Evaluation of a rapid coliform detection kit from clinical mastitis milk using colloidal gold nanoparticle–based immunochromatographic strips
The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal prote...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 83; no. 11; pp. 1628 - 1633 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
JAPANESE SOCIETY OF VETERINARY SCIENCE
2021
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal protein-L7/L12 antibody–coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs. |
---|---|
AbstractList | The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal protein-L7/L12 antibody–coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs. The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal protein-L7/L12 antibody–coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs. The accurate identification of mastitis-causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti-ribosomal protein-L7/L12 antibody-coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs.The accurate identification of mastitis-causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti-ribosomal protein-L7/L12 antibody-coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs. |
ArticleNumber | 21-0185 |
Author | SUGAWARA, Kazue HAYASHI, Tomohito YABUSAKI, Takahiro OONO, Kazuyoshi FUJII, Kento KIKU, Yoshio NAGASAWA, Yuya MAEHANA, Koji |
Author_xml | – sequence: 1 fullname: YABUSAKI, Takahiro organization: Hokubu Veterinary Clinic, Chiba Prefectural Federated Agricultural Mutual Aid Association, 99-1 Nira, Katori, Chiba 289-0407, Japan – sequence: 1 fullname: MAEHANA, Koji organization: Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samajima, Fuji, Shizuoka 416-8501, Japan – sequence: 1 fullname: FUJII, Kento organization: NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan – sequence: 1 fullname: NAGASAWA, Yuya organization: Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan – sequence: 1 fullname: KIKU, Yoshio organization: Present address: Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan – sequence: 1 fullname: SUGAWARA, Kazue organization: Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan – sequence: 1 fullname: OONO, Kazuyoshi organization: NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan – sequence: 1 fullname: HAYASHI, Tomohito organization: Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan |
BookMark | eNp1kb1uFDEUhS0URJKFjgewREPBBP_b0yChVfiRItGktzwez643HnuxPSul4w0oeEOehJnsEolINPcW5zvn6upcgrOYogPgNUZXmLTk_e4wliuCG4QVfwYuMGWykYy2Z-ACtVg0knB0Di5L2SFEMBPtC3BOGSeCYXUBfl4fTJhM9SnCNEADs9n7HtoU_JDyCHtXnX1Q73yFQ04jtMFHb02AoynVV1_g6MMdnIqPm8UYku9ndZNCD6OJaW9y9Ta43z9-daa4HvpxnGKy2znM1LSZL269haVmvy8vwfPBhOJenfYK3H66vl1_aW6-ff66_njTWKFIbYwioqNGYMHp0OFeKoU7yggf2h7x1nCCqWEMSWklR0p0ClnODBn6QVrW0xX4cIzdT93oeutizSboffajyfc6Ga__VaLf6k06aCWoUIrPAW9PATl9n1ypevTFuhBMdGkqmnBJGZVILuibJ-guTTnO381UixkV7YyuADlSNqdSshu09fWhl_m-DxojvdStl7o1wXqpeza9e2L6-8F_8PUR35VqNu4RPhV0hBXVGC_z5HpU7dZk7SL9A6Jaysc |
CitedBy_id | crossref_primary_10_1292_jvms_23_0438 |
Cites_doi | 10.1111/rda.13032 10.1099/jmm.0.000336 10.1016/j.prevetmed.2019.104869 10.1007/s00216-008-2287-2 10.3168/jds.2014-8428 10.1007/s11250-018-1629-0 10.1097/MD.0000000000024539 10.1126/science.3287615 10.1111/asj.12136 10.1099/00221287-138-9-1875 10.1002/bimj.200710415 10.3389/fvets.2019.00504 10.1016/j.prevetmed.2013.11.019 10.1111/jvp.12057 10.1111/asj.13502 10.3389/fbioe.2019.00186 10.1292/jvms.18-0581 10.1292/jvms.19-0035 10.1128/JCM.01871-12 10.1099/00221287-143-1-55 10.1007/s11250-012-0286-y 10.1007/s11259-017-9684-y 10.3168/jds.2008-1661 10.1292/jvms.71.269 |
ContentType | Journal Article |
Copyright | 2021 by the Japanese Society of Veterinary Science 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Japanese Society of Veterinary Science 2021 |
Copyright_xml | – notice: 2021 by the Japanese Society of Veterinary Science – notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Japanese Society of Veterinary Science 2021 |
DBID | AAYXX CITATION 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.21-0185 |
DatabaseName | CrossRef Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 1633 |
ExternalDocumentID | PMC8636885 10_1292_jvms_21_0185 article_jvms_83_11_83_21_0185_article_char_en |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS ECGQY EJD EYRJQ HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 VH1 XSB AAYXX CITATION 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c682t-a826b3a61653fb1d7881b3425f9d059a5213a44077c75086b80c54a2fdf7c4d3 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 14:02:20 EDT 2025 Fri Jul 11 08:03:44 EDT 2025 Mon Jun 30 06:16:48 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Tue Jul 01 00:31:09 EDT 2025 Wed Sep 03 06:31:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c682t-a826b3a61653fb1d7881b3425f9d059a5213a44077c75086b80c54a2fdf7c4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.21-0185 |
PMID | 34526418 |
PQID | 2591436934 |
PQPubID | 2028964 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636885 proquest_miscellaneous_2573437075 proquest_journals_2591436934 crossref_citationtrail_10_1292_jvms_21_0185 crossref_primary_10_1292_jvms_21_0185 jstage_primary_article_jvms_83_11_83_21_0185_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2021 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 10. Kuipers, A., Koops, W. J. and Wemmenhove, H. 2016. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 99: 1632–1648. 4. Kawai, K., Kondo, Y., Shinozuka, Y., Kawata, R., Kaneko, S., Iwano, H., Enokidani, M., Watanabe, A., Yuliza-Purba, F., Isobe, N. and Kurumisawa, T. 2021. Immune response during the onset of coliform mastitis in dairy cows vaccinated with STARTVAC®. Anim. Sci. J. 92: e13502. 19. Sano, G., Itagaki, T., Ishiwada, N., Matsubara, K., Iwata, S., Nakamori, Y., Matsuyama, K., Watanabe, K., Ishii, Y., Homma, S. and Tateda, K. 2016. Characterization and evaluation of a novel immunochromatographic assay for pharyngeal Mycoplasmapneumoniae ribosomal protein L7/L12 antigens. J. Med. Microbiol. 65: 1105–1110. 25. Truchetti, G., Bouchard, E., Descôteaux, L., Scholl, D. and Roy, J. P. 2014. Efficacy of extended intramammary ceftiofur therapy against mild to moderate clinical mastitis in Holstein dairy cows: a randomized clinical trial. Can. J. Vet. Res. 78: 31–37. 9. Krömker, V. and Leimbach, S. 2017. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 52 Suppl 3: 21–29. 21. Shinozuka, Y., Hirata, H., Ishibashi, I., Okawa, Y., Kasuga, A., Takagi, M. and Taura, Y. 2009. Therapeutic efficacy of mammary irrigation regimen in dairy cattle diagnosed with acute coliform mastitis. J. Vet. Med. Sci. 71: 269–273. 1. Aboshkiwa, M., al-Ani, B., Coleman, G. and Rowland, G. 1992. Cloning and physical mapping of the Staphylococcus aureus rplL, rpoB and rpoC genes, encoding ribosomal protein L7/L12 and RNA polymerase subunits beta and beta’. J. Gen. Microbiol. 138: 1875–1880. 20. Sawa, T., Kimura, S., Honda, N. H., Fujita, K., Yoshizawa, S., Harada, Y., Sugiyama, Y., Matsuyama, K., Sohka, T., Saji, T., Yamaguchi, K. and Tateda, K. 2013. Diagnostic usefulness of ribosomal protein l7/l12 for pneumococcal pneumonia in a mouse model. J. Clin. Microbiol. 51: 70–76. 23. Suojala, L., Kaartinen, L. and Pyörälä, S. 2013. Treatment for bovine Escherichia coli mastitis-an evidence-based approach. J. Vet. Pharmacol. Ther. 36: 521–531. 6. Keshavarzi, H., Sadeghi-Sefidmazgi, A., Mirzaei, A. and Ravanifard, R. 2020. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle. Prev. Vet. Med. 175: 104869. 24. Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. 8. Kolberg, J., Høiby, E. A., Lopez, R. and Sletten, K. 1997. Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology (Reading) 143: 55–61. 22. Shinozuka, Y., Kawai, K., Takeda, A., Yamada, M., Kayasaki, F., Kondo, N., Sasaki, Y., Kanai, N., Mukai, T., Sawaguchi, M., Higuchi, M., Kondo, H., Sugimoto, K., Kumagai, S., Murayama, I., Sakai, Y., Baba, K., Maemichi, K., Ohishi, T., Mizunuma, T., Kawana, A., Yasuda, A. and Watanabe, A. 2019. Influence of oxytetracycline susceptibility as a first-line antibiotic on the clinical outcome in dairy cattle with acute Escherichia coli mastitis. J. Vet. Med. Sci. 81: 863–868. 13. McCarron, J. L., Keefe, G. P., McKenna, S. L., Dohoo, I. R. and Poole, D. E. 2009. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. J. Dairy Sci. 92: 2297–2305. 3. Gitau, G. K., Bundi, R. M., Vanleeuwen, J. and Mulei, C. M. 2013. Evaluation of PetrifilmsTM as a diagnostic test to detect bovine mastitis organisms in Kenya. Trop. Anim. Health Prod. 45: 883–886. 11. Mansion-de Vries, E. M., Knorr, N., Paduch, J. H., Zinke, C., Hoedemaker, M. and Krömker, V. 2014. A field study evaluation of Petrifilm™ plates as a 24-h rapid diagnostic test for clinical mastitis on a dairy farm. Prev. Vet. Med. 113: 620–624. 14. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, T., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2019. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. J. Vet. Med. Sci. 81: 107–112. 18. Sakurai, A., Yamada, S. I., Karasawa, I., Kondo, E. and Kurita, H. 2021. Accuracy of a salivary examination kit for the screening of periodontal disease in a group medical check-up (Japanese-specific health check-up). Medicine (Baltimore) 100: e24539. 2. Ashraf, A. and Imran, M. 2018. Diagnosis of bovine mastitis: from laboratory to farm. Trop. Anim. Health Prod. 50: 1193–1202. 17. Ruopp, M. D., Perkins, N. J., Whitcomb, B. W. and Schisterman, E. F. 2008. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 50: 419–430. 7. Kiku, Y., Ozawa, T., Takahashi, H., Kushibiki, S., Inumaru, S., Shingu, H., Nagasawa, Y., Watanabe, A., Hata, E. and Hayashi, T. 2017. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis. Vet. Res. Commun. 41: 175–182. 12. Martins, S. A. M., Martins, V. C., Cardoso, F. A., Germano, J., Rodrigues, M., Duarte, C., Bexiga, R., Cardoso, S. and Freitas, P. P. 2019. Biosensors for on-farm diagnosis of mastitis. Front. Bioeng. Biotechnol. 7: 186. 15. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, N., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2020. Rapid Staphylococcus aureus detection from clinical mastitis milk by colloidal gold nanoparticle-based immunochromatographic strips. Front. Vet. Sci. 6: 504. 5. Kawai, K., Hayashi, T., Kiku, Y., Chiba, T., Nagahata, H., Higuchi, H., Obayashi, T., Itoh, S., Onda, K., Arai, S., Sato, R. and Oshida, T. 2013. Reliability in somatic cell count measurement of clinical mastitis milk using DeLaval cell counter. Anim. Sci. J. 84: 805–807. 16. Posthuma-Trumpie, G. A., Korf, J. and van Amerongen, A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393: 569–582. 22 23 24 25 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 16. Posthuma-Trumpie, G. A., Korf, J. and van Amerongen, A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393: 569–582. – reference: 10. Kuipers, A., Koops, W. J. and Wemmenhove, H. 2016. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 99: 1632–1648. – reference: 12. Martins, S. A. M., Martins, V. C., Cardoso, F. A., Germano, J., Rodrigues, M., Duarte, C., Bexiga, R., Cardoso, S. and Freitas, P. P. 2019. Biosensors for on-farm diagnosis of mastitis. Front. Bioeng. Biotechnol. 7: 186. – reference: 21. Shinozuka, Y., Hirata, H., Ishibashi, I., Okawa, Y., Kasuga, A., Takagi, M. and Taura, Y. 2009. Therapeutic efficacy of mammary irrigation regimen in dairy cattle diagnosed with acute coliform mastitis. J. Vet. Med. Sci. 71: 269–273. – reference: 15. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, N., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2020. Rapid Staphylococcus aureus detection from clinical mastitis milk by colloidal gold nanoparticle-based immunochromatographic strips. Front. Vet. Sci. 6: 504. – reference: 18. Sakurai, A., Yamada, S. I., Karasawa, I., Kondo, E. and Kurita, H. 2021. Accuracy of a salivary examination kit for the screening of periodontal disease in a group medical check-up (Japanese-specific health check-up). Medicine (Baltimore) 100: e24539. – reference: 3. Gitau, G. K., Bundi, R. M., Vanleeuwen, J. and Mulei, C. M. 2013. Evaluation of PetrifilmsTM as a diagnostic test to detect bovine mastitis organisms in Kenya. Trop. Anim. Health Prod. 45: 883–886. – reference: 13. McCarron, J. L., Keefe, G. P., McKenna, S. L., Dohoo, I. R. and Poole, D. E. 2009. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. J. Dairy Sci. 92: 2297–2305. – reference: 8. Kolberg, J., Høiby, E. A., Lopez, R. and Sletten, K. 1997. Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology (Reading) 143: 55–61. – reference: 9. Krömker, V. and Leimbach, S. 2017. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 52 Suppl 3: 21–29. – reference: 2. Ashraf, A. and Imran, M. 2018. Diagnosis of bovine mastitis: from laboratory to farm. Trop. Anim. Health Prod. 50: 1193–1202. – reference: 5. Kawai, K., Hayashi, T., Kiku, Y., Chiba, T., Nagahata, H., Higuchi, H., Obayashi, T., Itoh, S., Onda, K., Arai, S., Sato, R. and Oshida, T. 2013. Reliability in somatic cell count measurement of clinical mastitis milk using DeLaval cell counter. Anim. Sci. J. 84: 805–807. – reference: 22. Shinozuka, Y., Kawai, K., Takeda, A., Yamada, M., Kayasaki, F., Kondo, N., Sasaki, Y., Kanai, N., Mukai, T., Sawaguchi, M., Higuchi, M., Kondo, H., Sugimoto, K., Kumagai, S., Murayama, I., Sakai, Y., Baba, K., Maemichi, K., Ohishi, T., Mizunuma, T., Kawana, A., Yasuda, A. and Watanabe, A. 2019. Influence of oxytetracycline susceptibility as a first-line antibiotic on the clinical outcome in dairy cattle with acute Escherichia coli mastitis. J. Vet. Med. Sci. 81: 863–868. – reference: 11. Mansion-de Vries, E. M., Knorr, N., Paduch, J. H., Zinke, C., Hoedemaker, M. and Krömker, V. 2014. A field study evaluation of Petrifilm™ plates as a 24-h rapid diagnostic test for clinical mastitis on a dairy farm. Prev. Vet. Med. 113: 620–624. – reference: 23. Suojala, L., Kaartinen, L. and Pyörälä, S. 2013. Treatment for bovine Escherichia coli mastitis-an evidence-based approach. J. Vet. Pharmacol. Ther. 36: 521–531. – reference: 4. Kawai, K., Kondo, Y., Shinozuka, Y., Kawata, R., Kaneko, S., Iwano, H., Enokidani, M., Watanabe, A., Yuliza-Purba, F., Isobe, N. and Kurumisawa, T. 2021. Immune response during the onset of coliform mastitis in dairy cows vaccinated with STARTVAC®. Anim. Sci. J. 92: e13502. – reference: 17. Ruopp, M. D., Perkins, N. J., Whitcomb, B. W. and Schisterman, E. F. 2008. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 50: 419–430. – reference: 24. Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293. – reference: 7. Kiku, Y., Ozawa, T., Takahashi, H., Kushibiki, S., Inumaru, S., Shingu, H., Nagasawa, Y., Watanabe, A., Hata, E. and Hayashi, T. 2017. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis. Vet. Res. Commun. 41: 175–182. – reference: 25. Truchetti, G., Bouchard, E., Descôteaux, L., Scholl, D. and Roy, J. P. 2014. Efficacy of extended intramammary ceftiofur therapy against mild to moderate clinical mastitis in Holstein dairy cows: a randomized clinical trial. Can. J. Vet. Res. 78: 31–37. – reference: 6. Keshavarzi, H., Sadeghi-Sefidmazgi, A., Mirzaei, A. and Ravanifard, R. 2020. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle. Prev. Vet. Med. 175: 104869. – reference: 1. Aboshkiwa, M., al-Ani, B., Coleman, G. and Rowland, G. 1992. Cloning and physical mapping of the Staphylococcus aureus rplL, rpoB and rpoC genes, encoding ribosomal protein L7/L12 and RNA polymerase subunits beta and beta’. J. Gen. Microbiol. 138: 1875–1880. – reference: 20. Sawa, T., Kimura, S., Honda, N. H., Fujita, K., Yoshizawa, S., Harada, Y., Sugiyama, Y., Matsuyama, K., Sohka, T., Saji, T., Yamaguchi, K. and Tateda, K. 2013. Diagnostic usefulness of ribosomal protein l7/l12 for pneumococcal pneumonia in a mouse model. J. Clin. Microbiol. 51: 70–76. – reference: 14. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, T., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2019. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. J. Vet. Med. Sci. 81: 107–112. – reference: 19. Sano, G., Itagaki, T., Ishiwada, N., Matsubara, K., Iwata, S., Nakamori, Y., Matsuyama, K., Watanabe, K., Ishii, Y., Homma, S. and Tateda, K. 2016. Characterization and evaluation of a novel immunochromatographic assay for pharyngeal Mycoplasmapneumoniae ribosomal protein L7/L12 antigens. J. Med. Microbiol. 65: 1105–1110. – ident: 9 doi: 10.1111/rda.13032 – ident: 19 doi: 10.1099/jmm.0.000336 – ident: 6 doi: 10.1016/j.prevetmed.2019.104869 – ident: 16 doi: 10.1007/s00216-008-2287-2 – ident: 10 doi: 10.3168/jds.2014-8428 – ident: 2 doi: 10.1007/s11250-018-1629-0 – ident: 18 doi: 10.1097/MD.0000000000024539 – ident: 24 doi: 10.1126/science.3287615 – ident: 5 doi: 10.1111/asj.12136 – ident: 1 doi: 10.1099/00221287-138-9-1875 – ident: 17 doi: 10.1002/bimj.200710415 – ident: 15 doi: 10.3389/fvets.2019.00504 – ident: 11 doi: 10.1016/j.prevetmed.2013.11.019 – ident: 23 doi: 10.1111/jvp.12057 – ident: 4 doi: 10.1111/asj.13502 – ident: 12 doi: 10.3389/fbioe.2019.00186 – ident: 14 doi: 10.1292/jvms.18-0581 – ident: 22 doi: 10.1292/jvms.19-0035 – ident: 20 doi: 10.1128/JCM.01871-12 – ident: 8 doi: 10.1099/00221287-143-1-55 – ident: 3 doi: 10.1007/s11250-012-0286-y – ident: 7 doi: 10.1007/s11259-017-9684-y – ident: 13 doi: 10.3168/jds.2008-1661 – ident: 21 doi: 10.1292/jvms.71.269 – ident: 25 |
SSID | ssj0021469 |
Score | 2.258827 |
Snippet | The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement... The accurate identification of mastitis-causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement... |
SourceID | pubmedcentral proquest crossref jstage |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1628 |
SubjectTerms | Antimicrobial agents coliform mastitis Coliforms Farms immunochromatographic strip Internal Medicine Mastitis Milk Nanoparticles rapid detection Veterinary surgeons |
Title | Evaluation of a rapid coliform detection kit from clinical mastitis milk using colloidal gold nanoparticle–based immunochromatographic strips |
URI | https://www.jstage.jst.go.jp/article/jvms/83/11/83_21-0185/_article/-char/en https://www.proquest.com/docview/2591436934 https://www.proquest.com/docview/2573437075 https://pubmed.ncbi.nlm.nih.gov/PMC8636885 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2021, Vol.83(11), pp.1628-1633 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VglAvqBQQgbYyEpxQShI7TiKBEEKtCmg5tai3yI7jbdpssuymqL3xBj30DXkSZvKnLoILUpSLx5Hl8WS-T54fgJeJCbngmroGcO0KrTw38XLhyigXxgsyGSeUnDz5Kg-PxeeT8GQNhm6j_QYu_0rtqJ_U8aLcu_x-9R4N_l1bGyEJ3pz9mC33AmLFcXgH7qJPishEJ2K8T6Du1V3VPV-6EXr9PgT-z9kbcJ9Tz21BPUBu-al7ZwjVpvkKCl2NobzllA424UGPJtmHTv0PYS2vtmDrG4W4tHm2bNJfnT-C6_2xrjerLVNsoeaFYXgOKDdrxkzetFFZFTsvGkZZJ2zImmQzRREFxZLNivKcUaj8lCaWdWFwdFqXhlWqQvrdrePXzxtyjoYVlHxSZ6f4MeT2bW3sImPUKWS-fAxHB_tHHw_dvhuDiwoLGlchEdFcSV-G3GrfUB16zdHkbWIQoynEAVwJ5IdRhigkljr2slCowBobZcLwJ7Be1VX-FFhojBdbujy2SlhtUSmZRejHbaRNpn0HXg9bn2Z9pXJqmFGmxFhQZynpLA38lHTmwKtRet5V6PiH3NtOi6NUvymdVMyRDNG7Fx9HKfsNfyEObA-6T4dTmiJ3RLwpEy4ceDEOo4HSrYuq8vqCZCK0hgihmQPRypkZF0IlvldHquK0LfUdSy7jOHz23zOfw0bgtacbn21YbxYX-Q7CqEbvIoH49GW3tZPfUJMl_g |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+a+rapid+coliform+detection+kit+from+clinical+mastitis+milk+using+colloidal+gold+nanoparticle%E2%80%93based+immunochromatographic+strips&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=KIKU%2C+Yoshio&rft.au=NAGASAWA%2C+Yuya&rft.au=SUGAWARA%2C+Kazue&rft.au=YABUSAKI%2C+Takahiro&rft.date=2021&rft.pub=The+Japanese+Society+of+Veterinary+Science&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=83&rft.issue=11&rft.spage=1628&rft.epage=1633&rft_id=info:doi/10.1292%2Fjvms.21-0185&rft_id=info%3Apmid%2F34526418&rft.externalDocID=PMC8636885 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |