The carotid artery as an alternative site for dynamic autoregulation measurement: an inter-observer reproducibility study

The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the eff...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 38; no. 7; pp. 690 - 694
Main Authors Nogueira, R.C., Saeed, N.P., Bor-Seng-Shu, E., Teixeira, M.J., Robinson, T.G., Panerai, R.B.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2016
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2016.03.007

Cover

Abstract The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations.
AbstractList Abstract The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations.
The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations.The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations.
The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source × operator × intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations.
The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA) using transcranial Doppler ultrasound (TCD). Our aim was to test the inter-operator reproducibility of dCA assessment in the ICA and the effect of interaction amongst different variables (artery source operator intra-subject variability). Two operators measured blood flow velocity using TCD at the ICA and MCA simultaneously on each side in 12 healthy volunteers. The autoregulation index (ARI) was estimated by transfer function analysis. A two-way repeated measurements ANOVA with post-hoc Tukey tested the difference between ARI by different operators and interaction effects were analysed based on the generalized linear model. In this healthy population, no significant differences between operator and no interaction effects were identified amongst the different variables. This study reinforced the validity of using the ICA as an alternative site for the assessment of dCA. Further work is needed to confirm and extend our findings, particularly to disease populations.
Author Bor-Seng-Shu, E.
Robinson, T.G.
Nogueira, R.C.
Saeed, N.P.
Teixeira, M.J.
Panerai, R.B.
Author_xml – sequence: 1
  givenname: R.C.
  surname: Nogueira
  fullname: Nogueira, R.C.
  email: rcnogueira28@gmail.com
  organization: Department of Neurology, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil
– sequence: 2
  givenname: N.P.
  surname: Saeed
  fullname: Saeed, N.P.
  organization: Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK
– sequence: 3
  givenname: E.
  surname: Bor-Seng-Shu
  fullname: Bor-Seng-Shu, E.
  organization: Department of Neurosurgery, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil
– sequence: 4
  givenname: M.J.
  surname: Teixeira
  fullname: Teixeira, M.J.
  organization: Department of Neurosurgery, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil
– sequence: 5
  givenname: T.G.
  surname: Robinson
  fullname: Robinson, T.G.
  organization: Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK
– sequence: 6
  givenname: R.B.
  surname: Panerai
  fullname: Panerai, R.B.
  organization: Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27134150$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wF8BLNkn9iJ0ECaqqAopUiQVlbTn2TeshsQfbGSn_HodpWVRCnZVf5xxf3e-eFkfOOyiKdwRXBBNxvqkmMODutvdLRfNFhVmFcfOiOCFtw8oaM3yU94zjsuaMHRenMW4wxnUt2KvimDaE1YTjk2K5vQekVfDJGqRCgrAgFZFySI354FSyO0DRJkCDD8gsTk1WIzUnH-BuHvO7d2gCFecAE7j0YfVal72l7yOEHQQUYBu8mbXt7WjTgmKazfK6eDmoMcKbh_Ws-Pnl8-3VdXnz_eu3q8ubUou2TqXgmMDQUK7bjomBAtNG9bVQrdGgm6YTgnVdR03fU82BK0N1W1NMgQvFNGNnxft9bq7h9wwxyclGDeOoHPg5StJSXjesE_UBUtwK0lHGn5c2HeWspQ3N0rcP0rnP1OQ22EmFRT5CyIKPe4EOPsYAg9Q2_W1sCsqOkmC5Qpcb-Q-6XKFLzGSGnv3NE__jF887L_dOyAB2FoKM2oLTYGwAnaTx9oCMT08y9Gid1Wr8BQvEjZ_zFI25IzJSieWPdSjXmSSC5XnEIgdc_D_goBL-ADfw-D8
CitedBy_id crossref_primary_10_1016_j_autneu_2022_102943
crossref_primary_10_1016_j_ultrasmedbio_2017_02_003
crossref_primary_10_1007_s10877_022_00817_1
Cites_doi 10.1016/0301-5629(92)90128-W
10.1161/01.STR.27.12.2197
10.1111/j.1552-6569.2004.tb00230.x
10.1161/STROKEAHA.110.594168
10.1111/j.1600-0404.1998.tb05961.x
10.1161/01.STR.30.7.1450
10.1016/S0150-9861(05)83159-1
10.1042/CS20070458
10.1161/01.STR.26.1.74
10.1161/01.STR.26.6.1014
10.1007/s12028-011-9572-1
10.1161/01.STR.24.8.1192
10.1161/01.STR.28.8.1601
10.1042/cs0840599
10.1161/01.STR.0000173183.36331.ee
10.1161/01.STR.31.2.476
10.1088/0967-3334/23/1/307
10.1161/01.STR.29.11.2341
10.1016/j.ultrasmedbio.2012.05.008
10.7717/peerj.65
10.1097/00008506-199804000-00003
10.3171/jns.2001.95.5.0756
10.1161/01.STR.30.8.1604
10.1161/01.STR.28.5.1009
10.1016/0301-5629(90)90080-V
10.1007/s10558-007-9044-6
10.1159/000016041
10.1016/S0140-6736(86)90837-8
10.1042/CS20080236
10.1113/jphysiol.2012.228551
10.1016/j.ultrasmedbio.2012.10.017
ContentType Journal Article
Copyright 2016 IPEM
IPEM
Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 IPEM
– notice: IPEM
– notice: Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7TB
7U5
L7M
DOI 10.1016/j.medengphy.2016.03.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
MEDLINE - Academic

Engineering Research Database
MEDLINE

Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 694
ExternalDocumentID 27134150
10_1016_j_medengphy_2016_03_007
S1350453316300406
1_s2_0_S1350453316300406
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7TB
7U5
L7M
ID FETCH-LOGICAL-c684t-6501ef725c8936f2e3cdab46a8dcec7796639992dbb2c5e5ad2c84202e56a3c33
IEDL.DBID AIKHN
ISSN 1350-4533
1873-4030
IngestDate Fri Sep 05 14:46:07 EDT 2025
Fri Sep 05 04:15:09 EDT 2025
Thu Sep 04 14:50:31 EDT 2025
Mon Jul 21 05:59:46 EDT 2025
Tue Jul 01 04:24:51 EDT 2025
Thu Apr 24 23:06:13 EDT 2025
Fri Feb 23 02:29:19 EST 2024
Tue Feb 25 20:06:45 EST 2025
Tue Aug 26 16:31:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Transcranial Doppler ultrasound
Measurement reproducibility
Internal carotid artery
Dynamic cerebral autoregulation
Middle cerebral artery
Language English
License Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c684t-6501ef725c8936f2e3cdab46a8dcec7796639992dbb2c5e5ad2c84202e56a3c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27134150
PQID 1792538272
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1825473964
proquest_miscellaneous_1808619235
proquest_miscellaneous_1792538272
pubmed_primary_27134150
crossref_citationtrail_10_1016_j_medengphy_2016_03_007
crossref_primary_10_1016_j_medengphy_2016_03_007
elsevier_sciencedirect_doi_10_1016_j_medengphy_2016_03_007
elsevier_clinicalkeyesjournals_1_s2_0_S1350453316300406
elsevier_clinicalkey_doi_10_1016_j_medengphy_2016_03_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Maeda, Etani, Handa, Tagaya, Oku, Kim (bib0020) 1990; 16
Alexandrov, Demchuk, Wein, Grotta (bib0029) 1999; 30
Kenton, Martin, Abbott, Moody (bib0030) 1997; 28
McDonnell, Berry, Cutting, Keage, Buckley, Howe (bib0024) 2013; 1
Tiecks, Lam, Aaslid, Newell (bib0010) 1995; 26
Hoksbergen, Legemate, Ubbink, Jacobs (bib0032) 1999; 30
Bay-Hansen, Ravn, Knudsen (bib0023) 1997; 28
Bland, Altman (bib0018) 1986; 1
Panerai, Kelsall, Rennie, Evans (bib0005) 1995; 26
Evans (bib0017) 2000
Birch, Neil-Dwyer, Murrills (bib0027) 2002; 23
Jarquin-Valdivia, McCartney, Palestrant, Johnston, Gress (bib0015) 2004; 14
Budohoski, Reinhard, Aries, Czosnyka, Smielewski, Pickard (bib0012) 2012; 17
Panerai (bib0001) 2008; 8
Aries, Elting, De Keyser, Kremer, Vroomen (bib0008) 2010; 41
Maeda, Etani, Tagaya, Oku, Kim, Naka (bib0019) 1989; 41
Brodie, Atkins, Robinson, Panerai (bib0028) 2009; 116
Czosnyka, Smielewski, Piechnik, Steiner, Pickard (bib0004) 2001; 95
Brauer, Kochs, Werner, Bloom, Policare, Pentheny (bib0011) 1998; 10
Kim, Immink, Stok, Karemaker, Secher, van Lieshout (bib0006) 2008; 115
Reinhard, Roth, Guschlbauer, Harloff, Timmer, Czosnyka (bib0003) 2005; 36
Marinoni, Ginanneschi, Inzitari, Mugnai, Amaducci (bib0031) 1998; 97
Willie, Macleod, Shaw, Smith, Tzeng, Eves (bib0033) 2012; 590
Mahony, Panerai, Deverson, Hayes, Evans (bib0025) 2000; 31
Totaro, Marini, Cannarsa, Prencipe (bib0021) 1992; 18
Saeed, Panerai, Robinson (bib0014) 2013; 39
Demolis, Chalon, Giudicelli (bib0022) 1993; 84
Dawson, Blake, Panerai, Potter (bib0002) 2000; 10
Panerai, White, Markus, Evans (bib0009) 1998; 29
Itoh, Matsumoto, Handa, Maeda, Hougaku, Hashimoto (bib0016) 1993; 24
Wintermark, Sesay, Barbier, Borbely, Dillon, Eastwood (bib0007) 2005; 32
Smielewski, Czosnyka, Kirkpatrick, McEroy, Rutkowska, Pickard (bib0026) 1996; 27
Saeed, Panerai, Robinson (bib0013) 2012; 38
Budohoski (10.1016/j.medengphy.2016.03.007_bib0012) 2012; 17
Demolis (10.1016/j.medengphy.2016.03.007_bib0022) 1993; 84
Willie (10.1016/j.medengphy.2016.03.007_bib0033) 2012; 590
Saeed (10.1016/j.medengphy.2016.03.007_bib0013) 2012; 38
Totaro (10.1016/j.medengphy.2016.03.007_bib0021) 1992; 18
Jarquin-Valdivia (10.1016/j.medengphy.2016.03.007_bib0015) 2004; 14
Hoksbergen (10.1016/j.medengphy.2016.03.007_bib0032) 1999; 30
Brauer (10.1016/j.medengphy.2016.03.007_bib0011) 1998; 10
Dawson (10.1016/j.medengphy.2016.03.007_bib0002) 2000; 10
Bland (10.1016/j.medengphy.2016.03.007_bib0018) 1986; 1
Wintermark (10.1016/j.medengphy.2016.03.007_bib0007) 2005; 32
Maeda (10.1016/j.medengphy.2016.03.007_bib0019) 1989; 41
Saeed (10.1016/j.medengphy.2016.03.007_bib0014) 2013; 39
Panerai (10.1016/j.medengphy.2016.03.007_bib0001) 2008; 8
Czosnyka (10.1016/j.medengphy.2016.03.007_bib0004) 2001; 95
Mahony (10.1016/j.medengphy.2016.03.007_bib0025) 2000; 31
Reinhard (10.1016/j.medengphy.2016.03.007_bib0003) 2005; 36
Evans (10.1016/j.medengphy.2016.03.007_bib0017) 2000
Smielewski (10.1016/j.medengphy.2016.03.007_bib0026) 1996; 27
Kim (10.1016/j.medengphy.2016.03.007_bib0006) 2008; 115
Panerai (10.1016/j.medengphy.2016.03.007_bib0009) 1998; 29
Panerai (10.1016/j.medengphy.2016.03.007_bib0005) 1995; 26
Tiecks (10.1016/j.medengphy.2016.03.007_bib0010) 1995; 26
Maeda (10.1016/j.medengphy.2016.03.007_bib0020) 1990; 16
Alexandrov (10.1016/j.medengphy.2016.03.007_bib0029) 1999; 30
Marinoni (10.1016/j.medengphy.2016.03.007_bib0031) 1998; 97
Aries (10.1016/j.medengphy.2016.03.007_bib0008) 2010; 41
Bay-Hansen (10.1016/j.medengphy.2016.03.007_bib0023) 1997; 28
Brodie (10.1016/j.medengphy.2016.03.007_bib0028) 2009; 116
Itoh (10.1016/j.medengphy.2016.03.007_bib0016) 1993; 24
Kenton (10.1016/j.medengphy.2016.03.007_bib0030) 1997; 28
McDonnell (10.1016/j.medengphy.2016.03.007_bib0024) 2013; 1
Birch (10.1016/j.medengphy.2016.03.007_bib0027) 2002; 23
References_xml – volume: 24
  start-page: 1192
  year: 1993
  end-page: 1195
  ident: bib0016
  article-title: Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography
  publication-title: Stroke
– volume: 10
  start-page: 126
  year: 2000
  end-page: 132
  ident: bib0002
  article-title: Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke
  publication-title: Cerebrovasc Dis
– volume: 14
  start-page: 139
  year: 2004
  end-page: 142
  ident: bib0015
  article-title: The thickness of the temporal squama and its implication for transcranial sonography
  publication-title: J Neuroimaging
– volume: 28
  start-page: 1009
  year: 1997
  end-page: 1014
  ident: bib0023
  article-title: Application of interhemispheric index for transcranial Doppler sonography velocity measurements and evaluation of recording time
  publication-title: Stroke
– volume: 27
  start-page: 2197
  year: 1996
  end-page: 2203
  ident: bib0026
  article-title: Assessment of cerebral autoregulation using carotid artery compression
  publication-title: Stroke
– volume: 29
  start-page: 2341
  year: 1998
  end-page: 2346
  ident: bib0009
  article-title: Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure
  publication-title: Stroke
– volume: 84
  start-page: 599
  year: 1993
  end-page: 604
  ident: bib0022
  article-title: Repeatability of transcranial Doppler measurements of arterial blood flow velocities in healthy subjects
  publication-title: Clin Sci (Lond)
– volume: 18
  start-page: 173
  year: 1992
  end-page: 177
  ident: bib0021
  article-title: Reproducibility of transcranial Doppler sonography: a validation study
  publication-title: Ultrasound Med Biol
– volume: 28
  start-page: 1601
  year: 1997
  end-page: 1606
  ident: bib0030
  article-title: Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke
  publication-title: Stroke
– volume: 36
  start-page: 1684
  year: 2005
  end-page: 1689
  ident: bib0003
  article-title: Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations
  publication-title: Stroke
– volume: 32
  start-page: 294
  year: 2005
  end-page: 314
  ident: bib0007
  article-title: Comparative overview of brain perfusion imaging techniques
  publication-title: J Neuroradiol
– volume: 16
  start-page: 9
  year: 1990
  end-page: 14
  ident: bib0020
  article-title: A validation study on the reproducibility of transcranial Doppler velocimetry
  publication-title: Ultrasound Med Biol
– volume: 38
  start-page: 1839
  year: 2012
  end-page: 1844
  ident: bib0013
  article-title: Are hand-held TCD measurements acceptable for estimates of CBFv?
  publication-title: Ultrasound Med Biol
– volume: 26
  start-page: 74
  year: 1995
  end-page: 80
  ident: bib0005
  article-title: Cerebral autoregulation dynamics in premature newborns
  publication-title: Stroke
– volume: 23
  start-page: 73
  year: 2002
  end-page: 83
  ident: bib0027
  article-title: The repeatability of cerebral autoregulation assessment using sinusoidal lower body negative pressure
  publication-title: Physiol Meas
– volume: 1
  start-page: 307
  year: 1986
  end-page: 310
  ident: bib0018
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– year: 2000
  ident: bib0017
  article-title: Doppler ultrasound : physics, instrumentation and signal processing
– volume: 8
  start-page: 42
  year: 2008
  end-page: 59
  ident: bib0001
  article-title: Cerebral autoregulation: from models to clinical applications
  publication-title: Cardiovasc Eng
– volume: 97
  start-page: 324
  year: 1998
  end-page: 327
  ident: bib0031
  article-title: Sex-related differences in human cerebral hemodynamics
  publication-title: Acta Neurol Scand
– volume: 41
  start-page: 661
  year: 1989
  end-page: 666
  ident: bib0019
  article-title: [Assessment of reproducibility of transcranial Doppler velocimetry]
  publication-title: No To Shinkei
– volume: 115
  start-page: 255
  year: 2008
  end-page: 262
  ident: bib0006
  article-title: Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes
  publication-title: Clin Sci (Lond)
– volume: 30
  start-page: 1604
  year: 1999
  end-page: 1609
  ident: bib0029
  article-title: Yield of transcranial Doppler in acute cerebral ischemia
  publication-title: Stroke
– volume: 31
  start-page: 476
  year: 2000
  end-page: 480
  ident: bib0025
  article-title: Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation
  publication-title: Stroke
– volume: 39
  start-page: 735
  year: 2013
  end-page: 741
  ident: bib0014
  article-title: The carotid artery as an alternative site to the middle cerebral artery for reproducible estimates of autoregulation index
  publication-title: Ultrasound Med Biol
– volume: 17
  start-page: 211
  year: 2012
  end-page: 218
  ident: bib0012
  article-title: Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal?
  publication-title: Neurocrit Care
– volume: 95
  start-page: 756
  year: 2001
  end-page: 763
  ident: bib0004
  article-title: Cerebral autoregulation following head injury
  publication-title: J Neurosurg
– volume: 30
  start-page: 1450
  year: 1999
  end-page: 1455
  ident: bib0032
  article-title: Success rate of transcranial color-coded duplex ultrasonography in visualizing the basal cerebral arteries in vascular patients over 60 years of age
  publication-title: Stroke
– volume: 1
  start-page: e65
  year: 2013
  ident: bib0024
  article-title: Transcranial Doppler ultrasound to assess cerebrovascular reactivity: reliability, reproducibility and effect of posture
  publication-title: Peer J
– volume: 590
  start-page: 3261
  year: 2012
  end-page: 3275
  ident: bib0033
  article-title: Regional brain blood flow in man during acute changes in arterial blood gases
  publication-title: J Physiol
– volume: 41
  start-page: 2697
  year: 2010
  end-page: 2704
  ident: bib0008
  article-title: Cerebral autoregulation in stroke: a review of transcranial Doppler studies
  publication-title: Stroke
– volume: 26
  start-page: 1014
  year: 1995
  end-page: 1019
  ident: bib0010
  article-title: Comparison of static and dynamic cerebral autoregulation measurements
  publication-title: Stroke
– volume: 10
  start-page: 80
  year: 1998
  end-page: 85
  ident: bib0011
  article-title: Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology
  publication-title: J Neurosurg Anesthesiol
– volume: 116
  start-page: 513
  year: 2009
  end-page: 520
  ident: bib0028
  article-title: Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure
  publication-title: Clin Sci (Lond)
– volume: 18
  start-page: 173
  year: 1992
  ident: 10.1016/j.medengphy.2016.03.007_bib0021
  article-title: Reproducibility of transcranial Doppler sonography: a validation study
  publication-title: Ultrasound Med Biol
  doi: 10.1016/0301-5629(92)90128-W
– volume: 27
  start-page: 2197
  year: 1996
  ident: 10.1016/j.medengphy.2016.03.007_bib0026
  article-title: Assessment of cerebral autoregulation using carotid artery compression
  publication-title: Stroke
  doi: 10.1161/01.STR.27.12.2197
– volume: 14
  start-page: 139
  year: 2004
  ident: 10.1016/j.medengphy.2016.03.007_bib0015
  article-title: The thickness of the temporal squama and its implication for transcranial sonography
  publication-title: J Neuroimaging
  doi: 10.1111/j.1552-6569.2004.tb00230.x
– year: 2000
  ident: 10.1016/j.medengphy.2016.03.007_bib0017
– volume: 41
  start-page: 2697
  year: 2010
  ident: 10.1016/j.medengphy.2016.03.007_bib0008
  article-title: Cerebral autoregulation in stroke: a review of transcranial Doppler studies
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.594168
– volume: 97
  start-page: 324
  year: 1998
  ident: 10.1016/j.medengphy.2016.03.007_bib0031
  article-title: Sex-related differences in human cerebral hemodynamics
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.1998.tb05961.x
– volume: 30
  start-page: 1450
  year: 1999
  ident: 10.1016/j.medengphy.2016.03.007_bib0032
  article-title: Success rate of transcranial color-coded duplex ultrasonography in visualizing the basal cerebral arteries in vascular patients over 60 years of age
  publication-title: Stroke
  doi: 10.1161/01.STR.30.7.1450
– volume: 32
  start-page: 294
  year: 2005
  ident: 10.1016/j.medengphy.2016.03.007_bib0007
  article-title: Comparative overview of brain perfusion imaging techniques
  publication-title: J Neuroradiol
  doi: 10.1016/S0150-9861(05)83159-1
– volume: 115
  start-page: 255
  year: 2008
  ident: 10.1016/j.medengphy.2016.03.007_bib0006
  article-title: Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20070458
– volume: 26
  start-page: 74
  year: 1995
  ident: 10.1016/j.medengphy.2016.03.007_bib0005
  article-title: Cerebral autoregulation dynamics in premature newborns
  publication-title: Stroke
  doi: 10.1161/01.STR.26.1.74
– volume: 26
  start-page: 1014
  year: 1995
  ident: 10.1016/j.medengphy.2016.03.007_bib0010
  article-title: Comparison of static and dynamic cerebral autoregulation measurements
  publication-title: Stroke
  doi: 10.1161/01.STR.26.6.1014
– volume: 17
  start-page: 211
  year: 2012
  ident: 10.1016/j.medengphy.2016.03.007_bib0012
  article-title: Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal?
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-011-9572-1
– volume: 24
  start-page: 1192
  year: 1993
  ident: 10.1016/j.medengphy.2016.03.007_bib0016
  article-title: Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography
  publication-title: Stroke
  doi: 10.1161/01.STR.24.8.1192
– volume: 28
  start-page: 1601
  year: 1997
  ident: 10.1016/j.medengphy.2016.03.007_bib0030
  article-title: Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke
  publication-title: Stroke
  doi: 10.1161/01.STR.28.8.1601
– volume: 84
  start-page: 599
  year: 1993
  ident: 10.1016/j.medengphy.2016.03.007_bib0022
  article-title: Repeatability of transcranial Doppler measurements of arterial blood flow velocities in healthy subjects
  publication-title: Clin Sci (Lond)
  doi: 10.1042/cs0840599
– volume: 36
  start-page: 1684
  year: 2005
  ident: 10.1016/j.medengphy.2016.03.007_bib0003
  article-title: Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations
  publication-title: Stroke
  doi: 10.1161/01.STR.0000173183.36331.ee
– volume: 31
  start-page: 476
  year: 2000
  ident: 10.1016/j.medengphy.2016.03.007_bib0025
  article-title: Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation
  publication-title: Stroke
  doi: 10.1161/01.STR.31.2.476
– volume: 23
  start-page: 73
  year: 2002
  ident: 10.1016/j.medengphy.2016.03.007_bib0027
  article-title: The repeatability of cerebral autoregulation assessment using sinusoidal lower body negative pressure
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/23/1/307
– volume: 41
  start-page: 661
  year: 1989
  ident: 10.1016/j.medengphy.2016.03.007_bib0019
  article-title: [Assessment of reproducibility of transcranial Doppler velocimetry]
  publication-title: No To Shinkei
– volume: 29
  start-page: 2341
  year: 1998
  ident: 10.1016/j.medengphy.2016.03.007_bib0009
  article-title: Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure
  publication-title: Stroke
  doi: 10.1161/01.STR.29.11.2341
– volume: 38
  start-page: 1839
  year: 2012
  ident: 10.1016/j.medengphy.2016.03.007_bib0013
  article-title: Are hand-held TCD measurements acceptable for estimates of CBFv?
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2012.05.008
– volume: 1
  start-page: e65
  year: 2013
  ident: 10.1016/j.medengphy.2016.03.007_bib0024
  article-title: Transcranial Doppler ultrasound to assess cerebrovascular reactivity: reliability, reproducibility and effect of posture
  publication-title: Peer J
  doi: 10.7717/peerj.65
– volume: 10
  start-page: 80
  year: 1998
  ident: 10.1016/j.medengphy.2016.03.007_bib0011
  article-title: Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology
  publication-title: J Neurosurg Anesthesiol
  doi: 10.1097/00008506-199804000-00003
– volume: 95
  start-page: 756
  year: 2001
  ident: 10.1016/j.medengphy.2016.03.007_bib0004
  article-title: Cerebral autoregulation following head injury
  publication-title: J Neurosurg
  doi: 10.3171/jns.2001.95.5.0756
– volume: 30
  start-page: 1604
  year: 1999
  ident: 10.1016/j.medengphy.2016.03.007_bib0029
  article-title: Yield of transcranial Doppler in acute cerebral ischemia
  publication-title: Stroke
  doi: 10.1161/01.STR.30.8.1604
– volume: 28
  start-page: 1009
  year: 1997
  ident: 10.1016/j.medengphy.2016.03.007_bib0023
  article-title: Application of interhemispheric index for transcranial Doppler sonography velocity measurements and evaluation of recording time
  publication-title: Stroke
  doi: 10.1161/01.STR.28.5.1009
– volume: 16
  start-page: 9
  year: 1990
  ident: 10.1016/j.medengphy.2016.03.007_bib0020
  article-title: A validation study on the reproducibility of transcranial Doppler velocimetry
  publication-title: Ultrasound Med Biol
  doi: 10.1016/0301-5629(90)90080-V
– volume: 8
  start-page: 42
  year: 2008
  ident: 10.1016/j.medengphy.2016.03.007_bib0001
  article-title: Cerebral autoregulation: from models to clinical applications
  publication-title: Cardiovasc Eng
  doi: 10.1007/s10558-007-9044-6
– volume: 10
  start-page: 126
  year: 2000
  ident: 10.1016/j.medengphy.2016.03.007_bib0002
  article-title: Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000016041
– volume: 1
  start-page: 307
  year: 1986
  ident: 10.1016/j.medengphy.2016.03.007_bib0018
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 116
  start-page: 513
  year: 2009
  ident: 10.1016/j.medengphy.2016.03.007_bib0028
  article-title: Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20080236
– volume: 590
  start-page: 3261
  year: 2012
  ident: 10.1016/j.medengphy.2016.03.007_bib0033
  article-title: Regional brain blood flow in man during acute changes in arterial blood gases
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2012.228551
– volume: 39
  start-page: 735
  year: 2013
  ident: 10.1016/j.medengphy.2016.03.007_bib0014
  article-title: The carotid artery as an alternative site to the middle cerebral artery for reproducible estimates of autoregulation index
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2012.10.017
SSID ssj0004463
Score 2.155017
Snippet The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral autoregulation (dCA)...
Abstract The internal carotid artery (ICA) has been proposed as an alternative site to the middle cerebral artery (MCA) to measure dynamic cerebral...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 690
SubjectTerms Adult
Aged
Analysis of Variance
Arteries
Assessments
Brain - blood supply
Brain - metabolism
Carotid arteries
Carotid Arteries - diagnostic imaging
Carotid Arteries - metabolism
Dynamic cerebral autoregulation
Dynamics
Female
Homeostasis
Humans
Internal carotid artery
Male
Mathematical models
Measurement reproducibility
Middle Aged
Middle cerebral artery
Operators
Radiology
Reproducibility
Reproducibility of Results
Transcranial Doppler ultrasound
Ultrasonography, Doppler, Transcranial
Title The carotid artery as an alternative site for dynamic autoregulation measurement: an inter-observer reproducibility study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453316300406
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453316300406
https://dx.doi.org/10.1016/j.medengphy.2016.03.007
https://www.ncbi.nlm.nih.gov/pubmed/27134150
https://www.proquest.com/docview/1792538272
https://www.proquest.com/docview/1808619235
https://www.proquest.com/docview/1825473964
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQTlUMHy6EKpjMQ1bGLHj_RWrVotoPYClXqzHMdBW0G22t0eeuG3M5M4WyroQ-KYyKMknonns2fmG4APdUmxKlEkUjmX5DzLEyc81cqIulK1VFVb9X58oqan-eczebYBk74WhtIq49rfrentah3vjONsji9ms_HXTEjEI0JkLWsU0W5vclEoOYDNg09fpifX5ZF521CNxickcCPNC31OaL7jJ1Gal-oIT_VtTuo2ENo6o6NnsB1RJDvoXvQ5bIRmCE8mffO2ITz9g2dwCI-PYwT9BVCjOka9elazirX5nFfMLZlrWBs3b1oecEYhZYZwllVdw3rmiOqga1uPimQ_r08W90mWSCcWybykI96wYMSUSUSyXebtFWs5bF_C6dHht8k0ie0XEq9MvkoQu2Wh1lx6xDSq5kH4ypW5cqbywWuNGyVENwWvypJ7GaSruDc5T3lAvQsvxCsYNPMm7ABTpqxMWmpJG8pCmFIHJeuaUliL2hRhBKqfb-sjNzm1yPhh-yS0c7tWlCVF2VRYVNQI0rXgRUfPcb-I6RVq--pTXC8tupD7RfW_RMMy_vdLm9klt6n9yzZHsL-WvGHeD3vs-97uLJoRRXRcE-aX-DhdcPRYXPM7xhjctRKOl3eN4dSDulD5CF53hr2eTk7VxrhtePM_n_AWtuiqy3PehcFqcRneIZpblXvw6OOvbC_-s78BEPpLiQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaKFljXQ9Flr-ypAbt6sSVLsnsbghbZ1vSyFuhNkGV5yLA5RZIeeulvHynZ6Yqt7YAdk4hwLNIiaX78CPC-qahWJcpEKmuTnGd5YoWjXhnR1KqRqg5d79NjNTnNP5_Jsw0Y970wBKvszv54pofTuvtm1O3m6Hw2G33NhMR4RIgssEYR7fYWftSE6_twdY3zwHwnoOxxdULLb4C80OP49hveEIG8VKQ71be5qNtC0OCKDvdgt4sh2cf4Nx_Bhm8HsD3uR7cNYOc3lsEBPJh29fPHQGPqGE3qWc1qFtCcl8wumW1ZqJq3gQWcUUGZYTDL6jiunlkiOohD61GN7Of1e8V9kiXKiUUyr-gFr18w4skkGtmIu71kgcH2CZweHpyMJ0k3fCFxqshXCUZumW80lw4jGtVwL1xtq1zZonbeaY1pEsY2Ja-rijvppa25K3Keco9aF06Ip7DZzlv_HJgqqrpIKy0pnSxFUWmvZNMQgLVsitIPQfX7bVzHTE4DMn6YHoL23awVZUhRJhUGFTWEdC14Hsk57hcpeoWavvcUT0uDDuR-Uf03Ub_snvqlycySm9T8YZlD2F9L3jDuf7vsu97uDJoR1XNs6-cXeDldcvRXXPM71hSYs1IUL-9aw2kCdanyITyLhr3eTk69xpg0vPifW3gL25OT6ZE5-nT85SU8pF8i4vkVbK4WF_41xnWr6k14bn8B7vdMVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+carotid+artery+as+an+alternative+site+for+dynamic+autoregulation+measurement%3A+an+inter-observer+reproducibility+study&rft.jtitle=Medical+engineering+%26+physics&rft.au=Nogueira%2C+R+C&rft.au=Saeed%2C+N+P&rft.au=Bor-Seng-Shu%2C+E&rft.au=Teixeira%2C+M+J&rft.date=2016-07-01&rft.issn=1873-4030&rft.eissn=1873-4030&rft.volume=38&rft.issue=7&rft.spage=690&rft_id=info:doi/10.1016%2Fj.medengphy.2016.03.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453316X00082%2Fcov150h.gif