A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks

Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in m...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 84; pp. 137 - 146
Main Authors Wang, Juan, Fang, Zhiyuan, Lang, Ning, Yuan, Huishu, Su, Min-Ying, Baldi, Pierre
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2017
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images. •A multi-resolution approach is proposed to detect spinal metastasis in MRI.•The multi-resolution approach is implemented using deep Siamese neural networks.•A slice-based aggregation method is used to minimize the number of false positives.•The proposed approach detects spinal metastasis accurately and effectively.
AbstractList Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images.
Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images. •A multi-resolution approach is proposed to detect spinal metastasis in MRI.•The multi-resolution approach is implemented using deep Siamese neural networks.•A slice-based aggregation method is used to minimize the number of false positives.•The proposed approach detects spinal metastasis accurately and effectively.
Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images.Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images.
Abstract Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images.
Author Fang, Zhiyuan
Baldi, Pierre
Wang, Juan
Lang, Ning
Su, Min-Ying
Yuan, Huishu
AuthorAffiliation c Department of Radiology, Peking University Third Hospital, Beijing 10019, China
a Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA
d Department of Radiological Sciences, University of California, Irvine, CA 92697, USA
b Department of Computer Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
AuthorAffiliation_xml – name: b Department of Computer Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
– name: a Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA
– name: c Department of Radiology, Peking University Third Hospital, Beijing 10019, China
– name: d Department of Radiological Sciences, University of California, Irvine, CA 92697, USA
Author_xml – sequence: 1
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA
– sequence: 2
  givenname: Zhiyuan
  surname: Fang
  fullname: Fang, Zhiyuan
  organization: Department of Computer Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
– sequence: 3
  givenname: Ning
  surname: Lang
  fullname: Lang, Ning
  organization: Department of Radiology, Peking University Third Hospital, Beijing 10019, China
– sequence: 4
  givenname: Huishu
  surname: Yuan
  fullname: Yuan, Huishu
  organization: Department of Radiology, Peking University Third Hospital, Beijing 10019, China
– sequence: 5
  givenname: Min-Ying
  surname: Su
  fullname: Su, Min-Ying
  organization: Department of Radiological Sciences, University of California, Irvine, CA 92697, USA
– sequence: 6
  givenname: Pierre
  surname: Baldi
  fullname: Baldi, Pierre
  email: pfbaldi@ics.uci.edu
  organization: Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28364643$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9r1TAYxoNM3Nn0K0jBG29a3_xp096I23AqDLyY3hrS9D1bztqkJu1k336pZ56jgjAhJbT95eF5nydH5MB5h4RkFAoKtHqzKYwfxtb6AbuCAZUF8AKYeEJWtJZNDiUXB2QFQCEXNSsPyVGMGwAQwOEZOWQ1r0Ql-Ip8O8mGuZ9sHjD6fp6sd5kex-C1uc7WPmRxtE732YCTjmnZmHU4ofkJztG6q_SOY3Zp9YARM4dzSLjD6YcPN_E5ebrWfcQXD_sx-Xr-_svZx_zi84dPZycXuanqcspFy9egm452VWlEVXGNMj1Vy0Bw4FXJGNPcIFLDqSw73ZhadlK2Rsv0EfkxebvVHec2ZWLQTcmGGoMddLhTXlv15x9nr9WVv1UVCFZSmgRePwgE_33GOKnBRoN9rx36OSpa17wWDMoFffUXuvFzSCEtVMOkLBteJ-rl7452Vn5Fn4B6C5jgYwy43iEU1NKy2qh9y2ppWQFXqeX9tLujxk56qSTNZvvHCJxuBTB1cmsxqGgsOoOdDalb1Xn7Hy52Iqa3zhrd3-Adxn0oKjIF6nK5jctlpJIDyGZJ4N2_BR7n4R7Vwfc2
CitedBy_id crossref_primary_10_14245_ns_1938426_213
crossref_primary_10_3389_fonc_2022_849447
crossref_primary_10_1371_journal_pone_0265185
crossref_primary_10_1016_j_cell_2019_11_013
crossref_primary_10_1016_j_eclinm_2020_100669
crossref_primary_10_2478_raon_2020_0068
crossref_primary_10_1016_j_semss_2021_100878
crossref_primary_10_1167_tvst_12_1_20
crossref_primary_10_1021_acsnano_2c12056
crossref_primary_10_1002_jbmr_3849
crossref_primary_10_1016_j_neucom_2022_04_078
crossref_primary_10_1016_j_mri_2019_02_013
crossref_primary_10_3390_app13148140
crossref_primary_10_1097_BSD_0000000000001211
crossref_primary_10_1007_s11042_022_14183_2
crossref_primary_10_3389_fbioe_2018_00075
crossref_primary_10_1093_noajnl_vdae045
crossref_primary_10_1016_j_media_2022_102456
crossref_primary_10_1109_TMI_2021_3080991
crossref_primary_10_3390_cancers14133289
crossref_primary_10_1016_j_compeleceng_2023_109032
crossref_primary_10_3390_en12244732
crossref_primary_10_3390_cancers16162800
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_3390_curroncol29100590
crossref_primary_10_1016_j_jrras_2023_100627
crossref_primary_10_1016_j_spinee_2022_01_004
crossref_primary_10_1109_ACCESS_2024_3396999
crossref_primary_10_1007_s11042_022_13008_6
crossref_primary_10_1177_2192568220961353
crossref_primary_10_3390_app12020681
crossref_primary_10_3390_cancers15245744
crossref_primary_10_1016_j_acra_2020_12_001
crossref_primary_10_1186_s13244_022_01227_2
crossref_primary_10_1109_TCBB_2018_2841396
crossref_primary_10_1167_tvst_10_12_30
crossref_primary_10_3390_cancers14133219
crossref_primary_10_1097_MD_0000000000034092
crossref_primary_10_1002_lsm_23324
crossref_primary_10_1109_ACCESS_2020_3012719
crossref_primary_10_3174_ajnr_A5742
crossref_primary_10_1016_j_compbiomed_2020_104048
crossref_primary_10_1166_jmihi_2021_3356
crossref_primary_10_3389_fonc_2022_814667
crossref_primary_10_1016_j_compbiomed_2018_09_003
crossref_primary_10_1016_j_neunet_2020_03_016
crossref_primary_10_1016_j_asoc_2022_109683
crossref_primary_10_1007_s13042_024_02236_x
crossref_primary_10_3390_jimaging8050121
crossref_primary_10_1016_j_bone_2023_116987
crossref_primary_10_1007_s10278_018_0053_3
crossref_primary_10_1016_j_acra_2019_01_012
crossref_primary_10_1186_s13634_023_01063_6
crossref_primary_10_1186_s40708_023_00184_w
crossref_primary_10_1016_j_neuroimage_2022_118933
crossref_primary_10_1007_s00247_021_05072_1
crossref_primary_10_1053_j_gastro_2018_06_037
crossref_primary_10_3390_ijerph191811708
crossref_primary_10_2147_CMAR_S340114
crossref_primary_10_1038_s41598_024_64580_w
crossref_primary_10_3390_cancers16172988
crossref_primary_10_1016_j_imu_2021_100596
crossref_primary_10_1016_j_spinee_2023_09_019
crossref_primary_10_1177_21925682241261342
crossref_primary_10_3389_frai_2021_638299
crossref_primary_10_3390_app131810310
crossref_primary_10_1016_j_csbj_2020_04_005
crossref_primary_10_1186_s40634_023_00642_8
crossref_primary_10_31616_asj_2020_0147
crossref_primary_10_1016_j_jor_2022_08_020
crossref_primary_10_1016_j_yacr_2019_04_013
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_4286_jjmi_89_533
crossref_primary_10_1002_ima_22543
crossref_primary_10_1016_j_ejrad_2023_110726
crossref_primary_10_3390_cancers16233946
crossref_primary_10_3390_cancers14164025
crossref_primary_10_1016_j_patcog_2018_01_009
crossref_primary_10_1109_ACCESS_2022_3212755
crossref_primary_10_1109_ACCESS_2019_2927396
crossref_primary_10_20517_ais_2024_73
crossref_primary_10_1007_s10278_019_00273_5
crossref_primary_10_1007_s10278_018_0130_7
crossref_primary_10_1177_02841851241263066
crossref_primary_10_1002_jmri_27001
crossref_primary_10_1016_j_arthro_2024_01_017
crossref_primary_10_1016_j_compbiomed_2021_105096
crossref_primary_10_3348_kjr_2023_0671
crossref_primary_10_3892_etm_2019_8310
crossref_primary_10_1016_j_mlwa_2021_100040
Cites_doi 10.1021/ci3003039
10.1007/978-3-319-14148-0_1
10.1038/ncomms5308
10.1093/bioinformatics/bts475
10.1117/12.652288
10.1016/j.artint.2014.02.004
10.1148/radiographics.11.2.2028061
10.1109/TMI.2009.2023362
10.4329/wjr.v7.i8.202
10.1021/ci400187y
10.1007/s005860000140
10.1007/978-3-642-35289-8_25
10.1016/j.neunet.2014.09.003
10.1109/TMI.2017.2655486
10.1109/TIP.2008.2004611
10.3171/foc.2001.11.6.7
10.1109/TIP.2010.2069690
10.1007/BF00133570
10.1155/2011/769753
10.1117/12.911700
10.1007/978-3-319-19992-4_46
10.1038/nmeth.3547
10.1118/1.4938059
10.1109/TMI.2003.819929
10.1109/CVPR.2015.7298594
10.1088/0031-9155/57/24/8357
10.1038/ncpneuro0116
10.1109/ICASSP.2013.6638947
10.1634/theoncologist.9-2-188
10.1162/neco.1993.5.3.402
10.1038/nrc867
10.1142/S0218001493000339
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited May 1, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited May 1, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.compbiomed.2017.03.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 146
ExternalDocumentID PMC6042511
28364643
10_1016_j_compbiomed_2017_03_024
S0010482517300793
1_s2_0_S0010482517300793
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001414
– fundername: NCI NIH HHS
  grantid: R01 CA127927
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c685t-4b3f0a9d1d65c4663ae73ae6b20430365222a3cee1c3175da9c87d77bca7ee1e3
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Thu Aug 21 18:37:37 EDT 2025
Mon Jul 21 09:32:00 EDT 2025
Wed Aug 13 04:26:19 EDT 2025
Mon Jul 21 06:04:42 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Tue Jul 01 03:28:27 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Tue Feb 25 20:08:41 EST 2025
Tue Aug 26 16:33:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multi-resolution analysis
Spinal metastasis
Siamese neural network
Magnetic resonance imaging
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c685t-4b3f0a9d1d65c4663ae73ae6b20430365222a3cee1c3175da9c87d77bca7ee1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6042511
PMID 28364643
PQID 1892775938
PQPubID 1226355
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042511
proquest_miscellaneous_1883842051
proquest_journals_1892775938
pubmed_primary_28364643
crossref_primary_10_1016_j_compbiomed_2017_03_024
crossref_citationtrail_10_1016_j_compbiomed_2017_03_024
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_03_024
elsevier_clinicalkeyesjournals_1_s2_0_S0010482517300793
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_03_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Neubert, Fripp, Engstrom, Schwarz, Lauer, Salvado, Crozier (bib15) 2012; 57
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, arXiv preprint
Bromley, Bentz, Bottou, Guyon, LeCun, Moore, Säckinger, Shah (bib32) 1993; 7
T. Pope, H.L. Bloem, J. Beltran, W. B. Morrison, D.J. Wilson, Musculoskeletal Imaging, Elsevier Health Sciences, Philadelphia, US, 2014.
Algra, Bloem, Tissing, Falke, Arndt, Verboom (bib8) 1991; 11
S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint
Zhou, Mccarthy, Mcgregor, Coombs, Hughes (bib16) 2000; 9
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
di Lena, Nagata, Baldi (bib26) 2012; 28
D. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems, 2012, pp. 2843–2851.
Baldi, Sadowski (bib38) 2014; 210
L.M. Shah, K.L. Salzman, Imaging of spinal metastatic disease, Int. J. Surg. Oncol. 2011.
H.R. Roth, J. Yao, L. Lu, J. Stieger, J.E. Burns, R.M. Summers, Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications, in: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, Springer International Publishing, Switzerland, 2015, pp. 3–12.
J. Yao, S.D. O′Connor, R. Summers, Computer aided lytic bone metastasis detection using regular CT images, in: Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Image Processing, San Diego, CA, USA, 2006, pp. 614459.
Carballido-Gamio, Belongie, Majumdar (bib13) 2004; 23
T. Wiese, J. Yao, J.E. Burns, R.M. Summers, Detection of sclerotic bone metastases in the spine using watershed algorithm and graph cut, in: SPIE Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Computer-Aided Diagnosis, San Diego, CA, USA, 2012, pp. 831512.
Huang, Chu, Lai, Novak (bib14) 2009; 28
O'Sullivan, Carty, Cronin (bib9) 2015; 7
P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nat. Commun., vol. 5, 2014
A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, BC, Canada, 2013, pp. 6645–6649.
D. Wang, A. Khosla, R. Gargeya, H. Irshad, A.H. Beck, Deep learning for identifying metastatic breast cancer, arXiv preprint
Li, Xu, Gui, Fox (bib42) 2010; 19
Witham, Khavkin, Gallia, Wolinsky, Gokaslan (bib3) 2006; 2
W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: International Conference on Information Processing in Medical Imaging, Springer, Lake Tahoe, Nevada, US, 2015, pp. 588–599.
Baldi, Chauvin (bib33) 1993; 5
L. Bottou, Stochastic gradient descent tricks, in: Neural Networks: Tricks of the Trade, Springer, Springer Berlin Heidelberg, 2012, pp. 421–436.
Zhou, Troyanskaya (bib27) 2015; 12
Sciubba, Petteys, Dekutoski, Fisher, Fehlings, Ondra, Rhines, Gokaslan (bib6) 2010; 13
K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: delving deep into convolutional nets, arXiv preprint
Lusci, Pollastri, Baldi (bib25) 2013; 53
X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks., in: Aistats, vol. 15, 2011, p. 275.
Mundy (bib1) 2002; 2
Kayala, Baldi (bib24) 2012; 52
B. Graham, Fractional max-pooling, arXiv preprint
Lankton, Tannenbaum (bib44) 2008; 17
Murphy, Chang, Gibbs, Le, Martin, Kim (bib2) 2001; 11
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib37) 2014; 15
Wang, Nishikawa, Yang (bib41) 2016; 43
.
P. Sadowski, J. Collado, D. Whiteson, P. Baldi, Deep learning, dark knowledge, and dark matter, J. Mach. Learn. Res.: Workshop and Conference Proceedings 42 (2015) 81–97.
J. Wang, H. Ding, F. Azamian, B. Zhou, C. Iribarren, S. Molloi, P. Baldi, Detecting cardiovascular disease from mammograms with deep learning, IEEE Trans. Med. Imaging., 2017
Kass, Witkin, Terzopoulos (bib43) 1988; 1
Klimo, Schmidt (bib4) 2004; 9
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
Schmidhuber (bib17) 2015; 61
Schmidhuber (10.1016/j.compbiomed.2017.03.024_bib17) 2015; 61
Carballido-Gamio (10.1016/j.compbiomed.2017.03.024_bib13) 2004; 23
Zhou (10.1016/j.compbiomed.2017.03.024_bib27) 2015; 12
Lankton (10.1016/j.compbiomed.2017.03.024_bib44) 2008; 17
Klimo (10.1016/j.compbiomed.2017.03.024_bib4) 2004; 9
di Lena (10.1016/j.compbiomed.2017.03.024_bib26) 2012; 28
10.1016/j.compbiomed.2017.03.024_bib40
Lusci (10.1016/j.compbiomed.2017.03.024_bib25) 2013; 53
10.1016/j.compbiomed.2017.03.024_bib21
Neubert (10.1016/j.compbiomed.2017.03.024_bib15) 2012; 57
10.1016/j.compbiomed.2017.03.024_bib20
10.1016/j.compbiomed.2017.03.024_bib23
Huang (10.1016/j.compbiomed.2017.03.024_bib14) 2009; 28
10.1016/j.compbiomed.2017.03.024_bib22
Mundy (10.1016/j.compbiomed.2017.03.024_bib1) 2002; 2
10.1016/j.compbiomed.2017.03.024_bib29
10.1016/j.compbiomed.2017.03.024_bib28
Wang (10.1016/j.compbiomed.2017.03.024_bib41) 2016; 43
Srivastava (10.1016/j.compbiomed.2017.03.024_bib37) 2014; 15
Algra (10.1016/j.compbiomed.2017.03.024_bib8) 1991; 11
Li (10.1016/j.compbiomed.2017.03.024_bib42) 2010; 19
Bromley (10.1016/j.compbiomed.2017.03.024_bib32) 1993; 7
10.1016/j.compbiomed.2017.03.024_bib7
Kass (10.1016/j.compbiomed.2017.03.024_bib43) 1988; 1
10.1016/j.compbiomed.2017.03.024_bib30
Baldi (10.1016/j.compbiomed.2017.03.024_bib33) 1993; 5
Kayala (10.1016/j.compbiomed.2017.03.024_bib24) 2012; 52
10.1016/j.compbiomed.2017.03.024_bib5
Sciubba (10.1016/j.compbiomed.2017.03.024_bib6) 2010; 13
O'Sullivan (10.1016/j.compbiomed.2017.03.024_bib9) 2015; 7
10.1016/j.compbiomed.2017.03.024_bib36
10.1016/j.compbiomed.2017.03.024_bib35
Zhou (10.1016/j.compbiomed.2017.03.024_bib16) 2000; 9
10.1016/j.compbiomed.2017.03.024_bib10
Murphy (10.1016/j.compbiomed.2017.03.024_bib2) 2001; 11
10.1016/j.compbiomed.2017.03.024_bib31
10.1016/j.compbiomed.2017.03.024_bib12
10.1016/j.compbiomed.2017.03.024_bib34
10.1016/j.compbiomed.2017.03.024_bib11
Baldi (10.1016/j.compbiomed.2017.03.024_bib38) 2014; 210
Witham (10.1016/j.compbiomed.2017.03.024_bib3) 2006; 2
10.1016/j.compbiomed.2017.03.024_bib18
10.1016/j.compbiomed.2017.03.024_bib39
10.1016/j.compbiomed.2017.03.024_bib19
12154351 - Nat Rev Cancer. 2002 Aug;2(8):584-93
26745908 - Med Phys. 2016 Jan;43(1):159
15047923 - Oncologist. 2004;9(2):188-96
2028061 - Radiographics. 1991 Mar;11(2):219-32
19783497 - IEEE Trans Med Imaging. 2009 Oct;28(10):1595-605
22847931 - Bioinformatics. 2012 Oct 1;28(19):2449-57
26339464 - World J Radiol. 2015 Aug 28;7(8):202-11
16932530 - Nat Clin Pract Neurol. 2006 Feb;2(2):87-94; quiz 116
18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39
10905444 - Eur Spine J. 2000 Jun;9(3):242-8
26221705 - Inf Process Med Imaging. 2015;24:588-99
22978639 - J Chem Inf Model. 2012 Oct 22;52(10):2526-40
16463998 - Neurosurg Focus. 2001 Dec 15;11(6):e6
14719685 - IEEE Trans Med Imaging. 2004 Jan;23(1):36-44
24986233 - Nat Commun. 2014 Jul 02;5:4308
20801742 - IEEE Trans Image Process. 2010 Dec;19(12):3243-54
23795551 - J Chem Inf Model. 2013 Jul 22;53(7):1563-75
20594024 - J Neurosurg Spine. 2010 Jul;13(1):94-108
26301843 - Nat Methods. 2015 Oct;12(10):931-4
23201861 - Phys Med Biol. 2012 Dec 21;57(24):8357-76
24771879 - Artif Intell. 2014 May;210:78-122
25462637 - Neural Netw. 2015 Jan;61:85-117
28113340 - IEEE Trans Med Imaging. 2017 May;36(5):1172-1181
22312523 - Int J Surg Oncol. 2011;2011:769753
References_xml – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
– volume: 9
  start-page: 188
  year: 2004
  end-page: 196
  ident: bib4
  article-title: Surgical management of spinal metastases
  publication-title: Oncologist
– reference: X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks., in: Aistats, vol. 15, 2011, p. 275.
– volume: 2
  start-page: 87
  year: 2006
  end-page: 94
  ident: bib3
  article-title: Surgery insight
  publication-title: Nat. Clin. Pract. Neurol.
– reference: P. Sadowski, J. Collado, D. Whiteson, P. Baldi, Deep learning, dark knowledge, and dark matter, J. Mach. Learn. Res.: Workshop and Conference Proceedings 42 (2015) 81–97.
– volume: 11
  start-page: 1
  year: 2001
  end-page: 7
  ident: bib2
  article-title: Image-guided radiosurgery in the treatment of spinal metastases
  publication-title: Neurosurg. Focus
– volume: 43
  start-page: 159
  year: 2016
  end-page: 170
  ident: bib41
  article-title: Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model
  publication-title: Med. Phys.
– reference: K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: delving deep into convolutional nets, arXiv preprint
– reference: W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: International Conference on Information Processing in Medical Imaging, Springer, Lake Tahoe, Nevada, US, 2015, pp. 588–599.
– reference: P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nat. Commun., vol. 5, 2014,
– reference: D. Wang, A. Khosla, R. Gargeya, H. Irshad, A.H. Beck, Deep learning for identifying metastatic breast cancer, arXiv preprint
– volume: 5
  start-page: 402
  year: 1993
  end-page: 418
  ident: bib33
  article-title: Neural networks for fingerprint recognition
  publication-title: Neural Comput.
– volume: 52
  start-page: 2526
  year: 2012
  end-page: 2540
  ident: bib24
  article-title: Reactionpredictor
  publication-title: J. Chem. Inf. Model.
– reference: A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, BC, Canada, 2013, pp. 6645–6649.
– volume: 19
  start-page: 3243
  year: 2010
  end-page: 3254
  ident: bib42
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 94
  year: 2010
  end-page: 108
  ident: bib6
  article-title: Diagnosis and management of metastatic spine disease
  publication-title: J. Neurosurg.: Spine
– reference: T. Pope, H.L. Bloem, J. Beltran, W. B. Morrison, D.J. Wilson, Musculoskeletal Imaging, Elsevier Health Sciences, Philadelphia, US, 2014.
– volume: 2
  start-page: 584
  year: 2002
  end-page: 593
  ident: bib1
  article-title: Metastasis to bone
  publication-title: Nat. Rev. Cancer
– reference: S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint
– reference: H.R. Roth, J. Yao, L. Lu, J. Stieger, J.E. Burns, R.M. Summers, Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications, in: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, Springer International Publishing, Switzerland, 2015, pp. 3–12.
– volume: 12
  start-page: 931
  year: 2015
  end-page: 934
  ident: bib27
  article-title: Predicting effects of noncoding variants with deep learning-based sequence model
  publication-title: Nat. Methods
– volume: 7
  start-page: 669
  year: 1993
  end-page: 688
  ident: bib32
  article-title: Signature verification using a “Siamese” time delay neural network
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 1
  start-page: 321
  year: 1988
  end-page: 331
  ident: bib43
  article-title: Snakes
  publication-title: Int. J. Comput. Vis.
– reference: L.M. Shah, K.L. Salzman, Imaging of spinal metastatic disease, Int. J. Surg. Oncol. 2011.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib37
  article-title: Dropout
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib17
  article-title: Deep learning in neural networks
  publication-title: Neural Netw.
– reference: D. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems, 2012, pp. 2843–2851.
– volume: 210
  start-page: 78
  year: 2014
  end-page: 122
  ident: bib38
  article-title: The dropout learning algorithm
  publication-title: Artif. Intell.
– volume: 57
  start-page: 8357
  year: 2012
  ident: bib15
  article-title: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models
  publication-title: Phys. Med. Biol.
– volume: 9
  start-page: 242
  year: 2000
  end-page: 248
  ident: bib16
  article-title: Geometrical dimensions of the lower lumbar vertebrae – analysis of data from digitised CT images
  publication-title: Eur. Spine J.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, arXiv preprint
– volume: 53
  start-page: 1563
  year: 2013
  end-page: 1575
  ident: bib25
  article-title: Deep architectures and deep learning in chemoinformatics
  publication-title: J. Chem. Inf. Model.
– reference: L. Bottou, Stochastic gradient descent tricks, in: Neural Networks: Tricks of the Trade, Springer, Springer Berlin Heidelberg, 2012, pp. 421–436.
– volume: 28
  start-page: 1595
  year: 2009
  end-page: 1605
  ident: bib14
  article-title: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal mri
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 2029
  year: 2008
  end-page: 2039
  ident: bib44
  article-title: Localizing region-based active contours
  publication-title: IEEE Trans. Image Process.
– reference: .
– reference: B. Graham, Fractional max-pooling, arXiv preprint
– volume: 28
  start-page: 2449
  year: 2012
  end-page: 2457
  ident: bib26
  article-title: Deep architectures for protein contact map prediction
  publication-title: Bioinformatics
– reference: J. Wang, H. Ding, F. Azamian, B. Zhou, C. Iribarren, S. Molloi, P. Baldi, Detecting cardiovascular disease from mammograms with deep learning, IEEE Trans. Med. Imaging., 2017,
– volume: 11
  start-page: 219
  year: 1991
  end-page: 232
  ident: bib8
  article-title: Detection of vertebral metastases
  publication-title: Radiographics
– reference: J. Yao, S.D. O′Connor, R. Summers, Computer aided lytic bone metastasis detection using regular CT images, in: Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Image Processing, San Diego, CA, USA, 2006, pp. 614459.
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
– reference: T. Wiese, J. Yao, J.E. Burns, R.M. Summers, Detection of sclerotic bone metastases in the spine using watershed algorithm and graph cut, in: SPIE Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Computer-Aided Diagnosis, San Diego, CA, USA, 2012, pp. 831512.
– volume: 7
  start-page: 202
  year: 2015
  ident: bib9
  article-title: Imaging of bone metastasis
  publication-title: World J. Radiol.
– volume: 23
  start-page: 36
  year: 2004
  end-page: 44
  ident: bib13
  article-title: Normalized cuts in 3-d for spinal MRI segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 13
  start-page: 94
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2017.03.024_bib6
  article-title: Diagnosis and management of metastatic spine disease
  publication-title: J. Neurosurg.: Spine
– volume: 52
  start-page: 2526
  issue: 10
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.024_bib24
  article-title: Reactionpredictor
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci3003039
– ident: 10.1016/j.compbiomed.2017.03.024_bib10
  doi: 10.1007/978-3-319-14148-0_1
– ident: 10.1016/j.compbiomed.2017.03.024_bib22
  doi: 10.1038/ncomms5308
– volume: 28
  start-page: 2449
  issue: 19
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.024_bib26
  article-title: Deep architectures for protein contact map prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts475
– ident: 10.1016/j.compbiomed.2017.03.024_bib23
– ident: 10.1016/j.compbiomed.2017.03.024_bib12
  doi: 10.1117/12.652288
– volume: 210
  start-page: 78
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.024_bib38
  article-title: The dropout learning algorithm
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2014.02.004
– volume: 11
  start-page: 219
  issue: 2
  year: 1991
  ident: 10.1016/j.compbiomed.2017.03.024_bib8
  article-title: Detection of vertebral metastases
  publication-title: Radiographics
  doi: 10.1148/radiographics.11.2.2028061
– volume: 28
  start-page: 1595
  issue: 10
  year: 2009
  ident: 10.1016/j.compbiomed.2017.03.024_bib14
  article-title: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal mri
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2023362
– volume: 7
  start-page: 202
  issue: 8
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.024_bib9
  article-title: Imaging of bone metastasis
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v7.i8.202
– volume: 53
  start-page: 1563
  issue: 7
  year: 2013
  ident: 10.1016/j.compbiomed.2017.03.024_bib25
  article-title: Deep architectures and deep learning in chemoinformatics
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci400187y
– volume: 9
  start-page: 242
  issue: 3
  year: 2000
  ident: 10.1016/j.compbiomed.2017.03.024_bib16
  article-title: Geometrical dimensions of the lower lumbar vertebrae – analysis of data from digitised CT images
  publication-title: Eur. Spine J.
  doi: 10.1007/s005860000140
– ident: 10.1016/j.compbiomed.2017.03.024_bib40
  doi: 10.1007/978-3-642-35289-8_25
– ident: 10.1016/j.compbiomed.2017.03.024_bib34
– ident: 10.1016/j.compbiomed.2017.03.024_bib36
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.024_bib17
  article-title: Deep learning in neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: 10.1016/j.compbiomed.2017.03.024_bib30
– ident: 10.1016/j.compbiomed.2017.03.024_bib31
  doi: 10.1109/TMI.2017.2655486
– volume: 17
  start-page: 2029
  issue: 11
  year: 2008
  ident: 10.1016/j.compbiomed.2017.03.024_bib44
  article-title: Localizing region-based active contours
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2004611
– volume: 11
  start-page: 1
  issue: 6
  year: 2001
  ident: 10.1016/j.compbiomed.2017.03.024_bib2
  article-title: Image-guided radiosurgery in the treatment of spinal metastases
  publication-title: Neurosurg. Focus
  doi: 10.3171/foc.2001.11.6.7
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  ident: 10.1016/j.compbiomed.2017.03.024_bib42
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2069690
– ident: 10.1016/j.compbiomed.2017.03.024_bib7
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  ident: 10.1016/j.compbiomed.2017.03.024_bib43
  article-title: Snakes
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00133570
– ident: 10.1016/j.compbiomed.2017.03.024_bib5
  doi: 10.1155/2011/769753
– ident: 10.1016/j.compbiomed.2017.03.024_bib11
  doi: 10.1117/12.911700
– ident: 10.1016/j.compbiomed.2017.03.024_bib29
  doi: 10.1007/978-3-319-19992-4_46
– volume: 12
  start-page: 931
  issue: 10
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.024_bib27
  article-title: Predicting effects of noncoding variants with deep learning-based sequence model
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
– ident: 10.1016/j.compbiomed.2017.03.024_bib18
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.024_bib37
  article-title: Dropout
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 159
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2017.03.024_bib41
  article-title: Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model
  publication-title: Med. Phys.
  doi: 10.1118/1.4938059
– volume: 23
  start-page: 36
  issue: 1
  year: 2004
  ident: 10.1016/j.compbiomed.2017.03.024_bib13
  article-title: Normalized cuts in 3-d for spinal MRI segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.819929
– ident: 10.1016/j.compbiomed.2017.03.024_bib20
– ident: 10.1016/j.compbiomed.2017.03.024_bib19
  doi: 10.1109/CVPR.2015.7298594
– ident: 10.1016/j.compbiomed.2017.03.024_bib28
– volume: 57
  start-page: 8357
  issue: 24
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.024_bib15
  article-title: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/24/8357
– volume: 2
  start-page: 87
  issue: 2
  year: 2006
  ident: 10.1016/j.compbiomed.2017.03.024_bib3
  article-title: Surgery insight
  publication-title: Nat. Clin. Pract. Neurol.
  doi: 10.1038/ncpneuro0116
– ident: 10.1016/j.compbiomed.2017.03.024_bib21
  doi: 10.1109/ICASSP.2013.6638947
– ident: 10.1016/j.compbiomed.2017.03.024_bib35
– volume: 9
  start-page: 188
  issue: 2
  year: 2004
  ident: 10.1016/j.compbiomed.2017.03.024_bib4
  article-title: Surgical management of spinal metastases
  publication-title: Oncologist
  doi: 10.1634/theoncologist.9-2-188
– volume: 5
  start-page: 402
  issue: 3
  year: 1993
  ident: 10.1016/j.compbiomed.2017.03.024_bib33
  article-title: Neural networks for fingerprint recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1993.5.3.402
– volume: 2
  start-page: 584
  issue: 8
  year: 2002
  ident: 10.1016/j.compbiomed.2017.03.024_bib1
  article-title: Metastasis to bone
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc867
– ident: 10.1016/j.compbiomed.2017.03.024_bib39
– volume: 7
  start-page: 669
  issue: 04
  year: 1993
  ident: 10.1016/j.compbiomed.2017.03.024_bib32
  article-title: Signature verification using a “Siamese” time delay neural network
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001493000339
– reference: 24986233 - Nat Commun. 2014 Jul 02;5:4308
– reference: 18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39
– reference: 23201861 - Phys Med Biol. 2012 Dec 21;57(24):8357-76
– reference: 25462637 - Neural Netw. 2015 Jan;61:85-117
– reference: 26221705 - Inf Process Med Imaging. 2015;24:588-99
– reference: 28113340 - IEEE Trans Med Imaging. 2017 May;36(5):1172-1181
– reference: 22978639 - J Chem Inf Model. 2012 Oct 22;52(10):2526-40
– reference: 19783497 - IEEE Trans Med Imaging. 2009 Oct;28(10):1595-605
– reference: 15047923 - Oncologist. 2004;9(2):188-96
– reference: 14719685 - IEEE Trans Med Imaging. 2004 Jan;23(1):36-44
– reference: 20801742 - IEEE Trans Image Process. 2010 Dec;19(12):3243-54
– reference: 26339464 - World J Radiol. 2015 Aug 28;7(8):202-11
– reference: 10905444 - Eur Spine J. 2000 Jun;9(3):242-8
– reference: 26745908 - Med Phys. 2016 Jan;43(1):159
– reference: 16932530 - Nat Clin Pract Neurol. 2006 Feb;2(2):87-94; quiz 116
– reference: 22312523 - Int J Surg Oncol. 2011;2011:769753
– reference: 20594024 - J Neurosurg Spine. 2010 Jul;13(1):94-108
– reference: 24771879 - Artif Intell. 2014 May;210:78-122
– reference: 26301843 - Nat Methods. 2015 Oct;12(10):931-4
– reference: 2028061 - Radiographics. 1991 Mar;11(2):219-32
– reference: 16463998 - Neurosurg Focus. 2001 Dec 15;11(6):e6
– reference: 22847931 - Bioinformatics. 2012 Oct 1;28(19):2449-57
– reference: 23795551 - J Chem Inf Model. 2013 Jul 22;53(7):1563-75
– reference: 12154351 - Nat Rev Cancer. 2002 Aug;2(8):584-93
SSID ssj0004030
Score 2.4938898
Snippet Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of...
Abstract Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Accuracy
Adults
Aged
Algorithms
Artificial neural networks
Automation
Bioinformatics
Bone cancer
Bone marrow
Breast cancer
Cancer
Cardiovascular disease
Classification
Compression
Computed tomography
Computer programs
Computer vision
Data processing
Deep learning
Diagnosis
Feasibility studies
Female
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Information processing
Internal Medicine
Intervertebral discs
Kidneys
Lesions
Lungs
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Mammography
Mathematical models
Medical imaging
Membranes
Metastases
Metastasis
Methods
Middle Aged
Multi-resolution analysis
Neural networks
Neural Networks (Computer)
NMR
Nuclear magnetic resonance
Other
Pain
Predictions
Probability theory
Quality of life
ROC Curve
Siamese neural network
Solubility
Spatial resolution
Speech
Spinal cancer
Spinal cord
Spinal metastasis
Spinal Neoplasms - diagnostic imaging
Spinal Neoplasms - secondary
Thorax
Tumors
Vertebrae
Visual perception
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHiouiJav0IKMxDV0HTtxLE5VRVUhlQtU6glrHHshCNIVSa_97Z2JnSxLQVqJQw5JPEpij2eelffGjL3xBqAppMvFsihzBSBzwKVQ7oNXzkCoC0F654uP1fml-nBVXu2w00kLQ7TKFPtjTB-jdbpynHrzeNW2pPHFpQQpL6nkOroZKdiVJi9_e7umeaiFjDIUjDfUOrF5IseLaNtR5k4kLz2WOy3Uv1LUfQj6J5Pyt9R09og9TJiSn8TX3mc7oTtgexfpr_lj9uWEj7zBHJfWydP4VEucI2jl_Yr2xuI_wwAIFvu25z4MI0er40SM_4rnYcU_tUSpDZxqYGLzLjLI-yfs8uz959PzPO2rkDdVXQ65cnK5AOOFr8pGIeSAoPGoHOlkMaMhJCtAYvYUDaELD6aptdfaNaDxYpBP2W533YXnjFcelJRGSudI0Wtg2YBagihdAO1lmTE9daVtUtFx2vvih53YZd_tehAsDYJdSIuDkDExW65i4Y0tbMw0WnYSlmIotJgdtrDVf7MNfZrTvRW2L-zC3vO7jL2bLTdcd8vnHk1uZdePqk2hdWlknbHX822c-PQ3B7pwfUNtalmrAoNqxp5FL5w7CjFjpRBr4kdt-OfcgIqKb97p2m9jcfGKorgQL_7row7ZAzqLxNAjtjv8ugkvEbwN7tU4O-8A8EdHZQ
  priority: 102
  providerName: Elsevier
Title A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517300793
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517300793
https://dx.doi.org/10.1016/j.compbiomed.2017.03.024
https://www.ncbi.nlm.nih.gov/pubmed/28364643
https://www.proquest.com/docview/1892775938
https://www.proquest.com/docview/1883842051
https://pubmed.ncbi.nlm.nih.gov/PMC6042511
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB2xuxLisuKbwFIZiauhjp04EQdU0JYC2gqxrNQTlhO7ULSkhWSv_HZmEidl-VIPbdXGozTxeOY5fvMM8Njl1paxLLhYxglX1kpucSrEnXeqyK3PYkH1zifzdHam3iySRXjgVgdaZR8T20Dt1iU9I38qsjzWOsll9nzzjdOuUbS6GrbQ2IMDki4jSpde6G1d5Fh2JSgYaxROhQKTp-N3EWW7K3EngpdupU5j9a_09Cf8_J1F-Utaml6Hw4An2aRzgBtwxVc34epJWDG_BR8nrOUMcpxWBy9jvY44Q8DK6g3ti8W--sYiUKxXNXO-aflZFSNS_Cf87jfsdEV0Ws9I_xKbVx17vL4NZ9PjDy9nPOypwMs0SxquCrkc29wJlyalQrhhvcZXWlCNLGYzhGOxlZg5RUnIwtm8zLTTuiitxh-9vAP71bry94ClziopcymLgqp5c7ssrVpakRTeaieTCHR_K00ZBMdp34tz0zPLvphtJxjqBDOWBjshAjFYbjrRjR1s8r63TF9UimHQYGbYwVb_zdbXYTzXRpg6NmNz2soZUbUvyfxjaIvg2WAZIEsHRXY871HvVmZ7qsHRI3g0HMZBTys5tvLrC2qTyUzFGFAjuNt54XCjEC-mCnEmXtQl_xwakKD45SPV6nMrLJ5SBBfi_v__1gO4RtfQsT6PYL_5fuEfIjJrihHsPfkhRu0gxPds-moEB5PXb2dz_HxxPH_3_idYlEFH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxBtDgUWCo0X2Ya8thFAFhJQ2vbSVemJZezcQBE7ArhB_it_IjNd2KC_l0kMOiXfieGd25tvsNzMAj1xubSlkEfOZSGJlrYwtboVi550qcuszwSnfebqfTo7Um-PkeAN-9LkwRKvsfWLrqN2ipP_In_AsF1onucyeL7_E1DWKTlf7FhrBLHb992-4Zauf7bxE_T4WYvzq8MUk7roKxGWaJU2sCjkb2dxxlyalwoBrvcZXWlCWKPpzBCTCSowdvKTY6mxeZtppXZRW44de4veeg_NKypxWVDZ-vcrDHMmQ8oK-TeHWq2MOBT4ZUcRDSj0RynRbWlWof4XDP-Hu76zNX8Lg-Apc7vAr2w4GdxU2fHUNLky7E_rr8HabtRzFGLfxnVWzvm45Q4DM6iX14WKffWMRmNbzmjnftHywihEJ_z2-90t2MCf6rmdUbxOHV4GtXt-AozOZ7ZuwWS0qfxtY6ixNupRFQdnDuZ2VVs0sTwpvtZNJBLqfSlN2Bc6pz8Yn0zPZPpqVEgwpwYykQSVEwAfJZSjysYZM3mvL9Ems6HYNRqI1ZPXfZH3d-Y_acFMLMzIHbfkkyi6mtgLoSiN4Okh2EClAnzXvu9WblVndalhYETwcLqOToZMjW_nFCY3JZKYEOvAIbgUrHCYK8WmqENfiQ52yz2EAFTA_faWaf2gLmacUMTi_8_-f9QAuTg6ne2ZvZ3_3Llyi5wmM0y3YbL6e-HuICpvifrsUGbw767X_E5tReYs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEG8CBRYJjlazD3ttIYQqStRSWiGVSjmxrL1rSFWcgF0h_hq_jhmv7VBeyqWHHBLvxPHO7My32W9mAJ64zNpCyDzipYgjZa2MLG6FIuedyjPrU8Ep3_ngMNk9Vq-n8XQNfvS5MESr7H1i66jdvKD_yLd4mgmt40ymW2VHi3i7M3mx-BJRByk6ae3baQQT2fffv-H2rX6-t4O6firE5NW7l7tR12EgKpI0biKVy3JsM8ddEhcKg6_1Gl9JThmj6NsRnAgrMY7wguKss1mRaqd1XliNH3qJ33sJLmsZc1pjeqqXOZljGdJf0M8p3IZ1LKLALSO6eEivJ3KZbsusCvWv0Pgn9P2dwflLSJxcg6sdlmXbwfiuw5qvbsDGQXdafxPeb7OWrxjhlr6zcNbXMGcIllm9oJ5c7LNvLILUelYz55uWG1YxIuR_xPd-wY5mROX1jGpv4vAqMNfrW3B8IbN9G9areeXvAkucVVJmUuY5ZRJntiysKi2Pc2-1k_EIdD-VpuiKnVPPjVPTs9pOzFIJhpRgxtKgEkbAB8lFKPixgkzWa8v0Ca3ogg1GpRVk9d9kfd35ktpwUwszNkdtKSXKNKYWA-hWR_BskOzgUoBBK953szcrs7zVsMhG8Hi4jA6HTpFs5ednNCaVqRLozEdwJ1jhMFGIVROFGBcf6px9DgOomPn5K9XsU1vUPKHowfm9__-sR7CBq9682Tvcvw9X6HEC-XQT1puvZ_4BAsQmf9iuRAYfLnrp_wTo0n24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-resolution+approach+for+spinal+metastasis+detection+using+deep+Siamese+neural+networks&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Wang%2C+Juan&rft.au=Fang%2C+Zhiyuan&rft.au=Lang%2C+Ning&rft.au=Yuan%2C+Huishu&rft.date=2017-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=84&rft.spage=137&rft.epage=146&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.03.024&rft.externalDocID=S0010482517300793
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482517X00048%2Fcov150h.gif