Inter-individual deep image reconstruction via hierarchical neural code conversion
•Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus, automatically learn the hierarchical correspondence of visual areas.•Converted brain activity patterns can be decoded into hierarchical DNN features to...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 271; p. 120007 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2023
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus, automatically learn the hierarchical correspondence of visual areas.•Converted brain activity patterns can be decoded into hierarchical DNN features to reconstruct visual images, even though the converter is trained on a limited number of data samples.•The information of hierarchical and fine-scale visual features is preserved with the functional alignment to capture the richness of visual perception.
The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject’s brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction. |
---|---|
AbstractList | The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject's brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction.The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject's brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction. The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject’s brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction. •Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus, automatically learn the hierarchical correspondence of visual areas.•Converted brain activity patterns can be decoded into hierarchical DNN features to reconstruct visual images, even though the converter is trained on a limited number of data samples.•The information of hierarchical and fine-scale visual features is preserved with the functional alignment to capture the richness of visual perception. The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical input exhibits substantially different patterns across individuals. Although anatomical and functional alignment methods have been proposed in functional magnetic resonance imaging (fMRI) studies, it remains unclear whether and how hierarchical and fine-grained representations can be converted between individuals while preserving the encoded perceptual content. In this study, we trained a method of functional alignment called neural code converter that predicts a target subject’s brain activity pattern from a source subject given the same stimulus, and analyzed the converted patterns by decoding hierarchical visual features and reconstructing perceived images. The converters were trained on fMRI responses to identical sets of natural images presented to pairs of individuals, using the voxels on the visual cortex that covers from V1 through the ventral object areas without explicit labels of the visual areas. We decoded the converted brain activity patterns into the hierarchical visual features of a deep neural network using decoders pre-trained on the target subject and then reconstructed images via the decoded features. Without explicit information about the visual cortical hierarchy, the converters automatically learned the correspondence between visual areas of the same levels. Deep neural network feature decoding at each layer showed higher decoding accuracies from corresponding levels of visual areas, indicating that hierarchical representations were preserved after conversion. The visual images were reconstructed with recognizable silhouettes of objects even with relatively small numbers of data for converter training. The decoders trained on pooled data from multiple individuals through conversions led to a slight improvement over those trained on a single individual. These results demonstrate that the hierarchical and fine-grained representation can be converted by functional alignment, while preserving sufficient visual information to enable inter-individual visual image reconstruction. |
ArticleNumber | 120007 |
Author | Kamitani, Yukiyasu Majima, Kei Horikawa, Tomoyasu Cheng, Fan Ho, Jun Kai |
Author_xml | – sequence: 1 givenname: Jun Kai orcidid: 0000-0001-9474-3427 surname: Ho fullname: Ho, Jun Kai email: junkai125@gmail.com organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan – sequence: 2 givenname: Tomoyasu surname: Horikawa fullname: Horikawa, Tomoyasu organization: Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, Hikaridai, Seika, Soraku, Kyoto, 619-0288, Japan – sequence: 3 givenname: Kei orcidid: 0000-0002-2405-4113 surname: Majima fullname: Majima, Kei organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan – sequence: 4 givenname: Fan orcidid: 0000-0002-0949-2406 surname: Cheng fullname: Cheng, Fan organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan – sequence: 5 givenname: Yukiyasu orcidid: 0000-0002-9300-8268 surname: Kamitani fullname: Kamitani, Yukiyasu email: kamitani@i.kyoto-u.ac.jp organization: Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36914105$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuLFDEURgsZcR76F6TAjZtq86hHshF18NEwIIiuQ-rm9kza6qRNqhrm33trahyhV71JQnJyuLlfLouzEAMWRcnZijPevtuuAk4p-p29xZVgQq64YIx1z4oLznRT6aYTZ_O6kZXiXJ8XlzlvidC8Vi-Kc9nSgk4vih_rMGKqfHD-4N1kh9Ih7ssHc5kQYshjmmD0MZQHb8s7j8kmuPNA6FwETRAd0hAOmDJxL4vnGztkfPU4XxW_vnz-ef2tuvn-dX398aaCVjVjpUF30ArHuewV4xYks061zKmNc32tBHZWKXAtcZwB6h6YgF7IjdCNbLi8KtaL10W7NftENad7E603Dxsx3RqbRg8DmrqrUbi6FdxB3bDedii51CjrjvVOCXK9XVz7FP9MmEez8xlwGGzAOGUjOtVSI6lvhL45QrdxSoFeSpSWWnairol6_UhN_Q7dU3n_Ok-AWgBIMeeEmyeEMzOHbLbmf8hmDtksIdPV90dXwY92jmhM1g-nCD4tAqR4DpSoyeAxADpPkY_UP3-K5MORBAYf5n_xG-9PU_wFUp_eiA |
CitedBy_id | crossref_primary_10_1016_j_neunet_2023_11_024 crossref_primary_10_1162_imag_a_00170 crossref_primary_10_1016_j_cub_2025_01_024 crossref_primary_10_1093_psyrad_kkad022 |
Cites_doi | 10.1016/j.neuroimage.2013.03.024 10.1523/JNEUROSCI.17-11-04302.1997 10.1016/j.ins.2020.09.012 10.1007/BF01589116 10.1016/j.neuron.2018.11.004 10.1038/s41592-018-0235-4 10.1523/JNEUROSCI.20-09-03310.2000 10.3389/fninf.2011.00013 10.1371/journal.pcbi.1006633 10.1016/j.neuron.2011.08.026 10.1038/ncomms15037 10.1109/TMI.2010.2046908 10.1006/cbmr.1996.0014 10.1109/42.906424 10.1016/j.isci.2021.103013 10.1113/jphysiol.1962.sp006837 10.1093/cercor/3.2.79 10.3389/fninf.2014.00014 10.1016/j.neuroimage.2015.03.059 10.1038/369525a0 10.3389/fncom.2019.00021 10.1523/JNEUROSCI.5023-14.2015 10.1006/nimg.2002.1132 10.1126/science.7754376 10.1007/BF02289451 10.1073/pnas.1403112111 10.1038/33402 10.1016/j.neuron.2015.06.037 10.3389/fninf.2016.00049 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2015.12.036 10.1038/s42003-021-02975-5 10.3758/s13423-018-1451-8 10.1016/j.neuroimage.2007.04.042 10.1016/0166-4328(82)90081-X 10.1016/j.neuroimage.2005.06.058 10.1016/j.neuroimage.2013.08.048 10.1016/j.neuroimage.2004.07.024 10.1088/0954-898X_15_2_002 10.1093/cercor/bhm225 10.1016/S1053-8119(09)70884-5 10.1016/j.neuroimage.2009.06.060 10.1016/j.tics.2022.05.008 10.1006/nimg.1998.0395 10.3389/fnins.2018.00437 10.1016/j.neuroimage.2021.118683 10.1093/cercor/bhw068 10.1371/journal.pcbi.1005350 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Inc. Copyright Elsevier Limited May 1, 2023 |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. – notice: Copyright Elsevier Limited May 1, 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2023.120007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_474e2d4621dc450ba7e3139e3470bd82 36914105 10_1016_j_neuroimage_2023_120007 S1053811923001532 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SEW SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c685t-9c97c62d113b801ac30ad860d8fddb482e7a88cd6c9710ce9bc02cb23f2953513 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:19:24 EDT 2025 Fri Jul 11 12:30:22 EDT 2025 Wed Aug 13 03:05:43 EDT 2025 Sat Aug 02 01:41:12 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue Jul 01 05:00:03 EDT 2025 Fri Feb 23 02:36:44 EST 2024 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional alignment fMRI Decoding Visual hierarchy Visual image reconstruction |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c685t-9c97c62d113b801ac30ad860d8fddb482e7a88cd6c9710ce9bc02cb23f2953513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9474-3427 0000-0002-0949-2406 0000-0002-9300-8268 0000-0002-2405-4113 |
OpenAccessLink | https://doaj.org/article/474e2d4621dc450ba7e3139e3470bd82 |
PMID | 36914105 |
PQID | 2793937244 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_474e2d4621dc450ba7e3139e3470bd82 proquest_miscellaneous_2786811369 proquest_journals_2793937244 pubmed_primary_36914105 crossref_primary_10_1016_j_neuroimage_2023_120007 crossref_citationtrail_10_1016_j_neuroimage_2023_120007 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_120007 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_120007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Güçlü, van Gerven (bib0023) 2017; 145 Horikawa, Kamitani (bib0026) 2022; 5 Nguyen, Dosovitskiy, Yosinski, Brox, Clune (bib0045) 2016; 29 Bazeille, Richard, Janati, Thirion (bib0004) 2019 Epstein, Kanwisher (bib0014) 1998; 392 Abraham, Pedregosa, Eickenberg, Gervais, Mueller, Kossaifi (bib0001) 2014; 8 Zhang, Brady, Smith (bib0062) 2001; 20 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib0061) 2014; 111 Krizhevsky, Sutskever, Hinton (bib0036) 2012; 25 Sereno, Dale, Reppas, Kwong, Belliveau, Brady (bib0049) 1995; 268 Dale, Fischl, Sereno (bib0010) 1999; 9 Dosovitskiy, Brox (bib0012) 2016; 29 Kanwisher, McDermott, Chun (bib0033) 1997; 17 Avants, Epstein, Grossman, Gee (bib0002) 2008; 12 Kourtzi, Kanwisher (bib0035) 2000; 20 Yamada, Miyawaki, Kamitani (bib0059) 2015; 113 Li, Du, Wang, Wang, He (bib0040) 2021; 547 Lescroart, Gallant (bib0039) 2019; 101 Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bib0047) 2013; 84 Fischl, Rajendran, Busa, Augustinack, Hinds, Yeo (bib0016) 2008; 18 Cox (bib0009) 1996; 29 Tustison, Avants, Cook, Zheng, Egan, Yushkevich (bib0054) 2010; 29 Hsu, Borst, Theunissen (bib0028) 2004; 15 Watson, Myers, Frackowiak, Hajnal, Woods, Mazziotta (bib0058) 1993; 3 Bilenko, Gallant (bib0006) 2016; 10 Laumann, Gordon, Adeyemo, Snyder, Joo, Chen (bib0037) 2015; 87 Gorgolewski, Esteban, Ellis, Notter, Ziegler, Johnson (bib0020) 2017 Mahendran, Vedaldi (bib0042) 2015 Nastase, Gazzola, Hasson, Keysers (bib0044) 2019; 14 Behzadi, Restom, Liau, Liu (bib0005) 2007; 37 Horikawa, Kamitani (bib0027) 2017; 8 Jenkinson, Bannister, Brady, Smith (bib0031) 2002; 17 Guntupalli, Hanke, Halchenko, Connolly, Ramadge, Haxby (bib0024) 2016; 26 Jia, Shelhamer, Donahue, Karayev, Long, Girshick (bib0032) 2014 Van Essen (bib0055) 2005; 28 Esteban, Markiewicz, Blair, Moodie, Isik, Erramuzpe (bib0015) 2019; 16 Liu, Nocedal (bib0041) 1989; 45 Shen, Dwivedi, Majima, Horikawa, Kamitani (bib0050) 2019; 13 Hubel, Wiesel (bib0029) 1962; 160 Yamada, Miyawaki, Kamitani (bib0060) 2011 Nonaka, Majima, Aoki, Kamitani (bib0046) 2021; 24 Engel, Rumelhart, Wandell, Lee, Glover, Chichilnisky (bib0013) 1994; 369 Fonov, Evans, McKinstry, Almli, Collins (bib0017) 2009; 47 Simonyan, Zisserman (bib0052) 2014 Gatys, Ecker, Bethge (bib0018) 2016 Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom (bib0019) 2011; 5 Van Essen (bib0056) 2004; 23 Mishkin, Ungerleider (bib0043) 1982; 6 Blumensath, Jbabdi, Glasser, Van Essen, Ugurbil, Behrens (bib0007) 2013; 76 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini (bib0025) 2011; 72 Van Uden, Nastase, Connolly, Ma, Hansen, Gobbini (bib0057) 2018; 12 Shen, Horikawa, Majima, Kamitani (bib0051) 2019; 15 Le, Ngiam, Coates, Lahiri, Prochnow, Ng (bib0038) 2011 Smith, Little (bib0053) 2018; 25 Deng, Dong, Socher, Li, Li, Fei-Fei (bib0011) 2009 Ince, Kay, Schyns (bib0030) 2022; 26 Chen, Chen, Yeshurun, Hasson, Haxby, Ramadge (bib0008) 2015; 28 Güçlü, van Gerven (bib0022) 2015; 35 Greve, Fischl (bib0021) 2009; 48 Schönemann (bib0048) 1966; 31 Klein, Ghosh, Bao, Giard, Häme, Stavsky (bib0034) 2017; 13 Bazeille, DuPre, Richard, Poline (bib0003) 2021; 245 Hubel (10.1016/j.neuroimage.2023.120007_bib0029) 1962; 160 Cox (10.1016/j.neuroimage.2023.120007_bib0009) 1996; 29 Deng (10.1016/j.neuroimage.2023.120007_bib0011) 2009 Van Essen (10.1016/j.neuroimage.2023.120007_bib0056) 2004; 23 Tustison (10.1016/j.neuroimage.2023.120007_bib0054) 2010; 29 Gorgolewski (10.1016/j.neuroimage.2023.120007_bib0020) 2017 Kanwisher (10.1016/j.neuroimage.2023.120007_bib0033) 1997; 17 Van Uden (10.1016/j.neuroimage.2023.120007_bib0057) 2018; 12 Esteban (10.1016/j.neuroimage.2023.120007_bib0015) 2019; 16 Güçlü (10.1016/j.neuroimage.2023.120007_bib0022) 2015; 35 Nonaka (10.1016/j.neuroimage.2023.120007_bib0046) 2021; 24 Avants (10.1016/j.neuroimage.2023.120007_bib0002) 2008; 12 Jia (10.1016/j.neuroimage.2023.120007_bib0032) 2014 Smith (10.1016/j.neuroimage.2023.120007_bib0053) 2018; 25 Laumann (10.1016/j.neuroimage.2023.120007_bib0037) 2015; 87 Engel (10.1016/j.neuroimage.2023.120007_bib0013) 1994; 369 Horikawa (10.1016/j.neuroimage.2023.120007_bib0026) 2022; 5 Liu (10.1016/j.neuroimage.2023.120007_bib0041) 1989; 45 Sereno (10.1016/j.neuroimage.2023.120007_bib0049) 1995; 268 Watson (10.1016/j.neuroimage.2023.120007_bib0058) 1993; 3 Epstein (10.1016/j.neuroimage.2023.120007_bib0014) 1998; 392 Bazeille (10.1016/j.neuroimage.2023.120007_bib0003) 2021; 245 Krizhevsky (10.1016/j.neuroimage.2023.120007_bib0036) 2012; 25 Dale (10.1016/j.neuroimage.2023.120007_bib0010) 1999; 9 Jenkinson (10.1016/j.neuroimage.2023.120007_bib0031) 2002; 17 Kourtzi (10.1016/j.neuroimage.2023.120007_bib0035) 2000; 20 Lescroart (10.1016/j.neuroimage.2023.120007_bib0039) 2019; 101 Klein (10.1016/j.neuroimage.2023.120007_bib0034) 2017; 13 Dosovitskiy (10.1016/j.neuroimage.2023.120007_bib0012) 2016; 29 Greve (10.1016/j.neuroimage.2023.120007_bib0021) 2009; 48 Fischl (10.1016/j.neuroimage.2023.120007_bib0016) 2008; 18 Mishkin (10.1016/j.neuroimage.2023.120007_bib0043) 1982; 6 Simonyan (10.1016/j.neuroimage.2023.120007_bib0052) 2014 Yamada (10.1016/j.neuroimage.2023.120007_bib0059) 2015; 113 Fonov (10.1016/j.neuroimage.2023.120007_bib0017) 2009; 47 Gorgolewski (10.1016/j.neuroimage.2023.120007_bib0019) 2011; 5 Yamins (10.1016/j.neuroimage.2023.120007_bib0061) 2014; 111 Bazeille (10.1016/j.neuroimage.2023.120007_bib0004) 2019 Güçlü (10.1016/j.neuroimage.2023.120007_bib0023) 2017; 145 Abraham (10.1016/j.neuroimage.2023.120007_bib0001) 2014; 8 Shen (10.1016/j.neuroimage.2023.120007_bib0051) 2019; 15 Zhang (10.1016/j.neuroimage.2023.120007_bib0062) 2001; 20 Blumensath (10.1016/j.neuroimage.2023.120007_bib0007) 2013; 76 Hsu (10.1016/j.neuroimage.2023.120007_bib0028) 2004; 15 Haxby (10.1016/j.neuroimage.2023.120007_bib0025) 2011; 72 Chen (10.1016/j.neuroimage.2023.120007_bib0008) 2015; 28 Nastase (10.1016/j.neuroimage.2023.120007_bib0044) 2019; 14 Gatys (10.1016/j.neuroimage.2023.120007_bib0018) 2016 Li (10.1016/j.neuroimage.2023.120007_bib0040) 2021; 547 Van Essen (10.1016/j.neuroimage.2023.120007_bib0055) 2005; 28 Bilenko (10.1016/j.neuroimage.2023.120007_bib0006) 2016; 10 Yamada (10.1016/j.neuroimage.2023.120007_bib0060) 2011 Guntupalli (10.1016/j.neuroimage.2023.120007_bib0024) 2016; 26 Horikawa (10.1016/j.neuroimage.2023.120007_bib0027) 2017; 8 Le (10.1016/j.neuroimage.2023.120007_bib0038) 2011 Behzadi (10.1016/j.neuroimage.2023.120007_bib0005) 2007; 37 Power (10.1016/j.neuroimage.2023.120007_bib0047) 2013; 84 Nguyen (10.1016/j.neuroimage.2023.120007_bib0045) 2016; 29 Mahendran (10.1016/j.neuroimage.2023.120007_bib0042) 2015 Schönemann (10.1016/j.neuroimage.2023.120007_bib0048) 1966; 31 Ince (10.1016/j.neuroimage.2023.120007_bib0030) 2022; 26 Shen (10.1016/j.neuroimage.2023.120007_bib0050) 2019; 13 |
References_xml | – volume: 12 start-page: 437 year: 2018 ident: bib0057 article-title: Modeling semantic encoding in a common neural representational space publication-title: Front. Neurosci. – volume: 29 start-page: 3387 year: 2016 end-page: 3395 ident: bib0045 article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks publication-title: Adv. Neural Inf. Process Syst. – volume: 35 start-page: 10005 year: 2015 end-page: 10014 ident: bib0022 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. – volume: 26 start-page: 2919 year: 2016 end-page: 2934 ident: bib0024 article-title: A model of representational spaces in human cortex publication-title: Cereb. Cortex – volume: 28 start-page: 460 year: 2015 end-page: 468 ident: bib0008 article-title: A reduced-dimension fMRI shared response model publication-title: Adv. Neural Inf. Process Syst. – volume: 268 start-page: 889 year: 1995 end-page: 893 ident: bib0049 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science – start-page: 11492 year: 2019 ident: bib0004 article-title: Local Optimal Transport For Functional Brain Template Estimation. Information Processing in Medical Imaging – volume: 13 start-page: 21 year: 2019 ident: bib0050 article-title: End-to-end deep image reconstruction from human brain activity publication-title: Front. Comput. Neurosci – volume: 15 year: 2019 ident: bib0051 article-title: Deep image reconstruction from human brain activity publication-title: PLoS Comput. Biol – volume: 5 start-page: 1 year: 2022 end-page: 12 ident: bib0026 article-title: Attention modulates neural representation to render reconstructions according to subjective appearance publication-title: Commun. Biol. – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib0054 article-title: N4ITK: improved N3 bias correction publication-title: IEEE. Trans. Med. Imaging – volume: 547 start-page: 1025 year: 2021 end-page: 1044 ident: bib0040 article-title: Multi-subject data augmentation for target subject semantic decoding with deep multi-view adversarial learning publication-title: Inf. Sci. (Ny) – volume: 17 start-page: 4302 year: 1997 end-page: 4311 ident: bib0033 article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception publication-title: J. Neurosci. – volume: 23 start-page: S97 year: 2004 end-page: 107 ident: bib0056 article-title: Surface-based approaches to spatial localization and registration in primate cerebral cortex publication-title: Neuroimage – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: bib0037 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron – volume: 84 start-page: 320 year: 2013 end-page: 341 ident: bib0047 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: bib0025 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib0061 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA. – volume: 29 start-page: 658 year: 2016 end-page: 666 ident: bib0012 article-title: Generating images with perceptual similarity metrics based on deep networks publication-title: Adv. Neural Inf. Process Syst. – volume: 392 start-page: 598 year: 1998 end-page: 601 ident: bib0014 article-title: A cortical representation of the local visual environment publication-title: Nature – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib0062 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE. Trans. Med. Imaging – volume: 101 start-page: 178 year: 2019 end-page: 192 ident: bib0039 article-title: Human scene-selective areas represent 3D configurations of surfaces publication-title: Neuron – year: 2017 ident: bib0020 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python – volume: 48 start-page: 63 year: 2009 end-page: 72 ident: bib0021 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: Neuroimage – volume: 25 start-page: 1106 year: 2012 end-page: 1114 ident: bib0036 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process Syst. – volume: 24 year: 2021 ident: bib0046 article-title: Brain hierarchy score: which deep neural networks are hierarchically brain-like? publication-title: iScience – year: 2014 ident: bib0052 article-title: Very Deep Convolutional Networks For Large-Scale Image Recognition – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib0002 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 18 start-page: 1973 year: 2008 end-page: 1980 ident: bib0016 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb. Cortex – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: bib0029 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. – volume: 369 start-page: 525 year: 1994 ident: bib0013 article-title: fMRI of human visual cortex publication-title: Nature – start-page: 5188 year: 2015 end-page: 5196 ident: bib0042 article-title: Understanding deep image representations by inverting them publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; June 2015 – volume: 8 start-page: 14 year: 2014 ident: bib0001 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinform. – volume: 15 start-page: 91 year: 2004 end-page: 109 ident: bib0028 article-title: Quantifying variability in neural responses and its application for the validation of model predictions publication-title: Netw.: Comput. Neural Syst. – start-page: 248 year: 2009 end-page: 255 ident: bib0011 article-title: ImageNet: a large-scale hierarchical image database publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; June 2009 – volume: 37 start-page: 90 year: 2007 end-page: 101 ident: bib0005 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage – volume: 14 start-page: 667 year: 2019 end-page: 685 ident: bib0044 article-title: Measuring shared responses across subjects using intersubject correlation publication-title: Soc. Cogn. Affect. Neurosci. – start-page: 265 year: 2011 end-page: 272 ident: bib0038 article-title: On optimization methods for deep learning publication-title: Proceedings of the 28th International Conference on International Conference on Machine Learning; June 2011 – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bib0009 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – start-page: 37 year: 2011 end-page: 40 ident: bib0060 article-title: Neural Code Converter for Visual Image Representation publication-title: International Workshop on Pattern Recognition in NeuroImaging – volume: 8 start-page: 15037 year: 2017 ident: bib0027 article-title: Generic decoding of seen and imagined objects using hierarchical visual features publication-title: Nat. Commun. – volume: 5 start-page: 13 year: 2011 ident: bib0019 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinform. – volume: 6 start-page: 57 year: 1982 end-page: 77 ident: bib0043 article-title: Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys publication-title: Behav. Brain Res. – volume: 113 start-page: 289 year: 2015 end-page: 297 ident: bib0059 article-title: Inter-subject neural code converter for visual image representation publication-title: Neuroimage – volume: 16 start-page: 111 year: 2019 end-page: 116 ident: bib0015 article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI publication-title: Nat. Methods – volume: 28 start-page: 635 year: 2005 end-page: 662 ident: bib0055 article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex publication-title: Neuroimage – volume: 245 year: 2021 ident: bib0003 article-title: Thirion B. An empirical evaluation of functional alignment using inter-subject decoding publication-title: Neuroimage – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bib0010 article-title: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction publication-title: Neuroimage – start-page: 2414 year: 2016 end-page: 2423 ident: bib0018 article-title: Image style transfer using convolutional neural networks publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. December 2016 – volume: 26 start-page: 626 year: 2022 end-page: 630 ident: bib0030 article-title: Within-participant statistics for cognitive science publication-title: Trends. Cogn. Sci. – volume: 76 start-page: 313 year: 2013 end-page: 324 ident: bib0007 article-title: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI publication-title: Neuroimage – volume: 25 start-page: 2083 year: 2018 end-page: 2101 ident: bib0053 article-title: Small is beautiful: in defense of the small-N design publication-title: Psychon. Bull. Rev. – volume: 20 start-page: 3310 year: 2000 end-page: 3318 ident: bib0035 article-title: Cortical regions involved in perceiving object shape publication-title: J. Neurosci. – volume: 145 start-page: 329 year: 2017 end-page: 336 ident: bib0023 article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects publication-title: Neuroimage – year: 2014 ident: bib0032 article-title: Caffe: Convolutional architecture For Fast Feature Embedding – volume: 3 start-page: 79 year: 1993 end-page: 94 ident: bib0058 article-title: Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging publication-title: Cereb. Cortex – volume: 10 start-page: 49 year: 2016 ident: bib0006 article-title: Pyrcca: regularized kernel canonical correlation analysis in Python and its applications to neuroimaging publication-title: Front. Neuroinform. – volume: 31 start-page: 1 year: 1966 end-page: 10 ident: bib0048 article-title: A generalized solution of the orthogonal procrustes problem publication-title: Psychometrika – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0031 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: bib0041 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program – volume: 47 start-page: S102 year: 2009 ident: bib0017 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: Neuroimage – volume: 13 year: 2017 ident: bib0034 article-title: Mindboggling morphometry of human brains publication-title: PLoS Comput. Biol. – volume: 76 start-page: 313 year: 2013 ident: 10.1016/j.neuroimage.2023.120007_bib0007 article-title: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.024 – volume: 17 start-page: 4302 year: 1997 ident: 10.1016/j.neuroimage.2023.120007_bib0033 article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-11-04302.1997 – volume: 547 start-page: 1025 year: 2021 ident: 10.1016/j.neuroimage.2023.120007_bib0040 article-title: Multi-subject data augmentation for target subject semantic decoding with deep multi-view adversarial learning publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2020.09.012 – start-page: 2414 year: 2016 ident: 10.1016/j.neuroimage.2023.120007_bib0018 article-title: Image style transfer using convolutional neural networks – volume: 45 start-page: 503 year: 1989 ident: 10.1016/j.neuroimage.2023.120007_bib0041 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program doi: 10.1007/BF01589116 – volume: 101 start-page: 178 year: 2019 ident: 10.1016/j.neuroimage.2023.120007_bib0039 article-title: Human scene-selective areas represent 3D configurations of surfaces publication-title: Neuron doi: 10.1016/j.neuron.2018.11.004 – volume: 16 start-page: 111 year: 2019 ident: 10.1016/j.neuroimage.2023.120007_bib0015 article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI publication-title: Nat. Methods doi: 10.1038/s41592-018-0235-4 – start-page: 265 year: 2011 ident: 10.1016/j.neuroimage.2023.120007_bib0038 article-title: On optimization methods for deep learning – volume: 20 start-page: 3310 year: 2000 ident: 10.1016/j.neuroimage.2023.120007_bib0035 article-title: Cortical regions involved in perceiving object shape publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-09-03310.2000 – volume: 5 start-page: 13 year: 2011 ident: 10.1016/j.neuroimage.2023.120007_bib0019 article-title: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00013 – year: 2014 ident: 10.1016/j.neuroimage.2023.120007_bib0032 – volume: 15 year: 2019 ident: 10.1016/j.neuroimage.2023.120007_bib0051 article-title: Deep image reconstruction from human brain activity publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1006633 – volume: 72 start-page: 404 year: 2011 ident: 10.1016/j.neuroimage.2023.120007_bib0025 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 8 start-page: 15037 year: 2017 ident: 10.1016/j.neuroimage.2023.120007_bib0027 article-title: Generic decoding of seen and imagined objects using hierarchical visual features publication-title: Nat. Commun. doi: 10.1038/ncomms15037 – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.neuroimage.2023.120007_bib0054 article-title: N4ITK: improved N3 bias correction publication-title: IEEE. Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neuroimage.2023.120007_bib0009 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 29 start-page: 658 year: 2016 ident: 10.1016/j.neuroimage.2023.120007_bib0012 article-title: Generating images with perceptual similarity metrics based on deep networks publication-title: Adv. Neural Inf. Process Syst. – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.neuroimage.2023.120007_bib0062 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE. Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 24 year: 2021 ident: 10.1016/j.neuroimage.2023.120007_bib0046 article-title: Brain hierarchy score: which deep neural networks are hierarchically brain-like? publication-title: iScience doi: 10.1016/j.isci.2021.103013 – start-page: 5188 year: 2015 ident: 10.1016/j.neuroimage.2023.120007_bib0042 article-title: Understanding deep image representations by inverting them – volume: 160 start-page: 106 year: 1962 ident: 10.1016/j.neuroimage.2023.120007_bib0029 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 3 start-page: 79 year: 1993 ident: 10.1016/j.neuroimage.2023.120007_bib0058 article-title: Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging publication-title: Cereb. Cortex doi: 10.1093/cercor/3.2.79 – volume: 8 start-page: 14 year: 2014 ident: 10.1016/j.neuroimage.2023.120007_bib0001 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00014 – volume: 113 start-page: 289 year: 2015 ident: 10.1016/j.neuroimage.2023.120007_bib0059 article-title: Inter-subject neural code converter for visual image representation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.059 – volume: 369 start-page: 525 year: 1994 ident: 10.1016/j.neuroimage.2023.120007_bib0013 article-title: fMRI of human visual cortex publication-title: Nature doi: 10.1038/369525a0 – volume: 25 start-page: 1106 year: 2012 ident: 10.1016/j.neuroimage.2023.120007_bib0036 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process Syst. – volume: 13 start-page: 21 year: 2019 ident: 10.1016/j.neuroimage.2023.120007_bib0050 article-title: End-to-end deep image reconstruction from human brain activity publication-title: Front. Comput. Neurosci doi: 10.3389/fncom.2019.00021 – start-page: 11492 year: 2019 ident: 10.1016/j.neuroimage.2023.120007_bib0004 – year: 2017 ident: 10.1016/j.neuroimage.2023.120007_bib0020 – volume: 35 start-page: 10005 year: 2015 ident: 10.1016/j.neuroimage.2023.120007_bib0022 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5023-14.2015 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2023.120007_bib0031 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 268 start-page: 889 year: 1995 ident: 10.1016/j.neuroimage.2023.120007_bib0049 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science doi: 10.1126/science.7754376 – volume: 31 start-page: 1 year: 1966 ident: 10.1016/j.neuroimage.2023.120007_bib0048 article-title: A generalized solution of the orthogonal procrustes problem publication-title: Psychometrika doi: 10.1007/BF02289451 – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuroimage.2023.120007_bib0061 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1403112111 – volume: 392 start-page: 598 year: 1998 ident: 10.1016/j.neuroimage.2023.120007_bib0014 article-title: A cortical representation of the local visual environment publication-title: Nature doi: 10.1038/33402 – volume: 87 start-page: 657 year: 2015 ident: 10.1016/j.neuroimage.2023.120007_bib0037 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 10 start-page: 49 year: 2016 ident: 10.1016/j.neuroimage.2023.120007_bib0006 article-title: Pyrcca: regularized kernel canonical correlation analysis in Python and its applications to neuroimaging publication-title: Front. Neuroinform. doi: 10.3389/fninf.2016.00049 – volume: 12 start-page: 26 year: 2008 ident: 10.1016/j.neuroimage.2023.120007_bib0002 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 145 start-page: 329 year: 2017 ident: 10.1016/j.neuroimage.2023.120007_bib0023 article-title: Increasingly complex representations of natural movies across the dorsal stream are shared between subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.12.036 – volume: 5 start-page: 1 year: 2022 ident: 10.1016/j.neuroimage.2023.120007_bib0026 article-title: Attention modulates neural representation to render reconstructions according to subjective appearance publication-title: Commun. Biol. doi: 10.1038/s42003-021-02975-5 – volume: 25 start-page: 2083 year: 2018 ident: 10.1016/j.neuroimage.2023.120007_bib0053 article-title: Small is beautiful: in defense of the small-N design publication-title: Psychon. Bull. Rev. doi: 10.3758/s13423-018-1451-8 – volume: 37 start-page: 90 year: 2007 ident: 10.1016/j.neuroimage.2023.120007_bib0005 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.042 – volume: 6 start-page: 57 year: 1982 ident: 10.1016/j.neuroimage.2023.120007_bib0043 article-title: Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(82)90081-X – volume: 28 start-page: 635 year: 2005 ident: 10.1016/j.neuroimage.2023.120007_bib0055 article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.058 – volume: 29 start-page: 3387 year: 2016 ident: 10.1016/j.neuroimage.2023.120007_bib0045 article-title: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks publication-title: Adv. Neural Inf. Process Syst. – start-page: 248 year: 2009 ident: 10.1016/j.neuroimage.2023.120007_bib0011 article-title: ImageNet: a large-scale hierarchical image database – volume: 14 start-page: 667 year: 2019 ident: 10.1016/j.neuroimage.2023.120007_bib0044 article-title: Measuring shared responses across subjects using intersubject correlation publication-title: Soc. Cogn. Affect. Neurosci. – volume: 84 start-page: 320 year: 2013 ident: 10.1016/j.neuroimage.2023.120007_bib0047 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 23 start-page: S97 year: 2004 ident: 10.1016/j.neuroimage.2023.120007_bib0056 article-title: Surface-based approaches to spatial localization and registration in primate cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.024 – volume: 15 start-page: 91 year: 2004 ident: 10.1016/j.neuroimage.2023.120007_bib0028 article-title: Quantifying variability in neural responses and its application for the validation of model predictions publication-title: Netw.: Comput. Neural Syst. doi: 10.1088/0954-898X_15_2_002 – volume: 28 start-page: 460 year: 2015 ident: 10.1016/j.neuroimage.2023.120007_bib0008 article-title: A reduced-dimension fMRI shared response model publication-title: Adv. Neural Inf. Process Syst. – volume: 18 start-page: 1973 year: 2008 ident: 10.1016/j.neuroimage.2023.120007_bib0016 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm225 – volume: 47 start-page: S102 year: 2009 ident: 10.1016/j.neuroimage.2023.120007_bib0017 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: Neuroimage doi: 10.1016/S1053-8119(09)70884-5 – volume: 48 start-page: 63 year: 2009 ident: 10.1016/j.neuroimage.2023.120007_bib0021 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.060 – year: 2014 ident: 10.1016/j.neuroimage.2023.120007_bib0052 – volume: 26 start-page: 626 year: 2022 ident: 10.1016/j.neuroimage.2023.120007_bib0030 article-title: Within-participant statistics for cognitive science publication-title: Trends. Cogn. Sci. doi: 10.1016/j.tics.2022.05.008 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2023.120007_bib0010 article-title: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 12 start-page: 437 year: 2018 ident: 10.1016/j.neuroimage.2023.120007_bib0057 article-title: Modeling semantic encoding in a common neural representational space publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00437 – volume: 245 year: 2021 ident: 10.1016/j.neuroimage.2023.120007_bib0003 article-title: Thirion B. An empirical evaluation of functional alignment using inter-subject decoding publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118683 – start-page: 37 year: 2011 ident: 10.1016/j.neuroimage.2023.120007_bib0060 article-title: Neural Code Converter for Visual Image Representation – volume: 26 start-page: 2919 year: 2016 ident: 10.1016/j.neuroimage.2023.120007_bib0024 article-title: A model of representational spaces in human cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw068 – volume: 13 year: 2017 ident: 10.1016/j.neuroimage.2023.120007_bib0034 article-title: Mindboggling morphometry of human brains publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005350 |
SSID | ssj0009148 |
Score | 2.4672706 |
Snippet | •Neural code converters, which are trained to predict brain activity patterns from one to another individual when presented with the same stimulus,... The sensory cortex is characterized by general organizational principles such as topography and hierarchy. However, measured brain activity given identical... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120007 |
SubjectTerms | Activity patterns Adult Brain Brain Mapping Correspondence Decoding Deep Learning fMRI Functional alignment Functional magnetic resonance imaging Humans Image processing Image Processing, Computer-Assisted - methods Machine learning Magnetic Resonance Imaging Male Neural networks Neuroimaging Sensorimotor Cortex - anatomy & histology Somatosensory cortex Topography Visual cortex Visual hierarchy Visual image reconstruction Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG6WPYgX8W10lRa8Zib9SD_wpIvLIqwHdWFvTb8iEZ0ZdPXob7eq08kyB2HAU0inOhTV1VVf0vUg5BW6Rakj9gjzuZVJhNYz5tuBgfIMoDFKYqLwxQd1finfX_VXR-R0zoXBsMpq-yebXqx1HVlXaa5347j-BMgA3A0iFHT8Au2wlBq1fPXnJszDMjmlw_WiReoazTPFeJWakeN32LkrbCO-Ypi4ovdcVKnkv-ep_oVEi0c6u0vuVChJ30zc3iNHeXOf3Lqoh-UPyMfyt68dl5QrmnLe0cIILR_CS_FY-nv0FLtil3MFWDaKPMMFM95piUwvv9Ueksuzd59Pz9vaQqGNyvTXrY1WR8UTYyKAL_JRdD4Z1SUzpBSk4Vl7Y2JSQMe6mG2IHY-Bi4HbXvRMPCLHm-0mPyFU8c5bwFcxiUF22VtMhAJAGE0IMDI0RM9Sc7HWF8c2F9_cHEj21d3I26G83STvhrBl5m6qsXHAnLe4MAs9VskuA9sfX1xVEye1zDxJxVmKsu-C11kA4s1C6i4kwxti52V1cyIqmE540XgAA6-XuXsKe-Dsk1mLXDUaPx0HWwloEQBXQ14uj2G74xmO3-TtL6QxymAfHtuQx5P2LTKAwRK1-_S_WHtGbuPdFNR5Qo5BE_NzAF7X4UXZWX8BE0Eq2w priority: 102 providerName: Elsevier – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NaxQxNGgF8SLWr45WieA1dfIxSQYPotJShHoQC3sL-RpZ0d2tbf39fS-TmaUHZU8DmbwhvLyveZ-EvEW1qEzEGWE-M5VkYJ5zzwYOxDMAxWiFhcJnX_Xpufqy6BbV4XZZ0yonmVgEdVpH9JG_E0BIoEpBG33YXDCcGoXR1TpC4y65h63LkKrNwmyb7nI1lsJ1klnYUDN5xvyu0i9y-Ru49ghHiB9xLFoxt9RT6eJ_S0v9ywot2ujkEXlYzUj6cbz3fXInrx6T-2c1UP6EfCuePracy61oynlDy0Fo-QmeG8fSv0tPcSJ2iSnAlVE8Mzyw2p2WrPTiUntKzk-Ov38-ZXV8Aovadlesj72JWiTOZQA95KNsfbK6TXZIKSgrsvHWxqRhH29j7kNsRQxCDqLvZMflM7K3Wq_yAaFatL4H2yomOag2-x6LoMAYjDYEWBkaYiasuVh7i-OIi19uSiL76bb4dohvN-K7IXyG3Iz9NXaA-YQXM-_HDtllYf3nh6sM55RRWSSlBU9RdW3wJkuwdrNUpg3Jiob007W6qQgVxCZ8aLnDAd7PsNVQGQ2QHaEPJypyVWBcui15N-TN_BpYHeM3fpXX17jHaoszePqGPB-pb8YBLJaM3Rf___hL8gBPMmZsHpI9ILX8Cqyqq_C6sM4NFMwfyg priority: 102 providerName: ProQuest |
Title | Inter-individual deep image reconstruction via hierarchical neural code conversion |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923001532 https://dx.doi.org/10.1016/j.neuroimage.2023.120007 https://www.ncbi.nlm.nih.gov/pubmed/36914105 https://www.proquest.com/docview/2793937244 https://www.proquest.com/docview/2786811369 https://doaj.org/article/474e2d4621dc450ba7e3139e3470bd82 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9aQbyI351alwheZ518TJKhp1ZaVqWLFAt7C_kaWLHbgm2P_u2-l8yM9iDuwcsMZPKGx8tL3i_J-yDkHZpFqQPWCHOpllH42jHm6p6B8vSgMUpioPDpUi3O5adVu_qj1Bf6hJX0wEVw76WWiUepOItBto13OglALUlI3fho8uoLNm_cTI3pdgHlD347xZsrZ4dcX8AcnWPB8DnDEBV9xxjlnP13bNLfMGe2PSdPyOMBNNLDwuxTci9tnpGHp8O1-HNyls_16vUUXEVjSlc0M0LzlndKE0tv145i_et8gwADRJFneGFsO80-6PkA7QU5Pzn--mFRD8US6qBMe113odNB8ciY8GB1XBCNi0Y10fQxeml40s6YEBX0Y01InQ8ND56LnnetaJl4SXY2l5u0S6jijesASYUoetkk12HIE0C_YLyHlr4iepSaDUMmcSxo8d2OLmPf7G95W5S3LfKuCJsor0o2jS1ojnBgpv6YDzs3gJbYQUvsv7SkIt04rHYMOYVFEn603oKBg4l2gCUFbmxJvT9qkR2Whx-Ww6oIuBCgVUXeTp9hYuNtjdukyxvsY5TBijtdRV4V7ZtkAI3ZP3fvf8jmNXmE_BYvzn2yAwqZ3gDSuvYzcn_-k8FTr_SMPDj8-HmxhPfR8fLL2SxPuF9GNCqx |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkGCY0r8SOwIIcSr2tJuD6iV9mb8Ctqq7C60gPhT_EZmnMeqB9Beeork2JY1_jwz9rwAnpFYlMpTjTAbcxmEyy1jNm8YgqdBxFSSAoUnB9X4SH6cltMN-NPHwpBbZc8TE6MOC09v5C84AglFKUqj18tvOVWNIutqX0KjhcVe_P0Lr2ynr3bf4_4-53znw-G7cd5VFch9pcuzvPa18hUPjAmH7Nl6UdigqyLoJgQnNY_Kau1Dhf1Y4WPtfMG946LhdSlKJnDeS3AZBW9Blz01Vaskv0y2oXelyDVjdec51PqTpfyUs6_IJbapZPk2oyAZdU4cpqoB56Tiv7TeJP12bsD1Tm3N3rQ4uwkbcX4Lrkw6w_xt-JReFvPZEN6VhRiXWVpIli7dQ6La7OfMZlSBO9kwECIZrRk_FF2fJS_49IR3B44uhLB3YXO-mMf7kFW8sDXqcj6IRhbR1hR0hcqn185hSzMC1VPN-C6XOZXUODG909qxWdHbEL1NS-8RsGHkss3nscaYt7QxQ3_KyJ0aFt-_mO6AG6lk5EFWnAUvy8JZFQVq11FIVbig-QjqfltNH_SKbBonmq2xgJfD2E4xahWeNUdv9SgyHYM6NavjNIKnw29kLWQvsvO4-EF9dKWp5k89gnst-gYaYGPyEH7w_8mfwNXx4WTf7O8e7D2Ea7Sq1lt0CzYRdvERanRn7nE6Rhl8vuhz-xc4AFzJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFDASHNPGjpM4QghR2lVL6aqqqNSbcWwHLYLdhRYQf41fx4zjZNUDaC89RXJsyxp_87A9D4DnpBZlZalGmPGpdHmTGs5N2nIET4uIKSUFCh9Nyv1T-e6sOFuDP30sDLlV9jIxCGo3t3RHvi0QSKhKURttt9Et4nh3_HrxLaUKUvTS2pfT6CBy6H__wuPb-auDXdzrF0KM9z683U9jhYHUlqq4SGtbV7YUjvO8QVFtbJ4Zp8rMqda5RirhK6OUdSX245n1dWMzYRuRt6Iu8oLnOO81WK_oVDSC9Z29yfHJMuUvl10gXpGnivM6-hF13mUhW-X0K8qMLSpgvsUpZKa6pBxDDYFLOvJfNnDQheObcCMasexNh7pbsOZnt2HjKD7T34GTcM-YTodgL-a8X7CwEBaO4EPaWvZzahjV4w4vGggYRmvGD8Xas-ATHy707sLplZD2Hoxm85l_AKwUmanRsrMub2XmTU0hWGiKWtU02NImUPVU0zZmNqcCG19078L2WS_prYneuqN3AnwYueiye6wwZoc2ZuhP-blDw_z7Jx3ZXctKeuFkKbizssgaU_kcbW2fyyprnBIJ1P226j4EFoU2TjRdYQEvh7HRTOrMnxVHb_Yo0lFcneslcyXwbPiNgoZej8zMz39QH1UqqgBUJ3C_Q99AA2wM_sIP_z_5U9hAntXvDyaHj-A6LapzHd2EEaLOP0bz7qJ5EvmIwcerZt2_ea5iZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-individual+deep+image+reconstruction+via+hierarchical+neural+code+conversion&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ho%2C+Jun+Kai&rft.au=Horikawa%2C+Tomoyasu&rft.au=Majima%2C+Kei&rft.au=Cheng%2C+Fan&rft.date=2023-05-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=271&rft.spage=120007&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.120007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |