Associated factors of white matter hyperintensity volume: a machine-learning approach

To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR)....

Full description

Saved in:
Bibliographic Details
Published inScientific Reports Vol. 11; no. 1; pp. 2325 - 12
Main Authors Grosu, Sergio, Rospleszcz, Susanne, Hartmann, Felix, Habes, Mohamad, Bamberg, Fabian, Schlett, Christopher L., Galie, Franziska, Lorbeer, Roberto, Auweter, Sigrid, Selder, Sonja, Buelow, Robin, Heier, Margit, Rathmann, Wolfgang, Mueller-Peltzer, Katharina, Ladwig, Karl-Heinz, Grabe, Hans J., Peters, Annette, Ertl-Wagner, Birgit B., Stoecklein, Sophia
Format Journal Article
LanguageEnglish
Published London Springer Science and Business Media LLC 27.01.2021
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
AbstractList To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
ArticleNumber 2325
Author Mohamad Habes
Sonja Selder
Sergio Grosu
Sigrid Auweter
Felix Hartmann
Christopher L. Schlett
Margit Heier
Sophia Stoecklein
Robin Buelow
Franziska Galiè
Birgit Ertl-Wagner
Roberto Lorbeer
Karl-Heinz Ladwig
Hans J. Grabe
Wolfgang Rathmann
Katharina Mueller-Peltzer
Annette Peters
Fabian Bamberg
Susanne Rospleszcz
Author_xml – sequence: 1
  givenname: Sergio
  surname: Grosu
  fullname: Grosu, Sergio
  email: Sergio.Grosu@med.uni-muenchen.de
  organization: Department of Radiology, University Hospital, LMU Munich
– sequence: 2
  givenname: Susanne
  surname: Rospleszcz
  fullname: Rospleszcz, Susanne
  organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Chair of Epidemiology, Ludwig-Maximilians-University München
– sequence: 3
  givenname: Felix
  surname: Hartmann
  fullname: Hartmann, Felix
  organization: Department of Radiology, University Hospital, LMU Munich
– sequence: 4
  givenname: Mohamad
  surname: Habes
  fullname: Habes, Mohamad
  organization: Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center At San Antonio, Department of Radiology and Penn Memory Center, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Institute of Community Medicine and Department of Psychiatry, University of Greifswald
– sequence: 5
  givenname: Fabian
  surname: Bamberg
  fullname: Bamberg, Fabian
  organization: Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg
– sequence: 6
  givenname: Christopher L.
  surname: Schlett
  fullname: Schlett, Christopher L.
  organization: Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg
– sequence: 7
  givenname: Franziska
  surname: Galie
  fullname: Galie, Franziska
  organization: Department of Radiology, University Hospital, LMU Munich
– sequence: 8
  givenname: Roberto
  surname: Lorbeer
  fullname: Lorbeer, Roberto
  organization: Department of Radiology, University Hospital, LMU Munich
– sequence: 9
  givenname: Sigrid
  surname: Auweter
  fullname: Auweter, Sigrid
  organization: Department of Radiology, University Hospital, LMU Munich
– sequence: 10
  givenname: Sonja
  surname: Selder
  fullname: Selder, Sonja
  organization: Department of Radiology, University Hospital, LMU Munich
– sequence: 11
  givenname: Robin
  surname: Buelow
  fullname: Buelow, Robin
  organization: Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald
– sequence: 12
  givenname: Margit
  surname: Heier
  fullname: Heier, Margit
  organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, KORA Study Centre, University Hospital of Augsburg
– sequence: 13
  givenname: Wolfgang
  surname: Rathmann
  fullname: Rathmann, Wolfgang
  organization: Institute for Biometrics and Epidemiology, German Diabetes Center, German Center for Diabetes Research (DZD)
– sequence: 14
  givenname: Katharina
  surname: Mueller-Peltzer
  fullname: Mueller-Peltzer, Katharina
  organization: Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg
– sequence: 15
  givenname: Karl-Heinz
  surname: Ladwig
  fullname: Ladwig, Karl-Heinz
  organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts Der Isar, Technical University Munich
– sequence: 16
  givenname: Hans J.
  surname: Grabe
  fullname: Grabe, Hans J.
  organization: Institute of Community Medicine and Department of Psychiatry, University of Greifswald, Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald, German Center for Neurodegenerative Diseases (DZNE)
– sequence: 17
  givenname: Annette
  surname: Peters
  fullname: Peters, Annette
  organization: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, German Centre for Cardiovascular Research (DZHK E.V.), Chair of Epidemiology, Ludwig-Maximilians-University München
– sequence: 18
  givenname: Birgit B.
  surname: Ertl-Wagner
  fullname: Ertl-Wagner, Birgit B.
  organization: Department of Radiology, University Hospital, LMU Munich, Department of Radiology, The Hospital for Sick Children, University of Toronto
– sequence: 19
  givenname: Sophia
  surname: Stoecklein
  fullname: Stoecklein, Sophia
  email: Sophia.Stoecklein@med.uni-muenchen.de
  organization: Department of Radiology, University Hospital, LMU Munich
BackLink https://cir.nii.ac.jp/crid/1873398392606436224$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/33504924$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARLaU_wAJFggWbgF9xbBaVqopHpUps6Npy7JN7XSX2xXaK7t_jNC20XXTjxzkzo_HxvK4OfPBQVW8x-oQRFZ8Tw60UDSK4EVgI2rAX1RFBrG0IJeTgwfmwOknJ9eVKsUQCvaoOKW0Rk4QdVVdnKQXjdAZbD9rkEFMdhvrP1mWoJ50zxHq730F0PoNPLu_rmzDOE3ypdembrfPQjKCjd35T690uhlJ8U70c9Jjg5G4_rq6-ff11_qO5_Pn94vzssjFc0Nx0bS8tl7qXBmk90JYSkIzqznSS9qhnRvZCttawFnOLrAWgqOcaBmIZsoweVxerrg36Wu2im3Tcq6Cdui2EuFE6ZmdGUBQEx7xFGjNTRlfkjUFlGtARJAZqi9bpqrWb-wmsAZ-jHh-JPu54t1WbcKM6wRAXsgh8vBOI4fcMKavJJQPjqD2EOSnCBOGtbCUp0PdPoNdhjr6MakEhKTkWC-rdQ0f_rNz_XgGIFWBiSCnCoIzLOruwGHSjwkgtWVFrVlTJirrNilqo5An1Xv1ZEl1JqYD9BuJ_28-yPqws71wxuKxYdJRKQSXhiDPKSXnMX8hK24o
CitedBy_id crossref_primary_10_1161_STROKEAHA_122_038561
crossref_primary_10_3389_fnins_2021_747569
crossref_primary_10_1136_bmjdrc_2020_002050
crossref_primary_10_3389_fneur_2021_633619
crossref_primary_10_3390_children10020206
crossref_primary_10_1007_s10278_024_01372_8
crossref_primary_10_1016_j_biopsych_2023_07_023
crossref_primary_10_1016_j_clinph_2023_09_006
crossref_primary_10_1038_s41598_022_17837_1
crossref_primary_10_1016_j_mri_2024_110213
crossref_primary_10_1038_s41598_024_61102_6
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106479
crossref_primary_10_1002_dad2_12567
crossref_primary_10_1002_hbm_26568
crossref_primary_10_2174_1567202620666230522153438
crossref_primary_10_1016_j_neurobiolaging_2021_08_014
crossref_primary_10_1093_braincomms_fcae365
Cites_doi 10.1111/jgs.15240
10.1007/s12603-017-0959-3
10.1002/gps.4644
10.2337/dc18-1132
10.1097/RLI.0b013e31819a60d3
10.2337/dc09-1923
10.1111/ggi.13767
10.3174/ajnr.A4805
10.1111/j.1467-9868.2005.00503.x
10.1097/01.psy.0000237779.56500.af
10.5551/jat.48553
10.1093/ije/dyv341
10.1212/01.wnl.0000266562.54684.bf
10.1038/s41598-020-65040-x
10.1002/bimj.201400143
10.2337/db16-0630
10.1136/bmj.c3666
10.1093/ajcn/80.4.992
10.1111/j.1530-0277.2008.00828.x
10.1093/brain/aww008
10.2147/JPR.S158488
10.1055/s-2005-858235
10.1016/j.neurobiolaging.2016.03.011
10.1161/01.STR.0000221308.94473.14
10.1161/01.STR.27.8.1274
10.1161/circulationaha.110.961052
10.1016/j.neurobiolaging.2019.02.030
10.1159/000369777
10.1148/radiol.2371041496
10.1212/01.wnl.0000305959.46197.e6
10.1159/000049146
10.1016/s1474-4422(13)70124-8
10.1007/s00127-017-1339-3
10.1016/j.neuroimage.2006.01.015
10.1136/postgradmedj-2011-130307
10.1161/circulationaha.104.501163
10.1016/0021-9681(67)90034-3
10.1016/j.nicl.2018.02.006
10.1212/wnl.0000000000003687
10.2337/dc17-1185
10.1016/j.jalz.2018.06.3060
10.1093/ije/dyp394
10.1016/j.dadm.2018.02.002
10.1212/wnl.0000000000000312
10.1212/WNL.43.9.1683
10.1001/jama.288.1.67
10.1161/01.STR.28.3.652
10.1161/STROKEAHA.115.008941
10.1111/j.1365-2990.2007.00828.x
10.1161/strokeaha.119.025139
10.1212/wnl.0000000000007654
10.1016/j.jpsychires.2014.05.005
10.1016/j.neuroimage.2015.09.071
10.1001/jamanetworkopen.2020.0121
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-81883-4
DatabaseName CiNii Complete
Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_3e861650a14c4153b0cc0080e7208f3d
PMC7840689
33504924
10_1038_s41598_021_81883_4
Genre Journal Article
GrantInformation_xml – fundername: Siemens Healthineers
  funderid: http://dx.doi.org/10.13039/501100011699
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 245222810
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Projekt DEAL
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 245222810
– fundername: ;
– fundername: ;
  grantid: 245222810
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
RYH
SNYQT
UKHRP
3V.
88A
ACSMW
AJTQC
M0L
AAYXX
CITATION
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c683t-75b9d69ab9c0aaf3532e943a7c793b0b4c9b895dc4516d0ddee30b6aef2d40d43
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:20:36 EDT 2025
Thu Aug 21 14:14:06 EDT 2025
Fri Jul 11 11:32:45 EDT 2025
Wed Aug 13 09:12:59 EDT 2025
Thu Jan 02 22:58:46 EST 2025
Thu Apr 24 22:59:39 EDT 2025
Tue Jul 01 01:07:20 EDT 2025
Fri Feb 21 02:39:05 EST 2025
Thu Jun 26 22:01:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c683t-75b9d69ab9c0aaf3532e943a7c793b0b4c9b895dc4516d0ddee30b6aef2d40d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4788-2341
0000-0002-9093-6499
0000-0003-0325-4674
0000-0002-7896-7049
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-81883-4
PMID 33504924
PQID 2480996182
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_3e861650a14c4153b0cc0080e7208f3d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7840689
proquest_miscellaneous_2482659592
proquest_journals_2480996182
pubmed_primary_33504924
crossref_citationtrail_10_1038_s41598_021_81883_4
crossref_primary_10_1038_s41598_021_81883_4
springer_journals_10_1038_s41598_021_81883_4
nii_cinii_1873398392606436224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-27
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific Reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Springer Science and Business Media LLC
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Springer Science and Business Media LLC
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Georgakis, Chatzopoulou, Tsivgoulis, Petridou (CR19) 2018; 66
Moon (CR49) 2018; 22
Zou, Hastie (CR22) 2005; 67
Holle, Happich, Löwel, Wichmann, Group (CR24) 2005; 67
Yushkevich (CR29) 2006; 31
McEvoy (CR43) 2018; 18
Makin, Cook, Dennis, Wardlaw (CR20) 2015; 39
Wang, Leonards, Sterzer, Ebinger (CR36) 2014; 56
de Bresser (CR41) 2010; 33
van Agtmaal (CR14) 2018; 41
Curtze (CR33) 2015; 46
Judea, Glymour, Jewell (CR55) 2016
Fernando (CR10) 2006; 37
Dufouil (CR9) 2005; 112
Barkhof, Scheltens (CR38) 2002; 13
Clark, Chapman, Coulson (CR42) 1967; 20
Vandenbroucke, Broadbent, Pearce (CR56) 2016; 45
Habes (CR31) 2018; 10
Baezner (CR37) 2008; 70
Domènech-Abella (CR51) 2017; 52
Habes (CR30) 2016; 37
Caunca (CR7) 2020; 51
Marseglia (CR13) 2019; 15
Murray (CR40) 2005; 237
Wang, Ma, Wang (CR32) 2015; 57
Venkatraman (CR50) 2019
Park (CR15) 2007; 69
Habes (CR3) 2016; 139
Sexton (CR48) 2016; 131
Galiè (CR23) 2020; 10
Johnson (CR52) 2017; 32
Backhouse, McHutchison, Cvoro, Shenkin, Wardlaw (CR53) 2017; 88
Anstey (CR44) 2006; 68
Simpson (CR6) 2007; 33
Longstreth (CR35) 1996; 27
Biddle (CR54) 2020; 3
Pantoni, Garcia (CR5) 1997; 28
Schneider (CR12) 2017; 40
Fazekas (CR4) 1993; 43
Todate (CR16) 2019; 26
Wardlaw (CR28) 2013; 12
Weckbach (CR39) 2009; 44
Wong (CR2) 2002; 288
Bamberg (CR26) 2017; 66
Collins (CR45) 2009; 33
CR27
Völzke (CR25) 2011; 40
Debette, Markus (CR34) 2010; 341
Binnekade (CR47) 2019; 12
Hirao (CR18) 2019; 19
Wardlaw (CR21) 2014; 82
Godin, Tzourio, Maillard, Mazoyer, Dufouil (CR8) 2011; 123
den Heijer (CR46) 2004; 80
Cannistraro (CR11) 2019; 92
Grueter, Schulz (CR1) 2012; 88
Dickie (CR17) 2016; 42
MR Caunca (81883_CR7) 2020; 51
TY Wong (81883_CR2) 2002; 288
JE Simpson (81883_CR6) 2007; 33
VA Clark (81883_CR42) 1967; 20
F Fazekas (81883_CR4) 1993; 43
L Pantoni (81883_CR5) 1997; 28
K Park (81883_CR15) 2007; 69
M Habes (81883_CR3) 2016; 139
RJ Cannistraro (81883_CR11) 2019; 92
EV Backhouse (81883_CR53) 2017; 88
S Weckbach (81883_CR39) 2009; 44
Z Wang (81883_CR32) 2015; 57
MS Fernando (81883_CR10) 2006; 37
Y Todate (81883_CR16) 2019; 26
M Habes (81883_CR31) 2018; 10
O Godin (81883_CR8) 2011; 123
BE Grueter (81883_CR1) 2012; 88
H Baezner (81883_CR37) 2008; 70
CE Sexton (81883_CR48) 2016; 131
JP Vandenbroucke (81883_CR56) 2016; 45
MA Collins (81883_CR45) 2009; 33
MK Georgakis (81883_CR19) 2018; 66
TT Binnekade (81883_CR47) 2019; 12
K Hirao (81883_CR18) 2019; 19
R Holle (81883_CR24) 2005; 67
P Judea (81883_CR55) 2016
A Marseglia (81883_CR13) 2019; 15
JM Wardlaw (81883_CR21) 2014; 82
H Zou (81883_CR22) 2005; 67
SD Makin (81883_CR20) 2015; 39
F Bamberg (81883_CR26) 2017; 66
T den Heijer (81883_CR46) 2004; 80
AD Johnson (81883_CR52) 2017; 32
J Domènech-Abella (81883_CR51) 2017; 52
C Dufouil (81883_CR9) 2005; 112
F Barkhof (81883_CR38) 2002; 13
M Habes (81883_CR30) 2016; 37
81883_CR27
VK Venkatraman (81883_CR50) 2019
DA Dickie (81883_CR17) 2016; 42
ALC Schneider (81883_CR12) 2017; 40
JM Wardlaw (81883_CR28) 2013; 12
PA Yushkevich (81883_CR29) 2006; 31
MJM van Agtmaal (81883_CR14) 2018; 41
KD Biddle (81883_CR54) 2020; 3
H Völzke (81883_CR25) 2011; 40
KJ Anstey (81883_CR44) 2006; 68
SY Moon (81883_CR49) 2018; 22
AD Murray (81883_CR40) 2005; 237
WT Longstreth (81883_CR35) 1996; 27
F Galiè (81883_CR23) 2020; 10
LK McEvoy (81883_CR43) 2018; 18
L Wang (81883_CR36) 2014; 56
J de Bresser (81883_CR41) 2010; 33
S Debette (81883_CR34) 2010; 341
S Curtze (81883_CR33) 2015; 46
References_xml – volume: 66
  start-page: 509
  year: 2018
  end-page: 517
  ident: CR19
  article-title: Albuminuria and cerebral small vessel disease: A systematic review and meta-analysis
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.15240
– volume: 22
  start-page: 425
  year: 2018
  end-page: 430
  ident: CR49
  article-title: Physical activity and changes in white matter hyperintensities over three years
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-017-0959-3
– volume: 32
  start-page: e10
  year: 2017
  end-page: e17
  ident: CR52
  article-title: Effects of stressful life events on cerebral white matter hyperintensity progression
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.4644
– volume: 41
  start-page: 2535
  year: 2018
  end-page: 2543
  ident: CR14
  article-title: Prediabetes is associated with structural brain abnormalities: The Maastricht study
  publication-title: Diabetes Care
  doi: 10.2337/dc18-1132
– volume: 44
  start-page: 242
  year: 2009
  end-page: 250
  ident: CR39
  article-title: Systemic cardiovascular complications in patients with long-standing diabetes mellitus: Comprehensive assessment with whole-body magnetic resonance imaging/magnetic resonance angiography
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0b013e31819a60d3
– volume: 33
  start-page: 1309
  year: 2010
  end-page: 1314
  ident: CR41
  article-title: Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes
  publication-title: Diabet. Care
  doi: 10.2337/dc09-1923
– year: 2016
  ident: CR55
  publication-title: Causal Inference in Statistics: A Primer
– volume: 19
  start-page: 1036
  year: 2019
  end-page: 1040
  ident: CR18
  article-title: Association of serum cystatin C with white matter abnormalities in patients with amnestic mild cognitive impairment
  publication-title: Geriatr. Gerontol. Int.
  doi: 10.1111/ggi.13767
– volume: 37
  start-page: 1636
  year: 2016
  end-page: 1642
  ident: CR30
  article-title: Relationship between APOE genotype and structural MRI measures throughout adulthood in the study of health in pomerania population-based cohort
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4805
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  end-page: 320
  ident: CR22
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 68
  start-page: 778
  year: 2006
  end-page: 785
  ident: CR44
  article-title: Weekly alcohol consumption, brain atrophy, and white matter hyperintensities in a community-based sample aged 60 to 64 years
  publication-title: Psychosom. Med.
  doi: 10.1097/01.psy.0000237779.56500.af
– volume: 26
  start-page: 1045
  year: 2019
  end-page: 1053
  ident: CR16
  article-title: High prevalence of cerebral small vessel disease on 7T magnetic resonance imaging in familial hypercholesterolemia
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.48553
– volume: 45
  start-page: 1776
  year: 2016
  end-page: 1786
  ident: CR56
  article-title: Causality and causal inference in epidemiology: The need for a pluralistic approach
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyv341
– volume: 69
  start-page: 974
  year: 2007
  end-page: 978
  ident: CR15
  article-title: Significant association between leukoaraiosis and metabolic syndrome in healthy subjects
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000266562.54684.bf
– volume: 10
  start-page: 8363
  year: 2020
  ident: CR23
  article-title: Machine-learning based exploration of determinants of gray matter volume in the KORA-MRI study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65040-x
– volume: 57
  start-page: 867
  year: 2015
  end-page: 884
  ident: CR32
  article-title: Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany
  publication-title: Biom. J.
  doi: 10.1002/bimj.201400143
– volume: 66
  start-page: 158
  year: 2017
  end-page: 169
  ident: CR26
  article-title: Subclinical disease burden as assessed by whole-body mri in subjects with prediabetes, subjects with diabetes, and normal control subjects from the general population: The KORA-MRI study
  publication-title: Diabetes
  doi: 10.2337/db16-0630
– volume: 341
  start-page: c3666
  year: 2010
  ident: CR34
  article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis
  publication-title: BMJ
  doi: 10.1136/bmj.c3666
– volume: 80
  start-page: 992
  year: 2004
  end-page: 997
  ident: CR46
  article-title: Alcohol intake in relation to brain magnetic resonance imaging findings in older persons without dementia
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/80.4.992
– volume: 33
  start-page: 206
  year: 2009
  end-page: 219
  ident: CR45
  article-title: Alcohol in moderation, cardioprotection, and neuroprotection: Epidemiological considerations and mechanistic studies
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/j.1530-0277.2008.00828.x
– volume: 139
  start-page: 1164
  year: 2016
  end-page: 1179
  ident: CR3
  article-title: White matter hyperintensities and imaging patterns of brain ageing in the general population
  publication-title: Brain
  doi: 10.1093/brain/aww008
– volume: 12
  start-page: 1621
  year: 2019
  end-page: 1629
  ident: CR47
  article-title: White matter hyperintensities are related to pain intensity in an outpatient memory clinic population: Preliminary findings
  publication-title: J. Pain Res.
  doi: 10.2147/JPR.S158488
– volume: 67
  start-page: S19
  issue: Suppl 1
  year: 2005
  end-page: 25
  ident: CR24
  article-title: KORA—a research platform for population based health research
  publication-title: Gesundheitswesen
  doi: 10.1055/s-2005-858235
– volume: 42
  start-page: 116
  year: 2016
  end-page: 123
  ident: CR17
  article-title: Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.03.011
– volume: 37
  start-page: 1391
  year: 2006
  end-page: 1398
  ident: CR10
  article-title: White matter lesions in an unselected cohort of the elderly: Molecular pathology suggests origin from chronic hypoperfusion injury
  publication-title: Stroke
  doi: 10.1161/01.STR.0000221308.94473.14
– volume: 27
  start-page: 1274
  year: 1996
  end-page: 1282
  ident: CR35
  article-title: Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study
  publication-title: Stroke
  doi: 10.1161/01.STR.27.8.1274
– volume: 123
  start-page: 266
  year: 2011
  end-page: 273
  ident: CR8
  article-title: Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: The three-city (3C)-Dijon magnetic resonance imaging study
  publication-title: Circulation
  doi: 10.1161/circulationaha.110.961052
– year: 2019
  ident: CR50
  article-title: Effect of a 24-month physical activity program on brain changes in older adults at risk of Alzheimer's disease: The AIBL active trial
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2019.02.030
– volume: 39
  start-page: 39
  year: 2015
  end-page: 52
  ident: CR20
  article-title: Cerebral small vessel disease and renal function: Systematic review and meta-analysis
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000369777
– volume: 237
  start-page: 251
  year: 2005
  end-page: 257
  ident: CR40
  article-title: Brain white matter hyperintensities: Relative importance of vascular risk factors in nondemented elderly people
  publication-title: Radiology
  doi: 10.1148/radiol.2371041496
– volume: 70
  start-page: 935
  year: 2008
  end-page: 942
  ident: CR37
  article-title: Association of gait and balance disorders with age-related white matter changes: The LADIS study
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000305959.46197.e6
– volume: 13
  start-page: 21
  issue: Suppl 2
  year: 2002
  end-page: 30
  ident: CR38
  article-title: Imaging of white matter lesions
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000049146
– volume: 12
  start-page: 822
  year: 2013
  end-page: 838
  ident: CR28
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
  doi: 10.1016/s1474-4422(13)70124-8
– volume: 52
  start-page: 381
  year: 2017
  end-page: 390
  ident: CR51
  article-title: Loneliness and depression in the elderly: The role of social network
  publication-title: Soc. Psychiatry Psychiatr. Epidemiol.
  doi: 10.1007/s00127-017-1339-3
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: CR29
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 88
  start-page: 79
  year: 2012
  end-page: 87
  ident: CR1
  article-title: Age-related cerebral white matter disease (leukoaraiosis): A review
  publication-title: Postgrad. Med. J.
  doi: 10.1136/postgradmedj-2011-130307
– volume: 112
  start-page: 1644
  year: 2005
  end-page: 1650
  ident: CR9
  article-title: Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: The PROGRESS (perindopril protection against recurrent stroke study) magnetic resonance imaging substudy
  publication-title: Circulation
  doi: 10.1161/circulationaha.104.501163
– volume: 20
  start-page: 571
  year: 1967
  end-page: 581
  ident: CR42
  article-title: Effects of various factors on systolic and diastolic blood pressure in the Los Angeles heart study
  publication-title: J. Chron. Dis.
  doi: 10.1016/0021-9681(67)90034-3
– volume: 18
  start-page: 390
  year: 2018
  end-page: 398
  ident: CR43
  article-title: Alcohol intake and brain white matter in middle aged men: Microscopic and macroscopic differences
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.02.006
– ident: CR27
– volume: 88
  start-page: 976
  year: 2017
  end-page: 984
  ident: CR53
  article-title: Early life risk factors for cerebrovascular disease: A systematic review and meta-analysis
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000003687
– volume: 40
  start-page: 1514
  year: 2017
  end-page: 1521
  ident: CR12
  article-title: Diabetes, prediabetes, and brain volumes and subclinical cerebrovascular disease on MRI: The atherosclerosis risk in communities neurocognitive study (ARIC-NCS)
  publication-title: Diabetes Care
  doi: 10.2337/dc17-1185
– volume: 15
  start-page: 25
  year: 2019
  end-page: 33
  ident: CR13
  article-title: Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: A population-based cohort study
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.06.3060
– volume: 40
  start-page: 294
  year: 2011
  end-page: 307
  ident: CR25
  article-title: Cohort profile: The study of health in Pomerania
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyp394
– volume: 10
  start-page: 278
  year: 2018
  end-page: 284
  ident: CR31
  article-title: Regional tract-specific white matter hyperintensities are associated with patterns to aging-related brain atrophy via vascular risk factors, but also independently
  publication-title: Alzheimers Dement (Amst)
  doi: 10.1016/j.dadm.2018.02.002
– volume: 82
  start-page: 1331
  year: 2014
  end-page: 1338
  ident: CR21
  article-title: Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000000312
– volume: 43
  start-page: 1683
  year: 1993
  end-page: 1689
  ident: CR4
  article-title: Pathologic correlates of incidental MRI white matter signal hyperintensities
  publication-title: Neurology
  doi: 10.1212/WNL.43.9.1683
– volume: 288
  start-page: 67
  year: 2002
  end-page: 74
  ident: CR2
  article-title: Cerebral white matter lesions, retinopathy, and incident clinical stroke
  publication-title: JAMA
  doi: 10.1001/jama.288.1.67
– volume: 28
  start-page: 652
  year: 1997
  end-page: 659
  ident: CR5
  article-title: Pathogenesis of leukoaraiosis: A review
  publication-title: Stroke
  doi: 10.1161/01.STR.28.3.652
– volume: 46
  start-page: 1554
  year: 2015
  end-page: 1560
  ident: CR33
  article-title: Cerebral computed tomography-graded white matter lesions are associated with worse outcome after thrombolysis in patients with stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.008941
– volume: 33
  start-page: 410
  year: 2007
  end-page: 419
  ident: CR6
  article-title: White matter lesions in an unselected cohort of the elderly: Astrocytic, microglial and oligodendrocyte precursor cell responses
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.2007.00828.x
– volume: 51
  start-page: 372
  year: 2020
  end-page: 378
  ident: CR7
  article-title: Diastolic blood pressure is associated with regional white matter lesion load: The Northern Manhattan study
  publication-title: Stroke
  doi: 10.1161/strokeaha.119.025139
– volume: 92
  start-page: 1146
  year: 2019
  end-page: 1156
  ident: CR11
  article-title: CNS small vessel disease: A clinical review
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000007654
– volume: 56
  start-page: 56
  year: 2014
  end-page: 64
  ident: CR36
  article-title: White matter lesions and depression: A systematic review and meta-analysis
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2014.05.005
– volume: 131
  start-page: 81
  year: 2016
  end-page: 90
  ident: CR48
  article-title: A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.071
– volume: 3
  start-page: e200121
  year: 2020
  ident: CR54
  article-title: Associations of widowhood and beta-amyloid with cognitive decline in cognitively unimpaired older adults
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.0121
– volume: 33
  start-page: 1309
  year: 2010
  ident: 81883_CR41
  publication-title: Diabet. Care
  doi: 10.2337/dc09-1923
– volume: 39
  start-page: 39
  year: 2015
  ident: 81883_CR20
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000369777
– volume: 123
  start-page: 266
  year: 2011
  ident: 81883_CR8
  publication-title: Circulation
  doi: 10.1161/circulationaha.110.961052
– volume: 3
  start-page: e200121
  year: 2020
  ident: 81883_CR54
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.0121
– ident: 81883_CR27
– volume: 28
  start-page: 652
  year: 1997
  ident: 81883_CR5
  publication-title: Stroke
  doi: 10.1161/01.STR.28.3.652
– volume: 66
  start-page: 158
  year: 2017
  ident: 81883_CR26
  publication-title: Diabetes
  doi: 10.2337/db16-0630
– volume: 237
  start-page: 251
  year: 2005
  ident: 81883_CR40
  publication-title: Radiology
  doi: 10.1148/radiol.2371041496
– volume: 42
  start-page: 116
  year: 2016
  ident: 81883_CR17
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.03.011
– volume: 82
  start-page: 1331
  year: 2014
  ident: 81883_CR21
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000000312
– volume: 112
  start-page: 1644
  year: 2005
  ident: 81883_CR9
  publication-title: Circulation
  doi: 10.1161/circulationaha.104.501163
– volume: 88
  start-page: 976
  year: 2017
  ident: 81883_CR53
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000003687
– volume: 68
  start-page: 778
  year: 2006
  ident: 81883_CR44
  publication-title: Psychosom. Med.
  doi: 10.1097/01.psy.0000237779.56500.af
– volume: 41
  start-page: 2535
  year: 2018
  ident: 81883_CR14
  publication-title: Diabetes Care
  doi: 10.2337/dc18-1132
– volume: 43
  start-page: 1683
  year: 1993
  ident: 81883_CR4
  publication-title: Neurology
  doi: 10.1212/WNL.43.9.1683
– volume: 26
  start-page: 1045
  year: 2019
  ident: 81883_CR16
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.48553
– volume: 33
  start-page: 410
  year: 2007
  ident: 81883_CR6
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.2007.00828.x
– volume: 37
  start-page: 1636
  year: 2016
  ident: 81883_CR30
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4805
– volume: 131
  start-page: 81
  year: 2016
  ident: 81883_CR48
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.071
– volume: 92
  start-page: 1146
  year: 2019
  ident: 81883_CR11
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000007654
– volume: 27
  start-page: 1274
  year: 1996
  ident: 81883_CR35
  publication-title: Stroke
  doi: 10.1161/01.STR.27.8.1274
– volume: 66
  start-page: 509
  year: 2018
  ident: 81883_CR19
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.15240
– volume: 12
  start-page: 822
  year: 2013
  ident: 81883_CR28
  publication-title: Lancet Neurol.
  doi: 10.1016/s1474-4422(13)70124-8
– volume: 57
  start-page: 867
  year: 2015
  ident: 81883_CR32
  publication-title: Biom. J.
  doi: 10.1002/bimj.201400143
– volume: 10
  start-page: 278
  year: 2018
  ident: 81883_CR31
  publication-title: Alzheimers Dement (Amst)
  doi: 10.1016/j.dadm.2018.02.002
– volume: 45
  start-page: 1776
  year: 2016
  ident: 81883_CR56
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyv341
– volume: 139
  start-page: 1164
  year: 2016
  ident: 81883_CR3
  publication-title: Brain
  doi: 10.1093/brain/aww008
– volume: 341
  start-page: c3666
  year: 2010
  ident: 81883_CR34
  publication-title: BMJ
  doi: 10.1136/bmj.c3666
– volume: 31
  start-page: 1116
  year: 2006
  ident: 81883_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 40
  start-page: 1514
  year: 2017
  ident: 81883_CR12
  publication-title: Diabetes Care
  doi: 10.2337/dc17-1185
– volume: 56
  start-page: 56
  year: 2014
  ident: 81883_CR36
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2014.05.005
– volume: 20
  start-page: 571
  year: 1967
  ident: 81883_CR42
  publication-title: J. Chron. Dis.
  doi: 10.1016/0021-9681(67)90034-3
– volume: 32
  start-page: e10
  year: 2017
  ident: 81883_CR52
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.4644
– volume: 88
  start-page: 79
  year: 2012
  ident: 81883_CR1
  publication-title: Postgrad. Med. J.
  doi: 10.1136/postgradmedj-2011-130307
– volume: 44
  start-page: 242
  year: 2009
  ident: 81883_CR39
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0b013e31819a60d3
– volume: 10
  start-page: 8363
  year: 2020
  ident: 81883_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65040-x
– volume: 37
  start-page: 1391
  year: 2006
  ident: 81883_CR10
  publication-title: Stroke
  doi: 10.1161/01.STR.0000221308.94473.14
– volume: 19
  start-page: 1036
  year: 2019
  ident: 81883_CR18
  publication-title: Geriatr. Gerontol. Int.
  doi: 10.1111/ggi.13767
– volume: 22
  start-page: 425
  year: 2018
  ident: 81883_CR49
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-017-0959-3
– volume: 46
  start-page: 1554
  year: 2015
  ident: 81883_CR33
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.008941
– volume: 40
  start-page: 294
  year: 2011
  ident: 81883_CR25
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyp394
– volume: 33
  start-page: 206
  year: 2009
  ident: 81883_CR45
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/j.1530-0277.2008.00828.x
– volume: 80
  start-page: 992
  year: 2004
  ident: 81883_CR46
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/80.4.992
– volume: 70
  start-page: 935
  year: 2008
  ident: 81883_CR37
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000305959.46197.e6
– volume: 67
  start-page: S19
  issue: Suppl 1
  year: 2005
  ident: 81883_CR24
  publication-title: Gesundheitswesen
  doi: 10.1055/s-2005-858235
– volume: 12
  start-page: 1621
  year: 2019
  ident: 81883_CR47
  publication-title: J. Pain Res.
  doi: 10.2147/JPR.S158488
– volume-title: Causal Inference in Statistics: A Primer
  year: 2016
  ident: 81883_CR55
– volume: 51
  start-page: 372
  year: 2020
  ident: 81883_CR7
  publication-title: Stroke
  doi: 10.1161/strokeaha.119.025139
– volume: 288
  start-page: 67
  year: 2002
  ident: 81883_CR2
  publication-title: JAMA
  doi: 10.1001/jama.288.1.67
– year: 2019
  ident: 81883_CR50
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2019.02.030
– volume: 52
  start-page: 381
  year: 2017
  ident: 81883_CR51
  publication-title: Soc. Psychiatry Psychiatr. Epidemiol.
  doi: 10.1007/s00127-017-1339-3
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 81883_CR22
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 13
  start-page: 21
  issue: Suppl 2
  year: 2002
  ident: 81883_CR38
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000049146
– volume: 15
  start-page: 25
  year: 2019
  ident: 81883_CR13
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.06.3060
– volume: 69
  start-page: 974
  year: 2007
  ident: 81883_CR15
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000266562.54684.bf
– volume: 18
  start-page: 390
  year: 2018
  ident: 81883_CR43
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.02.006
SSID ssib045319080
ssib045319113
ssib045318930
ssib045319110
ssib045318929
ssib045318928
ssj0000529419
ssib045319075
Score 2.4062374
Snippet To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a...
Abstract To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2325
SubjectTerms 639/705/117
692/617/375/364
692/617/375/599
Age
Aging
Article ; Computer science ; Neurodegeneration ; White matter disease
Blood Pressure
ddc:610
Diabetes mellitus
Female
Humanities and Social Sciences
Humans
Hypertension
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Male
Medicine
Middle Aged
multidisciplinary
physiology [Aging]
physiology [Blood Pressure]
physiology [White Matter]
physiopathology [Hypertension]
Q
R
Risk assessment
Science
Science (multidisciplinary)
Sleep
Social environment
Substantia alba
White Matter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyI9TnaSgR3GjqZZPJwp2Ipgq680F3I017QucXeIvff95zJzLXX58bNLCbJkDmPnO-Q5DuEPE8lqpRTZryUyGSRkYUIi2EINhWjANAWTBQ_fFQnC_n-tD-9VuoLz4RVeuAquCORjeIAIzyXEYKNCG2MCHOy7lpTRMLVF2LetWSqsnp3VnI73ZJphTm6gMF4m6zjDGKUEUzuRKKRsB_iy7Bc_g5r_npk8qd90zEcHd8htyccSV_X-e-TG3m4S27WypKbe2Qxiz0nOpXUoatCv-OmAf06cmrSsw2yHNcj7OsNrevUK-qhHQ9YZjZVlPhMZ-Lx-2Rx_O7T2xM2VVBgURmxZroHkSvrg42t90X0ostWCq8juGVog4w2GNuniOV6UwtLXRZtUD6XLsk2SfGA7A2rIT8iFBItQEpeZ42Me1L6to8ALbnkMQhtS0P4LE0XJ3pxrHLxxY3b3MK4qgEHGnCjBpxsyIvtmPNKrvHX3m9QSdueSIw9vgBzcZO5uH-ZS0MOQcUwQ3xyo4WwCBEVIjMFcKYhB7Py3eTNF66TBoC0glSsIc-2zeCHuLnih7y6HPt0yM1ooc_DaivbmQrRQyKGH9c7VrTzK7stw_Js5PrWkIArYxvycra3H9P6s6ge_w9RPSG3OnSXlrNOH5C99bfLfAgIbB2ejs52BWZnJ_Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1Ki4zEDawmseMHFwSIqkKCEyvtLXL8aFeCpHS3QvvvO-M4qZZHL3tYO5Ht8cx89ky-IeS1j0764AOrYnRMROFY58AYdp3xUUsAtBEPil-_yZOF-LJslvnCbZ3TKiebmAy1HxzekR_VQgOYkQCH35__Ylg1CqOruYTGbXIHqcswpUst1XzHglEsUZn8rUzJ9dEa_BV-U1ZXDDyV5kzs-KNE2w9epl-t_oU4_06c_CN6mpzS8QNyP6NJ-mEU_0NyK_SPyN2xvuT2MVlMix88zYV16BDpbwwd0J-JWZOebZHreExk32zpaK3eUQvtmGYZWK4rcUon-vEnZHH8-funE5brKDAnNd8w1cDCS2M740prI294HYzgVjlQzq7shDOdNo13WLTXl2DwAi87aUOsvSi94E_JXj_04TmhcNwCvGRVUMi7J4QtGwcAsxKV67gysSDVtJqtyyTjWOviR5uC3Vy3owRakECbJNCKgryZnzkfKTZu7P0RhTT3RHrs9MdwcdpmbWt50LIC7Gkr4eANMEnnEBsHVZc6cl-QQxAxjBB_K604NwgUJeIzCaCmIAeT8Nus0-v2egcW5NXcDNqIIRbbh-Ey9amRodFAn2fjXplHynkDxzF8udrZRTtT2W3pV2eJ8VvBMVxqU5C30367Htb_l2r_5lm8IPdqVISyYrU6IHubi8twCAhr071ManQF7fIguw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7riuBFfNv7kAjeNNjdSefhTQeXRdCTA3sLee4OaI_sziLz761KP2R0Fbz0oVPdpFNVyVddyVeEvIw5yJhiYk3OgYksAvMBJkPvTcxaAqDNGCh--ixPl-LjWXe2R9rpLEzZtF8oLcs0Pe0Oe3MFCw0eBmsbBkuM5kzcIreRuh2teiEX838VzFyJxoznY2qub3h0Zw0qVP2wsvSr1U0o88_Nkr9lTMtCdHKf3BsRJH039PkB2Uv9Q3JnqCm5fUSW04CnSMdiOnSd6Q9MF9BvhU2TXmyR33jYvL7Z0mGGeksdtOPWysTGWhLndKIcf0yWJx--LE7ZWDuBBan5hqkOBlsa502oncu8420ygjsVwCF97UUwXpsuBizUG2uY5BKvvXQpt1HUUfAnZL9f9-kZoRBiAUZyKink2hPC1V0AUNmIJniuTK5IM42mDSOxONa3-GpLgptrO2jAggZs0YAVFXk1P_N9oNX4p_R7VNIsiZTY5cb68tyOJmJ50rIBvOkaEeAN8JEhIB5Oqq115rEix6Bi6CFeG604NwgOJWIyCUCmIkeT8u3ox1e2FRogtIQgrCIv5mbwQEyruD6tr4tMi6yMBmSeDrYy95TzDkIwfLnasaKdT9lt6VcXheVbQegttanI68nefnXr70N18H_ih-Rui45RN6xVR2R_c3mdjgFlbfzz4lY_AeTSHok
  priority: 102
  providerName: Springer Nature
Title Associated factors of white matter hyperintensity volume: a machine-learning approach
URI https://cir.nii.ac.jp/crid/1873398392606436224
https://link.springer.com/article/10.1038/s41598-021-81883-4
https://www.ncbi.nlm.nih.gov/pubmed/33504924
https://www.proquest.com/docview/2480996182
https://www.proquest.com/docview/2482659592
https://pubmed.ncbi.nlm.nih.gov/PMC7840689
https://doaj.org/article/3e861650a14c4153b0cc0080e7208f3d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwED_tIdC-IN4EtipIfANDHDt-ICHUVZumSpsQUKnfItuxt0ojha0T9L_nnEdRoeNLIsVOZPvufL-L7d8BvKqCE5WvPKEhOMIDd8Q6nAyt1VVQAgFtiIHi6Zk4mfDxtJhuQZ_uqBvA642hXcwnNbm6fPvrx_IjGvyH9si4eneNTigeFMspQfejGOHbsIueSUZDPe3gfsv1nWtOdXd2ZvOre3CXsQJxc87XXFXD6I8OqJ7NNoHRf_dU_rWw2vir4_twrwOa6bDVjAew5euHcKdNPbl8BJNeLr5Ku5w76TykP-OqQvqtId1ML5aRBrnd475Ypu1E9j41WB53YHrSpZw4T3tm8scwOT76OjohXYoF4oRiCyILlInQxmqXGRNYwXKvOTPSod3azHKnrdJF5WI-3yrDudCzzArjQ17xrOLsCezU89o_gxQjMYRSRnoZKfk4N1nhEHtSTp1lUocEaD-apev4x2MajMuyWQdnqmyFUaIwykYYJU_g9eqd7y37xn9rH0YhrWpG5uzmwfzqvOwMsWReCYqw1FDu8AvYSecibPYyz1RgVQIHKGJsYbxSJRnTEUOKCN0E4p0E9nvhl722ljlXiLQFxmoJvFwVo6HG1RdT-_lNUyeP5I0a6zxtdWXV0l7jEpBrWrTWlfWSenbRkIFLjNCF0gm86fXtT7NuH6rntzbhBezl0RwySnK5DzuLqxt_gLhrYQewLadyALvD4fjLGO-HR2efPuPTkRgNmn8Zg8bcfgPyZSmP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBFowEJ7CaxI5jIyFEodWWtiuEulJvbuJHuxJkS3erav8Uv5GZvKrl0VsvOcSOZXte32TsGUJeuWCl886zJATLRBCWlRaUYVlqF5QEQBvQUdwfyeFYfDnMDlfIr-4uDB6r7HRirajd1OI_8o1UKAAzEuDwh9OfDKtGYXS1K6HRsMWuX1yAyzZ7v_MZ6Ps6Tbe3Dj4NWVtVgFmp-JzlGUxD6qLUNi6KwDOeei14kVtg1TIuhdWl0pmzWMLWxSD-nselLHxInYid4DDuDbIqOLgyA7K6uTX6-q3_q4NxM5Ho9nZOzNXGDCwk3mJLEwa2UXEmlixgXSgA7Fo1mfwL4_59VPOPeG1tBrfvkjstfqUfG4a7R1Z8dZ_cbCpaLh6QcUdu72hbyodOA73AYAX9UefypCcLzK7cHJ2fL2ijH9_RAtrxYKdnbSWLY9olPH9Ixteyx4_IoJpW_gmh4OABQityn2OmPyGKOLMAaROR2JLnOkQk6XbT2DatOVbX-G7q8DpXpqGAAQqYmgJGRORN_81pk9Tjyt6bSKS-Jybkrl9Mz45NK9-GeyUTQLtFIiyMAIu0FtG4z9NYBe4isg4khhniM1E55xqhqUREKAFGRWStI75ptcjMXPJ8RF72zSD_GNQpKj89r_ukmBNSQ5_HDa_0M-U8AwcQB8-XuGhpKcst1eSkzjGeg-MvlY7I247fLqf1_616evUqXpBbw4P9PbO3M9p9Rm6nKBRxwtJ8jQzmZ-d-HfDdvHzeChUlR9ctx78B-kFgRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2gBSPBCayNYye2kRACyqqlUHFgpb25iR_tSjTbdreq9q_x65jJY6vl0VsvOcSOZXtenzPjGUJe-ugKH3xgPEbHZJSOVQ6UYVUZH3UBgDbiQfHbXrE9kl_G-XiN_OrvwmBYZa8TG0Xtpw7_kQ8yqQHMFACHB7ELi_i-NXx_fMKwghR6WvtyGi2L7IbFORzfZu92toDWr7Js-PnHp23WVRhgrtBizlQOUypMWRmXlmUUuciCkaJUDti2SivpTKVN7h2Ws_UpqIIg0qooQ8y8TL0UMO41cl2JnKOMqbFa_t9BD5rkprunkwo9mIGtxPtsGWdgJbVgcsUWNiUDwMLVk8m_0O7fQZt_eG4bgzi8Q253SJZ-aFnvLlkL9T1yo61tubhPRj3hg6ddUR86jfQc3Rb0qMnqSQ8XmGe5DaKfL2irKd_SEtoxxDOwrqbFAe1Tnz8goyvZ4YdkvZ7W4TGhcNQDrFaqoDDnn5RlmjsAt1xyVwllYkJ4v5vWdQnOsc7GT9s42oW2LQUsUMA2FLAyIa-X3xy36T0u7f0RibTsiam5mxfT0wPbSboVQRcccG_JpYMRYJHOIS4PKkt1FD4hm0BimCE-uVZCGASpBWLDAgBVQjZ64ttOn8zsBfcn5MWyGTQBunfKOkzPmj4ZZoc00OdRyyvLmQqRw1EQB1crXLSylNWWenLYZBtXGjCfNgl50_PbxbT-v1VPLl_Fc3ITpNd-3dnbfUpuZSgTKWeZ2iDr89OzsAlAb149aySKkv2rFuHfmkZjFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Associated+factors+of+white+matter+hyperintensity+volume%3A+a+machine-learning+approach&rft.jtitle=Scientific+reports&rft.au=Grosu%2C+Sergio&rft.au=Rospleszcz%2C+Susanne&rft.au=Hartmann%2C+Felix&rft.au=Habes%2C+Mohamad&rft.date=2021-01-27&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=2325&rft_id=info:doi/10.1038%2Fs41598-021-81883-4&rft_id=info%3Apmid%2F33504924&rft.externalDocID=33504924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon