Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice

Cortical circuits: learning to behave Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between task performance and modulation within the circuit is unknown. Taking advantage of a technique that allows simultaneous activity monitoring of...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 464; no. 7292; pp. 1182 - 1186
Main Authors Komiyama, Takaki, Sato, Takashi R., O’Connor, Daniel H., Zhang, Ying-Xin, Huber, Daniel, Hooks, Bryan M., Gabitto, Mariano, Svoboda, Karel
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.04.2010
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cortical circuits: learning to behave Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between task performance and modulation within the circuit is unknown. Taking advantage of a technique that allows simultaneous activity monitoring of many neurons within the same circuit, Komiyama et al . imaged activity in two motor cortical areas in mice involved in the control of licking. In both areas there were cells that are preferentially excited in different trial types and predict different actions. These neurons were spatially intermingled. However, nearby neurons showed pronounced temporally coincident activity. These temporal correlations were particularly high for pairs of neurons with similar response types, and increased with learning. These correlations provide direct evidence for rapid changes in cortical microcircuits underlying flexible behaviour. It is generally accepted that specific neuronal circuits in the brain's cortex drive behavioural execution, but the relationship between the performance of a task and the function of a circuit is unknown. Here, this problem was tackled by using a technique that allows many neurons within the same circuit to be monitored simultaneously. The findings indicate that enhanced correlated activity in specific ensembles of neurons can identify and encode specific behavioural responses while a task is learned. Cortical neurons form specific circuits 1 , but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex 2 , 3 , 4 , 5 . Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour 6 , 7 . Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation 8 , 9 and trans-synaptic tracing 10 , 11 identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ∼150 μm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.
AbstractList Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.
Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within 6150km) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.
Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ~150 µm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour. [PUBLICATION ABSTRACT]
Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation and trans-synaptic tracing identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within approximately 150 mum) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.
Cortical circuits: learning to behave Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between task performance and modulation within the circuit is unknown. Taking advantage of a technique that allows simultaneous activity monitoring of many neurons within the same circuit, Komiyama et al . imaged activity in two motor cortical areas in mice involved in the control of licking. In both areas there were cells that are preferentially excited in different trial types and predict different actions. These neurons were spatially intermingled. However, nearby neurons showed pronounced temporally coincident activity. These temporal correlations were particularly high for pairs of neurons with similar response types, and increased with learning. These correlations provide direct evidence for rapid changes in cortical microcircuits underlying flexible behaviour. It is generally accepted that specific neuronal circuits in the brain's cortex drive behavioural execution, but the relationship between the performance of a task and the function of a circuit is unknown. Here, this problem was tackled by using a technique that allows many neurons within the same circuit to be monitored simultaneously. The findings indicate that enhanced correlated activity in specific ensembles of neurons can identify and encode specific behavioural responses while a task is learned. Cortical neurons form specific circuits 1 , but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex 2 , 3 , 4 , 5 . Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour 6 , 7 . Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation 8 , 9 and trans-synaptic tracing 10 , 11 identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ∼150 μm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.
Cortical neurons form specific circuits (1), but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex (2-5). Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour (6,7). Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation (8,9) and trans-synaptic tracing (10,11) identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within ~150µm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.
Audience Academic
Author O’Connor, Daniel H.
Svoboda, Karel
Komiyama, Takaki
Sato, Takashi R.
Huber, Daniel
Hooks, Bryan M.
Zhang, Ying-Xin
Gabitto, Mariano
Author_xml – sequence: 1
  givenname: Takaki
  surname: Komiyama
  fullname: Komiyama, Takaki
  email: komiyamat@janelia.hhmi.org
  organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA
– sequence: 2
  givenname: Takashi R.
  surname: Sato
  fullname: Sato, Takashi R.
  organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA
– sequence: 3
  givenname: Daniel H.
  surname: O’Connor
  fullname: O’Connor, Daniel H.
  organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA
– sequence: 4
  givenname: Ying-Xin
  surname: Zhang
  fullname: Zhang, Ying-Xin
  organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA, Present addresses: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA (Y.-X.Z.); HHMI and Department of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA (M.G.)
– sequence: 5
  givenname: Daniel
  surname: Huber
  fullname: Huber, Daniel
  organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA
– sequence: 6
  givenname: Bryan M.
  surname: Hooks
  fullname: Hooks, Bryan M.
  organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA
– sequence: 7
  givenname: Mariano
  surname: Gabitto
  fullname: Gabitto, Mariano
  organization: HHMI and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093, USA, Present addresses: The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA (Y.-X.Z.); HHMI and Department of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA (M.G.)
– sequence: 8
  givenname: Karel
  surname: Svoboda
  fullname: Svoboda, Karel
  organization: Janelia Farm Research Campus, HHMI, Ashburn, Virginia 20147, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22637744$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20376005$$D View this record in MEDLINE/PubMed
BookMark eNqF0t9v0zAQB3ALDbFu8MQ7ioYQQpBhx67jPFYVPyZVIMEQvFmOfQ6eUqezHcT-e1y1sHbqhPIQJfncJbn7nqAjP3hA6CnB5wRT8darNAbAQjT1AzQhrOYl46I-QhOMK1FiQfkxOonxCmM8JTV7hI4rTGueryboxwJU8M53ZYBeJTCFdR7KqFUPRVyBdtZpl24Kt1Rdfup8sRzSEAo9hAS_C-2CHl2KxWCLFn6qX7lVsXQaHqOHVvURnmzPp-jb-3eX84_l4vOHi_lsUWouqlS2WlvKADctxlY3Cls2pZaKipjWGMNsK5hpK9JWFgi2lTBATIO5Adtw2xp6il5u-q7CcD1CTHLpooa-Vx6GMcqaccLzcOj_JaVkKnjNszy7I6-GMfj8G5I0VAgxrdbo-QZ1eVTSeTukoPS6pZxVFWsoo3itygOqAw9B9XmP1uXbe_7sgNcrdy130fkBlA8DefQHu77aK8gmLy91aoxRXnz9sm9f329nl9_nn_b1s-2oxnYJRq5CDkq4kX8TlsGLLVDrUNmgvHbx1uVJ1jVjt6_VYYgxgP1HCJbrnMudnGdN7ugcUpVc_tagXH9PzZtNTcydfQdhZ6sH-B_GxQvi
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_conb_2020_07_002
crossref_primary_10_1016_j_celrep_2024_114726
crossref_primary_10_1186_s13041_022_00965_0
crossref_primary_10_7554_eLife_83702
crossref_primary_10_1371_journal_pbio_1001236
crossref_primary_10_1111_gbb_12865
crossref_primary_10_1152_jn_00464_2015
crossref_primary_10_1016_j_cub_2024_03_003
crossref_primary_10_1016_j_concog_2017_09_008
crossref_primary_10_1016_j_neures_2020_05_004
crossref_primary_10_3389_fncir_2015_00071
crossref_primary_10_3389_fncir_2017_00012
crossref_primary_10_1016_j_isci_2023_106316
crossref_primary_10_1016_j_crmeth_2022_100168
crossref_primary_10_1038_nrn3169
crossref_primary_10_7554_eLife_91136_3
crossref_primary_10_1016_j_neuron_2010_04_042
crossref_primary_10_3389_fnbeh_2020_541920
crossref_primary_10_1038_nature12866
crossref_primary_10_1038_srep43388
crossref_primary_10_1038_484042a
crossref_primary_10_1103_PhysRevX_8_031072
crossref_primary_10_1523_JNEUROSCI_2731_15_2015
crossref_primary_10_1016_j_ceca_2021_102365
crossref_primary_10_1038_s41467_024_55317_4
crossref_primary_10_1016_j_nlm_2018_03_019
crossref_primary_10_1134_S0022093024040264
crossref_primary_10_1016_j_neuron_2016_07_032
crossref_primary_10_1016_j_neuroscience_2017_07_067
crossref_primary_10_3389_fninf_2014_00080
crossref_primary_10_1146_annurev_neuro_072116_031407
crossref_primary_10_1016_j_conb_2011_07_004
crossref_primary_10_3389_fncel_2019_00533
crossref_primary_10_1111_ejn_14568
crossref_primary_10_1007_s11055_018_0625_1
crossref_primary_10_1016_j_neuron_2022_09_032
crossref_primary_10_1038_s41598_017_15835_2
crossref_primary_10_7554_eLife_41841
crossref_primary_10_1146_annurev_neuro_070815_013851
crossref_primary_10_7554_eLife_65495
crossref_primary_10_1007_s12264_014_1509_1
crossref_primary_10_1016_j_tics_2015_02_003
crossref_primary_10_1016_j_celrep_2023_112122
crossref_primary_10_1016_j_conb_2013_08_018
crossref_primary_10_1523_JNEUROSCI_0213_14_2014
crossref_primary_10_7554_eLife_56307
crossref_primary_10_1016_j_neuron_2018_03_040
crossref_primary_10_1523_JNEUROSCI_1195_23_2024
crossref_primary_10_1038_npp_2010_146
crossref_primary_10_1016_j_celrep_2024_113986
crossref_primary_10_1016_j_conb_2010_05_002
crossref_primary_10_1016_j_neuroimage_2024_120840
crossref_primary_10_1016_j_neuron_2019_12_005
crossref_primary_10_1016_j_conb_2010_05_003
crossref_primary_10_1016_j_neuroscience_2020_07_054
crossref_primary_10_1038_s41467_020_15534_z
crossref_primary_10_1101_cshperspect_a039792
crossref_primary_10_1146_annurev_neuro_071013_014038
crossref_primary_10_1016_j_neuron_2021_11_013
crossref_primary_10_1002_dev_21305
crossref_primary_10_1126_science_aau9480
crossref_primary_10_7554_eLife_01982
crossref_primary_10_1523_JNEUROSCI_2750_14_2014
crossref_primary_10_1038_nn_2842
crossref_primary_10_1101_lm_025049_111
crossref_primary_10_1016_j_neuron_2017_05_005
crossref_primary_10_1016_j_neuron_2017_05_002
crossref_primary_10_1038_nrn4000
crossref_primary_10_1038_s41586_021_03561_9
crossref_primary_10_1523_JNEUROSCI_1233_24_2024
crossref_primary_10_1038_nn_3134
crossref_primary_10_1016_j_neuron_2021_03_035
crossref_primary_10_3389_fncel_2020_579349
crossref_primary_10_1016_j_celrep_2022_111487
crossref_primary_10_1016_j_neuron_2019_08_032
crossref_primary_10_1038_srep27389
crossref_primary_10_1002_cne_25321
crossref_primary_10_1002_iub_539
crossref_primary_10_1073_pnas_2303878120
crossref_primary_10_1016_j_neuron_2022_04_031
crossref_primary_10_1016_j_conb_2013_11_009
crossref_primary_10_1016_j_neuron_2017_04_015
crossref_primary_10_1152_jn_00356_2012
crossref_primary_10_1016_j_neuron_2017_04_017
crossref_primary_10_1002_cpns_56
crossref_primary_10_1038_s41467_023_43252_9
crossref_primary_10_1038_s41596_019_0286_8
crossref_primary_10_1371_journal_pcbi_1002311
crossref_primary_10_1038_ncomms6551
crossref_primary_10_1038_s41593_020_0598_6
crossref_primary_10_1016_j_brainres_2010_11_007
crossref_primary_10_1038_s41398_017_0060_z
crossref_primary_10_7554_eLife_46966
crossref_primary_10_2220_biomedres_43_81
crossref_primary_10_1016_j_conb_2015_03_016
crossref_primary_10_1007_s00221_014_4087_6
crossref_primary_10_1152_jn_00061_2020
crossref_primary_10_7554_eLife_91136
crossref_primary_10_1016_j_neuron_2013_06_010
crossref_primary_10_1126_science_1204076
crossref_primary_10_1016_j_conb_2011_05_004
crossref_primary_10_1117_1_NPh_1_1_011008
crossref_primary_10_1016_j_celrep_2017_02_043
crossref_primary_10_1016_j_conb_2011_05_002
crossref_primary_10_3389_fncir_2018_00015
crossref_primary_10_1016_j_neuron_2021_05_005
crossref_primary_10_1016_j_neuron_2020_04_023
crossref_primary_10_1038_nature10918
crossref_primary_10_1016_j_neures_2018_01_001
crossref_primary_10_1523_JNEUROSCI_0273_11_2011
crossref_primary_10_1016_j_neuron_2013_12_020
crossref_primary_10_7554_eLife_07224
crossref_primary_10_12688_f1000research_17161_1
crossref_primary_10_1016_j_neunet_2016_09_007
crossref_primary_10_1038_nature11321
crossref_primary_10_1016_j_celrep_2022_111427
crossref_primary_10_1093_chemse_bjx014
crossref_primary_10_7554_eLife_14679
crossref_primary_10_1093_cercor_bhae328
crossref_primary_10_5607_en23020
crossref_primary_10_1016_j_cub_2021_06_089
crossref_primary_10_3389_fnint_2015_00037
crossref_primary_10_1152_ajpregu_00492_2012
crossref_primary_10_1016_j_neuroscience_2017_09_014
crossref_primary_10_1088_0034_4885_74_8_086602
crossref_primary_10_3389_fnins_2019_01174
crossref_primary_10_1038_s41593_020_0651_5
crossref_primary_10_1364_BOE_385848
crossref_primary_10_1002_adfm_201800002
crossref_primary_10_1016_j_neuron_2018_07_046
crossref_primary_10_1016_j_neuron_2010_12_022
crossref_primary_10_1113_jphysiol_2012_228114
crossref_primary_10_1162_NECO_a_00451
crossref_primary_10_1016_j_celrep_2021_109082
crossref_primary_10_1073_pnas_1109202108
crossref_primary_10_1523_JNEUROSCI_4367_13_2014
crossref_primary_10_3389_fncir_2018_00033
crossref_primary_10_1371_journal_pone_0108697
crossref_primary_10_7554_eLife_83897
crossref_primary_10_1093_cercor_bhz206
crossref_primary_10_1016_j_neuron_2020_04_002
crossref_primary_10_1177_1073858418805427
crossref_primary_10_1371_journal_pbio_3002679
crossref_primary_10_1371_journal_pone_0088678
crossref_primary_10_1016_j_conb_2011_12_002
crossref_primary_10_1523_JNEUROSCI_3665_15_2016
crossref_primary_10_1016_j_tins_2023_01_005
crossref_primary_10_1016_j_neuron_2015_05_010
crossref_primary_10_1038_nature17643
crossref_primary_10_1038_nn_4418
crossref_primary_10_1016_j_jneumeth_2023_110048
crossref_primary_10_1038_s41593_022_01171_w
crossref_primary_10_1523_JNEUROSCI_0750_22_2023
crossref_primary_10_1523_JNEUROSCI_3117_11_2011
crossref_primary_10_1016_j_bbr_2011_02_030
crossref_primary_10_1038_s42003_018_0225_1
crossref_primary_10_1523_JNEUROSCI_2601_12_2012
crossref_primary_10_1016_j_cophys_2020_07_015
crossref_primary_10_1016_j_neuron_2014_10_048
crossref_primary_10_1117_1_NPh_6_3_035011
crossref_primary_10_1038_s41586_023_06715_z
crossref_primary_10_1016_j_neuroimage_2016_11_069
crossref_primary_10_1016_j_neuron_2011_07_029
crossref_primary_10_1016_j_neuroscience_2014_11_046
crossref_primary_10_1038_s41598_018_31710_0
crossref_primary_10_1016_j_celrep_2018_04_081
crossref_primary_10_1016_j_neuron_2012_09_037
crossref_primary_10_1016_j_tins_2014_05_001
crossref_primary_10_3389_fnbeh_2016_00236
crossref_primary_10_1523_JNEUROSCI_0712_14_2014
crossref_primary_10_1113_jphysiol_2013_259804
crossref_primary_10_1016_j_jneumeth_2016_02_014
crossref_primary_10_1016_j_neuroscience_2017_08_034
crossref_primary_10_3389_fnins_2023_1291864
crossref_primary_10_1093_cercor_bhab369
crossref_primary_10_1038_s41467_017_02501_4
crossref_primary_10_1016_j_jphysparis_2013_05_003
crossref_primary_10_1152_jn_00702_2010
crossref_primary_10_1038_nature10844
crossref_primary_10_1038_nbt_3594
crossref_primary_10_1146_annurev_neuro_092021_121730
crossref_primary_10_31857_S0869813924070091
crossref_primary_10_1016_j_cub_2016_08_035
crossref_primary_10_1111_j_1476_5381_2010_00988_x
crossref_primary_10_1038_nn_4285
crossref_primary_10_1523_JNEUROSCI_3152_17_2018
crossref_primary_10_1016_j_neuron_2024_06_014
crossref_primary_10_1371_journal_pone_0288930
crossref_primary_10_1016_j_brs_2024_10_010
crossref_primary_10_1016_j_celrep_2019_10_060
crossref_primary_10_1093_cercor_bhs155
crossref_primary_10_1038_nn_4049
crossref_primary_10_1073_pnas_1805517115
crossref_primary_10_1038_ncomms3258
crossref_primary_10_1523_JNEUROSCI_3698_14_2015
crossref_primary_10_1016_j_cell_2022_02_006
crossref_primary_10_7554_eLife_50855
crossref_primary_10_7554_eLife_72549
crossref_primary_10_1523_JNEUROSCI_3255_13_2013
crossref_primary_10_3389_fnins_2020_00819
crossref_primary_10_1007_s12264_022_00954_2
crossref_primary_10_1016_j_neuron_2012_02_028
crossref_primary_10_1088_1741_2552_ab581a
crossref_primary_10_1016_j_conb_2017_10_023
crossref_primary_10_7554_eLife_01239
crossref_primary_10_1523_JNEUROSCI_1099_16_2016
crossref_primary_10_1038_s41467_024_51868_8
crossref_primary_10_1038_s41467_023_36346_x
crossref_primary_10_1016_j_neuron_2011_04_029
crossref_primary_10_1016_j_conb_2020_10_004
crossref_primary_10_1016_j_cell_2024_07_036
crossref_primary_10_1523_JNEUROSCI_3887_14_2015
crossref_primary_10_1038_s41586_018_0642_9
crossref_primary_10_1101_pdb_top081810
crossref_primary_10_1093_cercor_bhz245
crossref_primary_10_1523_JNEUROSCI_4469_11_2012
crossref_primary_10_1016_j_neuron_2021_05_029
crossref_primary_10_1093_cercor_bhz005
crossref_primary_10_1007_s12035_011_8177_1
crossref_primary_10_1113_JP272790
crossref_primary_10_1523_ENEURO_0488_22_2023
crossref_primary_10_1016_j_tins_2014_01_002
crossref_primary_10_2184_lsj_41_2_86
crossref_primary_10_1016_j_tins_2013_06_005
crossref_primary_10_1111_ejn_12554
crossref_primary_10_1210_en_2016_1771
crossref_primary_10_1016_j_neuron_2013_03_020
crossref_primary_10_1007_s00429_019_02001_9
crossref_primary_10_1038_nn_3410
crossref_primary_10_1371_journal_pcbi_1008198
crossref_primary_10_1038_nature14178
crossref_primary_10_1038_nature15389
crossref_primary_10_1016_j_expneurol_2012_02_007
crossref_primary_10_1113_JP272794
crossref_primary_10_1364_BOE_6_003919
crossref_primary_10_1016_j_expneurol_2012_02_009
crossref_primary_10_1152_jn_00484_2010
crossref_primary_10_1085_jgp_201110673
crossref_primary_10_1016_j_conb_2020_08_003
crossref_primary_10_1016_j_cub_2013_11_042
crossref_primary_10_1016_j_neuron_2019_06_001
crossref_primary_10_1016_j_cell_2023_05_031
crossref_primary_10_1073_pnas_1100428108
crossref_primary_10_1016_j_neuron_2013_08_036
crossref_primary_10_1038_s41583_020_00379_8
crossref_primary_10_1093_cercor_bhaa230
crossref_primary_10_1126_science_1195797
crossref_primary_10_1016_j_neuron_2017_02_006
crossref_primary_10_1016_j_cell_2023_12_035
crossref_primary_10_1016_j_cell_2019_04_027
crossref_primary_10_1016_j_neuron_2015_03_055
crossref_primary_10_1038_nn_3712
crossref_primary_10_1152_jn_00025_2015
crossref_primary_10_1152_jn_00669_2012
crossref_primary_10_1038_srep15830
crossref_primary_10_1113_JP283291
crossref_primary_10_1371_journal_pone_0061493
crossref_primary_10_1016_j_neuroscience_2023_11_034
crossref_primary_10_1016_j_neuron_2013_04_009
crossref_primary_10_1038_jcbfm_2011_196
crossref_primary_10_1038_nature13235
crossref_primary_10_1126_sciadv_abf7467
crossref_primary_10_1523_JNEUROSCI_2550_12_2013
crossref_primary_10_1016_j_jneumeth_2014_11_010
crossref_primary_10_1016_j_neuron_2010_08_026
crossref_primary_10_1016_j_celrep_2019_02_045
crossref_primary_10_1016_j_neuron_2012_08_029
crossref_primary_10_1007_s11357_023_00735_3
crossref_primary_10_3389_fneur_2019_01242
crossref_primary_10_1016_j_conb_2010_07_010
crossref_primary_10_1016_j_neuron_2012_02_011
crossref_primary_10_1016_j_tins_2011_02_001
crossref_primary_10_1371_journal_pone_0030514
crossref_primary_10_1073_pnas_2206067119
crossref_primary_10_1038_nn_3828
crossref_primary_10_1016_j_conb_2015_01_015
crossref_primary_10_1038_s41467_019_13607_2
crossref_primary_10_1016_j_neuron_2011_06_029
crossref_primary_10_1038_s41586_022_04478_7
crossref_primary_10_1016_j_neuroimage_2019_01_002
crossref_primary_10_1038_s41467_018_05780_7
crossref_primary_10_1152_japplphysiol_00778_2024
crossref_primary_10_1038_s41467_021_26275_y
crossref_primary_10_1038_nature11601
crossref_primary_10_1038_nrn3258
crossref_primary_10_1523_JNEUROSCI_1671_18_2018
crossref_primary_10_1038_s44319_024_00309_0
crossref_primary_10_1016_j_conb_2021_02_002
crossref_primary_10_1016_j_neuron_2013_10_020
crossref_primary_10_1371_journal_pone_0156563
crossref_primary_10_1523_JNEUROSCI_1333_18_2018
crossref_primary_10_1016_j_celrep_2022_111394
crossref_primary_10_1016_j_cub_2025_01_056
crossref_primary_10_1016_j_neuron_2012_07_008
crossref_primary_10_3389_fncir_2022_792959
crossref_primary_10_1021_cn100111a
crossref_primary_10_1523_JNEUROSCI_0125_24_2024
crossref_primary_10_1016_j_neuron_2015_03_034
crossref_primary_10_7554_eLife_21920
crossref_primary_10_1038_s41592_019_0597_2
crossref_primary_10_1016_j_neuron_2015_03_027
crossref_primary_10_1016_j_bbr_2021_113352
crossref_primary_10_1523_JNEUROSCI_1190_23_2023
crossref_primary_10_1126_science_aav3932
crossref_primary_10_1016_j_celrep_2021_108704
crossref_primary_10_1038_ncomms15834
crossref_primary_10_1016_j_neures_2019_12_009
crossref_primary_10_1113_jphysiol_2011_210278
crossref_primary_10_7554_eLife_42299
crossref_primary_10_3389_fncir_2016_00103
crossref_primary_10_1038_nature11039
crossref_primary_10_1016_j_neuron_2011_06_034
crossref_primary_10_1038_s41593_019_0567_0
crossref_primary_10_1152_jn_00854_2014
crossref_primary_10_1038_s41467_018_07926_z
crossref_primary_10_1016_j_conb_2015_12_005
crossref_primary_10_1016_j_conb_2011_10_015
crossref_primary_10_1523_JNEUROSCI_1559_21_2021
crossref_primary_10_1016_j_tins_2012_03_008
crossref_primary_10_1016_j_neuron_2016_09_004
crossref_primary_10_1371_journal_pone_0089007
crossref_primary_10_1038_nn_3723
crossref_primary_10_1016_j_neuron_2020_06_006
crossref_primary_10_1016_j_ibneur_2022_05_006
crossref_primary_10_1038_s41593_022_01211_5
crossref_primary_10_3389_fncir_2023_1093066
crossref_primary_10_1016_j_isci_2022_105124
crossref_primary_10_1016_j_neuron_2015_08_033
crossref_primary_10_1038_s41593_023_01380_x
crossref_primary_10_1038_s41593_022_01198_z
crossref_primary_10_7554_eLife_13764
Cites_doi 10.1371/journal.pbio.0060258
10.1016/S0006-3495(97)78062-7
10.1016/S0149-7634(96)00045-0
10.1073/pnas.0602933103
10.1038/nn.2134
10.1038/nmeth706
10.1093/chemse/24.6.637
10.1523/JNEUROSCI.21-05-01676.2001
10.1126/science.8465199
10.1038/nn1447
10.1016/j.jneumeth.2009.02.001
10.1371/journal.pbio.0050178
10.1523/JNEUROSCI.06-04-01160.1986
10.1109/83.650848
10.1016/j.neuron.2007.08.003
10.1016/0006-8993(85)90931-X
10.1113/jphysiol.2003.044784
10.1038/nmeth.1303
10.1038/385161a0
10.1038/370140a0
10.1016/j.neuron.2007.03.005
10.1523/JNEUROSCI.21-10-03646.2001
10.1002/cne.903570305
10.1371/journal.pbio.0030001
10.1038/nn1892
10.1523/JNEUROSCI.2985-09.2009
10.1371/journal.pbio.0050189
10.1073/pnas.1232232100
10.1073/pnas.97.16.9264
10.1523/JNEUROSCI.2210-07.2007
10.1016/S0165-0173(97)00028-3
10.1017/S0317167100031267
10.1523/JNEUROSCI.3762-09.2010
10.1016/j.virusres.2005.04.012
10.1073/pnas.0506029102
10.1152/jn.1976.39.5.1062
10.1002/cne.20306
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2010
2015 INIST-CNRS
COPYRIGHT 2010 Nature Publishing Group
Copyright Nature Publishing Group Apr 22, 2010
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2010
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 22, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature08897
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Collection (Proquest)
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (Proquest)
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Calcium & Calcified Tissue Abstracts
Agricultural Science Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 1186
ExternalDocumentID 2020622961
A224934306
20376005
22637744
10_1038_nature08897
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Howard Hughes Medical Institute
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.HR
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3O-
3V.
4.4
41X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.GJ
08P
1CY
1VW
354
3EH
41~
42X
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AEZWR
AFBBN
AFHIU
AFHKK
AHWEU
AIXLP
AJUXI
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c682t-bccf34e09b00fc9a0f453f3821dbddd4fb84db21b2fe10f28de1d906def96fbd3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Tue Aug 05 09:51:57 EDT 2025
Thu Jul 10 22:35:45 EDT 2025
Sat Aug 23 13:56:07 EDT 2025
Tue Jun 17 21:07:40 EDT 2025
Thu Jun 12 23:38:53 EDT 2025
Tue Jun 10 15:35:00 EDT 2025
Tue Jun 10 20:46:25 EDT 2025
Fri Jun 27 04:01:40 EDT 2025
Fri Jun 27 04:25:08 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Mon Jul 21 09:11:56 EDT 2025
Tue Jul 01 02:00:19 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Fri Feb 21 02:37:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7292
Keywords Tongue
Motor pathway
Calcium
Rodentia
Central nervous system
Frontal cortex
Motor control
Photon
Encephalon
Learning
Vertebrata
Mammalia
Acquisition process
Neuron
Mouse
Animal
Motor cortex
Imaging
Plasticity
Behavior
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c682t-bccf34e09b00fc9a0f453f3821dbddd4fb84db21b2fe10f28de1d906def96fbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 20376005
PQID 193888526
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_746160883
proquest_miscellaneous_733158676
proquest_journals_193888526
gale_infotracmisc_A224934306
gale_infotracgeneralonefile_A224934306
gale_infotraccpiq_224934306
gale_infotracacademiconefile_A224934306
gale_incontextgauss_ISR_A224934306
gale_incontextgauss_ATWCN_A224934306
pubmed_primary_20376005
pascalfrancis_primary_22637744
crossref_primary_10_1038_nature08897
crossref_citationtrail_10_1038_nature08897
springer_journals_10_1038_nature08897
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-22
PublicationDateYYYYMMDD 2010-04-22
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ts’o, Gilbert, Wiesel (CR23) 1986; 6
Zohary, Shadlen, Newsome (CR13) 1994; 370
Nimmerjahn, Kirchhoff, Kerr, Helmchen (CR19) 2004; 1
Doucette, Restrepo (CR21) 2008; 6
Sato, Gray, Mainen, Svoboda (CR4) 2007; 5
Fujisawa, Amarasingham, Harrison, Buzsaki (CR25) 2008; 11
Holmgren, Harkany, Svennenfors, Zilberter (CR30) 2003; 551
Yaksi, Judkewitz, Friedrich (CR38) 2007; 5
Constantinidis, Franowicz, Goldman-Rakic (CR26) 2001; 21
Li, Waters (CR8) 1991; 18
Dombeck, Graziano, Tank (CR28) 2009; 29
Shepherd, Stepanyants, Bureau, Chklovskii, Svoboda (CR29) 2005; 8
Svoboda, Denk, Kleinfeld, Tank (CR36) 1997; 385
Ayling, Harrison, Boyd, Goroshkov, Murphy (CR9) 2009; 6
O’Connor (CR18) 2010; 30
Arenkiel (CR32) 2007; 54
Dobbins, Feldman (CR31) 1995; 357
Aertsen, Gerstein (CR27) 1985; 340
Kerr (CR3) 2007; 27
Hira (CR33) 2009; 179
Georgopoulos, Taira, Lukashin (CR24) 1993; 260
Travers, Dinardo, Karimnamazi (CR14) 1997; 21
Thévenaz, Ruttimann, Unser (CR35) 1998; 7
Stosiek, Garaschuk, Holthoff, Konnerth (CR2) 2003; 100
Dombeck, Khabbaz, Collman, Adelman, Tank (CR5) 2007; 56
Rathelot, Strick (CR15) 2006; 103
Tanji, Evarts (CR12) 1976; 39
Verhagen, Wesson, Netoff, White, Wachowiak (CR7) 2007; 10
Song, Sjostrom, Reigl, Nelson, Chklovskii (CR1) 2005; 3
Bodyak, Slotnick (CR34) 1999; 24
Smith (CR17) 2000; 97
Bair, Zohary, Newsome (CR22) 2001; 21
Clements, Bekkers (CR37) 1997; 73
Fay, Norgren (CR11) 1997; 25
Song, Enquist, Bartness (CR10) 2005; 111
Slotnick, Restrepo (CR6) 2005; Chapter 8
Kerr, Greenberg, Helmchen (CR20) 2005; 102
Brecht (CR16) 2004; 479
GMG Shepherd (BFnature08897_CR29) 2005; 8
DH O’Connor (BFnature08897_CR18) 2010; 30
E Yaksi (BFnature08897_CR38) 2007; 5
TR Sato (BFnature08897_CR4) 2007; 5
W Bair (BFnature08897_CR22) 2001; 21
S Fujisawa (BFnature08897_CR25) 2008; 11
AP Georgopoulos (BFnature08897_CR24) 1993; 260
JA Rathelot (BFnature08897_CR15) 2006; 103
M Brecht (BFnature08897_CR16) 2004; 479
EG Dobbins (BFnature08897_CR31) 1995; 357
DA Dombeck (BFnature08897_CR5) 2007; 56
JN Kerr (BFnature08897_CR20) 2005; 102
JN Kerr (BFnature08897_CR3) 2007; 27
JV Verhagen (BFnature08897_CR7) 2007; 10
RA Fay (BFnature08897_CR11) 1997; 25
DA Dombeck (BFnature08897_CR28) 2009; 29
CK Song (BFnature08897_CR10) 2005; 111
JB Travers (BFnature08897_CR14) 1997; 21
B Slotnick (BFnature08897_CR6) 2005; Chapter 8
E Zohary (BFnature08897_CR13) 1994; 370
C Stosiek (BFnature08897_CR2) 2003; 100
BN Smith (BFnature08897_CR17) 2000; 97
DY Ts’o (BFnature08897_CR23) 1986; 6
W Doucette (BFnature08897_CR21) 2008; 6
N Bodyak (BFnature08897_CR34) 1999; 24
C Constantinidis (BFnature08897_CR26) 2001; 21
OG Ayling (BFnature08897_CR9) 2009; 6
JD Clements (BFnature08897_CR37) 1997; 73
A Nimmerjahn (BFnature08897_CR19) 2004; 1
J Tanji (BFnature08897_CR12) 1976; 39
BR Arenkiel (BFnature08897_CR32) 2007; 54
S Song (BFnature08897_CR1) 2005; 3
AM Aertsen (BFnature08897_CR27) 1985; 340
CX Li (BFnature08897_CR8) 1991; 18
C Holmgren (BFnature08897_CR30) 2003; 551
P Thévenaz (BFnature08897_CR35) 1998; 7
K Svoboda (BFnature08897_CR36) 1997; 385
R Hira (BFnature08897_CR33) 2009; 179
18267377 - IEEE Trans Image Process. 1998;7(1):27-41
17920014 - Neuron. 2007 Oct 4;56(1):43-57
10587496 - Chem Senses. 1999 Dec;24(6):637-45
19428535 - J Neurosci Methods. 2009 May 15;179(2):258-63
19219033 - Nat Methods. 2009 Mar;6(3):219-24
3701413 - J Neurosci. 1986 Apr;6(4):1160-70
4027655 - Brain Res. 1985 Aug 12;340(2):341-54
9353796 - Neurosci Biobehav Rev. 1997 Sep;21(5):631-47
15893400 - Virus Res. 2005 Aug;111(2):235-49
8465199 - Science. 1993 Apr 2;260(5104):47-52
18045926 - J Neurosci. 2007 Nov 28;27(48):13316-28
18428626 - Curr Protoc Neurosci. 2005 Nov;Chapter 8:Unit 8.20
16157876 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14063-8
824409 - J Neurophysiol. 1976 Sep;39(5):1062-8
19889987 - J Neurosci. 2009 Nov 4;29(44):13751-60
10922076 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9264-9
15880111 - Nat Neurosci. 2005 Jun;8(6):782-90
8990119 - Nature. 1997 Jan 9;385(6612):161-5
18959481 - PLoS Biol. 2008 Oct 28;6(10 ):e258
17608564 - PLoS Biol. 2007 Jul;5(7):e178
12777621 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7319-24
11331394 - J Neurosci. 2001 May 15;21(10):3646-55
20130203 - J Neurosci. 2010 Feb 3;30(5):1947-67
8022482 - Nature. 1994 Jul 14;370(6485):140-3
11222658 - J Neurosci. 2001 Mar 1;21(5):1676-97
17450136 - Nat Neurosci. 2007 May;10 (5):631-9
15514982 - J Comp Neurol. 2004 Nov 22;479(4):360-73
9199786 - Biophys J. 1997 Jul;73(1):220-9
12813147 - J Physiol. 2003 Aug 15;551(Pt 1):139-53
17442243 - Neuron. 2007 Apr 19;54(2):205-18
15782150 - Nat Methods. 2004 Oct;1(1):31-7
17622195 - PLoS Biol. 2007 Jul;5(7):e189
9495560 - Brain Res Brain Res Rev. 1997 Dec;25(3):291-311
2036613 - Can J Neurol Sci. 1991 Feb;18(1):28-38
16702556 - Proc Natl Acad Sci U S A. 2006 May 23;103(21):8257-62
7673474 - J Comp Neurol. 1995 Jul 3;357(3):376-94
18516033 - Nat Neurosci. 2008 Jul;11(7):823-33
References_xml – volume: 6
  start-page: e258
  year: 2008
  ident: CR21
  article-title: Profound context-dependent plasticity of mitral cell responses in olfactory bulb
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060258
– volume: 73
  start-page: 220
  year: 1997
  end-page: 229
  ident: CR37
  article-title: Detection of spontaneous synaptic events with an optimally scaled template
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78062-7
– volume: 21
  start-page: 631
  year: 1997
  end-page: 647
  ident: CR14
  article-title: Motor and premotor mechanisms of licking
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(96)00045-0
– volume: 103
  start-page: 8257
  year: 2006
  end-page: 8262
  ident: CR15
  article-title: Muscle representation in the macaque motor cortex: an anatomical perspective
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0602933103
– volume: 11
  start-page: 823
  year: 2008
  end-page: 833
  ident: CR25
  article-title: Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2134
– volume: 1
  start-page: 31
  year: 2004
  end-page: 37
  ident: CR19
  article-title: Sulforhodamine 101 as a specific marker of astroglia in the neocortex
  publication-title: Nature Methods
  doi: 10.1038/nmeth706
– volume: 24
  start-page: 637
  year: 1999
  end-page: 645
  ident: CR34
  article-title: Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory
  publication-title: Chem. Senses
  doi: 10.1093/chemse/24.6.637
– volume: 21
  start-page: 1676
  year: 2001
  end-page: 1697
  ident: CR22
  article-title: Correlated firing in macaque visual area MT: time scales and relationship to behavior
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-05-01676.2001
– volume: 260
  start-page: 47
  year: 1993
  end-page: 52
  ident: CR24
  article-title: Cognitive neurophysiology of the motor cortex
  publication-title: Science
  doi: 10.1126/science.8465199
– volume: 8
  start-page: 782
  year: 2005
  end-page: 790
  ident: CR29
  article-title: Geometric and functional organization of cortical circuits
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1447
– volume: 179
  start-page: 258
  year: 2009
  end-page: 263
  ident: CR33
  article-title: Transcranial optogenetic stimulation for functional mapping of the motor cortex
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.02.001
– volume: 5
  start-page: e178
  year: 2007
  ident: CR38
  article-title: Topological reorganization of odor representations in the olfactory bulb
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050178
– volume: 6
  start-page: 1160
  year: 1986
  end-page: 1170
  ident: CR23
  article-title: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.06-04-01160.1986
– volume: 7
  start-page: 27
  year: 1998
  end-page: 41
  ident: CR35
  article-title: A pyramid approach to subpixel registration based on intensity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.650848
– volume: 56
  start-page: 43
  year: 2007
  end-page: 57
  ident: CR5
  article-title: Imaging large-scale neural activity with cellular resolution in awake, mobile mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.08.003
– volume: 340
  start-page: 341
  year: 1985
  end-page: 354
  ident: CR27
  article-title: Evaluation of neuronal connectivity: sensitivity of cross-correlation
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(85)90931-X
– volume: 551
  start-page: 139
  year: 2003
  end-page: 153
  ident: CR30
  article-title: Pyramidal cell communication within local networks in layer 2/3 of rat neocortex
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.2003.044784
– volume: 6
  start-page: 219
  year: 2009
  end-page: 224
  ident: CR9
  article-title: Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1303
– volume: 385
  start-page: 161
  year: 1997
  end-page: 165
  ident: CR36
  article-title: dendritic calcium dynamics in neocortical pyramidal neurons
  publication-title: Nature
  doi: 10.1038/385161a0
– volume: 370
  start-page: 140
  year: 1994
  end-page: 143
  ident: CR13
  article-title: Correlated neuronal discharge rate and its implications for psychophysical performance
  publication-title: Nature
  doi: 10.1038/370140a0
– volume: 54
  start-page: 205
  year: 2007
  end-page: 218
  ident: CR32
  article-title: light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.03.005
– volume: 21
  start-page: 3646
  year: 2001
  end-page: 3655
  ident: CR26
  article-title: Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-10-03646.2001
– volume: 357
  start-page: 376
  year: 1995
  end-page: 394
  ident: CR31
  article-title: Differential innervation of protruder and retractor muscles of the tongue in rat
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903570305
– volume: 3
  start-page: 1
  year: 2005
  end-page: 13
  ident: CR1
  article-title: Highly nonrandom features of synaptic connectivity in local cortical circuits
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030001
– volume: 10
  start-page: 631
  year: 2007
  end-page: 639
  ident: CR7
  article-title: Sniffing controls an adaptive filter of sensory input to the olfactory bulb
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1892
– volume: 29
  start-page: 13751
  year: 2009
  end-page: 13760
  ident: CR28
  article-title: Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2985-09.2009
– volume: 5
  start-page: e189
  year: 2007
  ident: CR4
  article-title: The functional microarchitecture of the mouse barrel cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050189
– volume: 100
  start-page: 7319
  year: 2003
  end-page: 7324
  ident: CR2
  article-title: two-photon calcium imaging of neuronal networks
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1232232100
– volume: 97
  start-page: 9264
  year: 2000
  end-page: 9269
  ident: CR17
  article-title: Pseudorabies virus expressing enhanced green fluorescent protein: A tool for electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.16.9264
– volume: 27
  start-page: 13316
  year: 2007
  end-page: 13328
  ident: CR3
  article-title: Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2210-07.2007
– volume: 25
  start-page: 291
  year: 1997
  end-page: 311
  ident: CR11
  article-title: Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(97)00028-3
– volume: Chapter 8
  start-page: Unit
  year: 2005
  end-page: 8.20
  ident: CR6
  article-title: Olfactometry with mice
  publication-title: Curr. Protoc. Neurosci.
– volume: 18
  start-page: 28
  year: 1991
  end-page: 38
  ident: CR8
  article-title: Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/S0317167100031267
– volume: 30
  start-page: 1947
  year: 2010
  end-page: 1967
  ident: CR18
  article-title: Vibrissa-based object localization in head-fixed mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3762-09.2010
– volume: 111
  start-page: 235
  year: 2005
  end-page: 249
  ident: CR10
  article-title: New developments in tracing neural circuits with herpesviruses
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2005.04.012
– volume: 102
  start-page: 14063
  year: 2005
  end-page: 14068
  ident: CR20
  article-title: Imaging input and output of neocortical networks
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506029102
– volume: 39
  start-page: 1062
  year: 1976
  end-page: 1068
  ident: CR12
  article-title: Anticipatory activity of motor cortex neurons in relation to direction of an intended movement
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1976.39.5.1062
– volume: 479
  start-page: 360
  year: 2004
  end-page: 373
  ident: CR16
  article-title: Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20306
– volume: 27
  start-page: 13316
  year: 2007
  ident: BFnature08897_CR3
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2210-07.2007
– volume: 56
  start-page: 43
  year: 2007
  ident: BFnature08897_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.08.003
– volume: 21
  start-page: 3646
  year: 2001
  ident: BFnature08897_CR26
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-10-03646.2001
– volume: 25
  start-page: 291
  year: 1997
  ident: BFnature08897_CR11
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(97)00028-3
– volume: 100
  start-page: 7319
  year: 2003
  ident: BFnature08897_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1232232100
– volume: 18
  start-page: 28
  year: 1991
  ident: BFnature08897_CR8
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/S0317167100031267
– volume: 21
  start-page: 1676
  year: 2001
  ident: BFnature08897_CR22
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-05-01676.2001
– volume: 551
  start-page: 139
  year: 2003
  ident: BFnature08897_CR30
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.2003.044784
– volume: 39
  start-page: 1062
  year: 1976
  ident: BFnature08897_CR12
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1976.39.5.1062
– volume: 479
  start-page: 360
  year: 2004
  ident: BFnature08897_CR16
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20306
– volume: 340
  start-page: 341
  year: 1985
  ident: BFnature08897_CR27
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(85)90931-X
– volume: 11
  start-page: 823
  year: 2008
  ident: BFnature08897_CR25
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2134
– volume: 385
  start-page: 161
  year: 1997
  ident: BFnature08897_CR36
  publication-title: Nature
  doi: 10.1038/385161a0
– volume: 8
  start-page: 782
  year: 2005
  ident: BFnature08897_CR29
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1447
– volume: 179
  start-page: 258
  year: 2009
  ident: BFnature08897_CR33
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.02.001
– volume: Chapter 8
  start-page: Unit
  year: 2005
  ident: BFnature08897_CR6
  publication-title: Curr. Protoc. Neurosci.
– volume: 3
  start-page: 1
  year: 2005
  ident: BFnature08897_CR1
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0030001
– volume: 6
  start-page: 1160
  year: 1986
  ident: BFnature08897_CR23
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.06-04-01160.1986
– volume: 97
  start-page: 9264
  year: 2000
  ident: BFnature08897_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.16.9264
– volume: 30
  start-page: 1947
  year: 2010
  ident: BFnature08897_CR18
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3762-09.2010
– volume: 7
  start-page: 27
  year: 1998
  ident: BFnature08897_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.650848
– volume: 6
  start-page: e258
  year: 2008
  ident: BFnature08897_CR21
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060258
– volume: 5
  start-page: e189
  year: 2007
  ident: BFnature08897_CR4
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050189
– volume: 111
  start-page: 235
  year: 2005
  ident: BFnature08897_CR10
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2005.04.012
– volume: 6
  start-page: 219
  year: 2009
  ident: BFnature08897_CR9
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1303
– volume: 29
  start-page: 13751
  year: 2009
  ident: BFnature08897_CR28
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2985-09.2009
– volume: 73
  start-page: 220
  year: 1997
  ident: BFnature08897_CR37
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78062-7
– volume: 1
  start-page: 31
  year: 2004
  ident: BFnature08897_CR19
  publication-title: Nature Methods
  doi: 10.1038/nmeth706
– volume: 24
  start-page: 637
  year: 1999
  ident: BFnature08897_CR34
  publication-title: Chem. Senses
  doi: 10.1093/chemse/24.6.637
– volume: 102
  start-page: 14063
  year: 2005
  ident: BFnature08897_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506029102
– volume: 370
  start-page: 140
  year: 1994
  ident: BFnature08897_CR13
  publication-title: Nature
  doi: 10.1038/370140a0
– volume: 21
  start-page: 631
  year: 1997
  ident: BFnature08897_CR14
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(96)00045-0
– volume: 357
  start-page: 376
  year: 1995
  ident: BFnature08897_CR31
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903570305
– volume: 10
  start-page: 631
  year: 2007
  ident: BFnature08897_CR7
  publication-title: Nature Neurosci.
  doi: 10.1038/nn1892
– volume: 260
  start-page: 47
  year: 1993
  ident: BFnature08897_CR24
  publication-title: Science
  doi: 10.1126/science.8465199
– volume: 103
  start-page: 8257
  year: 2006
  ident: BFnature08897_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0602933103
– volume: 54
  start-page: 205
  year: 2007
  ident: BFnature08897_CR32
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.03.005
– volume: 5
  start-page: e178
  year: 2007
  ident: BFnature08897_CR38
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050178
– reference: 3701413 - J Neurosci. 1986 Apr;6(4):1160-70
– reference: 8022482 - Nature. 1994 Jul 14;370(6485):140-3
– reference: 19428535 - J Neurosci Methods. 2009 May 15;179(2):258-63
– reference: 7673474 - J Comp Neurol. 1995 Jul 3;357(3):376-94
– reference: 10922076 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9264-9
– reference: 17920014 - Neuron. 2007 Oct 4;56(1):43-57
– reference: 19219033 - Nat Methods. 2009 Mar;6(3):219-24
– reference: 11331394 - J Neurosci. 2001 May 15;21(10):3646-55
– reference: 9353796 - Neurosci Biobehav Rev. 1997 Sep;21(5):631-47
– reference: 17622195 - PLoS Biol. 2007 Jul;5(7):e189
– reference: 12813147 - J Physiol. 2003 Aug 15;551(Pt 1):139-53
– reference: 8990119 - Nature. 1997 Jan 9;385(6612):161-5
– reference: 17450136 - Nat Neurosci. 2007 May;10 (5):631-9
– reference: 9199786 - Biophys J. 1997 Jul;73(1):220-9
– reference: 15514982 - J Comp Neurol. 2004 Nov 22;479(4):360-73
– reference: 20130203 - J Neurosci. 2010 Feb 3;30(5):1947-67
– reference: 18428626 - Curr Protoc Neurosci. 2005 Nov;Chapter 8:Unit 8.20
– reference: 15880111 - Nat Neurosci. 2005 Jun;8(6):782-90
– reference: 16702556 - Proc Natl Acad Sci U S A. 2006 May 23;103(21):8257-62
– reference: 11222658 - J Neurosci. 2001 Mar 1;21(5):1676-97
– reference: 10587496 - Chem Senses. 1999 Dec;24(6):637-45
– reference: 18516033 - Nat Neurosci. 2008 Jul;11(7):823-33
– reference: 17608564 - PLoS Biol. 2007 Jul;5(7):e178
– reference: 8465199 - Science. 1993 Apr 2;260(5104):47-52
– reference: 18959481 - PLoS Biol. 2008 Oct 28;6(10 ):e258
– reference: 4027655 - Brain Res. 1985 Aug 12;340(2):341-54
– reference: 18267377 - IEEE Trans Image Process. 1998;7(1):27-41
– reference: 16157876 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14063-8
– reference: 18045926 - J Neurosci. 2007 Nov 28;27(48):13316-28
– reference: 2036613 - Can J Neurol Sci. 1991 Feb;18(1):28-38
– reference: 12777621 - Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7319-24
– reference: 9495560 - Brain Res Brain Res Rev. 1997 Dec;25(3):291-311
– reference: 15782150 - Nat Methods. 2004 Oct;1(1):31-7
– reference: 17442243 - Neuron. 2007 Apr 19;54(2):205-18
– reference: 15893400 - Virus Res. 2005 Aug;111(2):235-49
– reference: 19889987 - J Neurosci. 2009 Nov 4;29(44):13751-60
– reference: 824409 - J Neurophysiol. 1976 Sep;39(5):1062-8
SSID ssj0005174
Score 2.495958
Snippet Cortical circuits: learning to behave Although it is generally accepted that specific cortical circuits drive behavioural execution, the relationship between...
Cortical neurons form specific circuits, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon...
Cortical neurons form specific circuits (1), but the functional structure of this microarchitecture and its relation to behaviour are poorly understood....
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1182
SubjectTerms 631/378/1595
631/378/2632/1663
631/601/18
Animals
Axonal Transport
Behavior, Animal - physiology
Biological and medical sciences
Brain
Choice Behavior - physiology
Fundamental and applied biological sciences. Psychology
Humanities and Social Sciences
Learning - physiology
Learning in animals
letter
Male
Methods
Mice
Mice, Inbred C57BL
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Motor cortex
Motor Cortex - cytology
Motor Cortex - physiology
Motor Neurons - physiology
multidisciplinary
Neural Pathways - physiology
Neurons
Neurophysiology
Odorants - analysis
Physiological aspects
Properties
Pyramidal Cells - physiology
Reward
Science
Stimulation, Chemical
Time Factors
Tongue - cytology
Tongue - innervation
Tongue - physiology
Vertebrates: nervous system and sense organs
Title Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice
URI https://link.springer.com/article/10.1038/nature08897
https://www.ncbi.nlm.nih.gov/pubmed/20376005
https://www.proquest.com/docview/193888526
https://www.proquest.com/docview/733158676
https://www.proquest.com/docview/746160883
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swEBdby2Awxtq9vHZBjO4JorYlvz6NLDTrBguja1m-GesVAq2dxgnsz9-draTxmvWLv-iQZZ3udLJ-9ztCjoSU0kaSMzBCBQeUVLDCJDGzMbeR5jwrMsx3_jGKTy_E93E0dtic2sEqVz6xcdS6UviP_BgCDTisRWH8eXbNsGgUXq66Chr3yS4ylyGiKxknNwiPf0iYXXqez9PjljUTIT5JZ0NybvnRrKhhimxb22Jb8Hnr4rTZj4ZPyGMXSNJ-q_k9cs-U--RBA-hU9T7Zc0Zb0w-OWfrjUzJ2bKoT1qSwGE0tBJkMB2Eo5lwibgjCcjq9Ajej6bSkoMlqThVCcv9QNZ2r5XRR08rSNr-_nFCsZ_-MXAxPzgenzJVWYCpOwwWTSlkujI-MiFZlhW9FxC1Pw0BLrbWwMhVahoEMrQl8G6baBDrzY21sFlup-XOyU1aleUmo4YlSgUh0lIBDiIrUz5SfwB5YhKYQofLIp9X85srxjmP5i8u8uf_mab6hDI8crYVnLd3Gf8RQUTkSWJSIkJkUy7rO--e_B6O8D1FJxgWchTzyZpvYt19nHaH3TshWMC5VuLwE-DqkxupIHnQk1Wx6nW-0vuu0TlrlbuvmsCMI9qw6zb3O6lvPAwTKHIJ1AcNYLcfcOZw6X5uHR-i6FXtGDF1pqmWdY3XOKI2Tu0REHMQww9wjL9p1fvN2H-FTfuSRt6uFv_H22yp6decoD8jDFoYhWBgekp3FfGleQ3S3kL3GhuGZDgJ8Dr_2yO6Xk9HPs7-mGlGo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIJITa-wsaw0MaXFC2xna8HhKrB1LKtD9BpfQvxV1WJJV3TCvij-B85J07XsLK3PfvkuL7z-a7-3e8Q2mWccx1w6sIhFJCgxMzNVBS6OqQ6kJQmWWLqnU_6YfeUfRkGwzX0p6mFMbDKxidWjloWwvxHvg-BBiRrAQk_Ti5c0zTKPK42HTRqqzhSv39CxlZ-6H0C9e4Rcvh5cNB1bVMBV4QxmblcCE2Z8gwXoBZJ5mkWUE1j4ksupWSax0xy4nOile9pEkvly8QLpdJJqLmkMO8tdBvuXc8cqGgYXSJK_iF9tuWAHo33a5ZOAymKWhegvQbuT7ISVKLrXhqrgt0rD7XV_Xf4ED2wgSvu1Ja2gdZUvonuVABSUW6iDeskSvzWMlm_e4SGlr115FYlM0piDUGtaxahsKnxNDglSAPw-BzcmsTjHIPlFFMsDAT4FxbjqZiPZyUuNK75BPIRPgfX9hid3siuP0HreZGrZwgrGgnhs0gGETigIIu9RHgR3LkZURkjwkHvm_1NheU5N-02fqTVezuN0yVlOGh3ITyp6T3-I2YUlRrCjNwgckbZvCzTzuDsoJ92IApKKIPcy0GvVon1vn1tCb2xQrqAdYnM1kHArzNUXC3JrZakmIwv0qXR163RUa3cVdNstwTBf4jW8E7L-hb7AIE5heSAwTIac0ytgyvTxXF0EF6MmpkNZi9XxbxMTTfQIA6j60RY6Ieww9RBT2s7v_y6Z-BaXuCgvcbwl75-VUXPr13lS3S3Ozg5To97_aMtdK-GgDCXkG20PpvO1QuILGd8pzrPGH2_aQfyF7UOjkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGEAgJITbewsaw0AYDKWpiO28fEKo2qpVBhWAT_Rbit6oSS7qmFfDT-HecE6drWNm3ffbJcX3n81393HMI7TLOuQ44deEQCkhQYuZmKgpdHVIdSEqTLDH1zp8G4dEp-zAMhmvoT1MLY2CVjU-sHLUshPmPvAOBBiRrAQk72qIiPh_23k3OXdNAyjy0Nt00ags5Vr9_QvZWvu0fgqr3COm9Pzk4cm2DAVeEMZm5XAhNmfIML6AWSeZpFlBNY-JLLqVkmsdMcuJzopXvaRJL5cvEC6XSSai5pDDvDXQzooFvjlg0jC7QJf8QQNvSQI_GnZqx08CLotZlaK-Eu5OsBPXouq_GqsD30qNtdRf27qN7NojF3drqNtCayjfRrQpMKspNtGEdRon3Lav16wdoaJlcR25VPqMk1hDgumYRCpt6T4NZgpQAj8_AxUk8zjFYUTHFwsCBf2Exnor5eFbiQuOaWyAf4TNwcw_R6bXs-iO0nhe5eoKwopEQPotkEIEzCrLYS4QXwf2bEZUxIhz0ptnfVFjOc9N640davb3TOF1ShoN2F8KTmurjP2JGUakhz8iNHY6yeVmm3ZNvB4O0CxFRQhnkYQ56sUqs__VLS-iVFdIFrEtktiYCfp2h5WpJbrUkxWR8ni6NvmyNjmrlrppmuyUIvkS0hnda1rfYBwjSKSQKDJbRmGNqnV2ZLo6mg_Bi1Mxs8Hu5KuZlajqDBnEYXSXCQj-EHaYOelzb-cXXPQPd8gIH7TWGv_T1yyp6euUqn6Pb4DrSj_3B8Ra6U6NBmEvINlqfTefqGQSZM75THWeMvl-3__gLSdCSfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-related+fine-scale+specificity+imaged+in+motor+cortex+circuits+of+behaving+mice&rft.jtitle=Nature+%28London%29&rft.au=Komiyama%2C+Takaki&rft.au=Sato%2C+Takashi+R&rft.au=O%27Connor%2C+Daniel+H&rft.au=Zhang%2C+Ying-Xin&rft.date=2010-04-22&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=464&rft.issue=7292&rft.spage=1182&rft_id=info:doi/10.1038%2Fnature08897&rft.externalDocID=A224934306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon