ijerph192416857 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_7717_peerj_cs_306 crossref_primary_10_1007_s11042_024_20153_7 crossref_primary_10_1002_ima_22613 crossref_primary_10_7717_peerj_cs_313 crossref_primary_10_1007_s00500_021_06103_7 crossref_primary_10_1007_s00521_023_08997_w crossref_primary_10_1007_s12559_021_09915_9 crossref_primary_10_1109_ACCESS_2020_3025010 crossref_primary_10_1007_s11227_022_04775_y crossref_primary_10_3390_s22207977 crossref_primary_10_1007_s10619_021_07358_7 crossref_primary_10_1016_j_eswa_2024_125277 crossref_primary_10_1007_s00138_020_01101_5 crossref_primary_10_1109_JBHI_2021_3132157 crossref_primary_10_1080_27660400_2023_2270529 crossref_primary_10_1016_j_bspc_2022_104366 crossref_primary_10_1007_s12026_023_09416_x crossref_primary_10_32604_cmes_2021_016981 crossref_primary_10_1007_s11042_022_11913_4 crossref_primary_10_1016_j_ijleo_2021_167199 crossref_primary_10_3389_fimmu_2022_977443 crossref_primary_10_1007_s13246_021_01075_2 crossref_primary_10_1016_j_asoc_2022_109401 crossref_primary_10_1007_s43681_021_00056_1 crossref_primary_10_21015_vtse_v11i2_1460 crossref_primary_10_1109_ACCESS_2021_3058537 crossref_primary_10_1016_j_jksuci_2023_101754 crossref_primary_10_2196_25535 crossref_primary_10_1016_j_bbe_2021_12_001 crossref_primary_10_1109_MITP_2020_3036820 crossref_primary_10_1007_s13206_022_00078_9 crossref_primary_10_1016_j_asoc_2020_106912 crossref_primary_10_1088_2057_1976_ad1e76 crossref_primary_10_3390_s22187065 crossref_primary_10_1016_j_bspc_2021_102901 crossref_primary_10_3390_ijerph19095099 crossref_primary_10_1186_s43556_024_00238_3 crossref_primary_10_1007_s00217_022_04059_y crossref_primary_10_1371_journal_pone_0317450 crossref_primary_10_5812_archcid_150150 crossref_primary_10_1155_2021_5544742 crossref_primary_10_3390_ijms21186652 crossref_primary_10_4236_jbise_2020_137014 crossref_primary_10_1016_j_heliyon_2024_e25410 crossref_primary_10_3390_diagnostics13040796 crossref_primary_10_1016_j_bdr_2021_100287 crossref_primary_10_1007_s11042_022_13154_x crossref_primary_10_54392_irjmt24316 crossref_primary_10_1016_j_smhl_2022_100299 crossref_primary_10_1155_2021_5528144 crossref_primary_10_3390_healthcare11060837 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_3390_math10040564 crossref_primary_10_1109_JBHI_2023_3324333 crossref_primary_10_3390_diagnostics12071608 crossref_primary_10_1007_s11227_022_04349_y crossref_primary_10_1109_COMST_2023_3256323 crossref_primary_10_1007_s10614_025_10893_5 crossref_primary_10_1007_s00330_020_07087_y crossref_primary_10_3389_fpubh_2022_969846 crossref_primary_10_2174_1573405619666221222161832 crossref_primary_10_1016_j_asoc_2020_106859 crossref_primary_10_3389_frai_2021_612914 crossref_primary_10_17798_bitlisfen_1346730 crossref_primary_10_1142_S021903032000110X crossref_primary_10_3389_fmed_2020_608525 crossref_primary_10_5334_jbsr_2330 crossref_primary_10_1016_j_slast_2021_10_011 crossref_primary_10_3390_diagnostics13132274 crossref_primary_10_14201_adcaij_31528 crossref_primary_10_1038_s42256_021_00307_0 crossref_primary_10_3390_healthcare9091099 crossref_primary_10_1007_s11548_022_02769_y crossref_primary_10_1016_j_imed_2021_09_001 crossref_primary_10_1016_j_jtice_2020_11_024 crossref_primary_10_3389_fphys_2022_1066999 crossref_primary_10_1016_j_compbiomed_2021_105141 crossref_primary_10_3390_diagnostics13091639 crossref_primary_10_4103_joacp_JOACP_558_20 crossref_primary_10_1007_s11051_020_05041_z crossref_primary_10_3390_su13126900 crossref_primary_10_1155_2023_6070970 crossref_primary_10_1007_s12652_021_03282_x crossref_primary_10_3390_s22197303 crossref_primary_10_1109_ACCESS_2023_3279402 crossref_primary_10_1007_s10723_024_09742_w crossref_primary_10_1007_s11042_023_15029_1 crossref_primary_10_7717_peerj_cs_2517 crossref_primary_10_3390_electronics10232901 crossref_primary_10_1038_s41598_022_07954_2 crossref_primary_10_3390_biomedinformatics3030045 crossref_primary_10_2174_1573405617666210713113439 crossref_primary_10_1145_3571728 crossref_primary_10_1016_j_compbiomed_2021_105127 crossref_primary_10_1016_j_robot_2021_103902 crossref_primary_10_1080_08839514_2022_2055398 crossref_primary_10_3390_electronics12030684 crossref_primary_10_1016_j_ijbiomac_2021_11_016 crossref_primary_10_61186_ijrr_22_1_55 crossref_primary_10_3390_diagnostics13182867 crossref_primary_10_1007_s00530_021_00839_w crossref_primary_10_1016_j_clinimag_2024_110092 crossref_primary_10_1038_s41598_022_25539_x crossref_primary_10_1007_s11760_023_02561_8 crossref_primary_10_1007_s10278_021_00430_9 crossref_primary_10_1016_j_crad_2022_11_006 crossref_primary_10_1016_j_ijmedinf_2021_104599 crossref_primary_10_55529_jipirs_36_37_50 crossref_primary_10_1016_j_heliyon_2023_e22203 crossref_primary_10_1108_WJE_01_2021_0015 crossref_primary_10_1155_2022_4509394 crossref_primary_10_4018_IJSSMET_323452 crossref_primary_10_1186_s12874_022_01768_6 crossref_primary_10_7717_peerj_cs_655 crossref_primary_10_1007_s42600_021_00135_6 crossref_primary_10_1016_j_measurement_2021_110425 crossref_primary_10_1007_s00521_021_06344_5 crossref_primary_10_1007_s13762_022_04287_5 crossref_primary_10_1016_j_compbiomed_2021_105134 crossref_primary_10_1038_s41598_020_74164_z crossref_primary_10_1371_journal_pone_0282608 crossref_primary_10_3389_fpubh_2023_1025746 crossref_primary_10_3390_bioengineering10040458 crossref_primary_10_3389_fcvm_2021_638011 crossref_primary_10_18185_erzifbed_1090984 crossref_primary_10_54525_tbbmd_1177223 crossref_primary_10_1007_s10489_020_02076_6 crossref_primary_10_3233_IDT_230222 crossref_primary_10_46475_asean_jr_v24i3_881 crossref_primary_10_1016_j_compeleceng_2021_107411 crossref_primary_10_3390_jcm11051437 crossref_primary_10_3390_make6030078 crossref_primary_10_1007_s00521_023_08450_y crossref_primary_10_1080_21681163_2021_1889404 crossref_primary_10_3389_fpubh_2022_869238 crossref_primary_10_1007_s11042_020_09894_3 crossref_primary_10_1016_j_ejmp_2022_06_018 crossref_primary_10_1016_j_asoc_2023_110511 crossref_primary_10_1007_s11227_022_04502_7 crossref_primary_10_1007_s11042_022_13183_6 crossref_primary_10_1016_j_compbiomed_2022_105464 crossref_primary_10_1016_j_eswa_2022_117812 crossref_primary_10_1155_2021_5527923 crossref_primary_10_1016_j_matpr_2021_04_224 crossref_primary_10_3390_buildings13071711 crossref_primary_10_1007_s11356_022_23392_z crossref_primary_10_1007_s13369_021_05880_5 crossref_primary_10_1007_s11042_024_18330_9 crossref_primary_10_3390_s22249891 crossref_primary_10_29130_dubited_976118 crossref_primary_10_3389_fmed_2021_729287 crossref_primary_10_3390_sym14071310 crossref_primary_10_1038_s41746_021_00467_8 crossref_primary_10_3390_s22166312 crossref_primary_10_1016_j_bspc_2022_103787 crossref_primary_10_1080_10106049_2021_1926555 crossref_primary_10_1109_ACCESS_2020_3028012 crossref_primary_10_3389_fpubh_2022_1034772 crossref_primary_10_1007_s00521_023_09194_5 crossref_primary_10_3389_frai_2022_919672 crossref_primary_10_15212_bioi_2020_0015 crossref_primary_10_1038_s41598_022_18535_8 crossref_primary_10_3390_math8091423 crossref_primary_10_4274_imj_galenos_2023_07348 crossref_primary_10_1016_j_compbiomed_2021_105047 crossref_primary_10_3389_fphar_2022_970494 crossref_primary_10_1080_27690911_2023_2220872 crossref_primary_10_4103_jmss_jmss_111_21 crossref_primary_10_1016_j_compbiomed_2022_105244 crossref_primary_10_1093_nsr_nwae186 crossref_primary_10_3390_healthcare9050528 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_1007_s44196_023_00272_z crossref_primary_10_32604_cmc_2021_013191 crossref_primary_10_2478_amns_2023_1_00414 crossref_primary_10_3389_frai_2021_652669 crossref_primary_10_1007_s10845_024_02416_0 crossref_primary_10_1016_j_inffus_2022_09_023 crossref_primary_10_1016_j_knosys_2022_109278 crossref_primary_10_1002_mp_15549 crossref_primary_10_1016_j_compbiomed_2022_106324 crossref_primary_10_1007_s12652_022_03775_3 crossref_primary_10_3934_mbe_2021475 crossref_primary_10_1016_j_eswa_2023_121226 crossref_primary_10_1016_j_cmpb_2020_105608 crossref_primary_10_1016_j_compbiomed_2022_105350 crossref_primary_10_1016_j_irbm_2021_07_002 crossref_primary_10_1183_23120541_00579_2021 crossref_primary_10_1080_0952813X_2021_2021300 crossref_primary_10_1007_s00500_024_10362_5 crossref_primary_10_1016_j_asoc_2021_107946 crossref_primary_10_1142_S0218488522500222 crossref_primary_10_1002_ima_23189 crossref_primary_10_1016_j_health_2021_100008 crossref_primary_10_1007_s40747_021_00424_8 crossref_primary_10_1155_2022_5998042 crossref_primary_10_1007_s10844_022_00707_7 crossref_primary_10_1136_bmj_m1328 crossref_primary_10_16984_saufenbilder_774435 crossref_primary_10_1016_j_bspc_2022_103977 crossref_primary_10_1016_j_asoc_2020_106580 crossref_primary_10_32628_IJSRSET207539 crossref_primary_10_1007_s44196_023_00236_3 crossref_primary_10_1155_2022_1306664 crossref_primary_10_1016_j_ipm_2024_103934 crossref_primary_10_1109_TAI_2021_3104791 crossref_primary_10_1016_j_ipm_2022_103025 crossref_primary_10_3390_diagnostics14141469 crossref_primary_10_1007_s00354_022_00195_x crossref_primary_10_1016_j_wroa_2024_100228 crossref_primary_10_1016_j_ijtst_2021_06_003 crossref_primary_10_2196_25181 crossref_primary_10_1108_DTA_06_2021_0153 crossref_primary_10_3390_a15020071 crossref_primary_10_1016_j_chaos_2020_110338 crossref_primary_10_1111_exsy_12904 crossref_primary_10_1038_s41598_022_20804_5 crossref_primary_10_15446_ing_investig_v42n1_88825 crossref_primary_10_1007_s13042_023_02034_x crossref_primary_10_1371_journal_pone_0255886 crossref_primary_10_7717_peerj_cs_1375 crossref_primary_10_1007_s11356_021_13823_8 crossref_primary_10_3389_fdgth_2021_637944 crossref_primary_10_1007_s11042_021_11257_5 crossref_primary_10_4103_jcrt_jcrt_325_23 crossref_primary_10_1016_j_knosys_2021_107432 crossref_primary_10_3390_math10214160 crossref_primary_10_3390_electronics11193075 crossref_primary_10_3390_rs15061696 crossref_primary_10_1016_j_bspc_2024_106687 crossref_primary_10_1007_s11042_023_15809_9 crossref_primary_10_1016_j_rser_2023_113748 crossref_primary_10_3390_diagnostics12030696 crossref_primary_10_1016_j_dajour_2021_100007 crossref_primary_10_1038_s41598_021_94501_0 crossref_primary_10_32604_cmc_2022_023418 crossref_primary_10_4015_S1016237223500126 crossref_primary_10_3390_mi14091744 crossref_primary_10_3390_bioengineering11010050 crossref_primary_10_1016_j_patrec_2021_09_012 crossref_primary_10_32604_cmc_2023_033413 crossref_primary_10_1007_s00530_021_00826_1 crossref_primary_10_1016_j_compbiomed_2021_104816 crossref_primary_10_3390_diagnostics12112766 crossref_primary_10_1016_j_ejro_2021_100322 crossref_primary_10_1007_s11042_020_10340_7 crossref_primary_10_1007_s10462_024_10878_0 crossref_primary_10_1016_j_bspc_2021_103415 crossref_primary_10_1016_j_eswa_2022_118628 crossref_primary_10_1038_s41598_021_91761_8 crossref_primary_10_1007_s00521_023_08200_0 crossref_primary_10_1186_s12859_022_04679_x crossref_primary_10_1002_int_22504 crossref_primary_10_1038_s41598_024_52135_y crossref_primary_10_1007_s12559_020_09785_7 crossref_primary_10_1038_s41598_023_27697_y crossref_primary_10_3390_diagnostics14121313 crossref_primary_10_1080_17455030_2021_1998729 crossref_primary_10_3390_electronics11233974 crossref_primary_10_1109_TNNLS_2021_3086570 crossref_primary_10_3233_JIFS_232866 crossref_primary_10_1016_j_aej_2021_01_011 crossref_primary_10_1016_j_compbiomed_2021_104704 crossref_primary_10_1186_s12911_023_02344_8 crossref_primary_10_53898_josse2024415 crossref_primary_10_1145_3462635 crossref_primary_10_3390_app11083414 crossref_primary_10_3390_electronics12010080 crossref_primary_10_1007_s12559_022_10076_6 crossref_primary_10_1007_s00521_023_08344_z crossref_primary_10_3389_fninf_2021_778552 crossref_primary_10_1016_j_ejmp_2021_06_001 crossref_primary_10_1016_j_compbiomed_2024_108925 crossref_primary_10_1016_j_cmpb_2022_107200 crossref_primary_10_1016_j_eswa_2022_116540 crossref_primary_10_17341_gazimmfd_827921 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1007_s00354_023_00213_6 crossref_primary_10_1109_OJEMB_2021_3127078 crossref_primary_10_1016_j_matpr_2021_12_123 crossref_primary_10_1088_1361_6528_ac189e crossref_primary_10_3389_fimmu_2023_1225557 crossref_primary_10_1109_JTEHM_2021_3134096 crossref_primary_10_1016_j_compbiomed_2021_104927 crossref_primary_10_1002_cpe_7314 crossref_primary_10_1093_forestry_cpac023 crossref_primary_10_1016_j_ejrad_2023_110846 crossref_primary_10_1016_j_cmpb_2021_106288 crossref_primary_10_2174_18750362_v15_e2207290 crossref_primary_10_1007_s10845_023_02099_z crossref_primary_10_1016_j_bspc_2022_103848 crossref_primary_10_1155_2022_7672196 crossref_primary_10_1016_j_eswa_2020_113909 crossref_primary_10_1016_j_bspc_2022_103728 crossref_primary_10_2196_23811 crossref_primary_10_3390_diagnostics12061376 crossref_primary_10_2147_JIR_S301866 crossref_primary_10_1016_j_asoc_2021_107669 crossref_primary_10_1016_j_chemolab_2022_104695 crossref_primary_10_1016_j_heliyon_2024_e27509 crossref_primary_10_1016_j_cmpb_2022_106731 crossref_primary_10_3389_frai_2023_1266560 crossref_primary_10_1088_1742_6596_2571_1_012005 crossref_primary_10_1007_s00354_024_00255_4 crossref_primary_10_4018_IJDWM_314155 crossref_primary_10_1038_s41598_022_06854_9 crossref_primary_10_28978_nesciences_868087 crossref_primary_10_1007_s11042_022_13509_4 crossref_primary_10_3390_s23010480 crossref_primary_10_3390_diagnostics11071155 crossref_primary_10_1016_j_chaos_2020_110059 crossref_primary_10_33769_aupse_1227857 crossref_primary_10_1016_j_compeleceng_2023_108711 crossref_primary_10_1007_s11042_024_19046_6 crossref_primary_10_1016_j_cmpbup_2022_100054 crossref_primary_10_1016_j_bspc_2020_102257 crossref_primary_10_1016_j_eswa_2022_118650 crossref_primary_10_1109_ACCESS_2021_3061621 crossref_primary_10_3390_ijerph18157845 crossref_primary_10_1088_1742_6596_2010_1_012175 crossref_primary_10_1371_journal_pone_0265949 crossref_primary_10_28979_jarnas_952700 crossref_primary_10_1007_s11042_023_14642_4 crossref_primary_10_3934_mbe_2023079 crossref_primary_10_1007_s11831_023_09882_4 crossref_primary_10_29130_dubited_903358 crossref_primary_10_3390_app10238606 crossref_primary_10_3390_diagnostics13081491 crossref_primary_10_1016_j_asoc_2021_107645 crossref_primary_10_1016_j_snb_2022_133241 crossref_primary_10_1016_j_aej_2021_03_052 crossref_primary_10_1016_j_compbiomed_2021_104835 crossref_primary_10_1145_3457124 crossref_primary_10_1109_ACCESS_2020_3007939 crossref_primary_10_1007_s11042_024_18437_z crossref_primary_10_1177_03611981211005470 crossref_primary_10_1109_TEM_2023_3303080 crossref_primary_10_1111_exsy_12759 crossref_primary_10_1016_j_compbiomed_2021_104729 crossref_primary_10_1016_j_lmd_2024_100032 crossref_primary_10_3390_math10193614 crossref_primary_10_3390_s21238045 crossref_primary_10_1155_2020_8828855 crossref_primary_10_15302_J_QB_021_0274 crossref_primary_10_1088_2057_1976_ace4cf crossref_primary_10_1016_j_imu_2022_100916 crossref_primary_10_15302_J_QB_021_0278 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_36222_ejt_986599 crossref_primary_10_5937_scriptamed52_34457 crossref_primary_10_1007_s10742_024_00324_7 crossref_primary_10_1155_2022_6475808 crossref_primary_10_1007_s11063_021_10449_2 crossref_primary_10_1016_j_compbiomed_2023_107113 crossref_primary_10_1080_13682199_2023_2170768 crossref_primary_10_1007_s10278_024_01011_2 crossref_primary_10_3390_jcm10091961 crossref_primary_10_1155_2022_2564022 crossref_primary_10_3390_life12070958 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1145_3583566 crossref_primary_10_3389_fmed_2021_704256 crossref_primary_10_1016_j_patcog_2021_108135 crossref_primary_10_1016_j_imu_2020_100405 crossref_primary_10_1007_s11042_023_18056_0 crossref_primary_10_1016_j_socscimed_2022_114973 crossref_primary_10_1109_TPEL_2023_3346335 crossref_primary_10_2174_1573405616666201123120417 crossref_primary_10_1177_20552076241232882 crossref_primary_10_1016_j_compbiomed_2021_104895 crossref_primary_10_1007_s10462_021_10106_z crossref_primary_10_1080_21681163_2022_2099299 crossref_primary_10_52880_sagakaderg_1070774 crossref_primary_10_31590_ejosat_936820 crossref_primary_10_1016_j_neucom_2021_06_024 crossref_primary_10_1016_j_compbiomed_2021_104304 crossref_primary_10_2174_1573405617666210806123720 crossref_primary_10_1007_s42979_024_02998_9 crossref_primary_10_3390_e24081119 crossref_primary_10_1016_j_compbiomed_2021_104781 crossref_primary_10_2196_24048 crossref_primary_10_3390_electronics10070799 crossref_primary_10_1002_jemt_23913 crossref_primary_10_1016_j_bspc_2021_102716 crossref_primary_10_17482_uumfd_1179180 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_4108_eetpht_v8i5_3352 crossref_primary_10_7717_peerj_10086 crossref_primary_10_1002_ima_22552 crossref_primary_10_1007_s11042_023_14960_7 crossref_primary_10_37467_gka_revtechno_v9_2814 crossref_primary_10_1002_ima_22558 crossref_primary_10_1109_JBHI_2020_3042523 crossref_primary_10_1016_j_aiopen_2025_01_003 crossref_primary_10_1016_j_imu_2024_101449 crossref_primary_10_1007_s10548_022_00901_4 crossref_primary_10_1016_j_bspc_2021_102622 crossref_primary_10_1007_s00354_023_00232_3 crossref_primary_10_1038_s41598_022_13039_x crossref_primary_10_3390_jimaging8120323 crossref_primary_10_3390_s21217286 crossref_primary_10_2196_27468 crossref_primary_10_1007_s00330_021_08334_6 crossref_primary_10_1016_j_gltp_2021_08_027 crossref_primary_10_1016_j_ipemt_2022_100008 crossref_primary_10_1016_j_cmpb_2021_106444 crossref_primary_10_1016_j_jmsy_2023_02_007 crossref_primary_10_30931_jetas_790465 crossref_primary_10_1259_bjro_20220016 crossref_primary_10_1007_s42979_021_00924_x crossref_primary_10_1002_widm_1461 crossref_primary_10_1007_s00354_023_00220_7 crossref_primary_10_1007_s11042_023_18021_x crossref_primary_10_1038_s41598_021_93757_w crossref_primary_10_3390_pathogens13110940 crossref_primary_10_1007_s10916_021_01747_2 crossref_primary_10_1155_2021_6677314 crossref_primary_10_1007_s12553_022_00688_1 |
Cites_doi | 10.1148/radiol.2020200642 10.1007/s11604-019-00826-2 10.1056/NEJMoa2001017 10.1016/j.compbiomed.2017.08.014 10.1016/j.compbiomed.2018.07.017 10.1016/j.compbiomed.2017.08.016 10.1148/radiol.2020200527 10.1016/j.compbiomed.2018.10.011 10.1016/j.compbiomed.2018.03.006 10.1016/j.ejrad.2020.108961 10.1259/bjr.20190043 10.1016/j.compmedimag.2007.02.002 10.1148/radiol.2020200490 10.1148/radiol.2020200330 10.1016/j.compbiomed.2017.11.008 10.1016/j.compbiomed.2018.10.033 10.1016/j.compbiomed.2020.103675 10.1016/S0140-6736(20)30673-5 10.1016/j.compbiomed.2017.04.006 10.1016/j.crad.2004.07.008 10.1148/radiol.2020200463 10.1016/S0140-6736(20)30183-5 10.1148/radiol.2020200905 10.1148/rg.2018170048 10.1111/j.1469-0691.2006.01393.x 10.1148/radiol.2020200230 10.1016/j.jinf.2020.02.016 10.1097/00004424-196601000-00032 10.1016/S0720-048X(97)00157-5 10.1148/radiol.2020200343 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd – notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.compbiomed.2020.103795 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 103795 |
ExternalDocumentID | PMC7190523 32568676 10_1016_j_compbiomed_2020_103795 S0010482520301645 1_s2_0_S0010482520301645 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c685t-dbda7245528ed141f5f18dfa6eae46acb623bfabb51219358e66a621c23651633 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Thu Aug 21 18:18:51 EDT 2025 Fri Jul 11 00:41:02 EDT 2025 Wed Aug 13 07:09:57 EDT 2025 Mon Jul 21 05:50:05 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Tue Jul 01 03:28:36 EDT 2025 Fri Feb 23 02:42:45 EST 2024 Sun Feb 23 10:19:19 EST 2025 Tue Aug 26 16:33:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Deep learning Pneumonia Coronavirus infections Computed tomography Lung diseases Machine learning |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c685t-dbda7245528ed141f5f18dfa6eae46acb623bfabb51219358e66a621c23651633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7190523 |
PMID | 32568676 |
PQID | 2425688375 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7190523 proquest_miscellaneous_2416274810 proquest_journals_2425688375 pubmed_primary_32568676 crossref_primary_10_1016_j_compbiomed_2020_103795 crossref_citationtrail_10_1016_j_compbiomed_2020_103795 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_103795 elsevier_clinicalkeyesjournals_1_s2_0_S0010482520301645 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_103795 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu, Wu, Gao, Tan (bib1) 2020; 382 Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer (bib24) 2016 Bai, Hsieh, Xiong, Halsey, Choi, Tran, Pan, Shi, Wang, Mei, Jiang, Zeng, Egglin, Hu, Agarwal, Xie, Li, Healey, Atalay, Liao (bib8) 2020 Nihashi, Ishigaki, Satake, Ito, Kaii, Mori, Shimamoto, Fukushima, Suzuki, Umakoshi, Ohashi, Kawaguchi, Naganawa (bib9) 2019; 37 Cunha (bib32) 2006; 12 Chung, Bernheim, Mei, Zhang, Huang, Zeng, Cui, Xu, Yang, Fayad, Jacobi, Li, Li, Shan (bib6) 2020; 295 Lodwick (bib11) 1965; 1 Zhang, Wang, Li, Chen (bib16) 2018; 92 A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, M. Chung, Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology, 0 200463. doi: 10.1148/radiol.2020200463. Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib25) 2015 Bedford, Enria, Giesecke, Heymann, Ihekweazu, Kobinger, Lane, Memish, Oh, Schuchat (bib40) 2020; 395 Van Erkel, Pattynama (bib29) 1998; 27 Sun, Zheng, Qian (bib18) 2017; 89 Sandler, Howard, Zhu, Zhmoginov, Chen (bib26) 2018 Sun, Wang, Pu, Yuan, Guo, Pu, Peng (bib17) 2020; 119 Simonyan, Zisserman (bib23) 2014 Z.Y. Zu, M.D. Jiang, P.P. Xu, W. Chen, Q.Q. Ni, G.M. Lu, L.J. Zhang, Coronavirus disease 2019 (COVID-19): a perspective from China, Radiology, 0 200490. doi: 10.1148/radiol.2020200490. Kanne, Little, Chung, Elicker, Ketai (bib4) 2020 Krizhevsky, Sutskever, Hinton (bib22) 2012 Yang, Cao, Qin, Wang, Cheng, Pan, Dai, Sun, Zhao, Qu, Yan (bib35) 2020; 80 Long, Xu, Shen, Zhang, Fan, Wang, Zeng, Li, Li, Li (bib33) 2020; 126 Huang, Liu, Huang, Liu, Lei, Xu, Hu, Chen, Liu (bib38) 2020; 295 Chollet (bib28) 2017 L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, J. Xia, Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT, Radiology, 0 200905. doi: 10.1148/radiol.2020200905. Than, Saba, Noor, Rijal, Kassim, Yunus, Suri, Porcu, Suri (bib14) 2017; 89 Gu, Lu, Yang, Zhang, Yu, Zhao, Gao, Wu, Zhou (bib15) 2018; 103 Barbosa, Simpson, Lee, Tustison, Gee, Shou (bib19) 2017; 89 World Health Organization (WHO) (bib3) Horáček, Koucký, Hladík (bib21) 2018; 101 Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu, Cheng, Yu, Xia, Wei, Wu, Xie, Yin, Li, Liu, Xiao, Gao, Guo, Xie, Wang, Jiang, Gao, Jin, Wang, Cao (bib2) 2020; 395 Pancaldi, Sebastiani, Cassone, Luppi, Cerri, Della Casa, Manfredi (bib20) 2018; 96 Taylor-Phillips, Stinton (bib10) 2019; 92 Doi (bib12) 2007; 31 He, Zhang, Ren, Sun (bib27) 2016 T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology, 0 200642. doi: 10.1148/radiol.2020200642. Koo, Lim, Choe, Choi, Sung, Do (bib7) 2018; 38 bib39 Castellano, Bonilha, Li, Cendes (bib13) 2004; 59 Zhang, Jiang, Yang, Gong, Ma, Zhou, Bao, Liu (bib31) 2018; 103 X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, J. Liu, Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing, Radiology, 0 200343. doi: 10.1148/radiol.2020200343. Doi (10.1016/j.compbiomed.2020.103795_bib12) 2007; 31 Van Erkel (10.1016/j.compbiomed.2020.103795_bib29) 1998; 27 Pancaldi (10.1016/j.compbiomed.2020.103795_bib20) 2018; 96 Than (10.1016/j.compbiomed.2020.103795_bib14) 2017; 89 10.1016/j.compbiomed.2020.103795_bib34 10.1016/j.compbiomed.2020.103795_bib36 Long (10.1016/j.compbiomed.2020.103795_bib33) 2020; 126 10.1016/j.compbiomed.2020.103795_bib37 Chollet (10.1016/j.compbiomed.2020.103795_bib28) 2017 Sun (10.1016/j.compbiomed.2020.103795_bib18) 2017; 89 Castellano (10.1016/j.compbiomed.2020.103795_bib13) 2004; 59 Horáček (10.1016/j.compbiomed.2020.103795_bib21) 2018; 101 Krizhevsky (10.1016/j.compbiomed.2020.103795_bib22) 2012 Zhang (10.1016/j.compbiomed.2020.103795_bib16) 2018; 92 Bai (10.1016/j.compbiomed.2020.103795_bib8) 2020 Gu (10.1016/j.compbiomed.2020.103795_bib15) 2018; 103 Barbosa (10.1016/j.compbiomed.2020.103795_bib19) 2017; 89 Yang (10.1016/j.compbiomed.2020.103795_bib35) 2020; 80 Simonyan (10.1016/j.compbiomed.2020.103795_bib23) 2014 Lodwick (10.1016/j.compbiomed.2020.103795_bib11) 1965; 1 Szegedy (10.1016/j.compbiomed.2020.103795_bib25) 2015 Huang (10.1016/j.compbiomed.2020.103795_bib2) 2020; 395 Koo (10.1016/j.compbiomed.2020.103795_bib7) 2018; 38 10.1016/j.compbiomed.2020.103795_bib30 Iandola (10.1016/j.compbiomed.2020.103795_bib24) 2016 Chung (10.1016/j.compbiomed.2020.103795_bib6) 2020; 295 Cunha (10.1016/j.compbiomed.2020.103795_bib32) 2006; 12 Kanne (10.1016/j.compbiomed.2020.103795_bib4) 2020 Bedford (10.1016/j.compbiomed.2020.103795_bib40) 2020; 395 Taylor-Phillips (10.1016/j.compbiomed.2020.103795_bib10) 2019; 92 Zhu (10.1016/j.compbiomed.2020.103795_bib1) 2020; 382 Sun (10.1016/j.compbiomed.2020.103795_bib17) 2020; 119 Huang (10.1016/j.compbiomed.2020.103795_bib38) 2020; 295 He (10.1016/j.compbiomed.2020.103795_bib27) 2016 Sandler (10.1016/j.compbiomed.2020.103795_bib26) 2018 Nihashi (10.1016/j.compbiomed.2020.103795_bib9) 2019; 37 World Health Organization (WHO) (10.1016/j.compbiomed.2020.103795_bib3) 10.1016/j.compbiomed.2020.103795_bib5 Zhang (10.1016/j.compbiomed.2020.103795_bib31) 2018; 103 |
References_xml | – start-page: 770 year: 2016 end-page: 778 ident: bib27 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 38 start-page: 719 year: 2018 end-page: 739 ident: bib7 article-title: Radiographic and CT features of viral pneumonia publication-title: Radiographics – start-page: 1097 year: 2012 end-page: 1105 ident: bib22 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2015 end-page: 9 ident: bib25 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 103 start-page: 287 year: 2018 end-page: 300 ident: bib31 article-title: Automatic nodule detection for lung cancer in CT images: a review publication-title: Comput. Biol. Med. – ident: bib3 article-title: Novel Coronavirus. (2019-nCoV) Technical Guidance: Laboratory Guidance. Geneva: WHO – volume: 31 start-page: 198 year: 2007 end-page: 211 ident: bib12 article-title: Computer-aided diagnosis in medical imaging: historical review, current status and future potential publication-title: Comput. Med. Imag. Graph. – volume: 395 start-page: 1015 year: 2020 end-page: 1018 ident: bib40 article-title: COVID-19: towards controlling of a pandemic publication-title: Lancet – volume: 37 start-page: 437 year: 2019 end-page: 448 ident: bib9 article-title: Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS publication-title: Jpn. J. Radiol. – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: bib2 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 96 start-page: 91 year: 2018 end-page: 97 ident: bib20 article-title: Analysis of pulmonary sounds for the diagnosis of interstitial lung diseases secondary to rheumatoid arthritis publication-title: Comput. Biol. Med. – year: 2016 ident: bib24 article-title: SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters And< 0.5 MB Model Size – start-page: 4510 year: 2018 end-page: 4520 ident: bib26 article-title: Mobilenetv2: inverted residuals and linear bottlenecks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 92 year: 2019 ident: bib10 article-title: Fatigue in radiology: a fertile area for future research publication-title: Br. J. Radiol. – reference: Z.Y. Zu, M.D. Jiang, P.P. Xu, W. Chen, Q.Q. Ni, G.M. Lu, L.J. Zhang, Coronavirus disease 2019 (COVID-19): a perspective from China, Radiology, 0 200490. doi: 10.1148/radiol.2020200490. – volume: 101 start-page: 1 year: 2018 end-page: 6 ident: bib21 article-title: Novel approach to computerized breath detection in lung function diagnostics publication-title: Comput. Biol. Med. – volume: 126 start-page: 108961 year: 2020 ident: bib33 article-title: Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? publication-title: Eur. J. Radiol. – reference: L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, J. Xia, Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT, Radiology, 0 200905. doi: 10.1148/radiol.2020200905. – volume: 89 start-page: 197 year: 2017 end-page: 211 ident: bib14 article-title: Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework publication-title: Comput. Biol. Med. – volume: 119 start-page: 103675 year: 2020 ident: bib17 article-title: Spectral analysis for pulmonary nodule detection using the optimal fractional S-Transform publication-title: Comput. Biol. Med. – volume: 12 start-page: 12 year: 2006 end-page: 24 ident: bib32 article-title: The atypical pneumonias: clinical diagnosis and importance publication-title: Clin. Microbiol. Infect. – year: 2020 ident: bib4 article-title: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel publication-title: Radiology – volume: 295 start-page: 202 year: 2020 end-page: 207 ident: bib6 article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV) publication-title: Radiology – year: 2014 ident: bib23 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition – volume: 27 start-page: 88 year: 1998 end-page: 94 ident: bib29 article-title: Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology publication-title: Eur. J. Radiol. – volume: 1 start-page: 72 year: 1965 end-page: 80 ident: bib11 article-title: Computer-aided diagnosis in radiology. A research plan publication-title: Invest. Radiol. – volume: 89 start-page: 275 year: 2017 end-page: 281 ident: bib19 article-title: Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation publication-title: Comput. Biol. Med. – reference: A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, M. Chung, Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology, 0 200463. doi: 10.1148/radiol.2020200463. – reference: X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, J. Liu, Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing, Radiology, 0 200343. doi: 10.1148/radiol.2020200343. – ident: bib39 article-title: Fact sheet for healthcare providers: CDC - 2019-nCoV real-time RT-PCR diagnostic panel – volume: 80 start-page: 388 year: 2020 end-page: 393 ident: bib35 article-title: Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang, China publication-title: J. Infect. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 103 start-page: 220 year: 2018 end-page: 231 ident: bib15 article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs publication-title: Comput. Biol. Med. – volume: 295 start-page: 22 year: 2020 end-page: 23 ident: bib38 article-title: Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion publication-title: Radiology – volume: 92 start-page: 64 year: 2018 end-page: 72 ident: bib16 article-title: 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets publication-title: Comput. Biol. Med. – volume: 89 start-page: 530 year: 2017 end-page: 539 ident: bib18 article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis publication-title: Comput. Biol. Med. – year: 2020 ident: bib8 article-title: Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT publication-title: Radiology – reference: T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology, 0 200642. doi: 10.1148/radiol.2020200642. – volume: 59 start-page: 1061 year: 2004 end-page: 1069 ident: bib13 article-title: Texture analysis of medical images publication-title: Clin. Radiol. – start-page: 1251 year: 2017 end-page: 1258 ident: bib28 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: 10.1016/j.compbiomed.2020.103795_bib3 – ident: 10.1016/j.compbiomed.2020.103795_bib37 doi: 10.1148/radiol.2020200642 – volume: 37 start-page: 437 year: 2019 ident: 10.1016/j.compbiomed.2020.103795_bib9 article-title: Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-019-00826-2 – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 89 start-page: 197 year: 2017 ident: 10.1016/j.compbiomed.2020.103795_bib14 article-title: Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.014 – volume: 101 start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2020.103795_bib21 article-title: Novel approach to computerized breath detection in lung function diagnostics publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.017 – year: 2014 ident: 10.1016/j.compbiomed.2020.103795_bib23 – volume: 89 start-page: 275 year: 2017 ident: 10.1016/j.compbiomed.2020.103795_bib19 article-title: Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.016 – year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib4 article-title: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel publication-title: Radiology doi: 10.1148/radiol.2020200527 – year: 2016 ident: 10.1016/j.compbiomed.2020.103795_bib24 – volume: 103 start-page: 220 year: 2018 ident: 10.1016/j.compbiomed.2020.103795_bib15 article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.10.011 – volume: 96 start-page: 91 year: 2018 ident: 10.1016/j.compbiomed.2020.103795_bib20 article-title: Analysis of pulmonary sounds for the diagnosis of interstitial lung diseases secondary to rheumatoid arthritis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.006 – volume: 126 start-page: 108961 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib33 article-title: Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.108961 – volume: 92 year: 2019 ident: 10.1016/j.compbiomed.2020.103795_bib10 article-title: Fatigue in radiology: a fertile area for future research publication-title: Br. J. Radiol. doi: 10.1259/bjr.20190043 – volume: 31 start-page: 198 year: 2007 ident: 10.1016/j.compbiomed.2020.103795_bib12 article-title: Computer-aided diagnosis in medical imaging: historical review, current status and future potential publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2007.02.002 – ident: 10.1016/j.compbiomed.2020.103795_bib5 doi: 10.1148/radiol.2020200490 – volume: 295 start-page: 22 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib38 article-title: Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion publication-title: Radiology doi: 10.1148/radiol.2020200330 – start-page: 1251 year: 2017 ident: 10.1016/j.compbiomed.2020.103795_bib28 article-title: Xception: deep learning with depthwise separable convolutions – start-page: 1 year: 2015 ident: 10.1016/j.compbiomed.2020.103795_bib25 article-title: Going deeper with convolutions – volume: 92 start-page: 64 year: 2018 ident: 10.1016/j.compbiomed.2020.103795_bib16 article-title: 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.11.008 – start-page: 4510 year: 2018 ident: 10.1016/j.compbiomed.2020.103795_bib26 article-title: Mobilenetv2: inverted residuals and linear bottlenecks – volume: 103 start-page: 287 year: 2018 ident: 10.1016/j.compbiomed.2020.103795_bib31 article-title: Automatic nodule detection for lung cancer in CT images: a review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.10.033 – start-page: 1097 year: 2012 ident: 10.1016/j.compbiomed.2020.103795_bib22 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 119 start-page: 103675 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib17 article-title: Spectral analysis for pulmonary nodule detection using the optimal fractional S-Transform publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103675 – volume: 395 start-page: 1015 issue: 10229 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib40 article-title: COVID-19: towards controlling of a pandemic publication-title: Lancet doi: 10.1016/S0140-6736(20)30673-5 – start-page: 770 year: 2016 ident: 10.1016/j.compbiomed.2020.103795_bib27 article-title: Deep residual learning for image recognition – volume: 89 start-page: 530 year: 2017 ident: 10.1016/j.compbiomed.2020.103795_bib18 article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.04.006 – volume: 59 start-page: 1061 year: 2004 ident: 10.1016/j.compbiomed.2020.103795_bib13 article-title: Texture analysis of medical images publication-title: Clin. Radiol. doi: 10.1016/j.crad.2004.07.008 – ident: 10.1016/j.compbiomed.2020.103795_bib34 doi: 10.1148/radiol.2020200463 – volume: 395 start-page: 497 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib2 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – ident: 10.1016/j.compbiomed.2020.103795_bib30 doi: 10.1148/radiol.2020200905 – volume: 38 start-page: 719 year: 2018 ident: 10.1016/j.compbiomed.2020.103795_bib7 article-title: Radiographic and CT features of viral pneumonia publication-title: Radiographics doi: 10.1148/rg.2018170048 – volume: 12 start-page: 12 year: 2006 ident: 10.1016/j.compbiomed.2020.103795_bib32 article-title: The atypical pneumonias: clinical diagnosis and importance publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2006.01393.x – volume: 295 start-page: 202 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib6 article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV) publication-title: Radiology doi: 10.1148/radiol.2020200230 – year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib8 article-title: Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT publication-title: Radiology – volume: 80 start-page: 388 year: 2020 ident: 10.1016/j.compbiomed.2020.103795_bib35 article-title: Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang, China publication-title: J. Infect. doi: 10.1016/j.jinf.2020.02.016 – volume: 1 start-page: 72 year: 1965 ident: 10.1016/j.compbiomed.2020.103795_bib11 article-title: Computer-aided diagnosis in radiology. A research plan publication-title: Invest. Radiol. doi: 10.1097/00004424-196601000-00032 – volume: 27 start-page: 88 year: 1998 ident: 10.1016/j.compbiomed.2020.103795_bib29 article-title: Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology publication-title: Eur. J. Radiol. doi: 10.1016/S0720-048X(97)00157-5 – ident: 10.1016/j.compbiomed.2020.103795_bib36 doi: 10.1148/radiol.2020200343 |
SSID | ssj0004030 |
Score | 2.6864455 |
Snippet | Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage... AbstractFast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103795 |
SubjectTerms | Accuracy Adult Aged Aged, 80 and over Artificial Intelligence Artificial neural networks Betacoronavirus Clinical medicine Computational Biology Computed tomography Control methods Coronavirus infections Coronavirus Infections - diagnosis Coronavirus Infections - diagnostic imaging Coronaviruses Cost analysis COVID-19 Deep Learning Diagnosis Diagnostic software Diagnostic systems Disease control Female Humans Infections Internal Medicine Laboratories Laboratory tests Lung - diagnostic imaging Lung diseases Machine learning Male Middle Aged Neural networks Neural Networks, Computer Other Pandemics Performance enhancement Physicians Pneumonia Pneumonia - diagnosis Pneumonia - diagnostic imaging Pneumonia, Viral - diagnosis Pneumonia, Viral - diagnostic imaging Radiographic Image Interpretation, Computer-Assisted Radiology Respiratory diseases SARS-CoV-2 Sensitivity Tomography, X-Ray Computed Viral diseases |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDI5gSIgXxG8OBgoSrxVN2iQ9eEDTwTSQAAk2dG9R0rrj0GiPtfeX8A9jN2mPwYTu6R5aK73EtT_Xn23Gnru8QL-v64R6ZyW5rGTiFZhEoytGh5KVCoZunx_10Un-fqmW8YNbF2mVo00cDHXVlvSN_AVBY11gOKVer38mNDWKsqtxhMZVdo1alxGlyyzNti4yzUIJCtqaHEOhyOQJ_C6ibIcSd4wSZag-pykTl7unf-Hn3yzKP9zS4S12M-JJfhAU4Da7As0ddv1DzJjfZb8Othlq3ta8AljzOCrilE8dXHnf8kBk5YtPX9-9ScScrxp-3qJeNsDH-kk-FlVx4suf8sUxX_1Aoe4l_wzd5qzvaA2RciKzR6VGKWqaOfwMlPPuHjs5fHu8OEriIIak1IXqk8pXzshcKVlAJXJRq1oUVe00OMi1Kz1iKF877xE9CEqsgtZOS1HKTCsEfNl9tte0DTxkPNNlBUIbSAlYYAgrhXdOeJiX3gutZ8yM-2_L2KWchmWc2ZGO9t1uT87SydlwcjMmJsl16NSxg8x8PGI77iTaTovuZAdZc5ksdNEIdFbYTtrUfhl6IKH6SQo_dY6SrybJiHMCftlx3f1RF-201PbtmLFn02W0FJT-cQ20G7pH0KClQqQz9iCo7rRRGYlrQ9t_QamnG6gL-cUrzerb0I3cIKRUMnv0_8d6zG7Qfwgku322159v4AnCud4_Hd7Z35M9SyU priority: 102 providerName: ProQuest |
Title | Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520301645 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520301645 https://dx.doi.org/10.1016/j.compbiomed.2020.103795 https://www.ncbi.nlm.nih.gov/pubmed/32568676 https://www.proquest.com/docview/2425688375 https://www.proquest.com/docview/2416274810 https://pubmed.ncbi.nlm.nih.gov/PMC7190523 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEN8UxmQkXsNix7FTeCplpQNR0LShvllx4oygkVRL-so_wT_MXeyklO2hEi-JUvvk9Hy5D_l3d4S8SkUCdl8WAdbOCgTPeWBiqwIJphgMSpTFtqv2uZDzc_FxGS_3yLTPhUFYpdf9Tqd32tr_cuS5ebQqS8zxhVACAhyOXr0UmGguhEIpf_1rA_MQYeTSUEDf4GyP5nEYL4RtuzR3iBS5y0DHThM3m6jrLui_SMq_TNPsHrnrfUo6ca99n-zZ6gG5_dmfmj8kvyebU2paFzS3dkV9u4gLOlRxpW1NHZiVTr98O3kfsDEtK3pVg2xWlvY5lLRPrKKImb-g0zNa_gSi5g09tc36sm1wDRZSBLR7wQYqLJzZ3TrYefOInM-Oz6bzwDdjCDKZxG2QmzxVXMQxT2zOBCvigiV5kUqbWiHTzIAfZYrUGPAgGB6uWilTyVnGIxmD0xc9JvtVXdmnhEYyyy2TyoboXEAYy5lJU2bsODOGSTkique_znylcmyYcal7SNoPvdk5jTun3c6NCBsoV65axw40436Ldc9J0J8aTMoOtOomWtt4RdBophuuQ31NWEfk7UC5Je87rnvQy6IelsLgUSZJpGD45TAM2gKPgNLK1mucw7DZUsLCEXniRHdgVITkUiH7t4R6mICVyLdHqvJ7V5FcgVsZ8-jZf_2p5-QOPjkc3gHZb6_W9gV4fK057D5puKqlgmsy-3BIbk1OPs0XcH93vPh6-gd1Tlso |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXxDeFAUaCx4jaiZ0UhNDUUVr2gQQd2puxE2frNJKypEL8Hfwf_I3cxXHKYEJ92VMekqtT3_k-cr-7I-SZjhKw-zIPsHdWEPGMB0bYOJBgisGghKmwTbfPPTnej94fiIM18svXwiCs0uvERlFnZYrfyF-gaywTCKfEm_m3AKdGYXbVj9BwYrFtf3yHkK16PdkC_j7nfPR2OhwH7VSBIJWJqIPMZDrmkRA8sRmLWC5ylmS5llbbSOrUgENgcm0MmEKGWUIrpZacpTyUAryXEH73ErkcheEAT1Qyeresw-yHruQFdFsEoVeLHHJ4MoSIu5J6iEq5q3bHqRbnm8N_3d2_UZt_mMHRDXK99V_pphO4m2TNFrfIld02Q3-b_NxcZsRpmdPM2jltR1Mc0q5jLK1L6oCzdPjh82QrYAM6K-hpCeegsNTXa1JfxEURn39Ih1M6-wpE1Uv60VaLk7rCNVifIni-PURAhU06m0sDca_ukP0LYdFdsl6Uhb1PaCjTzDIZ2z46MhAyc2a0ZsYOUmOYlD0S-_1XadsVHYdznCgPfztWS84p5JxynOsR1lHOXWeQFWgGnsXK7yToagXmawXa-DxaW7VKp1JMVVz11aem5xKIH8dwV0ZA-aqjbP0q5y-tuO6Gl0XVLbU8jT3ytLsNmgnTTbqw5QKfYTjYKWH9HrnnRLfbqBDJZYzbf0aouwew6_nZO8XsqOl-HoMLK3j44P-v9YRcHU93d9TOZG_7IbmG_8cB_DbIen26sI_AlazN4-b8UvLlohXGb6Y-iBc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkCZeEP_pGGAkeIxWO7GTghCaWqqVwUCwob55duKMoi0pSyrE5-Db8Om4i-OUwYT6sqc8JFenvvP9yf3ujpCnOkrA7ss8wN5ZQcQzHhhh40CCKQaDEqbCNt0-9-XuYfRmKqZr5JevhUFYpdeJjaLOyhS_kW-jaywTCKfEdt7CIj6Mxq_m3wKcIIWZVj9Ow4nInv3xHcK36uVkBLx-xvn49cFwN2gnDASpTEQdZCbTMY-E4InNWMRykbMky7W02kZSpwacA5NrY8AsMswYWim15CzloRTgyYTwu1fI1TgUDM9YPI2XNZn90JW_gJ6LIAxrUUQOW4ZwcVdeDxEqd5XvOOHiYtP4r-v7N4LzD5M4vkGut74s3XHCd5Os2eIW2XjXZutvk587y-w4LXOaWTun7ZiKY9p1j6V1SR2Ilg7ff56MAjags4KelXAmCkt97Sb1BV0UsfrHdHhAZ6dAVD2nH221OKkrXIP1KQLp2wMFVNiws7k0cPfqDjm8FBbdJetFWdj7hIYyzSyTse2jUwPhM2dGa2bsIDWGSdkjsd9_lbYd0nFQx4nyULivask5hZxTjnM9wjrKuesSsgLNwLNY-Z0Eva3AlK1AG19Ea6tWAVWKqYqrvvrU9F8C8eMY-soIKF90lK2P5XynFdfd8rKouqWWJ7NHnnS3QUth6kkXtlzgMwyHPCWs3yP3nOh2GxUiuYxx-88JdfcAdkA_f6eYfWk6ocfgzgoebv7_tR6TDVAV6u1kf-8BuYZ_x2H9tsh6fbawD8GrrM2j5vhScnTZ-uI3wr6MRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+learning+technique+to+manage+COVID-19+in+routine+clinical+practice+using+CT+images%3A+Results+of+10+convolutional+neural+networks&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ardakani%2C+Ali+Abbasian&rft.au=Kanafi%2C+Alireza+Rajabzadeh&rft.au=Acharya%2C+U+Rajendra&rft.au=Khadem%2C+Nazanin&rft.date=2020-06-01&rft.eissn=1879-0534&rft.volume=121&rft.spage=103795&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.103795&rft_id=info%3Apmid%2F32568676&rft.externalDocID=32568676 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00059%2Fcov150h.gif |