Inter-individual deep image reconstruction via hierarchical neural code conversion

•Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus, automatically learn the hierarchical correspondence of visual areas.•Converted brain activity patterns can be decoded into hierarchical DNN features to...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 271; p. 120007
Main Authors Ho, Jun Kai, Horikawa, Tomoyasu, Majima, Kei, Cheng, Fan, Kamitani, Yukiyasu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2023
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus, automatically learn the hierarchical correspondence of visual areas.•Converted brain activity patterns can be decoded into hierarchical DNN features to reconstruct visual images, even though the converter is trained on a limited number of data samples.•The information of hierarchical and fine-scale visual features is preserved with the functional alignment to capture the richness of visual perception. The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject’s brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction.
AbstractList The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject's brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction.The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject's brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction.
The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject’s brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction.
•Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus, automatically learn the hierarchical correspondence of visual areas.•Converted brain activity patterns can be decoded into hierarchical DNN features to reconstruct visual images, even though the converter is trained on a limited number of data samples.•The information of hierarchical and fine-scale visual features is preserved with the functional alignment to capture the richness of visual perception. The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject’s brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction.
ArticleNumber 120007
Author Kamitani, Yukiyasu
Majima, Kei
Horikawa, Tomoyasu
Cheng, Fan
Ho, Jun Kai
Author_xml – sequence: 1
  givenname: Jun Kai
  orcidid: 0000-0001-9474-3427
  surname: Ho
  fullname: Ho, Jun Kai
  email: junkai125@gmail.com
  organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
– sequence: 2
  givenname: Tomoyasu
  surname: Horikawa
  fullname: Horikawa, Tomoyasu
  organization: Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, Hikaridai, Seika, Soraku, Kyoto, 619-0288, Japan
– sequence: 3
  givenname: Kei
  orcidid: 0000-0002-2405-4113
  surname: Majima
  fullname: Majima, Kei
  organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
– sequence: 4
  givenname: Fan
  orcidid: 0000-0002-0949-2406
  surname: Cheng
  fullname: Cheng, Fan
  organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
– sequence: 5
  givenname: Yukiyasu
  orcidid: 0000-0002-9300-8268
  surname: Kamitani
  fullname: Kamitani, Yukiyasu
  email: kamitani@i.kyoto-u.ac.jp
  organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36914105$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuLFDEURgsZcR76F6TAjZtq86hHshF18NEwIIiuQ-rm9kza6qRNqhrm33trahyhV71JQnJyuLlfLouzEAMWRcnZijPevtuuAk4p-p29xZVgQq64YIx1z4oLznRT6aYTZ_O6kZXiXJ8XlzlvidC8Vi-Kc9nSgk4vih_rMGKqfHD-4N1kh9Ih7ssHc5kQYshjmmD0MZQHb8s7j8kmuPNA6FwETRAd0hAOmDJxL4vnGztkfPU4XxW_vnz-ef2tuvn-dX398aaCVjVjpUF30ArHuewV4xYks061zKmNc32tBHZWKXAtcZwB6h6YgF7IjdCNbLi8KtaL10W7NftENad7E603Dxsx3RqbRg8DmrqrUbi6FdxB3bDedii51CjrjvVOCXK9XVz7FP9MmEez8xlwGGzAOGUjOtVSI6lvhL45QrdxSoFeSpSWWnairol6_UhN_Q7dU3n_Ok-AWgBIMeeEmyeEMzOHbLbmf8hmDtksIdPV90dXwY92jmhM1g-nCD4tAqR4DpSoyeAxADpPkY_UP3-K5MORBAYf5n_xG-9PU_wFUp_eiA
CitedBy_id crossref_primary_10_1016_j_neunet_2023_11_024
crossref_primary_10_1162_imag_a_00170
crossref_primary_10_1016_j_cub_2025_01_024
crossref_primary_10_1093_psyrad_kkad022
Cites_doi 10.1016/j.neuroimage.2013.03.024
10.1523/JNEUROSCI.17-11-04302.1997
10.1016/j.ins.2020.09.012
10.1007/BF01589116
10.1016/j.neuron.2018.11.004
10.1038/s41592-018-0235-4
10.1523/JNEUROSCI.20-09-03310.2000
10.3389/fninf.2011.00013
10.1371/journal.pcbi.1006633
10.1016/j.neuron.2011.08.026
10.1038/ncomms15037
10.1109/TMI.2010.2046908
10.1006/cbmr.1996.0014
10.1109/42.906424
10.1016/j.isci.2021.103013
10.1113/jphysiol.1962.sp006837
10.1093/cercor/3.2.79
10.3389/fninf.2014.00014
10.1016/j.neuroimage.2015.03.059
10.1038/369525a0
10.3389/fncom.2019.00021
10.1523/JNEUROSCI.5023-14.2015
10.1006/nimg.2002.1132
10.1126/science.7754376
10.1007/BF02289451
10.1073/pnas.1403112111
10.1038/33402
10.1016/j.neuron.2015.06.037
10.3389/fninf.2016.00049
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2015.12.036
10.1038/s42003-021-02975-5
10.3758/s13423-018-1451-8
10.1016/j.neuroimage.2007.04.042
10.1016/0166-4328(82)90081-X
10.1016/j.neuroimage.2005.06.058
10.1016/j.neuroimage.2013.08.048
10.1016/j.neuroimage.2004.07.024
10.1088/0954-898X_15_2_002
10.1093/cercor/bhm225
10.1016/S1053-8119(09)70884-5
10.1016/j.neuroimage.2009.06.060
10.1016/j.tics.2022.05.008
10.1006/nimg.1998.0395
10.3389/fnins.2018.00437
10.1016/j.neuroimage.2021.118683
10.1093/cercor/bhw068
10.1371/journal.pcbi.1005350
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Copyright Elsevier Limited May 1, 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited May 1, 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2023.120007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_474e2d4621dc450ba7e3139e3470bd82
36914105
10_1016_j_neuroimage_2023_120007
S1053811923001532
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SEW
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c685t-9c97c62d113b801ac30ad860d8fddb482e7a88cd6c9710ce9bc02cb23f2953513
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:19:24 EDT 2025
Fri Jul 11 12:30:22 EDT 2025
Wed Aug 13 03:05:43 EDT 2025
Sat Aug 02 01:41:12 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue Jul 01 05:00:03 EDT 2025
Fri Feb 23 02:36:44 EST 2024
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional alignment
fMRI
Decoding
Visual hierarchy
Visual image reconstruction
Language English
License This is an open access article under the CC BY license.
Copyright © 2023. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c685t-9c97c62d113b801ac30ad860d8fddb482e7a88cd6c9710ce9bc02cb23f2953513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9474-3427
0000-0002-0949-2406
0000-0002-9300-8268
0000-0002-2405-4113
OpenAccessLink https://doaj.org/article/474e2d4621dc450ba7e3139e3470bd82
PMID 36914105
PQID 2793937244
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_474e2d4621dc450ba7e3139e3470bd82
proquest_miscellaneous_2786811369
proquest_journals_2793937244
pubmed_primary_36914105
crossref_primary_10_1016_j_neuroimage_2023_120007
crossref_citationtrail_10_1016_j_neuroimage_2023_120007
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_120007
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_120007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2023
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Güçlü, van Gerven (bib0023) 2017; 145
Horikawa, Kamitani (bib0026) 2022; 5
Nguyen, Dosovitskiy, Yosinski, Brox, Clune (bib0045) 2016; 29
Bazeille, Richard, Janati, Thirion (bib0004) 2019
Epstein, Kanwisher (bib0014) 1998; 392
Abraham, Pedregosa, Eickenberg, Gervais, Mueller, Kossaifi (bib0001) 2014; 8
Zhang, Brady, Smith (bib0062) 2001; 20
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib0061) 2014; 111
Krizhevsky, Sutskever, Hinton (bib0036) 2012; 25
Sereno, Dale, Reppas, Kwong, Belliveau, Brady (bib0049) 1995; 268
Dale, Fischl, Sereno (bib0010) 1999; 9
Dosovitskiy, Brox (bib0012) 2016; 29
Kanwisher, McDermott, Chun (bib0033) 1997; 17
Avants, Epstein, Grossman, Gee (bib0002) 2008; 12
Kourtzi, Kanwisher (bib0035) 2000; 20
Yamada, Miyawaki, Kamitani (bib0059) 2015; 113
Li, Du, Wang, Wang, He (bib0040) 2021; 547
Lescroart, Gallant (bib0039) 2019; 101
Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib0047) 2013; 84
Fischl, Rajendran, Busa, Augustinack, Hinds, Yeo (bib0016) 2008; 18
Cox (bib0009) 1996; 29
Tustison, Avants, Cook, Zheng, Egan, Yushkevich (bib0054) 2010; 29
Hsu, Borst, Theunissen (bib0028) 2004; 15
Watson, Myers, Frackowiak, Hajnal, Woods, Mazziotta (bib0058) 1993; 3
Bilenko, Gallant (bib0006) 2016; 10
Laumann, Gordon, Adeyemo, Snyder, Joo, Chen (bib0037) 2015; 87
Gorgolewski, Esteban, Ellis, Notter, Ziegler, Johnson (bib0020) 2017
Mahendran, Vedaldi (bib0042) 2015
Nastase, Gazzola, Hasson, Keysers (bib0044) 2019; 14
Behzadi, Restom, Liau, Liu (bib0005) 2007; 37
Horikawa, Kamitani (bib0027) 2017; 8
Jenkinson, Bannister, Brady, Smith (bib0031) 2002; 17
Guntupalli, Hanke, Halchenko, Connolly, Ramadge, Haxby (bib0024) 2016; 26
Jia, Shelhamer, Donahue, Karayev, Long, Girshick (bib0032) 2014
Van Essen (bib0055) 2005; 28
Esteban, Markiewicz, Blair, Moodie, Isik, Erramuzpe (bib0015) 2019; 16
Liu, Nocedal (bib0041) 1989; 45
Shen, Dwivedi, Majima, Horikawa, Kamitani (bib0050) 2019; 13
Hubel, Wiesel (bib0029) 1962; 160
Yamada, Miyawaki, Kamitani (bib0060) 2011
Nonaka, Majima, Aoki, Kamitani (bib0046) 2021; 24
Engel, Rumelhart, Wandell, Lee, Glover, Chichilnisky (bib0013) 1994; 369
Fonov, Evans, McKinstry, Almli, Collins (bib0017) 2009; 47
Simonyan, Zisserman (bib0052) 2014
Gatys, Ecker, Bethge (bib0018) 2016
Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom (bib0019) 2011; 5
Van Essen (bib0056) 2004; 23
Mishkin, Ungerleider (bib0043) 1982; 6
Blumensath, Jbabdi, Glasser, Van Essen, Ugurbil, Behrens (bib0007) 2013; 76
Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini (bib0025) 2011; 72
Van Uden, Nastase, Connolly, Ma, Hansen, Gobbini (bib0057) 2018; 12
Shen, Horikawa, Majima, Kamitani (bib0051) 2019; 15
Le, Ngiam, Coates, Lahiri, Prochnow, Ng (bib0038) 2011
Smith, Little (bib0053) 2018; 25
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0011) 2009
Ince, Kay, Schyns (bib0030) 2022; 26
Chen, Chen, Yeshurun, Hasson, Haxby, Ramadge (bib0008) 2015; 28
Güçlü, van Gerven (bib0022) 2015; 35
Greve, Fischl (bib0021) 2009; 48
Schönemann (bib0048) 1966; 31
Klein, Ghosh, Bao, Giard, Häme, Stavsky (bib0034) 2017; 13
Bazeille, DuPre, Richard, Poline (bib0003) 2021; 245
Hubel (10.1016/j.neuroimage.2023.120007_bib0029) 1962; 160
Cox (10.1016/j.neuroimage.2023.120007_bib0009) 1996; 29
Deng (10.1016/j.neuroimage.2023.120007_bib0011) 2009
Van Essen (10.1016/j.neuroimage.2023.120007_bib0056) 2004; 23
Tustison (10.1016/j.neuroimage.2023.120007_bib0054) 2010; 29
Gorgolewski (10.1016/j.neuroimage.2023.120007_bib0020) 2017
Kanwisher (10.1016/j.neuroimage.2023.120007_bib0033) 1997; 17
Van Uden (10.1016/j.neuroimage.2023.120007_bib0057) 2018; 12
Esteban (10.1016/j.neuroimage.2023.120007_bib0015) 2019; 16
Güçlü (10.1016/j.neuroimage.2023.120007_bib0022) 2015; 35
Nonaka (10.1016/j.neuroimage.2023.120007_bib0046) 2021; 24
Avants (10.1016/j.neuroimage.2023.120007_bib0002) 2008; 12
Jia (10.1016/j.neuroimage.2023.120007_bib0032) 2014
Smith (10.1016/j.neuroimage.2023.120007_bib0053) 2018; 25
Laumann (10.1016/j.neuroimage.2023.120007_bib0037) 2015; 87
Engel (10.1016/j.neuroimage.2023.120007_bib0013) 1994; 369
Horikawa (10.1016/j.neuroimage.2023.120007_bib0026) 2022; 5
Liu (10.1016/j.neuroimage.2023.120007_bib0041) 1989; 45
Sereno (10.1016/j.neuroimage.2023.120007_bib0049) 1995; 268
Watson (10.1016/j.neuroimage.2023.120007_bib0058) 1993; 3
Epstein (10.1016/j.neuroimage.2023.120007_bib0014) 1998; 392
Bazeille (10.1016/j.neuroimage.2023.120007_bib0003) 2021; 245
Krizhevsky (10.1016/j.neuroimage.2023.120007_bib0036) 2012; 25
Dale (10.1016/j.neuroimage.2023.120007_bib0010) 1999; 9
Jenkinson (10.1016/j.neuroimage.2023.120007_bib0031) 2002; 17
Kourtzi (10.1016/j.neuroimage.2023.120007_bib0035) 2000; 20
Lescroart (10.1016/j.neuroimage.2023.120007_bib0039) 2019; 101
Klein (10.1016/j.neuroimage.2023.120007_bib0034) 2017; 13
Dosovitskiy (10.1016/j.neuroimage.2023.120007_bib0012) 2016; 29
Greve (10.1016/j.neuroimage.2023.120007_bib0021) 2009; 48
Fischl (10.1016/j.neuroimage.2023.120007_bib0016) 2008; 18
Mishkin (10.1016/j.neuroimage.2023.120007_bib0043) 1982; 6
Simonyan (10.1016/j.neuroimage.2023.120007_bib0052) 2014
Yamada (10.1016/j.neuroimage.2023.120007_bib0059) 2015; 113
Fonov (10.1016/j.neuroimage.2023.120007_bib0017) 2009; 47
Gorgolewski (10.1016/j.neuroimage.2023.120007_bib0019) 2011; 5
Yamins (10.1016/j.neuroimage.2023.120007_bib0061) 2014; 111
Bazeille (10.1016/j.neuroimage.2023.120007_bib0004) 2019
Güçlü (10.1016/j.neuroimage.2023.120007_bib0023) 2017; 145
Abraham (10.1016/j.neuroimage.2023.120007_bib0001) 2014; 8
Shen (10.1016/j.neuroimage.2023.120007_bib0051) 2019; 15
Zhang (10.1016/j.neuroimage.2023.120007_bib0062) 2001; 20
Blumensath (10.1016/j.neuroimage.2023.120007_bib0007) 2013; 76
Hsu (10.1016/j.neuroimage.2023.120007_bib0028) 2004; 15
Haxby (10.1016/j.neuroimage.2023.120007_bib0025) 2011; 72
Chen (10.1016/j.neuroimage.2023.120007_bib0008) 2015; 28
Nastase (10.1016/j.neuroimage.2023.120007_bib0044) 2019; 14
Gatys (10.1016/j.neuroimage.2023.120007_bib0018) 2016
Li (10.1016/j.neuroimage.2023.120007_bib0040) 2021; 547
Van Essen (10.1016/j.neuroimage.2023.120007_bib0055) 2005; 28
Bilenko (10.1016/j.neuroimage.2023.120007_bib0006) 2016; 10
Yamada (10.1016/j.neuroimage.2023.120007_bib0060) 2011
Guntupalli (10.1016/j.neuroimage.2023.120007_bib0024) 2016; 26
Horikawa (10.1016/j.neuroimage.2023.120007_bib0027) 2017; 8
Le (10.1016/j.neuroimage.2023.120007_bib0038) 2011
Behzadi (10.1016/j.neuroimage.2023.120007_bib0005) 2007; 37
Power (10.1016/j.neuroimage.2023.120007_bib0047) 2013; 84
Nguyen (10.1016/j.neuroimage.2023.120007_bib0045) 2016; 29
Mahendran (10.1016/j.neuroimage.2023.120007_bib0042) 2015
Schönemann (10.1016/j.neuroimage.2023.120007_bib0048) 1966; 31
Ince (10.1016/j.neuroimage.2023.120007_bib0030) 2022; 26
Shen (10.1016/j.neuroimage.2023.120007_bib0050) 2019; 13
References_xml – volume: 12
  start-page: 437
  year: 2018
  ident: bib0057
  article-title: Modeling semantic encoding in a common neural representational space
  publication-title: Front. Neurosci.
– volume: 29
  start-page: 3387
  year: 2016
  end-page: 3395
  ident: bib0045
  article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  ident: bib0022
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
– volume: 26
  start-page: 2919
  year: 2016
  end-page: 2934
  ident: bib0024
  article-title: A model of representational spaces in human cortex
  publication-title: Cereb. Cortex
– volume: 28
  start-page: 460
  year: 2015
  end-page: 468
  ident: bib0008
  article-title: A reduced-dimension fMRI shared response model
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 268
  start-page: 889
  year: 1995
  end-page: 893
  ident: bib0049
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
– start-page: 11492
  year: 2019
  ident: bib0004
  article-title: Local Optimal Transport For Functional Brain Template Estimation. Information Processing in Medical Imaging
– volume: 13
  start-page: 21
  year: 2019
  ident: bib0050
  article-title: End-to-end deep image reconstruction from human brain activity
  publication-title: Front. Comput. Neurosci
– volume: 15
  year: 2019
  ident: bib0051
  article-title: Deep image reconstruction from human brain activity
  publication-title: PLoS Comput. Biol
– volume: 5
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib0026
  article-title: Attention modulates neural representation to render reconstructions according to subjective appearance
  publication-title: Commun. Biol.
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0054
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE. Trans. Med. Imaging
– volume: 547
  start-page: 1025
  year: 2021
  end-page: 1044
  ident: bib0040
  article-title: Multi-subject data augmentation for target subject semantic decoding with deep multi-view adversarial learning
  publication-title: Inf. Sci. (Ny)
– volume: 17
  start-page: 4302
  year: 1997
  end-page: 4311
  ident: bib0033
  article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception
  publication-title: J. Neurosci.
– volume: 23
  start-page: S97
  year: 2004
  end-page: 107
  ident: bib0056
  article-title: Surface-based approaches to spatial localization and registration in primate cerebral cortex
  publication-title: Neuroimage
– volume: 87
  start-page: 657
  year: 2015
  end-page: 670
  ident: bib0037
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
– volume: 84
  start-page: 320
  year: 2013
  end-page: 341
  ident: bib0047
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  ident: bib0025
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib0061
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 29
  start-page: 658
  year: 2016
  end-page: 666
  ident: bib0012
  article-title: Generating images with perceptual similarity metrics based on deep networks
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 392
  start-page: 598
  year: 1998
  end-page: 601
  ident: bib0014
  article-title: A cortical representation of the local visual environment
  publication-title: Nature
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib0062
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE. Trans. Med. Imaging
– volume: 101
  start-page: 178
  year: 2019
  end-page: 192
  ident: bib0039
  article-title: Human scene-selective areas represent 3D configurations of surfaces
  publication-title: Neuron
– year: 2017
  ident: bib0020
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python
– volume: 48
  start-page: 63
  year: 2009
  end-page: 72
  ident: bib0021
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: Neuroimage
– volume: 25
  start-page: 1106
  year: 2012
  end-page: 1114
  ident: bib0036
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 24
  year: 2021
  ident: bib0046
  article-title: Brain hierarchy score: which deep neural networks are hierarchically brain-like?
  publication-title: iScience
– year: 2014
  ident: bib0052
  article-title: Very Deep Convolutional Networks For Large-Scale Image Recognition
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib0002
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 18
  start-page: 1973
  year: 2008
  end-page: 1980
  ident: bib0016
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb. Cortex
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: bib0029
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
– volume: 369
  start-page: 525
  year: 1994
  ident: bib0013
  article-title: fMRI of human visual cortex
  publication-title: Nature
– start-page: 5188
  year: 2015
  end-page: 5196
  ident: bib0042
  article-title: Understanding deep image representations by inverting them
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; June 2015
– volume: 8
  start-page: 14
  year: 2014
  ident: bib0001
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinform.
– volume: 15
  start-page: 91
  year: 2004
  end-page: 109
  ident: bib0028
  article-title: Quantifying variability in neural responses and its application for the validation of model predictions
  publication-title: Netw.: Comput. Neural Syst.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0011
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; June 2009
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  ident: bib0005
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
– volume: 14
  start-page: 667
  year: 2019
  end-page: 685
  ident: bib0044
  article-title: Measuring shared responses across subjects using intersubject correlation
  publication-title: Soc. Cogn. Affect. Neurosci.
– start-page: 265
  year: 2011
  end-page: 272
  ident: bib0038
  article-title: On optimization methods for deep learning
  publication-title: Proceedings of the 28th International Conference on International Conference on Machine Learning; June 2011
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  ident: bib0009
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
– start-page: 37
  year: 2011
  end-page: 40
  ident: bib0060
  article-title: Neural Code Converter for Visual Image Representation
  publication-title: International Workshop on Pattern Recognition in NeuroImaging
– volume: 8
  start-page: 15037
  year: 2017
  ident: bib0027
  article-title: Generic decoding of seen and imagined objects using hierarchical visual features
  publication-title: Nat. Commun.
– volume: 5
  start-page: 13
  year: 2011
  ident: bib0019
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinform.
– volume: 6
  start-page: 57
  year: 1982
  end-page: 77
  ident: bib0043
  article-title: Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys
  publication-title: Behav. Brain Res.
– volume: 113
  start-page: 289
  year: 2015
  end-page: 297
  ident: bib0059
  article-title: Inter-subject neural code converter for visual image representation
  publication-title: Neuroimage
– volume: 16
  start-page: 111
  year: 2019
  end-page: 116
  ident: bib0015
  article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI
  publication-title: Nat. Methods
– volume: 28
  start-page: 635
  year: 2005
  end-page: 662
  ident: bib0055
  article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex
  publication-title: Neuroimage
– volume: 245
  year: 2021
  ident: bib0003
  article-title: Thirion B. An empirical evaluation of functional alignment using inter-subject decoding
  publication-title: Neuroimage
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib0010
  article-title: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction
  publication-title: Neuroimage
– start-page: 2414
  year: 2016
  end-page: 2423
  ident: bib0018
  article-title: Image style transfer using convolutional neural networks
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. December 2016
– volume: 26
  start-page: 626
  year: 2022
  end-page: 630
  ident: bib0030
  article-title: Within-participant statistics for cognitive science
  publication-title: Trends. Cogn. Sci.
– volume: 76
  start-page: 313
  year: 2013
  end-page: 324
  ident: bib0007
  article-title: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI
  publication-title: Neuroimage
– volume: 25
  start-page: 2083
  year: 2018
  end-page: 2101
  ident: bib0053
  article-title: Small is beautiful: in defense of the small-N design
  publication-title: Psychon. Bull. Rev.
– volume: 20
  start-page: 3310
  year: 2000
  end-page: 3318
  ident: bib0035
  article-title: Cortical regions involved in perceiving object shape
  publication-title: J. Neurosci.
– volume: 145
  start-page: 329
  year: 2017
  end-page: 336
  ident: bib0023
  article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
  publication-title: Neuroimage
– year: 2014
  ident: bib0032
  article-title: Caffe: Convolutional architecture For Fast Feature Embedding
– volume: 3
  start-page: 79
  year: 1993
  end-page: 94
  ident: bib0058
  article-title: Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging
  publication-title: Cereb. Cortex
– volume: 10
  start-page: 49
  year: 2016
  ident: bib0006
  article-title: Pyrcca: regularized kernel canonical correlation analysis in Python and its applications to neuroimaging
  publication-title: Front. Neuroinform.
– volume: 31
  start-page: 1
  year: 1966
  end-page: 10
  ident: bib0048
  article-title: A generalized solution of the orthogonal procrustes problem
  publication-title: Psychometrika
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0031
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bib0041
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program
– volume: 47
  start-page: S102
  year: 2009
  ident: bib0017
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: Neuroimage
– volume: 13
  year: 2017
  ident: bib0034
  article-title: Mindboggling morphometry of human brains
  publication-title: PLoS Comput. Biol.
– volume: 76
  start-page: 313
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120007_bib0007
  article-title: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.024
– volume: 17
  start-page: 4302
  year: 1997
  ident: 10.1016/j.neuroimage.2023.120007_bib0033
  article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-11-04302.1997
– volume: 547
  start-page: 1025
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120007_bib0040
  article-title: Multi-subject data augmentation for target subject semantic decoding with deep multi-view adversarial learning
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2020.09.012
– start-page: 2414
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120007_bib0018
  article-title: Image style transfer using convolutional neural networks
– volume: 45
  start-page: 503
  year: 1989
  ident: 10.1016/j.neuroimage.2023.120007_bib0041
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program
  doi: 10.1007/BF01589116
– volume: 101
  start-page: 178
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120007_bib0039
  article-title: Human scene-selective areas represent 3D configurations of surfaces
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.11.004
– volume: 16
  start-page: 111
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120007_bib0015
  article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0235-4
– start-page: 265
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120007_bib0038
  article-title: On optimization methods for deep learning
– volume: 20
  start-page: 3310
  year: 2000
  ident: 10.1016/j.neuroimage.2023.120007_bib0035
  article-title: Cortical regions involved in perceiving object shape
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-09-03310.2000
– volume: 5
  start-page: 13
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120007_bib0019
  article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2011.00013
– year: 2014
  ident: 10.1016/j.neuroimage.2023.120007_bib0032
– volume: 15
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120007_bib0051
  article-title: Deep image reconstruction from human brain activity
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1006633
– volume: 72
  start-page: 404
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120007_bib0025
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 8
  start-page: 15037
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120007_bib0027
  article-title: Generic decoding of seen and imagined objects using hierarchical visual features
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15037
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.neuroimage.2023.120007_bib0054
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE. Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 29
  start-page: 162
  year: 1996
  ident: 10.1016/j.neuroimage.2023.120007_bib0009
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1996.0014
– volume: 29
  start-page: 658
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120007_bib0012
  article-title: Generating images with perceptual similarity metrics based on deep networks
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.neuroimage.2023.120007_bib0062
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE. Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 24
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120007_bib0046
  article-title: Brain hierarchy score: which deep neural networks are hierarchically brain-like?
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103013
– start-page: 5188
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120007_bib0042
  article-title: Understanding deep image representations by inverting them
– volume: 160
  start-page: 106
  year: 1962
  ident: 10.1016/j.neuroimage.2023.120007_bib0029
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 3
  start-page: 79
  year: 1993
  ident: 10.1016/j.neuroimage.2023.120007_bib0058
  article-title: Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/3.2.79
– volume: 8
  start-page: 14
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120007_bib0001
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00014
– volume: 113
  start-page: 289
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120007_bib0059
  article-title: Inter-subject neural code converter for visual image representation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.059
– volume: 369
  start-page: 525
  year: 1994
  ident: 10.1016/j.neuroimage.2023.120007_bib0013
  article-title: fMRI of human visual cortex
  publication-title: Nature
  doi: 10.1038/369525a0
– volume: 25
  start-page: 1106
  year: 2012
  ident: 10.1016/j.neuroimage.2023.120007_bib0036
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 13
  start-page: 21
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120007_bib0050
  article-title: End-to-end deep image reconstruction from human brain activity
  publication-title: Front. Comput. Neurosci
  doi: 10.3389/fncom.2019.00021
– start-page: 11492
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120007_bib0004
– year: 2017
  ident: 10.1016/j.neuroimage.2023.120007_bib0020
– volume: 35
  start-page: 10005
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120007_bib0022
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5023-14.2015
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.neuroimage.2023.120007_bib0031
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 268
  start-page: 889
  year: 1995
  ident: 10.1016/j.neuroimage.2023.120007_bib0049
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 31
  start-page: 1
  year: 1966
  ident: 10.1016/j.neuroimage.2023.120007_bib0048
  article-title: A generalized solution of the orthogonal procrustes problem
  publication-title: Psychometrika
  doi: 10.1007/BF02289451
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuroimage.2023.120007_bib0061
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1403112111
– volume: 392
  start-page: 598
  year: 1998
  ident: 10.1016/j.neuroimage.2023.120007_bib0014
  article-title: A cortical representation of the local visual environment
  publication-title: Nature
  doi: 10.1038/33402
– volume: 87
  start-page: 657
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120007_bib0037
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 10
  start-page: 49
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120007_bib0006
  article-title: Pyrcca: regularized kernel canonical correlation analysis in Python and its applications to neuroimaging
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2016.00049
– volume: 12
  start-page: 26
  year: 2008
  ident: 10.1016/j.neuroimage.2023.120007_bib0002
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 145
  start-page: 329
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120007_bib0023
  article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.12.036
– volume: 5
  start-page: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120007_bib0026
  article-title: Attention modulates neural representation to render reconstructions according to subjective appearance
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02975-5
– volume: 25
  start-page: 2083
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120007_bib0053
  article-title: Small is beautiful: in defense of the small-N design
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/s13423-018-1451-8
– volume: 37
  start-page: 90
  year: 2007
  ident: 10.1016/j.neuroimage.2023.120007_bib0005
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.042
– volume: 6
  start-page: 57
  year: 1982
  ident: 10.1016/j.neuroimage.2023.120007_bib0043
  article-title: Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys
  publication-title: Behav. Brain Res.
  doi: 10.1016/0166-4328(82)90081-X
– volume: 28
  start-page: 635
  year: 2005
  ident: 10.1016/j.neuroimage.2023.120007_bib0055
  article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.058
– volume: 29
  start-page: 3387
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120007_bib0045
  article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
  publication-title: Adv. Neural Inf. Process Syst.
– start-page: 248
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120007_bib0011
  article-title: ImageNet: a large-scale hierarchical image database
– volume: 14
  start-page: 667
  year: 2019
  ident: 10.1016/j.neuroimage.2023.120007_bib0044
  article-title: Measuring shared responses across subjects using intersubject correlation
  publication-title: Soc. Cogn. Affect. Neurosci.
– volume: 84
  start-page: 320
  year: 2013
  ident: 10.1016/j.neuroimage.2023.120007_bib0047
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 23
  start-page: S97
  year: 2004
  ident: 10.1016/j.neuroimage.2023.120007_bib0056
  article-title: Surface-based approaches to spatial localization and registration in primate cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.024
– volume: 15
  start-page: 91
  year: 2004
  ident: 10.1016/j.neuroimage.2023.120007_bib0028
  article-title: Quantifying variability in neural responses and its application for the validation of model predictions
  publication-title: Netw.: Comput. Neural Syst.
  doi: 10.1088/0954-898X_15_2_002
– volume: 28
  start-page: 460
  year: 2015
  ident: 10.1016/j.neuroimage.2023.120007_bib0008
  article-title: A reduced-dimension fMRI shared response model
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 18
  start-page: 1973
  year: 2008
  ident: 10.1016/j.neuroimage.2023.120007_bib0016
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm225
– volume: 47
  start-page: S102
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120007_bib0017
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(09)70884-5
– volume: 48
  start-page: 63
  year: 2009
  ident: 10.1016/j.neuroimage.2023.120007_bib0021
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.060
– year: 2014
  ident: 10.1016/j.neuroimage.2023.120007_bib0052
– volume: 26
  start-page: 626
  year: 2022
  ident: 10.1016/j.neuroimage.2023.120007_bib0030
  article-title: Within-participant statistics for cognitive science
  publication-title: Trends. Cogn. Sci.
  doi: 10.1016/j.tics.2022.05.008
– volume: 9
  start-page: 179
  year: 1999
  ident: 10.1016/j.neuroimage.2023.120007_bib0010
  article-title: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 12
  start-page: 437
  year: 2018
  ident: 10.1016/j.neuroimage.2023.120007_bib0057
  article-title: Modeling semantic encoding in a common neural representational space
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00437
– volume: 245
  year: 2021
  ident: 10.1016/j.neuroimage.2023.120007_bib0003
  article-title: Thirion B. An empirical evaluation of functional alignment using inter-subject decoding
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118683
– start-page: 37
  year: 2011
  ident: 10.1016/j.neuroimage.2023.120007_bib0060
  article-title: Neural Code Converter for Visual Image Representation
– volume: 26
  start-page: 2919
  year: 2016
  ident: 10.1016/j.neuroimage.2023.120007_bib0024
  article-title: A model of representational spaces in human cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw068
– volume: 13
  year: 2017
  ident: 10.1016/j.neuroimage.2023.120007_bib0034
  article-title: Mindboggling morphometry of human brains
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005350
SSID ssj0009148
Score 2.4672706
Snippet •Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus,...
The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120007
SubjectTerms Activity patterns
Adult
Brain
Brain Mapping
Correspondence
Decoding
Deep Learning
fMRI
Functional alignment
Functional magnetic resonance imaging
Humans
Image processing
Image Processing, Computer-Assisted - methods
Machine learning
Magnetic Resonance Imaging
Male
Neural networks
Neuroimaging
Sensorimotor Cortex - anatomy & histology
Somatosensory cortex
Topography
Visual cortex
Visual hierarchy
Visual image reconstruction
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6WPYgX8W10lRa8Zib9SD_wpIvLIqwHdWFvTb8iEZ0ZdPXob7eq08kyB2HAU0inOhTV1VVf0vUg5BW6Rakj9gjzuZVJhNYz5tuBgfIMoDFKYqLwxQd1finfX_VXR-R0zoXBsMpq-yebXqx1HVlXaa5347j-BMgA3A0iFHT8Au2wlBq1fPXnJszDMjmlw_WiReoazTPFeJWakeN32LkrbCO-Ypi4ovdcVKnkv-ep_oVEi0c6u0vuVChJ30zc3iNHeXOf3Lqoh-UPyMfyt68dl5QrmnLe0cIILR_CS_FY-nv0FLtil3MFWDaKPMMFM95piUwvv9Ueksuzd59Pz9vaQqGNyvTXrY1WR8UTYyKAL_JRdD4Z1SUzpBSk4Vl7Y2JSQMe6mG2IHY-Bi4HbXvRMPCLHm-0mPyFU8c5bwFcxiUF22VtMhAJAGE0IMDI0RM9Sc7HWF8c2F9_cHEj21d3I26G83STvhrBl5m6qsXHAnLe4MAs9VskuA9sfX1xVEye1zDxJxVmKsu-C11kA4s1C6i4kwxti52V1cyIqmE540XgAA6-XuXsKe-Dsk1mLXDUaPx0HWwloEQBXQ14uj2G74xmO3-TtL6QxymAfHtuQx5P2LTKAwRK1-_S_WHtGbuPdFNR5Qo5BE_NzAF7X4UXZWX8BE0Eq2w
  priority: 102
  providerName: Elsevier
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NaxQxNGgF8SLWr45WieA1dfIxSQYPotJShHoQC3sL-RpZ0d2tbf39fS-TmaUHZU8DmbwhvLyveZ-EvEW1qEzEGWE-M5VkYJ5zzwYOxDMAxWiFhcJnX_Xpufqy6BbV4XZZ0yonmVgEdVpH9JG_E0BIoEpBG33YXDCcGoXR1TpC4y65h63LkKrNwmyb7nI1lsJ1klnYUDN5xvyu0i9y-Ru49ghHiB9xLFoxt9RT6eJ_S0v9ywot2ujkEXlYzUj6cbz3fXInrx6T-2c1UP6EfCuePracy61oynlDy0Fo-QmeG8fSv0tPcSJ2iSnAlVE8Mzyw2p2WrPTiUntKzk-Ov38-ZXV8Aovadlesj72JWiTOZQA95KNsfbK6TXZIKSgrsvHWxqRhH29j7kNsRQxCDqLvZMflM7K3Wq_yAaFatL4H2yomOag2-x6LoMAYjDYEWBkaYiasuVh7i-OIi19uSiL76bb4dohvN-K7IXyG3Iz9NXaA-YQXM-_HDtllYf3nh6sM55RRWSSlBU9RdW3wJkuwdrNUpg3Jiob007W6qQgVxCZ8aLnDAd7PsNVQGQ2QHaEPJypyVWBcui15N-TN_BpYHeM3fpXX17jHaoszePqGPB-pb8YBLJaM3Rf___hL8gBPMmZsHpI9ILX8Cqyqq_C6sM4NFMwfyg
  priority: 102
  providerName: ProQuest
Title Inter-individual deep image reconstruction via hierarchical neural code conversion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923001532
https://dx.doi.org/10.1016/j.neuroimage.2023.120007
https://www.ncbi.nlm.nih.gov/pubmed/36914105
https://www.proquest.com/docview/2793937244
https://www.proquest.com/docview/2786811369
https://doaj.org/article/474e2d4621dc450ba7e3139e3470bd82
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9aQbyI351alwheZ518TJKhp1ZaVqWLFAt7C_kaWLHbgm2P_u2-l8yM9iDuwcsMZPKGx8tL3i_J-yDkHZpFqQPWCHOpllH42jHm6p6B8vSgMUpioPDpUi3O5adVu_qj1Bf6hJX0wEVw76WWiUepOItBto13OglALUlI3fho8uoLNm_cTI3pdgHlD347xZsrZ4dcX8AcnWPB8DnDEBV9xxjlnP13bNLfMGe2PSdPyOMBNNLDwuxTci9tnpGHp8O1-HNyls_16vUUXEVjSlc0M0LzlndKE0tv145i_et8gwADRJFneGFsO80-6PkA7QU5Pzn--mFRD8US6qBMe113odNB8ciY8GB1XBCNi0Y10fQxeml40s6YEBX0Y01InQ8ND56LnnetaJl4SXY2l5u0S6jijesASYUoetkk12HIE0C_YLyHlr4iepSaDUMmcSxo8d2OLmPf7G95W5S3LfKuCJsor0o2jS1ojnBgpv6YDzs3gJbYQUvsv7SkIt04rHYMOYVFEn603oKBg4l2gCUFbmxJvT9qkR2Whx-Ww6oIuBCgVUXeTp9hYuNtjdukyxvsY5TBijtdRV4V7ZtkAI3ZP3fvf8jmNXmE_BYvzn2yAwqZ3gDSuvYzcn_-k8FTr_SMPDj8-HmxhPfR8fLL2SxPuF9GNCqx
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkGCY0r8SOwIIcSr2tJuD6iV9mb8Ctqq7C60gPhT_EZmnMeqB9Beeork2JY1_jwz9rwAnpFYlMpTjTAbcxmEyy1jNm8YgqdBxFSSAoUnB9X4SH6cltMN-NPHwpBbZc8TE6MOC09v5C84AglFKUqj18tvOVWNIutqX0KjhcVe_P0Lr2ynr3bf4_4-53znw-G7cd5VFch9pcuzvPa18hUPjAmH7Nl6UdigqyLoJgQnNY_Kau1Dhf1Y4WPtfMG946LhdSlKJnDeS3AZBW9Blz01Vaskv0y2oXelyDVjdec51PqTpfyUs6_IJbapZPk2oyAZdU4cpqoB56Tiv7TeJP12bsD1Tm3N3rQ4uwkbcX4Lrkw6w_xt-JReFvPZEN6VhRiXWVpIli7dQ6La7OfMZlSBO9kwECIZrRk_FF2fJS_49IR3B44uhLB3YXO-mMf7kFW8sDXqcj6IRhbR1hR0hcqn185hSzMC1VPN-C6XOZXUODG909qxWdHbEL1NS-8RsGHkss3nscaYt7QxQ3_KyJ0aFt-_mO6AG6lk5EFWnAUvy8JZFQVq11FIVbig-QjqfltNH_SKbBonmq2xgJfD2E4xahWeNUdv9SgyHYM6NavjNIKnw29kLWQvsvO4-EF9dKWp5k89gnst-gYaYGPyEH7w_8mfwNXx4WTf7O8e7D2Ea7Sq1lt0CzYRdvERanRn7nE6Rhl8vuhz-xc4AFzJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFDASHNPGjpM4QghR2lVL6aqqqNSbcWwHLYLdhRYQf41fx4zjZNUDaC89RXJsyxp_87A9D4DnpBZlZalGmPGpdHmTGs5N2nIET4uIKSUFCh9Nyv1T-e6sOFuDP30sDLlV9jIxCGo3t3RHvi0QSKhKURttt9Et4nh3_HrxLaUKUvTS2pfT6CBy6H__wuPb-auDXdzrF0KM9z683U9jhYHUlqq4SGtbV7YUjvO8QVFtbJ4Zp8rMqda5RirhK6OUdSX245n1dWMzYRuRt6Iu8oLnOO81WK_oVDSC9Z29yfHJMuUvl10gXpGnivM6-hF13mUhW-X0K8qMLSpgvsUpZKa6pBxDDYFLOvJfNnDQheObcCMasexNh7pbsOZnt2HjKD7T34GTcM-YTodgL-a8X7CwEBaO4EPaWvZzahjV4w4vGggYRmvGD8Xas-ATHy707sLplZD2Hoxm85l_AKwUmanRsrMub2XmTU0hWGiKWtU02NImUPVU0zZmNqcCG19078L2WS_prYneuqN3AnwYueiye6wwZoc2ZuhP-blDw_z7Jx3ZXctKeuFkKbizssgaU_kcbW2fyyprnBIJ1P226j4EFoU2TjRdYQEvh7HRTOrMnxVHb_Yo0lFcneslcyXwbPiNgoZej8zMz39QH1UqqgBUJ3C_Q99AA2wM_sIP_z_5U9hAntXvDyaHj-A6LapzHd2EEaLOP0bz7qJ5EvmIwcerZt2_ea5iZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-individual+deep+image+reconstruction+via+hierarchical+neural+code+conversion&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ho%2C+Jun+Kai&rft.au=Horikawa%2C+Tomoyasu&rft.au=Majima%2C+Kei&rft.au=Cheng%2C+Fan&rft.date=2023-05-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=271&rft.spage=120007&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.120007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon