Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population st...
Saved in:
Published in | Oecologia Vol. 176; no. 1; pp. 81 - 94 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.09.2014
Springer Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R ₒ) and decrease in generation time (G ₒ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure. |
---|---|
AbstractList | Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure. Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R o ) and decrease in generation time (G o ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a subset of small char to "break through," thus setting the cycle in population structure. Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R ₒ) and decrease in generation time (G ₒ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure. Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small ( less than or equal to 300 mm) and large (>300 mm) char. Apparent survival ( Phi ) and specific growth rates (SGR) were relatively high (40-96 %; SGR range 0.03-1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 degree C) and a longer growing season. An increase in consumption rates (28-34 %) under climate change scenarios led to much greater growth rates (23-34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R sub(o)) and decrease in generation time (G sub(o)). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure. Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small ([less than or equal to] 300 mm) and large (>300 mm) char. apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; sGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15°C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output ([R.sub.o]) and decrease in generation time ([G.sub.o]). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a subset of small char to "break through," thus setting the cycle in population structure. Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (<=300 mm) and large (>300 mm) char. Apparent survival ([Phi]) and specific growth rates (SGR) were relatively high (40-96 %; SGR range 0.03-1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34 %) under climate change scenarios led to much greater growth rates (23-34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R ^sub o^) and decrease in generation time (G ^sub o^). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.[PUBLICATION ABSTRACT] Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure. Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small ([less than or equal to] 300 mm) and large (>300 mm) char. apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; sGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15°C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output ([R.sub.o]) and decrease in generation time ([G.sub.o]). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a subset of small char to "break through," thus setting the cycle in population structure. Keywords Temperature * Physiology * Bioenergetics * Food limitation * Fish growth Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Rₒ) and decrease in generation time (Gₒ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure. Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char ( Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output ( R o ) and decrease in generation time ( G o ). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure. |
Audience | Academic |
Author | Budy, Phaedra Luecke, Chris |
Author_xml | – sequence: 1 fullname: Budy, Phaedra – sequence: 2 fullname: Luecke, Chris |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28697565$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24969617$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tu1DAQhiNURA_wAFwAlhASXKTYsR0n3FUVh0qVkCi9thxnvOuSdRbbUeGheEcmu4UehIDkIpH9_f94Mn_2i50wBiiKx4weMkrV60SpEFVJmSirtuVlc6_YY4JXJWt5u1PsUVq1ZSNFu1vsp3RBEWRSPih2K9HWbc3UXvHjPPQQUzah92FBluMlGcwXIOtxPQ0m-zEkMjpios3eErs0Ed-BpBwnm6cIPUElcVOwM0sufV6StAbrzUAsij26b2xml7ycjTOEPG-Dc2Dzxt4OfmUyzP5hAW-IIatpyL50xkKea6zXcTR2-bC478yQ4NHV86A4f_f28_GH8vTj-5Pjo9PS1o3MZS2VEVRR1XWiA8YsSMk62zjZKVFT1zTK1B21HXUWrGGSSc47JgXtRN_Tmh8UL7e-WPbrBCnrlU8WhsEEGKekWYuXUEKKf6OypowLqdR_oJIrKupqdn1-B70Ypxiw5w3FKaOyvaYWZgDtgxtzNHY21Ue8kQ2tJONIHf6BwruHlccZgfO4fkvw6pYAmQzf8sJMKemTs0-32adXB526FfR6HXGS8bv-lTAEXlwBJlkzuGiC9emaa-pWyVoix7acjWNKEdxvhFE9p11v064xxHpOu25Qo-5orM-btGGHfvirstoqE1bByMUb3_cvoidb0UXKY7zRKsWx8Tk1z7b7zozaLCK2eX5WoQH-eFyypuU_AbCZJEk |
CODEN | OECOBX |
CitedBy_id | crossref_primary_10_1002_ece3_7211 crossref_primary_10_1007_s10750_018_3828_0 crossref_primary_10_1111_fwb_13659 crossref_primary_10_1111_jfd_12422 crossref_primary_10_1029_2021GL092680 crossref_primary_10_1002_ece3_4891 crossref_primary_10_1139_cjfas_2017_0114 crossref_primary_10_1002_lno_11893 crossref_primary_10_1007_s00442_020_04776_9 crossref_primary_10_1016_j_physbeh_2017_04_024 crossref_primary_10_1139_as_2019_0032 crossref_primary_10_1007_s12686_017_0883_1 crossref_primary_10_1111_fwb_13162 crossref_primary_10_5194_hess_23_4969_2019 crossref_primary_10_1007_s10228_024_00987_9 crossref_primary_10_1111_eff_12202 crossref_primary_10_1002_ecs2_3023 crossref_primary_10_1002_rra_3706 crossref_primary_10_1071_MF17082 crossref_primary_10_1007_s10641_015_0453_x |
Cites_doi | 10.1093/acprof:osobl/9780199860401.003.0008 10.1098/rspb.2003.2555 10.4319/lo.2009.54.6_part_2.2401 10.1111/j.1365-2656.2010.01793.x 10.1111/j.1600-0633.2006.00183.x 10.1051/alr:1991010 10.1186/1472-6785-6-10 10.1007/978-3-642-74001-5 10.1111/j.1751-8369.1999.tb00295.x 10.1111/j.1095-8312.1994.tb00966.x 10.1111/j.1439-0426.1997.tb00120.x 10.1111/j.1095-8649.1985.tb04270.x 10.1111/j.1095-8649.2007.01596.x 10.1577/T07-040.1 10.2307/1313648 10.1111/j.0022-1112.2005.00734.x 10.2307/2532908 10.1146/annurev.es.23.110192.002405 10.1139/f88-182 10.1016/j.biocon.2010.04.004 10.1126/science.1144004 10.1023/B:AECO.0000007042.09767.dd 10.1006/tpbi.1998.1380 10.1139/f04-213 10.1023/A:1011954221491 10.2307/3546440 10.1111/j.0030-1299.2004.12759.x 10.4319/lo.1996.41.5.1102 10.1111/j.1523-1739.2010.01534.x 10.1046/j.1095-8649.2003.00101.x 10.1139/F08-080 10.4319/lo.2006.51.1.0177 10.1016/0044-8486(84)90336-3 10.1577/T05-146.1 10.1111/j.0030-1299.2005.13543.x 10.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2 10.1139/F10-004 10.1016/j.jtherbio.2004.06.001 10.1111/j.1365-2656.2006.01064.x 10.1080/00063659909477239 10.1139/f78-008 10.1890/03-9000 10.1007/BF00877260 10.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2 10.2307/2937171 10.1080/02664760120108818 10.3354/cr005197 10.1111/j.0030-1299.2006.13990.x 10.1098/rsbl.2008.0049 10.2307/1939533 10.1111/j.1365-2427.2005.01474.x 10.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2 10.1093/oso/9780198540663.001.0001 10.1111/j.1095-8649.2002.tb02419.x 10.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2 10.1139/d98-008 10.1007/BF00013447 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg (outside the USA) 2014 2015 INIST-CNRS COPYRIGHT 2014 Springer |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg (outside the USA) 2014 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2014 Springer |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7QL 7SN 7SS 7T7 7TN 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH GNUQQ H94 H95 HCIFZ K9. L.G LK8 M0S M1P M7N M7P P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7ST 7U6 7S9 L.6 |
DOI | 10.1007/s00442-014-2993-8 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Oceanic Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) MEDLINE - Academic Sustainability Science Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1432-1939 |
EndPage | 94 |
ExternalDocumentID | 3403252251 A385802513 24969617 28697565 10_1007_s00442_014_2993_8 24037036 US201400135189 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Alaska PN, Arctic |
GeographicLocations_xml | – name: Alaska – name: PN, Arctic |
GroupedDBID | -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 06C 06D 0R~ 0VY 123 186 199 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~F 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHKG AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAXTN AAYFA AAYIU AAYQN AAYTO ABBBX ABBHK ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABPLY ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTLG ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW ADZLD AEBTG AEEJZ AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESBF AESKC AESTI AETLH AEUPB AEVLU AEVTX AEXYK AFAZZ AFDAS AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGUYK AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AICQM AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CBGCD CCPQU COF CS3 CSCUP CWIXF D0L D1J DATOO DDRTE DFEDG DL5 DNIVK DOOOF DPUIP DU5 DWIUU EBD EBLON EBS ECGQY EDH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GTFYD GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HTVGU HVGLF HZ~ I09 IAO IEP IFM IHE IHR IJ- IKXTQ INH INR ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBS JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH L8X LAS LK8 LLZTM M0L M1P M4Y M7P MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 Y6R YLTOR YV5 Z45 Z7R Z7U Z7V Z7W Z7Y Z7Z Z83 Z88 Z8M Z8O Z8P Z8Q Z8S Z8T Z8W Z92 ZCA ZMTXR ZOVNA ZY4 ~EX AACDK AAHBH AAJBT AAPKM AASML AAYZH ABAKF ABBRH ABDBE ABFSG ABXSQ ACAOD ACDTI ACHIC ACPIV ACSTC ACZOJ AEFQL AEMSY AEUYN AEZWR AFBBN AFDZB AFHIU AGQEE AGQPQ AGRTI AHPBZ AHWEU AHXOZ AIGIU AIXLP ALIPV AQVQM ATHPR AYFIA BSONS H13 IPSME PHGZM PHGZT ABQSL VXZ AAYXX ADHKG ADXHL AFOHR CITATION IQODW ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7SN 7SS 7T7 7TN 7U9 7XB 8FD 8FK AZQEC C1K DWQXO F1W FR3 GNUQQ H94 H95 K9. L.G M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 7ST 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c685t-657a40707bb4be11ce551bc8f5b7460f887a6b0cb0fceca151533b1540b4dd063 |
IEDL.DBID | 7X7 |
ISSN | 0029-8549 1432-1939 |
IngestDate | Mon Jul 21 10:49:12 EDT 2025 Fri Jul 11 04:20:44 EDT 2025 Fri Jul 11 05:29:10 EDT 2025 Fri Jul 25 19:25:42 EDT 2025 Tue Jun 17 21:34:24 EDT 2025 Tue Jun 10 20:22:39 EDT 2025 Fri Jun 27 04:50:52 EDT 2025 Mon Jul 21 05:59:43 EDT 2025 Wed Apr 02 07:16:13 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Tue Jul 01 01:39:45 EDT 2025 Fri Feb 21 02:33:48 EST 2025 Thu Jun 19 20:13:52 EDT 2025 Wed Dec 27 18:58:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Temperature Physiology Fish growth Food limitation Bioenergetics Growth Environmental factor Dynamical climatology Freshwater environment Climate change Vertebrata Pisces Limitation Lakes Salvelinus alpinus Bioenergetic model |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c685t-657a40707bb4be11ce551bc8f5b7460f887a6b0cb0fceca151533b1540b4dd063 |
Notes | http://dx.doi.org/10.1007/s00442-014-2993-8 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24969617 |
PQID | 1553301059 |
PQPubID | 54033 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1999947454 proquest_miscellaneous_1560134577 proquest_miscellaneous_1553704624 proquest_journals_1553301059 gale_infotracmisc_A385802513 gale_infotracacademiconefile_A385802513 gale_incontextgauss_ISR_A385802513 pubmed_primary_24969617 pascalfrancis_primary_28697565 crossref_primary_10_1007_s00442_014_2993_8 crossref_citationtrail_10_1007_s00442_014_2993_8 springer_journals_10_1007_s00442_014_2993_8 jstor_primary_24037036 fao_agris_US201400135189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Berlin – name: Germany – name: Heidelberg |
PublicationTitle | Oecologia |
PublicationTitleAbbrev | Oecologia |
PublicationTitleAlternate | Oecologia |
PublicationYear | 2014 |
Publisher | Springer-Verlag Springer Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | HanskiIMetapopulation ecology1999OxfordOxford University Press CunjakRAProwseTDParrishDLAtlantic salmon (Salmo salar) in winter: “the season of parr discontent”?Can J Fish Aquat Sci19985516118010.1139/d98-008 BoyceMSPopulation viability analysisAnnu Rev Ecol Syst19922348150610.1146/annurev.es.23.110192.002405 GuénardGBoisclairDUgedalOForsethTJonssonBFlemingIAExperimental assessment of the bioenergetic and behavioural differences between two morphologically distinct populations of Arctic char (Salvelinus alpinus)Can J Fish Aquat Sci20106758059510.1139/F10-004 KlingGWO’BrienWJMillerMCHersheyAEThe biogeochemistry and zoogeography of lakes and rivers in arctic AlaskaHydrobiologia19922401141:CAS:528:DyaK3sXhtFejuw%3D%3D10.1007/BF00013447 MurdochWPopulation regulation in theory and practiceEcology19947527128710.2307/1939533 SierszenMEMcDonaldMEJensenDABenthos as the basis for arctic lake food websAquat Ecol20033743744510.1023/B:AECO.0000007042.09767.dd WedekindCKungCShift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae)Conserv Biol201024141814232056100110.1111/j.1523-1739.2010.01534.x PradelRUtilization of capture-mark-recapture for the study of recruitment and population growth rateBiometrics19965270370910.2307/2532908 RubinJFThe exceptional growth of the Arctic charr, Salvelinus alpinus (L.) in Lake GenevaAquat Sci Res Acr Bound199355768610.1007/BF00877260 HersheyAEBeatySFortinoKKeyseMMouPPO’BrienWJUlsethAJGettelGALieneschPWLueckeCMcDonaldMEMayerCHMillerMCRichardsCShuldtJAEffect of landscape factors on fish distribution in arctic Alaskan lakesFreshwater Biol20065135510.1111/j.1365-2427.2005.01474.x PowerGFish population structure in Arctic lakesJ Fish Res Bd Can197835535910.1139/f78-008 SparholtHThe population, survival, growth, reproduction and food of arctic charr, Salvelinus alpinus (L.) in four unexploited lakes in GreenlandJ Fish Biol19852631333010.1111/j.1095-8649.1985.tb04270.x NicholsJDHinesJEApproaches for the direct estimation of λ, and demographic contributions to λ, using capture dataJ Appl Stat20022958960710.1080/02664760120108818 WhiteGCBurnhamKPProgram MARK: survival estimation from populations of marked animalsBird Study199946S120S13910.1080/00063659909477239 MorrisWFDoakDFQuantitative conservation biology: theory and practice of population viability analysis2002SunderlandSinauer GuénardGGBoisclairDUgedalOForsethTJonssonBComparison between activity estimates obtained using bioenergetic and behavioral analysesCan J Fish Aquat Sci2008651705172010.1139/F08-080 JungwirthMWinklerHThe temperature dependence of embryonic development of grayling (Thymallus thymallus), Danube salmon (Hucho hucho), Arctic charr (Salvelinus alpinus), and brown trout (Salmo trutta fario)Aquaculture19843831532710.1016/0044-8486(84)90336-3 FinstadAGUgedalOBergOKGrowing large in a low grade environment: size dependent foraging gain and niche sshifts to cannibalism in Arctic charOikos2006112738210.1111/j.0030-1299.2006.13990.x LebretonJDBurnhamKPClobertJAndersonDRModeling survival and testing biological hypotheses using marked animals: a unified approach with case studiesEcol Monogr1992626711810.2307/2937171 ClaessenDDe RoosAMPerssonLPopulation dynamic theory of size-dependent cannibalismProc R Soc Lond200327133334010.1098/rspb.2003.2555 EbenmanBPerrsonLSize-structured populations: ecology and evolution1988BerlinSpringer10.1007/978-3-642-74001-5 ByströmPGarcίa-BerthouEDensity dependent growth and size specific competitive interactions in young fishOikos19998621723210.2307/3546440 MacIntyreSFramJPBettezNDO’BrienWJHobbieJEKlingGWClimate related variations in mixing dynamics of an Alaskan arctic lakeLimnol Ocean2009542401241710.4319/lo.2009.54.6_part_2.2401 KlemetsenAElliottJMKnudsenRSørensenPEvidence for genetic differences in the offspring of two sympatric morphs of Arctic charrJ Fish Biol20026093395010.1111/j.1095-8649.2002.tb02419.x LiuJDietzTCarpenterSRAlbertiMFolkeCMoranEPellANDeadmanPKratzTLubchecoJOstromEOuyangZProvencherWRedmanCLSchneiderSHTaylorWWComplexity of coupled human and natural systemsScience2007317151315161:CAS:528:DC%2BD2sXhtVejt7%2FE1787243610.1126/science.1144004 ReistJDWronaFJProwseTDPowerMDempsonJBBeamishRJKingJRCarmichealTJSwawtskyCDGeneral effects of climate change on arctic fishes and fish populationsAmbio J Hum Environ20063537038010.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2 ACIA (2005) Arctic climate impact assessment-scientific report. Cambridge University Press, Cambridge ByströmPRecruitment pulses induce cannibalistic giants in Arctic charJ Anim Ecol2006754344441663799610.1111/j.1365-2656.2006.01064.x HersheyAEBeatySFortinoKKellySKeyseMLueckeCO’BrienWJWhalenSCStable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic productionLimnol Oceon20065117718810.4319/lo.2006.51.1.0177 PowerMDempsonJBReistJDSchwarzCJPowerGLatitudinal variation in fecundity among Arctic charr populations in eastern North AmericaJ Fish Biol20056725527310.1111/j.0022-1112.2005.00734.x RiesRDPerrySAPotential effects of global climate warming on brook trout growth and prey consumption in central Appalachian streams, USAClim Res1995519720610.3354/cr005197 HartmanKJKitchellJFBioenergetics modeling progress since the 1992 symposiumTrans Am Fish Soc200813721622310.1577/T07-040.1 Cooch E, White G (2008) Program MARK: a gentle introduction, 6th edn. Available online at http://www.phidot.org/software/mark/docs/books HellandIPFinstadAGForsethTHesthagenTUgedalOIce-cover effects on competitive interactions between two fish speciesJ Anim Ecol2011805395472119858910.1111/j.1365-2656.2010.01793.x Luecke C, Giblin AE, Bettez N, Burkart G, Crump BC, Evans ME, Gettel G, MacIntyre S, O’Brien WJ, Rublee P, GW Kling (2014) The response of lakes near the Arctic-LTER to environmental change. In Hobbie JE, Kling GW (ed) A changing arctic: ecological consequences for tundra, streams, and lakes. University Press, Oxford (in press) MolnarPKDerocherAEThiemannGWLewisMAPredicting survival, reproduction and abundance of polar bears under climate changeBiol Conserv20101431612162210.1016/j.biocon.2010.04.004 VatlandSBudyPThiedeGPA bioenergetics approach to modeling striped bass and threadfin shad predator-prey dynamics in Lake Powell, Utah-ArizonaTrans Am Fish Soc200813726227710.1577/T05-146.1 HurstTPReview paper: causes and consequences of winter mortality in fishesJ Fish Biol20077131534510.1111/j.1095-8649.2007.01596.x CaswellHMatrix population models: construction, analysis, and interpretation20012SunderlandSinauer ClaessenDVan OssCDe RoosAMPerssonLThe impact of size-dependent predation on population dynamics and individual life historyEcology2002831660167510.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2 FraleyJJShepardBBLife history, ecology and population status of migratory bull trout (Salvelinus confluentus) in the Flathead Lake and river system, MontanaNorthw Sci198963133143 Johnson, CR (2009) Consumer-driven nutrient cycling in arctic Alaskan lakes. Dissertation, Utah State University, Logan LarssonSBerglundIThe effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populationsJ Therm Biol200530293610.1016/j.jtherbio.2004.06.001 KlemetsenAKnudsenRStaldvikFJAmundsenP-AHabitat, diet and food assimilation of Arctic char under the winter ice in two subarctic lakesJ Fish Biol2003621082109810.1046/j.1095-8649.2003.00101.x JonssonBSkulasonSSnorrasonSSSandlundOTMalmqvistHJJonassonPMGydemoRLindemTLife history variation of polymorphic Arctic char (Salvelinus alpinus) in Thingvallavatn, IcelandCan J Fish Aquat Sci1988451537154710.1139/f88-182 RoseKAWhy are quantitative relationships between environmental quality and fish populations so elusive?Ecol Appl20001036738510.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2 LyytikäinenTKoskelaJRissanenIThe influence of temperature on growth and proximate body composition of underyearling Arctic charr [Salvelinus alpinus (L.)]J Appl Ichthy19971319119410.1111/j.1439-0426.1997.tb00120.x FinstadAGUgedalOForsethTNaesjeTFEnergy-related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar)Can J Fish Aquat Sci2004612358236810.1139/f04-213 ByströmPAnderssonJPerssonLDe RoosAMSize-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic charOikos200410410912110.1111/j.0030-1299.2004.12759.x SvenningMABorgstrømRPopulation structure in landlocked Spitsbergen Arctic charr: sustained by cannibalism?Norw J Freshwater Res199571424431 PerssonLLeonardssonKdeRoosAMGyllenergMChristensenBOntogenetic scaling of foraging rates and the dynamics of a size-structured consumer resource modelTheor Pop Biol1998542702931:STN:280:DyaK1M%2FpslCgsw%3D%3D10.1006/tpbi.1998.1380 KrebsCJEcological methodology1999Menlo ParkAddison Wesley Longman ByströmPAnderssonJSize-dependent foraging capacities and intercohort competition in an ontogenetic omnivore (Arctic char)Oikos200611052353610.1111/j.0030-1299.2005.13543.x WronaFProwseTReistJHobbieJLèvesqueLVincentWClimate impacts on Arctic freshwater ecosystems and fisheries: background, rationale and approach of the Arctic Climate Impact Assessment (ACIA)Ambio J Hum Environ20063532632910.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2 BurnhamKPAndersonDRModel selection and multimodel inference: a practical information-theoretic approach2002New YorkSpringer HobbieJEPetersonBJBettezNDeeganLO’BrienWJKlingGWKipphutGWBowdenWBHersheyAEImpact of global change on the biogeochemistry and ecology of an arctic freshwater systemPolar Res19991820721410.1111/j.1751-8369.1999.tb00295.x KristensenDMJørgensenTRLarsenRKForchhammerMCChristoffersenKSInter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variationBMC Ecol200661015601121693416210.1186/1472-6785-6-10 HersheyAEGettelGMMcDonaldMEMillerMCMooersHO’BrienWJPastorJRichardsCSchuldtJAA geomorphic–trophic model for landscape control of arctic lake food websBioscience19994988789710.2307/131 G Power (2993_CR55) 1978; 35 2993_CR12 S Larsson (2993_CR41) 2005; 30 B Jonsson (2993_CR33) 1988; 45 S MacIntyre (2993_CR49) 2009; 54 D Claessen (2993_CR11) 2003; 271 KJ Hartman (2993_CR25) 2008; 137 PK Molnar (2993_CR50) 2010; 143 C Wedekind (2993_CR67) 2010; 24 D Claessen (2993_CR10) 2002; 83 GG Guénard (2993_CR21) 2008; 65 M Jungwirth (2993_CR34) 1984; 38 GW Kling (2993_CR38) 1992; 240 AE Hershey (2993_CR29) 2006; 51 IP Helland (2993_CR26) 2011; 80 WF Morris (2993_CR51) 2002 TP Hurst (2993_CR31) 2007; 71 T Lyytikäinen (2993_CR46) 1998; 52 MA Svenning (2993_CR64) 1995; 71 D Griffths (2993_CR20) 1994; 51 ME MacDonald (2993_CR48) 1996; 41 P Byström (2993_CR8) 2004; 104 2993_CR45 W Murdoch (2993_CR52) 1994; 75 RA Cunjak (2993_CR14) 1998; 55 M Power (2993_CR56) 2005; 67 P Byström (2993_CR6) 2006; 110 P Byström (2993_CR7) 1999; 86 JH Brown (2993_CR3) 2004; 85 L Persson (2993_CR54) 1998; 54 G Guénard (2993_CR22) 2010; 67 JD Reist (2993_CR58) 2006; 35 MS Boyce (2993_CR2) 1992; 23 ME Sierszen (2993_CR62) 2003; 37 A Klemetsen (2993_CR37) 2003; 62 MA Svenning (2993_CR65) 2007; 16 AG Finstad (2993_CR17) 2006; 112 KA Rose (2993_CR60) 2000; 10 C Gillet (2993_CR19) 1991; 4 CJ Krebs (2993_CR39) 1999 DM Kristensen (2993_CR40) 2006; 6 KW Cummins (2993_CR13) 1971; 18 MA Levine (2993_CR43) 2001; 455 2993_CR32 R Pradel (2993_CR57) 1996; 52 JF Rubin (2993_CR61) 1993; 55 GC White (2993_CR68) 1999; 46 JD Nichols (2993_CR53) 2002; 29 S Vatland (2993_CR66) 2008; 137 H Sparholt (2993_CR63) 1985; 26 B Ebenman (2993_CR15) 1988 T Lyytikäinen (2993_CR47) 1997; 13 F Wrona (2993_CR69) 2006; 35 JE Hobbie (2993_CR30) 1999; 18 I Hanski (2993_CR23) 1999 H Caswell (2993_CR9) 2001 KP Burnham (2993_CR4) 2002 AG Finstad (2993_CR16) 2004; 61 2993_CR24 J Liu (2993_CR44) 2007; 317 A Klemetsen (2993_CR36) 2002; 60 P Byström (2993_CR5) 2006; 75 JJ Fraley (2993_CR18) 1989; 63 AE Hershey (2993_CR28) 2006; 51 2993_CR1 RD Ries (2993_CR59) 1995; 5 AE Hershey (2993_CR27) 1999; 49 DA Keith (2993_CR35) 2008; 4 JD Lebreton (2993_CR42) 1992; 62 16934162 - BMC Ecol. 2006 Aug 27;6:10 20561001 - Conserv Biol. 2010 Oct;24(5):1418-23 18664424 - Biol Lett. 2008 Oct 23;4(5):560-3 15101690 - Proc Biol Sci. 2004 Feb 22;271(1537):333-40 17256636 - Ambio. 2006 Nov;35(7):326-9 16637996 - J Anim Ecol. 2006 Mar;75(2):434-44 9878605 - Theor Popul Biol. 1998 Dec;54(3):270-93 17872436 - Science. 2007 Sep 14;317(5844):1513-6 21198589 - J Anim Ecol. 2011 May;80(3):539-47 17256641 - Ambio. 2006 Nov;35(7):370-80 |
References_xml | – reference: PowerGFish population structure in Arctic lakesJ Fish Res Bd Can197835535910.1139/f78-008 – reference: PowerMDempsonJBReistJDSchwarzCJPowerGLatitudinal variation in fecundity among Arctic charr populations in eastern North AmericaJ Fish Biol20056725527310.1111/j.0022-1112.2005.00734.x – reference: MacIntyreSFramJPBettezNDO’BrienWJHobbieJEKlingGWClimate related variations in mixing dynamics of an Alaskan arctic lakeLimnol Ocean2009542401241710.4319/lo.2009.54.6_part_2.2401 – reference: CaswellHMatrix population models: construction, analysis, and interpretation20012SunderlandSinauer – reference: HartmanKJKitchellJFBioenergetics modeling progress since the 1992 symposiumTrans Am Fish Soc200813721622310.1577/T07-040.1 – reference: HellandIPFinstadAGForsethTHesthagenTUgedalOIce-cover effects on competitive interactions between two fish speciesJ Anim Ecol2011805395472119858910.1111/j.1365-2656.2010.01793.x – reference: HurstTPReview paper: causes and consequences of winter mortality in fishesJ Fish Biol20077131534510.1111/j.1095-8649.2007.01596.x – reference: ClaessenDDe RoosAMPerssonLPopulation dynamic theory of size-dependent cannibalismProc R Soc Lond200327133334010.1098/rspb.2003.2555 – reference: NicholsJDHinesJEApproaches for the direct estimation of λ, and demographic contributions to λ, using capture dataJ Appl Stat20022958960710.1080/02664760120108818 – reference: BurnhamKPAndersonDRModel selection and multimodel inference: a practical information-theoretic approach2002New YorkSpringer – reference: LiuJDietzTCarpenterSRAlbertiMFolkeCMoranEPellANDeadmanPKratzTLubchecoJOstromEOuyangZProvencherWRedmanCLSchneiderSHTaylorWWComplexity of coupled human and natural systemsScience2007317151315161:CAS:528:DC%2BD2sXhtVejt7%2FE1787243610.1126/science.1144004 – reference: BrownJHGilloolyJFAllenAPSavageVMWestGBToward a metabolic theory of EcologyEcology2004851771178910.1890/03-9000 – reference: VatlandSBudyPThiedeGPA bioenergetics approach to modeling striped bass and threadfin shad predator-prey dynamics in Lake Powell, Utah-ArizonaTrans Am Fish Soc200813726227710.1577/T05-146.1 – reference: KrebsCJEcological methodology1999Menlo ParkAddison Wesley Longman – reference: MolnarPKDerocherAEThiemannGWLewisMAPredicting survival, reproduction and abundance of polar bears under climate changeBiol Conserv20101431612162210.1016/j.biocon.2010.04.004 – reference: KeithDAResit AkcakayaHThuillerWMidgleyGFPearsonRGPhillipsSJReganHMArau´joMBRebeloTGPredicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat modelsBiol Lett2008456056326100611866442410.1098/rsbl.2008.0049 – reference: PradelRUtilization of capture-mark-recapture for the study of recruitment and population growth rateBiometrics19965270370910.2307/2532908 – reference: MurdochWPopulation regulation in theory and practiceEcology19947527128710.2307/1939533 – reference: ByströmPRecruitment pulses induce cannibalistic giants in Arctic charJ Anim Ecol2006754344441663799610.1111/j.1365-2656.2006.01064.x – reference: HersheyAEBeatySFortinoKKeyseMMouPPO’BrienWJUlsethAJGettelGALieneschPWLueckeCMcDonaldMEMayerCHMillerMCRichardsCShuldtJAEffect of landscape factors on fish distribution in arctic Alaskan lakesFreshwater Biol20065135510.1111/j.1365-2427.2005.01474.x – reference: PerssonLLeonardssonKdeRoosAMGyllenergMChristensenBOntogenetic scaling of foraging rates and the dynamics of a size-structured consumer resource modelTheor Pop Biol1998542702931:STN:280:DyaK1M%2FpslCgsw%3D%3D10.1006/tpbi.1998.1380 – reference: ReistJDWronaFJProwseTDPowerMDempsonJBBeamishRJKingJRCarmichealTJSwawtskyCDGeneral effects of climate change on arctic fishes and fish populationsAmbio J Hum Environ20063537038010.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2 – reference: LyytikäinenTJoblingMThe effect of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Artic charrJ Fish Biol19985211861198 – reference: SvenningMAKlemetsenAOlsenTHabitat and food choice of Arctic charr in Linnévatn on Spitsbergen, Svalbard: the first year-round investigation in a High Arctic lakeEcol Freshwater Fish200716707710.1111/j.1600-0633.2006.00183.x – reference: ClaessenDVan OssCDe RoosAMPerssonLThe impact of size-dependent predation on population dynamics and individual life historyEcology2002831660167510.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2 – reference: HanskiIMetapopulation ecology1999OxfordOxford University Press – reference: Johnson, CR (2009) Consumer-driven nutrient cycling in arctic Alaskan lakes. Dissertation, Utah State University, Logan – reference: MorrisWFDoakDFQuantitative conservation biology: theory and practice of population viability analysis2002SunderlandSinauer – reference: WhiteGCBurnhamKPProgram MARK: survival estimation from populations of marked animalsBird Study199946S120S13910.1080/00063659909477239 – reference: GuénardGGBoisclairDUgedalOForsethTJonssonBComparison between activity estimates obtained using bioenergetic and behavioral analysesCan J Fish Aquat Sci2008651705172010.1139/F08-080 – reference: GriffthsDThe size structure of lacustrine Arctic char (Pisces: salmonidae) populationsBiol J Linn Soc19945133735710.1111/j.1095-8312.1994.tb00966.x – reference: KlemetsenAKnudsenRStaldvikFJAmundsenP-AHabitat, diet and food assimilation of Arctic char under the winter ice in two subarctic lakesJ Fish Biol2003621082109810.1046/j.1095-8649.2003.00101.x – reference: ByströmPAnderssonJSize-dependent foraging capacities and intercohort competition in an ontogenetic omnivore (Arctic char)Oikos200611052353610.1111/j.0030-1299.2005.13543.x – reference: ByströmPAnderssonJPerssonLDe RoosAMSize-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic charOikos200410410912110.1111/j.0030-1299.2004.12759.x – reference: CumminsKWWuycheckJCCalorific equivalents for investigations in ecological energeticMitt Int Verein Theor Ang Limnol1971181158 – reference: Hanson PC, Johnson TB, Schindler DE, Kitchell JF (1997) Fish bioenergetics 3.0 for Windows. Technical report WISCU-T-97-001. University of Wisconsin Sea Grant Institute, Madison – reference: HersheyAEBeatySFortinoKKellySKeyseMLueckeCO’BrienWJWhalenSCStable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic productionLimnol Oceon20065117718810.4319/lo.2006.51.1.0177 – reference: MacDonaldMEHersheyAEMillMCGlobal warming impacts on lake trout in arctic lakesLimnol Ocean1996411102110810.4319/lo.1996.41.5.1102 – reference: RubinJFThe exceptional growth of the Arctic charr, Salvelinus alpinus (L.) in Lake GenevaAquat Sci Res Acr Bound199355768610.1007/BF00877260 – reference: SvenningMABorgstrømRPopulation structure in landlocked Spitsbergen Arctic charr: sustained by cannibalism?Norw J Freshwater Res199571424431 – reference: JungwirthMWinklerHThe temperature dependence of embryonic development of grayling (Thymallus thymallus), Danube salmon (Hucho hucho), Arctic charr (Salvelinus alpinus), and brown trout (Salmo trutta fario)Aquaculture19843831532710.1016/0044-8486(84)90336-3 – reference: EbenmanBPerrsonLSize-structured populations: ecology and evolution1988BerlinSpringer10.1007/978-3-642-74001-5 – reference: WedekindCKungCShift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae)Conserv Biol201024141814232056100110.1111/j.1523-1739.2010.01534.x – reference: RiesRDPerrySAPotential effects of global climate warming on brook trout growth and prey consumption in central Appalachian streams, USAClim Res1995519720610.3354/cr005197 – reference: KlingGWO’BrienWJMillerMCHersheyAEThe biogeochemistry and zoogeography of lakes and rivers in arctic AlaskaHydrobiologia19922401141:CAS:528:DyaK3sXhtFejuw%3D%3D10.1007/BF00013447 – reference: KristensenDMJørgensenTRLarsenRKForchhammerMCChristoffersenKSInter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variationBMC Ecol200661015601121693416210.1186/1472-6785-6-10 – reference: Luecke C, Giblin AE, Bettez N, Burkart G, Crump BC, Evans ME, Gettel G, MacIntyre S, O’Brien WJ, Rublee P, GW Kling (2014) The response of lakes near the Arctic-LTER to environmental change. In Hobbie JE, Kling GW (ed) A changing arctic: ecological consequences for tundra, streams, and lakes. University Press, Oxford (in press) – reference: KlemetsenAElliottJMKnudsenRSørensenPEvidence for genetic differences in the offspring of two sympatric morphs of Arctic charrJ Fish Biol20026093395010.1111/j.1095-8649.2002.tb02419.x – reference: LyytikäinenTKoskelaJRissanenIThe influence of temperature on growth and proximate body composition of underyearling Arctic charr [Salvelinus alpinus (L.)]J Appl Ichthy19971319119410.1111/j.1439-0426.1997.tb00120.x – reference: ACIA (2005) Arctic climate impact assessment-scientific report. Cambridge University Press, Cambridge – reference: ByströmPGarcίa-BerthouEDensity dependent growth and size specific competitive interactions in young fishOikos19998621723210.2307/3546440 – reference: FinstadAGUgedalOBergOKGrowing large in a low grade environment: size dependent foraging gain and niche sshifts to cannibalism in Arctic charOikos2006112738210.1111/j.0030-1299.2006.13990.x – reference: HersheyAEGettelGMMcDonaldMEMillerMCMooersHO’BrienWJPastorJRichardsCSchuldtJAA geomorphic–trophic model for landscape control of arctic lake food websBioscience19994988789710.2307/1313648 – reference: WronaFProwseTReistJHobbieJLèvesqueLVincentWClimate impacts on Arctic freshwater ecosystems and fisheries: background, rationale and approach of the Arctic Climate Impact Assessment (ACIA)Ambio J Hum Environ20063532632910.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2 – reference: CunjakRAProwseTDParrishDLAtlantic salmon (Salmo salar) in winter: “the season of parr discontent”?Can J Fish Aquat Sci19985516118010.1139/d98-008 – reference: FraleyJJShepardBBLife history, ecology and population status of migratory bull trout (Salvelinus confluentus) in the Flathead Lake and river system, MontanaNorthw Sci198963133143 – reference: JonssonBSkulasonSSnorrasonSSSandlundOTMalmqvistHJJonassonPMGydemoRLindemTLife history variation of polymorphic Arctic char (Salvelinus alpinus) in Thingvallavatn, IcelandCan J Fish Aquat Sci1988451537154710.1139/f88-182 – reference: BoyceMSPopulation viability analysisAnnu Rev Ecol Syst19922348150610.1146/annurev.es.23.110192.002405 – reference: HobbieJEPetersonBJBettezNDeeganLO’BrienWJKlingGWKipphutGWBowdenWBHersheyAEImpact of global change on the biogeochemistry and ecology of an arctic freshwater systemPolar Res19991820721410.1111/j.1751-8369.1999.tb00295.x – reference: GilletCEgg production in an Arctic char (Salvelinus alpinus L.) brood stock: effects of temperature on the timing of spawning and the quality of eggsAquat Liv Res1991410911610.1051/alr:1991010 – reference: SierszenMEMcDonaldMEJensenDABenthos as the basis for arctic lake food websAquat Ecol20033743744510.1023/B:AECO.0000007042.09767.dd – reference: GuénardGBoisclairDUgedalOForsethTJonssonBFlemingIAExperimental assessment of the bioenergetic and behavioural differences between two morphologically distinct populations of Arctic char (Salvelinus alpinus)Can J Fish Aquat Sci20106758059510.1139/F10-004 – reference: LevineMAWhalenSCNutrient limitation of phytoplankton production in Alaskan Arctic foothill lakesHydrobiologia200145518920110.1023/A:1011954221491 – reference: RoseKAWhy are quantitative relationships between environmental quality and fish populations so elusive?Ecol Appl20001036738510.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2 – reference: LebretonJDBurnhamKPClobertJAndersonDRModeling survival and testing biological hypotheses using marked animals: a unified approach with case studiesEcol Monogr1992626711810.2307/2937171 – reference: Cooch E, White G (2008) Program MARK: a gentle introduction, 6th edn. Available online at http://www.phidot.org/software/mark/docs/books/ – reference: FinstadAGUgedalOForsethTNaesjeTFEnergy-related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar)Can J Fish Aquat Sci2004612358236810.1139/f04-213 – reference: SparholtHThe population, survival, growth, reproduction and food of arctic charr, Salvelinus alpinus (L.) in four unexploited lakes in GreenlandJ Fish Biol19852631333010.1111/j.1095-8649.1985.tb04270.x – reference: LarssonSBerglundIThe effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populationsJ Therm Biol200530293610.1016/j.jtherbio.2004.06.001 – ident: 2993_CR45 doi: 10.1093/acprof:osobl/9780199860401.003.0008 – volume: 71 start-page: 424 year: 1995 ident: 2993_CR64 publication-title: Norw J Freshwater Res – volume: 271 start-page: 333 year: 2003 ident: 2993_CR11 publication-title: Proc R Soc Lond doi: 10.1098/rspb.2003.2555 – volume: 54 start-page: 2401 year: 2009 ident: 2993_CR49 publication-title: Limnol Ocean doi: 10.4319/lo.2009.54.6_part_2.2401 – volume: 80 start-page: 539 year: 2011 ident: 2993_CR26 publication-title: J Anim Ecol doi: 10.1111/j.1365-2656.2010.01793.x – volume: 16 start-page: 70 year: 2007 ident: 2993_CR65 publication-title: Ecol Freshwater Fish doi: 10.1111/j.1600-0633.2006.00183.x – volume: 4 start-page: 109 year: 1991 ident: 2993_CR19 publication-title: Aquat Liv Res doi: 10.1051/alr:1991010 – volume: 6 start-page: 10 year: 2006 ident: 2993_CR40 publication-title: BMC Ecol doi: 10.1186/1472-6785-6-10 – volume-title: Size-structured populations: ecology and evolution year: 1988 ident: 2993_CR15 doi: 10.1007/978-3-642-74001-5 – volume: 18 start-page: 1 year: 1971 ident: 2993_CR13 publication-title: Mitt Int Verein Theor Ang Limnol – volume: 18 start-page: 207 year: 1999 ident: 2993_CR30 publication-title: Polar Res doi: 10.1111/j.1751-8369.1999.tb00295.x – volume: 51 start-page: 337 year: 1994 ident: 2993_CR20 publication-title: Biol J Linn Soc doi: 10.1111/j.1095-8312.1994.tb00966.x – volume: 13 start-page: 191 year: 1997 ident: 2993_CR47 publication-title: J Appl Ichthy doi: 10.1111/j.1439-0426.1997.tb00120.x – volume-title: Ecological methodology year: 1999 ident: 2993_CR39 – volume: 26 start-page: 313 year: 1985 ident: 2993_CR63 publication-title: J Fish Biol doi: 10.1111/j.1095-8649.1985.tb04270.x – volume: 71 start-page: 315 year: 2007 ident: 2993_CR31 publication-title: J Fish Biol doi: 10.1111/j.1095-8649.2007.01596.x – ident: 2993_CR12 – volume: 137 start-page: 216 year: 2008 ident: 2993_CR25 publication-title: Trans Am Fish Soc doi: 10.1577/T07-040.1 – volume: 49 start-page: 887 year: 1999 ident: 2993_CR27 publication-title: Bioscience doi: 10.2307/1313648 – volume: 67 start-page: 255 year: 2005 ident: 2993_CR56 publication-title: J Fish Biol doi: 10.1111/j.0022-1112.2005.00734.x – volume: 52 start-page: 703 year: 1996 ident: 2993_CR57 publication-title: Biometrics doi: 10.2307/2532908 – volume: 23 start-page: 481 year: 1992 ident: 2993_CR2 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.es.23.110192.002405 – volume: 45 start-page: 1537 year: 1988 ident: 2993_CR33 publication-title: Can J Fish Aquat Sci doi: 10.1139/f88-182 – volume: 143 start-page: 1612 year: 2010 ident: 2993_CR50 publication-title: Biol Conserv doi: 10.1016/j.biocon.2010.04.004 – volume: 317 start-page: 1513 year: 2007 ident: 2993_CR44 publication-title: Science doi: 10.1126/science.1144004 – volume: 37 start-page: 437 year: 2003 ident: 2993_CR62 publication-title: Aquat Ecol doi: 10.1023/B:AECO.0000007042.09767.dd – volume: 54 start-page: 270 year: 1998 ident: 2993_CR54 publication-title: Theor Pop Biol doi: 10.1006/tpbi.1998.1380 – volume: 61 start-page: 2358 year: 2004 ident: 2993_CR16 publication-title: Can J Fish Aquat Sci doi: 10.1139/f04-213 – volume: 455 start-page: 189 year: 2001 ident: 2993_CR43 publication-title: Hydrobiologia doi: 10.1023/A:1011954221491 – volume: 86 start-page: 217 year: 1999 ident: 2993_CR7 publication-title: Oikos doi: 10.2307/3546440 – volume: 104 start-page: 109 year: 2004 ident: 2993_CR8 publication-title: Oikos doi: 10.1111/j.0030-1299.2004.12759.x – volume: 41 start-page: 1102 year: 1996 ident: 2993_CR48 publication-title: Limnol Ocean doi: 10.4319/lo.1996.41.5.1102 – volume: 24 start-page: 1418 year: 2010 ident: 2993_CR67 publication-title: Conserv Biol doi: 10.1111/j.1523-1739.2010.01534.x – volume: 62 start-page: 1082 year: 2003 ident: 2993_CR37 publication-title: J Fish Biol doi: 10.1046/j.1095-8649.2003.00101.x – volume: 65 start-page: 1705 year: 2008 ident: 2993_CR21 publication-title: Can J Fish Aquat Sci doi: 10.1139/F08-080 – volume: 51 start-page: 177 year: 2006 ident: 2993_CR28 publication-title: Limnol Oceon doi: 10.4319/lo.2006.51.1.0177 – volume: 38 start-page: 315 year: 1984 ident: 2993_CR34 publication-title: Aquaculture doi: 10.1016/0044-8486(84)90336-3 – volume: 137 start-page: 262 year: 2008 ident: 2993_CR66 publication-title: Trans Am Fish Soc doi: 10.1577/T05-146.1 – volume-title: Matrix population models: construction, analysis, and interpretation year: 2001 ident: 2993_CR9 – ident: 2993_CR32 – volume: 110 start-page: 523 year: 2006 ident: 2993_CR6 publication-title: Oikos doi: 10.1111/j.0030-1299.2005.13543.x – volume: 35 start-page: 326 year: 2006 ident: 2993_CR69 publication-title: Ambio J Hum Environ doi: 10.1579/0044-7447(2006)35[326:CIOAFE]2.0.CO;2 – volume: 67 start-page: 580 year: 2010 ident: 2993_CR22 publication-title: Can J Fish Aquat Sci doi: 10.1139/F10-004 – volume: 52 start-page: 1186 year: 1998 ident: 2993_CR46 publication-title: J Fish Biol – volume: 30 start-page: 29 year: 2005 ident: 2993_CR41 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2004.06.001 – volume: 75 start-page: 434 year: 2006 ident: 2993_CR5 publication-title: J Anim Ecol doi: 10.1111/j.1365-2656.2006.01064.x – volume: 46 start-page: S120 year: 1999 ident: 2993_CR68 publication-title: Bird Study doi: 10.1080/00063659909477239 – volume: 35 start-page: 53 year: 1978 ident: 2993_CR55 publication-title: J Fish Res Bd Can doi: 10.1139/f78-008 – volume: 85 start-page: 1771 year: 2004 ident: 2993_CR3 publication-title: Ecology doi: 10.1890/03-9000 – volume: 55 start-page: 76 year: 1993 ident: 2993_CR61 publication-title: Aquat Sci Res Acr Bound doi: 10.1007/BF00877260 – volume: 63 start-page: 133 year: 1989 ident: 2993_CR18 publication-title: Northw Sci – volume: 35 start-page: 370 year: 2006 ident: 2993_CR58 publication-title: Ambio J Hum Environ doi: 10.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2 – volume: 62 start-page: 67 year: 1992 ident: 2993_CR42 publication-title: Ecol Monogr doi: 10.2307/2937171 – volume-title: Quantitative conservation biology: theory and practice of population viability analysis year: 2002 ident: 2993_CR51 – volume: 29 start-page: 589 year: 2002 ident: 2993_CR53 publication-title: J Appl Stat doi: 10.1080/02664760120108818 – volume: 5 start-page: 197 year: 1995 ident: 2993_CR59 publication-title: Clim Res doi: 10.3354/cr005197 – volume: 112 start-page: 73 year: 2006 ident: 2993_CR17 publication-title: Oikos doi: 10.1111/j.0030-1299.2006.13990.x – volume: 4 start-page: 560 year: 2008 ident: 2993_CR35 publication-title: Biol Lett doi: 10.1098/rsbl.2008.0049 – volume: 75 start-page: 271 year: 1994 ident: 2993_CR52 publication-title: Ecology doi: 10.2307/1939533 – volume: 51 start-page: 355 year: 2006 ident: 2993_CR29 publication-title: Freshwater Biol doi: 10.1111/j.1365-2427.2005.01474.x – ident: 2993_CR1 – volume-title: Model selection and multimodel inference: a practical information-theoretic approach year: 2002 ident: 2993_CR4 – ident: 2993_CR24 – volume: 83 start-page: 1660 year: 2002 ident: 2993_CR10 publication-title: Ecology doi: 10.1890/0012-9658(2002)083[1660:TIOSDP]2.0.CO;2 – volume-title: Metapopulation ecology year: 1999 ident: 2993_CR23 doi: 10.1093/oso/9780198540663.001.0001 – volume: 60 start-page: 933 year: 2002 ident: 2993_CR36 publication-title: J Fish Biol doi: 10.1111/j.1095-8649.2002.tb02419.x – volume: 10 start-page: 367 year: 2000 ident: 2993_CR60 publication-title: Ecol Appl doi: 10.1890/1051-0761(2000)010[0367:WAQRBE]2.0.CO;2 – volume: 55 start-page: 161 year: 1998 ident: 2993_CR14 publication-title: Can J Fish Aquat Sci doi: 10.1139/d98-008 – volume: 240 start-page: 1 year: 1992 ident: 2993_CR38 publication-title: Hydrobiologia doi: 10.1007/BF00013447 – reference: 17256641 - Ambio. 2006 Nov;35(7):370-80 – reference: 17872436 - Science. 2007 Sep 14;317(5844):1513-6 – reference: 18664424 - Biol Lett. 2008 Oct 23;4(5):560-3 – reference: 16637996 - J Anim Ecol. 2006 Mar;75(2):434-44 – reference: 9878605 - Theor Popul Biol. 1998 Dec;54(3):270-93 – reference: 21198589 - J Anim Ecol. 2011 May;80(3):539-47 – reference: 16934162 - BMC Ecol. 2006 Aug 27;6:10 – reference: 20561001 - Conserv Biol. 2010 Oct;24(5):1418-23 – reference: 15101690 - Proc Biol Sci. 2004 Feb 22;271(1537):333-40 – reference: 17256636 - Ambio. 2006 Nov;35(7):326-9 |
SSID | ssj0014155 |
Score | 2.2376077 |
Snippet | Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size... |
SourceID | proquest gale pubmed pascalfrancis crossref springer jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 81 |
SubjectTerms | Adaptation, Physiological Adaptation, Physiological - physiology Alaska Animal and plant ecology Animal, plant and microbial ecology Animals Biological and medical sciences Biomedical and Life Sciences Body Size Body Size - physiology Climate Change Climate effects Climate models Climatology. Bioclimatology. Climate change Conspecifics dimorphism Earth, ocean, space Ecology Energy Metabolism Energy Metabolism - physiology Exact sciences and technology External geophysics fish Fish populations Fishes Fresh water ecosystems Freshwater fishes Fundamental and applied biological sciences. Psychology General aspects Global temperature changes Growing season growth & development Growth rate Hydrology/Water Resources Lakes latitude Life Sciences Marine fishes Meteorology Modeling Models, Biological Physiological aspects physiology Plant Sciences Population Density Population Dynamics Population ecology Population ecology - Original research Population size Population structure reproductive performance Salvelinus alpinus Seasons Survival Analysis Synecology Temperature Trout Trout - growth & development uncertainty |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-2Ivgi9aP22lqiCIKysB_Zr74dpaUK-mBd6FuYZJNWPHaLe0fpH-X_6Mwmu95iPfBtIbOzyc0kmbn5zQxjb00cQZxHJhBZbQNRRFGgUh0GOGkLJWmRoQTnz1-y80p8ukwvfR53N6Ddh5Bkf1KPyW4UeyQYgQhiAp0VW-xhiq474biqeD6GDuiGHHAdBXo_QyjzPhaTy2jLQjsezA6cSEhJ6PDHsq7LxX1m6F8h1P5mOtthT7xJyedOB56yB6Z5xh65JpN3-HTaF6a-e85-VeuZLPy6veUL-GH4zdjEq-Ot5aj6yIlTPhY-G-5KzK5-mprjm5xuQqLl9Bcu71z_eq5948-eDXFBwxIZLwmMhMMeNkIDevEdrWTDXcrxMQfegxoDCxoNePyGr3L-glVnp99OzgPfriHQWZEuCUQDgqoHKSWUiSJt0BpTurCpykUWWjzOIFOhVqHVRgNZUkmi0IQLlahrNJV22XbTNmaPcWEgrCEBtI-UCK0oIbIx2DrNNfrUZTJj4SA3qX0tc2qpsZBjFeZe1BJFLUnUspix9-MrN66QxybiPVQGCVd40MrqIiY3NKRehkU5Y29IQyTVzmgInHMFq66THy--yjkFWclnw_m980S2xXlp8LkOuDoqtzWhPJxQ4ubWk-HdXhHHKVP5RKqZNmNHE838Q1BkZY5WOjIeVFX6Y6mT1CQqoZ6ouIzX4zB9k6B2jWlXjianlGWxiQb9-ESkeb6BBl2PUuQiRT4v3VZZWwUVZYrw7Q_D3lmb5L-ksv9f1AfsMcnN4QEP2TbuFfMKDcilOuoPjN-oQ2QV priority: 102 providerName: Springer Nature |
Title | Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach |
URI | https://www.jstor.org/stable/24037036 https://link.springer.com/article/10.1007/s00442-014-2993-8 https://www.ncbi.nlm.nih.gov/pubmed/24969617 https://www.proquest.com/docview/1553301059 https://www.proquest.com/docview/1553704624 https://www.proquest.com/docview/1560134577 https://www.proquest.com/docview/1999947454 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELbYJiS-IN7GAqMyCAkJFJEX540vqKCOAWJCG5HKJ8t27A1RJYW0QvtR_EfuYidrBPRTo_riOPH5fGc_fo6QpzoKRZSF2mdpZXyWh6EvExX40GgjCtQijQecP52kxyX7ME_mbsGtdbDK3iZ2hrpqFK6Rv8T8NjGmcyxeL3_4mDUKd1ddCo0dsofUZajV2XwIuEKcLHuIRw6BUL-rGVgSUYagBOZHCGHLR_PSjhHNYKMtThFBk6KF72Zswot_eaR_7aZ2k9TRLXLTeZd0atXhNrmm6zvkus03eQlXs46j-vIu-V1uHmqhF80vuhDfNV0O-bxa2hgKowBqong0C641tWyz65-6onAnxUkRZSmu5tLWprKnyuUA7arBWsDHhIpXiEuCYocgwQK1-AYOs6b29PErKmiHb_SNUODLwzMc4fk9Uh7Nvrw99l3mBl-lebJCPI1gSCQkJZM6DJUGx0yq3CQyY2lgwLKJVAZKBkZpJdCpimMJ3lwgWVWB17RPduum1geEMi2CSsQCXCXJAsMKEZpImCrJFITXReyRoO83rhytOWbXWPCBkLnrag5dzbGree6R58MtS8vpsU34AJSBi3Owubw8izAiDTCtYV545AlqCEcajRpxOudi3bb8_dkpn-J-K4Zv0L5nTsg00C4l3LEHeDtk3hpJHo4kYZyrUfF-p4hDk5FJEenTPDIZaeaVQJ4WGTjsUHGvqtxZqJZfjSePPB6K8ZmIuqt1s7YyGZ5eZttkIKSPWZJlW2QgCilYxhKo574dKhtvgfxMIdz9oh87G438X6882P5KD8kN7CiLBTwkuzA49CNwHldy0lmICdmbvvv6cQa_b2Ynn0_h3zKa_gGYNWuR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw0NqGEHxBvMYCYxgEQgJFOKnzQkJogk0te3xgq9RvxnbsMa1qCmk19UfBb-QuTrJGQL_tWySfL3bufI_4HoS8NGEgwyQwPo9z6_M0CHwVaebDoq3MkIsMJjgfHcf9If8yikZr5HeTC4NhlY1MrAR1Xmj8R_4O-9v0sJ1j9nH6w8euUXi72rTQcGxxYBaX4LKVHwafgb6vwnB_7_RT36-7Cvg6TqMZxnpIjkVulOLKBIE2YDQondpIJTxmFk6djBXTillttESF3-spsDSY4nkOGh3wrpMboHgZOnvJqHXwAlTOTUhJCo5Xc4vKXNFSjkEQ3A8xZC7t6MF1K4tWJ7i4SAzSlCXQyboGG_-ygP-6va2U4v5dcqe2ZumuY797ZM1M7pObrr_lAp72qprYiwfk13A5iYZ-Ly7pWF4YOm37h5W0sBQ-L2CimAoGz4a66rbznyanMJOiEkZYin-PKSaJwumhuu45WqFBLGDTAuIZxkHBcB2xggN6fA4GuqEu2_k9lbSKp_St1OA7wDvqAusPyfBaaLpJNibFxGwRyo1kuexJMM0UZ5ZnMrChtHmUaHDns55HWEM3oesy6tjNYyzaAtAVqQWQWiCpReqRN-2Uqashsgp4C5hByDOQ8WJ4EqIHzLCNYpp55AVyiMCyHROMCzqT87IUg5OvYhfvd9FdhPW9roFsAevSsk6zgN1hpa8O5HYHEuSK7gxvVozYLhkrN2K5No_sdDjzCiCNswQcBEDcsKqoJWIprs6vR563w_hOjPKbmGLuYBLMluarYGL4HDxKkhUw4PVkPOER4HnkjsrSLrAeVACz3zZnZ2mR_6PK49VbekZu9U-PDsXh4PjgCbmNRHNxiNtkAw6KeQqG60ztVNKCkm_XLZ7-AHKcpEM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1No6gXhB3MYKYxgEQgJFS1LnhoTQYK1WBtW0UWlvxnbsMa1qCmk19aP4Ab6Oc2InawX0bW-RfHLi5NzjcyHkhQ4DESaB9licG4-lQeDJSPkebNqIDLlIY4Hzl0F8MGSfTqPTNfK7roXBtMpaJ1aKOi8U_iPfxfk2HRznmO0alxZxtN97P_nh4QQpPGmtx2lYFjnU80sI38p3_X2g9csw7HW_fjzw3IQBT8VpNMW8D8Gw4Y2UTOogUBocCKlSE8mExb4BCRSx9JX0jdJKoPHvdCR4Hb5keQ7WHfCuk40Eo6IW2fjQHRwdN2cYaKrrBJMUwrD6TNW3LUwZpkQwL8QEunTJKq4bUTQWwmZJYsqmKIFqxo7b-Jc__NdZbmUie3fIbefb0j3LjHfJmh7fIzfstMs5XHWrDtnz--TXcLGkhn4vLulIXGg6aaaJlbQwFD4wYKJYGAbXmtpet7OfOqdwJ0WTjLAU_yVTLBkFWaLKTSCt0CAW8HAB8RSzomDZ5a_gghqdg7uuqa19fksFrbIrPSMURBLwDNdu_QEZXgtVN0lrXIz1FqFMCz8XHQGOmmS-YZkITChMHiUKgvus0yZ-TTeuXFN1nO0x4k076IrUHEjNkdQ8bZPXzS0T21FkFfAWMAMXZ6Dx-fAkxHjYx6GKadYmz5FDODbxGKM4nIlZWfL-yTHfw9NeDB5hf68ckClgX0q4ogt4O-z7tQS5vQQJWkYtLW9WjNhsGfs4YvO2NtlZ4swrgDTOEggXAHHNqtzpx5JfSXObPGuW8ZmY8zfWxczCJFg7zVbBxPA5WJQkK2AgBspYwiLA89CKysJbYHeoAO5-U8vOwib_R5VHq1_pKbkJqol_7g8OH5NbSDOblLhNWiAn-gl4sVO549QFJd-uW0P9AcX0qd4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+how+lake+populations+of+arctic+char+are+structured+and+function+with+special+consideration+of+the+potential+effects+of+climate+change%3A+a+multi-faceted+approach&rft.jtitle=Oecologia&rft.au=Budy%2C+Phaedra&rft.au=Luecke%2C+Chris&rft.date=2014-09-01&rft.pub=Springer&rft.issn=0029-8549&rft.volume=176&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1007%2Fs00442-014-2993-8&rft.externalDocID=A385802513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8549&client=summon |