A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated pro...
Saved in:
Published in | EMBO molecular medicine Vol. 7; no. 10; pp. 1337 - 1349 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2015
EMBO Press Wiley Open Access John Wiley & Sons, Ltd Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanisms underlying transthyretin‐related amyloidosis
in vivo
remain unclear. The abundance of the 49–127 transthyretin fragment in
ex vivo
deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis
in vivo
. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
Synopsis
Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease.
Shear forces are required to prime proteolysis of wild‐type and other variant TTRs and to release the amyloidogenic fragment.
These forces are present in the heart, offering an explanation for tissue specificity in cardiac TTR amyloidosis.
TTR stabilizers, currently used to treat amyloidosis, can inhibit this mechanism; however, their efficacy differs for each variant.
Graphical Abstract
Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease. |
---|---|
AbstractList | The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
Synopsis
Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease.
Shear forces are required to prime proteolysis of wild‐type and other variant TTRs and to release the amyloidogenic fragment.
These forces are present in the heart, offering an explanation for tissue specificity in cardiac TTR amyloidosis.
TTR stabilizers, currently used to treat amyloidosis, can inhibit this mechanism; however, their efficacy differs for each variant.
Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease. The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo . This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. Synopsis Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease. Shear forces are required to prime proteolysis of wild‐type and other variant TTRs and to release the amyloidogenic fragment. These forces are present in the heart, offering an explanation for tissue specificity in cardiac TTR amyloidosis. TTR stabilizers, currently used to treat amyloidosis, can inhibit this mechanism; however, their efficacy differs for each variant. Graphical Abstract Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease. Abstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo . This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. |
Author | Degiacomi, Matteo T Taylor, Graham W Porcari, Riccardo Sanglier‐Cianférani, Sarah Naqvi, Mohsin M Raimondi, Sara Giorgetti, Sofia Hawkins, Philip N Gillmore, Julian D Stoppini, Monica Pepys, Mark B Robinson, Carol V Verona, Guglielmo Cecconi, Ciro Marcoux, Julien Bellotti, Vittorio Mangione, P Patrizia Benesch, Justin LP |
Author_xml | – sequence: 1 givenname: Julien surname: Marcoux fullname: Marcoux, Julien organization: Department of Chemistry, University of Oxford, Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), University of Strasbourg UDS, CNRS, Institute of Pharmacology and Structural Biology (IPBS) – sequence: 2 givenname: P Patrizia surname: Mangione fullname: Mangione, P Patrizia organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Department of Molecular Medicine, Institute of Biochemistry, University of Pavia – sequence: 3 givenname: Riccardo surname: Porcari fullname: Porcari, Riccardo organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London – sequence: 4 givenname: Matteo T surname: Degiacomi fullname: Degiacomi, Matteo T organization: Department of Chemistry, University of Oxford – sequence: 5 givenname: Guglielmo surname: Verona fullname: Verona, Guglielmo organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Department of Molecular Medicine, Institute of Biochemistry, University of Pavia – sequence: 6 givenname: Graham W surname: Taylor fullname: Taylor, Graham W organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London – sequence: 7 givenname: Sofia surname: Giorgetti fullname: Giorgetti, Sofia organization: Department of Molecular Medicine, Institute of Biochemistry, University of Pavia – sequence: 8 givenname: Sara surname: Raimondi fullname: Raimondi, Sara organization: Department of Molecular Medicine, Institute of Biochemistry, University of Pavia – sequence: 9 givenname: Sarah surname: Sanglier‐Cianférani fullname: Sanglier‐Cianférani, Sarah organization: Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), University of Strasbourg UDS – sequence: 10 givenname: Justin LP surname: Benesch fullname: Benesch, Justin LP organization: Department of Chemistry, University of Oxford – sequence: 11 givenname: Ciro surname: Cecconi fullname: Cecconi, Ciro organization: Institute of Nanoscience S3, Consiglio Nazionale delle Ricerche, Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia – sequence: 12 givenname: Mohsin M surname: Naqvi fullname: Naqvi, Mohsin M organization: Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia – sequence: 13 givenname: Julian D surname: Gillmore fullname: Gillmore, Julian D organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London – sequence: 14 givenname: Philip N surname: Hawkins fullname: Hawkins, Philip N organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London – sequence: 15 givenname: Monica surname: Stoppini fullname: Stoppini, Monica organization: Department of Molecular Medicine, Institute of Biochemistry, University of Pavia – sequence: 16 givenname: Carol V surname: Robinson fullname: Robinson, Carol V organization: Department of Chemistry, University of Oxford – sequence: 17 givenname: Mark B surname: Pepys fullname: Pepys, Mark B organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London – sequence: 18 givenname: Vittorio surname: Bellotti fullname: Bellotti, Vittorio email: v.bellotti@ucl.ac.uk organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Department of Molecular Medicine, Institute of Biochemistry, University of Pavia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26286619$$D View this record in MEDLINE/PubMed https://hal.science/hal-02335545$$DView record in HAL |
BookMark | eNqFUstuEzEUHaEi-oA1OzQSG1ik9dtjFpWiqtBKjdgAW8uZuZM48tjFngSFFZ_AN_IlOJ00tJEqVrZ8z8Pn3ntcHPjgoSheY3SKOeHkDLquOyUIc8Qpl8-KIyy5HDFRsYPdXYrD4jilBUKCC1y9KA6JIJUQWB0V38alDytwZQf13Pjw59dv8D_XneltXdYOzMrMYFu0qSuXvoHoLKSyj8anfr6O0Ftfmm7tgm3CDDwkm14Wz1vjErzanifF14-XXy6uRjefP11fjG9GtaioHBFoGJFGCsUrpTjUpG4FVYCmFWeGY4FRW3FJhJqaCpRoKWKUMq4onjaSMXpSXA-6TTALfRttZ-JaB2P13UOIM21ijuJASzptEMOCNAYYrrGpuCLZom0YBQIia50PWrfLaQdNDT5HdI9EH1e8netZWGkmUG64zALvB4H5Hu1qfKM3b4hQyjnjK5yx77ZmMXxfQup1Z1MNzhkPYZk0lrhSSCLGM_TtHnQRltHntmpCFEJcIkEz6s3D3-_870edAXwA1DGkFKHVte3zmMMmjHUaI323UnqzUnq3Upl3tse7l36a8WFg_LAO1v-D68vJZPKQjAZyyjw_g_gv7VN-fwGlhu73 |
CitedBy_id | crossref_primary_10_1021_acs_biochem_2c00390 crossref_primary_10_23736_S0026_4806_21_07777_6 crossref_primary_10_1111_febs_17070 crossref_primary_10_1002_pro_4931 crossref_primary_10_1016_j_jbc_2024_108031 crossref_primary_10_1111_joim_13222 crossref_primary_10_1002_path_5203 crossref_primary_10_1038_s44328_025_00027_0 crossref_primary_10_1007_s11897_019_00446_x crossref_primary_10_3390_biomedicines7010011 crossref_primary_10_1007_s13311_021_01154_y crossref_primary_10_1111_jgs_17976 crossref_primary_10_1080_14789450_2016_1242417 crossref_primary_10_1016_j_ejim_2024_01_001 crossref_primary_10_1039_C9CC00682F crossref_primary_10_1080_17474124_2018_1397511 crossref_primary_10_3390_genes12070955 crossref_primary_10_1007_s10741_022_10237_7 crossref_primary_10_1016_j_jbc_2024_107174 crossref_primary_10_1111_pin_12902 crossref_primary_10_1016_j_cpcardiol_2022_101366 crossref_primary_10_1074_jbc_RA120_014026 crossref_primary_10_1016_j_ajpath_2018_09_015 crossref_primary_10_1080_13506129_2018_1531842 crossref_primary_10_1007_s40120_020_00210_7 crossref_primary_10_3389_fmolb_2022_830006 crossref_primary_10_1074_jbc_RA120_013461 crossref_primary_10_36660_ijcs_20240112 crossref_primary_10_1080_13506129_2024_2383467 crossref_primary_10_1002_anbr_202200082 crossref_primary_10_1515_cclm_2019_1007 crossref_primary_10_1248_bpb_b17_01021 crossref_primary_10_1080_10408363_2024_2350379 crossref_primary_10_2174_0118715273283786240408034408 crossref_primary_10_1007_s00059_019_04871_5 crossref_primary_10_1016_j_hfc_2024_02_002 crossref_primary_10_3390_cimb46100684 crossref_primary_10_1038_s42003_024_06588_6 crossref_primary_10_1371_journal_pone_0266092 crossref_primary_10_3390_ijms24010699 crossref_primary_10_1016_j_xcrp_2021_100477 crossref_primary_10_1021_acs_jmedchem_0c00934 crossref_primary_10_1126_scitranslmed_aam7621 crossref_primary_10_1371_journal_pone_0211983 crossref_primary_10_1038_s41598_019_56498_5 crossref_primary_10_1098_rsob_150105 crossref_primary_10_3390_pharmaceutics15041129 crossref_primary_10_1111_joim_13250 crossref_primary_10_1038_s42003_020_01493_0 crossref_primary_10_3390_ijms22179488 crossref_primary_10_1038_srep46711 crossref_primary_10_3389_fphar_2020_01024 crossref_primary_10_1111_jns_12381 crossref_primary_10_1038_srep44709 crossref_primary_10_1038_s41467_019_08609_z crossref_primary_10_3390_biomedicines10061377 crossref_primary_10_3390_cells10071768 crossref_primary_10_3390_ijms19092677 crossref_primary_10_1056_NEJMoa2107454 crossref_primary_10_1021_acs_analchem_1c01722 crossref_primary_10_1016_j_jacc_2020_11_006 crossref_primary_10_3390_ijms24054655 crossref_primary_10_3233_JND_180371 crossref_primary_10_3390_ijms232416145 crossref_primary_10_1007_s10741_023_10350_1 crossref_primary_10_1016_j_carrev_2022_04_027 crossref_primary_10_3390_genes14081542 crossref_primary_10_1038_s41598_017_00338_x crossref_primary_10_1080_13506129_2017_1385452 crossref_primary_10_1021_acs_biochem_8b00619 crossref_primary_10_1073_pnas_1802977115 crossref_primary_10_3390_jcm13010221 crossref_primary_10_1016_j_euprot_2016_02_003 crossref_primary_10_2478_fzm_2022_0009 crossref_primary_10_1021_acs_jmedchem_2c01195 crossref_primary_10_1111_joim_12585 crossref_primary_10_1038_s41467_021_27416_z crossref_primary_10_1002_path_5770 crossref_primary_10_3390_ijms25158176 crossref_primary_10_1002_ehf2_14543 crossref_primary_10_3389_fnmol_2020_592644 crossref_primary_10_1080_00365513_2019_1624977 crossref_primary_10_3109_13506129_2016_1160882 crossref_primary_10_1002_humu_23669 crossref_primary_10_1016_j_neuint_2022_105313 crossref_primary_10_1007_s10072_020_04889_2 crossref_primary_10_3390_biom12081066 crossref_primary_10_1016_j_bbapap_2024_141027 crossref_primary_10_1093_ehjcr_ytae199 crossref_primary_10_1007_s00392_024_02576_2 crossref_primary_10_3389_fphar_2021_628184 crossref_primary_10_1016_j_jmb_2023_168215 crossref_primary_10_1074_jbc_RA119_007851 crossref_primary_10_1016_j_jare_2024_04_018 crossref_primary_10_1073_pnas_2425230122 crossref_primary_10_3390_ijms22073488 crossref_primary_10_1016_j_arr_2021_101388 crossref_primary_10_1021_acs_biochem_0c00079 crossref_primary_10_1016_j_jprot_2020_103799 crossref_primary_10_3109_03009734_2015_1122687 crossref_primary_10_3390_ijms22094429 crossref_primary_10_3390_ijms22094828 crossref_primary_10_1080_14789450_2017_1331737 crossref_primary_10_1007_s00415_024_12509_8 crossref_primary_10_1016_j_jacbts_2024_07_005 crossref_primary_10_1074_jbc_RA118_003990 crossref_primary_10_1038_s41598_018_36357_5 crossref_primary_10_1007_s40120_020_00217_0 crossref_primary_10_1021_acs_jmedchem_9b01037 crossref_primary_10_2217_fca_2021_0118 crossref_primary_10_3390_ijms23010025 crossref_primary_10_1186_s12872_023_03319_3 crossref_primary_10_3389_fcvm_2023_1091183 crossref_primary_10_1002_mus_28026 crossref_primary_10_3390_biomedicines10123226 crossref_primary_10_1038_s41467_019_13038_z crossref_primary_10_1080_13506129_2022_2142109 |
Cites_doi | 10.1056/NEJMra023144 10.1001/jama.2013.283815 10.1007/s00415-013-7051-7 10.1152/ajpheart.00111.2002 10.1056/NEJMoa1404852 10.1016/S0006-3495(04)74136-3 10.1038/nature04162 10.1073/pnas.1317488111 10.1021/ac0110552 10.1002/j.1460-2075.1993.tb05708.x 10.1073/pnas.1008255107 10.1016/j.sbi.2009.12.009 10.1038/nprot.2007.73 10.1021/bi981876 10.1074/jbc.R115.639799 10.1126/science.1157945 10.2174/092986712800269335 10.1126/science.1079589 10.1074/jbc.M113.498857 10.1002/jcc.20289 10.1126/science.1170905 10.1002/bip.21646 10.1074/jbc.M508753200 10.3109/13506129.2013.797890 10.1126/science.1116702 10.1016/0263-7855(96)00018-5 10.1146/annurev.biochem.77.060706.093102 10.1002/prot.21123 10.1016/j.sbi.2008.10.001 10.1073/pnas.1121005109 10.1073/pnas.1112411108 10.1002/path.1759 10.1098/rspa.1971.0141 10.1097/TP.0b013e31824b3749 10.1115/1.1289624 10.1021/cb100144v 10.1110/ps.8901 |
ContentType | Journal Article |
Copyright | The Authors. Published under the terms of the CC BY 4.0 license 2015 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015 The Authors. Published under the terms of the CC BY 4.0 license. 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015 |
Copyright_xml | – notice: The Authors. Published under the terms of the CC BY 4.0 license 2015 – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015 |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM DOA |
DOI | 10.15252/emmm.201505357 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Sciences Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1757-4684 |
EndPage | 1349 |
ExternalDocumentID | oai_doaj_org_article_73bd04162dae41c1a8592516fd43e2e6 PMC4604687 oai_HAL_hal_02335545v1 26286619 10_15252_emmm_201505357 EMMM201505357 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Italian Ministry of University and Research (MIUR) grantid: FIRB RBFR109EOS – fundername: Cariplo Foundation grantid: 2014‐0700 – fundername: MIUR Grant grantid: 17DPXLNBEK – fundername: MIUR Basic Research Investment Fund Project grantid: FIRB RBPR05JH2P – fundername: UCL Amyloidosis Research Fund – fundername: UK Medical Research Council grantid: MR/K000187/1 – fundername: Istituto Nazionale di Biostrutture e Biosistemi – fundername: UK National Institute for Health Research Biomedical Research Centre and Unit Funding Scheme – fundername: Swiss National Science Foundation grantid: P2ELP3_155339 – fundername: Italian Ministry of University and Research (MIUR) funderid: FIRB RBFR109EOS – fundername: MIUR Grant funderid: 17DPXLNBEK – fundername: UK Medical Research Council funderid: MR/K000187/1 – fundername: Cariplo Foundation funderid: 2014‐0700 – fundername: MIUR Basic Research Investment Fund Project funderid: FIRB RBPR05JH2P – fundername: Swiss National Science Foundation funderid: P2ELP3_155339 – fundername: Department of Health – fundername: Medical Research Council grantid: G7900510 – fundername: Medical Research Council grantid: MR/K000187/1 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAHHS AAJSJ AAZKR ABOCM ABUWG ACCFJ ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFKRA AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 LW6 M48 M7P M~E NNB O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC RHF RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 31~ ABJNI AFZJQ EBLON GODZA AASML AAYXX CITATION NAO PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 1XC PMFND VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c6837-2ed427a76958995ec2cf639e0b854a51610f857269ba8e96f3043345931bd7443 |
IEDL.DBID | M48 |
ISSN | 1757-4676 1757-4684 |
IngestDate | Wed Aug 27 01:28:21 EDT 2025 Thu Aug 21 13:54:39 EDT 2025 Wed Jun 04 07:15:50 EDT 2025 Fri Jul 11 08:12:45 EDT 2025 Wed Aug 13 08:37:37 EDT 2025 Mon Jul 21 05:58:49 EDT 2025 Tue Jul 01 01:52:58 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Wed Jan 22 16:40:42 EST 2025 Fri Feb 21 02:37:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | transthyretin mechano‐enzymatic cleavage amyloid transthyretin Subject Categories Genetics mechano-enzymatic cleavage Gene Therapy & Genetic Disease |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2015 The Authors. Published under the terms of the CC BY 4.0 license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6837-2ed427a76958995ec2cf639e0b854a51610f857269ba8e96f3043345931bd7443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work Current address: CNRS, Institute of Pharmacology and Structural Biology (IPBS), Toulouse, France |
ORCID | 0000-0001-7829-5505 0000-0001-7321-7436 0000-0003-4013-4129 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201505357 |
PMID | 26286619 |
PQID | 2290057063 |
PQPubID | 866378 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_73bd04162dae41c1a8592516fd43e2e6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4604687 hal_primary_oai_HAL_hal_02335545v1 proquest_miscellaneous_1718907045 proquest_journals_2290057063 pubmed_primary_26286619 crossref_citationtrail_10_15252_emmm_201505357 crossref_primary_10_15252_emmm_201505357 wiley_primary_10_15252_emmm_201505357_EMMM201505357 springer_journals_10_15252_emmm_201505357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany – name: Frankfurt – name: Chichester, UK |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK EMBO Press Wiley Open Access John Wiley & Sons, Ltd Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: Wiley Open Access – name: John Wiley & Sons, Ltd – name: Springer Nature |
References | Quarta, Buxbaum, Shah, Falk, Claggett, Kitzman, Mosley, Butler, Boerwinkle, Solomon (CR31) 2015; 372 Connelly, Choi, Johnson, Kelly, Wilson (CR10) 2010; 20 Donaldson, Lee, Chmelka, Israelachvili (CR13) 2011; 108 Johnson, Kendall, Roberts (CR22) 1971; 324 Berk, Suhr, Obici, Sekijima, Zeldenrust, Yamashita, Heneghan, Gorevic, Litchy, Wiesman (CR4) 2013; 310 Lashuel, Lai, Kelly (CR25) 1998; 37 Chandler (CR8) 2005; 437 Mangione, Porcari, Gillmore, Pucci, Monti, Porcari, Giorgetti, Marchese, Raimondi, Serpell (CR27) 2014; 111 Hernandez, Robinson (CR16) 2007; 2 Sobott, Hernandez, McCammon, Tito, Robinson (CR35) 2002; 74 Stoppini, Bellotti (CR36) 2015; 290 Israelachvili (CR21) 2011 Westermark, Sletten, Johnson (CR38) 1996; 199 Hornak, Abel, Okur, Strockbine, Roitberg, Simmerling (CR17) 2006; 65 Merlini, Bellotti (CR28) 2003; 349 Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa, Chipot, Skeel, Kale, Schulten (CR30) 2005; 26 Cecconi, Shank, Bustamante, Marqusee (CR7) 2005; 309 Keetch, Bromley, McCammon, Wang, Christodoulou, Robinson (CR23) 2005; 280 Hammarstrom, Wiseman, Powers, Kelly (CR15) 2003; 299 Bellotti, Chiti (CR2) 2008; 18 Dokos, LeGrice, Smaill, Kar, Young (CR11) 2000; 122 Gustafsson, Ihse, Henein, Westermark, Lindqvist, Suhr (CR14) 2012; 93 Schneider, Hammarstrom, Kelly (CR33) 2001; 10 Hyung, Deroo, Robinson (CR19) 2010; 5 Bergstrom, Gustavsson, Hellman, Sletten, Murphy, Weiss, Solomon, Olofsson, Westermark (CR3) 2005; 206 Bekard, Asimakis, Bertolini, Dunstan (CR1) 2011; 95 Ihse, Rapezzi, Merlini, Benson, Ando, Suhr, Ikeda, Lavatelli, Obici, Quarta (CR20) 2013; 20 Kolstoe, Mangione, Bellotti, Taylor, Tennent, Deroo, Morrison, Cobb, Coyne, McCammon (CR24) 2010; 107 Mangione, Esposito, Relini, Raimondi, Porcari, Giorgetti, Corazza, Fogolari, Penco, Goto (CR26) 2013; 288 Dokos, Smaill, Young, LeGrice (CR12) 2002; 283 Palaninathan (CR29) 2012; 19 Zhang, Halvorsen, Zhang, Wong, Springer (CR39) 2009; 324 Rowland, King, Pethica, Cross (CR32) 2008; 322 Coelho, Maia, da Silva, Cruz, Plante‐Bordeneuve, Suhr, Conceicao, Schmidt, Trigo, Kelly (CR9) 2013; 260 Humphrey, Dalke, Schulten (CR18) 1996; 14 Shankaran, Neelamegham (CR34) 2004; 86 Bulawa, Connelly, Devit, Wang, Weigel, Fleming, Packman, Powers, Wiseman, Foss (CR6) 2012; 109 Thylen, Wahlqvist, Haettner, Sandgren, Holmgren, Lundgren (CR37) 1993; 12 Borgia, Williams, Clarke (CR5) 2008; 77 2004; 86 2010; 107 2002; 74 2011 2008; 18 2013; 20 2005; 437 2013; 288 1971; 324 2012; 19 2008; 77 2008; 322 1996; 14 2005; 26 2014; 111 2013; 260 2003; 299 2012; 109 2015; 372 2012; 93 1998; 37 2005; 280 2010; 20 1993; 12 2011; 108 2003; 349 2015; 290 2002; 283 2006; 65 2011; 95 2005; 206 2013; 310 2005; 309 1996; 199 2000; 122 2007; 2 2010; 5 2009; 324 2001; 10 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Israelachvili JN (e_1_2_9_22_1) 2011 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 Westermark P (e_1_2_9_39_1) 1996; 199 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 324 start-page: 301 year: 1971 end-page: 313 ident: CR22 article-title: Surface energy and the contact of elastic solids publication-title: Proc Roy Soc Lon A, Math Phys Sci – volume: 283 start-page: H2650 year: 2002 end-page: H2659 ident: CR12 article-title: Shear properties of passive ventricular myocardium publication-title: Am J Physiol Heart Circ Physiol – volume: 19 start-page: 2324 year: 2012 end-page: 2342 ident: CR29 article-title: Nearly 200 X‐ray crystal structures of transthyretin: what do they tell us about this protein and the design of drugs for TTR amyloidoses? publication-title: Curr Med Chem – volume: 437 start-page: 640 year: 2005 end-page: 647 ident: CR8 article-title: Interfaces and the driving force of hydrophobic assembly publication-title: Nature – volume: 288 start-page: 30917 year: 2013 end-page: 30930 ident: CR26 article-title: Structure, folding dynamics, and amyloidogenesis of D76N beta 2‐microglobulin: roles of shear flow, hydrophobic surfaces, and alpha‐crystallin publication-title: J Biol Chem – volume: 109 start-page: 9629 year: 2012 end-page: 9634 ident: CR6 article-title: Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade publication-title: Proc Natl Acad Sci USA – volume: 349 start-page: 583 year: 2003 end-page: 596 ident: CR28 article-title: Molecular mechanisms of amyloidosis publication-title: N Engl J Med – volume: 107 start-page: 20483 year: 2010 end-page: 20488 ident: CR24 article-title: Trapping of palindromic ligands within native transthyretin prevents amyloid formation publication-title: Proc Natl Acad Sci USA – volume: 290 start-page: 9951 year: 2015 end-page: 9958 ident: CR36 article-title: Systemic amyloidosis: lessons from beta2‐microglobulin publication-title: J Biol Chem – volume: 111 start-page: 1539 year: 2014 end-page: 1544 ident: CR27 article-title: Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis publication-title: Proc Natl Acad Sci USA – volume: 37 start-page: 17851 year: 1998 end-page: 17864 ident: CR25 article-title: Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild‐type, V30M, and L55P amyloid fibril formation publication-title: Biochemistry – volume: 95 start-page: 733 year: 2011 end-page: 745 ident: CR1 article-title: The effects of shear flow on protein structure and function publication-title: Biopolymers – volume: 122 start-page: 471 year: 2000 end-page: 478 ident: CR11 article-title: A triaxial‐measurement shear‐test device for soft biological tissues publication-title: J Biomech Eng – volume: 93 start-page: 1017 year: 2012 end-page: 1023 ident: CR14 article-title: Amyloid fibril composition as a predictor of development of cardiomyopathy after liver transplantation for hereditary transthyretin amyloidosis publication-title: Transplantation – volume: 18 start-page: 771 year: 2008 end-page: 779 ident: CR2 article-title: Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases publication-title: Curr Opin Struct Biol – volume: 206 start-page: 224 year: 2005 end-page: 232 ident: CR3 article-title: Amyloid deposits in transthyretin‐derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology publication-title: J Pathol – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: CR18 article-title: VMD: visual molecular dynamics publication-title: J Mol Graph – volume: 280 start-page: 41667 year: 2005 end-page: 41674 ident: CR23 article-title: L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers publication-title: J Biol Chem – volume: 372 start-page: 21 year: 2015 end-page: 29 ident: CR31 article-title: The amyloidogenic V122I transthyretin variant in elderly black Americans publication-title: N Engl J Med – volume: 26 start-page: 1781 year: 2005 end-page: 1802 ident: CR30 article-title: Scalable molecular dynamics with NAMD publication-title: J Comput Chem – volume: 299 start-page: 713 year: 2003 end-page: 716 ident: CR15 article-title: Prevention of transthyretin amyloid disease by changing protein misfolding energetics publication-title: Science – volume: 324 start-page: 1330 year: 2009 end-page: 1334 ident: CR39 article-title: Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor publication-title: Science – volume: 310 start-page: 2658 year: 2013 end-page: 2667 ident: CR4 article-title: Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial publication-title: JAMA – volume: 74 start-page: 1402 year: 2002 end-page: 1407 ident: CR35 article-title: A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies publication-title: Anal Chem – volume: 12 start-page: 743 year: 1993 end-page: 748 ident: CR37 article-title: Modifications of transthyretin in amyloid fibrils: analysis of amyloid from homozygous and heterozygous individuals with the Met30 mutation publication-title: EMBO J – volume: 65 start-page: 712 year: 2006 end-page: 725 ident: CR17 article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters publication-title: Proteins – volume: 309 start-page: 2057 year: 2005 end-page: 2060 ident: CR7 article-title: Direct observation of the three‐state folding of a single protein molecule publication-title: Science – volume: 77 start-page: 101 year: 2008 end-page: 125 ident: CR5 article-title: Single‐molecule studies of protein folding publication-title: Annu Rev Biochem – volume: 20 start-page: 142 year: 2013 end-page: 150 ident: CR20 article-title: Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis publication-title: Amyloid – volume: 86 start-page: 576 year: 2004 end-page: 588 ident: CR34 article-title: Hydrodynamic forces applied on intercellular bonds, soluble molecules, and cell‐surface receptors publication-title: Biophys J – year: 2011 ident: CR21 publication-title: Intermolecular and Surface Forces – volume: 108 start-page: 15699 year: 2011 end-page: 15704 ident: CR13 article-title: General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light‐modulated bilayers publication-title: Proc Natl Acad Sci USA – volume: 322 start-page: 720 year: 2008 end-page: 724 ident: CR32 article-title: Molecular confinement accelerates deformation of entangled polymers during squeeze flow publication-title: Science – volume: 260 start-page: 2802 year: 2013 end-page: 2814 ident: CR9 article-title: Long‐term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy publication-title: J Neurol – volume: 2 start-page: 715 year: 2007 end-page: 726 ident: CR16 article-title: Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry publication-title: Nat Protoc – volume: 10 start-page: 1606 year: 2001 end-page: 1613 ident: CR33 article-title: Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins publication-title: Protein Sci – volume: 199 start-page: 205 year: 1996 end-page: 218 ident: CR38 article-title: Ageing and amyloid fibrillogenesis: lessons from apolipoprotein AI, transthyretin and islet amyloid polypeptide publication-title: Ciba Found Symp – volume: 20 start-page: 54 year: 2010 end-page: 62 ident: CR10 article-title: Structure‐based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses publication-title: Curr Opin Struct Biol – volume: 5 start-page: 1137 year: 2010 end-page: 1146 ident: CR19 article-title: Retinol and retinol‐binding protein stabilize transthyretin via formation of retinol transport complex publication-title: ACS Chem Biol – volume: 283 start-page: H2650 year: 2002 end-page: H2659 article-title: Shear properties of passive ventricular myocardium publication-title: Am J Physiol Heart Circ Physiol – year: 2011 – volume: 95 start-page: 733 year: 2011 end-page: 745 article-title: The effects of shear flow on protein structure and function publication-title: Biopolymers – volume: 199 start-page: 205 year: 1996 end-page: 218 article-title: Ageing and amyloid fibrillogenesis: lessons from apolipoprotein AI, transthyretin and islet amyloid polypeptide publication-title: Ciba Found Symp – volume: 372 start-page: 21 year: 2015 end-page: 29 article-title: The amyloidogenic V122I transthyretin variant in elderly black Americans publication-title: N Engl J Med – volume: 65 start-page: 712 year: 2006 end-page: 725 article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters publication-title: Proteins – volume: 260 start-page: 2802 year: 2013 end-page: 2814 article-title: Long‐term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy publication-title: J Neurol – volume: 86 start-page: 576 year: 2004 end-page: 588 article-title: Hydrodynamic forces applied on intercellular bonds, soluble molecules, and cell‐surface receptors publication-title: Biophys J – volume: 122 start-page: 471 year: 2000 end-page: 478 article-title: A triaxial‐measurement shear‐test device for soft biological tissues publication-title: J Biomech Eng – volume: 10 start-page: 1606 year: 2001 end-page: 1613 article-title: Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins publication-title: Protein Sci – volume: 349 start-page: 583 year: 2003 end-page: 596 article-title: Molecular mechanisms of amyloidosis publication-title: N Engl J Med – volume: 74 start-page: 1402 year: 2002 end-page: 1407 article-title: A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies publication-title: Anal Chem – volume: 77 start-page: 101 year: 2008 end-page: 125 article-title: Single‐molecule studies of protein folding publication-title: Annu Rev Biochem – volume: 111 start-page: 1539 year: 2014 end-page: 1544 article-title: Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 1137 year: 2010 end-page: 1146 article-title: Retinol and retinol‐binding protein stabilize transthyretin via formation of retinol transport complex publication-title: ACS Chem Biol – volume: 108 start-page: 15699 year: 2011 end-page: 15704 article-title: General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light‐modulated bilayers publication-title: Proc Natl Acad Sci USA – volume: 18 start-page: 771 year: 2008 end-page: 779 article-title: Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases publication-title: Curr Opin Struct Biol – volume: 299 start-page: 713 year: 2003 end-page: 716 article-title: Prevention of transthyretin amyloid disease by changing protein misfolding energetics publication-title: Science – volume: 290 start-page: 9951 year: 2015 end-page: 9958 article-title: Systemic amyloidosis: lessons from beta2‐microglobulin publication-title: J Biol Chem – volume: 93 start-page: 1017 year: 2012 end-page: 1023 article-title: Amyloid fibril composition as a predictor of development of cardiomyopathy after liver transplantation for hereditary transthyretin amyloidosis publication-title: Transplantation – volume: 37 start-page: 17851 year: 1998 end-page: 17864 article-title: Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild‐type, V30M, and L55P amyloid fibril formation publication-title: Biochemistry – volume: 322 start-page: 720 year: 2008 end-page: 724 article-title: Molecular confinement accelerates deformation of entangled polymers during squeeze flow publication-title: Science – volume: 324 start-page: 1330 year: 2009 end-page: 1334 article-title: Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor publication-title: Science – volume: 324 start-page: 301 year: 1971 end-page: 313 article-title: Surface energy and the contact of elastic solids publication-title: Proc Roy Soc Lon A, Math Phys Sci – volume: 206 start-page: 224 year: 2005 end-page: 232 article-title: Amyloid deposits in transthyretin‐derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology publication-title: J Pathol – volume: 2 start-page: 715 year: 2007 end-page: 726 article-title: Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry publication-title: Nat Protoc – volume: 14 start-page: 33 year: 1996 end-page: 38 article-title: VMD: visual molecular dynamics publication-title: J Mol Graph – volume: 26 start-page: 1781 year: 2005 end-page: 1802 article-title: Scalable molecular dynamics with NAMD publication-title: J Comput Chem – volume: 310 start-page: 2658 year: 2013 end-page: 2667 article-title: Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial publication-title: JAMA – volume: 280 start-page: 41667 year: 2005 end-page: 41674 article-title: L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers publication-title: J Biol Chem – volume: 107 start-page: 20483 year: 2010 end-page: 20488 article-title: Trapping of palindromic ligands within native transthyretin prevents amyloid formation publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 54 year: 2010 end-page: 62 article-title: Structure‐based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses publication-title: Curr Opin Struct Biol – volume: 437 start-page: 640 year: 2005 end-page: 647 article-title: Interfaces and the driving force of hydrophobic assembly publication-title: Nature – volume: 20 start-page: 142 year: 2013 end-page: 150 article-title: Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis publication-title: Amyloid – volume: 309 start-page: 2057 year: 2005 end-page: 2060 article-title: Direct observation of the three‐state folding of a single protein molecule publication-title: Science – volume: 288 start-page: 30917 year: 2013 end-page: 30930 article-title: Structure, folding dynamics, and amyloidogenesis of D76N beta 2‐microglobulin: roles of shear flow, hydrophobic surfaces, and alpha‐crystallin publication-title: J Biol Chem – volume: 12 start-page: 743 year: 1993 end-page: 748 article-title: Modifications of transthyretin in amyloid fibrils: analysis of amyloid from homozygous and heterozygous individuals with the Met30 mutation publication-title: EMBO J – volume: 19 start-page: 2324 year: 2012 end-page: 2342 article-title: Nearly 200 X‐ray crystal structures of transthyretin: what do they tell us about this protein and the design of drugs for TTR amyloidoses? publication-title: Curr Med Chem – volume: 109 start-page: 9629 year: 2012 end-page: 9634 article-title: Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade publication-title: Proc Natl Acad Sci USA – ident: e_1_2_9_29_1 doi: 10.1056/NEJMra023144 – ident: e_1_2_9_5_1 doi: 10.1001/jama.2013.283815 – volume-title: Intermolecular and Surface Forces year: 2011 ident: e_1_2_9_22_1 – ident: e_1_2_9_10_1 doi: 10.1007/s00415-013-7051-7 – ident: e_1_2_9_13_1 doi: 10.1152/ajpheart.00111.2002 – ident: e_1_2_9_32_1 doi: 10.1056/NEJMoa1404852 – ident: e_1_2_9_35_1 doi: 10.1016/S0006-3495(04)74136-3 – ident: e_1_2_9_9_1 doi: 10.1038/nature04162 – ident: e_1_2_9_28_1 doi: 10.1073/pnas.1317488111 – ident: e_1_2_9_36_1 doi: 10.1021/ac0110552 – ident: e_1_2_9_38_1 doi: 10.1002/j.1460-2075.1993.tb05708.x – ident: e_1_2_9_25_1 doi: 10.1073/pnas.1008255107 – ident: e_1_2_9_11_1 doi: 10.1016/j.sbi.2009.12.009 – ident: e_1_2_9_17_1 doi: 10.1038/nprot.2007.73 – volume: 199 start-page: 205 year: 1996 ident: e_1_2_9_39_1 article-title: Ageing and amyloid fibrillogenesis: lessons from apolipoprotein AI, transthyretin and islet amyloid polypeptide publication-title: Ciba Found Symp – ident: e_1_2_9_26_1 doi: 10.1021/bi981876 – ident: e_1_2_9_37_1 doi: 10.1074/jbc.R115.639799 – ident: e_1_2_9_33_1 doi: 10.1126/science.1157945 – ident: e_1_2_9_30_1 doi: 10.2174/092986712800269335 – ident: e_1_2_9_16_1 doi: 10.1126/science.1079589 – ident: e_1_2_9_27_1 doi: 10.1074/jbc.M113.498857 – ident: e_1_2_9_31_1 doi: 10.1002/jcc.20289 – ident: e_1_2_9_40_1 doi: 10.1126/science.1170905 – ident: e_1_2_9_2_1 doi: 10.1002/bip.21646 – ident: e_1_2_9_24_1 doi: 10.1074/jbc.M508753200 – ident: e_1_2_9_21_1 doi: 10.3109/13506129.2013.797890 – ident: e_1_2_9_8_1 doi: 10.1126/science.1116702 – ident: e_1_2_9_19_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_9_6_1 doi: 10.1146/annurev.biochem.77.060706.093102 – ident: e_1_2_9_18_1 doi: 10.1002/prot.21123 – ident: e_1_2_9_3_1 doi: 10.1016/j.sbi.2008.10.001 – ident: e_1_2_9_7_1 doi: 10.1073/pnas.1121005109 – ident: e_1_2_9_14_1 doi: 10.1073/pnas.1112411108 – ident: e_1_2_9_4_1 doi: 10.1002/path.1759 – ident: e_1_2_9_23_1 doi: 10.1098/rspa.1971.0141 – ident: e_1_2_9_15_1 doi: 10.1097/TP.0b013e31824b3749 – ident: e_1_2_9_12_1 doi: 10.1115/1.1289624 – ident: e_1_2_9_20_1 doi: 10.1021/cb100144v – ident: e_1_2_9_34_1 doi: 10.1110/ps.8901 |
SSID | ssj0065618 |
Score | 2.4589202 |
Snippet | The mechanisms underlying transthyretin‐related amyloidosis
in vivo
remain unclear. The abundance of the 49–127 transthyretin fragment in
ex vivo
deposits... The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits... The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits... The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits... The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits... Abstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1337 |
SubjectTerms | Amyloid Amyloid Neuropathies, Familial - etiology Amyloid Neuropathies, Familial - metabolism Amyloidogenesis Amyloidosis Binding sites Biochemistry, Molecular Biology Chromatography EMBO16 Fibrillogenesis Fluid flow Heart Humans Life Sciences mechano‐enzymatic cleavage Mutation Peptide Fragments - chemistry Peptide Fragments - metabolism Peptides Physiology Prealbumin - chemistry Prealbumin - metabolism Proteins Proteolysis Research Article Structural Biology Transthyretin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJRAXBOUrUFBAHOAQGjv-SI4LarVChBNFvVl27NCVmgQ125XKiZ_Ab-SXMONkQ6Oq6oXjxkk2mRn7vYk9z4S8yXKHEzw0ocrwhEO6lhhrRJIznhtna1VQLHAuv8jlEf90LI4vbfWFa8IGeeDBcPsqsy4F1sCc8ZxW1OSiAEyWteOZZz6IbQPmbZOpYQwGkhK-7AE2qgSGAjmK-ggm2L5vGixBByYkMkSlS3gUZPsBZU5wUeRVxnl14eQ0ezrntgGcDu-TeyOrjBfD2zwgt3y7S24P-0xe7JI75TiD_pB8W8Rtt_GnceOx5rf78-u3b39eBOHWGK41GxhgxsZV38RYY3YGPLWP14hq4FYse2xj00Cmv3LddxwrV_0jcnR48PXjMhn3VkgqCTlpwrzjTBklCwEZl_AVq2ogKz61ueAG7EvTOheKycKa3BeyzlDpjIsio9YpzrPHZKftWv-UxBWvc5MaSY0An1SZscIB8hrraik9pRF5v7Wwrkbhcdz_4lRjAoIu0egSPbkkIm-nC34MmhvXn_oBXTadhmLZ4QCEkB5DSN8UQhF5DQ6f3WO5-KzxGDAaJGRiA2-xt40HPXbzXqNYPhBeoHkReTU1QwfFWRfT-u681xTQv4CBlYuIPBnCZ_orhoXBkMJGRM0Ca_Ys85Z2dRJEwLlMuczBAO-2Ifjvsa41VhZi9Caj6oOyLKdfz_6HiZ-Tu3jDYRXkHtlZn537F8Dm1vZl6Lh_AYNtQlY priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCMSlggIlUFBAHOAQGjv-SU5oQa1WiHCiaG-WEzvtSt2kbLYrtScegWfkSZhJvClRVTgmdhLHM575xp4fQt4kqcUDHhpRZXjEwVyLTGFElDKeGltUKqMY4Jx_ldMj_nkmZn7DrfVulRuZ2Alq25S4R76PeckBW4BG_XD2I8KqUXi66kto3CZ3MHUZunSp2WBwAVTp9vdAQ6oIBIL0qX0EE2zfLRYYiA54SCSom_7SSl3yftA1J-gaeR13XnefHM5Qxwi3U1GHD8i2x5bhpGeGh-SWq3fI3b7a5MUOuZf7c_RH5PskrJu1Ow0XDiN_m98_f7n68qJL3xrCs2YNYsY3zttFiJFmS0CrbbhC3QbExeDHOjQLsPfntjlGiTlvH5Ojw4Nvn6aRr7AQlRIs04g5y5kySsLcZZlwJSsrgCwuLlLBjQA0GFepUExmhUldJqsE851xkSW0sIrz5AnZqpvaPSVhyavUxEZSIyxPysQUwoL-NYWtpHSUBuT9ZoZ16dOPYxWMU41mCJJEI0n0QJKAvB0eOOszb9zc9SOSbOiGKbO7G83yWPsVqFVS2BjgJ7PGcVpSk4oMwJ2sYLiOORmQ10Dw0Tumky8a7wGuQVgm1vAXext-0H6xt_qKNQPyamiGZYpnL6Z2zXmrKWCADMQrFwHZ7dln-BTD8GAwZAOiRow1Gsu4pZ6fdKnAuYy5TGEC3m1Y8GpYN05W0vHo_yZVH-R5Plw9-_ePPyf3sWvv5bhHtlbLc_cC0NqqeNktyT_NVDol priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQFQXkFCgqIAxwC8Ts5bletVohwoqg3y4mddqUmQc12pXLiJ_Ab-0s6k2RDo1Ihbkmch9cz4_lmx_OZkHc8cZjgoRHVVkQCwrXI5lZGCROJdXmpU4oFztlXtTgQnw_l4UCShLUwV_P3kkn2yVcVFowDbpFc6tvkjqRcofrO1Xwz5QIm6f7IA1eoI7B8NXD4_OUFE_fTsfSDUznGNZDXAeb1dZJjsnQKZTtftP-QPBhAZDjrpf6I3PL1Nrnbbyt5vk3uZUPC_DH5PgvrZu1PwspjiW9z8eu3r3-edzytITxr1zCfDI3LtgqxpOwUYGkbrtCJgRSxyrEObQWB_dI1Rzg1Ltsn5GB_79t8EQ1bKUSFghA0Yt4Jpq1WqYQAS_qCFSVgEx_niRRWAuyLy0RqptLcJj5VJUdiMyFTTnOnheBPyVbd1P45CQtRJja2ilrpBC-4zaUDR2tzVyrlKQ3Ix80Im2LgGcftLk4MxhsoEoMiMaNIAvJ-fOBHT7Fx8627KLLxNuTG7i6AypjB1IzmuYsBZzJnvaAFtYlMAcWpErrrmVcBeQsCn7xjMfti8BoAGMRfcg2_YmejD2aw6tYgNz7gW0B1AXkzNoM9YpLF1r45aw0FZ5_CPCpkQJ716jN-imEdMESsAdETxZr0ZdpSL487zm-hYqESGIAPGxX8060bB4t3OvqvQTV7WZaNZy_-4wsvyX087tc27pCt1emZfwUYbZW_7uzzErbMMsI priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgCMQGQXmlFBQQC1iExvErWQ6o1QgRxIIidpYdO-1ITYIm05HaFZ_AN_Il3JsXiqoKid1MHGc8vq9zY99jQl6z1OECD42oMjzikK5FxhoRpQlPjbOlyigWOOef5fKYf_wuxt2EWAvT80NML9zQMjp_jQZubDue2IOsob6qsJQcEI1gQt0kt7DAFunzE_5ldMaAVrpXfBAkVQQ-QQ7sPviIg_kDZoGp4--HcHOKuyOvQs-rOyinZdQ5yO2i1NF9cm-Al-Gi14cH5Iavd8nt_sDJi11yJx-W0h-Sb4uwbrb-LKw8Fv82v3_-8vXlRcfgGkJfswVPMzSu2irEYrM1ANY23GB4A_li_WMdmgpS_pVrTtBprtpH5Pjo8OuHZTQcshAVEpLTKPGOJ8oomQlIvYQvkqIE1OJjmwpuBADCuEyFSmRmTeozWTKkPOMiY9Q6xTl7THbqpvZPSVjwMjWxkdQIx1nBjBUOQrCxrpTSUxqQd-MM62JgIMeDMM40ZiIoEo0i0ZNIAvJm6vCjJ9-4_tb3KLLpNmTN7i406xM9GKFWzLoYEGjijOe0oCYVGeA7WcJwfeJlQF6BwGfPWC4-abwG0AaRmdjCv9gf9UEP9t5qZM0H5At4LyAvp2awVFx-MbVvzltNAQZk4GG5CMiTXn2mn0qwQhhy2YComWLNxjJvqVenHRs4lzGXKUzA21EF_w7r2slinY7-a1L1YZ7n07e9_-r1jNzFz_3-x32ys1mf--eA4zb2RWepfwCV-T5K priority: 102 providerName: Wiley-Blackwell |
Title | A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis |
URI | https://link.springer.com/article/10.15252/emmm.201505357 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201505357 https://www.ncbi.nlm.nih.gov/pubmed/26286619 https://www.proquest.com/docview/2290057063 https://www.proquest.com/docview/1718907045 https://hal.science/hal-02335545 https://pubmed.ncbi.nlm.nih.gov/PMC4604687 https://doaj.org/article/73bd04162dae41c1a8592516fd43e2e6 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-xTSBeEIyvwKgC4gEesuXDX3lAqKs6VYhME1qlvllO4myV2gTarqL89dylaUa1VbxESmwnru_s-13t-x3Ax0jltMETeIE0zGPornkmNdxTIVMmTwsZBxTgnJyLwZB9G_HRbTqgZgDn97p2lE9qOJsc__61-ooT_kuTvSc8sdMpBZUjtuERl3twgGZJ0ixNWLulgLglUA23zz2NiBSYojQFUe78Y6FqIn-0O9d0TPIuBr17lLLdT91Gu7W5OnsKTxqc6XbXivEMHtjyEB6uM0-uDuFR0uypP4fLrltWSztxp5aigCvPln9WNZGriy3NEhecpmg8n7oUczZD3Dp3F2TlUMwUBlm6Zoqe_zivrmjtHM9fwPCsf9kbeE2uBS8T6KN6oc1ZKI0UMUcPjNsszAoEL9ZPFWeGIy70C8VlKOLUKBuLIiLmM8bjKEhzyVj0EvbLqrSvwc1YoYxvRGB4zqIsMinP0RKbNC-EsEHgwPFmfHXWEJFTPoyJJoeEZKNJNrqVjQOf2gY_1xwcu6ueksDaakSeXT-oZle6mYtaRmnuIxANc2NZkAVG8Rhhniiwuza0woEPKO6tdwy63zU9Q4RDAI0v8VccbbRBb7RWE3k-AmCEfQ68b4txwtIujCltdTPXqJkqxoWWcQderZWn_dRGBR2QW2q11ZftknJ8XZOCM-EzoXAAPm8U8LZbOwcrqjX0f4Oq-0mStHdvdvb6LTymWuujjkewv5jd2HcI2RZpB_ZCdoFXOZIdODjtn1_8wLue6HXqP0E69VT9C5r3PsY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVPxcEJQ_QwGDQIKDabzeXdsHhFJIldK4QqitelvW3nUbKbFLnAaFE4_Ak_BQPAkz_itRVTj1GK_XWc_Mznzj2Zkh5IUXaAzwuI7rK-YwcNccFSvuBJQFSsepH7qY4BztisE--3jID1fIryYXBo9VNjqxVNQ6T_Ab-QbWJQdsARb13clXB7tGYXS1aaFRicWOWXwDl614u_0B-PuS0q3-3vuBU3cVcBIB3phDjWbUV74IOfga3CQ0ScFMm24ccKY4IKBuGnCfijBWgQlF6mGNL8ZDz421z5gHz71CVpkHrkyHrG72dz99bnQ_gKPyiyLYZN8BFSTqYkKccrphJhNMfQcExj20hn_ZwbJdAFi3YzyMeR7pnj-w2UZtlzF1aRS3bpGbNZq1e5X43SYrJlsjV6v-los1ci2qI_d3yEHPzvK5GdsTg7nG-e8fP032fVEWjLVhrpqDYqsHR8XExty2KeDjwp6hNQVxwnTLzFaTxTgf6fwIdfSouEv2L4X690gnyzPzgNgJSwPVVcJVXDMv8VTMNVh8FetUCOO6FnnTUFgmdcFz7Lsxluj4IEskskS2LLHIq3bCSVXr4-JbN5Fl7W1YpLu8kE-PZL3npe_FuguAl2plmJu4KuAhwEmRwnINNcIiz4HhS88Y9IYSrwGSQiDI5_AW6408yFq9FPJsM1jkWTsMigGjPSoz-WkhXUAdISh0xi1yvxKf9q8oJiSD62wRf0mwltayPJKNjsvi40x0mQiAAK8bETxb1oXE8koZ_R9RZT-KovbXw3-_-FNyfbAXDeVwe3fnEbmB06ozluukM5uemseAFWfxk3qD2uTLZeuEP_SsdVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIiouCMqfoYBBIMHBJLveXdsHhAJtlNKm4kBRbsvau24jJXaJ06Bw4hF4Hh6HJ2HGfyWqCqce4_U665nZmW88OzOEPPdDgwEe6tFAc4-Du-bpWAsvZDzUJk6DiGKC8_BADg75h5EYrZFfTS4MHqtsdGKpqE2e4DfyDtYlB2wBFrWT1sciPm7335589bCDFEZam3YalYjs2eU3cN-KN7vbwOsXjPV3Pr0feHWHAS-R4Jl5zBrOAh3ISIDfIWzCkhRMtu3GoeBaABrqpqEImIxiHdpIpj7W--Ii8mlsAs59eO4VcjXwBcU9FoxaZw9gUvltEaxz4IEyknVZIcEE69jpFJPgAYsJH-3iXxaxbBwAdu4Yj2Wex7znj2628dtVdF2ax_5NcqPGtW6vEsRbZM1mm-Ra1elyuUk2hnUM_zb53HOzfGEn7tRi1nH--8dPm31flqVjXZirF6Di6sFxMXUxy20GSLlw52hXQbAw8TJz9XQ5yccmP0JtPS7ukMNLof1dsp7lmb1P3ISnoe5qSbUw3E98HQsDtl_HJpXSUuqQ1w2FVVKXPscOHBOFLhCyRCFLVMsSh7xsJ5xUVT8uvvUdsqy9Dct1lxfy2ZGqd78K_Nh0Afoyoy2nCdWhiABYyhSWa5mVDnkGDF95xqC3r_AaYCqEhGIBb7HVyIOqFU2hzraFQ562w6AiMO6jM5ufFooC_ohAtXPhkHuV-LR_xTA1GZxohwQrgrWyltWRbHxcliHnsstlCAR41Yjg2bIuJJZfyuj_iKp2hsNh--vBv1_8CdkATaD2dw_2HpLrOKs6bLlF1uezU_sIQOM8flzuTpd8uWx18AdrBXgs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+mechano-enzymatic+cleavage+mechanism+underlies+transthyretin+amyloidogenesis&rft.jtitle=EMBO+molecular+medicine&rft.au=Marcoux%2C+Julien&rft.au=Mangione%2C+P+Patrizia&rft.au=Porcari%2C+Riccardo&rft.au=Degiacomi%2C+Matteo+T&rft.date=2015-10-01&rft.eissn=1757-4684&rft.volume=7&rft.issue=10&rft.spage=1337&rft_id=info:doi/10.15252%2Femmm.201505357&rft_id=info%3Apmid%2F26286619&rft.externalDocID=26286619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon |