A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis

The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated pro...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 7; no. 10; pp. 1337 - 1349
Main Authors Marcoux, Julien, Mangione, P Patrizia, Porcari, Riccardo, Degiacomi, Matteo T, Verona, Guglielmo, Taylor, Graham W, Giorgetti, Sofia, Raimondi, Sara, Sanglier‐Cianférani, Sarah, Benesch, Justin LP, Cecconi, Ciro, Naqvi, Mohsin M, Gillmore, Julian D, Hawkins, Philip N, Stoppini, Monica, Robinson, Carol V, Pepys, Mark B, Bellotti, Vittorio
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2015
EMBO Press
Wiley Open Access
John Wiley & Sons, Ltd
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo . This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. Synopsis Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease. Shear forces are required to prime proteolysis of wild‐type and other variant TTRs and to release the amyloidogenic fragment. These forces are present in the heart, offering an explanation for tissue specificity in cardiac TTR amyloidosis. TTR stabilizers, currently used to treat amyloidosis, can inhibit this mechanism; however, their efficacy differs for each variant. Graphical Abstract Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease.
AbstractList The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. Synopsis Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease. Shear forces are required to prime proteolysis of wild‐type and other variant TTRs and to release the amyloidogenic fragment. These forces are present in the heart, offering an explanation for tissue specificity in cardiac TTR amyloidosis. TTR stabilizers, currently used to treat amyloidosis, can inhibit this mechanism; however, their efficacy differs for each variant. Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease.
The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo . This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied. Synopsis Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease. Shear forces are required to prime proteolysis of wild‐type and other variant TTRs and to release the amyloidogenic fragment. These forces are present in the heart, offering an explanation for tissue specificity in cardiac TTR amyloidosis. TTR stabilizers, currently used to treat amyloidosis, can inhibit this mechanism; however, their efficacy differs for each variant. Graphical Abstract Selective proteolysis of TTR generates a highly amyloidogenic truncated protomer. Shear stress generated by turbulent flow of physiological fluids makes TTR susceptible to cleavage. This mechanism may play a crucial role in the development of cardiac TTR amyloidosis, and offers new therapeutic targets for treating the disease.
Abstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo . This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
Author Degiacomi, Matteo T
Taylor, Graham W
Porcari, Riccardo
Sanglier‐Cianférani, Sarah
Naqvi, Mohsin M
Raimondi, Sara
Giorgetti, Sofia
Hawkins, Philip N
Gillmore, Julian D
Stoppini, Monica
Pepys, Mark B
Robinson, Carol V
Verona, Guglielmo
Cecconi, Ciro
Marcoux, Julien
Bellotti, Vittorio
Mangione, P Patrizia
Benesch, Justin LP
Author_xml – sequence: 1
  givenname: Julien
  surname: Marcoux
  fullname: Marcoux, Julien
  organization: Department of Chemistry, University of Oxford, Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), University of Strasbourg UDS, CNRS, Institute of Pharmacology and Structural Biology (IPBS)
– sequence: 2
  givenname: P Patrizia
  surname: Mangione
  fullname: Mangione, P Patrizia
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Department of Molecular Medicine, Institute of Biochemistry, University of Pavia
– sequence: 3
  givenname: Riccardo
  surname: Porcari
  fullname: Porcari, Riccardo
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London
– sequence: 4
  givenname: Matteo T
  surname: Degiacomi
  fullname: Degiacomi, Matteo T
  organization: Department of Chemistry, University of Oxford
– sequence: 5
  givenname: Guglielmo
  surname: Verona
  fullname: Verona, Guglielmo
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Department of Molecular Medicine, Institute of Biochemistry, University of Pavia
– sequence: 6
  givenname: Graham W
  surname: Taylor
  fullname: Taylor, Graham W
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London
– sequence: 7
  givenname: Sofia
  surname: Giorgetti
  fullname: Giorgetti, Sofia
  organization: Department of Molecular Medicine, Institute of Biochemistry, University of Pavia
– sequence: 8
  givenname: Sara
  surname: Raimondi
  fullname: Raimondi, Sara
  organization: Department of Molecular Medicine, Institute of Biochemistry, University of Pavia
– sequence: 9
  givenname: Sarah
  surname: Sanglier‐Cianférani
  fullname: Sanglier‐Cianférani, Sarah
  organization: Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), University of Strasbourg UDS
– sequence: 10
  givenname: Justin LP
  surname: Benesch
  fullname: Benesch, Justin LP
  organization: Department of Chemistry, University of Oxford
– sequence: 11
  givenname: Ciro
  surname: Cecconi
  fullname: Cecconi, Ciro
  organization: Institute of Nanoscience S3, Consiglio Nazionale delle Ricerche, Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia
– sequence: 12
  givenname: Mohsin M
  surname: Naqvi
  fullname: Naqvi, Mohsin M
  organization: Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia
– sequence: 13
  givenname: Julian D
  surname: Gillmore
  fullname: Gillmore, Julian D
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London
– sequence: 14
  givenname: Philip N
  surname: Hawkins
  fullname: Hawkins, Philip N
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London
– sequence: 15
  givenname: Monica
  surname: Stoppini
  fullname: Stoppini, Monica
  organization: Department of Molecular Medicine, Institute of Biochemistry, University of Pavia
– sequence: 16
  givenname: Carol V
  surname: Robinson
  fullname: Robinson, Carol V
  organization: Department of Chemistry, University of Oxford
– sequence: 17
  givenname: Mark B
  surname: Pepys
  fullname: Pepys, Mark B
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London
– sequence: 18
  givenname: Vittorio
  surname: Bellotti
  fullname: Bellotti, Vittorio
  email: v.bellotti@ucl.ac.uk
  organization: Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Department of Molecular Medicine, Institute of Biochemistry, University of Pavia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26286619$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02335545$$DView record in HAL
BookMark eNqFUstuEzEUHaEi-oA1OzQSG1ik9dtjFpWiqtBKjdgAW8uZuZM48tjFngSFFZ_AN_IlOJ00tJEqVrZ8z8Pn3ntcHPjgoSheY3SKOeHkDLquOyUIc8Qpl8-KIyy5HDFRsYPdXYrD4jilBUKCC1y9KA6JIJUQWB0V38alDytwZQf13Pjw59dv8D_XneltXdYOzMrMYFu0qSuXvoHoLKSyj8anfr6O0Ftfmm7tgm3CDDwkm14Wz1vjErzanifF14-XXy6uRjefP11fjG9GtaioHBFoGJFGCsUrpTjUpG4FVYCmFWeGY4FRW3FJhJqaCpRoKWKUMq4onjaSMXpSXA-6TTALfRttZ-JaB2P13UOIM21ijuJASzptEMOCNAYYrrGpuCLZom0YBQIia50PWrfLaQdNDT5HdI9EH1e8netZWGkmUG64zALvB4H5Hu1qfKM3b4hQyjnjK5yx77ZmMXxfQup1Z1MNzhkPYZk0lrhSSCLGM_TtHnQRltHntmpCFEJcIkEz6s3D3-_870edAXwA1DGkFKHVte3zmMMmjHUaI323UnqzUnq3Upl3tse7l36a8WFg_LAO1v-D68vJZPKQjAZyyjw_g_gv7VN-fwGlhu73
CitedBy_id crossref_primary_10_1021_acs_biochem_2c00390
crossref_primary_10_23736_S0026_4806_21_07777_6
crossref_primary_10_1111_febs_17070
crossref_primary_10_1002_pro_4931
crossref_primary_10_1016_j_jbc_2024_108031
crossref_primary_10_1111_joim_13222
crossref_primary_10_1002_path_5203
crossref_primary_10_1038_s44328_025_00027_0
crossref_primary_10_1007_s11897_019_00446_x
crossref_primary_10_3390_biomedicines7010011
crossref_primary_10_1007_s13311_021_01154_y
crossref_primary_10_1111_jgs_17976
crossref_primary_10_1080_14789450_2016_1242417
crossref_primary_10_1016_j_ejim_2024_01_001
crossref_primary_10_1039_C9CC00682F
crossref_primary_10_1080_17474124_2018_1397511
crossref_primary_10_3390_genes12070955
crossref_primary_10_1007_s10741_022_10237_7
crossref_primary_10_1016_j_jbc_2024_107174
crossref_primary_10_1111_pin_12902
crossref_primary_10_1016_j_cpcardiol_2022_101366
crossref_primary_10_1074_jbc_RA120_014026
crossref_primary_10_1016_j_ajpath_2018_09_015
crossref_primary_10_1080_13506129_2018_1531842
crossref_primary_10_1007_s40120_020_00210_7
crossref_primary_10_3389_fmolb_2022_830006
crossref_primary_10_1074_jbc_RA120_013461
crossref_primary_10_36660_ijcs_20240112
crossref_primary_10_1080_13506129_2024_2383467
crossref_primary_10_1002_anbr_202200082
crossref_primary_10_1515_cclm_2019_1007
crossref_primary_10_1248_bpb_b17_01021
crossref_primary_10_1080_10408363_2024_2350379
crossref_primary_10_2174_0118715273283786240408034408
crossref_primary_10_1007_s00059_019_04871_5
crossref_primary_10_1016_j_hfc_2024_02_002
crossref_primary_10_3390_cimb46100684
crossref_primary_10_1038_s42003_024_06588_6
crossref_primary_10_1371_journal_pone_0266092
crossref_primary_10_3390_ijms24010699
crossref_primary_10_1016_j_xcrp_2021_100477
crossref_primary_10_1021_acs_jmedchem_0c00934
crossref_primary_10_1126_scitranslmed_aam7621
crossref_primary_10_1371_journal_pone_0211983
crossref_primary_10_1038_s41598_019_56498_5
crossref_primary_10_1098_rsob_150105
crossref_primary_10_3390_pharmaceutics15041129
crossref_primary_10_1111_joim_13250
crossref_primary_10_1038_s42003_020_01493_0
crossref_primary_10_3390_ijms22179488
crossref_primary_10_1038_srep46711
crossref_primary_10_3389_fphar_2020_01024
crossref_primary_10_1111_jns_12381
crossref_primary_10_1038_srep44709
crossref_primary_10_1038_s41467_019_08609_z
crossref_primary_10_3390_biomedicines10061377
crossref_primary_10_3390_cells10071768
crossref_primary_10_3390_ijms19092677
crossref_primary_10_1056_NEJMoa2107454
crossref_primary_10_1021_acs_analchem_1c01722
crossref_primary_10_1016_j_jacc_2020_11_006
crossref_primary_10_3390_ijms24054655
crossref_primary_10_3233_JND_180371
crossref_primary_10_3390_ijms232416145
crossref_primary_10_1007_s10741_023_10350_1
crossref_primary_10_1016_j_carrev_2022_04_027
crossref_primary_10_3390_genes14081542
crossref_primary_10_1038_s41598_017_00338_x
crossref_primary_10_1080_13506129_2017_1385452
crossref_primary_10_1021_acs_biochem_8b00619
crossref_primary_10_1073_pnas_1802977115
crossref_primary_10_3390_jcm13010221
crossref_primary_10_1016_j_euprot_2016_02_003
crossref_primary_10_2478_fzm_2022_0009
crossref_primary_10_1021_acs_jmedchem_2c01195
crossref_primary_10_1111_joim_12585
crossref_primary_10_1038_s41467_021_27416_z
crossref_primary_10_1002_path_5770
crossref_primary_10_3390_ijms25158176
crossref_primary_10_1002_ehf2_14543
crossref_primary_10_3389_fnmol_2020_592644
crossref_primary_10_1080_00365513_2019_1624977
crossref_primary_10_3109_13506129_2016_1160882
crossref_primary_10_1002_humu_23669
crossref_primary_10_1016_j_neuint_2022_105313
crossref_primary_10_1007_s10072_020_04889_2
crossref_primary_10_3390_biom12081066
crossref_primary_10_1016_j_bbapap_2024_141027
crossref_primary_10_1093_ehjcr_ytae199
crossref_primary_10_1007_s00392_024_02576_2
crossref_primary_10_3389_fphar_2021_628184
crossref_primary_10_1016_j_jmb_2023_168215
crossref_primary_10_1074_jbc_RA119_007851
crossref_primary_10_1016_j_jare_2024_04_018
crossref_primary_10_1073_pnas_2425230122
crossref_primary_10_3390_ijms22073488
crossref_primary_10_1016_j_arr_2021_101388
crossref_primary_10_1021_acs_biochem_0c00079
crossref_primary_10_1016_j_jprot_2020_103799
crossref_primary_10_3109_03009734_2015_1122687
crossref_primary_10_3390_ijms22094429
crossref_primary_10_3390_ijms22094828
crossref_primary_10_1080_14789450_2017_1331737
crossref_primary_10_1007_s00415_024_12509_8
crossref_primary_10_1016_j_jacbts_2024_07_005
crossref_primary_10_1074_jbc_RA118_003990
crossref_primary_10_1038_s41598_018_36357_5
crossref_primary_10_1007_s40120_020_00217_0
crossref_primary_10_1021_acs_jmedchem_9b01037
crossref_primary_10_2217_fca_2021_0118
crossref_primary_10_3390_ijms23010025
crossref_primary_10_1186_s12872_023_03319_3
crossref_primary_10_3389_fcvm_2023_1091183
crossref_primary_10_1002_mus_28026
crossref_primary_10_3390_biomedicines10123226
crossref_primary_10_1038_s41467_019_13038_z
crossref_primary_10_1080_13506129_2022_2142109
Cites_doi 10.1056/NEJMra023144
10.1001/jama.2013.283815
10.1007/s00415-013-7051-7
10.1152/ajpheart.00111.2002
10.1056/NEJMoa1404852
10.1016/S0006-3495(04)74136-3
10.1038/nature04162
10.1073/pnas.1317488111
10.1021/ac0110552
10.1002/j.1460-2075.1993.tb05708.x
10.1073/pnas.1008255107
10.1016/j.sbi.2009.12.009
10.1038/nprot.2007.73
10.1021/bi981876
10.1074/jbc.R115.639799
10.1126/science.1157945
10.2174/092986712800269335
10.1126/science.1079589
10.1074/jbc.M113.498857
10.1002/jcc.20289
10.1126/science.1170905
10.1002/bip.21646
10.1074/jbc.M508753200
10.3109/13506129.2013.797890
10.1126/science.1116702
10.1016/0263-7855(96)00018-5
10.1146/annurev.biochem.77.060706.093102
10.1002/prot.21123
10.1016/j.sbi.2008.10.001
10.1073/pnas.1121005109
10.1073/pnas.1112411108
10.1002/path.1759
10.1098/rspa.1971.0141
10.1097/TP.0b013e31824b3749
10.1115/1.1289624
10.1021/cb100144v
10.1110/ps.8901
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY 4.0 license 2015
2015 The Authors. Published under the terms of the CC BY 4.0 license
2015 The Authors. Published under the terms of the CC BY 4.0 license.
2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2015 The Authors. Published under the terms of the CC BY 4.0 license 2015
Copyright_xml – notice: The Authors. Published under the terms of the CC BY 4.0 license 2015
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOA
DOI 10.15252/emmm.201505357
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Sciences Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1757-4684
EndPage 1349
ExternalDocumentID oai_doaj_org_article_73bd04162dae41c1a8592516fd43e2e6
PMC4604687
oai_HAL_hal_02335545v1
26286619
10_15252_emmm_201505357
EMMM201505357
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Italian Ministry of University and Research (MIUR)
  grantid: FIRB RBFR109EOS
– fundername: Cariplo Foundation
  grantid: 2014‐0700
– fundername: MIUR Grant
  grantid: 17DPXLNBEK
– fundername: MIUR Basic Research Investment Fund Project
  grantid: FIRB RBPR05JH2P
– fundername: UCL Amyloidosis Research Fund
– fundername: UK Medical Research Council
  grantid: MR/K000187/1
– fundername: Istituto Nazionale di Biostrutture e Biosistemi
– fundername: UK National Institute for Health Research Biomedical Research Centre and Unit Funding Scheme
– fundername: Swiss National Science Foundation
  grantid: P2ELP3_155339
– fundername: Italian Ministry of University and Research (MIUR)
  funderid: FIRB RBFR109EOS
– fundername: MIUR Grant
  funderid: 17DPXLNBEK
– fundername: UK Medical Research Council
  funderid: MR/K000187/1
– fundername: Cariplo Foundation
  funderid: 2014‐0700
– fundername: MIUR Basic Research Investment Fund Project
  funderid: FIRB RBPR05JH2P
– fundername: Swiss National Science Foundation
  funderid: P2ELP3_155339
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: G7900510
– fundername: Medical Research Council
  grantid: MR/K000187/1
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAHHS
AAJSJ
AAZKR
ABOCM
ABUWG
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFKRA
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
LW6
M48
M7P
M~E
NNB
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
RHF
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
31~
ABJNI
AFZJQ
EBLON
GODZA
AASML
AAYXX
CITATION
NAO
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
1XC
PMFND
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c6837-2ed427a76958995ec2cf639e0b854a51610f857269ba8e96f3043345931bd7443
IEDL.DBID M48
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:28:21 EDT 2025
Thu Aug 21 13:54:39 EDT 2025
Wed Jun 04 07:15:50 EDT 2025
Fri Jul 11 08:12:45 EDT 2025
Wed Aug 13 08:37:37 EDT 2025
Mon Jul 21 05:58:49 EDT 2025
Tue Jul 01 01:52:58 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Jan 22 16:40:42 EST 2025
Fri Feb 21 02:37:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords transthyretin
mechano‐enzymatic cleavage
amyloid
transthyretin Subject Categories Genetics
mechano-enzymatic cleavage
Gene Therapy & Genetic Disease
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2015 The Authors. Published under the terms of the CC BY 4.0 license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6837-2ed427a76958995ec2cf639e0b854a51610f857269ba8e96f3043345931bd7443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
Current address: CNRS, Institute of Pharmacology and Structural Biology (IPBS), Toulouse, France
ORCID 0000-0001-7829-5505
0000-0001-7321-7436
0000-0003-4013-4129
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201505357
PMID 26286619
PQID 2290057063
PQPubID 866378
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_73bd04162dae41c1a8592516fd43e2e6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4604687
hal_primary_oai_HAL_hal_02335545v1
proquest_miscellaneous_1718907045
proquest_journals_2290057063
pubmed_primary_26286619
crossref_citationtrail_10_15252_emmm_201505357
crossref_primary_10_15252_emmm_201505357
wiley_primary_10_15252_emmm_201505357_EMMM201505357
springer_journals_10_15252_emmm_201505357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
– name: Frankfurt
– name: Chichester, UK
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2015
Publisher Nature Publishing Group UK
EMBO Press
Wiley Open Access
John Wiley & Sons, Ltd
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: Wiley Open Access
– name: John Wiley & Sons, Ltd
– name: Springer Nature
References Quarta, Buxbaum, Shah, Falk, Claggett, Kitzman, Mosley, Butler, Boerwinkle, Solomon (CR31) 2015; 372
Connelly, Choi, Johnson, Kelly, Wilson (CR10) 2010; 20
Donaldson, Lee, Chmelka, Israelachvili (CR13) 2011; 108
Johnson, Kendall, Roberts (CR22) 1971; 324
Berk, Suhr, Obici, Sekijima, Zeldenrust, Yamashita, Heneghan, Gorevic, Litchy, Wiesman (CR4) 2013; 310
Lashuel, Lai, Kelly (CR25) 1998; 37
Chandler (CR8) 2005; 437
Mangione, Porcari, Gillmore, Pucci, Monti, Porcari, Giorgetti, Marchese, Raimondi, Serpell (CR27) 2014; 111
Hernandez, Robinson (CR16) 2007; 2
Sobott, Hernandez, McCammon, Tito, Robinson (CR35) 2002; 74
Stoppini, Bellotti (CR36) 2015; 290
Israelachvili (CR21) 2011
Westermark, Sletten, Johnson (CR38) 1996; 199
Hornak, Abel, Okur, Strockbine, Roitberg, Simmerling (CR17) 2006; 65
Merlini, Bellotti (CR28) 2003; 349
Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa, Chipot, Skeel, Kale, Schulten (CR30) 2005; 26
Cecconi, Shank, Bustamante, Marqusee (CR7) 2005; 309
Keetch, Bromley, McCammon, Wang, Christodoulou, Robinson (CR23) 2005; 280
Hammarstrom, Wiseman, Powers, Kelly (CR15) 2003; 299
Bellotti, Chiti (CR2) 2008; 18
Dokos, LeGrice, Smaill, Kar, Young (CR11) 2000; 122
Gustafsson, Ihse, Henein, Westermark, Lindqvist, Suhr (CR14) 2012; 93
Schneider, Hammarstrom, Kelly (CR33) 2001; 10
Hyung, Deroo, Robinson (CR19) 2010; 5
Bergstrom, Gustavsson, Hellman, Sletten, Murphy, Weiss, Solomon, Olofsson, Westermark (CR3) 2005; 206
Bekard, Asimakis, Bertolini, Dunstan (CR1) 2011; 95
Ihse, Rapezzi, Merlini, Benson, Ando, Suhr, Ikeda, Lavatelli, Obici, Quarta (CR20) 2013; 20
Kolstoe, Mangione, Bellotti, Taylor, Tennent, Deroo, Morrison, Cobb, Coyne, McCammon (CR24) 2010; 107
Mangione, Esposito, Relini, Raimondi, Porcari, Giorgetti, Corazza, Fogolari, Penco, Goto (CR26) 2013; 288
Dokos, Smaill, Young, LeGrice (CR12) 2002; 283
Palaninathan (CR29) 2012; 19
Zhang, Halvorsen, Zhang, Wong, Springer (CR39) 2009; 324
Rowland, King, Pethica, Cross (CR32) 2008; 322
Coelho, Maia, da Silva, Cruz, Plante‐Bordeneuve, Suhr, Conceicao, Schmidt, Trigo, Kelly (CR9) 2013; 260
Humphrey, Dalke, Schulten (CR18) 1996; 14
Shankaran, Neelamegham (CR34) 2004; 86
Bulawa, Connelly, Devit, Wang, Weigel, Fleming, Packman, Powers, Wiseman, Foss (CR6) 2012; 109
Thylen, Wahlqvist, Haettner, Sandgren, Holmgren, Lundgren (CR37) 1993; 12
Borgia, Williams, Clarke (CR5) 2008; 77
2004; 86
2010; 107
2002; 74
2011
2008; 18
2013; 20
2005; 437
2013; 288
1971; 324
2012; 19
2008; 77
2008; 322
1996; 14
2005; 26
2014; 111
2013; 260
2003; 299
2012; 109
2015; 372
2012; 93
1998; 37
2005; 280
2010; 20
1993; 12
2011; 108
2003; 349
2015; 290
2002; 283
2006; 65
2011; 95
2005; 206
2013; 310
2005; 309
1996; 199
2000; 122
2007; 2
2010; 5
2009; 324
2001; 10
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Israelachvili JN (e_1_2_9_22_1) 2011
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
Westermark P (e_1_2_9_39_1) 1996; 199
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 324
  start-page: 301
  year: 1971
  end-page: 313
  ident: CR22
  article-title: Surface energy and the contact of elastic solids
  publication-title: Proc Roy Soc Lon A, Math Phys Sci
– volume: 283
  start-page: H2650
  year: 2002
  end-page: H2659
  ident: CR12
  article-title: Shear properties of passive ventricular myocardium
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 19
  start-page: 2324
  year: 2012
  end-page: 2342
  ident: CR29
  article-title: Nearly 200 X‐ray crystal structures of transthyretin: what do they tell us about this protein and the design of drugs for TTR amyloidoses?
  publication-title: Curr Med Chem
– volume: 437
  start-page: 640
  year: 2005
  end-page: 647
  ident: CR8
  article-title: Interfaces and the driving force of hydrophobic assembly
  publication-title: Nature
– volume: 288
  start-page: 30917
  year: 2013
  end-page: 30930
  ident: CR26
  article-title: Structure, folding dynamics, and amyloidogenesis of D76N beta 2‐microglobulin: roles of shear flow, hydrophobic surfaces, and alpha‐crystallin
  publication-title: J Biol Chem
– volume: 109
  start-page: 9629
  year: 2012
  end-page: 9634
  ident: CR6
  article-title: Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade
  publication-title: Proc Natl Acad Sci USA
– volume: 349
  start-page: 583
  year: 2003
  end-page: 596
  ident: CR28
  article-title: Molecular mechanisms of amyloidosis
  publication-title: N Engl J Med
– volume: 107
  start-page: 20483
  year: 2010
  end-page: 20488
  ident: CR24
  article-title: Trapping of palindromic ligands within native transthyretin prevents amyloid formation
  publication-title: Proc Natl Acad Sci USA
– volume: 290
  start-page: 9951
  year: 2015
  end-page: 9958
  ident: CR36
  article-title: Systemic amyloidosis: lessons from beta2‐microglobulin
  publication-title: J Biol Chem
– volume: 111
  start-page: 1539
  year: 2014
  end-page: 1544
  ident: CR27
  article-title: Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 17851
  year: 1998
  end-page: 17864
  ident: CR25
  article-title: Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild‐type, V30M, and L55P amyloid fibril formation
  publication-title: Biochemistry
– volume: 95
  start-page: 733
  year: 2011
  end-page: 745
  ident: CR1
  article-title: The effects of shear flow on protein structure and function
  publication-title: Biopolymers
– volume: 122
  start-page: 471
  year: 2000
  end-page: 478
  ident: CR11
  article-title: A triaxial‐measurement shear‐test device for soft biological tissues
  publication-title: J Biomech Eng
– volume: 93
  start-page: 1017
  year: 2012
  end-page: 1023
  ident: CR14
  article-title: Amyloid fibril composition as a predictor of development of cardiomyopathy after liver transplantation for hereditary transthyretin amyloidosis
  publication-title: Transplantation
– volume: 18
  start-page: 771
  year: 2008
  end-page: 779
  ident: CR2
  article-title: Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases
  publication-title: Curr Opin Struct Biol
– volume: 206
  start-page: 224
  year: 2005
  end-page: 232
  ident: CR3
  article-title: Amyloid deposits in transthyretin‐derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology
  publication-title: J Pathol
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: CR18
  article-title: VMD: visual molecular dynamics
  publication-title: J Mol Graph
– volume: 280
  start-page: 41667
  year: 2005
  end-page: 41674
  ident: CR23
  article-title: L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers
  publication-title: J Biol Chem
– volume: 372
  start-page: 21
  year: 2015
  end-page: 29
  ident: CR31
  article-title: The amyloidogenic V122I transthyretin variant in elderly black Americans
  publication-title: N Engl J Med
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  ident: CR30
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J Comput Chem
– volume: 299
  start-page: 713
  year: 2003
  end-page: 716
  ident: CR15
  article-title: Prevention of transthyretin amyloid disease by changing protein misfolding energetics
  publication-title: Science
– volume: 324
  start-page: 1330
  year: 2009
  end-page: 1334
  ident: CR39
  article-title: Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor
  publication-title: Science
– volume: 310
  start-page: 2658
  year: 2013
  end-page: 2667
  ident: CR4
  article-title: Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial
  publication-title: JAMA
– volume: 74
  start-page: 1402
  year: 2002
  end-page: 1407
  ident: CR35
  article-title: A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies
  publication-title: Anal Chem
– volume: 12
  start-page: 743
  year: 1993
  end-page: 748
  ident: CR37
  article-title: Modifications of transthyretin in amyloid fibrils: analysis of amyloid from homozygous and heterozygous individuals with the Met30 mutation
  publication-title: EMBO J
– volume: 65
  start-page: 712
  year: 2006
  end-page: 725
  ident: CR17
  article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters
  publication-title: Proteins
– volume: 309
  start-page: 2057
  year: 2005
  end-page: 2060
  ident: CR7
  article-title: Direct observation of the three‐state folding of a single protein molecule
  publication-title: Science
– volume: 77
  start-page: 101
  year: 2008
  end-page: 125
  ident: CR5
  article-title: Single‐molecule studies of protein folding
  publication-title: Annu Rev Biochem
– volume: 20
  start-page: 142
  year: 2013
  end-page: 150
  ident: CR20
  article-title: Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis
  publication-title: Amyloid
– volume: 86
  start-page: 576
  year: 2004
  end-page: 588
  ident: CR34
  article-title: Hydrodynamic forces applied on intercellular bonds, soluble molecules, and cell‐surface receptors
  publication-title: Biophys J
– year: 2011
  ident: CR21
  publication-title: Intermolecular and Surface Forces
– volume: 108
  start-page: 15699
  year: 2011
  end-page: 15704
  ident: CR13
  article-title: General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light‐modulated bilayers
  publication-title: Proc Natl Acad Sci USA
– volume: 322
  start-page: 720
  year: 2008
  end-page: 724
  ident: CR32
  article-title: Molecular confinement accelerates deformation of entangled polymers during squeeze flow
  publication-title: Science
– volume: 260
  start-page: 2802
  year: 2013
  end-page: 2814
  ident: CR9
  article-title: Long‐term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy
  publication-title: J Neurol
– volume: 2
  start-page: 715
  year: 2007
  end-page: 726
  ident: CR16
  article-title: Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry
  publication-title: Nat Protoc
– volume: 10
  start-page: 1606
  year: 2001
  end-page: 1613
  ident: CR33
  article-title: Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins
  publication-title: Protein Sci
– volume: 199
  start-page: 205
  year: 1996
  end-page: 218
  ident: CR38
  article-title: Ageing and amyloid fibrillogenesis: lessons from apolipoprotein AI, transthyretin and islet amyloid polypeptide
  publication-title: Ciba Found Symp
– volume: 20
  start-page: 54
  year: 2010
  end-page: 62
  ident: CR10
  article-title: Structure‐based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses
  publication-title: Curr Opin Struct Biol
– volume: 5
  start-page: 1137
  year: 2010
  end-page: 1146
  ident: CR19
  article-title: Retinol and retinol‐binding protein stabilize transthyretin via formation of retinol transport complex
  publication-title: ACS Chem Biol
– volume: 283
  start-page: H2650
  year: 2002
  end-page: H2659
  article-title: Shear properties of passive ventricular myocardium
  publication-title: Am J Physiol Heart Circ Physiol
– year: 2011
– volume: 95
  start-page: 733
  year: 2011
  end-page: 745
  article-title: The effects of shear flow on protein structure and function
  publication-title: Biopolymers
– volume: 199
  start-page: 205
  year: 1996
  end-page: 218
  article-title: Ageing and amyloid fibrillogenesis: lessons from apolipoprotein AI, transthyretin and islet amyloid polypeptide
  publication-title: Ciba Found Symp
– volume: 372
  start-page: 21
  year: 2015
  end-page: 29
  article-title: The amyloidogenic V122I transthyretin variant in elderly black Americans
  publication-title: N Engl J Med
– volume: 65
  start-page: 712
  year: 2006
  end-page: 725
  article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters
  publication-title: Proteins
– volume: 260
  start-page: 2802
  year: 2013
  end-page: 2814
  article-title: Long‐term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy
  publication-title: J Neurol
– volume: 86
  start-page: 576
  year: 2004
  end-page: 588
  article-title: Hydrodynamic forces applied on intercellular bonds, soluble molecules, and cell‐surface receptors
  publication-title: Biophys J
– volume: 122
  start-page: 471
  year: 2000
  end-page: 478
  article-title: A triaxial‐measurement shear‐test device for soft biological tissues
  publication-title: J Biomech Eng
– volume: 10
  start-page: 1606
  year: 2001
  end-page: 1613
  article-title: Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins
  publication-title: Protein Sci
– volume: 349
  start-page: 583
  year: 2003
  end-page: 596
  article-title: Molecular mechanisms of amyloidosis
  publication-title: N Engl J Med
– volume: 74
  start-page: 1402
  year: 2002
  end-page: 1407
  article-title: A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies
  publication-title: Anal Chem
– volume: 77
  start-page: 101
  year: 2008
  end-page: 125
  article-title: Single‐molecule studies of protein folding
  publication-title: Annu Rev Biochem
– volume: 111
  start-page: 1539
  year: 2014
  end-page: 1544
  article-title: Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 1137
  year: 2010
  end-page: 1146
  article-title: Retinol and retinol‐binding protein stabilize transthyretin via formation of retinol transport complex
  publication-title: ACS Chem Biol
– volume: 108
  start-page: 15699
  year: 2011
  end-page: 15704
  article-title: General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light‐modulated bilayers
  publication-title: Proc Natl Acad Sci USA
– volume: 18
  start-page: 771
  year: 2008
  end-page: 779
  article-title: Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases
  publication-title: Curr Opin Struct Biol
– volume: 299
  start-page: 713
  year: 2003
  end-page: 716
  article-title: Prevention of transthyretin amyloid disease by changing protein misfolding energetics
  publication-title: Science
– volume: 290
  start-page: 9951
  year: 2015
  end-page: 9958
  article-title: Systemic amyloidosis: lessons from beta2‐microglobulin
  publication-title: J Biol Chem
– volume: 93
  start-page: 1017
  year: 2012
  end-page: 1023
  article-title: Amyloid fibril composition as a predictor of development of cardiomyopathy after liver transplantation for hereditary transthyretin amyloidosis
  publication-title: Transplantation
– volume: 37
  start-page: 17851
  year: 1998
  end-page: 17864
  article-title: Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild‐type, V30M, and L55P amyloid fibril formation
  publication-title: Biochemistry
– volume: 322
  start-page: 720
  year: 2008
  end-page: 724
  article-title: Molecular confinement accelerates deformation of entangled polymers during squeeze flow
  publication-title: Science
– volume: 324
  start-page: 1330
  year: 2009
  end-page: 1334
  article-title: Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor
  publication-title: Science
– volume: 324
  start-page: 301
  year: 1971
  end-page: 313
  article-title: Surface energy and the contact of elastic solids
  publication-title: Proc Roy Soc Lon A, Math Phys Sci
– volume: 206
  start-page: 224
  year: 2005
  end-page: 232
  article-title: Amyloid deposits in transthyretin‐derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology
  publication-title: J Pathol
– volume: 2
  start-page: 715
  year: 2007
  end-page: 726
  article-title: Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry
  publication-title: Nat Protoc
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  article-title: VMD: visual molecular dynamics
  publication-title: J Mol Graph
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J Comput Chem
– volume: 310
  start-page: 2658
  year: 2013
  end-page: 2667
  article-title: Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial
  publication-title: JAMA
– volume: 280
  start-page: 41667
  year: 2005
  end-page: 41674
  article-title: L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers
  publication-title: J Biol Chem
– volume: 107
  start-page: 20483
  year: 2010
  end-page: 20488
  article-title: Trapping of palindromic ligands within native transthyretin prevents amyloid formation
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 54
  year: 2010
  end-page: 62
  article-title: Structure‐based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses
  publication-title: Curr Opin Struct Biol
– volume: 437
  start-page: 640
  year: 2005
  end-page: 647
  article-title: Interfaces and the driving force of hydrophobic assembly
  publication-title: Nature
– volume: 20
  start-page: 142
  year: 2013
  end-page: 150
  article-title: Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis
  publication-title: Amyloid
– volume: 309
  start-page: 2057
  year: 2005
  end-page: 2060
  article-title: Direct observation of the three‐state folding of a single protein molecule
  publication-title: Science
– volume: 288
  start-page: 30917
  year: 2013
  end-page: 30930
  article-title: Structure, folding dynamics, and amyloidogenesis of D76N beta 2‐microglobulin: roles of shear flow, hydrophobic surfaces, and alpha‐crystallin
  publication-title: J Biol Chem
– volume: 12
  start-page: 743
  year: 1993
  end-page: 748
  article-title: Modifications of transthyretin in amyloid fibrils: analysis of amyloid from homozygous and heterozygous individuals with the Met30 mutation
  publication-title: EMBO J
– volume: 19
  start-page: 2324
  year: 2012
  end-page: 2342
  article-title: Nearly 200 X‐ray crystal structures of transthyretin: what do they tell us about this protein and the design of drugs for TTR amyloidoses?
  publication-title: Curr Med Chem
– volume: 109
  start-page: 9629
  year: 2012
  end-page: 9634
  article-title: Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_9_29_1
  doi: 10.1056/NEJMra023144
– ident: e_1_2_9_5_1
  doi: 10.1001/jama.2013.283815
– volume-title: Intermolecular and Surface Forces
  year: 2011
  ident: e_1_2_9_22_1
– ident: e_1_2_9_10_1
  doi: 10.1007/s00415-013-7051-7
– ident: e_1_2_9_13_1
  doi: 10.1152/ajpheart.00111.2002
– ident: e_1_2_9_32_1
  doi: 10.1056/NEJMoa1404852
– ident: e_1_2_9_35_1
  doi: 10.1016/S0006-3495(04)74136-3
– ident: e_1_2_9_9_1
  doi: 10.1038/nature04162
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.1317488111
– ident: e_1_2_9_36_1
  doi: 10.1021/ac0110552
– ident: e_1_2_9_38_1
  doi: 10.1002/j.1460-2075.1993.tb05708.x
– ident: e_1_2_9_25_1
  doi: 10.1073/pnas.1008255107
– ident: e_1_2_9_11_1
  doi: 10.1016/j.sbi.2009.12.009
– ident: e_1_2_9_17_1
  doi: 10.1038/nprot.2007.73
– volume: 199
  start-page: 205
  year: 1996
  ident: e_1_2_9_39_1
  article-title: Ageing and amyloid fibrillogenesis: lessons from apolipoprotein AI, transthyretin and islet amyloid polypeptide
  publication-title: Ciba Found Symp
– ident: e_1_2_9_26_1
  doi: 10.1021/bi981876
– ident: e_1_2_9_37_1
  doi: 10.1074/jbc.R115.639799
– ident: e_1_2_9_33_1
  doi: 10.1126/science.1157945
– ident: e_1_2_9_30_1
  doi: 10.2174/092986712800269335
– ident: e_1_2_9_16_1
  doi: 10.1126/science.1079589
– ident: e_1_2_9_27_1
  doi: 10.1074/jbc.M113.498857
– ident: e_1_2_9_31_1
  doi: 10.1002/jcc.20289
– ident: e_1_2_9_40_1
  doi: 10.1126/science.1170905
– ident: e_1_2_9_2_1
  doi: 10.1002/bip.21646
– ident: e_1_2_9_24_1
  doi: 10.1074/jbc.M508753200
– ident: e_1_2_9_21_1
  doi: 10.3109/13506129.2013.797890
– ident: e_1_2_9_8_1
  doi: 10.1126/science.1116702
– ident: e_1_2_9_19_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_9_6_1
  doi: 10.1146/annurev.biochem.77.060706.093102
– ident: e_1_2_9_18_1
  doi: 10.1002/prot.21123
– ident: e_1_2_9_3_1
  doi: 10.1016/j.sbi.2008.10.001
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.1121005109
– ident: e_1_2_9_14_1
  doi: 10.1073/pnas.1112411108
– ident: e_1_2_9_4_1
  doi: 10.1002/path.1759
– ident: e_1_2_9_23_1
  doi: 10.1098/rspa.1971.0141
– ident: e_1_2_9_15_1
  doi: 10.1097/TP.0b013e31824b3749
– ident: e_1_2_9_12_1
  doi: 10.1115/1.1289624
– ident: e_1_2_9_20_1
  doi: 10.1021/cb100144v
– ident: e_1_2_9_34_1
  doi: 10.1110/ps.8901
SSID ssj0065618
Score 2.4589202
Snippet The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits...
The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits...
The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits...
The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits...
The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits...
Abstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1337
SubjectTerms Amyloid
Amyloid Neuropathies, Familial - etiology
Amyloid Neuropathies, Familial - metabolism
Amyloidogenesis
Amyloidosis
Binding sites
Biochemistry, Molecular Biology
Chromatography
EMBO16
Fibrillogenesis
Fluid flow
Heart
Humans
Life Sciences
mechano‐enzymatic cleavage
Mutation
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Peptides
Physiology
Prealbumin - chemistry
Prealbumin - metabolism
Proteins
Proteolysis
Research Article
Structural Biology
Transthyretin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJRAXBOUrUFBAHOAQGjv-SI4LarVChBNFvVl27NCVmgQ125XKiZ_Ab-SXMONkQ6Oq6oXjxkk2mRn7vYk9z4S8yXKHEzw0ocrwhEO6lhhrRJIznhtna1VQLHAuv8jlEf90LI4vbfWFa8IGeeDBcPsqsy4F1sCc8ZxW1OSiAEyWteOZZz6IbQPmbZOpYQwGkhK-7AE2qgSGAjmK-ggm2L5vGixBByYkMkSlS3gUZPsBZU5wUeRVxnl14eQ0ezrntgGcDu-TeyOrjBfD2zwgt3y7S24P-0xe7JI75TiD_pB8W8Rtt_GnceOx5rf78-u3b39eBOHWGK41GxhgxsZV38RYY3YGPLWP14hq4FYse2xj00Cmv3LddxwrV_0jcnR48PXjMhn3VkgqCTlpwrzjTBklCwEZl_AVq2ogKz61ueAG7EvTOheKycKa3BeyzlDpjIsio9YpzrPHZKftWv-UxBWvc5MaSY0An1SZscIB8hrraik9pRF5v7Wwrkbhcdz_4lRjAoIu0egSPbkkIm-nC34MmhvXn_oBXTadhmLZ4QCEkB5DSN8UQhF5DQ6f3WO5-KzxGDAaJGRiA2-xt40HPXbzXqNYPhBeoHkReTU1QwfFWRfT-u681xTQv4CBlYuIPBnCZ_orhoXBkMJGRM0Ca_Ys85Z2dRJEwLlMuczBAO-2Ifjvsa41VhZi9Caj6oOyLKdfz_6HiZ-Tu3jDYRXkHtlZn537F8Dm1vZl6Lh_AYNtQlY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCMSlggIlUFBAHOAQGjv-SU5oQa1WiHCiaG-WEzvtSt2kbLYrtScegWfkSZhJvClRVTgmdhLHM575xp4fQt4kqcUDHhpRZXjEwVyLTGFElDKeGltUKqMY4Jx_ldMj_nkmZn7DrfVulRuZ2Alq25S4R76PeckBW4BG_XD2I8KqUXi66kto3CZ3MHUZunSp2WBwAVTp9vdAQ6oIBIL0qX0EE2zfLRYYiA54SCSom_7SSl3yftA1J-gaeR13XnefHM5Qxwi3U1GHD8i2x5bhpGeGh-SWq3fI3b7a5MUOuZf7c_RH5PskrJu1Ow0XDiN_m98_f7n68qJL3xrCs2YNYsY3zttFiJFmS0CrbbhC3QbExeDHOjQLsPfntjlGiTlvH5Ojw4Nvn6aRr7AQlRIs04g5y5kySsLcZZlwJSsrgCwuLlLBjQA0GFepUExmhUldJqsE851xkSW0sIrz5AnZqpvaPSVhyavUxEZSIyxPysQUwoL-NYWtpHSUBuT9ZoZ16dOPYxWMU41mCJJEI0n0QJKAvB0eOOszb9zc9SOSbOiGKbO7G83yWPsVqFVS2BjgJ7PGcVpSk4oMwJ2sYLiOORmQ10Dw0Tumky8a7wGuQVgm1vAXext-0H6xt_qKNQPyamiGZYpnL6Z2zXmrKWCADMQrFwHZ7dln-BTD8GAwZAOiRow1Gsu4pZ6fdKnAuYy5TGEC3m1Y8GpYN05W0vHo_yZVH-R5Plw9-_ePPyf3sWvv5bhHtlbLc_cC0NqqeNktyT_NVDol
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQFQXkFCgqIAxwC8Ts5bletVohwoqg3y4mddqUmQc12pXLiJ_Ab-0s6k2RDo1Ihbkmch9cz4_lmx_OZkHc8cZjgoRHVVkQCwrXI5lZGCROJdXmpU4oFztlXtTgQnw_l4UCShLUwV_P3kkn2yVcVFowDbpFc6tvkjqRcofrO1Xwz5QIm6f7IA1eoI7B8NXD4_OUFE_fTsfSDUznGNZDXAeb1dZJjsnQKZTtftP-QPBhAZDjrpf6I3PL1Nrnbbyt5vk3uZUPC_DH5PgvrZu1PwspjiW9z8eu3r3-edzytITxr1zCfDI3LtgqxpOwUYGkbrtCJgRSxyrEObQWB_dI1Rzg1Ltsn5GB_79t8EQ1bKUSFghA0Yt4Jpq1WqYQAS_qCFSVgEx_niRRWAuyLy0RqptLcJj5VJUdiMyFTTnOnheBPyVbd1P45CQtRJja2ilrpBC-4zaUDR2tzVyrlKQ3Ix80Im2LgGcftLk4MxhsoEoMiMaNIAvJ-fOBHT7Fx8627KLLxNuTG7i6AypjB1IzmuYsBZzJnvaAFtYlMAcWpErrrmVcBeQsCn7xjMfti8BoAGMRfcg2_YmejD2aw6tYgNz7gW0B1AXkzNoM9YpLF1r45aw0FZ5_CPCpkQJ716jN-imEdMESsAdETxZr0ZdpSL487zm-hYqESGIAPGxX8060bB4t3OvqvQTV7WZaNZy_-4wsvyX087tc27pCt1emZfwUYbZW_7uzzErbMMsI
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgCMQGQXmlFBQQC1iExvErWQ6o1QgRxIIidpYdO-1ITYIm05HaFZ_AN_Il3JsXiqoKid1MHGc8vq9zY99jQl6z1OECD42oMjzikK5FxhoRpQlPjbOlyigWOOef5fKYf_wuxt2EWAvT80NML9zQMjp_jQZubDue2IOsob6qsJQcEI1gQt0kt7DAFunzE_5ldMaAVrpXfBAkVQQ-QQ7sPviIg_kDZoGp4--HcHOKuyOvQs-rOyinZdQ5yO2i1NF9cm-Al-Gi14cH5Iavd8nt_sDJi11yJx-W0h-Sb4uwbrb-LKw8Fv82v3_-8vXlRcfgGkJfswVPMzSu2irEYrM1ANY23GB4A_li_WMdmgpS_pVrTtBprtpH5Pjo8OuHZTQcshAVEpLTKPGOJ8oomQlIvYQvkqIE1OJjmwpuBADCuEyFSmRmTeozWTKkPOMiY9Q6xTl7THbqpvZPSVjwMjWxkdQIx1nBjBUOQrCxrpTSUxqQd-MM62JgIMeDMM40ZiIoEo0i0ZNIAvJm6vCjJ9-4_tb3KLLpNmTN7i406xM9GKFWzLoYEGjijOe0oCYVGeA7WcJwfeJlQF6BwGfPWC4-abwG0AaRmdjCv9gf9UEP9t5qZM0H5At4LyAvp2awVFx-MbVvzltNAQZk4GG5CMiTXn2mn0qwQhhy2YComWLNxjJvqVenHRs4lzGXKUzA21EF_w7r2slinY7-a1L1YZ7n07e9_-r1jNzFz_3-x32ys1mf--eA4zb2RWepfwCV-T5K
  priority: 102
  providerName: Wiley-Blackwell
Title A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
URI https://link.springer.com/article/10.15252/emmm.201505357
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201505357
https://www.ncbi.nlm.nih.gov/pubmed/26286619
https://www.proquest.com/docview/2290057063
https://www.proquest.com/docview/1718907045
https://hal.science/hal-02335545
https://pubmed.ncbi.nlm.nih.gov/PMC4604687
https://doaj.org/article/73bd04162dae41c1a8592516fd43e2e6
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-xTSBeEIyvwKgC4gEesuXDX3lAqKs6VYhME1qlvllO4myV2gTarqL89dylaUa1VbxESmwnru_s-13t-x3Ax0jltMETeIE0zGPornkmNdxTIVMmTwsZBxTgnJyLwZB9G_HRbTqgZgDn97p2lE9qOJsc__61-ooT_kuTvSc8sdMpBZUjtuERl3twgGZJ0ixNWLulgLglUA23zz2NiBSYojQFUe78Y6FqIn-0O9d0TPIuBr17lLLdT91Gu7W5OnsKTxqc6XbXivEMHtjyEB6uM0-uDuFR0uypP4fLrltWSztxp5aigCvPln9WNZGriy3NEhecpmg8n7oUczZD3Dp3F2TlUMwUBlm6Zoqe_zivrmjtHM9fwPCsf9kbeE2uBS8T6KN6oc1ZKI0UMUcPjNsszAoEL9ZPFWeGIy70C8VlKOLUKBuLIiLmM8bjKEhzyVj0EvbLqrSvwc1YoYxvRGB4zqIsMinP0RKbNC-EsEHgwPFmfHXWEJFTPoyJJoeEZKNJNrqVjQOf2gY_1xwcu6ueksDaakSeXT-oZle6mYtaRmnuIxANc2NZkAVG8Rhhniiwuza0woEPKO6tdwy63zU9Q4RDAI0v8VccbbRBb7RWE3k-AmCEfQ68b4txwtIujCltdTPXqJkqxoWWcQderZWn_dRGBR2QW2q11ZftknJ8XZOCM-EzoXAAPm8U8LZbOwcrqjX0f4Oq-0mStHdvdvb6LTymWuujjkewv5jd2HcI2RZpB_ZCdoFXOZIdODjtn1_8wLue6HXqP0E69VT9C5r3PsY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVPxcEJQ_QwGDQIKDabzeXdsHhFJIldK4QqitelvW3nUbKbFLnAaFE4_Ak_BQPAkz_itRVTj1GK_XWc_Mznzj2Zkh5IUXaAzwuI7rK-YwcNccFSvuBJQFSsepH7qY4BztisE--3jID1fIryYXBo9VNjqxVNQ6T_Ab-QbWJQdsARb13clXB7tGYXS1aaFRicWOWXwDl614u_0B-PuS0q3-3vuBU3cVcBIB3phDjWbUV74IOfga3CQ0ScFMm24ccKY4IKBuGnCfijBWgQlF6mGNL8ZDz421z5gHz71CVpkHrkyHrG72dz99bnQ_gKPyiyLYZN8BFSTqYkKccrphJhNMfQcExj20hn_ZwbJdAFi3YzyMeR7pnj-w2UZtlzF1aRS3bpGbNZq1e5X43SYrJlsjV6v-los1ci2qI_d3yEHPzvK5GdsTg7nG-e8fP032fVEWjLVhrpqDYqsHR8XExty2KeDjwp6hNQVxwnTLzFaTxTgf6fwIdfSouEv2L4X690gnyzPzgNgJSwPVVcJVXDMv8VTMNVh8FetUCOO6FnnTUFgmdcFz7Lsxluj4IEskskS2LLHIq3bCSVXr4-JbN5Fl7W1YpLu8kE-PZL3npe_FuguAl2plmJu4KuAhwEmRwnINNcIiz4HhS88Y9IYSrwGSQiDI5_AW6408yFq9FPJsM1jkWTsMigGjPSoz-WkhXUAdISh0xi1yvxKf9q8oJiSD62wRf0mwltayPJKNjsvi40x0mQiAAK8bETxb1oXE8koZ_R9RZT-KovbXw3-_-FNyfbAXDeVwe3fnEbmB06ozluukM5uemseAFWfxk3qD2uTLZeuEP_SsdVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIiouCMqfoYBBIMHBJLveXdsHhAJtlNKm4kBRbsvau24jJXaJ06Bw4hF4Hh6HJ2HGfyWqCqce4_U665nZmW88OzOEPPdDgwEe6tFAc4-Du-bpWAsvZDzUJk6DiGKC8_BADg75h5EYrZFfTS4MHqtsdGKpqE2e4DfyDtYlB2wBFrWT1sciPm7335589bCDFEZam3YalYjs2eU3cN-KN7vbwOsXjPV3Pr0feHWHAS-R4Jl5zBrOAh3ISIDfIWzCkhRMtu3GoeBaABrqpqEImIxiHdpIpj7W--Ii8mlsAs59eO4VcjXwBcU9FoxaZw9gUvltEaxz4IEyknVZIcEE69jpFJPgAYsJH-3iXxaxbBwAdu4Yj2Wex7znj2628dtVdF2ax_5NcqPGtW6vEsRbZM1mm-Ra1elyuUk2hnUM_zb53HOzfGEn7tRi1nH--8dPm31flqVjXZirF6Di6sFxMXUxy20GSLlw52hXQbAw8TJz9XQ5yccmP0JtPS7ukMNLof1dsp7lmb1P3ISnoe5qSbUw3E98HQsDtl_HJpXSUuqQ1w2FVVKXPscOHBOFLhCyRCFLVMsSh7xsJ5xUVT8uvvUdsqy9Dct1lxfy2ZGqd78K_Nh0Afoyoy2nCdWhiABYyhSWa5mVDnkGDF95xqC3r_AaYCqEhGIBb7HVyIOqFU2hzraFQ562w6AiMO6jM5ufFooC_ohAtXPhkHuV-LR_xTA1GZxohwQrgrWyltWRbHxcliHnsstlCAR41Yjg2bIuJJZfyuj_iKp2hsNh--vBv1_8CdkATaD2dw_2HpLrOKs6bLlF1uezU_sIQOM8flzuTpd8uWx18AdrBXgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+mechano-enzymatic+cleavage+mechanism+underlies+transthyretin+amyloidogenesis&rft.jtitle=EMBO+molecular+medicine&rft.au=Marcoux%2C+Julien&rft.au=Mangione%2C+P+Patrizia&rft.au=Porcari%2C+Riccardo&rft.au=Degiacomi%2C+Matteo+T&rft.date=2015-10-01&rft.eissn=1757-4684&rft.volume=7&rft.issue=10&rft.spage=1337&rft_id=info:doi/10.15252%2Femmm.201505357&rft_id=info%3Apmid%2F26286619&rft.externalDocID=26286619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon