Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach

Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population st...

Full description

Saved in:
Bibliographic Details
Published inOecologia Vol. 176; no. 1; pp. 81 - 94
Main Authors Budy, Phaedra, Luecke, Chris
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.09.2014
Springer
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R ₒ) and decrease in generation time (G ₒ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.
AbstractList Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R o ) and decrease in generation time (G o ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a subset of small char to "break through," thus setting the cycle in population structure.
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R ₒ) and decrease in generation time (G ₒ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small ( less than or equal to 300 mm) and large (>300 mm) char. Apparent survival ( Phi ) and specific growth rates (SGR) were relatively high (40-96 %; SGR range 0.03-1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 degree C) and a longer growing season. An increase in consumption rates (28-34 %) under climate change scenarios led to much greater growth rates (23-34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R sub(o)) and decrease in generation time (G sub(o)). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small ([less than or equal to] 300 mm) and large (>300 mm) char. apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; sGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15°C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output ([R.sub.o]) and decrease in generation time ([G.sub.o]). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a subset of small char to "break through," thus setting the cycle in population structure.
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (<=300 mm) and large (>300 mm) char. Apparent survival ([Phi]) and specific growth rates (SGR) were relatively high (40-96 %; SGR range 0.03-1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34 %) under climate change scenarios led to much greater growth rates (23-34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R ^sub o^) and decrease in generation time (G ^sub o^). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.[PUBLICATION ABSTRACT]
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small ([less than or equal to] 300 mm) and large (>300 mm) char. apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; sGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15°C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output ([R.sub.o]) and decrease in generation time ([G.sub.o]). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a subset of small char to "break through," thus setting the cycle in population structure. Keywords Temperature * Physiology * Bioenergetics * Food limitation * Fish growth
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Rₒ) and decrease in generation time (Gₒ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char ( Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output ( R o ) and decrease in generation time ( G o ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.
Audience Academic
Author Budy, Phaedra
Luecke, Chris
Author_xml – sequence: 1
  fullname: Budy, Phaedra
– sequence: 2
  fullname: Luecke, Chris
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28697565$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24969617$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wAFwAlhASXKTYsR0n3FUVh0qVkCi9thxnvOuSdRbbUeGheEcmu4UehIDkIpH9_f94Mn_2i50wBiiKx4weMkrV60SpEFVJmSirtuVlc6_YY4JXJWt5u1PsUVq1ZSNFu1vsp3RBEWRSPih2K9HWbc3UXvHjPPQQUzah92FBluMlGcwXIOtxPQ0m-zEkMjpios3eErs0Ed-BpBwnm6cIPUElcVOwM0sufV6StAbrzUAsij26b2xml7ycjTOEPG-Dc2Dzxt4OfmUyzP5hAW-IIatpyL50xkKea6zXcTR2-bC478yQ4NHV86A4f_f28_GH8vTj-5Pjo9PS1o3MZS2VEVRR1XWiA8YsSMk62zjZKVFT1zTK1B21HXUWrGGSSc47JgXtRN_Tmh8UL7e-WPbrBCnrlU8WhsEEGKekWYuXUEKKf6OypowLqdR_oJIrKupqdn1-B70Ypxiw5w3FKaOyvaYWZgDtgxtzNHY21Ue8kQ2tJONIHf6BwruHlccZgfO4fkvw6pYAmQzf8sJMKemTs0-32adXB526FfR6HXGS8bv-lTAEXlwBJlkzuGiC9emaa-pWyVoix7acjWNKEdxvhFE9p11v064xxHpOu25Qo-5orM-btGGHfvirstoqE1bByMUb3_cvoidb0UXKY7zRKsWx8Tk1z7b7zozaLCK2eX5WoQH-eFyypuU_AbCZJEk
CODEN OECOBX
CitedBy_id crossref_primary_10_1002_ece3_7211
crossref_primary_10_1007_s10750_018_3828_0
crossref_primary_10_1111_fwb_13659
crossref_primary_10_1111_jfd_12422
crossref_primary_10_1029_2021GL092680
crossref_primary_10_1002_ece3_4891
crossref_primary_10_1139_cjfas_2017_0114
crossref_primary_10_1002_lno_11893
crossref_primary_10_1007_s00442_020_04776_9
crossref_primary_10_1016_j_physbeh_2017_04_024
crossref_primary_10_1139_as_2019_0032
crossref_primary_10_1007_s12686_017_0883_1
crossref_primary_10_1111_fwb_13162
crossref_primary_10_5194_hess_23_4969_2019
crossref_primary_10_1007_s10228_024_00987_9
crossref_primary_10_1111_eff_12202
crossref_primary_10_1002_ecs2_3023
crossref_primary_10_1002_rra_3706
crossref_primary_10_1071_MF17082
crossref_primary_10_1007_s10641_015_0453_x
Cites_doi 10.1093/acprof:osobl/9780199860401.003.0008
10.1098/rspb.2003.2555
10.4319/lo.2009.54.6_part_2.2401
10.1111/j.1365-2656.2010.01793.x
10.1111/j.1600-0633.2006.00183.x
10.1051/alr:1991010
10.1186/1472-6785-6-10
10.1007/978-3-642-74001-5
10.1111/j.1751-8369.1999.tb00295.x
10.1111/j.1095-8312.1994.tb00966.x
10.1111/j.1439-0426.1997.tb00120.x
10.1111/j.1095-8649.1985.tb04270.x
10.1111/j.1095-8649.2007.01596.x
10.1577/T07-040.1
10.2307/1313648
10.1111/j.0022-1112.2005.00734.x
10.2307/2532908
10.1146/annurev.es.23.110192.002405
10.1139/f88-182
10.1016/j.biocon.2010.04.004
10.1126/science.1144004
10.1023/B:AECO.0000007042.09767.dd
10.1006/tpbi.1998.1380
10.1139/f04-213
10.1023/A:1011954221491
10.2307/3546440
10.1111/j.0030-1299.2004.12759.x
10.4319/lo.1996.41.5.1102
10.1111/j.1523-1739.2010.01534.x
10.1046/j.1095-8649.2003.00101.x
10.1139/F08-080
10.4319/lo.2006.51.1.0177
10.1016/0044-8486(84)90336-3
10.1577/T05-146.1
10.1111/j.0030-1299.2005.13543.x
10.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2
10.1139/F10-004
10.1016/j.jtherbio.2004.06.001
10.1111/j.1365-2656.2006.01064.x
10.1080/00063659909477239
10.1139/f78-008
10.1890/03-9000
10.1007/BF00877260
10.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2
10.2307/2937171
10.1080/02664760120108818
10.3354/cr005197
10.1111/j.0030-1299.2006.13990.x
10.1098/rsbl.2008.0049
10.2307/1939533
10.1111/j.1365-2427.2005.01474.x
10.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2
10.1093/oso/9780198540663.001.0001
10.1111/j.1095-8649.2002.tb02419.x
10.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2
10.1139/d98-008
10.1007/BF00013447
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg (outside the USA) 2014
2015 INIST-CNRS
COPYRIGHT 2014 Springer
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg (outside the USA) 2014
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2014 Springer
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7QL
7SN
7SS
7T7
7TN
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FYUFA
GHDGH
GNUQQ
H94
H95
HCIFZ
K9.
L.G
LK8
M0S
M1P
M7N
M7P
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7ST
7U6
7S9
L.6
DOI 10.1007/s00442-014-2993-8
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Oceanic Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Sustainability Science Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


Aquatic Science & Fisheries Abstracts (ASFA) Professional


ProQuest Central Student
MEDLINE

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1432-1939
EndPage 94
ExternalDocumentID 3403252251
A385802513
24969617
28697565
10_1007_s00442_014_2993_8
24037036
US201400135189
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Alaska
PN, Arctic
GeographicLocations_xml – name: Alaska
– name: PN, Arctic
GroupedDBID -4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06C
06D
0R~
0VY
123
186
199
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~F
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGAY
AAHKG
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBHK
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPLY
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTLG
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
ADZLD
AEBTG
AEEJZ
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESBF
AESKC
AESTI
AETLH
AEUPB
AEVLU
AEVTX
AEXYK
AFAZZ
AFDAS
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGUYK
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AICQM
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CBGCD
CCPQU
COF
CS3
CSCUP
CWIXF
D0L
D1J
DATOO
DDRTE
DFEDG
DL5
DNIVK
DOOOF
DPUIP
DU5
DWIUU
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GTFYD
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HTVGU
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBS
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
L8X
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
MQGED
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
Y6R
YLTOR
YV5
Z45
Z7R
Z7U
Z7V
Z7W
Z7Y
Z7Z
Z83
Z88
Z8M
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8W
Z92
ZCA
ZMTXR
ZOVNA
ZY4
~EX
AACDK
AAHBH
AAJBT
AAPKM
AASML
AAYZH
ABAKF
ABBRH
ABDBE
ABFSG
ABXSQ
ACAOD
ACDTI
ACHIC
ACPIV
ACSTC
ACZOJ
AEFQL
AEMSY
AEUYN
AEZWR
AFBBN
AFDZB
AFHIU
AGQEE
AGQPQ
AGRTI
AHPBZ
AHWEU
AHXOZ
AIGIU
AIXLP
ALIPV
AQVQM
ATHPR
AYFIA
BSONS
H13
IPSME
PHGZM
PHGZT
ABQSL
VXZ
AAYXX
ADHKG
ADXHL
AFOHR
CITATION
IQODW
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7SN
7SS
7T7
7TN
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H94
H95
K9.
L.G
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
7ST
7U6
7S9
L.6
ID FETCH-LOGICAL-c685t-657a40707bb4be11ce551bc8f5b7460f887a6b0cb0fceca151533b1540b4dd063
IEDL.DBID 7X7
ISSN 0029-8549
1432-1939
IngestDate Mon Jul 21 10:49:12 EDT 2025
Fri Jul 11 04:20:44 EDT 2025
Fri Jul 11 05:29:10 EDT 2025
Fri Jul 25 19:25:42 EDT 2025
Tue Jun 17 21:34:24 EDT 2025
Tue Jun 10 20:22:39 EDT 2025
Fri Jun 27 04:50:52 EDT 2025
Mon Jul 21 05:59:43 EDT 2025
Wed Apr 02 07:16:13 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Tue Jul 01 01:39:45 EDT 2025
Fri Feb 21 02:33:48 EST 2025
Thu Jun 19 20:13:52 EDT 2025
Wed Dec 27 18:58:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Temperature
Physiology
Fish growth
Food limitation
Bioenergetics
Growth
Environmental factor
Dynamical climatology
Freshwater environment
Climate change
Vertebrata
Pisces
Limitation
Lakes
Salvelinus alpinus
Bioenergetic model
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c685t-657a40707bb4be11ce551bc8f5b7460f887a6b0cb0fceca151533b1540b4dd063
Notes http://dx.doi.org/10.1007/s00442-014-2993-8
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24969617
PQID 1553301059
PQPubID 54033
PageCount 14
ParticipantIDs proquest_miscellaneous_1999947454
proquest_miscellaneous_1560134577
proquest_miscellaneous_1553704624
proquest_journals_1553301059
gale_infotracmisc_A385802513
gale_infotracacademiconefile_A385802513
gale_incontextgauss_ISR_A385802513
pubmed_primary_24969617
pascalfrancis_primary_28697565
crossref_primary_10_1007_s00442_014_2993_8
crossref_citationtrail_10_1007_s00442_014_2993_8
springer_journals_10_1007_s00442_014_2993_8
jstor_primary_24037036
fao_agris_US201400135189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Berlin
– name: Germany
– name: Heidelberg
PublicationTitle Oecologia
PublicationTitleAbbrev Oecologia
PublicationTitleAlternate Oecologia
PublicationYear 2014
Publisher Springer-Verlag
Springer
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HanskiIMetapopulation ecology1999OxfordOxford University Press
CunjakRAProwseTDParrishDLAtlantic salmon (Salmo salar) in winter: “the season of parr discontent”?Can J Fish Aquat Sci19985516118010.1139/d98-008
BoyceMSPopulation viability analysisAnnu Rev Ecol Syst19922348150610.1146/annurev.es.23.110192.002405
GuénardGBoisclairDUgedalOForsethTJonssonBFlemingIAExperimental assessment of the bioenergetic and behavioural differences between two morphologically distinct populations of Arctic char (Salvelinus alpinus)Can J Fish Aquat Sci20106758059510.1139/F10-004
KlingGWO’BrienWJMillerMCHersheyAEThe biogeochemistry and zoogeography of lakes and rivers in arctic AlaskaHydrobiologia19922401141:CAS:528:DyaK3sXhtFejuw%3D%3D10.1007/BF00013447
MurdochWPopulation regulation in theory and practiceEcology19947527128710.2307/1939533
SierszenMEMcDonaldMEJensenDABenthos as the basis for arctic lake food websAquat Ecol20033743744510.1023/B:AECO.0000007042.09767.dd
WedekindCKungCShift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae)Conserv Biol201024141814232056100110.1111/j.1523-1739.2010.01534.x
PradelRUtilization of capture-mark-recapture for the study of recruitment and population growth rateBiometrics19965270370910.2307/2532908
RubinJFThe exceptional growth of the Arctic charr, Salvelinus alpinus (L.) in Lake GenevaAquat Sci Res Acr Bound199355768610.1007/BF00877260
HersheyAEBeatySFortinoKKeyseMMouPPO’BrienWJUlsethAJGettelGALieneschPWLueckeCMcDonaldMEMayerCHMillerMCRichardsCShuldtJAEffect of landscape factors on fish distribution in arctic Alaskan lakesFreshwater Biol20065135510.1111/j.1365-2427.2005.01474.x
PowerGFish population structure in Arctic lakesJ Fish Res Bd Can197835535910.1139/f78-008
SparholtHThe population, survival, growth, reproduction and food of arctic charr, Salvelinus alpinus (L.) in four unexploited lakes in GreenlandJ Fish Biol19852631333010.1111/j.1095-8649.1985.tb04270.x
NicholsJDHinesJEApproaches for the direct estimation of λ, and demographic contributions to λ, using capture dataJ Appl Stat20022958960710.1080/02664760120108818
WhiteGCBurnhamKPProgram MARK: survival estimation from populations of marked animalsBird Study199946S120S13910.1080/00063659909477239
MorrisWFDoakDFQuantitative conservation biology: theory and practice of population viability analysis2002SunderlandSinauer
GuénardGGBoisclairDUgedalOForsethTJonssonBComparison between activity estimates obtained using bioenergetic and behavioral analysesCan J Fish Aquat Sci2008651705172010.1139/F08-080
JungwirthMWinklerHThe temperature dependence of embryonic development of grayling (Thymallus thymallus), Danube salmon (Hucho hucho), Arctic charr (Salvelinus alpinus), and brown trout (Salmo trutta fario)Aquaculture19843831532710.1016/0044-8486(84)90336-3
FinstadAGUgedalOBergOKGrowing large in a low grade environment: size dependent foraging gain and niche sshifts to cannibalism in Arctic charOikos2006112738210.1111/j.0030-1299.2006.13990.x
LebretonJDBurnhamKPClobertJAndersonDRModeling survival and testing biological hypotheses using marked animals: a unified approach with case studiesEcol Monogr1992626711810.2307/2937171
ClaessenDDe RoosAMPerssonLPopulation dynamic theory of size-dependent cannibalismProc R Soc Lond200327133334010.1098/rspb.2003.2555
EbenmanBPerrsonLSize-structured populations: ecology and evolution1988BerlinSpringer10.1007/978-3-642-74001-5
ByströmPGarcίa-BerthouEDensity dependent growth and size specific competitive interactions in young fishOikos19998621723210.2307/3546440
MacIntyreSFramJPBettezNDO’BrienWJHobbieJEKlingGWClimate related variations in mixing dynamics of an Alaskan arctic lakeLimnol Ocean2009542401241710.4319/lo.2009.54.6_part_2.2401
KlemetsenAElliottJMKnudsenRSørensenPEvidence for genetic differences in the offspring of two sympatric morphs of Arctic charrJ Fish Biol20026093395010.1111/j.1095-8649.2002.tb02419.x
LiuJDietzTCarpenterSRAlbertiMFolkeCMoranEPellANDeadmanPKratzTLubchecoJOstromEOuyangZProvencherWRedmanCLSchneiderSHTaylorWWComplexity of coupled human and natural systemsScience2007317151315161:CAS:528:DC%2BD2sXhtVejt7%2FE1787243610.1126/science.1144004
ReistJDWronaFJProwseTDPowerMDempsonJBBeamishRJKingJRCarmichealTJSwawtskyCDGeneral effects of climate change on arctic fishes and fish populationsAmbio J Hum Environ20063537038010.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2
ACIA (2005) Arctic climate impact assessment-scientific report. Cambridge University Press, Cambridge
ByströmPRecruitment pulses induce cannibalistic giants in Arctic charJ Anim Ecol2006754344441663799610.1111/j.1365-2656.2006.01064.x
HersheyAEBeatySFortinoKKellySKeyseMLueckeCO’BrienWJWhalenSCStable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic productionLimnol Oceon20065117718810.4319/lo.2006.51.1.0177
PowerMDempsonJBReistJDSchwarzCJPowerGLatitudinal variation in fecundity among Arctic charr populations in eastern North AmericaJ Fish Biol20056725527310.1111/j.0022-1112.2005.00734.x
RiesRDPerrySAPotential effects of global climate warming on brook trout growth and prey consumption in central Appalachian streams, USAClim Res1995519720610.3354/cr005197
HartmanKJKitchellJFBioenergetics modeling progress since the 1992 symposiumTrans Am Fish Soc200813721622310.1577/T07-040.1
Cooch E, White G (2008) Program MARK: a gentle introduction, 6th edn. Available online at http://www.phidot.org/software/mark/docs/books
HellandIPFinstadAGForsethTHesthagenTUgedalOIce-cover effects on competitive interactions between two fish speciesJ Anim Ecol2011805395472119858910.1111/j.1365-2656.2010.01793.x
Luecke C, Giblin AE, Bettez N, Burkart G, Crump BC, Evans ME, Gettel G, MacIntyre S, O’Brien WJ, Rublee P, GW Kling (2014) The response of lakes near the Arctic-LTER to environmental change. In Hobbie JE, Kling GW (ed) A changing arctic: ecological consequences for tundra, streams, and lakes. University Press, Oxford (in press)
MolnarPKDerocherAEThiemannGWLewisMAPredicting survival, reproduction and abundance of polar bears under climate changeBiol Conserv20101431612162210.1016/j.biocon.2010.04.004
VatlandSBudyPThiedeGPA bioenergetics approach to modeling striped bass and threadfin shad predator-prey dynamics in Lake Powell, Utah-ArizonaTrans Am Fish Soc200813726227710.1577/T05-146.1
HurstTPReview paper: causes and consequences of winter mortality in fishesJ Fish Biol20077131534510.1111/j.1095-8649.2007.01596.x
CaswellHMatrix population models: construction, analysis, and interpretation20012SunderlandSinauer
ClaessenDVan OssCDe RoosAMPerssonLThe impact of size-dependent predation on population dynamics and individual life historyEcology2002831660167510.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2
FraleyJJShepardBBLife history, ecology and population status of migratory bull trout (Salvelinus confluentus) in the Flathead Lake and river system, MontanaNorthw Sci198963133143
Johnson, CR (2009) Consumer-driven nutrient cycling in arctic Alaskan lakes. Dissertation, Utah State University, Logan
LarssonSBerglundIThe effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populationsJ Therm Biol200530293610.1016/j.jtherbio.2004.06.001
KlemetsenAKnudsenRStaldvikFJAmundsenP-AHabitat, diet and food assimilation of Arctic char under the winter ice in two subarctic lakesJ Fish Biol2003621082109810.1046/j.1095-8649.2003.00101.x
JonssonBSkulasonSSnorrasonSSSandlundOTMalmqvistHJJonassonPMGydemoRLindemTLife history variation of polymorphic Arctic char (Salvelinus alpinus) in Thingvallavatn, IcelandCan J Fish Aquat Sci1988451537154710.1139/f88-182
RoseKAWhy are quantitative relationships between environmental quality and fish populations so elusive?Ecol Appl20001036738510.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2
LyytikäinenTKoskelaJRissanenIThe influence of temperature on growth and proximate body composition of underyearling Arctic charr [Salvelinus alpinus (L.)]J Appl Ichthy19971319119410.1111/j.1439-0426.1997.tb00120.x
FinstadAGUgedalOForsethTNaesjeTFEnergy-related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar)Can J Fish Aquat Sci2004612358236810.1139/f04-213
ByströmPAnderssonJPerssonLDe RoosAMSize-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic charOikos200410410912110.1111/j.0030-1299.2004.12759.x
SvenningMABorgstrømRPopulation structure in landlocked Spitsbergen Arctic charr: sustained by cannibalism?Norw J Freshwater Res199571424431
PerssonLLeonardssonKdeRoosAMGyllenergMChristensenBOntogenetic scaling of foraging rates and the dynamics of a size-structured consumer resource modelTheor Pop Biol1998542702931:STN:280:DyaK1M%2FpslCgsw%3D%3D10.1006/tpbi.1998.1380
KrebsCJEcological methodology1999Menlo ParkAddison Wesley Longman
ByströmPAnderssonJSize-dependent foraging capacities and intercohort competition in an ontogenetic omnivore (Arctic char)Oikos200611052353610.1111/j.0030-1299.2005.13543.x
WronaFProwseTReistJHobbieJLèvesqueLVincentWClimate impacts on Arctic freshwater ecosystems and fisheries: background, rationale and approach of the Arctic Climate Impact Assessment (ACIA)Ambio J Hum Environ20063532632910.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2
BurnhamKPAndersonDRModel selection and multimodel inference: a practical information-theoretic approach2002New YorkSpringer
HobbieJEPetersonBJBettezNDeeganLO’BrienWJKlingGWKipphutGWBowdenWBHersheyAEImpact of global change on the biogeochemistry and ecology of an arctic freshwater systemPolar Res19991820721410.1111/j.1751-8369.1999.tb00295.x
KristensenDMJørgensenTRLarsenRKForchhammerMCChristoffersenKSInter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variationBMC Ecol200661015601121693416210.1186/1472-6785-6-10
HersheyAEGettelGMMcDonaldMEMillerMCMooersHO’BrienWJPastorJRichardsCSchuldtJAA geomorphic–trophic model for landscape control of arctic lake food websBioscience19994988789710.2307/131
G Power (2993_CR55) 1978; 35
2993_CR12
S Larsson (2993_CR41) 2005; 30
B Jonsson (2993_CR33) 1988; 45
S MacIntyre (2993_CR49) 2009; 54
D Claessen (2993_CR11) 2003; 271
KJ Hartman (2993_CR25) 2008; 137
PK Molnar (2993_CR50) 2010; 143
C Wedekind (2993_CR67) 2010; 24
D Claessen (2993_CR10) 2002; 83
GG Guénard (2993_CR21) 2008; 65
M Jungwirth (2993_CR34) 1984; 38
GW Kling (2993_CR38) 1992; 240
AE Hershey (2993_CR29) 2006; 51
IP Helland (2993_CR26) 2011; 80
WF Morris (2993_CR51) 2002
TP Hurst (2993_CR31) 2007; 71
T Lyytikäinen (2993_CR46) 1998; 52
MA Svenning (2993_CR64) 1995; 71
D Griffths (2993_CR20) 1994; 51
ME MacDonald (2993_CR48) 1996; 41
P Byström (2993_CR8) 2004; 104
2993_CR45
W Murdoch (2993_CR52) 1994; 75
RA Cunjak (2993_CR14) 1998; 55
M Power (2993_CR56) 2005; 67
P Byström (2993_CR6) 2006; 110
P Byström (2993_CR7) 1999; 86
JH Brown (2993_CR3) 2004; 85
L Persson (2993_CR54) 1998; 54
G Guénard (2993_CR22) 2010; 67
JD Reist (2993_CR58) 2006; 35
MS Boyce (2993_CR2) 1992; 23
ME Sierszen (2993_CR62) 2003; 37
A Klemetsen (2993_CR37) 2003; 62
MA Svenning (2993_CR65) 2007; 16
AG Finstad (2993_CR17) 2006; 112
KA Rose (2993_CR60) 2000; 10
C Gillet (2993_CR19) 1991; 4
CJ Krebs (2993_CR39) 1999
DM Kristensen (2993_CR40) 2006; 6
KW Cummins (2993_CR13) 1971; 18
MA Levine (2993_CR43) 2001; 455
2993_CR32
R Pradel (2993_CR57) 1996; 52
JF Rubin (2993_CR61) 1993; 55
GC White (2993_CR68) 1999; 46
JD Nichols (2993_CR53) 2002; 29
S Vatland (2993_CR66) 2008; 137
H Sparholt (2993_CR63) 1985; 26
B Ebenman (2993_CR15) 1988
T Lyytikäinen (2993_CR47) 1997; 13
F Wrona (2993_CR69) 2006; 35
JE Hobbie (2993_CR30) 1999; 18
I Hanski (2993_CR23) 1999
H Caswell (2993_CR9) 2001
KP Burnham (2993_CR4) 2002
AG Finstad (2993_CR16) 2004; 61
2993_CR24
J Liu (2993_CR44) 2007; 317
A Klemetsen (2993_CR36) 2002; 60
P Byström (2993_CR5) 2006; 75
JJ Fraley (2993_CR18) 1989; 63
AE Hershey (2993_CR28) 2006; 51
2993_CR1
RD Ries (2993_CR59) 1995; 5
AE Hershey (2993_CR27) 1999; 49
DA Keith (2993_CR35) 2008; 4
JD Lebreton (2993_CR42) 1992; 62
16934162 - BMC Ecol. 2006 Aug 27;6:10
20561001 - Conserv Biol. 2010 Oct;24(5):1418-23
18664424 - Biol Lett. 2008 Oct 23;4(5):560-3
15101690 - Proc Biol Sci. 2004 Feb 22;271(1537):333-40
17256636 - Ambio. 2006 Nov;35(7):326-9
16637996 - J Anim Ecol. 2006 Mar;75(2):434-44
9878605 - Theor Popul Biol. 1998 Dec;54(3):270-93
17872436 - Science. 2007 Sep 14;317(5844):1513-6
21198589 - J Anim Ecol. 2011 May;80(3):539-47
17256641 - Ambio. 2006 Nov;35(7):370-80
References_xml – reference: PowerGFish population structure in Arctic lakesJ Fish Res Bd Can197835535910.1139/f78-008
– reference: PowerMDempsonJBReistJDSchwarzCJPowerGLatitudinal variation in fecundity among Arctic charr populations in eastern North AmericaJ Fish Biol20056725527310.1111/j.0022-1112.2005.00734.x
– reference: MacIntyreSFramJPBettezNDO’BrienWJHobbieJEKlingGWClimate related variations in mixing dynamics of an Alaskan arctic lakeLimnol Ocean2009542401241710.4319/lo.2009.54.6_part_2.2401
– reference: CaswellHMatrix population models: construction, analysis, and interpretation20012SunderlandSinauer
– reference: HartmanKJKitchellJFBioenergetics modeling progress since the 1992 symposiumTrans Am Fish Soc200813721622310.1577/T07-040.1
– reference: HellandIPFinstadAGForsethTHesthagenTUgedalOIce-cover effects on competitive interactions between two fish speciesJ Anim Ecol2011805395472119858910.1111/j.1365-2656.2010.01793.x
– reference: HurstTPReview paper: causes and consequences of winter mortality in fishesJ Fish Biol20077131534510.1111/j.1095-8649.2007.01596.x
– reference: ClaessenDDe RoosAMPerssonLPopulation dynamic theory of size-dependent cannibalismProc R Soc Lond200327133334010.1098/rspb.2003.2555
– reference: NicholsJDHinesJEApproaches for the direct estimation of λ, and demographic contributions to λ, using capture dataJ Appl Stat20022958960710.1080/02664760120108818
– reference: BurnhamKPAndersonDRModel selection and multimodel inference: a practical information-theoretic approach2002New YorkSpringer
– reference: LiuJDietzTCarpenterSRAlbertiMFolkeCMoranEPellANDeadmanPKratzTLubchecoJOstromEOuyangZProvencherWRedmanCLSchneiderSHTaylorWWComplexity of coupled human and natural systemsScience2007317151315161:CAS:528:DC%2BD2sXhtVejt7%2FE1787243610.1126/science.1144004
– reference: BrownJHGilloolyJFAllenAPSavageVMWestGBToward a metabolic theory of EcologyEcology2004851771178910.1890/03-9000
– reference: VatlandSBudyPThiedeGPA bioenergetics approach to modeling striped bass and threadfin shad predator-prey dynamics in Lake Powell, Utah-ArizonaTrans Am Fish Soc200813726227710.1577/T05-146.1
– reference: KrebsCJEcological methodology1999Menlo ParkAddison Wesley Longman
– reference: MolnarPKDerocherAEThiemannGWLewisMAPredicting survival, reproduction and abundance of polar bears under climate changeBiol Conserv20101431612162210.1016/j.biocon.2010.04.004
– reference: KeithDAResit AkcakayaHThuillerWMidgleyGFPearsonRGPhillipsSJReganHMArau´joMBRebeloTGPredicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat modelsBiol Lett2008456056326100611866442410.1098/rsbl.2008.0049
– reference: PradelRUtilization of capture-mark-recapture for the study of recruitment and population growth rateBiometrics19965270370910.2307/2532908
– reference: MurdochWPopulation regulation in theory and practiceEcology19947527128710.2307/1939533
– reference: ByströmPRecruitment pulses induce cannibalistic giants in Arctic charJ Anim Ecol2006754344441663799610.1111/j.1365-2656.2006.01064.x
– reference: HersheyAEBeatySFortinoKKeyseMMouPPO’BrienWJUlsethAJGettelGALieneschPWLueckeCMcDonaldMEMayerCHMillerMCRichardsCShuldtJAEffect of landscape factors on fish distribution in arctic Alaskan lakesFreshwater Biol20065135510.1111/j.1365-2427.2005.01474.x
– reference: PerssonLLeonardssonKdeRoosAMGyllenergMChristensenBOntogenetic scaling of foraging rates and the dynamics of a size-structured consumer resource modelTheor Pop Biol1998542702931:STN:280:DyaK1M%2FpslCgsw%3D%3D10.1006/tpbi.1998.1380
– reference: ReistJDWronaFJProwseTDPowerMDempsonJBBeamishRJKingJRCarmichealTJSwawtskyCDGeneral effects of climate change on arctic fishes and fish populationsAmbio J Hum Environ20063537038010.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2
– reference: LyytikäinenTJoblingMThe effect of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Artic charrJ Fish Biol19985211861198
– reference: SvenningMAKlemetsenAOlsenTHabitat and food choice of Arctic charr in Linnévatn on Spitsbergen, Svalbard: the first year-round investigation in a High Arctic lakeEcol Freshwater Fish200716707710.1111/j.1600-0633.2006.00183.x
– reference: ClaessenDVan OssCDe RoosAMPerssonLThe impact of size-dependent predation on population dynamics and individual life historyEcology2002831660167510.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2
– reference: HanskiIMetapopulation ecology1999OxfordOxford University Press
– reference: Johnson, CR (2009) Consumer-driven nutrient cycling in arctic Alaskan lakes. Dissertation, Utah State University, Logan
– reference: MorrisWFDoakDFQuantitative conservation biology: theory and practice of population viability analysis2002SunderlandSinauer
– reference: WhiteGCBurnhamKPProgram MARK: survival estimation from populations of marked animalsBird Study199946S120S13910.1080/00063659909477239
– reference: GuénardGGBoisclairDUgedalOForsethTJonssonBComparison between activity estimates obtained using bioenergetic and behavioral analysesCan J Fish Aquat Sci2008651705172010.1139/F08-080
– reference: GriffthsDThe size structure of lacustrine Arctic char (Pisces: salmonidae) populationsBiol J Linn Soc19945133735710.1111/j.1095-8312.1994.tb00966.x
– reference: KlemetsenAKnudsenRStaldvikFJAmundsenP-AHabitat, diet and food assimilation of Arctic char under the winter ice in two subarctic lakesJ Fish Biol2003621082109810.1046/j.1095-8649.2003.00101.x
– reference: ByströmPAnderssonJSize-dependent foraging capacities and intercohort competition in an ontogenetic omnivore (Arctic char)Oikos200611052353610.1111/j.0030-1299.2005.13543.x
– reference: ByströmPAnderssonJPerssonLDe RoosAMSize-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic charOikos200410410912110.1111/j.0030-1299.2004.12759.x
– reference: CumminsKWWuycheckJCCalorific equivalents for investigations in ecological energeticMitt Int Verein Theor Ang Limnol1971181158
– reference: Hanson PC, Johnson TB, Schindler DE, Kitchell JF (1997) Fish bioenergetics 3.0 for Windows. Technical report WISCU-T-97-001. University of Wisconsin Sea Grant Institute, Madison
– reference: HersheyAEBeatySFortinoKKellySKeyseMLueckeCO’BrienWJWhalenSCStable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic productionLimnol Oceon20065117718810.4319/lo.2006.51.1.0177
– reference: MacDonaldMEHersheyAEMillMCGlobal warming impacts on lake trout in arctic lakesLimnol Ocean1996411102110810.4319/lo.1996.41.5.1102
– reference: RubinJFThe exceptional growth of the Arctic charr, Salvelinus alpinus (L.) in Lake GenevaAquat Sci Res Acr Bound199355768610.1007/BF00877260
– reference: SvenningMABorgstrømRPopulation structure in landlocked Spitsbergen Arctic charr: sustained by cannibalism?Norw J Freshwater Res199571424431
– reference: JungwirthMWinklerHThe temperature dependence of embryonic development of grayling (Thymallus thymallus), Danube salmon (Hucho hucho), Arctic charr (Salvelinus alpinus), and brown trout (Salmo trutta fario)Aquaculture19843831532710.1016/0044-8486(84)90336-3
– reference: EbenmanBPerrsonLSize-structured populations: ecology and evolution1988BerlinSpringer10.1007/978-3-642-74001-5
– reference: WedekindCKungCShift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae)Conserv Biol201024141814232056100110.1111/j.1523-1739.2010.01534.x
– reference: RiesRDPerrySAPotential effects of global climate warming on brook trout growth and prey consumption in central Appalachian streams, USAClim Res1995519720610.3354/cr005197
– reference: KlingGWO’BrienWJMillerMCHersheyAEThe biogeochemistry and zoogeography of lakes and rivers in arctic AlaskaHydrobiologia19922401141:CAS:528:DyaK3sXhtFejuw%3D%3D10.1007/BF00013447
– reference: KristensenDMJørgensenTRLarsenRKForchhammerMCChristoffersenKSInter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variationBMC Ecol200661015601121693416210.1186/1472-6785-6-10
– reference: Luecke C, Giblin AE, Bettez N, Burkart G, Crump BC, Evans ME, Gettel G, MacIntyre S, O’Brien WJ, Rublee P, GW Kling (2014) The response of lakes near the Arctic-LTER to environmental change. In Hobbie JE, Kling GW (ed) A changing arctic: ecological consequences for tundra, streams, and lakes. University Press, Oxford (in press)
– reference: KlemetsenAElliottJMKnudsenRSørensenPEvidence for genetic differences in the offspring of two sympatric morphs of Arctic charrJ Fish Biol20026093395010.1111/j.1095-8649.2002.tb02419.x
– reference: LyytikäinenTKoskelaJRissanenIThe influence of temperature on growth and proximate body composition of underyearling Arctic charr [Salvelinus alpinus (L.)]J Appl Ichthy19971319119410.1111/j.1439-0426.1997.tb00120.x
– reference: ACIA (2005) Arctic climate impact assessment-scientific report. Cambridge University Press, Cambridge
– reference: ByströmPGarcίa-BerthouEDensity dependent growth and size specific competitive interactions in young fishOikos19998621723210.2307/3546440
– reference: FinstadAGUgedalOBergOKGrowing large in a low grade environment: size dependent foraging gain and niche sshifts to cannibalism in Arctic charOikos2006112738210.1111/j.0030-1299.2006.13990.x
– reference: HersheyAEGettelGMMcDonaldMEMillerMCMooersHO’BrienWJPastorJRichardsCSchuldtJAA geomorphic–trophic model for landscape control of arctic lake food websBioscience19994988789710.2307/1313648
– reference: WronaFProwseTReistJHobbieJLèvesqueLVincentWClimate impacts on Arctic freshwater ecosystems and fisheries: background, rationale and approach of the Arctic Climate Impact Assessment (ACIA)Ambio J Hum Environ20063532632910.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2
– reference: CunjakRAProwseTDParrishDLAtlantic salmon (Salmo salar) in winter: “the season of parr discontent”?Can J Fish Aquat Sci19985516118010.1139/d98-008
– reference: FraleyJJShepardBBLife history, ecology and population status of migratory bull trout (Salvelinus confluentus) in the Flathead Lake and river system, MontanaNorthw Sci198963133143
– reference: JonssonBSkulasonSSnorrasonSSSandlundOTMalmqvistHJJonassonPMGydemoRLindemTLife history variation of polymorphic Arctic char (Salvelinus alpinus) in Thingvallavatn, IcelandCan J Fish Aquat Sci1988451537154710.1139/f88-182
– reference: BoyceMSPopulation viability analysisAnnu Rev Ecol Syst19922348150610.1146/annurev.es.23.110192.002405
– reference: HobbieJEPetersonBJBettezNDeeganLO’BrienWJKlingGWKipphutGWBowdenWBHersheyAEImpact of global change on the biogeochemistry and ecology of an arctic freshwater systemPolar Res19991820721410.1111/j.1751-8369.1999.tb00295.x
– reference: GilletCEgg production in an Arctic char (Salvelinus alpinus L.) brood stock: effects of temperature on the timing of spawning and the quality of eggsAquat Liv Res1991410911610.1051/alr:1991010
– reference: SierszenMEMcDonaldMEJensenDABenthos as the basis for arctic lake food websAquat Ecol20033743744510.1023/B:AECO.0000007042.09767.dd
– reference: GuénardGBoisclairDUgedalOForsethTJonssonBFlemingIAExperimental assessment of the bioenergetic and behavioural differences between two morphologically distinct populations of Arctic char (Salvelinus alpinus)Can J Fish Aquat Sci20106758059510.1139/F10-004
– reference: LevineMAWhalenSCNutrient limitation of phytoplankton production in Alaskan Arctic foothill lakesHydrobiologia200145518920110.1023/A:1011954221491
– reference: RoseKAWhy are quantitative relationships between environmental quality and fish populations so elusive?Ecol Appl20001036738510.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2
– reference: LebretonJDBurnhamKPClobertJAndersonDRModeling survival and testing biological hypotheses using marked animals: a unified approach with case studiesEcol Monogr1992626711810.2307/2937171
– reference: Cooch E, White G (2008) Program MARK: a gentle introduction, 6th edn. Available online at http://www.phidot.org/software/mark/docs/books/
– reference: FinstadAGUgedalOForsethTNaesjeTFEnergy-related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar)Can J Fish Aquat Sci2004612358236810.1139/f04-213
– reference: SparholtHThe population, survival, growth, reproduction and food of arctic charr, Salvelinus alpinus (L.) in four unexploited lakes in GreenlandJ Fish Biol19852631333010.1111/j.1095-8649.1985.tb04270.x
– reference: LarssonSBerglundIThe effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populationsJ Therm Biol200530293610.1016/j.jtherbio.2004.06.001
– ident: 2993_CR45
  doi: 10.1093/acprof:osobl/9780199860401.003.0008
– volume: 71
  start-page: 424
  year: 1995
  ident: 2993_CR64
  publication-title: Norw J Freshwater Res
– volume: 271
  start-page: 333
  year: 2003
  ident: 2993_CR11
  publication-title: Proc R Soc Lond
  doi: 10.1098/rspb.2003.2555
– volume: 54
  start-page: 2401
  year: 2009
  ident: 2993_CR49
  publication-title: Limnol Ocean
  doi: 10.4319/lo.2009.54.6_part_2.2401
– volume: 80
  start-page: 539
  year: 2011
  ident: 2993_CR26
  publication-title: J Anim Ecol
  doi: 10.1111/j.1365-2656.2010.01793.x
– volume: 16
  start-page: 70
  year: 2007
  ident: 2993_CR65
  publication-title: Ecol Freshwater Fish
  doi: 10.1111/j.1600-0633.2006.00183.x
– volume: 4
  start-page: 109
  year: 1991
  ident: 2993_CR19
  publication-title: Aquat Liv Res
  doi: 10.1051/alr:1991010
– volume: 6
  start-page: 10
  year: 2006
  ident: 2993_CR40
  publication-title: BMC Ecol
  doi: 10.1186/1472-6785-6-10
– volume-title: Size-structured populations: ecology and evolution
  year: 1988
  ident: 2993_CR15
  doi: 10.1007/978-3-642-74001-5
– volume: 18
  start-page: 1
  year: 1971
  ident: 2993_CR13
  publication-title: Mitt Int Verein Theor Ang Limnol
– volume: 18
  start-page: 207
  year: 1999
  ident: 2993_CR30
  publication-title: Polar Res
  doi: 10.1111/j.1751-8369.1999.tb00295.x
– volume: 51
  start-page: 337
  year: 1994
  ident: 2993_CR20
  publication-title: Biol J Linn Soc
  doi: 10.1111/j.1095-8312.1994.tb00966.x
– volume: 13
  start-page: 191
  year: 1997
  ident: 2993_CR47
  publication-title: J Appl Ichthy
  doi: 10.1111/j.1439-0426.1997.tb00120.x
– volume-title: Ecological methodology
  year: 1999
  ident: 2993_CR39
– volume: 26
  start-page: 313
  year: 1985
  ident: 2993_CR63
  publication-title: J Fish Biol
  doi: 10.1111/j.1095-8649.1985.tb04270.x
– volume: 71
  start-page: 315
  year: 2007
  ident: 2993_CR31
  publication-title: J Fish Biol
  doi: 10.1111/j.1095-8649.2007.01596.x
– ident: 2993_CR12
– volume: 137
  start-page: 216
  year: 2008
  ident: 2993_CR25
  publication-title: Trans Am Fish Soc
  doi: 10.1577/T07-040.1
– volume: 49
  start-page: 887
  year: 1999
  ident: 2993_CR27
  publication-title: Bioscience
  doi: 10.2307/1313648
– volume: 67
  start-page: 255
  year: 2005
  ident: 2993_CR56
  publication-title: J Fish Biol
  doi: 10.1111/j.0022-1112.2005.00734.x
– volume: 52
  start-page: 703
  year: 1996
  ident: 2993_CR57
  publication-title: Biometrics
  doi: 10.2307/2532908
– volume: 23
  start-page: 481
  year: 1992
  ident: 2993_CR2
  publication-title: Annu Rev Ecol Syst
  doi: 10.1146/annurev.es.23.110192.002405
– volume: 45
  start-page: 1537
  year: 1988
  ident: 2993_CR33
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/f88-182
– volume: 143
  start-page: 1612
  year: 2010
  ident: 2993_CR50
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2010.04.004
– volume: 317
  start-page: 1513
  year: 2007
  ident: 2993_CR44
  publication-title: Science
  doi: 10.1126/science.1144004
– volume: 37
  start-page: 437
  year: 2003
  ident: 2993_CR62
  publication-title: Aquat Ecol
  doi: 10.1023/B:AECO.0000007042.09767.dd
– volume: 54
  start-page: 270
  year: 1998
  ident: 2993_CR54
  publication-title: Theor Pop Biol
  doi: 10.1006/tpbi.1998.1380
– volume: 61
  start-page: 2358
  year: 2004
  ident: 2993_CR16
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/f04-213
– volume: 455
  start-page: 189
  year: 2001
  ident: 2993_CR43
  publication-title: Hydrobiologia
  doi: 10.1023/A:1011954221491
– volume: 86
  start-page: 217
  year: 1999
  ident: 2993_CR7
  publication-title: Oikos
  doi: 10.2307/3546440
– volume: 104
  start-page: 109
  year: 2004
  ident: 2993_CR8
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2004.12759.x
– volume: 41
  start-page: 1102
  year: 1996
  ident: 2993_CR48
  publication-title: Limnol Ocean
  doi: 10.4319/lo.1996.41.5.1102
– volume: 24
  start-page: 1418
  year: 2010
  ident: 2993_CR67
  publication-title: Conserv Biol
  doi: 10.1111/j.1523-1739.2010.01534.x
– volume: 62
  start-page: 1082
  year: 2003
  ident: 2993_CR37
  publication-title: J Fish Biol
  doi: 10.1046/j.1095-8649.2003.00101.x
– volume: 65
  start-page: 1705
  year: 2008
  ident: 2993_CR21
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/F08-080
– volume: 51
  start-page: 177
  year: 2006
  ident: 2993_CR28
  publication-title: Limnol Oceon
  doi: 10.4319/lo.2006.51.1.0177
– volume: 38
  start-page: 315
  year: 1984
  ident: 2993_CR34
  publication-title: Aquaculture
  doi: 10.1016/0044-8486(84)90336-3
– volume: 137
  start-page: 262
  year: 2008
  ident: 2993_CR66
  publication-title: Trans Am Fish Soc
  doi: 10.1577/T05-146.1
– volume-title: Matrix population models: construction, analysis, and interpretation
  year: 2001
  ident: 2993_CR9
– ident: 2993_CR32
– volume: 110
  start-page: 523
  year: 2006
  ident: 2993_CR6
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2005.13543.x
– volume: 35
  start-page: 326
  year: 2006
  ident: 2993_CR69
  publication-title: Ambio J Hum Environ
  doi: 10.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2
– volume: 67
  start-page: 580
  year: 2010
  ident: 2993_CR22
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/F10-004
– volume: 52
  start-page: 1186
  year: 1998
  ident: 2993_CR46
  publication-title: J Fish Biol
– volume: 30
  start-page: 29
  year: 2005
  ident: 2993_CR41
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2004.06.001
– volume: 75
  start-page: 434
  year: 2006
  ident: 2993_CR5
  publication-title: J Anim Ecol
  doi: 10.1111/j.1365-2656.2006.01064.x
– volume: 46
  start-page: S120
  year: 1999
  ident: 2993_CR68
  publication-title: Bird Study
  doi: 10.1080/00063659909477239
– volume: 35
  start-page: 53
  year: 1978
  ident: 2993_CR55
  publication-title: J Fish Res Bd Can
  doi: 10.1139/f78-008
– volume: 85
  start-page: 1771
  year: 2004
  ident: 2993_CR3
  publication-title: Ecology
  doi: 10.1890/03-9000
– volume: 55
  start-page: 76
  year: 1993
  ident: 2993_CR61
  publication-title: Aquat Sci Res Acr Bound
  doi: 10.1007/BF00877260
– volume: 63
  start-page: 133
  year: 1989
  ident: 2993_CR18
  publication-title: Northw Sci
– volume: 35
  start-page: 370
  year: 2006
  ident: 2993_CR58
  publication-title: Ambio J Hum Environ
  doi: 10.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2
– volume: 62
  start-page: 67
  year: 1992
  ident: 2993_CR42
  publication-title: Ecol Monogr
  doi: 10.2307/2937171
– volume-title: Quantitative conservation biology: theory and practice of population viability analysis
  year: 2002
  ident: 2993_CR51
– volume: 29
  start-page: 589
  year: 2002
  ident: 2993_CR53
  publication-title: J Appl Stat
  doi: 10.1080/02664760120108818
– volume: 5
  start-page: 197
  year: 1995
  ident: 2993_CR59
  publication-title: Clim Res
  doi: 10.3354/cr005197
– volume: 112
  start-page: 73
  year: 2006
  ident: 2993_CR17
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2006.13990.x
– volume: 4
  start-page: 560
  year: 2008
  ident: 2993_CR35
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2008.0049
– volume: 75
  start-page: 271
  year: 1994
  ident: 2993_CR52
  publication-title: Ecology
  doi: 10.2307/1939533
– volume: 51
  start-page: 355
  year: 2006
  ident: 2993_CR29
  publication-title: Freshwater Biol
  doi: 10.1111/j.1365-2427.2005.01474.x
– ident: 2993_CR1
– volume-title: Model selection and multimodel inference: a practical information-theoretic approach
  year: 2002
  ident: 2993_CR4
– ident: 2993_CR24
– volume: 83
  start-page: 1660
  year: 2002
  ident: 2993_CR10
  publication-title: Ecology
  doi: 10.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2
– volume-title: Metapopulation ecology
  year: 1999
  ident: 2993_CR23
  doi: 10.1093/oso/9780198540663.001.0001
– volume: 60
  start-page: 933
  year: 2002
  ident: 2993_CR36
  publication-title: J Fish Biol
  doi: 10.1111/j.1095-8649.2002.tb02419.x
– volume: 10
  start-page: 367
  year: 2000
  ident: 2993_CR60
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2
– volume: 55
  start-page: 161
  year: 1998
  ident: 2993_CR14
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/d98-008
– volume: 240
  start-page: 1
  year: 1992
  ident: 2993_CR38
  publication-title: Hydrobiologia
  doi: 10.1007/BF00013447
– reference: 17256641 - Ambio. 2006 Nov;35(7):370-80
– reference: 17872436 - Science. 2007 Sep 14;317(5844):1513-6
– reference: 18664424 - Biol Lett. 2008 Oct 23;4(5):560-3
– reference: 16637996 - J Anim Ecol. 2006 Mar;75(2):434-44
– reference: 9878605 - Theor Popul Biol. 1998 Dec;54(3):270-93
– reference: 21198589 - J Anim Ecol. 2011 May;80(3):539-47
– reference: 16934162 - BMC Ecol. 2006 Aug 27;6:10
– reference: 20561001 - Conserv Biol. 2010 Oct;24(5):1418-23
– reference: 15101690 - Proc Biol Sci. 2004 Feb 22;271(1537):333-40
– reference: 17256636 - Ambio. 2006 Nov;35(7):326-9
SSID ssj0014155
Score 2.2376077
Snippet Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms Adaptation, Physiological
Adaptation, Physiological - physiology
Alaska
Animal and plant ecology
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Biomedical and Life Sciences
Body Size
Body Size - physiology
Climate Change
Climate effects
Climate models
Climatology. Bioclimatology. Climate change
Conspecifics
dimorphism
Earth, ocean, space
Ecology
Energy Metabolism
Energy Metabolism - physiology
Exact sciences and technology
External geophysics
fish
Fish populations
Fishes
Fresh water ecosystems
Freshwater fishes
Fundamental and applied biological sciences. Psychology
General aspects
Global temperature changes
Growing season
growth & development
Growth rate
Hydrology/Water Resources
Lakes
latitude
Life Sciences
Marine fishes
Meteorology
Modeling
Models, Biological
Physiological aspects
physiology
Plant Sciences
Population Density
Population Dynamics
Population ecology
Population ecology - Original research
Population size
Population structure
reproductive performance
Salvelinus alpinus
Seasons
Survival Analysis
Synecology
Temperature
Trout
Trout - growth & development
uncertainty
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-2Ivgi9aP22lqiCIKysB_Zr74dpaUK-mBd6FuYZJNWPHaLe0fpH-X_6Mwmu95iPfBtIbOzyc0kmbn5zQxjb00cQZxHJhBZbQNRRFGgUh0GOGkLJWmRoQTnz1-y80p8ukwvfR53N6Ddh5Bkf1KPyW4UeyQYgQhiAp0VW-xhiq474biqeD6GDuiGHHAdBXo_QyjzPhaTy2jLQjsezA6cSEhJ6PDHsq7LxX1m6F8h1P5mOtthT7xJyedOB56yB6Z5xh65JpN3-HTaF6a-e85-VeuZLPy6veUL-GH4zdjEq-Ot5aj6yIlTPhY-G-5KzK5-mprjm5xuQqLl9Bcu71z_eq5948-eDXFBwxIZLwmMhMMeNkIDevEdrWTDXcrxMQfegxoDCxoNePyGr3L-glVnp99OzgPfriHQWZEuCUQDgqoHKSWUiSJt0BpTurCpykUWWjzOIFOhVqHVRgNZUkmi0IQLlahrNJV22XbTNmaPcWEgrCEBtI-UCK0oIbIx2DrNNfrUZTJj4SA3qX0tc2qpsZBjFeZe1BJFLUnUspix9-MrN66QxybiPVQGCVd40MrqIiY3NKRehkU5Y29IQyTVzmgInHMFq66THy--yjkFWclnw_m980S2xXlp8LkOuDoqtzWhPJxQ4ubWk-HdXhHHKVP5RKqZNmNHE838Q1BkZY5WOjIeVFX6Y6mT1CQqoZ6ouIzX4zB9k6B2jWlXjianlGWxiQb9-ESkeb6BBl2PUuQiRT4v3VZZWwUVZYrw7Q_D3lmb5L-ksv9f1AfsMcnN4QEP2TbuFfMKDcilOuoPjN-oQ2QV
  priority: 102
  providerName: Springer Nature
Title Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach
URI https://www.jstor.org/stable/24037036
https://link.springer.com/article/10.1007/s00442-014-2993-8
https://www.ncbi.nlm.nih.gov/pubmed/24969617
https://www.proquest.com/docview/1553301059
https://www.proquest.com/docview/1553704624
https://www.proquest.com/docview/1560134577
https://www.proquest.com/docview/1999947454
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELbYJiS-IN7GAqMyCAkJFJEX540vqKCOAWJCG5HKJ8t27A1RJYW0QvtR_EfuYidrBPRTo_riOPH5fGc_fo6QpzoKRZSF2mdpZXyWh6EvExX40GgjCtQijQecP52kxyX7ME_mbsGtdbDK3iZ2hrpqFK6Rv8T8NjGmcyxeL3_4mDUKd1ddCo0dsofUZajV2XwIuEKcLHuIRw6BUL-rGVgSUYagBOZHCGHLR_PSjhHNYKMtThFBk6KF72Zswot_eaR_7aZ2k9TRLXLTeZd0atXhNrmm6zvkus03eQlXs46j-vIu-V1uHmqhF80vuhDfNV0O-bxa2hgKowBqong0C641tWyz65-6onAnxUkRZSmu5tLWprKnyuUA7arBWsDHhIpXiEuCYocgwQK1-AYOs6b29PErKmiHb_SNUODLwzMc4fk9Uh7Nvrw99l3mBl-lebJCPI1gSCQkJZM6DJUGx0yq3CQyY2lgwLKJVAZKBkZpJdCpimMJ3lwgWVWB17RPduum1geEMi2CSsQCXCXJAsMKEZpImCrJFITXReyRoO83rhytOWbXWPCBkLnrag5dzbGree6R58MtS8vpsU34AJSBi3Owubw8izAiDTCtYV545AlqCEcajRpxOudi3bb8_dkpn-J-K4Zv0L5nTsg00C4l3LEHeDtk3hpJHo4kYZyrUfF-p4hDk5FJEenTPDIZaeaVQJ4WGTjsUHGvqtxZqJZfjSePPB6K8ZmIuqt1s7YyGZ5eZttkIKSPWZJlW2QgCilYxhKo574dKhtvgfxMIdz9oh87G438X6882P5KD8kN7CiLBTwkuzA49CNwHldy0lmICdmbvvv6cQa_b2Ynn0_h3zKa_gGYNWuR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw0NqGEHxBvMYCYxgEQgJFOKnzQkJogk0te3xgq9RvxnbsMa1qCmk19UfBb-QuTrJGQL_tWySfL3bufI_4HoS8NGEgwyQwPo9z6_M0CHwVaebDoq3MkIsMJjgfHcf9If8yikZr5HeTC4NhlY1MrAR1Xmj8R_4O-9v0sJ1j9nH6w8euUXi72rTQcGxxYBaX4LKVHwafgb6vwnB_7_RT36-7Cvg6TqMZxnpIjkVulOLKBIE2YDQondpIJTxmFk6djBXTillttESF3-spsDSY4nkOGh3wrpMboHgZOnvJqHXwAlTOTUhJCo5Xc4vKXNFSjkEQ3A8xZC7t6MF1K4tWJ7i4SAzSlCXQyboGG_-ygP-6va2U4v5dcqe2ZumuY797ZM1M7pObrr_lAp72qprYiwfk13A5iYZ-Ly7pWF4YOm37h5W0sBQ-L2CimAoGz4a66rbznyanMJOiEkZYin-PKSaJwumhuu45WqFBLGDTAuIZxkHBcB2xggN6fA4GuqEu2_k9lbSKp_St1OA7wDvqAusPyfBaaLpJNibFxGwRyo1kuexJMM0UZ5ZnMrChtHmUaHDns55HWEM3oesy6tjNYyzaAtAVqQWQWiCpReqRN-2Uqashsgp4C5hByDOQ8WJ4EqIHzLCNYpp55AVyiMCyHROMCzqT87IUg5OvYhfvd9FdhPW9roFsAevSsk6zgN1hpa8O5HYHEuSK7gxvVozYLhkrN2K5No_sdDjzCiCNswQcBEDcsKqoJWIprs6vR563w_hOjPKbmGLuYBLMluarYGL4HDxKkhUw4PVkPOER4HnkjsrSLrAeVACz3zZnZ2mR_6PK49VbekZu9U-PDsXh4PjgCbmNRHNxiNtkAw6KeQqG60ztVNKCkm_XLZ7-AHKcpEM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1No6gXhB3MYKYxgEQgJFS1LnhoTQYK1WBtW0UWlvxnbsMa1qCmk19aP4Ab6Oc2InawX0bW-RfHLi5NzjcyHkhQ4DESaB9licG4-lQeDJSPkebNqIDLlIY4Hzl0F8MGSfTqPTNfK7roXBtMpaJ1aKOi8U_iPfxfk2HRznmO0alxZxtN97P_nh4QQpPGmtx2lYFjnU80sI38p3_X2g9csw7HW_fjzw3IQBT8VpNMW8D8Gw4Y2UTOogUBocCKlSE8mExb4BCRSx9JX0jdJKoPHvdCR4Hb5keQ7WHfCuk40Eo6IW2fjQHRwdN2cYaKrrBJMUwrD6TNW3LUwZpkQwL8QEunTJKq4bUTQWwmZJYsqmKIFqxo7b-Jc__NdZbmUie3fIbefb0j3LjHfJmh7fIzfstMs5XHWrDtnz--TXcLGkhn4vLulIXGg6aaaJlbQwFD4wYKJYGAbXmtpet7OfOqdwJ0WTjLAU_yVTLBkFWaLKTSCt0CAW8HAB8RSzomDZ5a_gghqdg7uuqa19fksFrbIrPSMURBLwDNdu_QEZXgtVN0lrXIz1FqFMCz8XHQGOmmS-YZkITChMHiUKgvus0yZ-TTeuXFN1nO0x4k076IrUHEjNkdQ8bZPXzS0T21FkFfAWMAMXZ6Dx-fAkxHjYx6GKadYmz5FDODbxGKM4nIlZWfL-yTHfw9NeDB5hf68ckClgX0q4ogt4O-z7tQS5vQQJWkYtLW9WjNhsGfs4YvO2NtlZ4swrgDTOEggXAHHNqtzpx5JfSXObPGuW8ZmY8zfWxczCJFg7zVbBxPA5WJQkK2AgBspYwiLA89CKysJbYHeoAO5-U8vOwib_R5VHq1_pKbkJqol_7g8OH5NbSDOblLhNWiAn-gl4sVO549QFJd-uW0P9AcX0qd4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+how+lake+populations+of+arctic+char+are+structured+and+function+with+special+consideration+of+the+potential+effects+of+climate+change%3A+a+multi-faceted+approach&rft.jtitle=Oecologia&rft.au=Budy%2C+Phaedra&rft.au=Luecke%2C+Chris&rft.date=2014-09-01&rft.pub=Springer&rft.issn=0029-8549&rft.volume=176&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1007%2Fs00442-014-2993-8&rft.externalDocID=A385802513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8549&client=summon