Associated factors of white matter hyperintensity volume: a machine-learning approach
To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR)....
Saved in:
Published in | Scientific Reports Vol. 11; no. 1; pp. 2325 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer Science and Business Media LLC
27.01.2021
Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient. |
---|---|
AbstractList | To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient. Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient. To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient. To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient. |
ArticleNumber | 2325 |
Author | Mohamad Habes Sonja Selder Sergio Grosu Sigrid Auweter Felix Hartmann Christopher L. Schlett Margit Heier Sophia Stoecklein Robin Buelow Franziska Galiè Birgit Ertl-Wagner Roberto Lorbeer Karl-Heinz Ladwig Hans J. Grabe Wolfgang Rathmann Katharina Mueller-Peltzer Annette Peters Fabian Bamberg Susanne Rospleszcz |
Author_xml | – sequence: 1 givenname: Sergio surname: Grosu fullname: Grosu, Sergio email: Sergio.Grosu@med.uni-muenchen.de organization: Department of Radiology, University Hospital, LMU Munich – sequence: 2 givenname: Susanne surname: Rospleszcz fullname: Rospleszcz, Susanne organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Chair of Epidemiology, Ludwig-Maximilians-University München – sequence: 3 givenname: Felix surname: Hartmann fullname: Hartmann, Felix organization: Department of Radiology, University Hospital, LMU Munich – sequence: 4 givenname: Mohamad surname: Habes fullname: Habes, Mohamad organization: Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center At San Antonio, Department of Radiology and Penn Memory Center, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Institute of Community Medicine and Department of Psychiatry, University of Greifswald – sequence: 5 givenname: Fabian surname: Bamberg fullname: Bamberg, Fabian organization: Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg – sequence: 6 givenname: Christopher L. surname: Schlett fullname: Schlett, Christopher L. organization: Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg – sequence: 7 givenname: Franziska surname: Galie fullname: Galie, Franziska organization: Department of Radiology, University Hospital, LMU Munich – sequence: 8 givenname: Roberto surname: Lorbeer fullname: Lorbeer, Roberto organization: Department of Radiology, University Hospital, LMU Munich – sequence: 9 givenname: Sigrid surname: Auweter fullname: Auweter, Sigrid organization: Department of Radiology, University Hospital, LMU Munich – sequence: 10 givenname: Sonja surname: Selder fullname: Selder, Sonja organization: Department of Radiology, University Hospital, LMU Munich – sequence: 11 givenname: Robin surname: Buelow fullname: Buelow, Robin organization: Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald – sequence: 12 givenname: Margit surname: Heier fullname: Heier, Margit organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, KORA Study Centre, University Hospital of Augsburg – sequence: 13 givenname: Wolfgang surname: Rathmann fullname: Rathmann, Wolfgang organization: Institute for Biometrics and Epidemiology, German Diabetes Center, German Center for Diabetes Research (DZD) – sequence: 14 givenname: Katharina surname: Mueller-Peltzer fullname: Mueller-Peltzer, Katharina organization: Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg – sequence: 15 givenname: Karl-Heinz surname: Ladwig fullname: Ladwig, Karl-Heinz organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts Der Isar, Technical University Munich – sequence: 16 givenname: Hans J. surname: Grabe fullname: Grabe, Hans J. organization: Institute of Community Medicine and Department of Psychiatry, University of Greifswald, Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald, German Center for Neurodegenerative Diseases (DZNE) – sequence: 17 givenname: Annette surname: Peters fullname: Peters, Annette organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, German Centre for Cardiovascular Research (DZHK E.V.), Chair of Epidemiology, Ludwig-Maximilians-University München – sequence: 18 givenname: Birgit B. surname: Ertl-Wagner fullname: Ertl-Wagner, Birgit B. organization: Department of Radiology, University Hospital, LMU Munich, Department of Radiology, The Hospital for Sick Children, University of Toronto – sequence: 19 givenname: Sophia surname: Stoecklein fullname: Stoecklein, Sophia email: Sophia.Stoecklein@med.uni-muenchen.de organization: Department of Radiology, University Hospital, LMU Munich |
BackLink | https://cir.nii.ac.jp/crid/1873398392606436224$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/33504924$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAUjFARLaU_wAJFggWbgF9xbBaVqopHpUps6Npy7JN7XSX2xXaK7t_jNC20XXTjxzkzo_HxvK4OfPBQVW8x-oQRFZ8Tw60UDSK4EVgI2rAX1RFBrG0IJeTgwfmwOknJ9eVKsUQCvaoOKW0Rk4QdVVdnKQXjdAZbD9rkEFMdhvrP1mWoJ50zxHq730F0PoNPLu_rmzDOE3ypdembrfPQjKCjd35T690uhlJ8U70c9Jjg5G4_rq6-ff11_qO5_Pn94vzssjFc0Nx0bS8tl7qXBmk90JYSkIzqznSS9qhnRvZCttawFnOLrAWgqOcaBmIZsoweVxerrg36Wu2im3Tcq6Cdui2EuFE6ZmdGUBQEx7xFGjNTRlfkjUFlGtARJAZqi9bpqrWb-wmsAZ-jHh-JPu54t1WbcKM6wRAXsgh8vBOI4fcMKavJJQPjqD2EOSnCBOGtbCUp0PdPoNdhjr6MakEhKTkWC-rdQ0f_rNz_XgGIFWBiSCnCoIzLOruwGHSjwkgtWVFrVlTJirrNilqo5An1Xv1ZEl1JqYD9BuJ_28-yPqws71wxuKxYdJRKQSXhiDPKSXnMX8hK24o |
CitedBy_id | crossref_primary_10_1161_STROKEAHA_122_038561 crossref_primary_10_3389_fnins_2021_747569 crossref_primary_10_1136_bmjdrc_2020_002050 crossref_primary_10_3389_fneur_2021_633619 crossref_primary_10_3390_children10020206 crossref_primary_10_1007_s10278_024_01372_8 crossref_primary_10_1016_j_biopsych_2023_07_023 crossref_primary_10_1016_j_clinph_2023_09_006 crossref_primary_10_1038_s41598_022_17837_1 crossref_primary_10_1016_j_mri_2024_110213 crossref_primary_10_1038_s41598_024_61102_6 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106479 crossref_primary_10_1002_dad2_12567 crossref_primary_10_1002_hbm_26568 crossref_primary_10_2174_1567202620666230522153438 crossref_primary_10_1016_j_neurobiolaging_2021_08_014 crossref_primary_10_1093_braincomms_fcae365 |
Cites_doi | 10.1111/jgs.15240 10.1007/s12603-017-0959-3 10.1002/gps.4644 10.2337/dc18-1132 10.1097/RLI.0b013e31819a60d3 10.2337/dc09-1923 10.1111/ggi.13767 10.3174/ajnr.A4805 10.1111/j.1467-9868.2005.00503.x 10.1097/01.psy.0000237779.56500.af 10.5551/jat.48553 10.1093/ije/dyv341 10.1212/01.wnl.0000266562.54684.bf 10.1038/s41598-020-65040-x 10.1002/bimj.201400143 10.2337/db16-0630 10.1136/bmj.c3666 10.1093/ajcn/80.4.992 10.1111/j.1530-0277.2008.00828.x 10.1093/brain/aww008 10.2147/JPR.S158488 10.1055/s-2005-858235 10.1016/j.neurobiolaging.2016.03.011 10.1161/01.STR.0000221308.94473.14 10.1161/01.STR.27.8.1274 10.1161/circulationaha.110.961052 10.1016/j.neurobiolaging.2019.02.030 10.1159/000369777 10.1148/radiol.2371041496 10.1212/01.wnl.0000305959.46197.e6 10.1159/000049146 10.1016/s1474-4422(13)70124-8 10.1007/s00127-017-1339-3 10.1016/j.neuroimage.2006.01.015 10.1136/postgradmedj-2011-130307 10.1161/circulationaha.104.501163 10.1016/0021-9681(67)90034-3 10.1016/j.nicl.2018.02.006 10.1212/wnl.0000000000003687 10.2337/dc17-1185 10.1016/j.jalz.2018.06.3060 10.1093/ije/dyp394 10.1016/j.dadm.2018.02.002 10.1212/wnl.0000000000000312 10.1212/WNL.43.9.1683 10.1001/jama.288.1.67 10.1161/01.STR.28.3.652 10.1161/STROKEAHA.115.008941 10.1111/j.1365-2990.2007.00828.x 10.1161/strokeaha.119.025139 10.1212/wnl.0000000000007654 10.1016/j.jpsychires.2014.05.005 10.1016/j.neuroimage.2015.09.071 10.1001/jamanetworkopen.2020.0121 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-81883-4 |
DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_3e861650a14c4153b0cc0080e7208f3d PMC7840689 33504924 10_1038_s41598_021_81883_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Siemens Healthineers funderid: http://dx.doi.org/10.13039/501100011699 – fundername: Deutsche Forschungsgemeinschaft grantid: 245222810 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Projekt DEAL – fundername: Deutsche Forschungsgemeinschaft grantid: 245222810 – fundername: ; – fundername: ; grantid: 245222810 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM RYH SNYQT UKHRP 3V. 88A ACSMW AJTQC M0L AAYXX CITATION NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c683t-75b9d69ab9c0aaf3532e943a7c793b0b4c9b895dc4516d0ddee30b6aef2d40d43 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:36 EDT 2025 Thu Aug 21 14:14:06 EDT 2025 Fri Jul 11 11:32:45 EDT 2025 Wed Aug 13 09:12:59 EDT 2025 Thu Jan 02 22:58:46 EST 2025 Thu Apr 24 22:59:39 EDT 2025 Tue Jul 01 01:07:20 EDT 2025 Fri Feb 21 02:39:05 EST 2025 Thu Jun 26 22:01:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c683t-75b9d69ab9c0aaf3532e943a7c793b0b4c9b895dc4516d0ddee30b6aef2d40d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4788-2341 0000-0002-9093-6499 0000-0003-0325-4674 0000-0002-7896-7049 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-81883-4 |
PMID | 33504924 |
PQID | 2480996182 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3e861650a14c4153b0cc0080e7208f3d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7840689 proquest_miscellaneous_2482659592 proquest_journals_2480996182 pubmed_primary_33504924 crossref_citationtrail_10_1038_s41598_021_81883_4 crossref_primary_10_1038_s41598_021_81883_4 springer_journals_10_1038_s41598_021_81883_4 nii_cinii_1873398392606436224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-27 |
PublicationDateYYYYMMDD | 2021-01-27 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific Reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Springer Science and Business Media LLC Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Georgakis, Chatzopoulou, Tsivgoulis, Petridou (CR19) 2018; 66 Moon (CR49) 2018; 22 Zou, Hastie (CR22) 2005; 67 Holle, Happich, Löwel, Wichmann, Group (CR24) 2005; 67 Yushkevich (CR29) 2006; 31 McEvoy (CR43) 2018; 18 Makin, Cook, Dennis, Wardlaw (CR20) 2015; 39 Wang, Leonards, Sterzer, Ebinger (CR36) 2014; 56 de Bresser (CR41) 2010; 33 van Agtmaal (CR14) 2018; 41 Curtze (CR33) 2015; 46 Judea, Glymour, Jewell (CR55) 2016 Fernando (CR10) 2006; 37 Dufouil (CR9) 2005; 112 Barkhof, Scheltens (CR38) 2002; 13 Clark, Chapman, Coulson (CR42) 1967; 20 Vandenbroucke, Broadbent, Pearce (CR56) 2016; 45 Habes (CR31) 2018; 10 Baezner (CR37) 2008; 70 Domènech-Abella (CR51) 2017; 52 Habes (CR30) 2016; 37 Caunca (CR7) 2020; 51 Marseglia (CR13) 2019; 15 Murray (CR40) 2005; 237 Wang, Ma, Wang (CR32) 2015; 57 Venkatraman (CR50) 2019 Park (CR15) 2007; 69 Habes (CR3) 2016; 139 Sexton (CR48) 2016; 131 Galiè (CR23) 2020; 10 Johnson (CR52) 2017; 32 Backhouse, McHutchison, Cvoro, Shenkin, Wardlaw (CR53) 2017; 88 Anstey (CR44) 2006; 68 Simpson (CR6) 2007; 33 Longstreth (CR35) 1996; 27 Biddle (CR54) 2020; 3 Pantoni, Garcia (CR5) 1997; 28 Schneider (CR12) 2017; 40 Fazekas (CR4) 1993; 43 Todate (CR16) 2019; 26 Wardlaw (CR28) 2013; 12 Weckbach (CR39) 2009; 44 Wong (CR2) 2002; 288 Bamberg (CR26) 2017; 66 Collins (CR45) 2009; 33 CR27 Völzke (CR25) 2011; 40 Debette, Markus (CR34) 2010; 341 Binnekade (CR47) 2019; 12 Hirao (CR18) 2019; 19 Wardlaw (CR21) 2014; 82 Godin, Tzourio, Maillard, Mazoyer, Dufouil (CR8) 2011; 123 den Heijer (CR46) 2004; 80 Cannistraro (CR11) 2019; 92 Grueter, Schulz (CR1) 2012; 88 Dickie (CR17) 2016; 42 MR Caunca (81883_CR7) 2020; 51 TY Wong (81883_CR2) 2002; 288 JE Simpson (81883_CR6) 2007; 33 VA Clark (81883_CR42) 1967; 20 F Fazekas (81883_CR4) 1993; 43 L Pantoni (81883_CR5) 1997; 28 K Park (81883_CR15) 2007; 69 M Habes (81883_CR3) 2016; 139 RJ Cannistraro (81883_CR11) 2019; 92 EV Backhouse (81883_CR53) 2017; 88 S Weckbach (81883_CR39) 2009; 44 Z Wang (81883_CR32) 2015; 57 MS Fernando (81883_CR10) 2006; 37 Y Todate (81883_CR16) 2019; 26 M Habes (81883_CR31) 2018; 10 O Godin (81883_CR8) 2011; 123 BE Grueter (81883_CR1) 2012; 88 H Baezner (81883_CR37) 2008; 70 CE Sexton (81883_CR48) 2016; 131 JP Vandenbroucke (81883_CR56) 2016; 45 MA Collins (81883_CR45) 2009; 33 MK Georgakis (81883_CR19) 2018; 66 TT Binnekade (81883_CR47) 2019; 12 K Hirao (81883_CR18) 2019; 19 R Holle (81883_CR24) 2005; 67 P Judea (81883_CR55) 2016 A Marseglia (81883_CR13) 2019; 15 JM Wardlaw (81883_CR21) 2014; 82 H Zou (81883_CR22) 2005; 67 SD Makin (81883_CR20) 2015; 39 F Bamberg (81883_CR26) 2017; 66 T den Heijer (81883_CR46) 2004; 80 AD Johnson (81883_CR52) 2017; 32 J Domènech-Abella (81883_CR51) 2017; 52 C Dufouil (81883_CR9) 2005; 112 F Barkhof (81883_CR38) 2002; 13 M Habes (81883_CR30) 2016; 37 81883_CR27 VK Venkatraman (81883_CR50) 2019 DA Dickie (81883_CR17) 2016; 42 ALC Schneider (81883_CR12) 2017; 40 JM Wardlaw (81883_CR28) 2013; 12 PA Yushkevich (81883_CR29) 2006; 31 MJM van Agtmaal (81883_CR14) 2018; 41 KD Biddle (81883_CR54) 2020; 3 H Völzke (81883_CR25) 2011; 40 KJ Anstey (81883_CR44) 2006; 68 SY Moon (81883_CR49) 2018; 22 AD Murray (81883_CR40) 2005; 237 WT Longstreth (81883_CR35) 1996; 27 F Galiè (81883_CR23) 2020; 10 LK McEvoy (81883_CR43) 2018; 18 L Wang (81883_CR36) 2014; 56 J de Bresser (81883_CR41) 2010; 33 S Debette (81883_CR34) 2010; 341 S Curtze (81883_CR33) 2015; 46 |
References_xml | – volume: 66 start-page: 509 year: 2018 end-page: 517 ident: CR19 article-title: Albuminuria and cerebral small vessel disease: A systematic review and meta-analysis publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.15240 – volume: 22 start-page: 425 year: 2018 end-page: 430 ident: CR49 article-title: Physical activity and changes in white matter hyperintensities over three years publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-017-0959-3 – volume: 32 start-page: e10 year: 2017 end-page: e17 ident: CR52 article-title: Effects of stressful life events on cerebral white matter hyperintensity progression publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.4644 – volume: 41 start-page: 2535 year: 2018 end-page: 2543 ident: CR14 article-title: Prediabetes is associated with structural brain abnormalities: The Maastricht study publication-title: Diabetes Care doi: 10.2337/dc18-1132 – volume: 44 start-page: 242 year: 2009 end-page: 250 ident: CR39 article-title: Systemic cardiovascular complications in patients with long-standing diabetes mellitus: Comprehensive assessment with whole-body magnetic resonance imaging/magnetic resonance angiography publication-title: Invest. Radiol. doi: 10.1097/RLI.0b013e31819a60d3 – volume: 33 start-page: 1309 year: 2010 end-page: 1314 ident: CR41 article-title: Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes publication-title: Diabet. Care doi: 10.2337/dc09-1923 – year: 2016 ident: CR55 publication-title: Causal Inference in Statistics: A Primer – volume: 19 start-page: 1036 year: 2019 end-page: 1040 ident: CR18 article-title: Association of serum cystatin C with white matter abnormalities in patients with amnestic mild cognitive impairment publication-title: Geriatr. Gerontol. Int. doi: 10.1111/ggi.13767 – volume: 37 start-page: 1636 year: 2016 end-page: 1642 ident: CR30 article-title: Relationship between APOE genotype and structural MRI measures throughout adulthood in the study of health in pomerania population-based cohort publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A4805 – volume: 67 start-page: 301 issue: 2 year: 2005 end-page: 320 ident: CR22 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 68 start-page: 778 year: 2006 end-page: 785 ident: CR44 article-title: Weekly alcohol consumption, brain atrophy, and white matter hyperintensities in a community-based sample aged 60 to 64 years publication-title: Psychosom. Med. doi: 10.1097/01.psy.0000237779.56500.af – volume: 26 start-page: 1045 year: 2019 end-page: 1053 ident: CR16 article-title: High prevalence of cerebral small vessel disease on 7T magnetic resonance imaging in familial hypercholesterolemia publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.48553 – volume: 45 start-page: 1776 year: 2016 end-page: 1786 ident: CR56 article-title: Causality and causal inference in epidemiology: The need for a pluralistic approach publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyv341 – volume: 69 start-page: 974 year: 2007 end-page: 978 ident: CR15 article-title: Significant association between leukoaraiosis and metabolic syndrome in healthy subjects publication-title: Neurology doi: 10.1212/01.wnl.0000266562.54684.bf – volume: 10 start-page: 8363 year: 2020 ident: CR23 article-title: Machine-learning based exploration of determinants of gray matter volume in the KORA-MRI study publication-title: Sci. Rep. doi: 10.1038/s41598-020-65040-x – volume: 57 start-page: 867 year: 2015 end-page: 884 ident: CR32 article-title: Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany publication-title: Biom. J. doi: 10.1002/bimj.201400143 – volume: 66 start-page: 158 year: 2017 end-page: 169 ident: CR26 article-title: Subclinical disease burden as assessed by whole-body mri in subjects with prediabetes, subjects with diabetes, and normal control subjects from the general population: The KORA-MRI study publication-title: Diabetes doi: 10.2337/db16-0630 – volume: 341 start-page: c3666 year: 2010 ident: CR34 article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis publication-title: BMJ doi: 10.1136/bmj.c3666 – volume: 80 start-page: 992 year: 2004 end-page: 997 ident: CR46 article-title: Alcohol intake in relation to brain magnetic resonance imaging findings in older persons without dementia publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/80.4.992 – volume: 33 start-page: 206 year: 2009 end-page: 219 ident: CR45 article-title: Alcohol in moderation, cardioprotection, and neuroprotection: Epidemiological considerations and mechanistic studies publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2008.00828.x – volume: 139 start-page: 1164 year: 2016 end-page: 1179 ident: CR3 article-title: White matter hyperintensities and imaging patterns of brain ageing in the general population publication-title: Brain doi: 10.1093/brain/aww008 – volume: 12 start-page: 1621 year: 2019 end-page: 1629 ident: CR47 article-title: White matter hyperintensities are related to pain intensity in an outpatient memory clinic population: Preliminary findings publication-title: J. Pain Res. doi: 10.2147/JPR.S158488 – volume: 67 start-page: S19 issue: Suppl 1 year: 2005 end-page: 25 ident: CR24 article-title: KORA—a research platform for population based health research publication-title: Gesundheitswesen doi: 10.1055/s-2005-858235 – volume: 42 start-page: 116 year: 2016 end-page: 123 ident: CR17 article-title: Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.03.011 – volume: 37 start-page: 1391 year: 2006 end-page: 1398 ident: CR10 article-title: White matter lesions in an unselected cohort of the elderly: Molecular pathology suggests origin from chronic hypoperfusion injury publication-title: Stroke doi: 10.1161/01.STR.0000221308.94473.14 – volume: 27 start-page: 1274 year: 1996 end-page: 1282 ident: CR35 article-title: Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study publication-title: Stroke doi: 10.1161/01.STR.27.8.1274 – volume: 123 start-page: 266 year: 2011 end-page: 273 ident: CR8 article-title: Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: The three-city (3C)-Dijon magnetic resonance imaging study publication-title: Circulation doi: 10.1161/circulationaha.110.961052 – year: 2019 ident: CR50 article-title: Effect of a 24-month physical activity program on brain changes in older adults at risk of Alzheimer's disease: The AIBL active trial publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2019.02.030 – volume: 39 start-page: 39 year: 2015 end-page: 52 ident: CR20 article-title: Cerebral small vessel disease and renal function: Systematic review and meta-analysis publication-title: Cerebrovasc. Dis. doi: 10.1159/000369777 – volume: 237 start-page: 251 year: 2005 end-page: 257 ident: CR40 article-title: Brain white matter hyperintensities: Relative importance of vascular risk factors in nondemented elderly people publication-title: Radiology doi: 10.1148/radiol.2371041496 – volume: 70 start-page: 935 year: 2008 end-page: 942 ident: CR37 article-title: Association of gait and balance disorders with age-related white matter changes: The LADIS study publication-title: Neurology doi: 10.1212/01.wnl.0000305959.46197.e6 – volume: 13 start-page: 21 issue: Suppl 2 year: 2002 end-page: 30 ident: CR38 article-title: Imaging of white matter lesions publication-title: Cerebrovasc. Dis. doi: 10.1159/000049146 – volume: 12 start-page: 822 year: 2013 end-page: 838 ident: CR28 article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration publication-title: Lancet Neurol. doi: 10.1016/s1474-4422(13)70124-8 – volume: 52 start-page: 381 year: 2017 end-page: 390 ident: CR51 article-title: Loneliness and depression in the elderly: The role of social network publication-title: Soc. Psychiatry Psychiatr. Epidemiol. doi: 10.1007/s00127-017-1339-3 – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: CR29 article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 88 start-page: 79 year: 2012 end-page: 87 ident: CR1 article-title: Age-related cerebral white matter disease (leukoaraiosis): A review publication-title: Postgrad. Med. J. doi: 10.1136/postgradmedj-2011-130307 – volume: 112 start-page: 1644 year: 2005 end-page: 1650 ident: CR9 article-title: Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: The PROGRESS (perindopril protection against recurrent stroke study) magnetic resonance imaging substudy publication-title: Circulation doi: 10.1161/circulationaha.104.501163 – volume: 20 start-page: 571 year: 1967 end-page: 581 ident: CR42 article-title: Effects of various factors on systolic and diastolic blood pressure in the Los Angeles heart study publication-title: J. Chron. Dis. doi: 10.1016/0021-9681(67)90034-3 – volume: 18 start-page: 390 year: 2018 end-page: 398 ident: CR43 article-title: Alcohol intake and brain white matter in middle aged men: Microscopic and macroscopic differences publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.02.006 – ident: CR27 – volume: 88 start-page: 976 year: 2017 end-page: 984 ident: CR53 article-title: Early life risk factors for cerebrovascular disease: A systematic review and meta-analysis publication-title: Neurology doi: 10.1212/wnl.0000000000003687 – volume: 40 start-page: 1514 year: 2017 end-page: 1521 ident: CR12 article-title: Diabetes, prediabetes, and brain volumes and subclinical cerebrovascular disease on MRI: The atherosclerosis risk in communities neurocognitive study (ARIC-NCS) publication-title: Diabetes Care doi: 10.2337/dc17-1185 – volume: 15 start-page: 25 year: 2019 end-page: 33 ident: CR13 article-title: Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: A population-based cohort study publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2018.06.3060 – volume: 40 start-page: 294 year: 2011 end-page: 307 ident: CR25 article-title: Cohort profile: The study of health in Pomerania publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyp394 – volume: 10 start-page: 278 year: 2018 end-page: 284 ident: CR31 article-title: Regional tract-specific white matter hyperintensities are associated with patterns to aging-related brain atrophy via vascular risk factors, but also independently publication-title: Alzheimers Dement (Amst) doi: 10.1016/j.dadm.2018.02.002 – volume: 82 start-page: 1331 year: 2014 end-page: 1338 ident: CR21 article-title: Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities publication-title: Neurology doi: 10.1212/wnl.0000000000000312 – volume: 43 start-page: 1683 year: 1993 end-page: 1689 ident: CR4 article-title: Pathologic correlates of incidental MRI white matter signal hyperintensities publication-title: Neurology doi: 10.1212/WNL.43.9.1683 – volume: 288 start-page: 67 year: 2002 end-page: 74 ident: CR2 article-title: Cerebral white matter lesions, retinopathy, and incident clinical stroke publication-title: JAMA doi: 10.1001/jama.288.1.67 – volume: 28 start-page: 652 year: 1997 end-page: 659 ident: CR5 article-title: Pathogenesis of leukoaraiosis: A review publication-title: Stroke doi: 10.1161/01.STR.28.3.652 – volume: 46 start-page: 1554 year: 2015 end-page: 1560 ident: CR33 article-title: Cerebral computed tomography-graded white matter lesions are associated with worse outcome after thrombolysis in patients with stroke publication-title: Stroke doi: 10.1161/STROKEAHA.115.008941 – volume: 33 start-page: 410 year: 2007 end-page: 419 ident: CR6 article-title: White matter lesions in an unselected cohort of the elderly: Astrocytic, microglial and oligodendrocyte precursor cell responses publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/j.1365-2990.2007.00828.x – volume: 51 start-page: 372 year: 2020 end-page: 378 ident: CR7 article-title: Diastolic blood pressure is associated with regional white matter lesion load: The Northern Manhattan study publication-title: Stroke doi: 10.1161/strokeaha.119.025139 – volume: 92 start-page: 1146 year: 2019 end-page: 1156 ident: CR11 article-title: CNS small vessel disease: A clinical review publication-title: Neurology doi: 10.1212/wnl.0000000000007654 – volume: 56 start-page: 56 year: 2014 end-page: 64 ident: CR36 article-title: White matter lesions and depression: A systematic review and meta-analysis publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2014.05.005 – volume: 131 start-page: 81 year: 2016 end-page: 90 ident: CR48 article-title: A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.071 – volume: 3 start-page: e200121 year: 2020 ident: CR54 article-title: Associations of widowhood and beta-amyloid with cognitive decline in cognitively unimpaired older adults publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.0121 – volume: 33 start-page: 1309 year: 2010 ident: 81883_CR41 publication-title: Diabet. Care doi: 10.2337/dc09-1923 – volume: 39 start-page: 39 year: 2015 ident: 81883_CR20 publication-title: Cerebrovasc. Dis. doi: 10.1159/000369777 – volume: 123 start-page: 266 year: 2011 ident: 81883_CR8 publication-title: Circulation doi: 10.1161/circulationaha.110.961052 – volume: 3 start-page: e200121 year: 2020 ident: 81883_CR54 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.0121 – ident: 81883_CR27 – volume: 28 start-page: 652 year: 1997 ident: 81883_CR5 publication-title: Stroke doi: 10.1161/01.STR.28.3.652 – volume: 66 start-page: 158 year: 2017 ident: 81883_CR26 publication-title: Diabetes doi: 10.2337/db16-0630 – volume: 237 start-page: 251 year: 2005 ident: 81883_CR40 publication-title: Radiology doi: 10.1148/radiol.2371041496 – volume: 42 start-page: 116 year: 2016 ident: 81883_CR17 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.03.011 – volume: 82 start-page: 1331 year: 2014 ident: 81883_CR21 publication-title: Neurology doi: 10.1212/wnl.0000000000000312 – volume: 112 start-page: 1644 year: 2005 ident: 81883_CR9 publication-title: Circulation doi: 10.1161/circulationaha.104.501163 – volume: 88 start-page: 976 year: 2017 ident: 81883_CR53 publication-title: Neurology doi: 10.1212/wnl.0000000000003687 – volume: 68 start-page: 778 year: 2006 ident: 81883_CR44 publication-title: Psychosom. Med. doi: 10.1097/01.psy.0000237779.56500.af – volume: 41 start-page: 2535 year: 2018 ident: 81883_CR14 publication-title: Diabetes Care doi: 10.2337/dc18-1132 – volume: 43 start-page: 1683 year: 1993 ident: 81883_CR4 publication-title: Neurology doi: 10.1212/WNL.43.9.1683 – volume: 26 start-page: 1045 year: 2019 ident: 81883_CR16 publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.48553 – volume: 33 start-page: 410 year: 2007 ident: 81883_CR6 publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/j.1365-2990.2007.00828.x – volume: 37 start-page: 1636 year: 2016 ident: 81883_CR30 publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A4805 – volume: 131 start-page: 81 year: 2016 ident: 81883_CR48 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.071 – volume: 92 start-page: 1146 year: 2019 ident: 81883_CR11 publication-title: Neurology doi: 10.1212/wnl.0000000000007654 – volume: 27 start-page: 1274 year: 1996 ident: 81883_CR35 publication-title: Stroke doi: 10.1161/01.STR.27.8.1274 – volume: 66 start-page: 509 year: 2018 ident: 81883_CR19 publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.15240 – volume: 12 start-page: 822 year: 2013 ident: 81883_CR28 publication-title: Lancet Neurol. doi: 10.1016/s1474-4422(13)70124-8 – volume: 57 start-page: 867 year: 2015 ident: 81883_CR32 publication-title: Biom. J. doi: 10.1002/bimj.201400143 – volume: 10 start-page: 278 year: 2018 ident: 81883_CR31 publication-title: Alzheimers Dement (Amst) doi: 10.1016/j.dadm.2018.02.002 – volume: 45 start-page: 1776 year: 2016 ident: 81883_CR56 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyv341 – volume: 139 start-page: 1164 year: 2016 ident: 81883_CR3 publication-title: Brain doi: 10.1093/brain/aww008 – volume: 341 start-page: c3666 year: 2010 ident: 81883_CR34 publication-title: BMJ doi: 10.1136/bmj.c3666 – volume: 31 start-page: 1116 year: 2006 ident: 81883_CR29 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 40 start-page: 1514 year: 2017 ident: 81883_CR12 publication-title: Diabetes Care doi: 10.2337/dc17-1185 – volume: 56 start-page: 56 year: 2014 ident: 81883_CR36 publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2014.05.005 – volume: 20 start-page: 571 year: 1967 ident: 81883_CR42 publication-title: J. Chron. Dis. doi: 10.1016/0021-9681(67)90034-3 – volume: 32 start-page: e10 year: 2017 ident: 81883_CR52 publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.4644 – volume: 88 start-page: 79 year: 2012 ident: 81883_CR1 publication-title: Postgrad. Med. J. doi: 10.1136/postgradmedj-2011-130307 – volume: 44 start-page: 242 year: 2009 ident: 81883_CR39 publication-title: Invest. Radiol. doi: 10.1097/RLI.0b013e31819a60d3 – volume: 10 start-page: 8363 year: 2020 ident: 81883_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-020-65040-x – volume: 37 start-page: 1391 year: 2006 ident: 81883_CR10 publication-title: Stroke doi: 10.1161/01.STR.0000221308.94473.14 – volume: 19 start-page: 1036 year: 2019 ident: 81883_CR18 publication-title: Geriatr. Gerontol. Int. doi: 10.1111/ggi.13767 – volume: 22 start-page: 425 year: 2018 ident: 81883_CR49 publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-017-0959-3 – volume: 46 start-page: 1554 year: 2015 ident: 81883_CR33 publication-title: Stroke doi: 10.1161/STROKEAHA.115.008941 – volume: 40 start-page: 294 year: 2011 ident: 81883_CR25 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyp394 – volume: 33 start-page: 206 year: 2009 ident: 81883_CR45 publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/j.1530-0277.2008.00828.x – volume: 80 start-page: 992 year: 2004 ident: 81883_CR46 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/80.4.992 – volume: 70 start-page: 935 year: 2008 ident: 81883_CR37 publication-title: Neurology doi: 10.1212/01.wnl.0000305959.46197.e6 – volume: 67 start-page: S19 issue: Suppl 1 year: 2005 ident: 81883_CR24 publication-title: Gesundheitswesen doi: 10.1055/s-2005-858235 – volume: 12 start-page: 1621 year: 2019 ident: 81883_CR47 publication-title: J. Pain Res. doi: 10.2147/JPR.S158488 – volume-title: Causal Inference in Statistics: A Primer year: 2016 ident: 81883_CR55 – volume: 51 start-page: 372 year: 2020 ident: 81883_CR7 publication-title: Stroke doi: 10.1161/strokeaha.119.025139 – volume: 288 start-page: 67 year: 2002 ident: 81883_CR2 publication-title: JAMA doi: 10.1001/jama.288.1.67 – year: 2019 ident: 81883_CR50 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2019.02.030 – volume: 52 start-page: 381 year: 2017 ident: 81883_CR51 publication-title: Soc. Psychiatry Psychiatr. Epidemiol. doi: 10.1007/s00127-017-1339-3 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 81883_CR22 publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 13 start-page: 21 issue: Suppl 2 year: 2002 ident: 81883_CR38 publication-title: Cerebrovasc. Dis. doi: 10.1159/000049146 – volume: 15 start-page: 25 year: 2019 ident: 81883_CR13 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2018.06.3060 – volume: 69 start-page: 974 year: 2007 ident: 81883_CR15 publication-title: Neurology doi: 10.1212/01.wnl.0000266562.54684.bf – volume: 18 start-page: 390 year: 2018 ident: 81883_CR43 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.02.006 |
SSID | ssib045319080 ssib045319113 ssib045318930 ssib045319110 ssib045318929 ssib045318928 ssj0000529419 ssib045319075 |
Score | 2.4062374 |
Snippet | To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a... Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2325 |
SubjectTerms | 639/705/117 692/617/375/364 692/617/375/599 Age Aging Article ; Computer science ; Neurodegeneration ; White matter disease Blood Pressure ddc:610 Diabetes mellitus Female Humanities and Social Sciences Humans Hypertension Learning algorithms Machine Learning Magnetic Resonance Imaging Male Medicine Middle Aged multidisciplinary physiology [Aging] physiology [Blood Pressure] physiology [White Matter] physiopathology [Hypertension] Q R Risk assessment Science Science (multidisciplinary) Sleep Social environment Substantia alba White Matter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyI9TnaSgR3GjqZZPJwp2Ipgq680F3I017QucXeIvff95zJzLXX58bNLCbJkDmPnO-Q5DuEPE8lqpRTZryUyGSRkYUIi2EINhWjANAWTBQ_fFQnC_n-tD-9VuoLz4RVeuAquCORjeIAIzyXEYKNCG2MCHOy7lpTRMLVF2LetWSqsnp3VnI73ZJphTm6gMF4m6zjDGKUEUzuRKKRsB_iy7Bc_g5r_npk8qd90zEcHd8htyccSV_X-e-TG3m4S27WypKbe2Qxiz0nOpXUoatCv-OmAf06cmrSsw2yHNcj7OsNrevUK-qhHQ9YZjZVlPhMZ-Lx-2Rx_O7T2xM2VVBgURmxZroHkSvrg42t90X0ostWCq8juGVog4w2GNuniOV6UwtLXRZtUD6XLsk2SfGA7A2rIT8iFBItQEpeZ42Me1L6to8ALbnkMQhtS0P4LE0XJ3pxrHLxxY3b3MK4qgEHGnCjBpxsyIvtmPNKrvHX3m9QSdueSIw9vgBzcZO5uH-ZS0MOQcUwQ3xyo4WwCBEVIjMFcKYhB7Py3eTNF66TBoC0glSsIc-2zeCHuLnih7y6HPt0yM1ooc_DaivbmQrRQyKGH9c7VrTzK7stw_Js5PrWkIArYxvycra3H9P6s6ge_w9RPSG3OnSXlrNOH5C99bfLfAgIbB2ejs52BWZnJ_Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1Ki4zEDawmseMHFwSIqkKCEyvtLXL8aFeCpHS3QvvvO-M4qZZHL3tYO5Ht8cx89ky-IeS1j0764AOrYnRMROFY58AYdp3xUUsAtBEPil-_yZOF-LJslvnCbZ3TKiebmAy1HxzekR_VQgOYkQCH35__Ylg1CqOruYTGbXIHqcswpUst1XzHglEsUZn8rUzJ9dEa_BV-U1ZXDDyV5kzs-KNE2w9epl-t_oU4_06c_CN6mpzS8QNyP6NJ-mEU_0NyK_SPyN2xvuT2MVlMix88zYV16BDpbwwd0J-JWZOebZHreExk32zpaK3eUQvtmGYZWK4rcUon-vEnZHH8-funE5brKDAnNd8w1cDCS2M740prI294HYzgVjlQzq7shDOdNo13WLTXl2DwAi87aUOsvSi94E_JXj_04TmhcNwCvGRVUMi7J4QtGwcAsxKV67gysSDVtJqtyyTjWOviR5uC3Vy3owRakECbJNCKgryZnzkfKTZu7P0RhTT3RHrs9MdwcdpmbWt50LIC7Gkr4eANMEnnEBsHVZc6cl-QQxAxjBB_K604NwgUJeIzCaCmIAeT8Nus0-v2egcW5NXcDNqIIRbbh-Ey9amRodFAn2fjXplHynkDxzF8udrZRTtT2W3pV2eJ8VvBMVxqU5C30367Htb_l2r_5lm8IPdqVISyYrU6IHubi8twCAhr071ManQF7fIguw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7riuBFfNv7kAjeNNjdSefhTQeXRdCTA3sLee4OaI_sziLz761KP2R0Fbz0oVPdpFNVyVddyVeEvIw5yJhiYk3OgYksAvMBJkPvTcxaAqDNGCh--ixPl-LjWXe2R9rpLEzZtF8oLcs0Pe0Oe3MFCw0eBmsbBkuM5kzcIreRuh2teiEX838VzFyJxoznY2qub3h0Zw0qVP2wsvSr1U0o88_Nkr9lTMtCdHKf3BsRJH039PkB2Uv9Q3JnqCm5fUSW04CnSMdiOnSd6Q9MF9BvhU2TXmyR33jYvL7Z0mGGeksdtOPWysTGWhLndKIcf0yWJx--LE7ZWDuBBan5hqkOBlsa502oncu8420ygjsVwCF97UUwXpsuBizUG2uY5BKvvXQpt1HUUfAnZL9f9-kZoRBiAUZyKink2hPC1V0AUNmIJniuTK5IM42mDSOxONa3-GpLgptrO2jAggZs0YAVFXk1P_N9oNX4p_R7VNIsiZTY5cb68tyOJmJ50rIBvOkaEeAN8JEhIB5Oqq115rEix6Bi6CFeG604NwgOJWIyCUCmIkeT8u3ox1e2FRogtIQgrCIv5mbwQEyruD6tr4tMi6yMBmSeDrYy95TzDkIwfLnasaKdT9lt6VcXheVbQegttanI68nefnXr70N18H_ih-Rui45RN6xVR2R_c3mdjgFlbfzz4lY_AeTSHok priority: 102 providerName: Springer Nature |
Title | Associated factors of white matter hyperintensity volume: a machine-learning approach |
URI | https://cir.nii.ac.jp/crid/1873398392606436224 https://link.springer.com/article/10.1038/s41598-021-81883-4 https://www.ncbi.nlm.nih.gov/pubmed/33504924 https://www.proquest.com/docview/2480996182 https://www.proquest.com/docview/2482659592 https://pubmed.ncbi.nlm.nih.gov/PMC7840689 https://doaj.org/article/3e861650a14c4153b0cc0080e7208f3d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwED_tIdC-IN4EtipIfANDHDt-ICHUVZumSpsQUKnfItuxt0ojha0T9L_nnEdRoeNLIsVOZPvufL-L7d8BvKqCE5WvPKEhOMIDd8Q6nAyt1VVQAgFtiIHi6Zk4mfDxtJhuQZ_uqBvA642hXcwnNbm6fPvrx_IjGvyH9si4eneNTigeFMspQfejGOHbsIueSUZDPe3gfsv1nWtOdXd2ZvOre3CXsQJxc87XXFXD6I8OqJ7NNoHRf_dU_rWw2vir4_twrwOa6bDVjAew5euHcKdNPbl8BJNeLr5Ku5w76TykP-OqQvqtId1ML5aRBrnd475Ypu1E9j41WB53YHrSpZw4T3tm8scwOT76OjohXYoF4oRiCyILlInQxmqXGRNYwXKvOTPSod3azHKnrdJF5WI-3yrDudCzzArjQ17xrOLsCezU89o_gxQjMYRSRnoZKfk4N1nhEHtSTp1lUocEaD-apev4x2MajMuyWQdnqmyFUaIwykYYJU_g9eqd7y37xn9rH0YhrWpG5uzmwfzqvOwMsWReCYqw1FDu8AvYSecibPYyz1RgVQIHKGJsYbxSJRnTEUOKCN0E4p0E9nvhl722ljlXiLQFxmoJvFwVo6HG1RdT-_lNUyeP5I0a6zxtdWXV0l7jEpBrWrTWlfWSenbRkIFLjNCF0gm86fXtT7NuH6rntzbhBezl0RwySnK5DzuLqxt_gLhrYQewLadyALvD4fjLGO-HR2efPuPTkRgNmn8Zg8bcfgPyZSmP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBFowEJ7CaxI5jIyFEodWWtiuEulJvbuJHuxJkS3erav8Uv5GZvKrl0VsvOcSOZXte32TsGUJeuWCl886zJATLRBCWlRaUYVlqF5QEQBvQUdwfyeFYfDnMDlfIr-4uDB6r7HRirajd1OI_8o1UKAAzEuDwh9OfDKtGYXS1K6HRsMWuX1yAyzZ7v_MZ6Ps6Tbe3Dj4NWVtVgFmp-JzlGUxD6qLUNi6KwDOeei14kVtg1TIuhdWl0pmzWMLWxSD-nselLHxInYid4DDuDbIqOLgyA7K6uTX6-q3_q4NxM5Ho9nZOzNXGDCwk3mJLEwa2UXEmlixgXSgA7Fo1mfwL4_59VPOPeG1tBrfvkjstfqUfG4a7R1Z8dZ_cbCpaLh6QcUdu72hbyodOA73AYAX9UefypCcLzK7cHJ2fL2ijH9_RAtrxYKdnbSWLY9olPH9Ixteyx4_IoJpW_gmh4OABQityn2OmPyGKOLMAaROR2JLnOkQk6XbT2DatOVbX-G7q8DpXpqGAAQqYmgJGRORN_81pk9Tjyt6bSKS-Jybkrl9Mz45NK9-GeyUTQLtFIiyMAIu0FtG4z9NYBe4isg4khhniM1E55xqhqUREKAFGRWStI75ptcjMXPJ8RF72zSD_GNQpKj89r_ukmBNSQ5_HDa_0M-U8AwcQB8-XuGhpKcst1eSkzjGeg-MvlY7I247fLqf1_616evUqXpBbw4P9PbO3M9p9Rm6nKBRxwtJ8jQzmZ-d-HfDdvHzeChUlR9ctx78B-kFgRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2gBSPBCayNYye2kRACyqqlUHFgpb25iR_tSjTbdreq9q_x65jJY6vl0VsvOcSOZXtenzPjGUJe-ugKH3xgPEbHZJSOVQ6UYVUZH3UBgDbiQfHbXrE9kl_G-XiN_OrvwmBYZa8TG0Xtpw7_kQ8yqQHMFACHB7ELi_i-NXx_fMKwghR6WvtyGi2L7IbFORzfZu92toDWr7Js-PnHp23WVRhgrtBizlQOUypMWRmXlmUUuciCkaJUDti2SivpTKVN7h2Ws_UpqIIg0qooQ8y8TL0UMO41cl2JnKOMqbFa_t9BD5rkprunkwo9mIGtxPtsGWdgJbVgcsUWNiUDwMLVk8m_0O7fQZt_eG4bgzi8Q253SJZ-aFnvLlkL9T1yo61tubhPRj3hg6ddUR86jfQc3Rb0qMnqSQ8XmGe5DaKfL2irKd_SEtoxxDOwrqbFAe1Tnz8goyvZ4YdkvZ7W4TGhcNQDrFaqoDDnn5RlmjsAt1xyVwllYkJ4v5vWdQnOsc7GT9s42oW2LQUsUMA2FLAyIa-X3xy36T0u7f0RibTsiam5mxfT0wPbSboVQRcccG_JpYMRYJHOIS4PKkt1FD4hm0BimCE-uVZCGASpBWLDAgBVQjZ64ttOn8zsBfcn5MWyGTQBunfKOkzPmj4ZZoc00OdRyyvLmQqRw1EQB1crXLSylNWWenLYZBtXGjCfNgl50_PbxbT-v1VPLl_Fc3ITpNd-3dnbfUpuZSgTKWeZ2iDr89OzsAlAb149aySKkv2rFuHfmkZjFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Associated+factors+of+white+matter+hyperintensity+volume%3A+a+machine-learning+approach&rft.jtitle=Scientific+reports&rft.au=Grosu%2C+Sergio&rft.au=Rospleszcz%2C+Susanne&rft.au=Hartmann%2C+Felix&rft.au=Habes%2C+Mohamad&rft.date=2021-01-27&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=2325&rft_id=info:doi/10.1038%2Fs41598-021-81883-4&rft_id=info%3Apmid%2F33504924&rft.externalDocID=33504924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |