Evaluation of a rapid coliform detection kit from clinical mastitis milk using colloidal gold nanoparticle–based immunochromatographic strips

The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal prote...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 83; no. 11; pp. 1628 - 1633
Main Authors YABUSAKI, Takahiro, MAEHANA, Koji, FUJII, Kento, NAGASAWA, Yuya, KIKU, Yoshio, SUGAWARA, Kazue, OONO, Kazuyoshi, HAYASHI, Tomohito
Format Journal Article
LanguageEnglish
Published Tokyo JAPANESE SOCIETY OF VETERINARY SCIENCE 2021
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal protein-L7/L12 antibody–coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs.
AbstractList The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal protein-L7/L12 antibody–coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs.
The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti–ribosomal protein-L7/L12 antibody–coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs.
The accurate identification of mastitis-causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti-ribosomal protein-L7/L12 antibody-coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs.The accurate identification of mastitis-causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement the selective use of antimicrobials for treatment. The purpose of this study was to evaluate the ability of our developed anti-ribosomal protein-L7/L12 antibody-coated immunochromatographic strip (ICS) test to detect coliforms in milk by comparing the results with the bacteriological culture method. We investigated the performance of the ICS test as compared with the bacteriological culture method using 308 milk samples from clinical bovine mastitis. First, to determine the optimal ICS test cutoff point for detecting coliform mastitis, we developed a receiver-operating characteristic curve. The result showed that the cutoff point was at 0.5 of our index. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value of the ICS test were 81.3%, 84.8%, 69.2%, and 91.54%, respectively. As the clinical signs increased in severity, the F-measure, a weighted harmonic mean of the sensitivity and overall PPV performance, increased. Because it is especially important to treat clinical mastitis appropriately in the early stages of detection, the ICS test, which can be used by both dairy farmers and veterinarians on dairy farms, is considered to be a useful tool for detecting coliform mastitis, which often presents with severe signs.
ArticleNumber 21-0185
Author SUGAWARA, Kazue
HAYASHI, Tomohito
YABUSAKI, Takahiro
OONO, Kazuyoshi
FUJII, Kento
KIKU, Yoshio
NAGASAWA, Yuya
MAEHANA, Koji
Author_xml – sequence: 1
  fullname: YABUSAKI, Takahiro
  organization: Hokubu Veterinary Clinic, Chiba Prefectural Federated Agricultural Mutual Aid Association, 99-1 Nira, Katori, Chiba 289-0407, Japan
– sequence: 1
  fullname: MAEHANA, Koji
  organization: Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samajima, Fuji, Shizuoka 416-8501, Japan
– sequence: 1
  fullname: FUJII, Kento
  organization: NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan
– sequence: 1
  fullname: NAGASAWA, Yuya
  organization: Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
– sequence: 1
  fullname: KIKU, Yoshio
  organization: Present address: Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
– sequence: 1
  fullname: SUGAWARA, Kazue
  organization: Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
– sequence: 1
  fullname: OONO, Kazuyoshi
  organization: NOSAI Minami, 401-4 Shinotsu, Ebetsu, Hokkaido 067-0055, Japan
– sequence: 1
  fullname: HAYASHI, Tomohito
  organization: Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
BookMark eNp1kb1uFDEUhS0URJKFjgewREPBBP_b0yChVfiRItGktzwez643HnuxPSul4w0oeEOehJnsEolINPcW5zvn6upcgrOYogPgNUZXmLTk_e4wliuCG4QVfwYuMGWykYy2Z-ACtVg0knB0Di5L2SFEMBPtC3BOGSeCYXUBfl4fTJhM9SnCNEADs9n7HtoU_JDyCHtXnX1Q73yFQ04jtMFHb02AoynVV1_g6MMdnIqPm8UYku9ndZNCD6OJaW9y9Ta43z9-daa4HvpxnGKy2znM1LSZL269haVmvy8vwfPBhOJenfYK3H66vl1_aW6-ff66_njTWKFIbYwioqNGYMHp0OFeKoU7yggf2h7x1nCCqWEMSWklR0p0ClnODBn6QVrW0xX4cIzdT93oeutizSboffajyfc6Ga__VaLf6k06aCWoUIrPAW9PATl9n1ypevTFuhBMdGkqmnBJGZVILuibJ-guTTnO381UixkV7YyuADlSNqdSshu09fWhl_m-DxojvdStl7o1wXqpeza9e2L6-8F_8PUR35VqNu4RPhV0hBXVGC_z5HpU7dZk7SL9A6Jaysc
CitedBy_id crossref_primary_10_1292_jvms_23_0438
Cites_doi 10.1111/rda.13032
10.1099/jmm.0.000336
10.1016/j.prevetmed.2019.104869
10.1007/s00216-008-2287-2
10.3168/jds.2014-8428
10.1007/s11250-018-1629-0
10.1097/MD.0000000000024539
10.1126/science.3287615
10.1111/asj.12136
10.1099/00221287-138-9-1875
10.1002/bimj.200710415
10.3389/fvets.2019.00504
10.1016/j.prevetmed.2013.11.019
10.1111/jvp.12057
10.1111/asj.13502
10.3389/fbioe.2019.00186
10.1292/jvms.18-0581
10.1292/jvms.19-0035
10.1128/JCM.01871-12
10.1099/00221287-143-1-55
10.1007/s11250-012-0286-y
10.1007/s11259-017-9684-y
10.3168/jds.2008-1661
10.1292/jvms.71.269
ContentType Journal Article
Copyright 2021 by the Japanese Society of Veterinary Science
2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Japanese Society of Veterinary Science 2021
Copyright_xml – notice: 2021 by the Japanese Society of Veterinary Science
– notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Japanese Society of Veterinary Science 2021
DBID AAYXX
CITATION
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.21-0185
DatabaseName CrossRef
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts


MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 1633
ExternalDocumentID PMC8636885
10_1292_jvms_21_0185
article_jvms_83_11_83_21_0185_article_char_en
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
EYRJQ
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c682t-a826b3a61653fb1d7881b3425f9d059a5213a44077c75086b80c54a2fdf7c4d3
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 14:02:20 EDT 2025
Fri Jul 11 08:03:44 EDT 2025
Mon Jun 30 06:16:48 EDT 2025
Thu Apr 24 23:05:04 EDT 2025
Tue Jul 01 00:31:09 EDT 2025
Wed Sep 03 06:31:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c682t-a826b3a61653fb1d7881b3425f9d059a5213a44077c75086b80c54a2fdf7c4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.21-0185
PMID 34526418
PQID 2591436934
PQPubID 2028964
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636885
proquest_miscellaneous_2573437075
proquest_journals_2591436934
crossref_citationtrail_10_1292_jvms_21_0185
crossref_primary_10_1292_jvms_21_0185
jstage_primary_article_jvms_83_11_83_21_0185_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2021
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 10. Kuipers, A., Koops, W. J. and Wemmenhove, H. 2016. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 99: 1632–1648.
4. Kawai, K., Kondo, Y., Shinozuka, Y., Kawata, R., Kaneko, S., Iwano, H., Enokidani, M., Watanabe, A., Yuliza-Purba, F., Isobe, N. and Kurumisawa, T. 2021. Immune response during the onset of coliform mastitis in dairy cows vaccinated with STARTVAC®. Anim. Sci. J. 92: e13502.
19. Sano, G., Itagaki, T., Ishiwada, N., Matsubara, K., Iwata, S., Nakamori, Y., Matsuyama, K., Watanabe, K., Ishii, Y., Homma, S. and Tateda, K. 2016. Characterization and evaluation of a novel immunochromatographic assay for pharyngeal Mycoplasmapneumoniae ribosomal protein L7/L12 antigens. J. Med. Microbiol. 65: 1105–1110.
25. Truchetti, G., Bouchard, E., Descôteaux, L., Scholl, D. and Roy, J. P. 2014. Efficacy of extended intramammary ceftiofur therapy against mild to moderate clinical mastitis in Holstein dairy cows: a randomized clinical trial. Can. J. Vet. Res. 78: 31–37.
9. Krömker, V. and Leimbach, S. 2017. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 52 Suppl 3: 21–29.
21. Shinozuka, Y., Hirata, H., Ishibashi, I., Okawa, Y., Kasuga, A., Takagi, M. and Taura, Y. 2009. Therapeutic efficacy of mammary irrigation regimen in dairy cattle diagnosed with acute coliform mastitis. J. Vet. Med. Sci. 71: 269–273.
1. Aboshkiwa, M., al-Ani, B., Coleman, G. and Rowland, G. 1992. Cloning and physical mapping of the Staphylococcus aureus rplL, rpoB and rpoC genes, encoding ribosomal protein L7/L12 and RNA polymerase subunits beta and beta’. J. Gen. Microbiol. 138: 1875–1880.
20. Sawa, T., Kimura, S., Honda, N. H., Fujita, K., Yoshizawa, S., Harada, Y., Sugiyama, Y., Matsuyama, K., Sohka, T., Saji, T., Yamaguchi, K. and Tateda, K. 2013. Diagnostic usefulness of ribosomal protein l7/l12 for pneumococcal pneumonia in a mouse model. J. Clin. Microbiol. 51: 70–76.
23. Suojala, L., Kaartinen, L. and Pyörälä, S. 2013. Treatment for bovine Escherichia coli mastitis-an evidence-based approach. J. Vet. Pharmacol. Ther. 36: 521–531.
6. Keshavarzi, H., Sadeghi-Sefidmazgi, A., Mirzaei, A. and Ravanifard, R. 2020. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle. Prev. Vet. Med. 175: 104869.
24. Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.
8. Kolberg, J., Høiby, E. A., Lopez, R. and Sletten, K. 1997. Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology (Reading) 143: 55–61.
22. Shinozuka, Y., Kawai, K., Takeda, A., Yamada, M., Kayasaki, F., Kondo, N., Sasaki, Y., Kanai, N., Mukai, T., Sawaguchi, M., Higuchi, M., Kondo, H., Sugimoto, K., Kumagai, S., Murayama, I., Sakai, Y., Baba, K., Maemichi, K., Ohishi, T., Mizunuma, T., Kawana, A., Yasuda, A. and Watanabe, A. 2019. Influence of oxytetracycline susceptibility as a first-line antibiotic on the clinical outcome in dairy cattle with acute Escherichia coli mastitis. J. Vet. Med. Sci. 81: 863–868.
13. McCarron, J. L., Keefe, G. P., McKenna, S. L., Dohoo, I. R. and Poole, D. E. 2009. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. J. Dairy Sci. 92: 2297–2305.
3. Gitau, G. K., Bundi, R. M., Vanleeuwen, J. and Mulei, C. M. 2013. Evaluation of PetrifilmsTM as a diagnostic test to detect bovine mastitis organisms in Kenya. Trop. Anim. Health Prod. 45: 883–886.
11. Mansion-de Vries, E. M., Knorr, N., Paduch, J. H., Zinke, C., Hoedemaker, M. and Krömker, V. 2014. A field study evaluation of Petrifilm™ plates as a 24-h rapid diagnostic test for clinical mastitis on a dairy farm. Prev. Vet. Med. 113: 620–624.
14. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, T., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2019. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. J. Vet. Med. Sci. 81: 107–112.
18. Sakurai, A., Yamada, S. I., Karasawa, I., Kondo, E. and Kurita, H. 2021. Accuracy of a salivary examination kit for the screening of periodontal disease in a group medical check-up (Japanese-specific health check-up). Medicine (Baltimore) 100: e24539.
2. Ashraf, A. and Imran, M. 2018. Diagnosis of bovine mastitis: from laboratory to farm. Trop. Anim. Health Prod. 50: 1193–1202.
17. Ruopp, M. D., Perkins, N. J., Whitcomb, B. W. and Schisterman, E. F. 2008. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 50: 419–430.
7. Kiku, Y., Ozawa, T., Takahashi, H., Kushibiki, S., Inumaru, S., Shingu, H., Nagasawa, Y., Watanabe, A., Hata, E. and Hayashi, T. 2017. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis. Vet. Res. Commun. 41: 175–182.
12. Martins, S. A. M., Martins, V. C., Cardoso, F. A., Germano, J., Rodrigues, M., Duarte, C., Bexiga, R., Cardoso, S. and Freitas, P. P. 2019. Biosensors for on-farm diagnosis of mastitis. Front. Bioeng. Biotechnol. 7: 186.
15. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, N., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2020. Rapid Staphylococcus aureus detection from clinical mastitis milk by colloidal gold nanoparticle-based immunochromatographic strips. Front. Vet. Sci. 6: 504.
5. Kawai, K., Hayashi, T., Kiku, Y., Chiba, T., Nagahata, H., Higuchi, H., Obayashi, T., Itoh, S., Onda, K., Arai, S., Sato, R. and Oshida, T. 2013. Reliability in somatic cell count measurement of clinical mastitis milk using DeLaval cell counter. Anim. Sci. J. 84: 805–807.
16. Posthuma-Trumpie, G. A., Korf, J. and van Amerongen, A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393: 569–582.
22
23
24
25
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 16. Posthuma-Trumpie, G. A., Korf, J. and van Amerongen, A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393: 569–582.
– reference: 10. Kuipers, A., Koops, W. J. and Wemmenhove, H. 2016. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 99: 1632–1648.
– reference: 12. Martins, S. A. M., Martins, V. C., Cardoso, F. A., Germano, J., Rodrigues, M., Duarte, C., Bexiga, R., Cardoso, S. and Freitas, P. P. 2019. Biosensors for on-farm diagnosis of mastitis. Front. Bioeng. Biotechnol. 7: 186.
– reference: 21. Shinozuka, Y., Hirata, H., Ishibashi, I., Okawa, Y., Kasuga, A., Takagi, M. and Taura, Y. 2009. Therapeutic efficacy of mammary irrigation regimen in dairy cattle diagnosed with acute coliform mastitis. J. Vet. Med. Sci. 71: 269–273.
– reference: 15. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, N., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2020. Rapid Staphylococcus aureus detection from clinical mastitis milk by colloidal gold nanoparticle-based immunochromatographic strips. Front. Vet. Sci. 6: 504.
– reference: 18. Sakurai, A., Yamada, S. I., Karasawa, I., Kondo, E. and Kurita, H. 2021. Accuracy of a salivary examination kit for the screening of periodontal disease in a group medical check-up (Japanese-specific health check-up). Medicine (Baltimore) 100: e24539.
– reference: 3. Gitau, G. K., Bundi, R. M., Vanleeuwen, J. and Mulei, C. M. 2013. Evaluation of PetrifilmsTM as a diagnostic test to detect bovine mastitis organisms in Kenya. Trop. Anim. Health Prod. 45: 883–886.
– reference: 13. McCarron, J. L., Keefe, G. P., McKenna, S. L., Dohoo, I. R. and Poole, D. E. 2009. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. J. Dairy Sci. 92: 2297–2305.
– reference: 8. Kolberg, J., Høiby, E. A., Lopez, R. and Sletten, K. 1997. Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology (Reading) 143: 55–61.
– reference: 9. Krömker, V. and Leimbach, S. 2017. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 52 Suppl 3: 21–29.
– reference: 2. Ashraf, A. and Imran, M. 2018. Diagnosis of bovine mastitis: from laboratory to farm. Trop. Anim. Health Prod. 50: 1193–1202.
– reference: 5. Kawai, K., Hayashi, T., Kiku, Y., Chiba, T., Nagahata, H., Higuchi, H., Obayashi, T., Itoh, S., Onda, K., Arai, S., Sato, R. and Oshida, T. 2013. Reliability in somatic cell count measurement of clinical mastitis milk using DeLaval cell counter. Anim. Sci. J. 84: 805–807.
– reference: 22. Shinozuka, Y., Kawai, K., Takeda, A., Yamada, M., Kayasaki, F., Kondo, N., Sasaki, Y., Kanai, N., Mukai, T., Sawaguchi, M., Higuchi, M., Kondo, H., Sugimoto, K., Kumagai, S., Murayama, I., Sakai, Y., Baba, K., Maemichi, K., Ohishi, T., Mizunuma, T., Kawana, A., Yasuda, A. and Watanabe, A. 2019. Influence of oxytetracycline susceptibility as a first-line antibiotic on the clinical outcome in dairy cattle with acute Escherichia coli mastitis. J. Vet. Med. Sci. 81: 863–868.
– reference: 11. Mansion-de Vries, E. M., Knorr, N., Paduch, J. H., Zinke, C., Hoedemaker, M. and Krömker, V. 2014. A field study evaluation of Petrifilm™ plates as a 24-h rapid diagnostic test for clinical mastitis on a dairy farm. Prev. Vet. Med. 113: 620–624.
– reference: 23. Suojala, L., Kaartinen, L. and Pyörälä, S. 2013. Treatment for bovine Escherichia coli mastitis-an evidence-based approach. J. Vet. Pharmacol. Ther. 36: 521–531.
– reference: 4. Kawai, K., Kondo, Y., Shinozuka, Y., Kawata, R., Kaneko, S., Iwano, H., Enokidani, M., Watanabe, A., Yuliza-Purba, F., Isobe, N. and Kurumisawa, T. 2021. Immune response during the onset of coliform mastitis in dairy cows vaccinated with STARTVAC®. Anim. Sci. J. 92: e13502.
– reference: 17. Ruopp, M. D., Perkins, N. J., Whitcomb, B. W. and Schisterman, E. F. 2008. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 50: 419–430.
– reference: 24. Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.
– reference: 7. Kiku, Y., Ozawa, T., Takahashi, H., Kushibiki, S., Inumaru, S., Shingu, H., Nagasawa, Y., Watanabe, A., Hata, E. and Hayashi, T. 2017. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis. Vet. Res. Commun. 41: 175–182.
– reference: 25. Truchetti, G., Bouchard, E., Descôteaux, L., Scholl, D. and Roy, J. P. 2014. Efficacy of extended intramammary ceftiofur therapy against mild to moderate clinical mastitis in Holstein dairy cows: a randomized clinical trial. Can. J. Vet. Res. 78: 31–37.
– reference: 6. Keshavarzi, H., Sadeghi-Sefidmazgi, A., Mirzaei, A. and Ravanifard, R. 2020. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle. Prev. Vet. Med. 175: 104869.
– reference: 1. Aboshkiwa, M., al-Ani, B., Coleman, G. and Rowland, G. 1992. Cloning and physical mapping of the Staphylococcus aureus rplL, rpoB and rpoC genes, encoding ribosomal protein L7/L12 and RNA polymerase subunits beta and beta’. J. Gen. Microbiol. 138: 1875–1880.
– reference: 20. Sawa, T., Kimura, S., Honda, N. H., Fujita, K., Yoshizawa, S., Harada, Y., Sugiyama, Y., Matsuyama, K., Sohka, T., Saji, T., Yamaguchi, K. and Tateda, K. 2013. Diagnostic usefulness of ribosomal protein l7/l12 for pneumococcal pneumonia in a mouse model. J. Clin. Microbiol. 51: 70–76.
– reference: 14. Nagasawa, Y., Kiku, Y., Sugawara, K., Yabusaki, T., Oono, K., Fujii, K., Suzuki, T., Maehana, K. and Hayashi, T. 2019. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. J. Vet. Med. Sci. 81: 107–112.
– reference: 19. Sano, G., Itagaki, T., Ishiwada, N., Matsubara, K., Iwata, S., Nakamori, Y., Matsuyama, K., Watanabe, K., Ishii, Y., Homma, S. and Tateda, K. 2016. Characterization and evaluation of a novel immunochromatographic assay for pharyngeal Mycoplasmapneumoniae ribosomal protein L7/L12 antigens. J. Med. Microbiol. 65: 1105–1110.
– ident: 9
  doi: 10.1111/rda.13032
– ident: 19
  doi: 10.1099/jmm.0.000336
– ident: 6
  doi: 10.1016/j.prevetmed.2019.104869
– ident: 16
  doi: 10.1007/s00216-008-2287-2
– ident: 10
  doi: 10.3168/jds.2014-8428
– ident: 2
  doi: 10.1007/s11250-018-1629-0
– ident: 18
  doi: 10.1097/MD.0000000000024539
– ident: 24
  doi: 10.1126/science.3287615
– ident: 5
  doi: 10.1111/asj.12136
– ident: 1
  doi: 10.1099/00221287-138-9-1875
– ident: 17
  doi: 10.1002/bimj.200710415
– ident: 15
  doi: 10.3389/fvets.2019.00504
– ident: 11
  doi: 10.1016/j.prevetmed.2013.11.019
– ident: 23
  doi: 10.1111/jvp.12057
– ident: 4
  doi: 10.1111/asj.13502
– ident: 12
  doi: 10.3389/fbioe.2019.00186
– ident: 14
  doi: 10.1292/jvms.18-0581
– ident: 22
  doi: 10.1292/jvms.19-0035
– ident: 20
  doi: 10.1128/JCM.01871-12
– ident: 8
  doi: 10.1099/00221287-143-1-55
– ident: 3
  doi: 10.1007/s11250-012-0286-y
– ident: 7
  doi: 10.1007/s11259-017-9684-y
– ident: 13
  doi: 10.3168/jds.2008-1661
– ident: 21
  doi: 10.1292/jvms.71.269
– ident: 25
SSID ssj0021469
Score 2.258827
Snippet The accurate identification of mastitis‐causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement...
The accurate identification of mastitis-causing bacteria assists in effective management by both dairy farmers and veterinarians and can be used to implement...
SourceID pubmedcentral
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1628
SubjectTerms Antimicrobial agents
coliform mastitis
Coliforms
Farms
immunochromatographic strip
Internal Medicine
Mastitis
Milk
Nanoparticles
rapid detection
Veterinary surgeons
Title Evaluation of a rapid coliform detection kit from clinical mastitis milk using colloidal gold nanoparticle–based immunochromatographic strips
URI https://www.jstage.jst.go.jp/article/jvms/83/11/83_21-0185/_article/-char/en
https://www.proquest.com/docview/2591436934
https://www.proquest.com/docview/2573437075
https://pubmed.ncbi.nlm.nih.gov/PMC8636885
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2021, Vol.83(11), pp.1628-1633
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VglAvqBQQgbYyEpxQShI7TiKBEEKtCmg5tai3yI7jbdpssuymqL3xBj30DXkSZvKnLoILUpSLx5Hl8WS-T54fgJeJCbngmroGcO0KrTw38XLhyigXxgsyGSeUnDz5Kg-PxeeT8GQNhm6j_QYu_0rtqJ_U8aLcu_x-9R4N_l1bGyEJ3pz9mC33AmLFcXgH7qJPishEJ2K8T6Du1V3VPV-6EXr9PgT-z9kbcJ9Tz21BPUBu-al7ZwjVpvkKCl2NobzllA424UGPJtmHTv0PYS2vtmDrG4W4tHm2bNJfnT-C6_2xrjerLVNsoeaFYXgOKDdrxkzetFFZFTsvGkZZJ2zImmQzRREFxZLNivKcUaj8lCaWdWFwdFqXhlWqQvrdrePXzxtyjoYVlHxSZ6f4MeT2bW3sImPUKWS-fAxHB_tHHw_dvhuDiwoLGlchEdFcSV-G3GrfUB16zdHkbWIQoynEAVwJ5IdRhigkljr2slCowBobZcLwJ7Be1VX-FFhojBdbujy2SlhtUSmZRejHbaRNpn0HXg9bn2Z9pXJqmFGmxFhQZynpLA38lHTmwKtRet5V6PiH3NtOi6NUvymdVMyRDNG7Fx9HKfsNfyEObA-6T4dTmiJ3RLwpEy4ceDEOo4HSrYuq8vqCZCK0hgihmQPRypkZF0IlvldHquK0LfUdSy7jOHz23zOfw0bgtacbn21YbxYX-Q7CqEbvIoH49GW3tZPfUJMl_g
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+a+rapid+coliform+detection+kit+from+clinical+mastitis+milk+using+colloidal+gold+nanoparticle%E2%80%93based+immunochromatographic+strips&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=KIKU%2C+Yoshio&rft.au=NAGASAWA%2C+Yuya&rft.au=SUGAWARA%2C+Kazue&rft.au=YABUSAKI%2C+Takahiro&rft.date=2021&rft.pub=The+Japanese+Society+of+Veterinary+Science&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=83&rft.issue=11&rft.spage=1628&rft.epage=1633&rft_id=info:doi/10.1292%2Fjvms.21-0185&rft_id=info%3Apmid%2F34526418&rft.externalDocID=PMC8636885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon