The carotid artery as an alternative site for dynamic autoregulation measurement: an inter-observer reproducibility study
The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the eff...
Saved in:
Published in | Medical engineering & physics Vol. 38; no. 7; pp. 690 - 694 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1350-4533 1873-4030 1873-4030 |
DOI | 10.1016/j.medengphy.2016.03.007 |
Cover
Abstract | The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations. |
---|---|
AbstractList | Abstract The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations. The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations.The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations. The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations. The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source operator intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations. |
Author | Bor-Seng-Shu, E. Robinson, T.G. Nogueira, R.C. Saeed, N.P. Teixeira, M.J. Panerai, R.B. |
Author_xml | – sequence: 1 givenname: R.C. surname: Nogueira fullname: Nogueira, R.C. email: rcnogueira28@gmail.com organization: Department of Neurology, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil – sequence: 2 givenname: N.P. surname: Saeed fullname: Saeed, N.P. organization: Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK – sequence: 3 givenname: E. surname: Bor-Seng-Shu fullname: Bor-Seng-Shu, E. organization: Department of Neurosurgery, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil – sequence: 4 givenname: M.J. surname: Teixeira fullname: Teixeira, M.J. organization: Department of Neurosurgery, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil – sequence: 5 givenname: T.G. surname: Robinson fullname: Robinson, T.G. organization: Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK – sequence: 6 givenname: R.B. surname: Panerai fullname: Panerai, R.B. organization: Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27134150$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhSNURB_wF8BLNkn9iJ0ECaqqAopUiQVlbTn2TeshsQfbGSn_HodpWVRCnZVf5xxf3e-eFkfOOyiKdwRXBBNxvqkmMODutvdLRfNFhVmFcfOiOCFtw8oaM3yU94zjsuaMHRenMW4wxnUt2KvimDaE1YTjk2K5vQekVfDJGqRCgrAgFZFySI354FSyO0DRJkCDD8gsTk1WIzUnH-BuHvO7d2gCFecAE7j0YfVal72l7yOEHQQUYBu8mbXt7WjTgmKazfK6eDmoMcKbh_Ws-Pnl8-3VdXnz_eu3q8ubUou2TqXgmMDQUK7bjomBAtNG9bVQrdGgm6YTgnVdR03fU82BK0N1W1NMgQvFNGNnxft9bq7h9wwxyclGDeOoHPg5StJSXjesE_UBUtwK0lHGn5c2HeWspQ3N0rcP0rnP1OQ22EmFRT5CyIKPe4EOPsYAg9Q2_W1sCsqOkmC5Qpcb-Q-6XKFLzGSGnv3NE__jF887L_dOyAB2FoKM2oLTYGwAnaTx9oCMT08y9Gid1Wr8BQvEjZ_zFI25IzJSieWPdSjXmSSC5XnEIgdc_D_goBL-ADfw-D8 |
CitedBy_id | crossref_primary_10_1016_j_autneu_2022_102943 crossref_primary_10_1016_j_ultrasmedbio_2017_02_003 crossref_primary_10_1007_s10877_022_00817_1 |
Cites_doi | 10.1016/0301-5629(92)90128-W 10.1161/01.STR.27.12.2197 10.1111/j.1552-6569.2004.tb00230.x 10.1161/STROKEAHA.110.594168 10.1111/j.1600-0404.1998.tb05961.x 10.1161/01.STR.30.7.1450 10.1016/S0150-9861(05)83159-1 10.1042/CS20070458 10.1161/01.STR.26.1.74 10.1161/01.STR.26.6.1014 10.1007/s12028-011-9572-1 10.1161/01.STR.24.8.1192 10.1161/01.STR.28.8.1601 10.1042/cs0840599 10.1161/01.STR.0000173183.36331.ee 10.1161/01.STR.31.2.476 10.1088/0967-3334/23/1/307 10.1161/01.STR.29.11.2341 10.1016/j.ultrasmedbio.2012.05.008 10.7717/peerj.65 10.1097/00008506-199804000-00003 10.3171/jns.2001.95.5.0756 10.1161/01.STR.30.8.1604 10.1161/01.STR.28.5.1009 10.1016/0301-5629(90)90080-V 10.1007/s10558-007-9044-6 10.1159/000016041 10.1016/S0140-6736(86)90837-8 10.1042/CS20080236 10.1113/jphysiol.2012.228551 10.1016/j.ultrasmedbio.2012.10.017 |
ContentType | Journal Article |
Copyright | 2016 IPEM IPEM Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 IPEM – notice: IPEM – notice: Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7TB 7U5 L7M |
DOI | 10.1016/j.medengphy.2016.03.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Chemistry |
EISSN | 1873-4030 |
EndPage | 694 |
ExternalDocumentID | 27134150 10_1016_j_medengphy_2016_03_007 S1350453316300406 1_s2_0_S1350453316300406 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7TB 7U5 L7M |
ID | FETCH-LOGICAL-c684t-6501ef725c8936f2e3cdab46a8dcec7796639992dbb2c5e5ad2c84202e56a3c33 |
IEDL.DBID | AIKHN |
ISSN | 1350-4533 1873-4030 |
IngestDate | Fri Sep 05 14:46:07 EDT 2025 Fri Sep 05 04:15:09 EDT 2025 Thu Sep 04 14:50:31 EDT 2025 Mon Jul 21 05:59:46 EDT 2025 Tue Jul 01 04:24:51 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Fri Feb 23 02:29:19 EST 2024 Tue Feb 25 20:06:45 EST 2025 Tue Aug 26 16:31:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Transcranial Doppler ultrasound Measurement reproducibility Internal carotid artery Dynamic cerebral autoregulation Middle cerebral artery |
Language | English |
License | Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c684t-6501ef725c8936f2e3cdab46a8dcec7796639992dbb2c5e5ad2c84202e56a3c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27134150 |
PQID | 1792538272 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1825473964 proquest_miscellaneous_1808619235 proquest_miscellaneous_1792538272 pubmed_primary_27134150 crossref_citationtrail_10_1016_j_medengphy_2016_03_007 crossref_primary_10_1016_j_medengphy_2016_03_007 elsevier_sciencedirect_doi_10_1016_j_medengphy_2016_03_007 elsevier_clinicalkeyesjournals_1_s2_0_S1350453316300406 elsevier_clinicalkey_doi_10_1016_j_medengphy_2016_03_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Medical engineering & physics |
PublicationTitleAlternate | Med Eng Phys |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Maeda, Etani, Handa, Tagaya, Oku, Kim (bib0020) 1990; 16 Alexandrov, Demchuk, Wein, Grotta (bib0029) 1999; 30 Kenton, Martin, Abbott, Moody (bib0030) 1997; 28 McDonnell, Berry, Cutting, Keage, Buckley, Howe (bib0024) 2013; 1 Tiecks, Lam, Aaslid, Newell (bib0010) 1995; 26 Hoksbergen, Legemate, Ubbink, Jacobs (bib0032) 1999; 30 Bay-Hansen, Ravn, Knudsen (bib0023) 1997; 28 Bland, Altman (bib0018) 1986; 1 Panerai, Kelsall, Rennie, Evans (bib0005) 1995; 26 Evans (bib0017) 2000 Birch, Neil-Dwyer, Murrills (bib0027) 2002; 23 Jarquin-Valdivia, McCartney, Palestrant, Johnston, Gress (bib0015) 2004; 14 Budohoski, Reinhard, Aries, Czosnyka, Smielewski, Pickard (bib0012) 2012; 17 Panerai (bib0001) 2008; 8 Aries, Elting, De Keyser, Kremer, Vroomen (bib0008) 2010; 41 Maeda, Etani, Tagaya, Oku, Kim, Naka (bib0019) 1989; 41 Brodie, Atkins, Robinson, Panerai (bib0028) 2009; 116 Czosnyka, Smielewski, Piechnik, Steiner, Pickard (bib0004) 2001; 95 Brauer, Kochs, Werner, Bloom, Policare, Pentheny (bib0011) 1998; 10 Kim, Immink, Stok, Karemaker, Secher, van Lieshout (bib0006) 2008; 115 Reinhard, Roth, Guschlbauer, Harloff, Timmer, Czosnyka (bib0003) 2005; 36 Marinoni, Ginanneschi, Inzitari, Mugnai, Amaducci (bib0031) 1998; 97 Willie, Macleod, Shaw, Smith, Tzeng, Eves (bib0033) 2012; 590 Mahony, Panerai, Deverson, Hayes, Evans (bib0025) 2000; 31 Totaro, Marini, Cannarsa, Prencipe (bib0021) 1992; 18 Saeed, Panerai, Robinson (bib0014) 2013; 39 Demolis, Chalon, Giudicelli (bib0022) 1993; 84 Dawson, Blake, Panerai, Potter (bib0002) 2000; 10 Panerai, White, Markus, Evans (bib0009) 1998; 29 Itoh, Matsumoto, Handa, Maeda, Hougaku, Hashimoto (bib0016) 1993; 24 Wintermark, Sesay, Barbier, Borbely, Dillon, Eastwood (bib0007) 2005; 32 Smielewski, Czosnyka, Kirkpatrick, McEroy, Rutkowska, Pickard (bib0026) 1996; 27 Saeed, Panerai, Robinson (bib0013) 2012; 38 Budohoski (10.1016/j.medengphy.2016.03.007_bib0012) 2012; 17 Demolis (10.1016/j.medengphy.2016.03.007_bib0022) 1993; 84 Willie (10.1016/j.medengphy.2016.03.007_bib0033) 2012; 590 Saeed (10.1016/j.medengphy.2016.03.007_bib0013) 2012; 38 Totaro (10.1016/j.medengphy.2016.03.007_bib0021) 1992; 18 Jarquin-Valdivia (10.1016/j.medengphy.2016.03.007_bib0015) 2004; 14 Hoksbergen (10.1016/j.medengphy.2016.03.007_bib0032) 1999; 30 Brauer (10.1016/j.medengphy.2016.03.007_bib0011) 1998; 10 Dawson (10.1016/j.medengphy.2016.03.007_bib0002) 2000; 10 Bland (10.1016/j.medengphy.2016.03.007_bib0018) 1986; 1 Wintermark (10.1016/j.medengphy.2016.03.007_bib0007) 2005; 32 Maeda (10.1016/j.medengphy.2016.03.007_bib0019) 1989; 41 Saeed (10.1016/j.medengphy.2016.03.007_bib0014) 2013; 39 Panerai (10.1016/j.medengphy.2016.03.007_bib0001) 2008; 8 Czosnyka (10.1016/j.medengphy.2016.03.007_bib0004) 2001; 95 Mahony (10.1016/j.medengphy.2016.03.007_bib0025) 2000; 31 Reinhard (10.1016/j.medengphy.2016.03.007_bib0003) 2005; 36 Evans (10.1016/j.medengphy.2016.03.007_bib0017) 2000 Smielewski (10.1016/j.medengphy.2016.03.007_bib0026) 1996; 27 Kim (10.1016/j.medengphy.2016.03.007_bib0006) 2008; 115 Panerai (10.1016/j.medengphy.2016.03.007_bib0009) 1998; 29 Panerai (10.1016/j.medengphy.2016.03.007_bib0005) 1995; 26 Tiecks (10.1016/j.medengphy.2016.03.007_bib0010) 1995; 26 Maeda (10.1016/j.medengphy.2016.03.007_bib0020) 1990; 16 Alexandrov (10.1016/j.medengphy.2016.03.007_bib0029) 1999; 30 Marinoni (10.1016/j.medengphy.2016.03.007_bib0031) 1998; 97 Aries (10.1016/j.medengphy.2016.03.007_bib0008) 2010; 41 Bay-Hansen (10.1016/j.medengphy.2016.03.007_bib0023) 1997; 28 Brodie (10.1016/j.medengphy.2016.03.007_bib0028) 2009; 116 Itoh (10.1016/j.medengphy.2016.03.007_bib0016) 1993; 24 Kenton (10.1016/j.medengphy.2016.03.007_bib0030) 1997; 28 McDonnell (10.1016/j.medengphy.2016.03.007_bib0024) 2013; 1 Birch (10.1016/j.medengphy.2016.03.007_bib0027) 2002; 23 |
References_xml | – volume: 24 start-page: 1192 year: 1993 end-page: 1195 ident: bib0016 article-title: Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography publication-title: Stroke – volume: 10 start-page: 126 year: 2000 end-page: 132 ident: bib0002 article-title: Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke publication-title: Cerebrovasc Dis – volume: 14 start-page: 139 year: 2004 end-page: 142 ident: bib0015 article-title: The thickness of the temporal squama and its implication for transcranial sonography publication-title: J Neuroimaging – volume: 28 start-page: 1009 year: 1997 end-page: 1014 ident: bib0023 article-title: Application of interhemispheric index for transcranial Doppler sonography velocity measurements and evaluation of recording time publication-title: Stroke – volume: 27 start-page: 2197 year: 1996 end-page: 2203 ident: bib0026 article-title: Assessment of cerebral autoregulation using carotid artery compression publication-title: Stroke – volume: 29 start-page: 2341 year: 1998 end-page: 2346 ident: bib0009 article-title: Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure publication-title: Stroke – volume: 84 start-page: 599 year: 1993 end-page: 604 ident: bib0022 article-title: Repeatability of transcranial Doppler measurements of arterial blood flow velocities in healthy subjects publication-title: Clin Sci (Lond) – volume: 18 start-page: 173 year: 1992 end-page: 177 ident: bib0021 article-title: Reproducibility of transcranial Doppler sonography: a validation study publication-title: Ultrasound Med Biol – volume: 28 start-page: 1601 year: 1997 end-page: 1606 ident: bib0030 article-title: Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke publication-title: Stroke – volume: 36 start-page: 1684 year: 2005 end-page: 1689 ident: bib0003 article-title: Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations publication-title: Stroke – volume: 32 start-page: 294 year: 2005 end-page: 314 ident: bib0007 article-title: Comparative overview of brain perfusion imaging techniques publication-title: J Neuroradiol – volume: 16 start-page: 9 year: 1990 end-page: 14 ident: bib0020 article-title: A validation study on the reproducibility of transcranial Doppler velocimetry publication-title: Ultrasound Med Biol – volume: 38 start-page: 1839 year: 2012 end-page: 1844 ident: bib0013 article-title: Are hand-held TCD measurements acceptable for estimates of CBFv? publication-title: Ultrasound Med Biol – volume: 26 start-page: 74 year: 1995 end-page: 80 ident: bib0005 article-title: Cerebral autoregulation dynamics in premature newborns publication-title: Stroke – volume: 23 start-page: 73 year: 2002 end-page: 83 ident: bib0027 article-title: The repeatability of cerebral autoregulation assessment using sinusoidal lower body negative pressure publication-title: Physiol Meas – volume: 1 start-page: 307 year: 1986 end-page: 310 ident: bib0018 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet – year: 2000 ident: bib0017 article-title: Doppler ultrasound : physics, instrumentation and signal processing – volume: 8 start-page: 42 year: 2008 end-page: 59 ident: bib0001 article-title: Cerebral autoregulation: from models to clinical applications publication-title: Cardiovasc Eng – volume: 97 start-page: 324 year: 1998 end-page: 327 ident: bib0031 article-title: Sex-related differences in human cerebral hemodynamics publication-title: Acta Neurol Scand – volume: 41 start-page: 661 year: 1989 end-page: 666 ident: bib0019 article-title: [Assessment of reproducibility of transcranial Doppler velocimetry] publication-title: No To Shinkei – volume: 115 start-page: 255 year: 2008 end-page: 262 ident: bib0006 article-title: Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes publication-title: Clin Sci (Lond) – volume: 30 start-page: 1604 year: 1999 end-page: 1609 ident: bib0029 article-title: Yield of transcranial Doppler in acute cerebral ischemia publication-title: Stroke – volume: 31 start-page: 476 year: 2000 end-page: 480 ident: bib0025 article-title: Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation publication-title: Stroke – volume: 39 start-page: 735 year: 2013 end-page: 741 ident: bib0014 article-title: The carotid artery as an alternative site to the middle cerebral artery for reproducible estimates of autoregulation index publication-title: Ultrasound Med Biol – volume: 17 start-page: 211 year: 2012 end-page: 218 ident: bib0012 article-title: Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? publication-title: Neurocrit Care – volume: 95 start-page: 756 year: 2001 end-page: 763 ident: bib0004 article-title: Cerebral autoregulation following head injury publication-title: J Neurosurg – volume: 30 start-page: 1450 year: 1999 end-page: 1455 ident: bib0032 article-title: Success rate of transcranial color-coded duplex ultrasonography in visualizing the basal cerebral arteries in vascular patients over 60 years of age publication-title: Stroke – volume: 1 start-page: e65 year: 2013 ident: bib0024 article-title: Transcranial Doppler ultrasound to assess cerebrovascular reactivity: reliability, reproducibility and effect of posture publication-title: Peer J – volume: 590 start-page: 3261 year: 2012 end-page: 3275 ident: bib0033 article-title: Regional brain blood flow in man during acute changes in arterial blood gases publication-title: J Physiol – volume: 41 start-page: 2697 year: 2010 end-page: 2704 ident: bib0008 article-title: Cerebral autoregulation in stroke: a review of transcranial Doppler studies publication-title: Stroke – volume: 26 start-page: 1014 year: 1995 end-page: 1019 ident: bib0010 article-title: Comparison of static and dynamic cerebral autoregulation measurements publication-title: Stroke – volume: 10 start-page: 80 year: 1998 end-page: 85 ident: bib0011 article-title: Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology publication-title: J Neurosurg Anesthesiol – volume: 116 start-page: 513 year: 2009 end-page: 520 ident: bib0028 article-title: Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure publication-title: Clin Sci (Lond) – volume: 18 start-page: 173 year: 1992 ident: 10.1016/j.medengphy.2016.03.007_bib0021 article-title: Reproducibility of transcranial Doppler sonography: a validation study publication-title: Ultrasound Med Biol doi: 10.1016/0301-5629(92)90128-W – volume: 27 start-page: 2197 year: 1996 ident: 10.1016/j.medengphy.2016.03.007_bib0026 article-title: Assessment of cerebral autoregulation using carotid artery compression publication-title: Stroke doi: 10.1161/01.STR.27.12.2197 – volume: 14 start-page: 139 year: 2004 ident: 10.1016/j.medengphy.2016.03.007_bib0015 article-title: The thickness of the temporal squama and its implication for transcranial sonography publication-title: J Neuroimaging doi: 10.1111/j.1552-6569.2004.tb00230.x – year: 2000 ident: 10.1016/j.medengphy.2016.03.007_bib0017 – volume: 41 start-page: 2697 year: 2010 ident: 10.1016/j.medengphy.2016.03.007_bib0008 article-title: Cerebral autoregulation in stroke: a review of transcranial Doppler studies publication-title: Stroke doi: 10.1161/STROKEAHA.110.594168 – volume: 97 start-page: 324 year: 1998 ident: 10.1016/j.medengphy.2016.03.007_bib0031 article-title: Sex-related differences in human cerebral hemodynamics publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1998.tb05961.x – volume: 30 start-page: 1450 year: 1999 ident: 10.1016/j.medengphy.2016.03.007_bib0032 article-title: Success rate of transcranial color-coded duplex ultrasonography in visualizing the basal cerebral arteries in vascular patients over 60 years of age publication-title: Stroke doi: 10.1161/01.STR.30.7.1450 – volume: 32 start-page: 294 year: 2005 ident: 10.1016/j.medengphy.2016.03.007_bib0007 article-title: Comparative overview of brain perfusion imaging techniques publication-title: J Neuroradiol doi: 10.1016/S0150-9861(05)83159-1 – volume: 115 start-page: 255 year: 2008 ident: 10.1016/j.medengphy.2016.03.007_bib0006 article-title: Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes publication-title: Clin Sci (Lond) doi: 10.1042/CS20070458 – volume: 26 start-page: 74 year: 1995 ident: 10.1016/j.medengphy.2016.03.007_bib0005 article-title: Cerebral autoregulation dynamics in premature newborns publication-title: Stroke doi: 10.1161/01.STR.26.1.74 – volume: 26 start-page: 1014 year: 1995 ident: 10.1016/j.medengphy.2016.03.007_bib0010 article-title: Comparison of static and dynamic cerebral autoregulation measurements publication-title: Stroke doi: 10.1161/01.STR.26.6.1014 – volume: 17 start-page: 211 year: 2012 ident: 10.1016/j.medengphy.2016.03.007_bib0012 article-title: Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? publication-title: Neurocrit Care doi: 10.1007/s12028-011-9572-1 – volume: 24 start-page: 1192 year: 1993 ident: 10.1016/j.medengphy.2016.03.007_bib0016 article-title: Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography publication-title: Stroke doi: 10.1161/01.STR.24.8.1192 – volume: 28 start-page: 1601 year: 1997 ident: 10.1016/j.medengphy.2016.03.007_bib0030 article-title: Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke publication-title: Stroke doi: 10.1161/01.STR.28.8.1601 – volume: 84 start-page: 599 year: 1993 ident: 10.1016/j.medengphy.2016.03.007_bib0022 article-title: Repeatability of transcranial Doppler measurements of arterial blood flow velocities in healthy subjects publication-title: Clin Sci (Lond) doi: 10.1042/cs0840599 – volume: 36 start-page: 1684 year: 2005 ident: 10.1016/j.medengphy.2016.03.007_bib0003 article-title: Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations publication-title: Stroke doi: 10.1161/01.STR.0000173183.36331.ee – volume: 31 start-page: 476 year: 2000 ident: 10.1016/j.medengphy.2016.03.007_bib0025 article-title: Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation publication-title: Stroke doi: 10.1161/01.STR.31.2.476 – volume: 23 start-page: 73 year: 2002 ident: 10.1016/j.medengphy.2016.03.007_bib0027 article-title: The repeatability of cerebral autoregulation assessment using sinusoidal lower body negative pressure publication-title: Physiol Meas doi: 10.1088/0967-3334/23/1/307 – volume: 41 start-page: 661 year: 1989 ident: 10.1016/j.medengphy.2016.03.007_bib0019 article-title: [Assessment of reproducibility of transcranial Doppler velocimetry] publication-title: No To Shinkei – volume: 29 start-page: 2341 year: 1998 ident: 10.1016/j.medengphy.2016.03.007_bib0009 article-title: Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure publication-title: Stroke doi: 10.1161/01.STR.29.11.2341 – volume: 38 start-page: 1839 year: 2012 ident: 10.1016/j.medengphy.2016.03.007_bib0013 article-title: Are hand-held TCD measurements acceptable for estimates of CBFv? publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2012.05.008 – volume: 1 start-page: e65 year: 2013 ident: 10.1016/j.medengphy.2016.03.007_bib0024 article-title: Transcranial Doppler ultrasound to assess cerebrovascular reactivity: reliability, reproducibility and effect of posture publication-title: Peer J doi: 10.7717/peerj.65 – volume: 10 start-page: 80 year: 1998 ident: 10.1016/j.medengphy.2016.03.007_bib0011 article-title: Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology publication-title: J Neurosurg Anesthesiol doi: 10.1097/00008506-199804000-00003 – volume: 95 start-page: 756 year: 2001 ident: 10.1016/j.medengphy.2016.03.007_bib0004 article-title: Cerebral autoregulation following head injury publication-title: J Neurosurg doi: 10.3171/jns.2001.95.5.0756 – volume: 30 start-page: 1604 year: 1999 ident: 10.1016/j.medengphy.2016.03.007_bib0029 article-title: Yield of transcranial Doppler in acute cerebral ischemia publication-title: Stroke doi: 10.1161/01.STR.30.8.1604 – volume: 28 start-page: 1009 year: 1997 ident: 10.1016/j.medengphy.2016.03.007_bib0023 article-title: Application of interhemispheric index for transcranial Doppler sonography velocity measurements and evaluation of recording time publication-title: Stroke doi: 10.1161/01.STR.28.5.1009 – volume: 16 start-page: 9 year: 1990 ident: 10.1016/j.medengphy.2016.03.007_bib0020 article-title: A validation study on the reproducibility of transcranial Doppler velocimetry publication-title: Ultrasound Med Biol doi: 10.1016/0301-5629(90)90080-V – volume: 8 start-page: 42 year: 2008 ident: 10.1016/j.medengphy.2016.03.007_bib0001 article-title: Cerebral autoregulation: from models to clinical applications publication-title: Cardiovasc Eng doi: 10.1007/s10558-007-9044-6 – volume: 10 start-page: 126 year: 2000 ident: 10.1016/j.medengphy.2016.03.007_bib0002 article-title: Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke publication-title: Cerebrovasc Dis doi: 10.1159/000016041 – volume: 1 start-page: 307 year: 1986 ident: 10.1016/j.medengphy.2016.03.007_bib0018 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet doi: 10.1016/S0140-6736(86)90837-8 – volume: 116 start-page: 513 year: 2009 ident: 10.1016/j.medengphy.2016.03.007_bib0028 article-title: Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure publication-title: Clin Sci (Lond) doi: 10.1042/CS20080236 – volume: 590 start-page: 3261 year: 2012 ident: 10.1016/j.medengphy.2016.03.007_bib0033 article-title: Regional brain blood flow in man during acute changes in arterial blood gases publication-title: J Physiol doi: 10.1113/jphysiol.2012.228551 – volume: 39 start-page: 735 year: 2013 ident: 10.1016/j.medengphy.2016.03.007_bib0014 article-title: The carotid artery as an alternative site to the middle cerebral artery for reproducible estimates of autoregulation index publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2012.10.017 |
SSID | ssj0004463 |
Score | 2.155017 |
Snippet | The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA)... Abstract The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 690 |
SubjectTerms | Adult Aged Analysis of Variance Arteries Assessments Brain - blood supply Brain - metabolism Carotid arteries Carotid Arteries - diagnostic imaging Carotid Arteries - metabolism Dynamic cerebral autoregulation Dynamics Female Homeostasis Humans Internal carotid artery Male Mathematical models Measurement reproducibility Middle Aged Middle cerebral artery Operators Radiology Reproducibility Reproducibility of Results Transcranial Doppler ultrasound Ultrasonography, Doppler, Transcranial |
Title | The carotid artery as an alternative site for dynamic autoregulation measurement: an inter-observer reproducibility study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453316300406 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453316300406 https://dx.doi.org/10.1016/j.medengphy.2016.03.007 https://www.ncbi.nlm.nih.gov/pubmed/27134150 https://www.proquest.com/docview/1792538272 https://www.proquest.com/docview/1808619235 https://www.proquest.com/docview/1825473964 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQTlUMHy6EKpjMQ1bGLHj_RWrVotoPYClXqzHMdBW0G22t0eeuG3M5M4WyroQ-KYyKMknonns2fmG4APdUmxKlEkUjmX5DzLEyc81cqIulK1VFVb9X58oqan-eczebYBk74WhtIq49rfrentah3vjONsji9ms_HXTEjEI0JkLWsU0W5vclEoOYDNg09fpifX5ZF521CNxickcCPNC31OaL7jJ1Gal-oIT_VtTuo2ENo6o6NnsB1RJDvoXvQ5bIRmCE8mffO2ITz9g2dwCI-PYwT9BVCjOka9elazirX5nFfMLZlrWBs3b1oecEYhZYZwllVdw3rmiOqga1uPimQ_r08W90mWSCcWybykI96wYMSUSUSyXebtFWs5bF_C6dHht8k0ie0XEq9MvkoQu2Wh1lx6xDSq5kH4ypW5cqbywWuNGyVENwWvypJ7GaSruDc5T3lAvQsvxCsYNPMm7ABTpqxMWmpJG8pCmFIHJeuaUliL2hRhBKqfb-sjNzm1yPhh-yS0c7tWlCVF2VRYVNQI0rXgRUfPcb-I6RVq--pTXC8tupD7RfW_RMMy_vdLm9klt6n9yzZHsL-WvGHeD3vs-97uLJoRRXRcE-aX-DhdcPRYXPM7xhjctRKOl3eN4dSDulD5CF53hr2eTk7VxrhtePM_n_AWtuiqy3PehcFqcRneIZpblXvw6OOvbC_-s78BEPpLiQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaKFljXQ9Flr-ypAbt6sSVLsnsbghbZ1vSyFuhNkGV5yLA5RZIeeulvHynZ6Yqt7YAdk4hwLNIiaX78CPC-qahWJcpEKmuTnGd5YoWjXhnR1KqRqg5d79NjNTnNP5_Jsw0Y970wBKvszv54pofTuvtm1O3m6Hw2G33NhMR4RIgssEYR7fYWftSE6_twdY3zwHwnoOxxdULLb4C80OP49hveEIG8VKQ71be5qNtC0OCKDvdgt4sh2cf4Nx_Bhm8HsD3uR7cNYOc3lsEBPJh29fPHQGPqGE3qWc1qFtCcl8wumW1ZqJq3gQWcUUGZYTDL6jiunlkiOohD61GN7Of1e8V9kiXKiUUyr-gFr18w4skkGtmIu71kgcH2CZweHpyMJ0k3fCFxqshXCUZumW80lw4jGtVwL1xtq1zZonbeaY1pEsY2Ja-rijvppa25K3Keco9aF06Ip7DZzlv_HJgqqrpIKy0pnSxFUWmvZNMQgLVsitIPQfX7bVzHTE4DMn6YHoL23awVZUhRJhUGFTWEdC14Hsk57hcpeoWavvcUT0uDDuR-Uf03Ub_snvqlycySm9T8YZlD2F9L3jDuf7vsu97uDJoR1XNs6-cXeDldcvRXXPM71hSYs1IUL-9aw2kCdanyITyLhr3eTk69xpg0vPifW3gL25OT6ZE5-nT85SU8pF8i4vkVbK4WF_41xnWr6k14bn8B7vdMVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+carotid+artery+as+an+alternative+site+for+dynamic+autoregulation+measurement%3A+an+inter-observer+reproducibility+study&rft.jtitle=Medical+engineering+%26+physics&rft.au=Nogueira%2C+R+C&rft.au=Saeed%2C+N+P&rft.au=Bor-Seng-Shu%2C+E&rft.au=Teixeira%2C+M+J&rft.date=2016-07-01&rft.issn=1873-4030&rft.eissn=1873-4030&rft.volume=38&rft.issue=7&rft.spage=690&rft_id=info:doi/10.1016%2Fj.medengphy.2016.03.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453316X00082%2Fcov150h.gif |