Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice
Cortical circuits: learning to behave Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between task performance and modulation within the circuit is unknown. Taking advantage of a technique that allows simultaneous activity monitoring of...
Saved in:
Published in | Nature (London) Vol. 464; no. 7292; pp. 1182 - 1186 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.04.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cortical circuits: learning to behave
Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between task performance and modulation within the circuit is unknown. Taking advantage of a technique that allows simultaneous activity monitoring of many neurons within the same circuit, Komiyama
et al
. imaged activity in two motor cortical areas in mice involved in the control of licking. In both areas there were cells that are preferentially excited in different trial types and predict different actions. These neurons were spatially intermingled. However, nearby neurons showed pronounced temporally coincident activity. These temporal correlations were particularly high for pairs of neurons with similar response types, and increased with learning. These correlations provide direct evidence for rapid changes in cortical microcircuits underlying flexible behaviour.
It is generally accepted that specific neuronal circuits in the brain's cortex drive behavioural execution, but the relationship between the performance of a task and the function of a circuit is unknown. Here, this problem was tackled by using a technique that allows many neurons within the same circuit to be monitored simultaneously. The findings indicate that enhanced correlated activity in specific ensembles of neurons can identify and encode specific behavioural responses while a task is learned.
Cortical neurons form specific circuits
1
, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex
2
,
3
,
4
,
5
. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour
6
,
7
. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation
8
,
9
and trans-synaptic tracing
10
,
11
identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ∼150 μm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. |
---|---|
AbstractList | Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within 6150km) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ~150 µm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. [PUBLICATION ABSTRACT] Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. Cortical circuits: learning to behave Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between task performance and modulation within the circuit is unknown. Taking advantage of a technique that allows simultaneous activity monitoring of many neurons within the same circuit, Komiyama et al . imaged activity in two motor cortical areas in mice involved in the control of licking. In both areas there were cells that are preferentially excited in different trial types and predict different actions. These neurons were spatially intermingled. However, nearby neurons showed pronounced temporally coincident activity. These temporal correlations were particularly high for pairs of neurons with similar response types, and increased with learning. These correlations provide direct evidence for rapid changes in cortical microcircuits underlying flexible behaviour. It is generally accepted that specific neuronal circuits in the brain's cortex drive behavioural execution, but the relationship between the performance of a task and the function of a circuit is unknown. Here, this problem was tackled by using a technique that allows many neurons within the same circuit to be monitored simultaneously. The findings indicate that enhanced correlated activity in specific ensembles of neurons can identify and encode specific behavioural responses while a task is learned. Cortical neurons form specific circuits 1 , but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex 2 , 3 , 4 , 5 . Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour 6 , 7 . Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation 8 , 9 and trans-synaptic tracing 10 , 11 identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ∼150 μm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. Cortical neurons form specific circuits (1), but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex (2-5). Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour (6,7). Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation (8,9) and trans-synaptic tracing (10,11) identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ~150µm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. |
Audience | Academic |
Author | O’Connor, Daniel H. Svoboda, Karel Komiyama, Takaki Sato, Takashi R. Huber, Daniel Hooks, Bryan M. Zhang, Ying-Xin Gabitto, Mariano |
Author_xml | – sequence: 1 givenname: Takaki surname: Komiyama fullname: Komiyama, Takaki email: komiyamat@janelia.hhmi.org organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA – sequence: 2 givenname: Takashi R. surname: Sato fullname: Sato, Takashi R. organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA – sequence: 3 givenname: Daniel H. surname: O’Connor fullname: O’Connor, Daniel H. organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA – sequence: 4 givenname: Ying-Xin surname: Zhang fullname: Zhang, Ying-Xin organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA, Present addresses: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA (Y.-X.Z.); HHMI and Department of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA (M.G.) – sequence: 5 givenname: Daniel surname: Huber fullname: Huber, Daniel organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA – sequence: 6 givenname: Bryan M. surname: Hooks fullname: Hooks, Bryan M. organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA – sequence: 7 givenname: Mariano surname: Gabitto fullname: Gabitto, Mariano organization: HHMI and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093, USA, Present addresses: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA (Y.-X.Z.); HHMI and Department of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA (M.G.) – sequence: 8 givenname: Karel surname: Svoboda fullname: Svoboda, Karel organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22637744$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20376005$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t9v0zAQB3ALDbFu8MQ7ioYQQpBhx67jPFYVPyZVIMEQvFmOfQ6eUqezHcT-e1y1sHbqhPIQJfncJbn7nqAjP3hA6CnB5wRT8darNAbAQjT1AzQhrOYl46I-QhOMK1FiQfkxOonxCmM8JTV7hI4rTGueryboxwJU8M53ZYBeJTCFdR7KqFUPRVyBdtZpl24Kt1Rdfup8sRzSEAo9hAS_C-2CHl2KxWCLFn6qX7lVsXQaHqOHVvURnmzPp-jb-3eX84_l4vOHi_lsUWouqlS2WlvKADctxlY3Cls2pZaKipjWGMNsK5hpK9JWFgi2lTBATIO5Adtw2xp6il5u-q7CcD1CTHLpooa-Vx6GMcqaccLzcOj_JaVkKnjNszy7I6-GMfj8G5I0VAgxrdbo-QZ1eVTSeTukoPS6pZxVFWsoo3itygOqAw9B9XmP1uXbe_7sgNcrdy130fkBlA8DefQHu77aK8gmLy91aoxRXnz9sm9f329nl9_nn_b1s-2oxnYJRq5CDkq4kX8TlsGLLVDrUNmgvHbx1uVJ1jVjt6_VYYgxgP1HCJbrnMudnGdN7ugcUpVc_tagXH9PzZtNTcydfQdhZ6sH-B_GxQvi |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_conb_2020_07_002 crossref_primary_10_1016_j_celrep_2024_114726 crossref_primary_10_1186_s13041_022_00965_0 crossref_primary_10_7554_eLife_83702 crossref_primary_10_1371_journal_pbio_1001236 crossref_primary_10_1111_gbb_12865 crossref_primary_10_1152_jn_00464_2015 crossref_primary_10_1016_j_cub_2024_03_003 crossref_primary_10_1016_j_concog_2017_09_008 crossref_primary_10_1016_j_neures_2020_05_004 crossref_primary_10_3389_fncir_2015_00071 crossref_primary_10_3389_fncir_2017_00012 crossref_primary_10_1016_j_isci_2023_106316 crossref_primary_10_1016_j_crmeth_2022_100168 crossref_primary_10_1038_nrn3169 crossref_primary_10_7554_eLife_91136_3 crossref_primary_10_1016_j_neuron_2010_04_042 crossref_primary_10_3389_fnbeh_2020_541920 crossref_primary_10_1038_nature12866 crossref_primary_10_1038_srep43388 crossref_primary_10_1038_484042a crossref_primary_10_1103_PhysRevX_8_031072 crossref_primary_10_1523_JNEUROSCI_2731_15_2015 crossref_primary_10_1016_j_ceca_2021_102365 crossref_primary_10_1038_s41467_024_55317_4 crossref_primary_10_1016_j_nlm_2018_03_019 crossref_primary_10_1134_S0022093024040264 crossref_primary_10_1016_j_neuron_2016_07_032 crossref_primary_10_1016_j_neuroscience_2017_07_067 crossref_primary_10_3389_fninf_2014_00080 crossref_primary_10_1146_annurev_neuro_072116_031407 crossref_primary_10_1016_j_conb_2011_07_004 crossref_primary_10_3389_fncel_2019_00533 crossref_primary_10_1111_ejn_14568 crossref_primary_10_1007_s11055_018_0625_1 crossref_primary_10_1016_j_neuron_2022_09_032 crossref_primary_10_1038_s41598_017_15835_2 crossref_primary_10_7554_eLife_41841 crossref_primary_10_1146_annurev_neuro_070815_013851 crossref_primary_10_7554_eLife_65495 crossref_primary_10_1007_s12264_014_1509_1 crossref_primary_10_1016_j_tics_2015_02_003 crossref_primary_10_1016_j_celrep_2023_112122 crossref_primary_10_1016_j_conb_2013_08_018 crossref_primary_10_1523_JNEUROSCI_0213_14_2014 crossref_primary_10_7554_eLife_56307 crossref_primary_10_1016_j_neuron_2018_03_040 crossref_primary_10_1523_JNEUROSCI_1195_23_2024 crossref_primary_10_1038_npp_2010_146 crossref_primary_10_1016_j_celrep_2024_113986 crossref_primary_10_1016_j_conb_2010_05_002 crossref_primary_10_1016_j_neuroimage_2024_120840 crossref_primary_10_1016_j_neuron_2019_12_005 crossref_primary_10_1016_j_conb_2010_05_003 crossref_primary_10_1016_j_neuroscience_2020_07_054 crossref_primary_10_1038_s41467_020_15534_z crossref_primary_10_1101_cshperspect_a039792 crossref_primary_10_1146_annurev_neuro_071013_014038 crossref_primary_10_1016_j_neuron_2021_11_013 crossref_primary_10_1002_dev_21305 crossref_primary_10_1126_science_aau9480 crossref_primary_10_7554_eLife_01982 crossref_primary_10_1523_JNEUROSCI_2750_14_2014 crossref_primary_10_1038_nn_2842 crossref_primary_10_1101_lm_025049_111 crossref_primary_10_1016_j_neuron_2017_05_005 crossref_primary_10_1016_j_neuron_2017_05_002 crossref_primary_10_1038_nrn4000 crossref_primary_10_1038_s41586_021_03561_9 crossref_primary_10_1523_JNEUROSCI_1233_24_2024 crossref_primary_10_1038_nn_3134 crossref_primary_10_1016_j_neuron_2021_03_035 crossref_primary_10_3389_fncel_2020_579349 crossref_primary_10_1016_j_celrep_2022_111487 crossref_primary_10_1016_j_neuron_2019_08_032 crossref_primary_10_1038_srep27389 crossref_primary_10_1002_cne_25321 crossref_primary_10_1002_iub_539 crossref_primary_10_1073_pnas_2303878120 crossref_primary_10_1016_j_neuron_2022_04_031 crossref_primary_10_1016_j_conb_2013_11_009 crossref_primary_10_1016_j_neuron_2017_04_015 crossref_primary_10_1152_jn_00356_2012 crossref_primary_10_1016_j_neuron_2017_04_017 crossref_primary_10_1002_cpns_56 crossref_primary_10_1038_s41467_023_43252_9 crossref_primary_10_1038_s41596_019_0286_8 crossref_primary_10_1371_journal_pcbi_1002311 crossref_primary_10_1038_ncomms6551 crossref_primary_10_1038_s41593_020_0598_6 crossref_primary_10_1016_j_brainres_2010_11_007 crossref_primary_10_1038_s41398_017_0060_z crossref_primary_10_7554_eLife_46966 crossref_primary_10_2220_biomedres_43_81 crossref_primary_10_1016_j_conb_2015_03_016 crossref_primary_10_1007_s00221_014_4087_6 crossref_primary_10_1152_jn_00061_2020 crossref_primary_10_7554_eLife_91136 crossref_primary_10_1016_j_neuron_2013_06_010 crossref_primary_10_1126_science_1204076 crossref_primary_10_1016_j_conb_2011_05_004 crossref_primary_10_1117_1_NPh_1_1_011008 crossref_primary_10_1016_j_celrep_2017_02_043 crossref_primary_10_1016_j_conb_2011_05_002 crossref_primary_10_3389_fncir_2018_00015 crossref_primary_10_1016_j_neuron_2021_05_005 crossref_primary_10_1016_j_neuron_2020_04_023 crossref_primary_10_1038_nature10918 crossref_primary_10_1016_j_neures_2018_01_001 crossref_primary_10_1523_JNEUROSCI_0273_11_2011 crossref_primary_10_1016_j_neuron_2013_12_020 crossref_primary_10_7554_eLife_07224 crossref_primary_10_12688_f1000research_17161_1 crossref_primary_10_1016_j_neunet_2016_09_007 crossref_primary_10_1038_nature11321 crossref_primary_10_1016_j_celrep_2022_111427 crossref_primary_10_1093_chemse_bjx014 crossref_primary_10_7554_eLife_14679 crossref_primary_10_1093_cercor_bhae328 crossref_primary_10_5607_en23020 crossref_primary_10_1016_j_cub_2021_06_089 crossref_primary_10_3389_fnint_2015_00037 crossref_primary_10_1152_ajpregu_00492_2012 crossref_primary_10_1016_j_neuroscience_2017_09_014 crossref_primary_10_1088_0034_4885_74_8_086602 crossref_primary_10_3389_fnins_2019_01174 crossref_primary_10_1038_s41593_020_0651_5 crossref_primary_10_1364_BOE_385848 crossref_primary_10_1002_adfm_201800002 crossref_primary_10_1016_j_neuron_2018_07_046 crossref_primary_10_1016_j_neuron_2010_12_022 crossref_primary_10_1113_jphysiol_2012_228114 crossref_primary_10_1162_NECO_a_00451 crossref_primary_10_1016_j_celrep_2021_109082 crossref_primary_10_1073_pnas_1109202108 crossref_primary_10_1523_JNEUROSCI_4367_13_2014 crossref_primary_10_3389_fncir_2018_00033 crossref_primary_10_1371_journal_pone_0108697 crossref_primary_10_7554_eLife_83897 crossref_primary_10_1093_cercor_bhz206 crossref_primary_10_1016_j_neuron_2020_04_002 crossref_primary_10_1177_1073858418805427 crossref_primary_10_1371_journal_pbio_3002679 crossref_primary_10_1371_journal_pone_0088678 crossref_primary_10_1016_j_conb_2011_12_002 crossref_primary_10_1523_JNEUROSCI_3665_15_2016 crossref_primary_10_1016_j_tins_2023_01_005 crossref_primary_10_1016_j_neuron_2015_05_010 crossref_primary_10_1038_nature17643 crossref_primary_10_1038_nn_4418 crossref_primary_10_1016_j_jneumeth_2023_110048 crossref_primary_10_1038_s41593_022_01171_w crossref_primary_10_1523_JNEUROSCI_0750_22_2023 crossref_primary_10_1523_JNEUROSCI_3117_11_2011 crossref_primary_10_1016_j_bbr_2011_02_030 crossref_primary_10_1038_s42003_018_0225_1 crossref_primary_10_1523_JNEUROSCI_2601_12_2012 crossref_primary_10_1016_j_cophys_2020_07_015 crossref_primary_10_1016_j_neuron_2014_10_048 crossref_primary_10_1117_1_NPh_6_3_035011 crossref_primary_10_1038_s41586_023_06715_z crossref_primary_10_1016_j_neuroimage_2016_11_069 crossref_primary_10_1016_j_neuron_2011_07_029 crossref_primary_10_1016_j_neuroscience_2014_11_046 crossref_primary_10_1038_s41598_018_31710_0 crossref_primary_10_1016_j_celrep_2018_04_081 crossref_primary_10_1016_j_neuron_2012_09_037 crossref_primary_10_1016_j_tins_2014_05_001 crossref_primary_10_3389_fnbeh_2016_00236 crossref_primary_10_1523_JNEUROSCI_0712_14_2014 crossref_primary_10_1113_jphysiol_2013_259804 crossref_primary_10_1016_j_jneumeth_2016_02_014 crossref_primary_10_1016_j_neuroscience_2017_08_034 crossref_primary_10_3389_fnins_2023_1291864 crossref_primary_10_1093_cercor_bhab369 crossref_primary_10_1038_s41467_017_02501_4 crossref_primary_10_1016_j_jphysparis_2013_05_003 crossref_primary_10_1152_jn_00702_2010 crossref_primary_10_1038_nature10844 crossref_primary_10_1038_nbt_3594 crossref_primary_10_1146_annurev_neuro_092021_121730 crossref_primary_10_31857_S0869813924070091 crossref_primary_10_1016_j_cub_2016_08_035 crossref_primary_10_1111_j_1476_5381_2010_00988_x crossref_primary_10_1038_nn_4285 crossref_primary_10_1523_JNEUROSCI_3152_17_2018 crossref_primary_10_1016_j_neuron_2024_06_014 crossref_primary_10_1371_journal_pone_0288930 crossref_primary_10_1016_j_brs_2024_10_010 crossref_primary_10_1016_j_celrep_2019_10_060 crossref_primary_10_1093_cercor_bhs155 crossref_primary_10_1038_nn_4049 crossref_primary_10_1073_pnas_1805517115 crossref_primary_10_1038_ncomms3258 crossref_primary_10_1523_JNEUROSCI_3698_14_2015 crossref_primary_10_1016_j_cell_2022_02_006 crossref_primary_10_7554_eLife_50855 crossref_primary_10_7554_eLife_72549 crossref_primary_10_1523_JNEUROSCI_3255_13_2013 crossref_primary_10_3389_fnins_2020_00819 crossref_primary_10_1007_s12264_022_00954_2 crossref_primary_10_1016_j_neuron_2012_02_028 crossref_primary_10_1088_1741_2552_ab581a crossref_primary_10_1016_j_conb_2017_10_023 crossref_primary_10_7554_eLife_01239 crossref_primary_10_1523_JNEUROSCI_1099_16_2016 crossref_primary_10_1038_s41467_024_51868_8 crossref_primary_10_1038_s41467_023_36346_x crossref_primary_10_1016_j_neuron_2011_04_029 crossref_primary_10_1016_j_conb_2020_10_004 crossref_primary_10_1016_j_cell_2024_07_036 crossref_primary_10_1523_JNEUROSCI_3887_14_2015 crossref_primary_10_1038_s41586_018_0642_9 crossref_primary_10_1101_pdb_top081810 crossref_primary_10_1093_cercor_bhz245 crossref_primary_10_1523_JNEUROSCI_4469_11_2012 crossref_primary_10_1016_j_neuron_2021_05_029 crossref_primary_10_1093_cercor_bhz005 crossref_primary_10_1007_s12035_011_8177_1 crossref_primary_10_1113_JP272790 crossref_primary_10_1523_ENEURO_0488_22_2023 crossref_primary_10_1016_j_tins_2014_01_002 crossref_primary_10_2184_lsj_41_2_86 crossref_primary_10_1016_j_tins_2013_06_005 crossref_primary_10_1111_ejn_12554 crossref_primary_10_1210_en_2016_1771 crossref_primary_10_1016_j_neuron_2013_03_020 crossref_primary_10_1007_s00429_019_02001_9 crossref_primary_10_1038_nn_3410 crossref_primary_10_1371_journal_pcbi_1008198 crossref_primary_10_1038_nature14178 crossref_primary_10_1038_nature15389 crossref_primary_10_1016_j_expneurol_2012_02_007 crossref_primary_10_1113_JP272794 crossref_primary_10_1364_BOE_6_003919 crossref_primary_10_1016_j_expneurol_2012_02_009 crossref_primary_10_1152_jn_00484_2010 crossref_primary_10_1085_jgp_201110673 crossref_primary_10_1016_j_conb_2020_08_003 crossref_primary_10_1016_j_cub_2013_11_042 crossref_primary_10_1016_j_neuron_2019_06_001 crossref_primary_10_1016_j_cell_2023_05_031 crossref_primary_10_1073_pnas_1100428108 crossref_primary_10_1016_j_neuron_2013_08_036 crossref_primary_10_1038_s41583_020_00379_8 crossref_primary_10_1093_cercor_bhaa230 crossref_primary_10_1126_science_1195797 crossref_primary_10_1016_j_neuron_2017_02_006 crossref_primary_10_1016_j_cell_2023_12_035 crossref_primary_10_1016_j_cell_2019_04_027 crossref_primary_10_1016_j_neuron_2015_03_055 crossref_primary_10_1038_nn_3712 crossref_primary_10_1152_jn_00025_2015 crossref_primary_10_1152_jn_00669_2012 crossref_primary_10_1038_srep15830 crossref_primary_10_1113_JP283291 crossref_primary_10_1371_journal_pone_0061493 crossref_primary_10_1016_j_neuroscience_2023_11_034 crossref_primary_10_1016_j_neuron_2013_04_009 crossref_primary_10_1038_jcbfm_2011_196 crossref_primary_10_1038_nature13235 crossref_primary_10_1126_sciadv_abf7467 crossref_primary_10_1523_JNEUROSCI_2550_12_2013 crossref_primary_10_1016_j_jneumeth_2014_11_010 crossref_primary_10_1016_j_neuron_2010_08_026 crossref_primary_10_1016_j_celrep_2019_02_045 crossref_primary_10_1016_j_neuron_2012_08_029 crossref_primary_10_1007_s11357_023_00735_3 crossref_primary_10_3389_fneur_2019_01242 crossref_primary_10_1016_j_conb_2010_07_010 crossref_primary_10_1016_j_neuron_2012_02_011 crossref_primary_10_1016_j_tins_2011_02_001 crossref_primary_10_1371_journal_pone_0030514 crossref_primary_10_1073_pnas_2206067119 crossref_primary_10_1038_nn_3828 crossref_primary_10_1016_j_conb_2015_01_015 crossref_primary_10_1038_s41467_019_13607_2 crossref_primary_10_1016_j_neuron_2011_06_029 crossref_primary_10_1038_s41586_022_04478_7 crossref_primary_10_1016_j_neuroimage_2019_01_002 crossref_primary_10_1038_s41467_018_05780_7 crossref_primary_10_1152_japplphysiol_00778_2024 crossref_primary_10_1038_s41467_021_26275_y crossref_primary_10_1038_nature11601 crossref_primary_10_1038_nrn3258 crossref_primary_10_1523_JNEUROSCI_1671_18_2018 crossref_primary_10_1038_s44319_024_00309_0 crossref_primary_10_1016_j_conb_2021_02_002 crossref_primary_10_1016_j_neuron_2013_10_020 crossref_primary_10_1371_journal_pone_0156563 crossref_primary_10_1523_JNEUROSCI_1333_18_2018 crossref_primary_10_1016_j_celrep_2022_111394 crossref_primary_10_1016_j_cub_2025_01_056 crossref_primary_10_1016_j_neuron_2012_07_008 crossref_primary_10_3389_fncir_2022_792959 crossref_primary_10_1021_cn100111a crossref_primary_10_1523_JNEUROSCI_0125_24_2024 crossref_primary_10_1016_j_neuron_2015_03_034 crossref_primary_10_7554_eLife_21920 crossref_primary_10_1038_s41592_019_0597_2 crossref_primary_10_1016_j_neuron_2015_03_027 crossref_primary_10_1016_j_bbr_2021_113352 crossref_primary_10_1523_JNEUROSCI_1190_23_2023 crossref_primary_10_1126_science_aav3932 crossref_primary_10_1016_j_celrep_2021_108704 crossref_primary_10_1038_ncomms15834 crossref_primary_10_1016_j_neures_2019_12_009 crossref_primary_10_1113_jphysiol_2011_210278 crossref_primary_10_7554_eLife_42299 crossref_primary_10_3389_fncir_2016_00103 crossref_primary_10_1038_nature11039 crossref_primary_10_1016_j_neuron_2011_06_034 crossref_primary_10_1038_s41593_019_0567_0 crossref_primary_10_1152_jn_00854_2014 crossref_primary_10_1038_s41467_018_07926_z crossref_primary_10_1016_j_conb_2015_12_005 crossref_primary_10_1016_j_conb_2011_10_015 crossref_primary_10_1523_JNEUROSCI_1559_21_2021 crossref_primary_10_1016_j_tins_2012_03_008 crossref_primary_10_1016_j_neuron_2016_09_004 crossref_primary_10_1371_journal_pone_0089007 crossref_primary_10_1038_nn_3723 crossref_primary_10_1016_j_neuron_2020_06_006 crossref_primary_10_1016_j_ibneur_2022_05_006 crossref_primary_10_1038_s41593_022_01211_5 crossref_primary_10_3389_fncir_2023_1093066 crossref_primary_10_1016_j_isci_2022_105124 crossref_primary_10_1016_j_neuron_2015_08_033 crossref_primary_10_1038_s41593_023_01380_x crossref_primary_10_1038_s41593_022_01198_z crossref_primary_10_7554_eLife_13764 |
Cites_doi | 10.1371/journal.pbio.0060258 10.1016/S0006-3495(97)78062-7 10.1016/S0149-7634(96)00045-0 10.1073/pnas.0602933103 10.1038/nn.2134 10.1038/nmeth706 10.1093/chemse/24.6.637 10.1523/JNEUROSCI.21-05-01676.2001 10.1126/science.8465199 10.1038/nn1447 10.1016/j.jneumeth.2009.02.001 10.1371/journal.pbio.0050178 10.1523/JNEUROSCI.06-04-01160.1986 10.1109/83.650848 10.1016/j.neuron.2007.08.003 10.1016/0006-8993(85)90931-X 10.1113/jphysiol.2003.044784 10.1038/nmeth.1303 10.1038/385161a0 10.1038/370140a0 10.1016/j.neuron.2007.03.005 10.1523/JNEUROSCI.21-10-03646.2001 10.1002/cne.903570305 10.1371/journal.pbio.0030001 10.1038/nn1892 10.1523/JNEUROSCI.2985-09.2009 10.1371/journal.pbio.0050189 10.1073/pnas.1232232100 10.1073/pnas.97.16.9264 10.1523/JNEUROSCI.2210-07.2007 10.1016/S0165-0173(97)00028-3 10.1017/S0317167100031267 10.1523/JNEUROSCI.3762-09.2010 10.1016/j.virusres.2005.04.012 10.1073/pnas.0506029102 10.1152/jn.1976.39.5.1062 10.1002/cne.20306 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited. All rights reserved 2010 2015 INIST-CNRS COPYRIGHT 2010 Nature Publishing Group Copyright Nature Publishing Group Apr 22, 2010 |
Copyright_xml | – notice: Macmillan Publishers Limited. All rights reserved 2010 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2010 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 22, 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/nature08897 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Psychology Collection (Proquest) ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (Proquest) Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Calcium & Calcified Tissue Abstracts Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 1186 |
ExternalDocumentID | 2020622961 A224934306 20376005 22637744 10_1038_nature08897 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .HR .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3O- 3V. 4.4 41X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YYP YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT .GJ 08P 1CY 1VW 354 3EH 41~ 42X 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADRHT AEZWR AFBBN AFHIU AFHKK AHWEU AIXLP AJUXI BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYQ ZCG ZGI ZHY ZY4 CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c682t-bccf34e09b00fc9a0f453f3821dbddd4fb84db21b2fe10f28de1d906def96fbd3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Tue Aug 05 09:51:57 EDT 2025 Thu Jul 10 22:35:45 EDT 2025 Sat Aug 23 13:56:07 EDT 2025 Tue Jun 17 21:07:40 EDT 2025 Thu Jun 12 23:38:53 EDT 2025 Tue Jun 10 15:35:00 EDT 2025 Tue Jun 10 20:46:25 EDT 2025 Fri Jun 27 04:01:40 EDT 2025 Fri Jun 27 04:25:08 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Mon Jul 21 09:11:56 EDT 2025 Tue Jul 01 02:00:19 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Fri Feb 21 02:37:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7292 |
Keywords | Tongue Motor pathway Calcium Rodentia Central nervous system Frontal cortex Motor control Photon Encephalon Learning Vertebrata Mammalia Acquisition process Neuron Mouse Animal Motor cortex Imaging Plasticity Behavior |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c682t-bccf34e09b00fc9a0f453f3821dbddd4fb84db21b2fe10f28de1d906def96fbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 20376005 |
PQID | 193888526 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_746160883 proquest_miscellaneous_733158676 proquest_journals_193888526 gale_infotracmisc_A224934306 gale_infotracgeneralonefile_A224934306 gale_infotraccpiq_224934306 gale_infotracacademiconefile_A224934306 gale_incontextgauss_ISR_A224934306 gale_incontextgauss_ATWCN_A224934306 pubmed_primary_20376005 pascalfrancis_primary_22637744 crossref_primary_10_1038_nature08897 crossref_citationtrail_10_1038_nature08897 springer_journals_10_1038_nature08897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-22 |
PublicationDateYYYYMMDD | 2010-04-22 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2010 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ts’o, Gilbert, Wiesel (CR23) 1986; 6 Zohary, Shadlen, Newsome (CR13) 1994; 370 Nimmerjahn, Kirchhoff, Kerr, Helmchen (CR19) 2004; 1 Doucette, Restrepo (CR21) 2008; 6 Sato, Gray, Mainen, Svoboda (CR4) 2007; 5 Fujisawa, Amarasingham, Harrison, Buzsaki (CR25) 2008; 11 Holmgren, Harkany, Svennenfors, Zilberter (CR30) 2003; 551 Yaksi, Judkewitz, Friedrich (CR38) 2007; 5 Constantinidis, Franowicz, Goldman-Rakic (CR26) 2001; 21 Li, Waters (CR8) 1991; 18 Dombeck, Graziano, Tank (CR28) 2009; 29 Shepherd, Stepanyants, Bureau, Chklovskii, Svoboda (CR29) 2005; 8 Svoboda, Denk, Kleinfeld, Tank (CR36) 1997; 385 Ayling, Harrison, Boyd, Goroshkov, Murphy (CR9) 2009; 6 O’Connor (CR18) 2010; 30 Arenkiel (CR32) 2007; 54 Dobbins, Feldman (CR31) 1995; 357 Aertsen, Gerstein (CR27) 1985; 340 Kerr (CR3) 2007; 27 Hira (CR33) 2009; 179 Georgopoulos, Taira, Lukashin (CR24) 1993; 260 Travers, Dinardo, Karimnamazi (CR14) 1997; 21 Thévenaz, Ruttimann, Unser (CR35) 1998; 7 Stosiek, Garaschuk, Holthoff, Konnerth (CR2) 2003; 100 Dombeck, Khabbaz, Collman, Adelman, Tank (CR5) 2007; 56 Rathelot, Strick (CR15) 2006; 103 Tanji, Evarts (CR12) 1976; 39 Verhagen, Wesson, Netoff, White, Wachowiak (CR7) 2007; 10 Song, Sjostrom, Reigl, Nelson, Chklovskii (CR1) 2005; 3 Bodyak, Slotnick (CR34) 1999; 24 Smith (CR17) 2000; 97 Bair, Zohary, Newsome (CR22) 2001; 21 Clements, Bekkers (CR37) 1997; 73 Fay, Norgren (CR11) 1997; 25 Song, Enquist, Bartness (CR10) 2005; 111 Slotnick, Restrepo (CR6) 2005; Chapter 8 Kerr, Greenberg, Helmchen (CR20) 2005; 102 Brecht (CR16) 2004; 479 GMG Shepherd (BFnature08897_CR29) 2005; 8 DH O’Connor (BFnature08897_CR18) 2010; 30 E Yaksi (BFnature08897_CR38) 2007; 5 TR Sato (BFnature08897_CR4) 2007; 5 W Bair (BFnature08897_CR22) 2001; 21 S Fujisawa (BFnature08897_CR25) 2008; 11 AP Georgopoulos (BFnature08897_CR24) 1993; 260 JA Rathelot (BFnature08897_CR15) 2006; 103 M Brecht (BFnature08897_CR16) 2004; 479 EG Dobbins (BFnature08897_CR31) 1995; 357 DA Dombeck (BFnature08897_CR5) 2007; 56 JN Kerr (BFnature08897_CR20) 2005; 102 JN Kerr (BFnature08897_CR3) 2007; 27 JV Verhagen (BFnature08897_CR7) 2007; 10 RA Fay (BFnature08897_CR11) 1997; 25 DA Dombeck (BFnature08897_CR28) 2009; 29 CK Song (BFnature08897_CR10) 2005; 111 JB Travers (BFnature08897_CR14) 1997; 21 B Slotnick (BFnature08897_CR6) 2005; Chapter 8 E Zohary (BFnature08897_CR13) 1994; 370 C Stosiek (BFnature08897_CR2) 2003; 100 BN Smith (BFnature08897_CR17) 2000; 97 DY Ts’o (BFnature08897_CR23) 1986; 6 W Doucette (BFnature08897_CR21) 2008; 6 N Bodyak (BFnature08897_CR34) 1999; 24 C Constantinidis (BFnature08897_CR26) 2001; 21 OG Ayling (BFnature08897_CR9) 2009; 6 JD Clements (BFnature08897_CR37) 1997; 73 A Nimmerjahn (BFnature08897_CR19) 2004; 1 J Tanji (BFnature08897_CR12) 1976; 39 BR Arenkiel (BFnature08897_CR32) 2007; 54 S Song (BFnature08897_CR1) 2005; 3 AM Aertsen (BFnature08897_CR27) 1985; 340 CX Li (BFnature08897_CR8) 1991; 18 C Holmgren (BFnature08897_CR30) 2003; 551 P Thévenaz (BFnature08897_CR35) 1998; 7 K Svoboda (BFnature08897_CR36) 1997; 385 R Hira (BFnature08897_CR33) 2009; 179 18267377 - IEEE Trans Image Process. 1998;7(1):27-41 17920014 - Neuron. 2007 Oct 4;56(1):43-57 10587496 - Chem Senses. 1999 Dec;24(6):637-45 19428535 - J Neurosci Methods. 2009 May 15;179(2):258-63 19219033 - Nat Methods. 2009 Mar;6(3):219-24 3701413 - J Neurosci. 1986 Apr;6(4):1160-70 4027655 - Brain Res. 1985 Aug 12;340(2):341-54 9353796 - Neurosci Biobehav Rev. 1997 Sep;21(5):631-47 15893400 - Virus Res. 2005 Aug;111(2):235-49 8465199 - Science. 1993 Apr 2;260(5104):47-52 18045926 - J Neurosci. 2007 Nov 28;27(48):13316-28 18428626 - Curr Protoc Neurosci. 2005 Nov;Chapter 8:Unit 8.20 16157876 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14063-8 824409 - J Neurophysiol. 1976 Sep;39(5):1062-8 19889987 - J Neurosci. 2009 Nov 4;29(44):13751-60 10922076 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9264-9 15880111 - Nat Neurosci. 2005 Jun;8(6):782-90 8990119 - Nature. 1997 Jan 9;385(6612):161-5 18959481 - PLoS Biol. 2008 Oct 28;6(10 ):e258 17608564 - PLoS Biol. 2007 Jul;5(7):e178 12777621 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7319-24 11331394 - J Neurosci. 2001 May 15;21(10):3646-55 20130203 - J Neurosci. 2010 Feb 3;30(5):1947-67 8022482 - Nature. 1994 Jul 14;370(6485):140-3 11222658 - J Neurosci. 2001 Mar 1;21(5):1676-97 17450136 - Nat Neurosci. 2007 May;10 (5):631-9 15514982 - J Comp Neurol. 2004 Nov 22;479(4):360-73 9199786 - Biophys J. 1997 Jul;73(1):220-9 12813147 - J Physiol. 2003 Aug 15;551(Pt 1):139-53 17442243 - Neuron. 2007 Apr 19;54(2):205-18 15782150 - Nat Methods. 2004 Oct;1(1):31-7 17622195 - PLoS Biol. 2007 Jul;5(7):e189 9495560 - Brain Res Brain Res Rev. 1997 Dec;25(3):291-311 2036613 - Can J Neurol Sci. 1991 Feb;18(1):28-38 16702556 - Proc Natl Acad Sci U S A. 2006 May 23;103(21):8257-62 7673474 - J Comp Neurol. 1995 Jul 3;357(3):376-94 18516033 - Nat Neurosci. 2008 Jul;11(7):823-33 |
References_xml | – volume: 6 start-page: e258 year: 2008 ident: CR21 article-title: Profound context-dependent plasticity of mitral cell responses in olfactory bulb publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060258 – volume: 73 start-page: 220 year: 1997 end-page: 229 ident: CR37 article-title: Detection of spontaneous synaptic events with an optimally scaled template publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78062-7 – volume: 21 start-page: 631 year: 1997 end-page: 647 ident: CR14 article-title: Motor and premotor mechanisms of licking publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(96)00045-0 – volume: 103 start-page: 8257 year: 2006 end-page: 8262 ident: CR15 article-title: Muscle representation in the macaque motor cortex: an anatomical perspective publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0602933103 – volume: 11 start-page: 823 year: 2008 end-page: 833 ident: CR25 article-title: Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex publication-title: Nature Neurosci. doi: 10.1038/nn.2134 – volume: 1 start-page: 31 year: 2004 end-page: 37 ident: CR19 article-title: Sulforhodamine 101 as a specific marker of astroglia in the neocortex publication-title: Nature Methods doi: 10.1038/nmeth706 – volume: 24 start-page: 637 year: 1999 end-page: 645 ident: CR34 article-title: Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory publication-title: Chem. Senses doi: 10.1093/chemse/24.6.637 – volume: 21 start-page: 1676 year: 2001 end-page: 1697 ident: CR22 article-title: Correlated firing in macaque visual area MT: time scales and relationship to behavior publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-05-01676.2001 – volume: 260 start-page: 47 year: 1993 end-page: 52 ident: CR24 article-title: Cognitive neurophysiology of the motor cortex publication-title: Science doi: 10.1126/science.8465199 – volume: 8 start-page: 782 year: 2005 end-page: 790 ident: CR29 article-title: Geometric and functional organization of cortical circuits publication-title: Nature Neurosci. doi: 10.1038/nn1447 – volume: 179 start-page: 258 year: 2009 end-page: 263 ident: CR33 article-title: Transcranial optogenetic stimulation for functional mapping of the motor cortex publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.02.001 – volume: 5 start-page: e178 year: 2007 ident: CR38 article-title: Topological reorganization of odor representations in the olfactory bulb publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050178 – volume: 6 start-page: 1160 year: 1986 end-page: 1170 ident: CR23 article-title: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.06-04-01160.1986 – volume: 7 start-page: 27 year: 1998 end-page: 41 ident: CR35 article-title: A pyramid approach to subpixel registration based on intensity publication-title: IEEE Trans. Image Process. doi: 10.1109/83.650848 – volume: 56 start-page: 43 year: 2007 end-page: 57 ident: CR5 article-title: Imaging large-scale neural activity with cellular resolution in awake, mobile mice publication-title: Neuron doi: 10.1016/j.neuron.2007.08.003 – volume: 340 start-page: 341 year: 1985 end-page: 354 ident: CR27 article-title: Evaluation of neuronal connectivity: sensitivity of cross-correlation publication-title: Brain Res. doi: 10.1016/0006-8993(85)90931-X – volume: 551 start-page: 139 year: 2003 end-page: 153 ident: CR30 article-title: Pyramidal cell communication within local networks in layer 2/3 of rat neocortex publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.2003.044784 – volume: 6 start-page: 219 year: 2009 end-page: 224 ident: CR9 article-title: Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice publication-title: Nature Methods doi: 10.1038/nmeth.1303 – volume: 385 start-page: 161 year: 1997 end-page: 165 ident: CR36 article-title: dendritic calcium dynamics in neocortical pyramidal neurons publication-title: Nature doi: 10.1038/385161a0 – volume: 370 start-page: 140 year: 1994 end-page: 143 ident: CR13 article-title: Correlated neuronal discharge rate and its implications for psychophysical performance publication-title: Nature doi: 10.1038/370140a0 – volume: 54 start-page: 205 year: 2007 end-page: 218 ident: CR32 article-title: light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2 publication-title: Neuron doi: 10.1016/j.neuron.2007.03.005 – volume: 21 start-page: 3646 year: 2001 end-page: 3655 ident: CR26 article-title: Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-10-03646.2001 – volume: 357 start-page: 376 year: 1995 end-page: 394 ident: CR31 article-title: Differential innervation of protruder and retractor muscles of the tongue in rat publication-title: J. Comp. Neurol. doi: 10.1002/cne.903570305 – volume: 3 start-page: 1 year: 2005 end-page: 13 ident: CR1 article-title: Highly nonrandom features of synaptic connectivity in local cortical circuits publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030001 – volume: 10 start-page: 631 year: 2007 end-page: 639 ident: CR7 article-title: Sniffing controls an adaptive filter of sensory input to the olfactory bulb publication-title: Nature Neurosci. doi: 10.1038/nn1892 – volume: 29 start-page: 13751 year: 2009 end-page: 13760 ident: CR28 article-title: Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2985-09.2009 – volume: 5 start-page: e189 year: 2007 ident: CR4 article-title: The functional microarchitecture of the mouse barrel cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050189 – volume: 100 start-page: 7319 year: 2003 end-page: 7324 ident: CR2 article-title: two-photon calcium imaging of neuronal networks publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1232232100 – volume: 97 start-page: 9264 year: 2000 end-page: 9269 ident: CR17 article-title: Pseudorabies virus expressing enhanced green fluorescent protein: A tool for electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.16.9264 – volume: 27 start-page: 13316 year: 2007 end-page: 13328 ident: CR3 article-title: Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2210-07.2007 – volume: 25 start-page: 291 year: 1997 end-page: 311 ident: CR11 article-title: Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/S0165-0173(97)00028-3 – volume: Chapter 8 start-page: Unit year: 2005 end-page: 8.20 ident: CR6 article-title: Olfactometry with mice publication-title: Curr. Protoc. Neurosci. – volume: 18 start-page: 28 year: 1991 end-page: 38 ident: CR8 article-title: Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping publication-title: Can. J. Neurol. Sci. doi: 10.1017/S0317167100031267 – volume: 30 start-page: 1947 year: 2010 end-page: 1967 ident: CR18 article-title: Vibrissa-based object localization in head-fixed mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3762-09.2010 – volume: 111 start-page: 235 year: 2005 end-page: 249 ident: CR10 article-title: New developments in tracing neural circuits with herpesviruses publication-title: Virus Res. doi: 10.1016/j.virusres.2005.04.012 – volume: 102 start-page: 14063 year: 2005 end-page: 14068 ident: CR20 article-title: Imaging input and output of neocortical networks publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506029102 – volume: 39 start-page: 1062 year: 1976 end-page: 1068 ident: CR12 article-title: Anticipatory activity of motor cortex neurons in relation to direction of an intended movement publication-title: J. Neurophysiol. doi: 10.1152/jn.1976.39.5.1062 – volume: 479 start-page: 360 year: 2004 end-page: 373 ident: CR16 article-title: Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells publication-title: J. Comp. Neurol. doi: 10.1002/cne.20306 – volume: 27 start-page: 13316 year: 2007 ident: BFnature08897_CR3 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2210-07.2007 – volume: 56 start-page: 43 year: 2007 ident: BFnature08897_CR5 publication-title: Neuron doi: 10.1016/j.neuron.2007.08.003 – volume: 21 start-page: 3646 year: 2001 ident: BFnature08897_CR26 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-10-03646.2001 – volume: 25 start-page: 291 year: 1997 ident: BFnature08897_CR11 publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/S0165-0173(97)00028-3 – volume: 100 start-page: 7319 year: 2003 ident: BFnature08897_CR2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1232232100 – volume: 18 start-page: 28 year: 1991 ident: BFnature08897_CR8 publication-title: Can. J. Neurol. Sci. doi: 10.1017/S0317167100031267 – volume: 21 start-page: 1676 year: 2001 ident: BFnature08897_CR22 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-05-01676.2001 – volume: 551 start-page: 139 year: 2003 ident: BFnature08897_CR30 publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.2003.044784 – volume: 39 start-page: 1062 year: 1976 ident: BFnature08897_CR12 publication-title: J. Neurophysiol. doi: 10.1152/jn.1976.39.5.1062 – volume: 479 start-page: 360 year: 2004 ident: BFnature08897_CR16 publication-title: J. Comp. Neurol. doi: 10.1002/cne.20306 – volume: 340 start-page: 341 year: 1985 ident: BFnature08897_CR27 publication-title: Brain Res. doi: 10.1016/0006-8993(85)90931-X – volume: 11 start-page: 823 year: 2008 ident: BFnature08897_CR25 publication-title: Nature Neurosci. doi: 10.1038/nn.2134 – volume: 385 start-page: 161 year: 1997 ident: BFnature08897_CR36 publication-title: Nature doi: 10.1038/385161a0 – volume: 8 start-page: 782 year: 2005 ident: BFnature08897_CR29 publication-title: Nature Neurosci. doi: 10.1038/nn1447 – volume: 179 start-page: 258 year: 2009 ident: BFnature08897_CR33 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.02.001 – volume: Chapter 8 start-page: Unit year: 2005 ident: BFnature08897_CR6 publication-title: Curr. Protoc. Neurosci. – volume: 3 start-page: 1 year: 2005 ident: BFnature08897_CR1 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030001 – volume: 6 start-page: 1160 year: 1986 ident: BFnature08897_CR23 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.06-04-01160.1986 – volume: 97 start-page: 9264 year: 2000 ident: BFnature08897_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.16.9264 – volume: 30 start-page: 1947 year: 2010 ident: BFnature08897_CR18 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3762-09.2010 – volume: 7 start-page: 27 year: 1998 ident: BFnature08897_CR35 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.650848 – volume: 6 start-page: e258 year: 2008 ident: BFnature08897_CR21 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060258 – volume: 5 start-page: e189 year: 2007 ident: BFnature08897_CR4 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050189 – volume: 111 start-page: 235 year: 2005 ident: BFnature08897_CR10 publication-title: Virus Res. doi: 10.1016/j.virusres.2005.04.012 – volume: 6 start-page: 219 year: 2009 ident: BFnature08897_CR9 publication-title: Nature Methods doi: 10.1038/nmeth.1303 – volume: 29 start-page: 13751 year: 2009 ident: BFnature08897_CR28 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2985-09.2009 – volume: 73 start-page: 220 year: 1997 ident: BFnature08897_CR37 publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78062-7 – volume: 1 start-page: 31 year: 2004 ident: BFnature08897_CR19 publication-title: Nature Methods doi: 10.1038/nmeth706 – volume: 24 start-page: 637 year: 1999 ident: BFnature08897_CR34 publication-title: Chem. Senses doi: 10.1093/chemse/24.6.637 – volume: 102 start-page: 14063 year: 2005 ident: BFnature08897_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506029102 – volume: 370 start-page: 140 year: 1994 ident: BFnature08897_CR13 publication-title: Nature doi: 10.1038/370140a0 – volume: 21 start-page: 631 year: 1997 ident: BFnature08897_CR14 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(96)00045-0 – volume: 357 start-page: 376 year: 1995 ident: BFnature08897_CR31 publication-title: J. Comp. Neurol. doi: 10.1002/cne.903570305 – volume: 10 start-page: 631 year: 2007 ident: BFnature08897_CR7 publication-title: Nature Neurosci. doi: 10.1038/nn1892 – volume: 260 start-page: 47 year: 1993 ident: BFnature08897_CR24 publication-title: Science doi: 10.1126/science.8465199 – volume: 103 start-page: 8257 year: 2006 ident: BFnature08897_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0602933103 – volume: 54 start-page: 205 year: 2007 ident: BFnature08897_CR32 publication-title: Neuron doi: 10.1016/j.neuron.2007.03.005 – volume: 5 start-page: e178 year: 2007 ident: BFnature08897_CR38 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050178 – reference: 3701413 - J Neurosci. 1986 Apr;6(4):1160-70 – reference: 8022482 - Nature. 1994 Jul 14;370(6485):140-3 – reference: 19428535 - J Neurosci Methods. 2009 May 15;179(2):258-63 – reference: 7673474 - J Comp Neurol. 1995 Jul 3;357(3):376-94 – reference: 10922076 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9264-9 – reference: 17920014 - Neuron. 2007 Oct 4;56(1):43-57 – reference: 19219033 - Nat Methods. 2009 Mar;6(3):219-24 – reference: 11331394 - J Neurosci. 2001 May 15;21(10):3646-55 – reference: 9353796 - Neurosci Biobehav Rev. 1997 Sep;21(5):631-47 – reference: 17622195 - PLoS Biol. 2007 Jul;5(7):e189 – reference: 12813147 - J Physiol. 2003 Aug 15;551(Pt 1):139-53 – reference: 8990119 - Nature. 1997 Jan 9;385(6612):161-5 – reference: 17450136 - Nat Neurosci. 2007 May;10 (5):631-9 – reference: 9199786 - Biophys J. 1997 Jul;73(1):220-9 – reference: 15514982 - J Comp Neurol. 2004 Nov 22;479(4):360-73 – reference: 20130203 - J Neurosci. 2010 Feb 3;30(5):1947-67 – reference: 18428626 - Curr Protoc Neurosci. 2005 Nov;Chapter 8:Unit 8.20 – reference: 15880111 - Nat Neurosci. 2005 Jun;8(6):782-90 – reference: 16702556 - Proc Natl Acad Sci U S A. 2006 May 23;103(21):8257-62 – reference: 11222658 - J Neurosci. 2001 Mar 1;21(5):1676-97 – reference: 10587496 - Chem Senses. 1999 Dec;24(6):637-45 – reference: 18516033 - Nat Neurosci. 2008 Jul;11(7):823-33 – reference: 17608564 - PLoS Biol. 2007 Jul;5(7):e178 – reference: 8465199 - Science. 1993 Apr 2;260(5104):47-52 – reference: 18959481 - PLoS Biol. 2008 Oct 28;6(10 ):e258 – reference: 4027655 - Brain Res. 1985 Aug 12;340(2):341-54 – reference: 18267377 - IEEE Trans Image Process. 1998;7(1):27-41 – reference: 16157876 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14063-8 – reference: 18045926 - J Neurosci. 2007 Nov 28;27(48):13316-28 – reference: 2036613 - Can J Neurol Sci. 1991 Feb;18(1):28-38 – reference: 12777621 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7319-24 – reference: 9495560 - Brain Res Brain Res Rev. 1997 Dec;25(3):291-311 – reference: 15782150 - Nat Methods. 2004 Oct;1(1):31-7 – reference: 17442243 - Neuron. 2007 Apr 19;54(2):205-18 – reference: 15893400 - Virus Res. 2005 Aug;111(2):235-49 – reference: 19889987 - J Neurosci. 2009 Nov 4;29(44):13751-60 – reference: 824409 - J Neurophysiol. 1976 Sep;39(5):1062-8 |
SSID | ssj0005174 |
Score | 2.495958 |
Snippet | Cortical circuits: learning to behave
Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between... Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon... Cortical neurons form specific circuits (1), but the functional structure of this microarchitecture and its relation to behaviour are poorly understood.... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1182 |
SubjectTerms | 631/378/1595 631/378/2632/1663 631/601/18 Animals Axonal Transport Behavior, Animal - physiology Biological and medical sciences Brain Choice Behavior - physiology Fundamental and applied biological sciences. Psychology Humanities and Social Sciences Learning - physiology Learning in animals letter Male Methods Mice Mice, Inbred C57BL Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Motor cortex Motor Cortex - cytology Motor Cortex - physiology Motor Neurons - physiology multidisciplinary Neural Pathways - physiology Neurons Neurophysiology Odorants - analysis Physiological aspects Properties Pyramidal Cells - physiology Reward Science Stimulation, Chemical Time Factors Tongue - cytology Tongue - innervation Tongue - physiology Vertebrates: nervous system and sense organs |
Title | Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice |
URI | https://link.springer.com/article/10.1038/nature08897 https://www.ncbi.nlm.nih.gov/pubmed/20376005 https://www.proquest.com/docview/193888526 https://www.proquest.com/docview/733158676 https://www.proquest.com/docview/746160883 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swEBdby2Awxtq9vHZBjO4JorYlvz6NLDTrBguja1m-GesVAq2dxgnsz9-draTxmvWLv-iQZZ3udLJ-9ztCjoSU0kaSMzBCBQeUVLDCJDGzMbeR5jwrMsx3_jGKTy_E93E0dtic2sEqVz6xcdS6UviP_BgCDTisRWH8eXbNsGgUXq66Chr3yS4ylyGiKxknNwiPf0iYXXqez9PjljUTIT5JZ0NybvnRrKhhimxb22Jb8Hnr4rTZj4ZPyGMXSNJ-q_k9cs-U--RBA-hU9T7Zc0Zb0w-OWfrjUzJ2bKoT1qSwGE0tBJkMB2Eo5lwibgjCcjq9Ajej6bSkoMlqThVCcv9QNZ2r5XRR08rSNr-_nFCsZ_-MXAxPzgenzJVWYCpOwwWTSlkujI-MiFZlhW9FxC1Pw0BLrbWwMhVahoEMrQl8G6baBDrzY21sFlup-XOyU1aleUmo4YlSgUh0lIBDiIrUz5SfwB5YhKYQofLIp9X85srxjmP5i8u8uf_mab6hDI8crYVnLd3Gf8RQUTkSWJSIkJkUy7rO--e_B6O8D1FJxgWchTzyZpvYt19nHaH3TshWMC5VuLwE-DqkxupIHnQk1Wx6nW-0vuu0TlrlbuvmsCMI9qw6zb3O6lvPAwTKHIJ1AcNYLcfcOZw6X5uHR-i6FXtGDF1pqmWdY3XOKI2Tu0REHMQww9wjL9p1fvN2H-FTfuSRt6uFv_H22yp6decoD8jDFoYhWBgekp3FfGleQ3S3kL3GhuGZDgJ8Dr_2yO6Xk9HPs7-mGlGo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIJITa-wsaw0MaXFC2xna8HhKrB1LKtD9BpfQvxV1WJJV3TCvij-B85J07XsLK3PfvkuL7z-a7-3e8Q2mWccx1w6sIhFJCgxMzNVBS6OqQ6kJQmWWLqnU_6YfeUfRkGwzX0p6mFMbDKxidWjloWwvxHvg-BBiRrAQk_Ti5c0zTKPK42HTRqqzhSv39CxlZ-6H0C9e4Rcvh5cNB1bVMBV4QxmblcCE2Z8gwXoBZJ5mkWUE1j4ksupWSax0xy4nOile9pEkvly8QLpdJJqLmkMO8tdBvuXc8cqGgYXSJK_iF9tuWAHo33a5ZOAymKWhegvQbuT7ISVKLrXhqrgt0rD7XV_Xf4ED2wgSvu1Ja2gdZUvonuVABSUW6iDeskSvzWMlm_e4SGlr115FYlM0piDUGtaxahsKnxNDglSAPw-BzcmsTjHIPlFFMsDAT4FxbjqZiPZyUuNK75BPIRPgfX9hid3siuP0HreZGrZwgrGgnhs0gGETigIIu9RHgR3LkZURkjwkHvm_1NheU5N-02fqTVezuN0yVlOGh3ITyp6T3-I2YUlRrCjNwgckbZvCzTzuDsoJ92IApKKIPcy0GvVon1vn1tCb2xQrqAdYnM1kHArzNUXC3JrZakmIwv0qXR163RUa3cVdNstwTBf4jW8E7L-hb7AIE5heSAwTIac0ytgyvTxXF0EF6MmpkNZi9XxbxMTTfQIA6j60RY6Ieww9RBT2s7v_y6Z-BaXuCgvcbwl75-VUXPr13lS3S3Ozg5To97_aMtdK-GgDCXkG20PpvO1QuILGd8pzrPGH2_aQfyF7UOjkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGEAgJITbewsaw0AYDKWpiO28fEKo2qpVBhWAT_Rbit6oSS7qmFfDT-HecE6drWNm3ffbJcX3n81393HMI7TLOuQ44deEQCkhQYuZmKgpdHVIdSEqTLDH1zp8G4dEp-zAMhmvoT1MLY2CVjU-sHLUshPmPvAOBBiRrAQk72qIiPh_23k3OXdNAyjy0Nt00ags5Vr9_QvZWvu0fgqr3COm9Pzk4cm2DAVeEMZm5XAhNmfIML6AWSeZpFlBNY-JLLqVkmsdMcuJzopXvaRJL5cvEC6XSSai5pDDvDXQzooFvjlg0jC7QJf8QQNvSQI_GnZqx08CLotZlaK-Eu5OsBPXouq_GqsD30qNtdRf27qN7NojF3drqNtCayjfRrQpMKspNtGEdRon3Lav16wdoaJlcR25VPqMk1hDgumYRCpt6T4NZgpQAj8_AxUk8zjFYUTHFwsCBf2Exnor5eFbiQuOaWyAf4TNwcw_R6bXs-iO0nhe5eoKwopEQPotkEIEzCrLYS4QXwf2bEZUxIhz0ptnfVFjOc9N640davb3TOF1ShoN2F8KTmurjP2JGUakhz8iNHY6yeVmm3ZNvB4O0CxFRQhnkYQ56sUqs__VLS-iVFdIFrEtktiYCfp2h5WpJbrUkxWR8ni6NvmyNjmrlrppmuyUIvkS0hnda1rfYBwjSKSQKDJbRmGNqnV2ZLo6mg_Bi1Mxs8Hu5KuZlajqDBnEYXSXCQj-EHaYOelzb-cXXPQPd8gIH7TWGv_T1yyp6euUqn6Pb4DrSj_3B8Ra6U6NBmEvINlqfTefqGQSZM75THWeMvl-3__gLSdCSfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-related+fine-scale+specificity+imaged+in+motor+cortex+circuits+of+behaving+mice&rft.jtitle=Nature+%28London%29&rft.au=Komiyama%2C+Takaki&rft.au=Sato%2C+Takashi+R&rft.au=O%27Connor%2C+Daniel+H&rft.au=Zhang%2C+Ying-Xin&rft.date=2010-04-22&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=464&rft.issue=7292&rft.spage=1182&rft_id=info:doi/10.1038%2Fnature08897&rft.externalDocID=A224934306 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |