Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants
Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of...
Saved in:
Published in | Molecular plant pathology Vol. 17; no. 8; pp. 1276 - 1288 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.10.2016
John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. |
---|---|
AbstractList | Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T₂ generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T₃ lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence-specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field-grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene-free T sub(2) generation in self-pollinating species. Analysis of dry weights and flowering times for four independent T sub(3) lines revealed no differences from wild-type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E , have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T 2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T 3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence-specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field-grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene-free T2 generation in self-pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild-type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence-specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field-grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene-free T2 generation in self-pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild-type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. |
Author | Sheehan, Emma Pyott, Douglas E. Molnar, Attila |
AuthorAffiliation | 1 Institute of Molecular Plant Sciences, University of Edinburgh Edinburgh EH9 3JR UK |
AuthorAffiliation_xml | – name: 1 Institute of Molecular Plant Sciences, University of Edinburgh Edinburgh EH9 3JR UK |
Author_xml | – sequence: 1 givenname: Douglas E. surname: Pyott fullname: Pyott, Douglas E. organization: Institute of Molecular Plant Sciences, University of Edinburgh, EH9 3JR, Edinburgh, UK – sequence: 2 givenname: Emma surname: Sheehan fullname: Sheehan, Emma organization: Institute of Molecular Plant Sciences, University of Edinburgh, EH9 3JR, Edinburgh, UK – sequence: 3 givenname: Attila surname: Molnar fullname: Molnar, Attila email: attila.molnar@ed.ac.uk, attila.molnar@ed.ac.uk organization: Institute of Molecular Plant Sciences, University of Edinburgh, EH9 3JR, Edinburgh, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27103354$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2A-98A_IgDd6Md18TiY3QllqW6h1aSuKICGTObOmziZjMtO6_96su1u0KJibHMjzvnlPcvazHecdZNlzjA5xWpNF3x9iwrB4lO1hWrKCCkR3Us1SXQpCdrP9GG8QwkIS_iTbJQIjSjnby74cu7l1AMG6ee7bfHp5djW7nEx1lMUCGqsHaPLeD8tbG8aYB4g2DtoZyK3Lh6BdnIODog0A-VHQtW18n5C877Qb4tPscau7CM82-0H24e3x9fS0OH9_cjY9Oi9MWVFRUE50I3lTy4ZWBgxUjOKyFrJBFamN5IKWqGqM4RVNbWLZcmm0NnVrdMMaRA-yN2vffqxTagMuRetUH-xCh6Xy2qo_T5z9qub-VnFESixIMni1MQj--whxUAsbDXSpC_BjVLhiZbq6otV_oERIhJBYoS8foDd-DC69RKKwYJhxiRP14vfw96m3n5SAyRowwccYoFXGDnqwftWL7RRGajUGKo2B-jUGSfH6gWJr-jd2435nO1j-G1TvZrOtolgr0ijAj3uFDt9UKajg6uPFibpgV-Xna_ZJCfoTVlDRDA |
CODEN | MPPAFD |
CitedBy_id | crossref_primary_10_1098_rstb_2018_0322 crossref_primary_10_1093_g3journal_jkac105 crossref_primary_10_1038_s41598_017_14832_9 crossref_primary_10_12688_f1000research_20179_1 crossref_primary_10_1094_PHYTO_07_19_0267_IA crossref_primary_10_1038_nrg_2017_82 crossref_primary_10_1007_s00425_023_04259_0 crossref_primary_10_3390_plants10020293 crossref_primary_10_3390_plants10091914 crossref_primary_10_1089_crispr_2020_0103 crossref_primary_10_1371_journal_pone_0181998 crossref_primary_10_3389_fmicb_2019_00017 crossref_primary_10_1007_s41348_020_00330_0 crossref_primary_10_3389_fgene_2021_735489 crossref_primary_10_1093_hr_uhad078 crossref_primary_10_3389_fpls_2023_1143813 crossref_primary_10_3389_fpls_2020_01126 crossref_primary_10_1080_07352689_2020_1810970 crossref_primary_10_1186_s12896_020_00604_3 crossref_primary_10_3389_fmicb_2017_00047 crossref_primary_10_1080_21645698_2020_1831729 crossref_primary_10_1134_S0006297918120131 crossref_primary_10_35118_apjmbb_2022_030_3_05 crossref_primary_10_3390_ijms22031292 crossref_primary_10_3389_fpls_2018_00985 crossref_primary_10_1007_s12033_024_01337_w crossref_primary_10_1093_bfgp_ely016 crossref_primary_10_3389_fpls_2018_02008 crossref_primary_10_1360_SSV_2023_0117 crossref_primary_10_1016_j_pbi_2021_102073 crossref_primary_10_5423_RPD_2018_24_1_9 crossref_primary_10_1080_03235408_2021_1895476 crossref_primary_10_1111_pbi_12927 crossref_primary_10_1007_s12355_023_01252_5 crossref_primary_10_1002_fes3_168 crossref_primary_10_1094_PHYTO_03_16_0145_FI crossref_primary_10_3389_fmicb_2020_609784 crossref_primary_10_3389_fgeed_2020_00005 crossref_primary_10_3390_genes12111781 crossref_primary_10_3390_biology13060421 crossref_primary_10_1094_PHYTO_01_23_0002_V crossref_primary_10_2222_jsv_70_61 crossref_primary_10_1016_j_micpath_2019_103551 crossref_primary_10_2174_1389202921999200712135131 crossref_primary_10_1007_s13562_022_00767_4 crossref_primary_10_1111_pbi_12896 crossref_primary_10_1080_07060661_2023_2215212 crossref_primary_10_1007_s12600_017_0636_4 crossref_primary_10_53471_bahce_1481956 crossref_primary_10_5423_RPD_2019_25_2_49 crossref_primary_10_1007_s11033_022_07704_7 crossref_primary_10_1093_hr_uhab023 crossref_primary_10_1007_s13562_020_00606_4 crossref_primary_10_1007_s10340_022_01520_5 crossref_primary_10_3389_fpls_2024_1369883 crossref_primary_10_1007_s10142_024_01325_y crossref_primary_10_1007_s10529_020_02950_w crossref_primary_10_1016_j_rsci_2019_08_001 crossref_primary_10_1080_03235408_2021_1910415 crossref_primary_10_1007_s11248_021_00262_x crossref_primary_10_1016_j_pmpp_2024_102402 crossref_primary_10_1038_s41598_019_42400_w crossref_primary_10_1002_pld3_168 crossref_primary_10_1016_j_micres_2024_127940 crossref_primary_10_1007_s11240_022_02421_2 crossref_primary_10_2174_1389201023666220307104501 crossref_primary_10_3389_fpls_2022_843575 crossref_primary_10_3389_fpls_2016_01673 crossref_primary_10_3389_fgene_2022_876987 crossref_primary_10_1007_s13237_024_00472_8 crossref_primary_10_3389_fpls_2021_700925 crossref_primary_10_1007_s12033_022_00456_6 crossref_primary_10_1111_nph_18212 crossref_primary_10_1007_s13562_021_00746_1 crossref_primary_10_1101_cshperspect_a034595 crossref_primary_10_1093_jxb_erz476 crossref_primary_10_1111_pbi_13885 crossref_primary_10_1016_j_coviro_2017_07_024 crossref_primary_10_1080_07388551_2018_1554621 crossref_primary_10_31590_ejosat_765369 crossref_primary_10_1016_j_isci_2020_101478 crossref_primary_10_3389_fpls_2017_00539 crossref_primary_10_3389_fgeed_2024_1415244 crossref_primary_10_1186_s13059_020_02204_y crossref_primary_10_1080_09540105_2024_2358795 crossref_primary_10_1080_21655979_2017_1297347 crossref_primary_10_1007_s11033_022_07741_2 crossref_primary_10_1111_pbi_13096 crossref_primary_10_47262__BL_7_2_20210711 crossref_primary_10_1088_1755_1315_974_1_012082 crossref_primary_10_5897_AJB2018_16532 crossref_primary_10_3389_fbioe_2019_00031 crossref_primary_10_1016_j_jbiotec_2020_09_013 crossref_primary_10_3390_synbio2030016 crossref_primary_10_1080_07352689_2020_1782568 crossref_primary_10_3390_cimb46100659 crossref_primary_10_1590_1678_4685_gmb_2016_0043 crossref_primary_10_1007_s41348_020_00342_w crossref_primary_10_3390_ijms242015448 crossref_primary_10_3390_v13102100 crossref_primary_10_1016_j_pmpp_2023_102202 crossref_primary_10_3389_fpls_2023_1134653 crossref_primary_10_3390_horticulturae8030191 crossref_primary_10_1146_annurev_phyto_021622_120703 crossref_primary_10_1007_s11248_018_0072_3 crossref_primary_10_1016_j_wpi_2019_101944 crossref_primary_10_1016_j_plantsci_2021_111160 crossref_primary_10_3389_fgene_2023_1204585 crossref_primary_10_1111_mpp_13252 crossref_primary_10_3390_plants10071481 crossref_primary_10_1016_j_coviro_2017_07_005 crossref_primary_10_1134_S0003683819090047 crossref_primary_10_3389_fpls_2020_01092 crossref_primary_10_3390_plants10010082 crossref_primary_10_3389_fpls_2020_01098 crossref_primary_10_1007_s11032_017_0620_1 crossref_primary_10_1007_s10327_024_01189_x crossref_primary_10_3390_ijms24010360 crossref_primary_10_1042_ETLS20170010 crossref_primary_10_1093_plphys_kiac103 crossref_primary_10_1016_j_jgg_2023_07_009 crossref_primary_10_1094_PHYTO_08_20_0322_IA crossref_primary_10_1111_pbi_12987 crossref_primary_10_3389_fpls_2020_572193 crossref_primary_10_15835_nbha50312388 crossref_primary_10_1146_annurev_phyto_020620_114550 crossref_primary_10_3390_cells8111386 crossref_primary_10_3390_plants12234020 crossref_primary_10_1111_pbi_13278 crossref_primary_10_3389_fpls_2019_00550 crossref_primary_10_3390_v10090484 crossref_primary_10_3390_agronomy12030565 crossref_primary_10_1093_bfgp_elz041 crossref_primary_10_1016_j_pmpp_2018_05_006 crossref_primary_10_1080_21645698_2019_1631115 crossref_primary_10_1016_j_biotechadv_2017_11_008 crossref_primary_10_1111_ppl_13686 crossref_primary_10_1016_j_jbiotec_2020_05_008 crossref_primary_10_61186_pps_12_1_113 crossref_primary_10_1111_nph_16993 crossref_primary_10_1111_aab_12755 crossref_primary_10_1002_lipd_12249 crossref_primary_10_3390_ijms21165665 crossref_primary_10_3389_fpls_2020_598798 crossref_primary_10_1016_j_stress_2022_100056 crossref_primary_10_3390_plants10071264 crossref_primary_10_3389_fgeed_2021_784233 crossref_primary_10_1111_pbi_12758 crossref_primary_10_1080_21655979_2022_2099599 crossref_primary_10_1016_j_plantsci_2022_111376 crossref_primary_10_3390_agriculture14020284 crossref_primary_10_3389_fpls_2021_652319 crossref_primary_10_3389_fmicb_2020_609376 crossref_primary_10_1007_s11248_019_00135_4 crossref_primary_10_1186_s13578_017_0148_4 crossref_primary_10_3390_biology12071037 crossref_primary_10_1007_s00299_020_02516_0 crossref_primary_10_1093_plphys_kiab220 crossref_primary_10_31742_ISGPB_84_4_19 crossref_primary_10_3390_plants12132454 crossref_primary_10_1007_s12033_022_00507_y crossref_primary_10_1186_s12284_019_0325_7 crossref_primary_10_3390_ijms23042303 crossref_primary_10_1002_wrna_1597 crossref_primary_10_1002_jcp_25970 crossref_primary_10_3389_fgeed_2022_987817 crossref_primary_10_1007_s44297_023_00020_x crossref_primary_10_31857_S0015330323600109 crossref_primary_10_1016_j_pmpp_2017_10_003 crossref_primary_10_31676_0235_2591_2022_2_6_13 crossref_primary_10_1007_s41348_022_00677_6 crossref_primary_10_1099_jgv_0_000609 crossref_primary_10_1007_s13562_021_00765_y crossref_primary_10_1007_s11427_019_9722_2 crossref_primary_10_1016_j_coviro_2020_04_005 crossref_primary_10_3390_ijms25021308 crossref_primary_10_1080_21645698_2021_1938488 crossref_primary_10_1007_s12600_022_00991_7 crossref_primary_10_3390_agriculture11121286 crossref_primary_10_51973_head_1209563 crossref_primary_10_1111_pbi_14442 crossref_primary_10_1007_s10142_023_01133_w crossref_primary_10_1016_j_celrep_2017_04_037 crossref_primary_10_3389_fpls_2022_885128 crossref_primary_10_5423_PPJ_RW_09_2020_0178 crossref_primary_10_1002_tpg2_20220 crossref_primary_10_1016_j_plaphy_2018_03_027 crossref_primary_10_1016_j_semcdb_2019_04_008 crossref_primary_10_1016_j_jbiotec_2024_04_015 crossref_primary_10_1016_j_pmpp_2024_102482 crossref_primary_10_1079_PAVSNNR202015009 crossref_primary_10_1038_s41598_022_18923_0 crossref_primary_10_1111_mpp_12897 crossref_primary_10_3389_fpls_2017_01932 crossref_primary_10_3390_ijms24065660 crossref_primary_10_3389_fpls_2022_997888 crossref_primary_10_1007_s11033_023_08440_2 crossref_primary_10_3390_microorganisms7080269 crossref_primary_10_1111_pbi_12832 crossref_primary_10_3389_fpls_2016_01813 crossref_primary_10_1111_pbi_14333 crossref_primary_10_3389_fmicb_2016_01325 crossref_primary_10_3389_fnut_2021_751512 crossref_primary_10_3390_plants13233313 crossref_primary_10_3389_fpls_2018_01245 crossref_primary_10_1016_j_hpj_2020_03_001 crossref_primary_10_1002_jcp_29052 crossref_primary_10_1186_s42483_020_00060_z crossref_primary_10_2174_2210298102666220324112842 crossref_primary_10_3389_fpls_2022_904829 crossref_primary_10_1016_j_tibtech_2018_04_005 crossref_primary_10_1007_s11816_017_0425_z crossref_primary_10_1111_ppl_12680 crossref_primary_10_3389_fpls_2019_00114 crossref_primary_10_1016_j_jare_2020_10_003 crossref_primary_10_3390_cells11233928 crossref_primary_10_5010_JPB_2018_45_3_155 crossref_primary_10_1016_j_plantsci_2018_04_011 crossref_primary_10_1016_j_tplants_2017_01_008 crossref_primary_10_3390_biotech10030014 crossref_primary_10_1007_s13205_019_1760_2 crossref_primary_10_1111_mpp_13167 crossref_primary_10_1016_j_pmpp_2025_102640 crossref_primary_10_1111_pbi_13014 crossref_primary_10_3390_v14061245 crossref_primary_10_3390_v12070773 crossref_primary_10_3390_v13010141 crossref_primary_10_3389_fmicb_2020_593700 crossref_primary_10_3389_fmicb_2016_01695 crossref_primary_10_1007_s10709_021_00146_2 crossref_primary_10_1016_j_plaphy_2018_03_012 crossref_primary_10_1007_s11105_021_01286_7 crossref_primary_10_1146_annurev_arplant_010720_022215 crossref_primary_10_3389_fpls_2020_00056 crossref_primary_10_1016_j_biotechadv_2019_02_006 crossref_primary_10_1016_j_heliyon_2023_e14624 crossref_primary_10_1111_aab_12562 crossref_primary_10_1042_ETLS20170085 |
Cites_doi | 10.1105/tpc.109.073056 10.1146/annurev-phyto-073009 10.1038/nbt0203-131b 10.1093/nar/gku806 10.1534/genetics.115.175166 10.1007/s11248-011-9576-9 10.1038/nprot.2014.157 10.1094/PHYTO.2004.94.5.490 10.1038/nbt.2501 10.1111/j.1365-313X.2006.02885.x 10.1186/s13059-015-0799-6 10.1094/MPMI-20-6-0717 10.1093/nar/gkt780 10.1111/j.1365-313X.2006.02670.x 10.1146/annurev-phyto-082712-102332 10.1371/journal.pone.0136064 10.1104/pp.114.247577 10.1038/nbt.2655 10.1371/journal.pone.0011313 10.1126/science.1225829 10.1038/cr.2013.114 10.1046/j.1365-313X.2002.01499.x 10.1099/0022-1317-72-7-1543 10.1128/jvi.63.10.4459-4463.1989 10.1371/journal.pone.0124633 10.1038/nbt.2652 10.1016/j.jgg.2015.10.006 10.3389/fpls.2014.00307 10.1111/j.1365-313X.2009.03882.x 10.1016/j.tibtech.2013.04.004 10.1073/pnas.95.17.10300 10.1016/j.cell.2013.04.025 10.1038/nbt.2647 10.1007/s00705-003-0179-5 10.1006/viro.1997.8634 10.1111/j.1467-7652.2011.00622.x 10.1111/tpj.12554 10.1016/j.bbrc.2015.09.117 10.1111/J.1364-3703.2005.00294.X 10.1111/j.1365-313X.2005.02424.x 10.1046/j.1365-313X.2002.01481.x 10.1186/s12896-015-0131-2 10.1111/J.1364-3703.2009.00602.X 10.1111/j.1365-313X.2004.02215.x 10.1007/BF00039380 10.1073/pnas.1208507109 10.1038/nbt.2650 10.1016/j.febslet.2004.12.086 10.1099/vir.0.015321-0 10.1007/s00438-005-0003-x 10.1016/j.jgg.2013.12.001 10.1016/0166-0934(89)90122-5 10.1038/nature15544 10.1016/S0960-9822(02)00898-9 10.1073/pnas.1116437108 10.1104/pp.102.017855.recessive |
ContentType | Journal Article |
Copyright | 2016 The Authors. Published by British Society for Plant Pathology and John Wiley & Sons Ltd 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd. 2016 BSPP and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2016 The Authors. Published by British Society for Plant Pathology and John Wiley & Sons Ltd – notice: 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd. – notice: 2016 BSPP and John Wiley & Sons Ltd |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 5PM |
DOI | 10.1111/mpp.12417 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA AIDS and Cancer Research Abstracts MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Engineering |
DocumentTitleAlternate | CRISPR/Cas9‐induced potyvirus resistance |
EISSN | 1364-3703 |
EndPage | 1288 |
ExternalDocumentID | PMC5026172 4173244931 27103354 10_1111_mpp_12417 MPP12417 ark_67375_WNG_N4S6ZT4X_7 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: BBSRC) EastBio Doctoral Training Partnership (DTP) – fundername: James Hutton Institute – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/J01446X/1 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29M 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X2 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABPVW ACBWZ ACCFJ ACGFO ACGFS ACIWK ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADKYN ADZMN AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFKRA AFPWT AFRAH AFZJQ AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE FRP G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HVGLF HYE HZI HZ~ IAO IEP IGS IHE ITC IX1 J0M K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M0K M7P MK4 MRFUL MRSTM MSFUL MSSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WYISQ XG1 ~IA ~KM ~WT AANHP ACCMX ACRPL ACUHS ACYXJ ADNMO AEUYN AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6837-352ad95db9d38cece84316b79d082bc9573608dcc58324119f59caacbfcad4d03 |
IEDL.DBID | DR2 |
ISSN | 1464-6722 |
IngestDate | Thu Aug 21 18:34:42 EDT 2025 Fri Jul 11 18:31:42 EDT 2025 Fri Jul 11 15:31:42 EDT 2025 Wed Aug 13 09:46:12 EDT 2025 Thu Jan 02 22:36:54 EST 2025 Tue Jul 01 01:14:57 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Wed Jan 22 16:31:49 EST 2025 Wed Oct 30 09:50:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | potyvirus CRISPR/Cas9 TuMV eIF(iso)4E transgene-free virus resistance |
Language | English |
License | Attribution 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6837-352ad95db9d38cece84316b79d082bc9573608dcc58324119f59caacbfcad4d03 |
Notes | ArticleID:MPP12417 ark:/67375/WNG-N4S6ZT4X-7 istex:1D5724788D8FDA0D12FA484D4BF2C929A6235860 James Hutton Institute BBSRC) EastBio Doctoral Training Partnership (DTP ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12417 |
PMID | 27103354 |
PQID | 1817414591 |
PQPubID | 1006541 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5026172 proquest_miscellaneous_1846324838 proquest_miscellaneous_1827900078 proquest_journals_1817414591 pubmed_primary_27103354 crossref_citationtrail_10_1111_mpp_12417 crossref_primary_10_1111_mpp_12417 wiley_primary_10_1111_mpp_12417_MPP12417 istex_primary_ark_67375_WNG_N4S6ZT4X_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Molecular plant pathology |
PublicationTitleAlternate | Molecular Plant Pathology |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Ruffel, S., Dussault, M., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor. Plant J. 32, 1067-1075. Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R. and Joung, J.K. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31(3), 227-229. doi:10.1038/nbt.2501 Naderpour, M., Lund, O.L.E.S., Larsen, R. and Johansen, E. (2010) Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. Mol. Plant Pathol. 11, 255-263. doi:10.1111/J.1364-3703.2009.00602.X Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1-4. doi:10.1038/cr.2013.114 Li, W., Teng, F., Li, T. and Zhou, Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31, 684-686. doi:10.1038/nbt.2652 Stemmer, M., Thumberger, T., Keyer, S., Wittbrodt, J. and Mateo, J.L. (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 9, 1-11. doi:10.1371/journal.pone.0124633 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-822. Fauser, F., Schiml, S. and Puchta, H. (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359. doi:10.1111/tpj.12554 Asad, S., Haris, W.A.A., Bashir, A., Zafar, Y., Malik, K.A., Malik, N.N. and Lichtenstein, C.P. (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch. Virol. 148, 2341-2352. doi:10.1007/s00705-003-0179-5 Cavatorta, J., Perez, K.W., Gray, S.M., Van Eck, J., Yeam, I. and Jahn, M. (2011) Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9(9), 1014-1021. doi:10.1111/j.1467-7652.2011.00622.x Ronde, D. De, Butterbach, P. and Kormelink, R. (2014) Dominant resistance against plant viruses. Front. Plant Sci. 5, 1-17. doi:10.3389/fpls.2014.00307 Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579, 1167-1171. doi:10.1016/j.febslet.2004.12.086 Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, 1-12. doi:10.1093/nar/gkt780 Karasev, A.V. and Gray, S.M. (2013) Continuous and emerging challenges of Potato virus Y in potato. Annu. Rev. Phytopathol. 51, 571-586. doi:10.1146/annurev-phyto-082712-102332 Liang, Z., Zhang, K., Chen, K. and Gao, C. (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 41(2), 63-68. doi:10.1016/j.jgg.2013.12.001 Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16(238), 1-11. doi:10.1186/s13059-015-0799-6 Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C. and Jiang, B. (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 10(8), 1-13. doi:10.1371/journal.pone.0136064 Gao, Z., Johansen, E., Eyers, S., Thomas, C.L., Ellis, T.H.N., Maule, A.J. (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 4, 376-385. doi:10.1111/j.1365-313X.2004.02215.x Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W. and Zhang, F. (2013) Resource one-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. doi:10.1016/j.cell.2013.04.025 McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455-457. Pooggin, M.M., Shivaprasad, P.V., Veluthambi, K. and Hohn, T. (2003) RNAi targeting of DNA virus in plants. Nat. Biotechnol. 21, 131-132. Ito, Y., Nishizawa-yokoi, A., Endo, M. and Mikami, M. (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Comm. 467(1), 76-82. doi:10.1016/j.bbrc.2015.09.117 Zhu, J., Song, N., Sun, S., Yang, W., Zhao, H., Song, W. and Lai, J. (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J. Genet. Genom. 43(1), 25-36. doi:10.1016/j.jgg.2015.10.006 Sternberg, S.H., Lafrance, B., Kaplan, M., Doudna, J.A. and Cas, C. (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature, 527(7576), 110-113. doi:10.1038/nature15544 Shan, Q., Wang, Y., Li, J. and Gao, C. (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protocol. 9(10), 2395-2410. doi:10.1038/nprot.2014.157 Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One, 5(6), e11313. doi:10.1371/journal.pone.0011313 Gallois, J.-L., Charron, C., Sánchez, F., Pagny, G., Houvenaghel, M.-C., Moretti, A., Ponz, F., Revers, F., Caranta, C. and German-Retana, S. (2010) Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. J. Gen. Virol. 91(Pt 1), 288-293. doi:10.1099/vir.0.015321-0 Duan, H., Richael, C. and Rommens, C.M. (2012) Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1. Transgenic Res. 21(5), 929-938. doi:10.1007/s11248-011-9576-9 Jagadish, M.N., Ward, C.W., Gough, K.H., Tulloch, P.A., Whittaker, L.A. and Shukla, D.D. (1991) Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into virus-like particles. J. Gen. Virol. 72, 1543-1550. Gaj, T., Gersbach, C.A. and Barbas, C.F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31(7), 397-405. doi:10.1016/j.tibtech.2013.04.004 Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during Potyvirus infection. Curr. Biol. 12(02), 1046-1051. Yang, Y., Sherwood, T.A., Patte, C.P., Hiebert, E. and Polston, J.E. (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology, 94(5), 490-496. Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32(6), 927-934. doi:10.1046/j.1365-313X.2002.01481.x Regenmortel, M. and Mahy, B. (2009) Desk Encyclopedia of Plant and Fungal Virology, Academic press, Oxford, pp. 426-430. Wittmann, S., Chatel, H. and Fortin, M.G. (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 92(234), 84-92. Bush, M.S., Hutchins, A.P., Jones, A.M.E., Naldrett, M.J., Jarmolowski, A., Lloyd, C.W. and Doonan, J.H. (2009) Selective recruitment of proteins to 5' cap complexes during the growth cycle in Arabidopsis. Plant J. 59, 400-412. doi:10.1111/j.1365-313X.2009.03882.x Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J., Qui, J. and Gao, C. (2013) Targeted genome modification of crop plants using CRISPR-Cas system. Nat. Biotechnol. 31, 686-688. doi:10.1038/nbt.2650 White, J.L. and Kaper, J.M. (1989) A simple method for detection of viral satellite RNAs in small plant tissue samples. J. Virol. Methods, 23, 83-94. Brooks, C., Nekrasov, V., Lippman, Z. B. and Van Eck, J. (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292-1297. doi:10.1104/pp.114.247577 Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., Puigdomènech, P., Pitrat, M., Caboche, M., Dogimont, C., Garcia-Mas, J., Aranda, M.A. and Bendahmane, A. (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 452-462. doi:10.1111/j.1365-313X.2006.02885.x Browning, K.S. (1996) The plant translational apparatus. Plant Mol. Biol. 32, 107-144. Kanyuka, K., Druka, A., Caldwell, D.G., Tymon, A., McCallum, N., Waugh, R. and Adams, M.J. (2005) Evidence that the recessive bymovirus resistance locus rym 4 in barley corresponds to the eukaryotic translation initiation factor 4E. Mol. Plant Pathol. 6, 449-458. doi:10.1111/J.1364-3703.2005.00294.X Oldroyd, G. and Staskawicz, B. (1998) Genetically engineered broad-spectrum disease resistance. Proc. Natl. Acad. Sci. USA, 95, 10 300-10 305. Garcia-Ruiz, H., Takeda, A., Chapman, E.J., Sullivan, C.M., Fahlgren, N., Brempelis, K.J. and Carrington, J.C. (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056 Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G 2010; 11 2015; 467 2013; 23 2002; 12 2005; 579 2004; 4 1996; 32 2014; 1 2010; 22 2000; 18 2014; 5 1997; 92 2013; 51 2016; 43 2013; 153 2007; 20 2014; 9 2014; 166 1998; 95 2010; 5 2012; 337 2012; 21 2009; 59 1989; 63 2015; 15 2015; 16 1989; 23 2005; 274 2002; 32 1991; 72 2015; 10 2013; 41 2009 2005; 42 2006 2015; 527 2003 2014; 41 2015; 9 2003; 132 2012; 109 2011; 9 2004; 94 2010; 48 2011; 108 2015; 199 2013; 31 2014; 79 2005; 6 2010; 91 2003; 21 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Chandrasekaran J. (e_1_2_6_11_1) e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Regenmortel M. (e_1_2_6_43_1) 2009 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Regenmortel, M. and Mahy, B. (2009) Desk Encyclopedia of Plant and Fungal Virology, Academic press, Oxford, pp. 426-430. – reference: Oldroyd, G. and Staskawicz, B. (1998) Genetically engineered broad-spectrum disease resistance. Proc. Natl. Acad. Sci. USA, 95, 10 300-10 305. – reference: Cavatorta, J., Perez, K.W., Gray, S.M., Van Eck, J., Yeam, I. and Jahn, M. (2011) Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9(9), 1014-1021. doi:10.1111/j.1467-7652.2011.00622.x – reference: Farboud, B. and Meyer, B. (2015) Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 199(4), 959-971. doi:10.1534/genetics.115.175166 – reference: Gao, Z., Johansen, E., Eyers, S., Thomas, C.L., Ellis, T.H.N., Maule, A.J. (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 4, 376-385. doi:10.1111/j.1365-313X.2004.02215.x – reference: Karasev, A.V. and Gray, S.M. (2013) Continuous and emerging challenges of Potato virus Y in potato. Annu. Rev. Phytopathol. 51, 571-586. doi:10.1146/annurev-phyto-082712-102332 – reference: Shan, Q., Wang, Y., Li, J. and Gao, C. (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protocol. 9(10), 2395-2410. doi:10.1038/nprot.2014.157 – reference: Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579, 1167-1171. doi:10.1016/j.febslet.2004.12.086 – reference: Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R. and Joung, J.K. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31(3), 227-229. doi:10.1038/nbt.2501 – reference: Asad, S., Haris, W.A.A., Bashir, A., Zafar, Y., Malik, K.A., Malik, N.N. and Lichtenstein, C.P. (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch. Virol. 148, 2341-2352. doi:10.1007/s00705-003-0179-5 – reference: Li, W., Teng, F., Li, T. and Zhou, Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31, 684-686. doi:10.1038/nbt.2652 – reference: Nekrasov V., Staskawicz B., Weigel D., Jones JD. and Kamoun S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693. doi:10.1038/nbt.2655 – reference: Sternberg, S.H., Lafrance, B., Kaplan, M., Doudna, J.A. and Cas, C. (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature, 527(7576), 110-113. doi:10.1038/nature15544 – reference: Ruffel, S., Dussault, M., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor. Plant J. 32, 1067-1075. – reference: Bonfim, K., Faria, J.C., Nogueira, E.O.P.L., Mendes, E.A. and Aragao, J.L. (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant-Microbe Interact. 20(6), 717-726. – reference: Brooks, C., Nekrasov, V., Lippman, Z. B. and Van Eck, J. (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292-1297. doi:10.1104/pp.114.247577 – reference: Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during Potyvirus infection. Curr. Biol. 12(02), 1046-1051. – reference: Bush, M.S., Hutchins, A.P., Jones, A.M.E., Naldrett, M.J., Jarmolowski, A., Lloyd, C.W. and Doonan, J.H. (2009) Selective recruitment of proteins to 5' cap complexes during the growth cycle in Arabidopsis. Plant J. 59, 400-412. doi:10.1111/j.1365-313X.2009.03882.x – reference: Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C. and Jiang, B. (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 10(8), 1-13. doi:10.1371/journal.pone.0136064 – reference: Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G. and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31(9), 827-832. doi:10.1038/nbt.2647 – reference: Liang, Z., Zhang, K., Chen, K. and Gao, C. (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 41(2), 63-68. doi:10.1016/j.jgg.2013.12.001 – reference: Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S., Ordon, F. and Graner, A. (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 42, 912-922. doi:10.1111/j.1365-313X.2005.02424.x – reference: Kanyuka, K., Druka, A., Caldwell, D.G., Tymon, A., McCallum, N., Waugh, R. and Adams, M.J. (2005) Evidence that the recessive bymovirus resistance locus rym 4 in barley corresponds to the eukaryotic translation initiation factor 4E. Mol. Plant Pathol. 6, 449-458. doi:10.1111/J.1364-3703.2005.00294.X – reference: Yang, Y., Sherwood, T.A., Patte, C.P., Hiebert, E. and Polston, J.E. (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology, 94(5), 490-496. – reference: Jacobs, T.B., Lafayette, P.R., Schmitz, R.J. and Parrott, W.A. (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15, 16. doi:10.1186/s12896-015-0131-2 – reference: McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455-457. – reference: Duan, H., Richael, C. and Rommens, C.M. (2012) Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1. Transgenic Res. 21(5), 929-938. doi:10.1007/s11248-011-9576-9 – reference: Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W. and Zhang, F. (2013) Resource one-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. doi:10.1016/j.cell.2013.04.025 – reference: Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32(6), 927-934. doi:10.1046/j.1365-313X.2002.01481.x – reference: Fauser, F., Schiml, S. and Puchta, H. (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359. doi:10.1111/tpj.12554 – reference: Naderpour, M., Lund, O.L.E.S., Larsen, R. and Johansen, E. (2010) Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. Mol. Plant Pathol. 11, 255-263. doi:10.1111/J.1364-3703.2009.00602.X – reference: Pooggin, M.M., Shivaprasad, P.V., Veluthambi, K. and Hohn, T. (2003) RNAi targeting of DNA virus in plants. Nat. Biotechnol. 21, 131-132. – reference: Gallois, J.-L., Charron, C., Sánchez, F., Pagny, G., Houvenaghel, M.-C., Moretti, A., Ponz, F., Revers, F., Caranta, C. and German-Retana, S. (2010) Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. J. Gen. Virol. 91(Pt 1), 288-293. doi:10.1099/vir.0.015321-0 – reference: Browning, K.S. (1996) The plant translational apparatus. Plant Mol. Biol. 32, 107-144. – reference: Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1-4. doi:10.1038/cr.2013.114 – reference: Carrington, J.C., Freed, D.D. and Sanders, T.C. (1989) Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro Cl-l. J. Virol. 63(10), 4459-4463. – reference: Jagadish, M.N., Ward, C.W., Gough, K.H., Tulloch, P.A., Whittaker, L.A. and Shukla, D.D. (1991) Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into virus-like particles. J. Gen. Virol. 72, 1543-1550. – reference: Wittmann, S., Chatel, H. and Fortin, M.G. (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 92(234), 84-92. – reference: Chandrasekaran, J., Brumin, M., Wolf, D., Klap, C., Sherman, A. and Arazi, T. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. in press. – reference: Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J., Qui, J. and Gao, C. (2013) Targeted genome modification of crop plants using CRISPR-Cas system. Nat. Biotechnol. 31, 686-688. doi:10.1038/nbt.2650 – reference: Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., Puigdomènech, P., Pitrat, M., Caboche, M., Dogimont, C., Garcia-Mas, J., Aranda, M.A. and Bendahmane, A. (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 452-462. doi:10.1111/j.1365-313X.2006.02885.x – reference: Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One, 5(6), e11313. doi:10.1371/journal.pone.0011313 – reference: Garcia-Ruiz, H., Takeda, A., Chapman, E.J., Sullivan, C.M., Fahlgren, N., Brempelis, K.J. and Carrington, J.C. (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056 – reference: Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-822. – reference: Ronde, D. De, Butterbach, P. and Kormelink, R. (2014) Dominant resistance against plant viruses. Front. Plant Sci. 5, 1-17. doi:10.3389/fpls.2014.00307 – reference: Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, 1-12. doi:10.1093/nar/gkt780 – reference: Ruffel, S., Gallois, J.L., Lesage, M.L. and Caranta, C. (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol. Genet. Genom. 274(4), 346-353. doi:10.1007/s00438-005-0003-x – reference: Tilman, D., Balzer, C., Hill, J. and Befort, B.L. (2011) Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA, 108(50), 20260-20264. doi:10.1073/pnas.1116437108 – reference: Gibbs, A. and Ohshima, K. (2010) Potyviruses and the digital revolution. Annu. Rev. Phytopathol. 48, 205-223. doi:10.1146/annurev-phyto-073009 – reference: Stemmer, M., Thumberger, T., Keyer, S., Wittbrodt, J. and Mateo, J.L. (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 9, 1-11. doi:10.1371/journal.pone.0124633 – reference: Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H. and Yang, B. (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 1, 1-12. doi:10.1093/nar/gku806 – reference: White, J.L. and Kaper, J.M. (1989) A simple method for detection of viral satellite RNAs in small plant tissue samples. J. Virol. Methods, 23, 83-94. – reference: Zhu, J., Song, N., Sun, S., Yang, W., Zhao, H., Song, W. and Lai, J. (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J. Genet. Genom. 43(1), 25-36. doi:10.1016/j.jgg.2015.10.006 – reference: Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA, 109(39), 2579-2586. doi:10.1073/pnas.1208507109 – reference: Ito, Y., Nishizawa-yokoi, A., Endo, M. and Mikami, M. (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Comm. 467(1), 76-82. doi:10.1016/j.bbrc.2015.09.117 – reference: Gaj, T., Gersbach, C.A. and Barbas, C.F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31(7), 397-405. doi:10.1016/j.tibtech.2013.04.004 – reference: Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16(238), 1-11. doi:10.1186/s13059-015-0799-6 – reference: Nicaise, V., German-retana, S., Sanjua, R., Dubrana, M., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. and Legall, O. (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus. Plant Physiol. 132, 1272-1282. doi:10.1104/pp.102.017855.recessive – volume: 16 start-page: 1 year: 2015 end-page: 11 article-title: CRISPR/Cas9‐mediated viral interference in plants publication-title: Genome Biol. – volume: 94 start-page: 490 issue: 5 year: 2004 end-page: 496 article-title: Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato publication-title: Phytopathology – volume: 153 start-page: 910 issue: 4 year: 2013 end-page: 918 article-title: Resource one‐step generation of mice carrying mutations in multiple genes by CRISPR/Cas‐mediated genome engineering publication-title: Cell – volume: 91 start-page: 288 issue: Pt 1 year: 2010 end-page: 293 article-title: Single amino acid changes in the turnip mosaic virus viral genome‐linked protein (VPg) confer virulence towards mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G publication-title: J. Gen. Virol. – volume: 59 start-page: 400 year: 2009 end-page: 412 article-title: Selective recruitment of proteins to 5’ cap complexes during the growth cycle in Arabidopsis publication-title: Plant J. – volume: 9 start-page: 1 year: 2015 end-page: 11 article-title: CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool publication-title: PLoS One – start-page: 426 year: 2009 end-page: 430 publication-title: Desk Encyclopedia of Plant and Fungal Virology – volume: 48 start-page: 205 year: 2010 end-page: 223 article-title: Potyviruses and the digital revolution publication-title: Annu. Rev. Phytopathol. – volume: 4 start-page: 376 year: 2004 end-page: 385 article-title: The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell‐to‐cell trafficking publication-title: Plant J. – volume: 92 start-page: 84 issue: 234 year: 1997 end-page: 92 article-title: Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of using the yeast two‐hybrid system publication-title: Virology – volume: 51 start-page: 571 year: 2013 end-page: 586 article-title: Continuous and emerging challenges of Potato virus Y in potato publication-title: Annu. Rev. Phytopathol. – volume: 21 start-page: 929 issue: 5 year: 2012 end-page: 938 article-title: Overexpression of the wild potato eIF4E‐1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E‐1 publication-title: Transgenic Res. – volume: 337 start-page: 816 year: 2012 end-page: 822 article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – start-page: 2341 year: 2003 end-page: 2352 article-title: Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease publication-title: Arch. Virol. 148 – article-title: Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology publication-title: Mol. Plant Pathol. – volume: 31 start-page: 227 issue: 3 year: 2013 end-page: 229 article-title: Efficient genome editing in zebrafish using a CRISPR‐Cas system publication-title: Nat. Biotechnol. – volume: 20 start-page: 717 issue: 6 year: 2007 end-page: 726 article-title: RNAi‐mediated resistance to Bean golden mosaic virus in genetically engineered common bean ( ) publication-title: Mol. Plant–Microbe Interact. – volume: 63 start-page: 4459 issue: 10 year: 1989 end-page: 4463 article-title: Autocatalytic processing of the potyvirus helper component proteinase in and in vitro Cl‐l publication-title: J. Virol. – volume: 41 start-page: 1 year: 2013 end-page: 12 article-title: Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice publication-title: Nucleic Acids Res. – volume: 95 start-page: 10 300 year: 1998 end-page: 10 305 article-title: Genetically engineered broad‐spectrum disease resistance publication-title: Proc. Natl. Acad. Sci. USA – volume: 274 start-page: 346 issue: 4 year: 2005 end-page: 353 article-title: The recessive potyvirus resistance gene pot‐1 is the tomato orthologue of the pepper pvr2‐eIF4E gene publication-title: Mol. Genet. Genom. – volume: 11 start-page: 255 year: 2010 end-page: 263 article-title: Potyviral resistance derived from cultivars of carrying bc‐3 is associated with the homozygotic presence of a mutated eIF4E allele publication-title: Mol. Plant Pathol. – volume: 43 start-page: 25 issue: 1 year: 2016 end-page: 36 article-title: Efficiency and inheritance of targeted mutagenesis in maize using CRISPR‐Cas9 publication-title: J. Genet. Genom. – volume: 22 start-page: 481 issue: 2 year: 2010 end-page: 496 article-title: Arabidopsis RNA‐dependent RNA polymerases and dicer‐like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection publication-title: Plant Cell – volume: 12 start-page: 1046 issue: 02 year: 2002 end-page: 1051 article-title: Loss‐of‐susceptibility mutants of reveal an essential role for eIF (iso) 4E during Potyvirus infection publication-title: Curr. Biol. – volume: 32 start-page: 927 issue: 6 year: 2002 end-page: 934 article-title: The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses publication-title: Plant J. – volume: 15 start-page: 16 year: 2015 article-title: Targeted genome modifications in soybean with CRISPR/Cas9 publication-title: BMC Biotechnol. – volume: 23 start-page: 83 year: 1989 end-page: 94 article-title: A simple method for detection of viral satellite RNAs in small plant tissue samples publication-title: J. Virol. Methods – volume: 23 start-page: 1 year: 2013 end-page: 4 article-title: Efficient genome editing in plants using a CRISPR/Cas system publication-title: Cell Res. – volume: 10 start-page: 1 year: 2015 end-page: 13 article-title: CRISPR/Cas9‐mediated genome editing in soybean hairy roots publication-title: PLoS One – volume: 41 start-page: 63 issue: 2 year: 2014 end-page: 68 article-title: Targeted mutagenesis in using TALENs and the CRISPR/Cas system publication-title: J. Genet. Genom. – volume: 32 start-page: 107 year: 1996 end-page: 144 article-title: The plant translational apparatus publication-title: Plant Mol. Biol. – volume: 199 start-page: 959 issue: 4 year: 2015 end-page: 971 article-title: Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design publication-title: Genetics – volume: 72 start-page: 1543 year: 1991 end-page: 1550 article-title: Expression of potyvirus coat protein in and yeast and its assembly into virus‐like particles publication-title: J. Gen. Virol. – volume: 527 start-page: 110 issue: 7576 year: 2015 end-page: 113 article-title: Conformational control of DNA target cleavage by CRISPR‐Cas9 publication-title: Nature – volume: 31 start-page: 684 year: 2013 end-page: 686 article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR‐Cas systems publication-title: Nat. Biotechnol. – volume: 109 start-page: 2579 issue: 39 year: 2012 end-page: 2586 article-title: Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 2395 issue: 10 year: 2014 end-page: 2410 article-title: Genome editing in rice and wheat using the CRISPR/Cas system publication-title: Nat. Protocol. – volume: 9 start-page: 1014 issue: 9 year: 2011 end-page: 1021 article-title: Engineering virus resistance using a modified potato gene publication-title: Plant Biotechnol. J. – volume: 5 start-page: e11313 issue: 6 year: 2010 article-title: An induced mutation in tomato eIF4E leads to immunity to two potyviruses publication-title: PLoS One – volume: 579 start-page: 1167 year: 2005 end-page: 1171 article-title: Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of by potyviruses publication-title: FEBS Lett. – volume: 42 start-page: 912 year: 2005 end-page: 922 article-title: The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in (L.) publication-title: Plant J. – volume: 132 start-page: 1272 year: 2003 end-page: 1282 article-title: The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus publication-title: Plant Physiol. – volume: 31 start-page: 691 year: 2013 end-page: 693 article-title: Targeted mutagenesis in the model plant using Cas9 RNA‐guided endonuclease publication-title: Nat. Biotechnol. – volume: 32 start-page: 1067 year: 2002 end-page: 1075 article-title: A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor publication-title: Plant J. – volume: 108 issue: 50 year: 2011 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 455 year: 2000 end-page: 457 article-title: Targeted screening for induced mutations publication-title: Nat. Biotechnol. – start-page: 452 year: 2006 end-page: 462 article-title: An eIF4E allele confers resistance to an uncapped and non‐polyadenylated RNA virus in melon publication-title: Plant J. – volume: 21 start-page: 131 year: 2003 end-page: 132 article-title: RNAi targeting of DNA virus in plants publication-title: Nat. Biotechnol. – volume: 31 start-page: 686 year: 2013 end-page: 688 article-title: Targeted genome modification of crop plants using CRISPR‐Cas system publication-title: Nat. Biotechnol. – volume: 79 start-page: 348 year: 2014 end-page: 359 article-title: Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in publication-title: Plant J. – volume: 31 start-page: 827 issue: 9 year: 2013 end-page: 832 article-title: DNA targeting specificity of RNA‐guided Cas9 nucleases publication-title: Nat. Biotechnol. – volume: 166 start-page: 1292 year: 2014 end-page: 1297 article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR‐associated9 system publication-title: Plant Physiol. – volume: 1 start-page: 1 year: 2014 end-page: 12 article-title: Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice publication-title: Nucleic Acids Res. – volume: 5 start-page: 1 year: 2014 end-page: 17 article-title: Dominant resistance against plant viruses publication-title: Front. Plant Sci. – volume: 31 start-page: 397 issue: 7 year: 2013 end-page: 405 article-title: ZFN, TALEN, and CRISPR/Cas‐based methods for genome engineering publication-title: Trends Biotechnol. – volume: 6 start-page: 449 year: 2005 end-page: 458 article-title: Evidence that the recessive bymovirus resistance locus rym 4 in barley corresponds to the eukaryotic translation initiation factor 4E publication-title: Mol. Plant Pathol. – volume: 467 start-page: 76 issue: 1 year: 2015 end-page: 82 article-title: CRISPR/Cas9‐mediated mutagenesis of the RIN locus that regulates tomato fruit ripening publication-title: Biochem. Biophys. Res. Comm. – ident: e_1_2_6_20_1 doi: 10.1105/tpc.109.073056 – ident: e_1_2_6_22_1 doi: 10.1146/annurev-phyto-073009 – ident: e_1_2_6_42_1 doi: 10.1038/nbt0203-131b – ident: e_1_2_6_58_1 doi: 10.1093/nar/gku806 – ident: e_1_2_6_14_1 doi: 10.1534/genetics.115.175166 – ident: e_1_2_6_12_1 doi: 10.1007/s11248-011-9576-9 – ident: e_1_2_6_49_1 doi: 10.1038/nprot.2014.157 – ident: e_1_2_6_57_1 doi: 10.1094/PHYTO.2004.94.5.490 – ident: e_1_2_6_24_1 doi: 10.1038/nbt.2501 – ident: e_1_2_6_39_1 doi: 10.1111/j.1365-313X.2006.02885.x – ident: e_1_2_6_2_1 doi: 10.1186/s13059-015-0799-6 – ident: e_1_2_6_4_1 doi: 10.1094/MPMI-20-6-0717 – ident: e_1_2_6_28_1 doi: 10.1093/nar/gkt780 – ident: e_1_2_6_35_1 doi: 10.1111/j.1365-313X.2006.02670.x – ident: e_1_2_6_31_1 doi: 10.1146/annurev-phyto-082712-102332 – start-page: 426 year: 2009 ident: e_1_2_6_43_1 publication-title: Desk Encyclopedia of Plant and Fungal Virology – ident: e_1_2_6_8_1 doi: 10.1371/journal.pone.0136064 – ident: e_1_2_6_5_1 doi: 10.1104/pp.114.247577 – ident: e_1_2_6_37_1 doi: 10.1038/nbt.2655 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0011313 – ident: e_1_2_6_29_1 doi: 10.1126/science.1225829 – ident: e_1_2_6_16_1 doi: 10.1038/cr.2013.114 – ident: e_1_2_6_45_1 doi: 10.1046/j.1365-313X.2002.01499.x – ident: e_1_2_6_27_1 doi: 10.1099/0022-1317-72-7-1543 – ident: e_1_2_6_9_1 doi: 10.1128/jvi.63.10.4459-4463.1989 – ident: e_1_2_6_51_1 doi: 10.1371/journal.pone.0124633 – ident: e_1_2_6_33_1 doi: 10.1038/nbt.2652 – ident: e_1_2_6_59_1 doi: 10.1016/j.jgg.2015.10.006 – ident: e_1_2_6_44_1 doi: 10.3389/fpls.2014.00307 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-313X.2009.03882.x – ident: e_1_2_6_17_1 doi: 10.1016/j.tibtech.2013.04.004 – ident: e_1_2_6_40_1 doi: 10.1073/pnas.95.17.10300 – ident: e_1_2_6_54_1 doi: 10.1016/j.cell.2013.04.025 – ident: e_1_2_6_23_1 doi: 10.1038/nbt.2647 – ident: e_1_2_6_3_1 doi: 10.1007/s00705-003-0179-5 – ident: e_1_2_6_56_1 doi: 10.1006/viro.1997.8634 – ident: e_1_2_6_10_1 doi: 10.1111/j.1467-7652.2011.00622.x – ident: e_1_2_6_11_1 article-title: Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology publication-title: Mol. Plant Pathol. – ident: e_1_2_6_15_1 doi: 10.1111/tpj.12554 – ident: e_1_2_6_25_1 doi: 10.1016/j.bbrc.2015.09.117 – ident: e_1_2_6_30_1 doi: 10.1111/J.1364-3703.2005.00294.X – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-313X.2005.02424.x – ident: e_1_2_6_13_1 doi: 10.1046/j.1365-313X.2002.01481.x – ident: e_1_2_6_26_1 doi: 10.1186/s12896-015-0131-2 – ident: e_1_2_6_36_1 doi: 10.1111/J.1364-3703.2009.00602.X – ident: e_1_2_6_19_1 doi: 10.1111/j.1365-313X.2004.02215.x – ident: e_1_2_6_6_1 doi: 10.1007/BF00039380 – ident: e_1_2_6_21_1 doi: 10.1073/pnas.1208507109 – ident: e_1_2_6_48_1 doi: 10.1038/nbt.2650 – ident: e_1_2_6_47_1 doi: 10.1016/j.febslet.2004.12.086 – ident: e_1_2_6_18_1 doi: 10.1099/vir.0.015321-0 – ident: e_1_2_6_46_1 doi: 10.1007/s00438-005-0003-x – ident: e_1_2_6_34_1 doi: 10.1016/j.jgg.2013.12.001 – ident: e_1_2_6_55_1 doi: 10.1016/0166-0934(89)90122-5 – ident: e_1_2_6_52_1 doi: 10.1038/nature15544 – ident: e_1_2_6_32_1 doi: 10.1016/S0960-9822(02)00898-9 – ident: e_1_2_6_53_1 doi: 10.1073/pnas.1116437108 – ident: e_1_2_6_38_1 doi: 10.1104/pp.102.017855.recessive |
SSID | ssj0017925 |
Score | 2.596107 |
Snippet | Summary
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been... Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E , have previously been identified as... Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as... Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1276 |
SubjectTerms | alleles Amino Acid Sequence Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - virology Arabidopsis thaliana Base Sequence Biomass Chromosome Segregation - genetics CRISPR-Cas Systems - genetics CRISPR/Cas9 Crops Crosses, Genetic Disease Resistance - genetics eIF(iso)4E Electrophoresis, Agar Gel engineering Eukaryotic Initiation Factor-4E - genetics flowering Flowers - physiology Gene Editing Genetic Engineering - methods Green Fluorescent Proteins - metabolism Growth conditions homozygosity hosts introgression loci mutagenesis Mutagenesis, Site-Directed Mutation Mutation - genetics Original pathogens Plants, Genetically Modified point mutation Polymerase Chain Reaction Potyvirus Potyvirus - physiology RNA, Guide, CRISPR-Cas Systems - metabolism self-pollination transgene-free Transgenes translation (genetics) TuMV Turnip mosaic virus vegetable crops vigor virus resistance |
Title | Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants |
URI | https://api.istex.fr/ark:/67375/WNG-N4S6ZT4X-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12417 https://www.ncbi.nlm.nih.gov/pubmed/27103354 https://www.proquest.com/docview/1817414591 https://www.proquest.com/docview/1827900078 https://www.proquest.com/docview/1846324838 https://pubmed.ncbi.nlm.nih.gov/PMC5026172 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGeIGH8c0KYzIIIV5SGsdOYvE0VYyB1CrqNlEhpMhfgWojidIUAU_8BH4jv4Rr50MtDIR4qSrlRG2uz7WP23uPEXocMRPDrkF5UsSBRyHdPElC6WXCFyNfwz2B7UaeTMOjU_p6zuZb6HnXC9P4Q_Q_uNnMcPO1TXAhl2tJ_rEsh7A4-baT3NZqWUE0662jgGfuwFWYCKgXRoS0rkK2iqe_c2MtumzD-vkiofl7veS6jnUL0eE19K57hKb-5Gy4quVQff3F3fE_n_E62mkFKj5oGHUDbZn8Jrp68L5qTTrMLSTWTAxxkeHx7NVxMns2Fkv-49t314sCOhaXRf3l06JaLTFs6a1MBX7hRY5ruzwCbw2As8oY-CwhF7ooAYTLc1uYcxudHr44GR957VENngphi-uBjBOaMy25DmJllIlti72MuAaJIRVnURCOYhh6BjMI9X2eMa6EUDJTQlM9Cu6g7bzIzS7CMQ-FBBFBSKSp1LEgI-CNjIhQPOBUD9DTbtBS1fqY2-M0ztNuPwNRS13UBuhRDy0b846LQE_cyPcIUZ3ZareIpW-mL9MpPQ7fntB5CsC9jhppm-jLFAQSaDLKuD9AD_vLkKL2fxeRm2JlMSTiToz9DUOtcX4cAOZuw7b-CxFQgUHA6ABFGzzsAdYifPNKvvjgrMKZc9wnEDNHsz9HIZ0kiXtz79-h99EVkI9hU9q4h7bramUegESr5T66RGiy7zISXqfJ5CffPz1p |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VdgEseD8CBQwCxMYhHo8fs2BRpZSENlGUpiJiY-ZliFpsy3aAsuIT-BB-hZ_gS7gzdqwECmLTBTtLPrbHM_feOWPfORehh4GnQlg1CJuz0LUJuJvNsc_tmDms40i4xtW7kQdDv3dAXk696Rr6ttgLU-lDNB_ctGeYeK0dXH-QXvLy91nWhtnJCeqUyl11_BEWbMWz_jaM7iOMd55Puj27rilgCx_WYjbwDSapJzmVbiiUUKHeC84DKmEu5IJ6get3QmijB6ZOHIfGHhWMCR4LJonsuHDfM2hDVxDXSv3b40asCizblHiF0ENsP8C41jHSeUNNU1dmvw09kJ9Oora_Z2guM2cz9e1cRN8XnVZlvBy25yVvi8-_6En-L716CV2oObi1VTnNZbSmkivo_NbbvNYhUVcRW9JptNLY6o77-6Px0y4r6I8vX812G6DqVpaWxx9m-bywclVoJg4uZM0Sq9QMAFxTATjOlYJnMT6TaQYgKzvSuUfX0MGpvON1tJ6kibqJrJD6jANPwjiQhMuQ4Q64Bg8wE9SlRLbQk4WVRKKWatcVQ46ixZINRikyo9RCDxpoVumTnAR6bEytQbD8UCf0BV70avgiGpJ9__WETCMAbi5sMapjWREBBwTaSTzqtND95jREIf1riSUqnWsMDqjhm3_DEF0bIHQBc6My76ZBGIiu63qkhYIVw28AWgV99Uwye2fU0D1TVABDnxm7_nMvRIPRyBzc-nfoPXS2NxnsRXv94e5tdA7Ysl9lcm6i9TKfqzvASEt-1wQCC705bR_5Cec5mp0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZGKyF2gfhfYUBAgLgJJI4dxxdcVB1lZayqthWq3QQ7dqBiJFHaArvjEXgP3oon4dhJo1YMxM3uIuVLYvmck_Od5PgzQo8Y1RFUDYkrRRS4BMLNlTiUbip84fkKrgnMauT9Ybg7Jq8ndLKBfi7XwlT6EM0HNxMZ9n1tArxQ6UqQfy6KZ5CcfFZ3VO7p069Qr81eDHbAuI8x7r886u269ZYCbhJCKeYC3RCKUyW5CqJEJzoyS8El4wpSoUw4ZUHoRTBECp5OfJ-nlCdCJDJNhCLKC-C-F1CbQhb0WqjdfTs-Hjc_LRi3e7zCu4e4IcO4FjIyjUPNYNfSX9tY8ttZ3PbPFs1V6mxzX_8KulyTVqdbedlVtKGza2iz-6GshTv0dSRWhA2dPHV6B4PD0cHznpjxX99_2PUpwG2dIp-ffpmWi5kDZb6hruBzzjRz5iZlgi9rAKel1vAsIacqLwDkFCemWecGGp_LXN9ErSzP9BZyIh4KCcQCY6aIVJHAHviSZFgkPOBEddDT5azGSa1tbrbYOImXNQ4YILYG6KCHDbSoBD3OAj2xpmkQovxkOuAYjd8NX8VDchgeH5FJDMDtpe3iOvhnMZAm4GmEcr-DHjSnIWzNvxiR6XxhMJhxS9D-hSFGTD8KAHOrcodmQBiYYRBQ0kFszVEagJENXz-TTT9a-XBqVfgxzJl1qb_PQrw_GtmD2_8PvY8ujnb68ZvBcO8OugTsMqw6H7dRa14u9F1gcHN5r44cB70_72D9DbW-WmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+CRISPR%2FCas9-mediated+potyvirus+resistance+in+transgene-free+Arabidopsis+plants&rft.jtitle=Molecular+plant+pathology&rft.au=Pyott%2C+Douglas+E&rft.au=Sheehan%2C+Emma&rft.au=Molnar%2C+Attila&rft.date=2016-10-01&rft.issn=1464-6722&rft.eissn=1364-3703&rft.volume=17&rft.issue=8&rft.spage=1276&rft.epage=1288&rft_id=info:doi/10.1111%2Fmpp.12417&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon |