Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants

Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant pathology Vol. 17; no. 8; pp. 1276 - 1288
Main Authors Pyott, Douglas E., Sheehan, Emma, Molnar, Attila
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.10.2016
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.
AbstractList Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T₂ generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T₃ lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence-specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field-grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene-free T sub(2) generation in self-pollinating species. Analysis of dry weights and flowering times for four independent T sub(3) lines revealed no differences from wild-type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E , have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T 2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T 3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence-specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field-grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene-free T2 generation in self-pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild-type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.
Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.
Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence-specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field-grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene-free T2 generation in self-pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild-type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.
Author Sheehan, Emma
Pyott, Douglas E.
Molnar, Attila
AuthorAffiliation 1 Institute of Molecular Plant Sciences, University of Edinburgh Edinburgh EH9 3JR UK
AuthorAffiliation_xml – name: 1 Institute of Molecular Plant Sciences, University of Edinburgh Edinburgh EH9 3JR UK
Author_xml – sequence: 1
  givenname: Douglas E.
  surname: Pyott
  fullname: Pyott, Douglas E.
  organization: Institute of Molecular Plant Sciences, University of Edinburgh, EH9 3JR, Edinburgh, UK
– sequence: 2
  givenname: Emma
  surname: Sheehan
  fullname: Sheehan, Emma
  organization: Institute of Molecular Plant Sciences, University of Edinburgh, EH9 3JR, Edinburgh, UK
– sequence: 3
  givenname: Attila
  surname: Molnar
  fullname: Molnar, Attila
  email: attila.molnar@ed.ac.uk, attila.molnar@ed.ac.uk
  organization: Institute of Molecular Plant Sciences, University of Edinburgh, EH9 3JR, Edinburgh, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27103354$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A-98A_IgDd6Md18TiY3QllqW6h1aSuKICGTObOmziZjMtO6_96su1u0KJibHMjzvnlPcvazHecdZNlzjA5xWpNF3x9iwrB4lO1hWrKCCkR3Us1SXQpCdrP9GG8QwkIS_iTbJQIjSjnby74cu7l1AMG6ee7bfHp5djW7nEx1lMUCGqsHaPLeD8tbG8aYB4g2DtoZyK3Lh6BdnIODog0A-VHQtW18n5C877Qb4tPscau7CM82-0H24e3x9fS0OH9_cjY9Oi9MWVFRUE50I3lTy4ZWBgxUjOKyFrJBFamN5IKWqGqM4RVNbWLZcmm0NnVrdMMaRA-yN2vffqxTagMuRetUH-xCh6Xy2qo_T5z9qub-VnFESixIMni1MQj--whxUAsbDXSpC_BjVLhiZbq6otV_oERIhJBYoS8foDd-DC69RKKwYJhxiRP14vfw96m3n5SAyRowwccYoFXGDnqwftWL7RRGajUGKo2B-jUGSfH6gWJr-jd2435nO1j-G1TvZrOtolgr0ijAj3uFDt9UKajg6uPFibpgV-Xna_ZJCfoTVlDRDA
CODEN MPPAFD
CitedBy_id crossref_primary_10_1098_rstb_2018_0322
crossref_primary_10_1093_g3journal_jkac105
crossref_primary_10_1038_s41598_017_14832_9
crossref_primary_10_12688_f1000research_20179_1
crossref_primary_10_1094_PHYTO_07_19_0267_IA
crossref_primary_10_1038_nrg_2017_82
crossref_primary_10_1007_s00425_023_04259_0
crossref_primary_10_3390_plants10020293
crossref_primary_10_3390_plants10091914
crossref_primary_10_1089_crispr_2020_0103
crossref_primary_10_1371_journal_pone_0181998
crossref_primary_10_3389_fmicb_2019_00017
crossref_primary_10_1007_s41348_020_00330_0
crossref_primary_10_3389_fgene_2021_735489
crossref_primary_10_1093_hr_uhad078
crossref_primary_10_3389_fpls_2023_1143813
crossref_primary_10_3389_fpls_2020_01126
crossref_primary_10_1080_07352689_2020_1810970
crossref_primary_10_1186_s12896_020_00604_3
crossref_primary_10_3389_fmicb_2017_00047
crossref_primary_10_1080_21645698_2020_1831729
crossref_primary_10_1134_S0006297918120131
crossref_primary_10_35118_apjmbb_2022_030_3_05
crossref_primary_10_3390_ijms22031292
crossref_primary_10_3389_fpls_2018_00985
crossref_primary_10_1007_s12033_024_01337_w
crossref_primary_10_1093_bfgp_ely016
crossref_primary_10_3389_fpls_2018_02008
crossref_primary_10_1360_SSV_2023_0117
crossref_primary_10_1016_j_pbi_2021_102073
crossref_primary_10_5423_RPD_2018_24_1_9
crossref_primary_10_1080_03235408_2021_1895476
crossref_primary_10_1111_pbi_12927
crossref_primary_10_1007_s12355_023_01252_5
crossref_primary_10_1002_fes3_168
crossref_primary_10_1094_PHYTO_03_16_0145_FI
crossref_primary_10_3389_fmicb_2020_609784
crossref_primary_10_3389_fgeed_2020_00005
crossref_primary_10_3390_genes12111781
crossref_primary_10_3390_biology13060421
crossref_primary_10_1094_PHYTO_01_23_0002_V
crossref_primary_10_2222_jsv_70_61
crossref_primary_10_1016_j_micpath_2019_103551
crossref_primary_10_2174_1389202921999200712135131
crossref_primary_10_1007_s13562_022_00767_4
crossref_primary_10_1111_pbi_12896
crossref_primary_10_1080_07060661_2023_2215212
crossref_primary_10_1007_s12600_017_0636_4
crossref_primary_10_53471_bahce_1481956
crossref_primary_10_5423_RPD_2019_25_2_49
crossref_primary_10_1007_s11033_022_07704_7
crossref_primary_10_1093_hr_uhab023
crossref_primary_10_1007_s13562_020_00606_4
crossref_primary_10_1007_s10340_022_01520_5
crossref_primary_10_3389_fpls_2024_1369883
crossref_primary_10_1007_s10142_024_01325_y
crossref_primary_10_1007_s10529_020_02950_w
crossref_primary_10_1016_j_rsci_2019_08_001
crossref_primary_10_1080_03235408_2021_1910415
crossref_primary_10_1007_s11248_021_00262_x
crossref_primary_10_1016_j_pmpp_2024_102402
crossref_primary_10_1038_s41598_019_42400_w
crossref_primary_10_1002_pld3_168
crossref_primary_10_1016_j_micres_2024_127940
crossref_primary_10_1007_s11240_022_02421_2
crossref_primary_10_2174_1389201023666220307104501
crossref_primary_10_3389_fpls_2022_843575
crossref_primary_10_3389_fpls_2016_01673
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1007_s13237_024_00472_8
crossref_primary_10_3389_fpls_2021_700925
crossref_primary_10_1007_s12033_022_00456_6
crossref_primary_10_1111_nph_18212
crossref_primary_10_1007_s13562_021_00746_1
crossref_primary_10_1101_cshperspect_a034595
crossref_primary_10_1093_jxb_erz476
crossref_primary_10_1111_pbi_13885
crossref_primary_10_1016_j_coviro_2017_07_024
crossref_primary_10_1080_07388551_2018_1554621
crossref_primary_10_31590_ejosat_765369
crossref_primary_10_1016_j_isci_2020_101478
crossref_primary_10_3389_fpls_2017_00539
crossref_primary_10_3389_fgeed_2024_1415244
crossref_primary_10_1186_s13059_020_02204_y
crossref_primary_10_1080_09540105_2024_2358795
crossref_primary_10_1080_21655979_2017_1297347
crossref_primary_10_1007_s11033_022_07741_2
crossref_primary_10_1111_pbi_13096
crossref_primary_10_47262__BL_7_2_20210711
crossref_primary_10_1088_1755_1315_974_1_012082
crossref_primary_10_5897_AJB2018_16532
crossref_primary_10_3389_fbioe_2019_00031
crossref_primary_10_1016_j_jbiotec_2020_09_013
crossref_primary_10_3390_synbio2030016
crossref_primary_10_1080_07352689_2020_1782568
crossref_primary_10_3390_cimb46100659
crossref_primary_10_1590_1678_4685_gmb_2016_0043
crossref_primary_10_1007_s41348_020_00342_w
crossref_primary_10_3390_ijms242015448
crossref_primary_10_3390_v13102100
crossref_primary_10_1016_j_pmpp_2023_102202
crossref_primary_10_3389_fpls_2023_1134653
crossref_primary_10_3390_horticulturae8030191
crossref_primary_10_1146_annurev_phyto_021622_120703
crossref_primary_10_1007_s11248_018_0072_3
crossref_primary_10_1016_j_wpi_2019_101944
crossref_primary_10_1016_j_plantsci_2021_111160
crossref_primary_10_3389_fgene_2023_1204585
crossref_primary_10_1111_mpp_13252
crossref_primary_10_3390_plants10071481
crossref_primary_10_1016_j_coviro_2017_07_005
crossref_primary_10_1134_S0003683819090047
crossref_primary_10_3389_fpls_2020_01092
crossref_primary_10_3390_plants10010082
crossref_primary_10_3389_fpls_2020_01098
crossref_primary_10_1007_s11032_017_0620_1
crossref_primary_10_1007_s10327_024_01189_x
crossref_primary_10_3390_ijms24010360
crossref_primary_10_1042_ETLS20170010
crossref_primary_10_1093_plphys_kiac103
crossref_primary_10_1016_j_jgg_2023_07_009
crossref_primary_10_1094_PHYTO_08_20_0322_IA
crossref_primary_10_1111_pbi_12987
crossref_primary_10_3389_fpls_2020_572193
crossref_primary_10_15835_nbha50312388
crossref_primary_10_1146_annurev_phyto_020620_114550
crossref_primary_10_3390_cells8111386
crossref_primary_10_3390_plants12234020
crossref_primary_10_1111_pbi_13278
crossref_primary_10_3389_fpls_2019_00550
crossref_primary_10_3390_v10090484
crossref_primary_10_3390_agronomy12030565
crossref_primary_10_1093_bfgp_elz041
crossref_primary_10_1016_j_pmpp_2018_05_006
crossref_primary_10_1080_21645698_2019_1631115
crossref_primary_10_1016_j_biotechadv_2017_11_008
crossref_primary_10_1111_ppl_13686
crossref_primary_10_1016_j_jbiotec_2020_05_008
crossref_primary_10_61186_pps_12_1_113
crossref_primary_10_1111_nph_16993
crossref_primary_10_1111_aab_12755
crossref_primary_10_1002_lipd_12249
crossref_primary_10_3390_ijms21165665
crossref_primary_10_3389_fpls_2020_598798
crossref_primary_10_1016_j_stress_2022_100056
crossref_primary_10_3390_plants10071264
crossref_primary_10_3389_fgeed_2021_784233
crossref_primary_10_1111_pbi_12758
crossref_primary_10_1080_21655979_2022_2099599
crossref_primary_10_1016_j_plantsci_2022_111376
crossref_primary_10_3390_agriculture14020284
crossref_primary_10_3389_fpls_2021_652319
crossref_primary_10_3389_fmicb_2020_609376
crossref_primary_10_1007_s11248_019_00135_4
crossref_primary_10_1186_s13578_017_0148_4
crossref_primary_10_3390_biology12071037
crossref_primary_10_1007_s00299_020_02516_0
crossref_primary_10_1093_plphys_kiab220
crossref_primary_10_31742_ISGPB_84_4_19
crossref_primary_10_3390_plants12132454
crossref_primary_10_1007_s12033_022_00507_y
crossref_primary_10_1186_s12284_019_0325_7
crossref_primary_10_3390_ijms23042303
crossref_primary_10_1002_wrna_1597
crossref_primary_10_1002_jcp_25970
crossref_primary_10_3389_fgeed_2022_987817
crossref_primary_10_1007_s44297_023_00020_x
crossref_primary_10_31857_S0015330323600109
crossref_primary_10_1016_j_pmpp_2017_10_003
crossref_primary_10_31676_0235_2591_2022_2_6_13
crossref_primary_10_1007_s41348_022_00677_6
crossref_primary_10_1099_jgv_0_000609
crossref_primary_10_1007_s13562_021_00765_y
crossref_primary_10_1007_s11427_019_9722_2
crossref_primary_10_1016_j_coviro_2020_04_005
crossref_primary_10_3390_ijms25021308
crossref_primary_10_1080_21645698_2021_1938488
crossref_primary_10_1007_s12600_022_00991_7
crossref_primary_10_3390_agriculture11121286
crossref_primary_10_51973_head_1209563
crossref_primary_10_1111_pbi_14442
crossref_primary_10_1007_s10142_023_01133_w
crossref_primary_10_1016_j_celrep_2017_04_037
crossref_primary_10_3389_fpls_2022_885128
crossref_primary_10_5423_PPJ_RW_09_2020_0178
crossref_primary_10_1002_tpg2_20220
crossref_primary_10_1016_j_plaphy_2018_03_027
crossref_primary_10_1016_j_semcdb_2019_04_008
crossref_primary_10_1016_j_jbiotec_2024_04_015
crossref_primary_10_1016_j_pmpp_2024_102482
crossref_primary_10_1079_PAVSNNR202015009
crossref_primary_10_1038_s41598_022_18923_0
crossref_primary_10_1111_mpp_12897
crossref_primary_10_3389_fpls_2017_01932
crossref_primary_10_3390_ijms24065660
crossref_primary_10_3389_fpls_2022_997888
crossref_primary_10_1007_s11033_023_08440_2
crossref_primary_10_3390_microorganisms7080269
crossref_primary_10_1111_pbi_12832
crossref_primary_10_3389_fpls_2016_01813
crossref_primary_10_1111_pbi_14333
crossref_primary_10_3389_fmicb_2016_01325
crossref_primary_10_3389_fnut_2021_751512
crossref_primary_10_3390_plants13233313
crossref_primary_10_3389_fpls_2018_01245
crossref_primary_10_1016_j_hpj_2020_03_001
crossref_primary_10_1002_jcp_29052
crossref_primary_10_1186_s42483_020_00060_z
crossref_primary_10_2174_2210298102666220324112842
crossref_primary_10_3389_fpls_2022_904829
crossref_primary_10_1016_j_tibtech_2018_04_005
crossref_primary_10_1007_s11816_017_0425_z
crossref_primary_10_1111_ppl_12680
crossref_primary_10_3389_fpls_2019_00114
crossref_primary_10_1016_j_jare_2020_10_003
crossref_primary_10_3390_cells11233928
crossref_primary_10_5010_JPB_2018_45_3_155
crossref_primary_10_1016_j_plantsci_2018_04_011
crossref_primary_10_1016_j_tplants_2017_01_008
crossref_primary_10_3390_biotech10030014
crossref_primary_10_1007_s13205_019_1760_2
crossref_primary_10_1111_mpp_13167
crossref_primary_10_1016_j_pmpp_2025_102640
crossref_primary_10_1111_pbi_13014
crossref_primary_10_3390_v14061245
crossref_primary_10_3390_v12070773
crossref_primary_10_3390_v13010141
crossref_primary_10_3389_fmicb_2020_593700
crossref_primary_10_3389_fmicb_2016_01695
crossref_primary_10_1007_s10709_021_00146_2
crossref_primary_10_1016_j_plaphy_2018_03_012
crossref_primary_10_1007_s11105_021_01286_7
crossref_primary_10_1146_annurev_arplant_010720_022215
crossref_primary_10_3389_fpls_2020_00056
crossref_primary_10_1016_j_biotechadv_2019_02_006
crossref_primary_10_1016_j_heliyon_2023_e14624
crossref_primary_10_1111_aab_12562
crossref_primary_10_1042_ETLS20170085
Cites_doi 10.1105/tpc.109.073056
10.1146/annurev-phyto-073009
10.1038/nbt0203-131b
10.1093/nar/gku806
10.1534/genetics.115.175166
10.1007/s11248-011-9576-9
10.1038/nprot.2014.157
10.1094/PHYTO.2004.94.5.490
10.1038/nbt.2501
10.1111/j.1365-313X.2006.02885.x
10.1186/s13059-015-0799-6
10.1094/MPMI-20-6-0717
10.1093/nar/gkt780
10.1111/j.1365-313X.2006.02670.x
10.1146/annurev-phyto-082712-102332
10.1371/journal.pone.0136064
10.1104/pp.114.247577
10.1038/nbt.2655
10.1371/journal.pone.0011313
10.1126/science.1225829
10.1038/cr.2013.114
10.1046/j.1365-313X.2002.01499.x
10.1099/0022-1317-72-7-1543
10.1128/jvi.63.10.4459-4463.1989
10.1371/journal.pone.0124633
10.1038/nbt.2652
10.1016/j.jgg.2015.10.006
10.3389/fpls.2014.00307
10.1111/j.1365-313X.2009.03882.x
10.1016/j.tibtech.2013.04.004
10.1073/pnas.95.17.10300
10.1016/j.cell.2013.04.025
10.1038/nbt.2647
10.1007/s00705-003-0179-5
10.1006/viro.1997.8634
10.1111/j.1467-7652.2011.00622.x
10.1111/tpj.12554
10.1016/j.bbrc.2015.09.117
10.1111/J.1364-3703.2005.00294.X
10.1111/j.1365-313X.2005.02424.x
10.1046/j.1365-313X.2002.01481.x
10.1186/s12896-015-0131-2
10.1111/J.1364-3703.2009.00602.X
10.1111/j.1365-313X.2004.02215.x
10.1007/BF00039380
10.1073/pnas.1208507109
10.1038/nbt.2650
10.1016/j.febslet.2004.12.086
10.1099/vir.0.015321-0
10.1007/s00438-005-0003-x
10.1016/j.jgg.2013.12.001
10.1016/0166-0934(89)90122-5
10.1038/nature15544
10.1016/S0960-9822(02)00898-9
10.1073/pnas.1116437108
10.1104/pp.102.017855.recessive
ContentType Journal Article
Copyright 2016 The Authors. Published by British Society for Plant Pathology and John Wiley & Sons Ltd
2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
2016 BSPP and John Wiley & Sons Ltd
Copyright_xml – notice: 2016 The Authors. Published by British Society for Plant Pathology and John Wiley & Sons Ltd
– notice: 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
– notice: 2016 BSPP and John Wiley & Sons Ltd
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
7S9
L.6
5PM
DOI 10.1111/mpp.12417
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
AIDS and Cancer Research Abstracts

MEDLINE

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Engineering
DocumentTitleAlternate CRISPR/Cas9‐induced potyvirus resistance
EISSN 1364-3703
EndPage 1288
ExternalDocumentID PMC5026172
4173244931
27103354
10_1111_mpp_12417
MPP12417
ark_67375_WNG_N4S6ZT4X_7
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BBSRC) EastBio Doctoral Training Partnership (DTP)
– fundername: James Hutton Institute
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/J01446X/1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29M
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X2
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABPVW
ACBWZ
ACCFJ
ACGFO
ACGFS
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADZMN
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFKRA
AFPWT
AFRAH
AFZJQ
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HVGLF
HYE
HZI
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
K48
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M0K
M7P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
~IA
~KM
~WT
AANHP
ACCMX
ACRPL
ACUHS
ACYXJ
ADNMO
AEUYN
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
M7N
P64
7S9
L.6
5PM
ID FETCH-LOGICAL-c6837-352ad95db9d38cece84316b79d082bc9573608dcc58324119f59caacbfcad4d03
IEDL.DBID DR2
ISSN 1464-6722
IngestDate Thu Aug 21 18:34:42 EDT 2025
Fri Jul 11 18:31:42 EDT 2025
Fri Jul 11 15:31:42 EDT 2025
Wed Aug 13 09:46:12 EDT 2025
Thu Jan 02 22:36:54 EST 2025
Tue Jul 01 01:14:57 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Wed Jan 22 16:31:49 EST 2025
Wed Oct 30 09:50:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords potyvirus
CRISPR/Cas9
TuMV
eIF(iso)4E
transgene-free
virus resistance
Language English
License Attribution
2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6837-352ad95db9d38cece84316b79d082bc9573608dcc58324119f59caacbfcad4d03
Notes ArticleID:MPP12417
ark:/67375/WNG-N4S6ZT4X-7
istex:1D5724788D8FDA0D12FA484D4BF2C929A6235860
James Hutton Institute
BBSRC) EastBio Doctoral Training Partnership (DTP
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12417
PMID 27103354
PQID 1817414591
PQPubID 1006541
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5026172
proquest_miscellaneous_1846324838
proquest_miscellaneous_1827900078
proquest_journals_1817414591
pubmed_primary_27103354
crossref_citationtrail_10_1111_mpp_12417
crossref_primary_10_1111_mpp_12417
wiley_primary_10_1111_mpp_12417_MPP12417
istex_primary_ark_67375_WNG_N4S6ZT4X_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Molecular plant pathology
PublicationTitleAlternate Molecular Plant Pathology
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Ruffel, S., Dussault, M., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor. Plant J. 32, 1067-1075.
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R. and Joung, J.K. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31(3), 227-229. doi:10.1038/nbt.2501
Naderpour, M., Lund, O.L.E.S., Larsen, R. and Johansen, E. (2010) Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. Mol. Plant Pathol. 11, 255-263. doi:10.1111/J.1364-3703.2009.00602.X
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1-4. doi:10.1038/cr.2013.114
Li, W., Teng, F., Li, T. and Zhou, Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31, 684-686. doi:10.1038/nbt.2652
Stemmer, M., Thumberger, T., Keyer, S., Wittbrodt, J. and Mateo, J.L. (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 9, 1-11. doi:10.1371/journal.pone.0124633
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-822.
Fauser, F., Schiml, S. and Puchta, H. (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359. doi:10.1111/tpj.12554
Asad, S., Haris, W.A.A., Bashir, A., Zafar, Y., Malik, K.A., Malik, N.N. and Lichtenstein, C.P. (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch. Virol. 148, 2341-2352. doi:10.1007/s00705-003-0179-5
Cavatorta, J., Perez, K.W., Gray, S.M., Van Eck, J., Yeam, I. and Jahn, M. (2011) Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9(9), 1014-1021. doi:10.1111/j.1467-7652.2011.00622.x
Ronde, D. De, Butterbach, P. and Kormelink, R. (2014) Dominant resistance against plant viruses. Front. Plant Sci. 5, 1-17. doi:10.3389/fpls.2014.00307
Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579, 1167-1171. doi:10.1016/j.febslet.2004.12.086
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, 1-12. doi:10.1093/nar/gkt780
Karasev, A.V. and Gray, S.M. (2013) Continuous and emerging challenges of Potato virus Y in potato. Annu. Rev. Phytopathol. 51, 571-586. doi:10.1146/annurev-phyto-082712-102332
Liang, Z., Zhang, K., Chen, K. and Gao, C. (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 41(2), 63-68. doi:10.1016/j.jgg.2013.12.001
Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16(238), 1-11. doi:10.1186/s13059-015-0799-6
Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C. and Jiang, B. (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 10(8), 1-13. doi:10.1371/journal.pone.0136064
Gao, Z., Johansen, E., Eyers, S., Thomas, C.L., Ellis, T.H.N., Maule, A.J. (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 4, 376-385. doi:10.1111/j.1365-313X.2004.02215.x
Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W. and Zhang, F. (2013) Resource one-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. doi:10.1016/j.cell.2013.04.025
McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455-457.
Pooggin, M.M., Shivaprasad, P.V., Veluthambi, K. and Hohn, T. (2003) RNAi targeting of DNA virus in plants. Nat. Biotechnol. 21, 131-132.
Ito, Y., Nishizawa-yokoi, A., Endo, M. and Mikami, M. (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Comm. 467(1), 76-82. doi:10.1016/j.bbrc.2015.09.117
Zhu, J., Song, N., Sun, S., Yang, W., Zhao, H., Song, W. and Lai, J. (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J. Genet. Genom. 43(1), 25-36. doi:10.1016/j.jgg.2015.10.006
Sternberg, S.H., Lafrance, B., Kaplan, M., Doudna, J.A. and Cas, C. (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature, 527(7576), 110-113. doi:10.1038/nature15544
Shan, Q., Wang, Y., Li, J. and Gao, C. (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protocol. 9(10), 2395-2410. doi:10.1038/nprot.2014.157
Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One, 5(6), e11313. doi:10.1371/journal.pone.0011313
Gallois, J.-L., Charron, C., Sánchez, F., Pagny, G., Houvenaghel, M.-C., Moretti, A., Ponz, F., Revers, F., Caranta, C. and German-Retana, S. (2010) Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. J. Gen. Virol. 91(Pt 1), 288-293. doi:10.1099/vir.0.015321-0
Duan, H., Richael, C. and Rommens, C.M. (2012) Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1. Transgenic Res. 21(5), 929-938. doi:10.1007/s11248-011-9576-9
Jagadish, M.N., Ward, C.W., Gough, K.H., Tulloch, P.A., Whittaker, L.A. and Shukla, D.D. (1991) Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into virus-like particles. J. Gen. Virol. 72, 1543-1550.
Gaj, T., Gersbach, C.A. and Barbas, C.F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31(7), 397-405. doi:10.1016/j.tibtech.2013.04.004
Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during Potyvirus infection. Curr. Biol. 12(02), 1046-1051.
Yang, Y., Sherwood, T.A., Patte, C.P., Hiebert, E. and Polston, J.E. (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology, 94(5), 490-496.
Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32(6), 927-934. doi:10.1046/j.1365-313X.2002.01481.x
Regenmortel, M. and Mahy, B. (2009) Desk Encyclopedia of Plant and Fungal Virology, Academic press, Oxford, pp. 426-430.
Wittmann, S., Chatel, H. and Fortin, M.G. (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 92(234), 84-92.
Bush, M.S., Hutchins, A.P., Jones, A.M.E., Naldrett, M.J., Jarmolowski, A., Lloyd, C.W. and Doonan, J.H. (2009) Selective recruitment of proteins to 5' cap complexes during the growth cycle in Arabidopsis. Plant J. 59, 400-412. doi:10.1111/j.1365-313X.2009.03882.x
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J., Qui, J. and Gao, C. (2013) Targeted genome modification of crop plants using CRISPR-Cas system. Nat. Biotechnol. 31, 686-688. doi:10.1038/nbt.2650
White, J.L. and Kaper, J.M. (1989) A simple method for detection of viral satellite RNAs in small plant tissue samples. J. Virol. Methods, 23, 83-94.
Brooks, C., Nekrasov, V., Lippman, Z. B. and Van Eck, J. (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292-1297. doi:10.1104/pp.114.247577
Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., Puigdomènech, P., Pitrat, M., Caboche, M., Dogimont, C., Garcia-Mas, J., Aranda, M.A. and Bendahmane, A. (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 452-462. doi:10.1111/j.1365-313X.2006.02885.x
Browning, K.S. (1996) The plant translational apparatus. Plant Mol. Biol. 32, 107-144.
Kanyuka, K., Druka, A., Caldwell, D.G., Tymon, A., McCallum, N., Waugh, R. and Adams, M.J. (2005) Evidence that the recessive bymovirus resistance locus rym 4 in barley corresponds to the eukaryotic translation initiation factor 4E. Mol. Plant Pathol. 6, 449-458. doi:10.1111/J.1364-3703.2005.00294.X
Oldroyd, G. and Staskawicz, B. (1998) Genetically engineered broad-spectrum disease resistance. Proc. Natl. Acad. Sci. USA, 95, 10 300-10 305.
Garcia-Ruiz, H., Takeda, A., Chapman, E.J., Sullivan, C.M., Fahlgren, N., Brempelis, K.J. and Carrington, J.C. (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056
Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G
2010; 11
2015; 467
2013; 23
2002; 12
2005; 579
2004; 4
1996; 32
2014; 1
2010; 22
2000; 18
2014; 5
1997; 92
2013; 51
2016; 43
2013; 153
2007; 20
2014; 9
2014; 166
1998; 95
2010; 5
2012; 337
2012; 21
2009; 59
1989; 63
2015; 15
2015; 16
1989; 23
2005; 274
2002; 32
1991; 72
2015; 10
2013; 41
2009
2005; 42
2006
2015; 527
2003
2014; 41
2015; 9
2003; 132
2012; 109
2011; 9
2004; 94
2010; 48
2011; 108
2015; 199
2013; 31
2014; 79
2005; 6
2010; 91
2003; 21
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Chandrasekaran J. (e_1_2_6_11_1)
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Regenmortel M. (e_1_2_6_43_1) 2009
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Regenmortel, M. and Mahy, B. (2009) Desk Encyclopedia of Plant and Fungal Virology, Academic press, Oxford, pp. 426-430.
– reference: Oldroyd, G. and Staskawicz, B. (1998) Genetically engineered broad-spectrum disease resistance. Proc. Natl. Acad. Sci. USA, 95, 10 300-10 305.
– reference: Cavatorta, J., Perez, K.W., Gray, S.M., Van Eck, J., Yeam, I. and Jahn, M. (2011) Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9(9), 1014-1021. doi:10.1111/j.1467-7652.2011.00622.x
– reference: Farboud, B. and Meyer, B. (2015) Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 199(4), 959-971. doi:10.1534/genetics.115.175166
– reference: Gao, Z., Johansen, E., Eyers, S., Thomas, C.L., Ellis, T.H.N., Maule, A.J. (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 4, 376-385. doi:10.1111/j.1365-313X.2004.02215.x
– reference: Karasev, A.V. and Gray, S.M. (2013) Continuous and emerging challenges of Potato virus Y in potato. Annu. Rev. Phytopathol. 51, 571-586. doi:10.1146/annurev-phyto-082712-102332
– reference: Shan, Q., Wang, Y., Li, J. and Gao, C. (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protocol. 9(10), 2395-2410. doi:10.1038/nprot.2014.157
– reference: Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M. and Uyeda, I. (2005) Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett. 579, 1167-1171. doi:10.1016/j.febslet.2004.12.086
– reference: Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R. and Joung, J.K. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31(3), 227-229. doi:10.1038/nbt.2501
– reference: Asad, S., Haris, W.A.A., Bashir, A., Zafar, Y., Malik, K.A., Malik, N.N. and Lichtenstein, C.P. (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch. Virol. 148, 2341-2352. doi:10.1007/s00705-003-0179-5
– reference: Li, W., Teng, F., Li, T. and Zhou, Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31, 684-686. doi:10.1038/nbt.2652
– reference: Nekrasov V., Staskawicz B., Weigel D., Jones JD. and Kamoun S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693. doi:10.1038/nbt.2655
– reference: Sternberg, S.H., Lafrance, B., Kaplan, M., Doudna, J.A. and Cas, C. (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature, 527(7576), 110-113. doi:10.1038/nature15544
– reference: Ruffel, S., Dussault, M., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor. Plant J. 32, 1067-1075.
– reference: Bonfim, K., Faria, J.C., Nogueira, E.O.P.L., Mendes, E.A. and Aragao, J.L. (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant-Microbe Interact. 20(6), 717-726.
– reference: Brooks, C., Nekrasov, V., Lippman, Z. B. and Van Eck, J. (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292-1297. doi:10.1104/pp.114.247577
– reference: Lellis, A.D., Kasschau, K.D., Whitham, S.A. and Carrington, J.C. (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during Potyvirus infection. Curr. Biol. 12(02), 1046-1051.
– reference: Bush, M.S., Hutchins, A.P., Jones, A.M.E., Naldrett, M.J., Jarmolowski, A., Lloyd, C.W. and Doonan, J.H. (2009) Selective recruitment of proteins to 5' cap complexes during the growth cycle in Arabidopsis. Plant J. 59, 400-412. doi:10.1111/j.1365-313X.2009.03882.x
– reference: Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C. and Jiang, B. (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 10(8), 1-13. doi:10.1371/journal.pone.0136064
– reference: Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G. and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31(9), 827-832. doi:10.1038/nbt.2647
– reference: Liang, Z., Zhang, K., Chen, K. and Gao, C. (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 41(2), 63-68. doi:10.1016/j.jgg.2013.12.001
– reference: Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S., Ordon, F. and Graner, A. (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 42, 912-922. doi:10.1111/j.1365-313X.2005.02424.x
– reference: Kanyuka, K., Druka, A., Caldwell, D.G., Tymon, A., McCallum, N., Waugh, R. and Adams, M.J. (2005) Evidence that the recessive bymovirus resistance locus rym 4 in barley corresponds to the eukaryotic translation initiation factor 4E. Mol. Plant Pathol. 6, 449-458. doi:10.1111/J.1364-3703.2005.00294.X
– reference: Yang, Y., Sherwood, T.A., Patte, C.P., Hiebert, E. and Polston, J.E. (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology, 94(5), 490-496.
– reference: Jacobs, T.B., Lafayette, P.R., Schmitz, R.J. and Parrott, W.A. (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15, 16. doi:10.1186/s12896-015-0131-2
– reference: McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455-457.
– reference: Duan, H., Richael, C. and Rommens, C.M. (2012) Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1. Transgenic Res. 21(5), 929-938. doi:10.1007/s11248-011-9576-9
– reference: Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W. and Zhang, F. (2013) Resource one-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. doi:10.1016/j.cell.2013.04.025
– reference: Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. and Robaglia, C. (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32(6), 927-934. doi:10.1046/j.1365-313X.2002.01481.x
– reference: Fauser, F., Schiml, S. and Puchta, H. (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359. doi:10.1111/tpj.12554
– reference: Naderpour, M., Lund, O.L.E.S., Larsen, R. and Johansen, E. (2010) Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. Mol. Plant Pathol. 11, 255-263. doi:10.1111/J.1364-3703.2009.00602.X
– reference: Pooggin, M.M., Shivaprasad, P.V., Veluthambi, K. and Hohn, T. (2003) RNAi targeting of DNA virus in plants. Nat. Biotechnol. 21, 131-132.
– reference: Gallois, J.-L., Charron, C., Sánchez, F., Pagny, G., Houvenaghel, M.-C., Moretti, A., Ponz, F., Revers, F., Caranta, C. and German-Retana, S. (2010) Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. J. Gen. Virol. 91(Pt 1), 288-293. doi:10.1099/vir.0.015321-0
– reference: Browning, K.S. (1996) The plant translational apparatus. Plant Mol. Biol. 32, 107-144.
– reference: Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y. and Zhu, J.-K. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1-4. doi:10.1038/cr.2013.114
– reference: Carrington, J.C., Freed, D.D. and Sanders, T.C. (1989) Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro Cl-l. J. Virol. 63(10), 4459-4463.
– reference: Jagadish, M.N., Ward, C.W., Gough, K.H., Tulloch, P.A., Whittaker, L.A. and Shukla, D.D. (1991) Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into virus-like particles. J. Gen. Virol. 72, 1543-1550.
– reference: Wittmann, S., Chatel, H. and Fortin, M.G. (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 92(234), 84-92.
– reference: Chandrasekaran, J., Brumin, M., Wolf, D., Klap, C., Sherman, A. and Arazi, T. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. in press.
– reference: Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J., Qui, J. and Gao, C. (2013) Targeted genome modification of crop plants using CRISPR-Cas system. Nat. Biotechnol. 31, 686-688. doi:10.1038/nbt.2650
– reference: Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., Puigdomènech, P., Pitrat, M., Caboche, M., Dogimont, C., Garcia-Mas, J., Aranda, M.A. and Bendahmane, A. (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 452-462. doi:10.1111/j.1365-313X.2006.02885.x
– reference: Piron, F., Nicolaï, M., Minoïa, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One, 5(6), e11313. doi:10.1371/journal.pone.0011313
– reference: Garcia-Ruiz, H., Takeda, A., Chapman, E.J., Sullivan, C.M., Fahlgren, N., Brempelis, K.J. and Carrington, J.C. (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056
– reference: Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-822.
– reference: Ronde, D. De, Butterbach, P. and Kormelink, R. (2014) Dominant resistance against plant viruses. Front. Plant Sci. 5, 1-17. doi:10.3389/fpls.2014.00307
– reference: Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, 1-12. doi:10.1093/nar/gkt780
– reference: Ruffel, S., Gallois, J.L., Lesage, M.L. and Caranta, C. (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol. Genet. Genom. 274(4), 346-353. doi:10.1007/s00438-005-0003-x
– reference: Tilman, D., Balzer, C., Hill, J. and Befort, B.L. (2011) Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA, 108(50), 20260-20264. doi:10.1073/pnas.1116437108
– reference: Gibbs, A. and Ohshima, K. (2010) Potyviruses and the digital revolution. Annu. Rev. Phytopathol. 48, 205-223. doi:10.1146/annurev-phyto-073009
– reference: Stemmer, M., Thumberger, T., Keyer, S., Wittbrodt, J. and Mateo, J.L. (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 9, 1-11. doi:10.1371/journal.pone.0124633
– reference: Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H. and Yang, B. (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 1, 1-12. doi:10.1093/nar/gku806
– reference: White, J.L. and Kaper, J.M. (1989) A simple method for detection of viral satellite RNAs in small plant tissue samples. J. Virol. Methods, 23, 83-94.
– reference: Zhu, J., Song, N., Sun, S., Yang, W., Zhao, H., Song, W. and Lai, J. (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J. Genet. Genom. 43(1), 25-36. doi:10.1016/j.jgg.2015.10.006
– reference: Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA, 109(39), 2579-2586. doi:10.1073/pnas.1208507109
– reference: Ito, Y., Nishizawa-yokoi, A., Endo, M. and Mikami, M. (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Comm. 467(1), 76-82. doi:10.1016/j.bbrc.2015.09.117
– reference: Gaj, T., Gersbach, C.A. and Barbas, C.F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31(7), 397-405. doi:10.1016/j.tibtech.2013.04.004
– reference: Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16(238), 1-11. doi:10.1186/s13059-015-0799-6
– reference: Nicaise, V., German-retana, S., Sanjua, R., Dubrana, M., Mazier, M., Maisonneuve, B., Candresse, T., Caranta, C. and Legall, O. (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus. Plant Physiol. 132, 1272-1282. doi:10.1104/pp.102.017855.recessive
– volume: 16
  start-page: 1
  year: 2015
  end-page: 11
  article-title: CRISPR/Cas9‐mediated viral interference in plants
  publication-title: Genome Biol.
– volume: 94
  start-page: 490
  issue: 5
  year: 2004
  end-page: 496
  article-title: Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato
  publication-title: Phytopathology
– volume: 153
  start-page: 910
  issue: 4
  year: 2013
  end-page: 918
  article-title: Resource one‐step generation of mice carrying mutations in multiple genes by CRISPR/Cas‐mediated genome engineering
  publication-title: Cell
– volume: 91
  start-page: 288
  issue: Pt 1
  year: 2010
  end-page: 293
  article-title: Single amino acid changes in the turnip mosaic virus viral genome‐linked protein (VPg) confer virulence towards mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G
  publication-title: J. Gen. Virol.
– volume: 59
  start-page: 400
  year: 2009
  end-page: 412
  article-title: Selective recruitment of proteins to 5’ cap complexes during the growth cycle in Arabidopsis
  publication-title: Plant J.
– volume: 9
  start-page: 1
  year: 2015
  end-page: 11
  article-title: CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool
  publication-title: PLoS One
– start-page: 426
  year: 2009
  end-page: 430
  publication-title: Desk Encyclopedia of Plant and Fungal Virology
– volume: 48
  start-page: 205
  year: 2010
  end-page: 223
  article-title: Potyviruses and the digital revolution
  publication-title: Annu. Rev. Phytopathol.
– volume: 4
  start-page: 376
  year: 2004
  end-page: 385
  article-title: The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell‐to‐cell trafficking
  publication-title: Plant J.
– volume: 92
  start-page: 84
  issue: 234
  year: 1997
  end-page: 92
  article-title: Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of using the yeast two‐hybrid system
  publication-title: Virology
– volume: 51
  start-page: 571
  year: 2013
  end-page: 586
  article-title: Continuous and emerging challenges of Potato virus Y in potato
  publication-title: Annu. Rev. Phytopathol.
– volume: 21
  start-page: 929
  issue: 5
  year: 2012
  end-page: 938
  article-title: Overexpression of the wild potato eIF4E‐1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E‐1
  publication-title: Transgenic Res.
– volume: 337
  start-page: 816
  year: 2012
  end-page: 822
  article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– start-page: 2341
  year: 2003
  end-page: 2352
  article-title: Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease
  publication-title: Arch. Virol. 148
– article-title: Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology
  publication-title: Mol. Plant Pathol.
– volume: 31
  start-page: 227
  issue: 3
  year: 2013
  end-page: 229
  article-title: Efficient genome editing in zebrafish using a CRISPR‐Cas system
  publication-title: Nat. Biotechnol.
– volume: 20
  start-page: 717
  issue: 6
  year: 2007
  end-page: 726
  article-title: RNAi‐mediated resistance to Bean golden mosaic virus in genetically engineered common bean ( )
  publication-title: Mol. Plant–Microbe Interact.
– volume: 63
  start-page: 4459
  issue: 10
  year: 1989
  end-page: 4463
  article-title: Autocatalytic processing of the potyvirus helper component proteinase in and in vitro Cl‐l
  publication-title: J. Virol.
– volume: 41
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
  publication-title: Nucleic Acids Res.
– volume: 95
  start-page: 10 300
  year: 1998
  end-page: 10 305
  article-title: Genetically engineered broad‐spectrum disease resistance
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 274
  start-page: 346
  issue: 4
  year: 2005
  end-page: 353
  article-title: The recessive potyvirus resistance gene pot‐1 is the tomato orthologue of the pepper pvr2‐eIF4E gene
  publication-title: Mol. Genet. Genom.
– volume: 11
  start-page: 255
  year: 2010
  end-page: 263
  article-title: Potyviral resistance derived from cultivars of carrying bc‐3 is associated with the homozygotic presence of a mutated eIF4E allele
  publication-title: Mol. Plant Pathol.
– volume: 43
  start-page: 25
  issue: 1
  year: 2016
  end-page: 36
  article-title: Efficiency and inheritance of targeted mutagenesis in maize using CRISPR‐Cas9
  publication-title: J. Genet. Genom.
– volume: 22
  start-page: 481
  issue: 2
  year: 2010
  end-page: 496
  article-title: Arabidopsis RNA‐dependent RNA polymerases and dicer‐like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection
  publication-title: Plant Cell
– volume: 12
  start-page: 1046
  issue: 02
  year: 2002
  end-page: 1051
  article-title: Loss‐of‐susceptibility mutants of reveal an essential role for eIF (iso) 4E during Potyvirus infection
  publication-title: Curr. Biol.
– volume: 32
  start-page: 927
  issue: 6
  year: 2002
  end-page: 934
  article-title: The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses
  publication-title: Plant J.
– volume: 15
  start-page: 16
  year: 2015
  article-title: Targeted genome modifications in soybean with CRISPR/Cas9
  publication-title: BMC Biotechnol.
– volume: 23
  start-page: 83
  year: 1989
  end-page: 94
  article-title: A simple method for detection of viral satellite RNAs in small plant tissue samples
  publication-title: J. Virol. Methods
– volume: 23
  start-page: 1
  year: 2013
  end-page: 4
  article-title: Efficient genome editing in plants using a CRISPR/Cas system
  publication-title: Cell Res.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 13
  article-title: CRISPR/Cas9‐mediated genome editing in soybean hairy roots
  publication-title: PLoS One
– volume: 41
  start-page: 63
  issue: 2
  year: 2014
  end-page: 68
  article-title: Targeted mutagenesis in using TALENs and the CRISPR/Cas system
  publication-title: J. Genet. Genom.
– volume: 32
  start-page: 107
  year: 1996
  end-page: 144
  article-title: The plant translational apparatus
  publication-title: Plant Mol. Biol.
– volume: 199
  start-page: 959
  issue: 4
  year: 2015
  end-page: 971
  article-title: Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design
  publication-title: Genetics
– volume: 72
  start-page: 1543
  year: 1991
  end-page: 1550
  article-title: Expression of potyvirus coat protein in and yeast and its assembly into virus‐like particles
  publication-title: J. Gen. Virol.
– volume: 527
  start-page: 110
  issue: 7576
  year: 2015
  end-page: 113
  article-title: Conformational control of DNA target cleavage by CRISPR‐Cas9
  publication-title: Nature
– volume: 31
  start-page: 684
  year: 2013
  end-page: 686
  article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR‐Cas systems
  publication-title: Nat. Biotechnol.
– volume: 109
  start-page: 2579
  issue: 39
  year: 2012
  end-page: 2586
  article-title: Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 2395
  issue: 10
  year: 2014
  end-page: 2410
  article-title: Genome editing in rice and wheat using the CRISPR/Cas system
  publication-title: Nat. Protocol.
– volume: 9
  start-page: 1014
  issue: 9
  year: 2011
  end-page: 1021
  article-title: Engineering virus resistance using a modified potato gene
  publication-title: Plant Biotechnol. J.
– volume: 5
  start-page: e11313
  issue: 6
  year: 2010
  article-title: An induced mutation in tomato eIF4E leads to immunity to two potyviruses
  publication-title: PLoS One
– volume: 579
  start-page: 1167
  year: 2005
  end-page: 1171
  article-title: Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of by potyviruses
  publication-title: FEBS Lett.
– volume: 42
  start-page: 912
  year: 2005
  end-page: 922
  article-title: The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in (L.)
  publication-title: Plant J.
– volume: 132
  start-page: 1272
  year: 2003
  end-page: 1282
  article-title: The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus
  publication-title: Plant Physiol.
– volume: 31
  start-page: 691
  year: 2013
  end-page: 693
  article-title: Targeted mutagenesis in the model plant using Cas9 RNA‐guided endonuclease
  publication-title: Nat. Biotechnol.
– volume: 32
  start-page: 1067
  year: 2002
  end-page: 1075
  article-title: A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor
  publication-title: Plant J.
– volume: 108
  issue: 50
  year: 2011
  article-title: Global food demand and the sustainable intensification of agriculture
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 455
  year: 2000
  end-page: 457
  article-title: Targeted screening for induced mutations
  publication-title: Nat. Biotechnol.
– start-page: 452
  year: 2006
  end-page: 462
  article-title: An eIF4E allele confers resistance to an uncapped and non‐polyadenylated RNA virus in melon
  publication-title: Plant J.
– volume: 21
  start-page: 131
  year: 2003
  end-page: 132
  article-title: RNAi targeting of DNA virus in plants
  publication-title: Nat. Biotechnol.
– volume: 31
  start-page: 686
  year: 2013
  end-page: 688
  article-title: Targeted genome modification of crop plants using CRISPR‐Cas system
  publication-title: Nat. Biotechnol.
– volume: 79
  start-page: 348
  year: 2014
  end-page: 359
  article-title: Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in
  publication-title: Plant J.
– volume: 31
  start-page: 827
  issue: 9
  year: 2013
  end-page: 832
  article-title: DNA targeting specificity of RNA‐guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
– volume: 166
  start-page: 1292
  year: 2014
  end-page: 1297
  article-title: Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR‐associated9 system
  publication-title: Plant Physiol.
– volume: 1
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 17
  article-title: Dominant resistance against plant viruses
  publication-title: Front. Plant Sci.
– volume: 31
  start-page: 397
  issue: 7
  year: 2013
  end-page: 405
  article-title: ZFN, TALEN, and CRISPR/Cas‐based methods for genome engineering
  publication-title: Trends Biotechnol.
– volume: 6
  start-page: 449
  year: 2005
  end-page: 458
  article-title: Evidence that the recessive bymovirus resistance locus rym 4 in barley corresponds to the eukaryotic translation initiation factor 4E
  publication-title: Mol. Plant Pathol.
– volume: 467
  start-page: 76
  issue: 1
  year: 2015
  end-page: 82
  article-title: CRISPR/Cas9‐mediated mutagenesis of the RIN locus that regulates tomato fruit ripening
  publication-title: Biochem. Biophys. Res. Comm.
– ident: e_1_2_6_20_1
  doi: 10.1105/tpc.109.073056
– ident: e_1_2_6_22_1
  doi: 10.1146/annurev-phyto-073009
– ident: e_1_2_6_42_1
  doi: 10.1038/nbt0203-131b
– ident: e_1_2_6_58_1
  doi: 10.1093/nar/gku806
– ident: e_1_2_6_14_1
  doi: 10.1534/genetics.115.175166
– ident: e_1_2_6_12_1
  doi: 10.1007/s11248-011-9576-9
– ident: e_1_2_6_49_1
  doi: 10.1038/nprot.2014.157
– ident: e_1_2_6_57_1
  doi: 10.1094/PHYTO.2004.94.5.490
– ident: e_1_2_6_24_1
  doi: 10.1038/nbt.2501
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1365-313X.2006.02885.x
– ident: e_1_2_6_2_1
  doi: 10.1186/s13059-015-0799-6
– ident: e_1_2_6_4_1
  doi: 10.1094/MPMI-20-6-0717
– ident: e_1_2_6_28_1
  doi: 10.1093/nar/gkt780
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1365-313X.2006.02670.x
– ident: e_1_2_6_31_1
  doi: 10.1146/annurev-phyto-082712-102332
– start-page: 426
  year: 2009
  ident: e_1_2_6_43_1
  publication-title: Desk Encyclopedia of Plant and Fungal Virology
– ident: e_1_2_6_8_1
  doi: 10.1371/journal.pone.0136064
– ident: e_1_2_6_5_1
  doi: 10.1104/pp.114.247577
– ident: e_1_2_6_37_1
  doi: 10.1038/nbt.2655
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0011313
– ident: e_1_2_6_29_1
  doi: 10.1126/science.1225829
– ident: e_1_2_6_16_1
  doi: 10.1038/cr.2013.114
– ident: e_1_2_6_45_1
  doi: 10.1046/j.1365-313X.2002.01499.x
– ident: e_1_2_6_27_1
  doi: 10.1099/0022-1317-72-7-1543
– ident: e_1_2_6_9_1
  doi: 10.1128/jvi.63.10.4459-4463.1989
– ident: e_1_2_6_51_1
  doi: 10.1371/journal.pone.0124633
– ident: e_1_2_6_33_1
  doi: 10.1038/nbt.2652
– ident: e_1_2_6_59_1
  doi: 10.1016/j.jgg.2015.10.006
– ident: e_1_2_6_44_1
  doi: 10.3389/fpls.2014.00307
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-313X.2009.03882.x
– ident: e_1_2_6_17_1
  doi: 10.1016/j.tibtech.2013.04.004
– ident: e_1_2_6_40_1
  doi: 10.1073/pnas.95.17.10300
– ident: e_1_2_6_54_1
  doi: 10.1016/j.cell.2013.04.025
– ident: e_1_2_6_23_1
  doi: 10.1038/nbt.2647
– ident: e_1_2_6_3_1
  doi: 10.1007/s00705-003-0179-5
– ident: e_1_2_6_56_1
  doi: 10.1006/viro.1997.8634
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1467-7652.2011.00622.x
– ident: e_1_2_6_11_1
  article-title: Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology
  publication-title: Mol. Plant Pathol.
– ident: e_1_2_6_15_1
  doi: 10.1111/tpj.12554
– ident: e_1_2_6_25_1
  doi: 10.1016/j.bbrc.2015.09.117
– ident: e_1_2_6_30_1
  doi: 10.1111/J.1364-3703.2005.00294.X
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-313X.2005.02424.x
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1365-313X.2002.01481.x
– ident: e_1_2_6_26_1
  doi: 10.1186/s12896-015-0131-2
– ident: e_1_2_6_36_1
  doi: 10.1111/J.1364-3703.2009.00602.X
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1365-313X.2004.02215.x
– ident: e_1_2_6_6_1
  doi: 10.1007/BF00039380
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.1208507109
– ident: e_1_2_6_48_1
  doi: 10.1038/nbt.2650
– ident: e_1_2_6_47_1
  doi: 10.1016/j.febslet.2004.12.086
– ident: e_1_2_6_18_1
  doi: 10.1099/vir.0.015321-0
– ident: e_1_2_6_46_1
  doi: 10.1007/s00438-005-0003-x
– ident: e_1_2_6_34_1
  doi: 10.1016/j.jgg.2013.12.001
– ident: e_1_2_6_55_1
  doi: 10.1016/0166-0934(89)90122-5
– ident: e_1_2_6_52_1
  doi: 10.1038/nature15544
– ident: e_1_2_6_32_1
  doi: 10.1016/S0960-9822(02)00898-9
– ident: e_1_2_6_53_1
  doi: 10.1073/pnas.1116437108
– ident: e_1_2_6_38_1
  doi: 10.1104/pp.102.017855.recessive
SSID ssj0017925
Score 2.596107
Snippet Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been...
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E , have previously been identified as...
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as...
Summary Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1276
SubjectTerms alleles
Amino Acid Sequence
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - virology
Arabidopsis thaliana
Base Sequence
Biomass
Chromosome Segregation - genetics
CRISPR-Cas Systems - genetics
CRISPR/Cas9
Crops
Crosses, Genetic
Disease Resistance - genetics
eIF(iso)4E
Electrophoresis, Agar Gel
engineering
Eukaryotic Initiation Factor-4E - genetics
flowering
Flowers - physiology
Gene Editing
Genetic Engineering - methods
Green Fluorescent Proteins - metabolism
Growth conditions
homozygosity
hosts
introgression
loci
mutagenesis
Mutagenesis, Site-Directed
Mutation
Mutation - genetics
Original
pathogens
Plants, Genetically Modified
point mutation
Polymerase Chain Reaction
Potyvirus
Potyvirus - physiology
RNA, Guide, CRISPR-Cas Systems - metabolism
self-pollination
transgene-free
Transgenes
translation (genetics)
TuMV
Turnip mosaic virus
vegetable crops
vigor
virus resistance
Title Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants
URI https://api.istex.fr/ark:/67375/WNG-N4S6ZT4X-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12417
https://www.ncbi.nlm.nih.gov/pubmed/27103354
https://www.proquest.com/docview/1817414591
https://www.proquest.com/docview/1827900078
https://www.proquest.com/docview/1846324838
https://pubmed.ncbi.nlm.nih.gov/PMC5026172
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGeIGH8c0KYzIIIV5SGsdOYvE0VYyB1CrqNlEhpMhfgWojidIUAU_8BH4jv4Rr50MtDIR4qSrlRG2uz7WP23uPEXocMRPDrkF5UsSBRyHdPElC6WXCFyNfwz2B7UaeTMOjU_p6zuZb6HnXC9P4Q_Q_uNnMcPO1TXAhl2tJ_rEsh7A4-baT3NZqWUE0662jgGfuwFWYCKgXRoS0rkK2iqe_c2MtumzD-vkiofl7veS6jnUL0eE19K57hKb-5Gy4quVQff3F3fE_n_E62mkFKj5oGHUDbZn8Jrp68L5qTTrMLSTWTAxxkeHx7NVxMns2Fkv-49t314sCOhaXRf3l06JaLTFs6a1MBX7hRY5ruzwCbw2As8oY-CwhF7ooAYTLc1uYcxudHr44GR957VENngphi-uBjBOaMy25DmJllIlti72MuAaJIRVnURCOYhh6BjMI9X2eMa6EUDJTQlM9Cu6g7bzIzS7CMQ-FBBFBSKSp1LEgI-CNjIhQPOBUD9DTbtBS1fqY2-M0ztNuPwNRS13UBuhRDy0b846LQE_cyPcIUZ3ZareIpW-mL9MpPQ7fntB5CsC9jhppm-jLFAQSaDLKuD9AD_vLkKL2fxeRm2JlMSTiToz9DUOtcX4cAOZuw7b-CxFQgUHA6ABFGzzsAdYifPNKvvjgrMKZc9wnEDNHsz9HIZ0kiXtz79-h99EVkI9hU9q4h7bramUegESr5T66RGiy7zISXqfJ5CffPz1p
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VdgEseD8CBQwCxMYhHo8fs2BRpZSENlGUpiJiY-ZliFpsy3aAsuIT-BB-hZ_gS7gzdqwECmLTBTtLPrbHM_feOWPfORehh4GnQlg1CJuz0LUJuJvNsc_tmDms40i4xtW7kQdDv3dAXk696Rr6ttgLU-lDNB_ctGeYeK0dXH-QXvLy91nWhtnJCeqUyl11_BEWbMWz_jaM7iOMd55Puj27rilgCx_WYjbwDSapJzmVbiiUUKHeC84DKmEu5IJ6get3QmijB6ZOHIfGHhWMCR4LJonsuHDfM2hDVxDXSv3b40asCizblHiF0ENsP8C41jHSeUNNU1dmvw09kJ9Oora_Z2guM2cz9e1cRN8XnVZlvBy25yVvi8-_6En-L716CV2oObi1VTnNZbSmkivo_NbbvNYhUVcRW9JptNLY6o77-6Px0y4r6I8vX812G6DqVpaWxx9m-bywclVoJg4uZM0Sq9QMAFxTATjOlYJnMT6TaQYgKzvSuUfX0MGpvON1tJ6kibqJrJD6jANPwjiQhMuQ4Q64Bg8wE9SlRLbQk4WVRKKWatcVQ46ixZINRikyo9RCDxpoVumTnAR6bEytQbD8UCf0BV70avgiGpJ9__WETCMAbi5sMapjWREBBwTaSTzqtND95jREIf1riSUqnWsMDqjhm3_DEF0bIHQBc6My76ZBGIiu63qkhYIVw28AWgV99Uwye2fU0D1TVABDnxm7_nMvRIPRyBzc-nfoPXS2NxnsRXv94e5tdA7Ysl9lcm6i9TKfqzvASEt-1wQCC705bR_5Cec5mp0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZGKyF2gfhfYUBAgLgJJI4dxxdcVB1lZayqthWq3QQ7dqBiJFHaArvjEXgP3oon4dhJo1YMxM3uIuVLYvmck_Od5PgzQo8Y1RFUDYkrRRS4BMLNlTiUbip84fkKrgnMauT9Ybg7Jq8ndLKBfi7XwlT6EM0HNxMZ9n1tArxQ6UqQfy6KZ5CcfFZ3VO7p069Qr81eDHbAuI8x7r886u269ZYCbhJCKeYC3RCKUyW5CqJEJzoyS8El4wpSoUw4ZUHoRTBECp5OfJ-nlCdCJDJNhCLKC-C-F1CbQhb0WqjdfTs-Hjc_LRi3e7zCu4e4IcO4FjIyjUPNYNfSX9tY8ttZ3PbPFs1V6mxzX_8KulyTVqdbedlVtKGza2iz-6GshTv0dSRWhA2dPHV6B4PD0cHznpjxX99_2PUpwG2dIp-ffpmWi5kDZb6hruBzzjRz5iZlgi9rAKel1vAsIacqLwDkFCemWecGGp_LXN9ErSzP9BZyIh4KCcQCY6aIVJHAHviSZFgkPOBEddDT5azGSa1tbrbYOImXNQ4YILYG6KCHDbSoBD3OAj2xpmkQovxkOuAYjd8NX8VDchgeH5FJDMDtpe3iOvhnMZAm4GmEcr-DHjSnIWzNvxiR6XxhMJhxS9D-hSFGTD8KAHOrcodmQBiYYRBQ0kFszVEagJENXz-TTT9a-XBqVfgxzJl1qb_PQrw_GtmD2_8PvY8ujnb68ZvBcO8OugTsMqw6H7dRa14u9F1gcHN5r44cB70_72D9DbW-WmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+CRISPR%2FCas9-mediated+potyvirus+resistance+in+transgene-free+Arabidopsis+plants&rft.jtitle=Molecular+plant+pathology&rft.au=Pyott%2C+Douglas+E&rft.au=Sheehan%2C+Emma&rft.au=Molnar%2C+Attila&rft.date=2016-10-01&rft.issn=1464-6722&rft.eissn=1364-3703&rft.volume=17&rft.issue=8&rft.spage=1276&rft.epage=1288&rft_id=info:doi/10.1111%2Fmpp.12417&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon