A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks
Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in m...
Saved in:
Published in | Computers in biology and medicine Vol. 84; pp. 137 - 146 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.05.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images.
•A multi-resolution approach is proposed to detect spinal metastasis in MRI.•The multi-resolution approach is implemented using deep Siamese neural networks.•A slice-based aggregation method is used to minimize the number of false positives.•The proposed approach detects spinal metastasis accurately and effectively. |
---|---|
AbstractList | Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images. Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images. •A multi-resolution approach is proposed to detect spinal metastasis in MRI.•The multi-resolution approach is implemented using deep Siamese neural networks.•A slice-based aggregation method is used to minimize the number of false positives.•The proposed approach detects spinal metastasis accurately and effectively. Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images.Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images. Abstract Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of automated spinal metastasis detection in magnetic resonance imaging (MRI) by using deep learning methods. To accommodate the large variability in metastatic lesion sizes, we develop a Siamese deep neural network approach comprising three identical subnetworks for multi-resolution analysis and detection of spinal metastasis. At each location of interest, three image patches at three different resolutions are extracted and used as the input to the networks. To further reduce the false positives (FPs), we leverage the similarity between neighboring MRI slices, and adopt a weighted averaging strategy to aggregate the results obtained by the Siamese neural networks. The detection performance is evaluated on a set of 26 cases using a free-response receiver operating characteristic (FROC) analysis. The results show that the proposed approach correctly detects all the spinal metastatic lesions while producing only 0.40 FPs per case. At a true positive (TP) rate of 90%, the use of the aggregation reduces the FPs from 0.375 FPs per case to 0.207 FPs per case, a nearly 44.8% reduction. The results indicate that the proposed Siamese neural network method, combined with the aggregation strategy, provide a viable strategy for the automated detection of spinal metastasis in MRI images. |
Author | Fang, Zhiyuan Baldi, Pierre Wang, Juan Lang, Ning Su, Min-Ying Yuan, Huishu |
AuthorAffiliation | c Department of Radiology, Peking University Third Hospital, Beijing 10019, China a Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA d Department of Radiological Sciences, University of California, Irvine, CA 92697, USA b Department of Computer Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China |
AuthorAffiliation_xml | – name: b Department of Computer Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China – name: a Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA – name: c Department of Radiology, Peking University Third Hospital, Beijing 10019, China – name: d Department of Radiological Sciences, University of California, Irvine, CA 92697, USA |
Author_xml | – sequence: 1 givenname: Juan surname: Wang fullname: Wang, Juan organization: Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA – sequence: 2 givenname: Zhiyuan surname: Fang fullname: Fang, Zhiyuan organization: Department of Computer Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China – sequence: 3 givenname: Ning surname: Lang fullname: Lang, Ning organization: Department of Radiology, Peking University Third Hospital, Beijing 10019, China – sequence: 4 givenname: Huishu surname: Yuan fullname: Yuan, Huishu organization: Department of Radiology, Peking University Third Hospital, Beijing 10019, China – sequence: 5 givenname: Min-Ying surname: Su fullname: Su, Min-Ying organization: Department of Radiological Sciences, University of California, Irvine, CA 92697, USA – sequence: 6 givenname: Pierre surname: Baldi fullname: Baldi, Pierre email: pfbaldi@ics.uci.edu organization: Institute for Genomics and Bioinformatics and Department of Computer Science, University of California, Irvine, CA 92697, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28364643$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl9r1TAYxoNM3Nn0K0jBG29a3_xp096I23AqDLyY3hrS9D1bztqkJu1k336pZ56jgjAhJbT95eF5nydH5MB5h4RkFAoKtHqzKYwfxtb6AbuCAZUF8AKYeEJWtJZNDiUXB2QFQCEXNSsPyVGMGwAQwOEZOWQ1r0Ql-Ip8O8mGuZ9sHjD6fp6sd5kex-C1uc7WPmRxtE732YCTjmnZmHU4ofkJztG6q_SOY3Zp9YARM4dzSLjD6YcPN_E5ebrWfcQXD_sx-Xr-_svZx_zi84dPZycXuanqcspFy9egm452VWlEVXGNMj1Vy0Bw4FXJGNPcIFLDqSw73ZhadlK2Rsv0EfkxebvVHec2ZWLQTcmGGoMddLhTXlv15x9nr9WVv1UVCFZSmgRePwgE_33GOKnBRoN9rx36OSpa17wWDMoFffUXuvFzSCEtVMOkLBteJ-rl7452Vn5Fn4B6C5jgYwy43iEU1NKy2qh9y2ppWQFXqeX9tLujxk56qSTNZvvHCJxuBTB1cmsxqGgsOoOdDalb1Xn7Hy52Iqa3zhrd3-Adxn0oKjIF6nK5jctlpJIDyGZJ4N2_BR7n4R7Vwfc2 |
CitedBy_id | crossref_primary_10_14245_ns_1938426_213 crossref_primary_10_3389_fonc_2022_849447 crossref_primary_10_1371_journal_pone_0265185 crossref_primary_10_1016_j_cell_2019_11_013 crossref_primary_10_1016_j_eclinm_2020_100669 crossref_primary_10_2478_raon_2020_0068 crossref_primary_10_1016_j_semss_2021_100878 crossref_primary_10_1167_tvst_12_1_20 crossref_primary_10_1021_acsnano_2c12056 crossref_primary_10_1002_jbmr_3849 crossref_primary_10_1016_j_neucom_2022_04_078 crossref_primary_10_1016_j_mri_2019_02_013 crossref_primary_10_3390_app13148140 crossref_primary_10_1097_BSD_0000000000001211 crossref_primary_10_1007_s11042_022_14183_2 crossref_primary_10_3389_fbioe_2018_00075 crossref_primary_10_1093_noajnl_vdae045 crossref_primary_10_1016_j_media_2022_102456 crossref_primary_10_1109_TMI_2021_3080991 crossref_primary_10_3390_cancers14133289 crossref_primary_10_1016_j_compeleceng_2023_109032 crossref_primary_10_3390_en12244732 crossref_primary_10_3390_cancers16162800 crossref_primary_10_1148_radiol_2018180547 crossref_primary_10_3390_curroncol29100590 crossref_primary_10_1016_j_jrras_2023_100627 crossref_primary_10_1016_j_spinee_2022_01_004 crossref_primary_10_1109_ACCESS_2024_3396999 crossref_primary_10_1007_s11042_022_13008_6 crossref_primary_10_1177_2192568220961353 crossref_primary_10_3390_app12020681 crossref_primary_10_3390_cancers15245744 crossref_primary_10_1016_j_acra_2020_12_001 crossref_primary_10_1186_s13244_022_01227_2 crossref_primary_10_1109_TCBB_2018_2841396 crossref_primary_10_1167_tvst_10_12_30 crossref_primary_10_3390_cancers14133219 crossref_primary_10_1097_MD_0000000000034092 crossref_primary_10_1002_lsm_23324 crossref_primary_10_1109_ACCESS_2020_3012719 crossref_primary_10_3174_ajnr_A5742 crossref_primary_10_1016_j_compbiomed_2020_104048 crossref_primary_10_1166_jmihi_2021_3356 crossref_primary_10_3389_fonc_2022_814667 crossref_primary_10_1016_j_compbiomed_2018_09_003 crossref_primary_10_1016_j_neunet_2020_03_016 crossref_primary_10_1016_j_asoc_2022_109683 crossref_primary_10_1007_s13042_024_02236_x crossref_primary_10_3390_jimaging8050121 crossref_primary_10_1016_j_bone_2023_116987 crossref_primary_10_1007_s10278_018_0053_3 crossref_primary_10_1016_j_acra_2019_01_012 crossref_primary_10_1186_s13634_023_01063_6 crossref_primary_10_1186_s40708_023_00184_w crossref_primary_10_1016_j_neuroimage_2022_118933 crossref_primary_10_1007_s00247_021_05072_1 crossref_primary_10_1053_j_gastro_2018_06_037 crossref_primary_10_3390_ijerph191811708 crossref_primary_10_2147_CMAR_S340114 crossref_primary_10_1038_s41598_024_64580_w crossref_primary_10_3390_cancers16172988 crossref_primary_10_1016_j_imu_2021_100596 crossref_primary_10_1016_j_spinee_2023_09_019 crossref_primary_10_1177_21925682241261342 crossref_primary_10_3389_frai_2021_638299 crossref_primary_10_3390_app131810310 crossref_primary_10_1016_j_csbj_2020_04_005 crossref_primary_10_1186_s40634_023_00642_8 crossref_primary_10_31616_asj_2020_0147 crossref_primary_10_1016_j_jor_2022_08_020 crossref_primary_10_1016_j_yacr_2019_04_013 crossref_primary_10_3389_fonc_2022_908873 crossref_primary_10_4286_jjmi_89_533 crossref_primary_10_1002_ima_22543 crossref_primary_10_1016_j_ejrad_2023_110726 crossref_primary_10_3390_cancers16233946 crossref_primary_10_3390_cancers14164025 crossref_primary_10_1016_j_patcog_2018_01_009 crossref_primary_10_1109_ACCESS_2022_3212755 crossref_primary_10_1109_ACCESS_2019_2927396 crossref_primary_10_20517_ais_2024_73 crossref_primary_10_1007_s10278_019_00273_5 crossref_primary_10_1007_s10278_018_0130_7 crossref_primary_10_1177_02841851241263066 crossref_primary_10_1002_jmri_27001 crossref_primary_10_1016_j_arthro_2024_01_017 crossref_primary_10_1016_j_compbiomed_2021_105096 crossref_primary_10_3348_kjr_2023_0671 crossref_primary_10_3892_etm_2019_8310 crossref_primary_10_1016_j_mlwa_2021_100040 |
Cites_doi | 10.1021/ci3003039 10.1007/978-3-319-14148-0_1 10.1038/ncomms5308 10.1093/bioinformatics/bts475 10.1117/12.652288 10.1016/j.artint.2014.02.004 10.1148/radiographics.11.2.2028061 10.1109/TMI.2009.2023362 10.4329/wjr.v7.i8.202 10.1021/ci400187y 10.1007/s005860000140 10.1007/978-3-642-35289-8_25 10.1016/j.neunet.2014.09.003 10.1109/TMI.2017.2655486 10.1109/TIP.2008.2004611 10.3171/foc.2001.11.6.7 10.1109/TIP.2010.2069690 10.1007/BF00133570 10.1155/2011/769753 10.1117/12.911700 10.1007/978-3-319-19992-4_46 10.1038/nmeth.3547 10.1118/1.4938059 10.1109/TMI.2003.819929 10.1109/CVPR.2015.7298594 10.1088/0031-9155/57/24/8357 10.1038/ncpneuro0116 10.1109/ICASSP.2013.6638947 10.1634/theoncologist.9-2-188 10.1162/neco.1993.5.3.402 10.1038/nrc867 10.1142/S0218001493000339 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited May 1, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited May 1, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.compbiomed.2017.03.024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 146 |
ExternalDocumentID | PMC6042511 28364643 10_1016_j_compbiomed_2017_03_024 S0010482517300793 1_s2_0_S0010482517300793 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001414 – fundername: NCI NIH HHS grantid: R01 CA127927 |
GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c685t-4b3f0a9d1d65c4663ae73ae6b20430365222a3cee1c3175da9c87d77bca7ee1e3 |
IEDL.DBID | 7X7 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Thu Aug 21 18:37:37 EDT 2025 Mon Jul 21 09:32:00 EDT 2025 Wed Aug 13 04:26:19 EDT 2025 Mon Jul 21 06:04:42 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Tue Jul 01 03:28:27 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Tue Feb 25 20:08:41 EST 2025 Tue Aug 26 16:33:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Multi-resolution analysis Spinal metastasis Siamese neural network Magnetic resonance imaging |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c685t-4b3f0a9d1d65c4663ae73ae6b20430365222a3cee1c3175da9c87d77bca7ee1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6042511 |
PMID | 28364643 |
PQID | 1892775938 |
PQPubID | 1226355 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042511 proquest_miscellaneous_1883842051 proquest_journals_1892775938 pubmed_primary_28364643 crossref_primary_10_1016_j_compbiomed_2017_03_024 crossref_citationtrail_10_1016_j_compbiomed_2017_03_024 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_03_024 elsevier_clinicalkeyesjournals_1_s2_0_S0010482517300793 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_03_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Neubert, Fripp, Engstrom, Schwarz, Lauer, Salvado, Crozier (bib15) 2012; 57 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, arXiv preprint Bromley, Bentz, Bottou, Guyon, LeCun, Moore, Säckinger, Shah (bib32) 1993; 7 T. Pope, H.L. Bloem, J. Beltran, W. B. Morrison, D.J. Wilson, Musculoskeletal Imaging, Elsevier Health Sciences, Philadelphia, US, 2014. Algra, Bloem, Tissing, Falke, Arndt, Verboom (bib8) 1991; 11 S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint Zhou, Mccarthy, Mcgregor, Coombs, Hughes (bib16) 2000; 9 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9. di Lena, Nagata, Baldi (bib26) 2012; 28 D. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems, 2012, pp. 2843–2851. Baldi, Sadowski (bib38) 2014; 210 L.M. Shah, K.L. Salzman, Imaging of spinal metastatic disease, Int. J. Surg. Oncol. 2011. H.R. Roth, J. Yao, L. Lu, J. Stieger, J.E. Burns, R.M. Summers, Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications, in: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, Springer International Publishing, Switzerland, 2015, pp. 3–12. J. Yao, S.D. O′Connor, R. Summers, Computer aided lytic bone metastasis detection using regular CT images, in: Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Image Processing, San Diego, CA, USA, 2006, pp. 614459. Carballido-Gamio, Belongie, Majumdar (bib13) 2004; 23 T. Wiese, J. Yao, J.E. Burns, R.M. Summers, Detection of sclerotic bone metastases in the spine using watershed algorithm and graph cut, in: SPIE Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Computer-Aided Diagnosis, San Diego, CA, USA, 2012, pp. 831512. Huang, Chu, Lai, Novak (bib14) 2009; 28 O'Sullivan, Carty, Cronin (bib9) 2015; 7 P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nat. Commun., vol. 5, 2014 A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, BC, Canada, 2013, pp. 6645–6649. D. Wang, A. Khosla, R. Gargeya, H. Irshad, A.H. Beck, Deep learning for identifying metastatic breast cancer, arXiv preprint Li, Xu, Gui, Fox (bib42) 2010; 19 Witham, Khavkin, Gallia, Wolinsky, Gokaslan (bib3) 2006; 2 W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: International Conference on Information Processing in Medical Imaging, Springer, Lake Tahoe, Nevada, US, 2015, pp. 588–599. Baldi, Chauvin (bib33) 1993; 5 L. Bottou, Stochastic gradient descent tricks, in: Neural Networks: Tricks of the Trade, Springer, Springer Berlin Heidelberg, 2012, pp. 421–436. Zhou, Troyanskaya (bib27) 2015; 12 Sciubba, Petteys, Dekutoski, Fisher, Fehlings, Ondra, Rhines, Gokaslan (bib6) 2010; 13 K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: delving deep into convolutional nets, arXiv preprint Lusci, Pollastri, Baldi (bib25) 2013; 53 X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks., in: Aistats, vol. 15, 2011, p. 275. Mundy (bib1) 2002; 2 Kayala, Baldi (bib24) 2012; 52 B. Graham, Fractional max-pooling, arXiv preprint Lankton, Tannenbaum (bib44) 2008; 17 Murphy, Chang, Gibbs, Le, Martin, Kim (bib2) 2001; 11 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib37) 2014; 15 Wang, Nishikawa, Yang (bib41) 2016; 43 . P. Sadowski, J. Collado, D. Whiteson, P. Baldi, Deep learning, dark knowledge, and dark matter, J. Mach. Learn. Res.: Workshop and Conference Proceedings 42 (2015) 81–97. J. Wang, H. Ding, F. Azamian, B. Zhou, C. Iribarren, S. Molloi, P. Baldi, Detecting cardiovascular disease from mammograms with deep learning, IEEE Trans. Med. Imaging., 2017 Kass, Witkin, Terzopoulos (bib43) 1988; 1 Klimo, Schmidt (bib4) 2004; 9 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105. Schmidhuber (bib17) 2015; 61 Schmidhuber (10.1016/j.compbiomed.2017.03.024_bib17) 2015; 61 Carballido-Gamio (10.1016/j.compbiomed.2017.03.024_bib13) 2004; 23 Zhou (10.1016/j.compbiomed.2017.03.024_bib27) 2015; 12 Lankton (10.1016/j.compbiomed.2017.03.024_bib44) 2008; 17 Klimo (10.1016/j.compbiomed.2017.03.024_bib4) 2004; 9 di Lena (10.1016/j.compbiomed.2017.03.024_bib26) 2012; 28 10.1016/j.compbiomed.2017.03.024_bib40 Lusci (10.1016/j.compbiomed.2017.03.024_bib25) 2013; 53 10.1016/j.compbiomed.2017.03.024_bib21 Neubert (10.1016/j.compbiomed.2017.03.024_bib15) 2012; 57 10.1016/j.compbiomed.2017.03.024_bib20 10.1016/j.compbiomed.2017.03.024_bib23 Huang (10.1016/j.compbiomed.2017.03.024_bib14) 2009; 28 10.1016/j.compbiomed.2017.03.024_bib22 Mundy (10.1016/j.compbiomed.2017.03.024_bib1) 2002; 2 10.1016/j.compbiomed.2017.03.024_bib29 10.1016/j.compbiomed.2017.03.024_bib28 Wang (10.1016/j.compbiomed.2017.03.024_bib41) 2016; 43 Srivastava (10.1016/j.compbiomed.2017.03.024_bib37) 2014; 15 Algra (10.1016/j.compbiomed.2017.03.024_bib8) 1991; 11 Li (10.1016/j.compbiomed.2017.03.024_bib42) 2010; 19 Bromley (10.1016/j.compbiomed.2017.03.024_bib32) 1993; 7 10.1016/j.compbiomed.2017.03.024_bib7 Kass (10.1016/j.compbiomed.2017.03.024_bib43) 1988; 1 10.1016/j.compbiomed.2017.03.024_bib30 Baldi (10.1016/j.compbiomed.2017.03.024_bib33) 1993; 5 Kayala (10.1016/j.compbiomed.2017.03.024_bib24) 2012; 52 10.1016/j.compbiomed.2017.03.024_bib5 Sciubba (10.1016/j.compbiomed.2017.03.024_bib6) 2010; 13 O'Sullivan (10.1016/j.compbiomed.2017.03.024_bib9) 2015; 7 10.1016/j.compbiomed.2017.03.024_bib36 10.1016/j.compbiomed.2017.03.024_bib35 Zhou (10.1016/j.compbiomed.2017.03.024_bib16) 2000; 9 10.1016/j.compbiomed.2017.03.024_bib10 Murphy (10.1016/j.compbiomed.2017.03.024_bib2) 2001; 11 10.1016/j.compbiomed.2017.03.024_bib31 10.1016/j.compbiomed.2017.03.024_bib12 10.1016/j.compbiomed.2017.03.024_bib34 10.1016/j.compbiomed.2017.03.024_bib11 Baldi (10.1016/j.compbiomed.2017.03.024_bib38) 2014; 210 Witham (10.1016/j.compbiomed.2017.03.024_bib3) 2006; 2 10.1016/j.compbiomed.2017.03.024_bib18 10.1016/j.compbiomed.2017.03.024_bib39 10.1016/j.compbiomed.2017.03.024_bib19 12154351 - Nat Rev Cancer. 2002 Aug;2(8):584-93 26745908 - Med Phys. 2016 Jan;43(1):159 15047923 - Oncologist. 2004;9(2):188-96 2028061 - Radiographics. 1991 Mar;11(2):219-32 19783497 - IEEE Trans Med Imaging. 2009 Oct;28(10):1595-605 22847931 - Bioinformatics. 2012 Oct 1;28(19):2449-57 26339464 - World J Radiol. 2015 Aug 28;7(8):202-11 16932530 - Nat Clin Pract Neurol. 2006 Feb;2(2):87-94; quiz 116 18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39 10905444 - Eur Spine J. 2000 Jun;9(3):242-8 26221705 - Inf Process Med Imaging. 2015;24:588-99 22978639 - J Chem Inf Model. 2012 Oct 22;52(10):2526-40 16463998 - Neurosurg Focus. 2001 Dec 15;11(6):e6 14719685 - IEEE Trans Med Imaging. 2004 Jan;23(1):36-44 24986233 - Nat Commun. 2014 Jul 02;5:4308 20801742 - IEEE Trans Image Process. 2010 Dec;19(12):3243-54 23795551 - J Chem Inf Model. 2013 Jul 22;53(7):1563-75 20594024 - J Neurosurg Spine. 2010 Jul;13(1):94-108 26301843 - Nat Methods. 2015 Oct;12(10):931-4 23201861 - Phys Med Biol. 2012 Dec 21;57(24):8357-76 24771879 - Artif Intell. 2014 May;210:78-122 25462637 - Neural Netw. 2015 Jan;61:85-117 28113340 - IEEE Trans Med Imaging. 2017 May;36(5):1172-1181 22312523 - Int J Surg Oncol. 2011;2011:769753 |
References_xml | – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105. – volume: 9 start-page: 188 year: 2004 end-page: 196 ident: bib4 article-title: Surgical management of spinal metastases publication-title: Oncologist – reference: X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks., in: Aistats, vol. 15, 2011, p. 275. – volume: 2 start-page: 87 year: 2006 end-page: 94 ident: bib3 article-title: Surgery insight publication-title: Nat. Clin. Pract. Neurol. – reference: P. Sadowski, J. Collado, D. Whiteson, P. Baldi, Deep learning, dark knowledge, and dark matter, J. Mach. Learn. Res.: Workshop and Conference Proceedings 42 (2015) 81–97. – volume: 11 start-page: 1 year: 2001 end-page: 7 ident: bib2 article-title: Image-guided radiosurgery in the treatment of spinal metastases publication-title: Neurosurg. Focus – volume: 43 start-page: 159 year: 2016 end-page: 170 ident: bib41 article-title: Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model publication-title: Med. Phys. – reference: K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: delving deep into convolutional nets, arXiv preprint – reference: W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: International Conference on Information Processing in Medical Imaging, Springer, Lake Tahoe, Nevada, US, 2015, pp. 588–599. – reference: P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nat. Commun., vol. 5, 2014, – reference: D. Wang, A. Khosla, R. Gargeya, H. Irshad, A.H. Beck, Deep learning for identifying metastatic breast cancer, arXiv preprint – volume: 5 start-page: 402 year: 1993 end-page: 418 ident: bib33 article-title: Neural networks for fingerprint recognition publication-title: Neural Comput. – volume: 52 start-page: 2526 year: 2012 end-page: 2540 ident: bib24 article-title: Reactionpredictor publication-title: J. Chem. Inf. Model. – reference: A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Vancouver, BC, Canada, 2013, pp. 6645–6649. – volume: 19 start-page: 3243 year: 2010 end-page: 3254 ident: bib42 article-title: Distance regularized level set evolution and its application to image segmentation publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 94 year: 2010 end-page: 108 ident: bib6 article-title: Diagnosis and management of metastatic spine disease publication-title: J. Neurosurg.: Spine – reference: T. Pope, H.L. Bloem, J. Beltran, W. B. Morrison, D.J. Wilson, Musculoskeletal Imaging, Elsevier Health Sciences, Philadelphia, US, 2014. – volume: 2 start-page: 584 year: 2002 end-page: 593 ident: bib1 article-title: Metastasis to bone publication-title: Nat. Rev. Cancer – reference: S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint – reference: H.R. Roth, J. Yao, L. Lu, J. Stieger, J.E. Burns, R.M. Summers, Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications, in: Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, Springer International Publishing, Switzerland, 2015, pp. 3–12. – volume: 12 start-page: 931 year: 2015 end-page: 934 ident: bib27 article-title: Predicting effects of noncoding variants with deep learning-based sequence model publication-title: Nat. Methods – volume: 7 start-page: 669 year: 1993 end-page: 688 ident: bib32 article-title: Signature verification using a “Siamese” time delay neural network publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 1 start-page: 321 year: 1988 end-page: 331 ident: bib43 article-title: Snakes publication-title: Int. J. Comput. Vis. – reference: L.M. Shah, K.L. Salzman, Imaging of spinal metastatic disease, Int. J. Surg. Oncol. 2011. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib37 article-title: Dropout publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib17 article-title: Deep learning in neural networks publication-title: Neural Netw. – reference: D. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems, 2012, pp. 2843–2851. – volume: 210 start-page: 78 year: 2014 end-page: 122 ident: bib38 article-title: The dropout learning algorithm publication-title: Artif. Intell. – volume: 57 start-page: 8357 year: 2012 ident: bib15 article-title: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models publication-title: Phys. Med. Biol. – volume: 9 start-page: 242 year: 2000 end-page: 248 ident: bib16 article-title: Geometrical dimensions of the lower lumbar vertebrae – analysis of data from digitised CT images publication-title: Eur. Spine J. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, arXiv preprint – volume: 53 start-page: 1563 year: 2013 end-page: 1575 ident: bib25 article-title: Deep architectures and deep learning in chemoinformatics publication-title: J. Chem. Inf. Model. – reference: L. Bottou, Stochastic gradient descent tricks, in: Neural Networks: Tricks of the Trade, Springer, Springer Berlin Heidelberg, 2012, pp. 421–436. – volume: 28 start-page: 1595 year: 2009 end-page: 1605 ident: bib14 article-title: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal mri publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 2029 year: 2008 end-page: 2039 ident: bib44 article-title: Localizing region-based active contours publication-title: IEEE Trans. Image Process. – reference: . – reference: B. Graham, Fractional max-pooling, arXiv preprint – volume: 28 start-page: 2449 year: 2012 end-page: 2457 ident: bib26 article-title: Deep architectures for protein contact map prediction publication-title: Bioinformatics – reference: J. Wang, H. Ding, F. Azamian, B. Zhou, C. Iribarren, S. Molloi, P. Baldi, Detecting cardiovascular disease from mammograms with deep learning, IEEE Trans. Med. Imaging., 2017, – volume: 11 start-page: 219 year: 1991 end-page: 232 ident: bib8 article-title: Detection of vertebral metastases publication-title: Radiographics – reference: J. Yao, S.D. O′Connor, R. Summers, Computer aided lytic bone metastasis detection using regular CT images, in: Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Image Processing, San Diego, CA, USA, 2006, pp. 614459. – reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9. – reference: T. Wiese, J. Yao, J.E. Burns, R.M. Summers, Detection of sclerotic bone metastases in the spine using watershed algorithm and graph cut, in: SPIE Medical Imaging, International Society for Optics and Photonics, Medical Imaging: Computer-Aided Diagnosis, San Diego, CA, USA, 2012, pp. 831512. – volume: 7 start-page: 202 year: 2015 ident: bib9 article-title: Imaging of bone metastasis publication-title: World J. Radiol. – volume: 23 start-page: 36 year: 2004 end-page: 44 ident: bib13 article-title: Normalized cuts in 3-d for spinal MRI segmentation publication-title: IEEE Trans. Med. Imaging – volume: 13 start-page: 94 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2017.03.024_bib6 article-title: Diagnosis and management of metastatic spine disease publication-title: J. Neurosurg.: Spine – volume: 52 start-page: 2526 issue: 10 year: 2012 ident: 10.1016/j.compbiomed.2017.03.024_bib24 article-title: Reactionpredictor publication-title: J. Chem. Inf. Model. doi: 10.1021/ci3003039 – ident: 10.1016/j.compbiomed.2017.03.024_bib10 doi: 10.1007/978-3-319-14148-0_1 – ident: 10.1016/j.compbiomed.2017.03.024_bib22 doi: 10.1038/ncomms5308 – volume: 28 start-page: 2449 issue: 19 year: 2012 ident: 10.1016/j.compbiomed.2017.03.024_bib26 article-title: Deep architectures for protein contact map prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts475 – ident: 10.1016/j.compbiomed.2017.03.024_bib23 – ident: 10.1016/j.compbiomed.2017.03.024_bib12 doi: 10.1117/12.652288 – volume: 210 start-page: 78 year: 2014 ident: 10.1016/j.compbiomed.2017.03.024_bib38 article-title: The dropout learning algorithm publication-title: Artif. Intell. doi: 10.1016/j.artint.2014.02.004 – volume: 11 start-page: 219 issue: 2 year: 1991 ident: 10.1016/j.compbiomed.2017.03.024_bib8 article-title: Detection of vertebral metastases publication-title: Radiographics doi: 10.1148/radiographics.11.2.2028061 – volume: 28 start-page: 1595 issue: 10 year: 2009 ident: 10.1016/j.compbiomed.2017.03.024_bib14 article-title: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal mri publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2023362 – volume: 7 start-page: 202 issue: 8 year: 2015 ident: 10.1016/j.compbiomed.2017.03.024_bib9 article-title: Imaging of bone metastasis publication-title: World J. Radiol. doi: 10.4329/wjr.v7.i8.202 – volume: 53 start-page: 1563 issue: 7 year: 2013 ident: 10.1016/j.compbiomed.2017.03.024_bib25 article-title: Deep architectures and deep learning in chemoinformatics publication-title: J. Chem. Inf. Model. doi: 10.1021/ci400187y – volume: 9 start-page: 242 issue: 3 year: 2000 ident: 10.1016/j.compbiomed.2017.03.024_bib16 article-title: Geometrical dimensions of the lower lumbar vertebrae – analysis of data from digitised CT images publication-title: Eur. Spine J. doi: 10.1007/s005860000140 – ident: 10.1016/j.compbiomed.2017.03.024_bib40 doi: 10.1007/978-3-642-35289-8_25 – ident: 10.1016/j.compbiomed.2017.03.024_bib34 – ident: 10.1016/j.compbiomed.2017.03.024_bib36 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.compbiomed.2017.03.024_bib17 article-title: Deep learning in neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – ident: 10.1016/j.compbiomed.2017.03.024_bib30 – ident: 10.1016/j.compbiomed.2017.03.024_bib31 doi: 10.1109/TMI.2017.2655486 – volume: 17 start-page: 2029 issue: 11 year: 2008 ident: 10.1016/j.compbiomed.2017.03.024_bib44 article-title: Localizing region-based active contours publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.2004611 – volume: 11 start-page: 1 issue: 6 year: 2001 ident: 10.1016/j.compbiomed.2017.03.024_bib2 article-title: Image-guided radiosurgery in the treatment of spinal metastases publication-title: Neurosurg. Focus doi: 10.3171/foc.2001.11.6.7 – volume: 19 start-page: 3243 issue: 12 year: 2010 ident: 10.1016/j.compbiomed.2017.03.024_bib42 article-title: Distance regularized level set evolution and its application to image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2069690 – ident: 10.1016/j.compbiomed.2017.03.024_bib7 – volume: 1 start-page: 321 issue: 4 year: 1988 ident: 10.1016/j.compbiomed.2017.03.024_bib43 article-title: Snakes publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00133570 – ident: 10.1016/j.compbiomed.2017.03.024_bib5 doi: 10.1155/2011/769753 – ident: 10.1016/j.compbiomed.2017.03.024_bib11 doi: 10.1117/12.911700 – ident: 10.1016/j.compbiomed.2017.03.024_bib29 doi: 10.1007/978-3-319-19992-4_46 – volume: 12 start-page: 931 issue: 10 year: 2015 ident: 10.1016/j.compbiomed.2017.03.024_bib27 article-title: Predicting effects of noncoding variants with deep learning-based sequence model publication-title: Nat. Methods doi: 10.1038/nmeth.3547 – ident: 10.1016/j.compbiomed.2017.03.024_bib18 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2017.03.024_bib37 article-title: Dropout publication-title: J. Mach. Learn. Res. – volume: 43 start-page: 159 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2017.03.024_bib41 article-title: Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model publication-title: Med. Phys. doi: 10.1118/1.4938059 – volume: 23 start-page: 36 issue: 1 year: 2004 ident: 10.1016/j.compbiomed.2017.03.024_bib13 article-title: Normalized cuts in 3-d for spinal MRI segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.819929 – ident: 10.1016/j.compbiomed.2017.03.024_bib20 – ident: 10.1016/j.compbiomed.2017.03.024_bib19 doi: 10.1109/CVPR.2015.7298594 – ident: 10.1016/j.compbiomed.2017.03.024_bib28 – volume: 57 start-page: 8357 issue: 24 year: 2012 ident: 10.1016/j.compbiomed.2017.03.024_bib15 article-title: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/24/8357 – volume: 2 start-page: 87 issue: 2 year: 2006 ident: 10.1016/j.compbiomed.2017.03.024_bib3 article-title: Surgery insight publication-title: Nat. Clin. Pract. Neurol. doi: 10.1038/ncpneuro0116 – ident: 10.1016/j.compbiomed.2017.03.024_bib21 doi: 10.1109/ICASSP.2013.6638947 – ident: 10.1016/j.compbiomed.2017.03.024_bib35 – volume: 9 start-page: 188 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2017.03.024_bib4 article-title: Surgical management of spinal metastases publication-title: Oncologist doi: 10.1634/theoncologist.9-2-188 – volume: 5 start-page: 402 issue: 3 year: 1993 ident: 10.1016/j.compbiomed.2017.03.024_bib33 article-title: Neural networks for fingerprint recognition publication-title: Neural Comput. doi: 10.1162/neco.1993.5.3.402 – volume: 2 start-page: 584 issue: 8 year: 2002 ident: 10.1016/j.compbiomed.2017.03.024_bib1 article-title: Metastasis to bone publication-title: Nat. Rev. Cancer doi: 10.1038/nrc867 – ident: 10.1016/j.compbiomed.2017.03.024_bib39 – volume: 7 start-page: 669 issue: 04 year: 1993 ident: 10.1016/j.compbiomed.2017.03.024_bib32 article-title: Signature verification using a “Siamese” time delay neural network publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001493000339 – reference: 24986233 - Nat Commun. 2014 Jul 02;5:4308 – reference: 18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39 – reference: 23201861 - Phys Med Biol. 2012 Dec 21;57(24):8357-76 – reference: 25462637 - Neural Netw. 2015 Jan;61:85-117 – reference: 26221705 - Inf Process Med Imaging. 2015;24:588-99 – reference: 28113340 - IEEE Trans Med Imaging. 2017 May;36(5):1172-1181 – reference: 22978639 - J Chem Inf Model. 2012 Oct 22;52(10):2526-40 – reference: 19783497 - IEEE Trans Med Imaging. 2009 Oct;28(10):1595-605 – reference: 15047923 - Oncologist. 2004;9(2):188-96 – reference: 14719685 - IEEE Trans Med Imaging. 2004 Jan;23(1):36-44 – reference: 20801742 - IEEE Trans Image Process. 2010 Dec;19(12):3243-54 – reference: 26339464 - World J Radiol. 2015 Aug 28;7(8):202-11 – reference: 10905444 - Eur Spine J. 2000 Jun;9(3):242-8 – reference: 26745908 - Med Phys. 2016 Jan;43(1):159 – reference: 16932530 - Nat Clin Pract Neurol. 2006 Feb;2(2):87-94; quiz 116 – reference: 22312523 - Int J Surg Oncol. 2011;2011:769753 – reference: 20594024 - J Neurosurg Spine. 2010 Jul;13(1):94-108 – reference: 24771879 - Artif Intell. 2014 May;210:78-122 – reference: 26301843 - Nat Methods. 2015 Oct;12(10):931-4 – reference: 2028061 - Radiographics. 1991 Mar;11(2):219-32 – reference: 16463998 - Neurosurg Focus. 2001 Dec 15;11(6):e6 – reference: 22847931 - Bioinformatics. 2012 Oct 1;28(19):2449-57 – reference: 23795551 - J Chem Inf Model. 2013 Jul 22;53(7):1563-75 – reference: 12154351 - Nat Rev Cancer. 2002 Aug;2(8):584-93 |
SSID | ssj0004030 |
Score | 2.4938898 |
Snippet | Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility of... Abstract Spinal metastasis, a metastatic cancer of the spine, is the most common malignant disease in the spine. In this study, we investigate the feasibility... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Accuracy Adults Aged Algorithms Artificial neural networks Automation Bioinformatics Bone cancer Bone marrow Breast cancer Cancer Cardiovascular disease Classification Compression Computed tomography Computer programs Computer vision Data processing Deep learning Diagnosis Feasibility studies Female Humans Image Interpretation, Computer-Assisted - methods Image processing Information processing Internal Medicine Intervertebral discs Kidneys Lesions Lungs Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Mammography Mathematical models Medical imaging Membranes Metastases Metastasis Methods Middle Aged Multi-resolution analysis Neural networks Neural Networks (Computer) NMR Nuclear magnetic resonance Other Pain Predictions Probability theory Quality of life ROC Curve Siamese neural network Solubility Spatial resolution Speech Spinal cancer Spinal cord Spinal metastasis Spinal Neoplasms - diagnostic imaging Spinal Neoplasms - secondary Thorax Tumors Vertebrae Visual perception |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHiouiJav0IKMxDV0HTtxLE5VRVUhlQtU6glrHHshCNIVSa_97Z2JnSxLQVqJQw5JPEpij2eelffGjL3xBqAppMvFsihzBSBzwKVQ7oNXzkCoC0F654uP1fml-nBVXu2w00kLQ7TKFPtjTB-jdbpynHrzeNW2pPHFpQQpL6nkOroZKdiVJi9_e7umeaiFjDIUjDfUOrF5IseLaNtR5k4kLz2WOy3Uv1LUfQj6J5Pyt9R09og9TJiSn8TX3mc7oTtgexfpr_lj9uWEj7zBHJfWydP4VEucI2jl_Yr2xuI_wwAIFvu25z4MI0er40SM_4rnYcU_tUSpDZxqYGLzLjLI-yfs8uz959PzPO2rkDdVXQ65cnK5AOOFr8pGIeSAoPGoHOlkMaMhJCtAYvYUDaELD6aptdfaNaDxYpBP2W533YXnjFcelJRGSudI0Wtg2YBagihdAO1lmTE9daVtUtFx2vvih53YZd_tehAsDYJdSIuDkDExW65i4Y0tbMw0WnYSlmIotJgdtrDVf7MNfZrTvRW2L-zC3vO7jL2bLTdcd8vnHk1uZdePqk2hdWlknbHX822c-PQ3B7pwfUNtalmrAoNqxp5FL5w7CjFjpRBr4kdt-OfcgIqKb97p2m9jcfGKorgQL_7row7ZAzqLxNAjtjv8ugkvEbwN7tU4O-8A8EdHZQ priority: 102 providerName: Elsevier |
Title | A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517300793 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517300793 https://dx.doi.org/10.1016/j.compbiomed.2017.03.024 https://www.ncbi.nlm.nih.gov/pubmed/28364643 https://www.proquest.com/docview/1892775938 https://www.proquest.com/docview/1883842051 https://pubmed.ncbi.nlm.nih.gov/PMC6042511 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB2xuxLisuKbwFIZiauhjp04EQdU0JYC2gqxrNQTlhO7ULSkhWSv_HZmEidl-VIPbdXGozTxeOY5fvMM8Njl1paxLLhYxglX1kpucSrEnXeqyK3PYkH1zifzdHam3iySRXjgVgdaZR8T20Dt1iU9I38qsjzWOsll9nzzjdOuUbS6GrbQ2IMDki4jSpde6G1d5Fh2JSgYaxROhQKTp-N3EWW7K3EngpdupU5j9a_09Cf8_J1F-Utaml6Hw4An2aRzgBtwxVc34epJWDG_BR8nrOUMcpxWBy9jvY44Q8DK6g3ti8W--sYiUKxXNXO-aflZFSNS_Cf87jfsdEV0Ws9I_xKbVx17vL4NZ9PjDy9nPOypwMs0SxquCrkc29wJlyalQrhhvcZXWlCNLGYzhGOxlZg5RUnIwtm8zLTTuiitxh-9vAP71bry94ClziopcymLgqp5c7ssrVpakRTeaieTCHR_K00ZBMdp34tz0zPLvphtJxjqBDOWBjshAjFYbjrRjR1s8r63TF9UimHQYGbYwVb_zdbXYTzXRpg6NmNz2soZUbUvyfxjaIvg2WAZIEsHRXY871HvVmZ7qsHRI3g0HMZBTys5tvLrC2qTyUzFGFAjuNt54XCjEC-mCnEmXtQl_xwakKD45SPV6nMrLJ5SBBfi_v__1gO4RtfQsT6PYL_5fuEfIjJrihHsPfkhRu0gxPds-moEB5PXb2dz_HxxPH_3_idYlEFH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxBtDgUWCo0X2Ya8thFAFhJQ2vbSVemJZezcQBE7ArhB_it_IjNd2KC_l0kMOiXfieGd25tvsNzMAj1xubSlkEfOZSGJlrYwtboVi550qcuszwSnfebqfTo7Um-PkeAN-9LkwRKvsfWLrqN2ipP_In_AsF1onucyeL7_E1DWKTlf7FhrBLHb992-4Zauf7bxE_T4WYvzq8MUk7roKxGWaJU2sCjkb2dxxlyalwoBrvcZXWlCWKPpzBCTCSowdvKTY6mxeZtppXZRW44de4veeg_NKypxWVDZ-vcrDHMmQ8oK-TeHWq2MOBT4ZUcRDSj0RynRbWlWof4XDP-Hu76zNX8Lg-Apc7vAr2w4GdxU2fHUNLky7E_rr8HabtRzFGLfxnVWzvm45Q4DM6iX14WKffWMRmNbzmjnftHywihEJ_z2-90t2MCf6rmdUbxOHV4GtXt-AozOZ7ZuwWS0qfxtY6ixNupRFQdnDuZ2VVs0sTwpvtZNJBLqfSlN2Bc6pz8Yn0zPZPpqVEgwpwYykQSVEwAfJZSjysYZM3mvL9Ems6HYNRqI1ZPXfZH3d-Y_acFMLMzIHbfkkyi6mtgLoSiN4Okh2EClAnzXvu9WblVndalhYETwcLqOToZMjW_nFCY3JZKYEOvAIbgUrHCYK8WmqENfiQ52yz2EAFTA_faWaf2gLmacUMTi_8_-f9QAuTg6ne2ZvZ3_3Llyi5wmM0y3YbL6e-HuICpvifrsUGbw767X_E5tReYs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEG8CBRYJjlazD3ttIYQqStRSWiGVSjmxrL1rSFWcgF0h_hq_jhmv7VBeyqWHHBLvxPHO7My32W9mAJ64zNpCyDzipYgjZa2MLG6FIuedyjPrU8Ep3_ngMNk9Vq-n8XQNfvS5MESr7H1i66jdvKD_yLd4mgmt40ymW2VHi3i7M3mx-BJRByk6ae3baQQT2fffv-H2rX6-t4O6firE5NW7l7tR12EgKpI0biKVy3JsM8ddEhcKg6_1Gl9JThmj6NsRnAgrMY7wguKss1mRaqd1XliNH3qJ33sJLmsZc1pjeqqXOZljGdJf0M8p3IZ1LKLALSO6eEivJ3KZbsusCvWv0Pgn9P2dwflLSJxcg6sdlmXbwfiuw5qvbsDGQXdafxPeb7OWrxjhlr6zcNbXMGcIllm9oJ5c7LNvLILUelYz55uWG1YxIuR_xPd-wY5mROX1jGpv4vAqMNfrW3B8IbN9G9areeXvAkucVVJmUuY5ZRJntiysKi2Pc2-1k_EIdD-VpuiKnVPPjVPTs9pOzFIJhpRgxtKgEkbAB8lFKPixgkzWa8v0Ca3ogg1GpRVk9d9kfd35ktpwUwszNkdtKSXKNKYWA-hWR_BskOzgUoBBK953szcrs7zVsMhG8Hi4jA6HTpFs5ednNCaVqRLozEdwJ1jhMFGIVROFGBcf6px9DgOomPn5K9XsU1vUPKHowfm9__-sR7CBq9682Tvcvw9X6HEC-XQT1puvZ_4BAsQmf9iuRAYfLnrp_wTo0n24 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-resolution+approach+for+spinal+metastasis+detection+using+deep+Siamese+neural+networks&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Wang%2C+Juan&rft.au=Fang%2C+Zhiyuan&rft.au=Lang%2C+Ning&rft.au=Yuan%2C+Huishu&rft.date=2017-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=84&rft.spage=137&rft.epage=146&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.03.024&rft.externalDocID=S0010482517300793 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482517X00048%2Fcov150h.gif |