Synthetic-biology approach for plant lignocellulose engineering

Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterize...

Full description

Saved in:
Bibliographic Details
Published inPlant Biotechnology Vol. 41; no. 3; pp. 213 - 230
Main Authors Yoshida, Kouki, Sakamoto, Shingo, Mitsuda, Nobutaka
Format Journal Article
LanguageEnglish
Published Japan Japanese Society for Plant Biotechnology 25.09.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.
AbstractList Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.
Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.
ArticleNumber 24.0630a
Author Mitsuda, Nobutaka
Sakamoto, Shingo
Yoshida, Kouki
Author_xml – sequence: 1
  fullname: Yoshida, Kouki
  organization: Technology Center, Taisei Corporation
– sequence: 2
  fullname: Sakamoto, Shingo
  organization: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 3
  fullname: Mitsuda, Nobutaka
  organization: Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40115770$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMOA_9C1IwGzfV5lkPXAzD4AsGRNR1SKVuVaVJJ22SGuh_b6p7utHRhZskkHO--ziX6Mx5BwhdE7wSgpC3W6tc6oxPoCfnrR93K8pXuGJYPUMXhPG6rAjhZ_s3Lblo8Dm6jHGNMRUE0xfonGNCRF3jC3TzbefSBMnoMiMXWKG22-CVnorBh2JfrLBmdF6DtbP1EQpwo3EAwbjxJXo-KBvh1eN9hX58eP_97lN5_-Xj57vb-1JXDU0lBU5qUleU077vhr6nYmiVJqojTd1VAxtopVreNgSA0rZRTUNIOwDRTEGLMbtCNwfudu420GtwKSgrt8FsVNhJr4z888eZSY7-QWYMzdugmfDmkRD8zxlikhsTl5mUAz9HyUjdNqKq8CK9fiJd-zm4PF9WCSEYFqzJqte_t3Tq5bjcLLg9CHTwMQYYpDZJJeOXDo2VBMslUPl3oJJyuQ80M949YRzL_J_768G9jkmNcPKqkAO38C8vJ5Itx5Fx0upJBQmO_QLk_s7m
CitedBy_id crossref_primary_10_5511_plantbiotechnology_24_0630b
crossref_primary_10_5511_plantbiotechnology_24_0000p
Cites_doi 10.1021/jf800806h
10.1126/science.adh3856
10.1038/ncomms11989
10.1111/tpj.12745
10.1007/s12155-015-9583-4
10.1186/s13068-021-02026-5
10.1016/j.molp.2022.12.015
10.1186/s12870-021-02842-9
10.1002/cssc.201903345
10.3389/fpls.2013.00067
10.1111/tpj.14196
10.1093/plphys/kiab546
10.1093/plphys/kiad549
10.1038/s41467-018-08252-0
10.1111/pbi.13935
10.1016/j.copbio.2018.09.003
10.1039/C4CP05004E
10.1126/sciadv.abo5738
10.1016/j.copbio.2018.12.008
10.3389/fpls.2019.01774
10.1104/pp.15.00815
10.1105/TPC.010063
10.1039/D3RA01546G
10.1126/sciadv.adf7714
10.1186/s13068-021-01891-4
10.1046/j.1365-313X.2002.01221.x
10.3389/fpls.2016.02056
10.1111/pbi.14186
10.5650/jos.ess18075
10.1093/jxb/ery208
10.1128/JB.180.17.4387-4391.1998
10.1093/pcp/pcw016
10.1104/pp.15.00690
10.1016/j.pbi.2010.03.001
10.1038/s41477-022-01151-9
10.3389/fpls.2020.00282
10.1038/s41477-018-0350-3
10.1126/science.1250161
10.1021/acssuschemeng.6b00520
10.1038/s41477-023-01459-0
10.1105/tpc.112.101287
10.3389/fpls.2019.00775
10.1007/s11103-009-9482-1
10.1111/tpj.12577
10.62840/lignin.1.0_30
10.1186/s13068-016-0639-2
10.3389/fpls.2022.943349
10.1111/pbi.12016
10.1016/j.carbpol.2020.117022
10.1186/s13068-020-01707-x
10.1111/nph.17349
10.1073/pnas.0307987100
10.1105/tpc.112.106625
10.1002/anie.202003105
10.1186/1754-6834-3-24
10.1093/plphys/kiab359
10.1073/pnas.1120992109
10.1111/tpj.15390
10.1007/s00253-018-8815-x
10.1016/j.plantsci.2019.02.004
10.1074/jbc.M109.036673
10.1016/j.pbi.2022.102313
10.1111/j.1365-313X.2008.03463.x
10.1073/pnas.2122309119
10.1111/tpj.16242
10.3389/fpls.2023.1181035
10.1111/j.1469-8137.2012.04337.x
10.1105/tpc.113.120881
10.1093/jxb/erac147
10.1111/tpj.12394
10.1002/cctc.202200511
10.1074/jbc.M111.284497
10.1111/j.1467-7652.2012.00692.x
10.1093/pcp/pcp060
10.1186/s13068-017-1007-6
10.1016/j.crvi.2004.02.009
10.1186/s13068-015-0379-8
10.1074/jbc.M115.684217
10.1111/nph.18518
10.1002/cssc.201701317
10.1093/plphys/kiac485
10.1111/j.1365-313X.2010.04391.x
10.1016/j.ymben.2021.04.011
10.1016/j.plantsci.2022.111476
10.1016/j.copbio.2019.02.019
10.1074/jbc.REV120.014561
10.1186/1754-6834-5-84
10.1104/pp.17.01462
10.1038/s41598-018-24328-9
10.1126/sciadv.1600393
10.1186/1754-6834-4-48
10.3389/fpls.2018.01893
10.1105/tpc.105.031542
10.3389/fbioe.2016.00058
10.1104/pp.15.01877
10.1007/s11101-023-09889-6
10.1002/cssc.202101492
10.1016/bs.abr.2022.02.001
10.1371/journal.pone.0158906
10.1146/annurev-arplant-042809-112315
10.1002/9781119844792.ch1
10.1038/s41477-019-0510-0
10.1111/pbi.12557
10.1186/s12870-014-0344-x
10.1016/bs.abr.2022.02.002
10.1186/s13068-015-0403-z
10.1111/nph.18136
10.1038/s41477-021-00975-1
10.1007/s10570-023-05422-2
10.1186/s13068-020-01736-6
10.1016/j.pbi.2022.102219
10.1016/j.tibtech.2022.09.007
10.1186/s12870-019-2135-x
10.1177/1535370218793890
10.1073/pnas.1914422117
10.1016/j.mec.2022.e00207
10.1016/j.biombioe.2014.11.022
10.3389/fpls.2022.1076298
10.1111/tpj.12420
ContentType Journal Article
Copyright 2024 Japanese Society for Plant Biotechnology
2024 Japanese Society for Plant Biotechnology.
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Japanese Society for Plant Biotechnology 2024 Japanese Society for Plant Biotechnology
Copyright_xml – notice: 2024 Japanese Society for Plant Biotechnology
– notice: 2024 Japanese Society for Plant Biotechnology.
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Japanese Society for Plant Biotechnology 2024 Japanese Society for Plant Biotechnology
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
7X8
5PM
DOI 10.5511/plantbiotechnology.24.0630a
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1347-6114
EndPage 230
ExternalDocumentID PMC11921142
40115770
10_5511_plantbiotechnology_24_0630a
article_plantbiotechnology_41_3_41_24_0630a_article_char_en
Genre Journal Article
GroupedDBID 123
29O
2WC
53G
ACIWK
ACPRK
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
E3Z
HYE
JSF
JSH
KQ8
M~E
OK1
RJT
RNS
RPM
RZJ
TR2
AAYXX
CITATION
OVT
NPM
7QO
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c682t-2e417176242ddbfdd25f9ac1ab187b6f3f26a94981ee2298a88119fe1c3ae9003
ISSN 1342-4580
IngestDate Thu Aug 21 18:40:20 EDT 2025
Fri Jul 11 16:03:18 EDT 2025
Thu Jul 24 12:11:02 EDT 2025
Sun Mar 23 01:28:51 EDT 2025
Tue Jul 01 03:31:10 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Thu Oct 03 16:51:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords biomass
hemicellulose
lignin
cell wall
lignocellulose engineering
Language English
License 2024 Japanese Society for Plant Biotechnology.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, https://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c682t-2e417176242ddbfdd25f9ac1ab187b6f3f26a94981ee2298a88119fe1c3ae9003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11921142
PMID 40115770
PQID 3155530538
PQPubID 1976388
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11921142
proquest_miscellaneous_3179856602
proquest_journals_3155530538
pubmed_primary_40115770
crossref_citationtrail_10_5511_plantbiotechnology_24_0630a
crossref_primary_10_5511_plantbiotechnology_24_0630a
jstage_primary_article_plantbiotechnology_41_3_41_24_0630a_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240925
PublicationDateYYYYMMDD 2024-09-25
PublicationDate_xml – month: 9
  year: 2024
  text: 20240925
  day: 25
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
– name: c/o Academy Center, Yamabukicho 358-5, Shinjuku-ku, Tokyo 162-0801, Japan
PublicationTitle Plant Biotechnology
PublicationTitleAlternate Plant Biotechnol (Tokyo)
PublicationYear 2024
Publisher Japanese Society for Plant Biotechnology
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society for Plant Biotechnology
– name: Japan Science and Technology Agency
References Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, Zhu Y, Opietnik M, Santoro N, Foster CE, Yue F, et al. (2019) Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Sci 287: 110070
Mortimer JC (2019) Plant synthetic biology could drive a revolution in biofuels and medicine. Exp Biol Med (Maywood) 244: 323–331
Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, et al. (2023) Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. Nat Plants 9: 1530–1546
Li K, Wang H, Hu X, Liu Z, Wu Y, Huang C (2016) Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One 11: e0158906
Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8: 217
de Vries L, MacKay HA, Smith RA, Mottiar Y, Karlen SD, Unda F, Muirragui E, Bingman C, Meulen KV, Beebe ET, et al. (2022) pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiol 188: 1014–1027
Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV (2018) Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnol Biofuels 11: 2
Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17: 2281–2295
Muro-Villanueva F, Mao X, Chapple C (2019) Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol 56: 202–208
Ralph J, Kim H, Lu F, Smith RA, Karlen SD, Nuoendagula, Yoshioka K, Eugene A, Liu S, Sener C, et al. (2023) Lignins and lignification: new developments and emerging concepts. Recent Advances in Polyphenol Research 8. pp 1–50
Almeida AM, Marchiosi R, Abrahão J, Constantin RP, dos Santos WD, Ferrarese-Filho O (2024) Revisiting the shikimate pathway and highlighting their enzyme inhibitors. Phytochem Rev 23: 421–457
Gao Y, Lipton AS, Munson CR, Ma Y, Johnson KL, Murray DT, Scheller HV, Mortimer JC (2023) Elongated galactan side chains mediate cellulose-pectin interactions in engineered Arabidopsis secondary cell walls. Plant J 115: 529–545
Zhao Y, Yu X, Lam PY, Zhang K, Tobimatsu Y, Liu CJ (2021) Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nat Plants 7: 1288–1300
De Lorenzo G, Ferrari S, Giovannoni M, Mattei B, Cervone F (2019) Cell wall traits that influence plant development, immunity, and bioconversion. Plant J 97: 134–147
del Río JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Santos JI, Jiménez-Barbero J, Zhang L, Martínez AT (2008) Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. J Agric Food Chem 56: 9525–9534
Vanholme R, Sundin L, Seetso KC, Kim H, Liu X, Li J, De Meester B, Hoengenaert L, Goeminne G, Morreel K, et al. (2019) COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nat Plants 5: 1066–1075
Yokoyama R, Klevin B, Gupta A, Wang Y, Maeda HA (2022) 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Curr Opin Plant Biol 67: 102219
Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, et al. (2015) Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169: 2048–2063
Mottiar Y, Karlen SD, Goacher RE, Ralph J, Mansfield SD (2023a) Metabolic engineering of p-hydroxybenzoate in poplar lignin. Plant Biotechnol J 21: 176–188
Zhou S, Runge T, Karlen SD, Ralph J, Gonzales-Vigil E, Mansfield SD (2017) Chemical pulping advantages of zip-lignin hybrid poplar. ChemSusChem 10: 3565–3573
Zhang K, Bhuiya MW, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24: 3135–3152
Eudes A, Lin CY, De Ben C, Ortega J, Lee MY, Chen YC, Li G, Putnam DH, Mortimer JC, Ronald PC, et al. (2023) Field performance of switchgrass plants engineered for reduced recalcitrance. Front Plant Sci 14: 1181035
Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Cetinkol OP, et al. (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10: 609–620
Lin CY, Tian Y, Nelson-Vasilchik K, Hague J, Kakumanu R, Lee MY, Pidatala VR, Trinh J, De Ben CM, Dalton J, et al. (2022) Engineering sorghum for higher 4-hydroxybenzoic acid content. Metab Eng Commun 15: e00207
Unda F, Mottiar Y, Mahon EL, Karlen SD, Kim KH, Loqué D, Eudes A, Ralph J, Mansfield SD (2022) A new approach to zip-lignin: 3,4-dihydroxybenzoate is compatible with lignification. New Phytol 235: 234–246
Lao J, Oikawa A, Bromley JR, McInerney P, Suttangkakul A, Smith-Moritz AM, Plahar H, Chiu TY, González Fernández-Niño SM, Ebert B, et al. (2014) The plant glycosyltransferase clone collection for functional genomics. Plant J 79: 517–529
Dwivedi N, Yamamoto S, Zhao Y, Hou G, Bowling F, Tobimatsu Y, Liu CJ (2024) Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice. Plant Biotechnol J 22: 330–346
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN Jr (2022) Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 40: 1454–1468
Shikinaka K, Otsuka Y, Nakamura M, Masai E, Katayama Y (2018) Utilization of lignocellulosic biomass via novel sustainable process. J Oleo Sci 67: 1059–1070
Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3: 24
Lu F, Karlen SD, Regner M, Kim H, Ralph SA, Sun RC, Kuroda K, Augustin MA, Mawson R, Sabarez H, et al. (2015) Naturally p-hydroxybenzoylated lignins in palms. BioEnergy Res 8: 934–952
Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, Sretenovic S, Gurel F, Coleman GD, Qi Y (2022) Boosting plant genome editing with a versatile CRISPR-combo system. Nat Plants 8: 513–525
Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. lignin-cell wall matrix interactions. C R Biol 327: 455–465
Berstis L, Elder T, Crowley M, Beckham GT (2016) Radical nature of C-lignin. ACS Sustain Chem & Eng 4: 5327–5335
Carpita NC, McCann MC (2020) Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 295: 15144–15157
Gondolf VM, Stoppel R, Ebert B, Rautengarten C, Liwanag AJ, Loqué D, Scheller HV (2014) A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis. BMC Plant Biol 14: 344
Wei H, Yang H, Ciesielski PN, Donohoe BS, McCann MC, Murphy AS, Peer WA, Ding S-Y, Himmel ME, Tucker MP (2015) Transgenic ferritin overproduction enhances thermochemical pretreatments in Arabidopsis. Biomass Bioenergy 72: 55–64
Hellinger J, Kim H, Ralph J, Karlen SD (2023) p-Coumaroylation of lignin occurs outside of commelinid monocots in the eudicot genus Morus (mulberry). Plant Physiol 191: 854–861
Johnson AM, Mottiar Y, Ogawa Y, Karaaslan MA, Zhang H, Hua Q, Mansfield SD, Renneckar S (2023) The formation of xylan hydrate crystals is affected by sidechain uronic acids but not by lignin. Cellulose 30: 8475–8494
De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, et al. (2022) Engineering curcumin biosynthesis in poplar affects lignification and biomass yield. Front Plant Sci 13: 943349
Anggara K, Sršan L, Jaroentomeechai T, Wu X, Rauschenbach S, Narimatsu Y, Clausen H, Ziegler T, Miller RL, Kern K (2023) Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 382: 219–223
Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77: 380–392
del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J (2022) Unconventional lignin monomers-extension of the lignin paradigm. In: Sibout R (ed) Advances in botanical research 104. Elsevier, INC., Amsterdam, pp 1–39
Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196: 978–1000
Lin CY, Vuu KM, Amer B, Shih PM, Baidoo EEK, Scheller HV, Eudes A (2021b) In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product. Metab Eng 66: 148–156
Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54: 559–568
Li Y, Xiong W, He F, Qi T, Sun Z, Liu Y, Bai S, Wang H, Wu Z, Fu C (2022) Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis and improves cell wall digestibility in switchgrass. J Exp Bot 73: 4157–4169
Lin CY, Jakes JE, Donohoe BS, Ciesielski PN, Yang H, Gleber SC, Vogt S, Ding SY, Peer WA, Murphy AS, et al. (2016) Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion. Biotechnol Biofuels 9: 225
Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29: 371–380
Wei H, Donohoe BS, Vinzant TB, Ciesielski PN, Wang W, Gedvilas LM, Zeng Y, Johnson DK, Ding SY, Himmel ME, et al. (2011) Elucidating the role of ferrous
88
89
110
111
112
113
114
115
116
90
117
91
118
92
119
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – reference: Wu Z, Ren H, Xiong W, Roje S, Liu Y, Su K, Fu C (2018) Methylenetetrahydrofolate reductase modulates methyl metabolism and lignin monomer methylation in maize. J Exp Bot 69: 3963–3973
– reference: Lin CY, Eudes A (2020) Strategies for the production of biochemicals in bioenergy crops. Biotechnol Biofuels 13: 71
– reference: del Río JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Santos JI, Jiménez-Barbero J, Zhang L, Martínez AT (2008) Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. J Agric Food Chem 56: 9525–9534
– reference: Oyarce P, De Meester B, Fonseca F, de Vries L, Goeminne G, Pallidis A, De Rycke R, Tsuji Y, Li Y, Van den Bosch S, et al. (2019) Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nat Plants 5: 225–237
– reference: Yu H, Liu C, Dixon RA (2021) A gene-editing/complementation strategy for tissue-specific lignin reduction while preserving biomass yield. Biotechnol Biofuels 14: 175
– reference: Srivastava AC, Chen F, Ray T, Pattathil S, Peña MJ, Avci U, Li H, Huhman DV, Backe J, Urbanowicz BR, et al. (2015) Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis. Biotechnol Biofuels 8: 1–18
– reference: Li Y, Xiong W, He F, Qi T, Sun Z, Liu Y, Bai S, Wang H, Wu Z, Fu C (2022) Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis and improves cell wall digestibility in switchgrass. J Exp Bot 73: 4157–4169
– reference: Yang M, Liu D, Baral NR, Lin CY, Simmons BA, Gladden JM, Eudes A, Scown CD (2022) Comparing in planta accumulation with microbial routes to set targets for a cost-competitive bioeconomy. Proc Natl Acad Sci USA 119: e2122309119
– reference: Lao J, Oikawa A, Bromley JR, McInerney P, Suttangkakul A, Smith-Moritz AM, Plahar H, Chiu TY, González Fernández-Niño SM, Ebert B, et al. (2014) The plant glycosyltransferase clone collection for functional genomics. Plant J 79: 517–529
– reference: Lam LPY, Tobimatsu Y, Suzuki S, Tanaka T, Yamamoto S, Takeda-Kimura Y, Osakabe Y, Osakabe K, Ralph J, Bartley LE, et al. (2024) Disruption of p-coumaroyl-CoA: Monolignol transferases in rice drastically alters lignin composition. Plant Physiol 194: 832–848
– reference: Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77: 380–392
– reference: Hatfield RD, Rancour DM, Marita JM (2016) Grass cell walls: A story of cross-Linking. Front Plant Sci 7: 2056
– reference: Zhou S, Runge T, Karlen SD, Ralph J, Gonzales-Vigil E, Mansfield SD (2017) Chemical pulping advantages of zip-lignin hybrid poplar. ChemSusChem 10: 3565–3573
– reference: Berstis L, Elder T, Crowley M, Beckham GT (2016) Radical nature of C-lignin. ACS Sustain Chem & Eng 4: 5327–5335
– reference: Pedersen GB, Blaschek L, Frandsen KE, Noack LC, Persson S (2023) Cellulose synthesis in land plants. Mol Plant 16: 206–231
– reference: Lin CY, Donohoe BS, Bomble YJ, Yang H, Yunes M, Sarai NS, Shollenberger T, Decker SR, Chen X, McCann MC, et al. (2021a) Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (panicum virgatum L.) biomass. Biotechnol Biofuels 14: 55
– reference: Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN Jr (2022) Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 40: 1454–1468
– reference: Shikinaka K, Otsuka Y, Nakamura M, Masai E, Katayama Y (2018) Utilization of lignocellulosic biomass via novel sustainable process. J Oleo Sci 67: 1059–1070
– reference: Li L, Hill-Skinner S, Liu S, Beuchle D, Tang HM, Yeh CT, Nettleton D, Schnable PS (2015) The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. Plant J 81: 493–504
– reference: Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13: 313–320
– reference: Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, Helmich KE, Free HC, Lee S, Smith BG, Lu F, et al. (2016) Monolignol ferulate conjugates are naturally incorporated into plant lignins. Sci Adv 2: e1600393
– reference: Unda F, Mottiar Y, Mahon EL, Karlen SD, Kim KH, Loqué D, Eudes A, Ralph J, Mansfield SD (2022) A new approach to zip-lignin: 3,4-dihydroxybenzoate is compatible with lignification. New Phytol 235: 234–246
– reference: Dwivedi N, Yamamoto S, Zhao Y, Hou G, Bowling F, Tobimatsu Y, Liu CJ (2024) Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice. Plant Biotechnol J 22: 330–346
– reference: Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem 287: 8347–8355
– reference: De Lorenzo G, Ferrari S, Giovannoni M, Mattei B, Cervone F (2019) Cell wall traits that influence plant development, immunity, and bioconversion. Plant J 97: 134–147
– reference: Hellinger J, Kim H, Ralph J, Karlen SD (2023) p-Coumaroylation of lignin occurs outside of commelinid monocots in the eudicot genus Morus (mulberry). Plant Physiol 191: 854–861
– reference: Eudes A, Zhao N, Sathitsuksanoh N, Baidoo EE, Lao J, Wang G, Yogiswara S, Lee TS, Singh S, Mortimer JC, et al. (2016b) Expression of S-adenosylmethionine hydrolase in tissues synthesizing secondary cell walls alters specific methylated cell wall fractions and improves biomass digestibility. Front Bioeng Biotechnol 4: 58
– reference: Li K, Wang H, Hu X, Liu Z, Wu Y, Huang C (2016) Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One 11: e0158906
– reference: Gao Y, Lipton AS, Munson CR, Ma Y, Johnson KL, Murray DT, Scheller HV, Mortimer JC (2023) Elongated galactan side chains mediate cellulose-pectin interactions in engineered Arabidopsis secondary cell walls. Plant J 115: 529–545
– reference: Voiniciuc C (2023) It’s time to go glyco in cell wall bioengineering. Curr Opin Plant Biol 71: 102313
– reference: Eudes A, Pereira JH, Yogiswara S, Wang G, Benites VT, Baidoo EE, Lee TS, Adams PD, Keasling JD, Loqué D (2016a) Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA:Shikimate hydroxycinnamoyl transferase to reduce lignin. Plant Cell Physiol 57: 568–579
– reference: Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, et al. (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344: 90–93
– reference: Ruprecht C, Bartetzko MP, Senf D, Lakhina A, Smith PJ, Soto MJ, Oh H, Yang JY, Chapla D, Silva DV, et al. (2020) A glycan array-Based assay for the identification and characterization of plant glycosyltransferases. Angew Chem Int Ed Engl 59: 12493–12498
– reference: Barros J, Temple S, Dixon RA (2019) Development and commercialization of reduced lignin alfalfa. Curr Opin Biotechnol 56: 48–54
– reference: de Vries L, MacKay HA, Smith RA, Mottiar Y, Karlen SD, Unda F, Muirragui E, Bingman C, Meulen KV, Beebe ET, et al. (2022) pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiol 188: 1014–1027
– reference: Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3: 24
– reference: Yokoyama R, Klevin B, Gupta A, Wang Y, Maeda HA (2022) 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Curr Opin Plant Biol 67: 102219
– reference: Sakamoto S, Kamimura N, Tokue Y, Nakata MT, Yamamoto M, Hu S, Masai E, Mitsuda N, Kajita S (2020) Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. Biotechnol Biofuels 13: 97
– reference: Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56: 240–249
– reference: Xiao C, Anderson CT (2013) Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 4: 67
– reference: Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196: 978–1000
– reference: Muro-Villanueva F, Mao X, Chapple C (2019) Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol 56: 202–208
– reference: Lapierre C, Sibout R, Laurans F, Lesage-Descauses M-C, Déjardin A, Pilate G (2021) p-Coumaroylation of poplar lignins impacts lignin structure and improves wood saccharification. Plant Physiol 187: 1374–1386
– reference: Karlen SD, Fasahati P, Mazaheri M, Serate J, Smith RA, Sirobhushanam S, Chen M, Tymokhin VI, Cass CL, Liu S, et al. (2020) Assessing the viability of recovery of hydroxycinnamic acids from lignocellulosic biorefinery alkaline pretreatment waste streams. ChemSusChem 13: 2012–2024
– reference: Myburg AA, Hussey SG, Wang JP, Street NR, Mizrachi E (2019) Systems and synthetic biology of forest trees: A bioengineering paradigm for woody biomass feedstocks. Front Plant Sci 10: 775
– reference: Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29: 371–380
– reference: Gallego-Giraldo L, Liu C, Pose-Albacete S, Pattathil S, Peralta AG, Young J, Westpheling J, Hahn MG, Rao X, Knox JP, et al. (2020) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. Proc Natl Acad Sci USA 117: 3281–3290
– reference: Mayer MJ, Narbad A, Parr AJ, Parker ML, Walton NJ, Mellon FA, Michael AJ (2001) Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-coA hydratase/lyase enzyme function. Plant Cell 13: 1669–1682
– reference: Wang Y, Meng X, Tian Y, Kim KH, Jia L, Pu Y, Leem G, Kumar D, Eudes A, Ragauskas AJ, et al. (2021) Engineered sorghum bagasse enables a sustainable biorefinery with p-hydroxybenzoic acid-based deep eutectic solvent. ChemSusChem 14: 5235–5244
– reference: Liu C, Yu H, Voxeur A, Rao X, Dixon RA (2023) FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. Sci Adv 9: eadf7714
– reference: Buyel JF (2018) Plant molecular farming: Integration and exploitation of side streams to achieve sustainable biomanufacturing. Front Plant Sci 9: 1893
– reference: del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J (2022) Unconventional lignin monomers-extension of the lignin paradigm. In: Sibout R (ed) Advances in botanical research 104. Elsevier, INC., Amsterdam, pp 1–39
– reference: Eudes A, Lin CY, De Ben C, Ortega J, Lee MY, Chen YC, Li G, Putnam DH, Mortimer JC, Ronald PC, et al. (2023) Field performance of switchgrass plants engineered for reduced recalcitrance. Front Plant Sci 14: 1181035
– reference: Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV (2018) Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnol Biofuels 11: 2
– reference: Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61: 263–289
– reference: Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54: 559–568
– reference: Ralph J, Kim H, Lu F, Smith RA, Karlen SD, Nuoendagula, Yoshioka K, Eugene A, Liu S, Sener C, et al. (2023) Lignins and lignification: new developments and emerging concepts. Recent Advances in Polyphenol Research 8. pp 1–50
– reference: El Houari I, Van Beirs C, Arents HE, Han H, Chanoca A, Opdenacker D, Pollier J, Storme V, Steenackers W, Quareshy M, et al. (2021) Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport. New Phytol 230: 2275–2291
– reference: Alcázar Magaña A, Kamimura N, Soumyanath A, Stevens JF, Maier CS (2021) Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J 107: 1299–1319
– reference: Carmona C, Langan P, Smith JC, Petridis L (2015) Why genetic modification of lignin leads to low-recalcitrance biomass. Phys Chem Chem Phys 17: 358–364
– reference: De Meester B, de Vries L, Özparpucu M, Gierlinger N, Corneillie S, Pallidis A, Goeminne G, Morreel K, De Bruyne M, De Rycke R, et al. (2018) Vessel-Specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in dwarfed ccr1 mutants restores vessel and xylary fiber integrity and increases biomass. Plant Physiol 176: 611–633
– reference: Kang X, Kirui A, Dickwella, Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T (2019) Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 10: 347
– reference: Anggara K, Sršan L, Jaroentomeechai T, Wu X, Rauschenbach S, Narimatsu Y, Clausen H, Ziegler T, Miller RL, Kern K (2023) Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 382: 219–223
– reference: Li Y, Meng X, Meng R, Cai T, Pu Y, Zhao ZM, Ragauskas AJ (2023) Valorization of homogeneous linear catechyl lignin: Opportunities and challenges. RSC Adv 13: 12750–12759
– reference: Cai Y, Zhang K, Kim H, Hou G, Zhang X, Yang H, Feng H, Miller L, Ralph J, Liu CJ (2016) Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase. Nat Commun 7: 11989
– reference: Smith RA, Gonzales-Vigil E, Karlen SD, Park JY, Lu F, Wilkerson CG, Samuels L, Ralph J, Mansfield SD (2015) Engineering monolignol p-coumarate conjugates into poplar and Arabidopsis lignins. Plant Physiol 169: 2992–3001
– reference: Lin CY, Tian Y, Nelson-Vasilchik K, Hague J, Kakumanu R, Lee MY, Pidatala VR, Trinh J, De Ben CM, Dalton J, et al. (2022) Engineering sorghum for higher 4-hydroxybenzoic acid content. Metab Eng Commun 15: e00207
– reference: Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J (2012) A polymer of caffeyl alcohol in plant seeds. Proc Natl Acad Sci USA 109: 1772–1777
– reference: Yu XH, Gou JY, Liu CJ (2009) BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: Bioinformatics and gene expression. Plant Mol Biol 70: 421–442
– reference: Zhang K, Bhuiya MW, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24: 3135–3152
– reference: Achterholt S, Priefert H, Steinbüchel A (1998) Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene. J Bacteriol 180: 4387–4391
– reference: Kim KH, Wang Y, Takada M, Eudes A, Yoo CG, Kim CS, Saddler J (2019) Deep eutectic solvent pretreatment of transgenic biomass with increased C6C1 lignin monomers. Front Plant Sci 10: 1774
– reference: Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, et al. (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26: 894–914
– reference: Weng JK, Mo H, Chapple C (2010) Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. Plant J 64: 898–911
– reference: Yang H, Wei H, Ma G, Antunes MS, Vogt S, Cox J, Zhang X, Liu X, Bu L, Gleber SC, et al. (2016) Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice. Plant Biotechnol J 14: 1998–2009
– reference: Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, et al. (2015) Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169: 2048–2063
– reference: Johnson AM, Mottiar Y, Ogawa Y, Karaaslan MA, Zhang H, Hua Q, Mansfield SD, Renneckar S (2023) The formation of xylan hydrate crystals is affected by sidechain uronic acids but not by lignin. Cellulose 30: 8475–8494
– reference: Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17: 2281–2295
– reference: Wei H, Yang H, Ciesielski PN, Donohoe BS, McCann MC, Murphy AS, Peer WA, Ding S-Y, Himmel ME, Tucker MP (2015) Transgenic ferritin overproduction enhances thermochemical pretreatments in Arabidopsis. Biomass Bioenergy 72: 55–64
– reference: Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, Sun L, Zheng K, Tang K, Auer M, et al. (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11: 325–335
– reference: Liwanag AJ, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, Oikawa A, Andersen MC, Clausen MH, Scheller HV (2012) Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. Plant Cell 24: 5024–5036
– reference: Gondolf VM, Stoppel R, Ebert B, Rautengarten C, Liwanag AJ, Loqué D, Scheller HV (2014) A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis. BMC Plant Biol 14: 344
– reference: Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8: 217
– reference: Hoengenaert L, Wouters M, Kim H, De Meester B, Morreel K, Vandersyppe S, Pollier J, Desmet S, Goeminne G, Ralph J, et al. (2022) Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. Sci Adv 8: eabo5738
– reference: Wei H, Donohoe BS, Vinzant TB, Ciesielski PN, Wang W, Gedvilas LM, Zeng Y, Johnson DK, Ding SY, Himmel ME, et al. (2011) Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass. Biotechnol Biofuels 4: 1–16
– reference: Hao Z, Yogiswara S, Wei T, Benites VT, Sinha A, Wang G, Baidoo EEK, Ronald PC, Scheller HV, Loqué D, et al. (2021) Expression of a bacterial 3-dehydroshikimate dehydratase (qsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). BMC Plant Biol 21: 56
– reference: Zhao Y, Yu X, Lam PY, Zhang K, Tobimatsu Y, Liu CJ (2021) Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nat Plants 7: 1288–1300
– reference: Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Cetinkol OP, et al. (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10: 609–620
– reference: Dippe M, Davari MD, Weigel B, Heinke R, Vogt T, Wessjohann LA (2022) Altering the regiospecificity of a catechol O-methyltransferase through rational design: Vanilloid vs. isovanilloid motifs in the B-ring of flavonoids. ChemCatChem 14: e202200511
– reference: Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, Zhu Y, Opietnik M, Santoro N, Foster CE, Yue F, et al. (2019) Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Sci 287: 110070
– reference: Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Down-regulation of poGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50: 1075–1089
– reference: Vanholme R, Sundin L, Seetso KC, Kim H, Liu X, Li J, De Meester B, Hoengenaert L, Goeminne G, Morreel K, et al. (2019) COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nat Plants 5: 1066–1075
– reference: Mottiar Y, Smith RA, Karlen SD, Ralph J, Mansfield SD (2023b) Evolution of p-coumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytol 237: 251–264
– reference: Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Le Bris P, Antelme S, Santoro N, Wilkerson CG, et al. (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in brachypodium distachyon. Plant J 77: 713–726
– reference: Cai Y, Bhuiya MW, Shanklin J, Liu CJ (2015) Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol. J Biol Chem 290: 26715–26724
– reference: Lu F, Karlen SD, Regner M, Kim H, Ralph SA, Sun RC, Kuroda K, Augustin MA, Mawson R, Sabarez H, et al. (2015) Naturally p-hydroxybenzoylated lignins in palms. BioEnergy Res 8: 934–952
– reference: Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, Sretenovic S, Gurel F, Coleman GD, Qi Y (2022) Boosting plant genome editing with a versatile CRISPR-combo system. Nat Plants 8: 513–525
– reference: De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, et al. (2022) Engineering curcumin biosynthesis in poplar affects lignification and biomass yield. Front Plant Sci 13: 943349
– reference: Lin CY, Jakes JE, Donohoe BS, Ciesielski PN, Yang H, Gleber SC, Vogt S, Ding SY, Peer WA, Murphy AS, et al. (2016) Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion. Biotechnol Biofuels 9: 225
– reference: Almeida AM, Marchiosi R, Abrahão J, Constantin RP, dos Santos WD, Ferrarese-Filho O (2024) Revisiting the shikimate pathway and highlighting their enzyme inhibitors. Phytochem Rev 23: 421–457
– reference: Brandon AG, Scheller HV (2020) Engineering of bioenergy crops: Dominant genetic approaches to improve polysaccharide properties and composition in biomass. Front Plant Sci 11: 282
– reference: López-Malvar A, Butrón A, Samayoa LF, Figueroa-Garrido DJ, Malvar RA, Santiago R (2019) Genome-wide association analysis for maize stem cell wall-bound hydroxycinnamates. BMC Plant Biol 19: 519
– reference: Mottiar Y, Karlen SD, Goacher RE, Ralph J, Mansfield SD (2023a) Metabolic engineering of p-hydroxybenzoate in poplar lignin. Plant Biotechnol J 21: 176–188
– reference: Anders N, Wilson LFL, Sorieul M, Nikolovski N, Dupree P (2023) β-1, 4-Xylan backbone synthesis in higher plants: How complex can it be? Front Plant Sci 13: 1076298
– reference: Umezawa T, Tobimatsu Y, Yamamura M, Miyamoto T, Takeda Y, Koshiba T, Takada R, Lam PY, Suzuki S, Sakamoto M (2020) Lignin metabolic engineering in grasses for primary lignin valorization. Lignin 1: 30–41
– reference: Kim SJ, Kim MR, Bedgar DL, Moinuddin SG, Cardenas CL, Davin LB, Kang C, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci USA 101: 1455–1460
– reference: Carpita NC, McCann MC (2020) Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 295: 15144–15157
– reference: Petersen PD, Lau J, Ebert B, Yang F, Verhertbruggen Y, Kim JS, Varanasi P, Suttangkakul A, Auer M, Loqué D, et al. (2012) Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnol Biofuels 5: 84
– reference: Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, et al. (2023) Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. Nat Plants 9: 1530–1546
– reference: Ye ZH, Zhong R (2022) Outstanding questions on xylan biosynthesis. Plant Sci 325: 111476
– reference: Allen H, Wei D, Gu Y, Li S (2021) A historical perspective on the regulation of cellulose biosynthesis. Carbohydr Polym 252: 117022
– reference: Bhuiya MW, Liu CJ (2010) Engineering monolignol 4-O-methyltransferases to modulate lignin biosynthesis. J Biol Chem 285: 277–285
– reference: Lin CY, Vuu KM, Amer B, Shih PM, Baidoo EEK, Scheller HV, Eudes A (2021b) In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product. Metab Eng 66: 148–156
– reference: Mortimer JC (2019) Plant synthetic biology could drive a revolution in biofuels and medicine. Exp Biol Med (Maywood) 244: 323–331
– reference: Liu CJ, Eudes A (2022). Lignin synthesis and bioengineering approaches toward lignin modification. In: Sibout R (ed) Advances in botanical research 104. Elsevier, INC., Amsterdam, pp 41–96
– reference: Sibout R, Le Bris P, Legée F, Cézard L, Renault H, Lapierre C (2016) Structural redesigning Arabidopsis lignins into alkali-Soluble lignins through the expression of p-coumaroyl-CoA:Monolignol transferase PMT. Plant Physiol 170: 1358–1366
– reference: Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. lignin-cell wall matrix interactions. C R Biol 327: 455–465
– reference: Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8: 6538
– reference: Wang S, Bilal M, Hu H, Wang W, Zhang X (2018) 4-Hydroxybenzoic acid-a versatile platform intermediate for value-added compounds. Appl Microbiol Biotechnol 102: 3561–3571
– ident: 25
  doi: 10.1021/jf800806h
– ident: 6
  doi: 10.1126/science.adh3856
– ident: 16
  doi: 10.1038/ncomms11989
– ident: 54
  doi: 10.1111/tpj.12745
– ident: 66
  doi: 10.1007/s12155-015-9583-4
– ident: 115
  doi: 10.1186/s13068-021-02026-5
– ident: 77
  doi: 10.1016/j.molp.2022.12.015
– ident: 39
  doi: 10.1186/s12870-021-02842-9
– ident: 45
  doi: 10.1002/cssc.201903345
– ident: 107
  doi: 10.3389/fpls.2013.00067
– ident: 20
  doi: 10.1111/tpj.14196
– ident: 23
  doi: 10.1093/plphys/kiab546
– ident: 49
  doi: 10.1093/plphys/kiad549
– ident: 44
  doi: 10.1038/s41467-018-08252-0
– ident: 69
  doi: 10.1111/pbi.13935
– ident: 8
  doi: 10.1016/j.copbio.2018.09.003
– ident: 17
  doi: 10.1039/C4CP05004E
– ident: 42
  doi: 10.1126/sciadv.abo5738
– ident: 71
  doi: 10.1016/j.copbio.2018.12.008
– ident: 47
  doi: 10.3389/fpls.2019.01774
– ident: 89
  doi: 10.1104/pp.15.00815
– ident: 67
  doi: 10.1105/TPC.010063
– ident: 55
  doi: 10.1039/D3RA01546G
– ident: 62
  doi: 10.1126/sciadv.adf7714
– ident: 57
  doi: 10.1186/s13068-021-01891-4
– ident: 85
  doi: 10.1046/j.1365-313X.2002.01221.x
– ident: 40
  doi: 10.3389/fpls.2016.02056
– ident: 27
  doi: 10.1111/pbi.14186
– ident: 86
  doi: 10.5650/jos.ess18075
– ident: 106
  doi: 10.1093/jxb/ery208
– ident: 1
  doi: 10.1128/JB.180.17.4387-4391.1998
– ident: 31
  doi: 10.1093/pcp/pcw016
– ident: 36
  doi: 10.1104/pp.15.00690
– ident: 88
  doi: 10.1016/j.pbi.2010.03.001
– ident: 75
  doi: 10.1038/s41477-022-01151-9
– ident: 12
  doi: 10.3389/fpls.2020.00282
– ident: 74
  doi: 10.1038/s41477-018-0350-3
– ident: 104
  doi: 10.1126/science.1250161
– ident: 9
  doi: 10.1021/acssuschemeng.6b00520
– ident: 11
  doi: 10.1038/s41477-023-01459-0
– ident: 117
  doi: 10.1105/tpc.112.101287
– ident: 72
  doi: 10.3389/fpls.2019.00775
– ident: 116
  doi: 10.1007/s11103-009-9482-1
– ident: 50
  doi: 10.1111/tpj.12577
– ident: 92
  doi: 10.62840/lignin.1.0_30
– ident: 59
  doi: 10.1186/s13068-016-0639-2
– ident: 22
  doi: 10.3389/fpls.2022.943349
– ident: 108
  doi: 10.1111/pbi.12016
– ident: 3
  doi: 10.1016/j.carbpol.2020.117022
– ident: 58
  doi: 10.1186/s13068-020-01707-x
– ident: 28
  doi: 10.1111/nph.17349
– ident: 48
  doi: 10.1073/pnas.0307987100
– ident: 64
  doi: 10.1105/tpc.112.106625
– ident: 82
  doi: 10.1002/anie.202003105
– ident: 114
  doi: 10.1186/1754-6834-3-24
– ident: 51
  doi: 10.1093/plphys/kiab359
– ident: 19
  doi: 10.1073/pnas.1120992109
– ident: 2
  doi: 10.1111/tpj.15390
– ident: 99
  doi: 10.1007/s00253-018-8815-x
– ident: 37
  doi: 10.1016/j.plantsci.2019.02.004
– ident: 10
  doi: 10.1074/jbc.M109.036673
– ident: 97
  doi: 10.1016/j.pbi.2022.102313
– ident: 76
  doi: 10.1111/j.1365-313X.2008.03463.x
– ident: 110
  doi: 10.1073/pnas.2122309119
– ident: 34
  doi: 10.1111/tpj.16242
– ident: 30
  doi: 10.3389/fpls.2023.1181035
– ident: 94
  doi: 10.1111/j.1469-8137.2012.04337.x
– ident: 98
  doi: 10.1105/tpc.113.120881
– ident: 56
  doi: 10.1093/jxb/erac147
– ident: 91
  doi: 10.1111/tpj.12394
– ident: 26
  doi: 10.1002/cctc.202200511
– ident: 105
  doi: 10.1074/jbc.M111.284497
– ident: 29
  doi: 10.1111/j.1467-7652.2012.00692.x
– ident: 52
  doi: 10.1093/pcp/pcp060
– ident: 7
  doi: 10.1186/s13068-017-1007-6
– ident: 38
  doi: 10.1016/j.crvi.2004.02.009
– ident: 96
  doi: 10.1186/s13068-015-0379-8
– ident: 15
  doi: 10.1074/jbc.M115.684217
– ident: 70
  doi: 10.1111/nph.18518
– ident: 119
  doi: 10.1002/cssc.201701317
– ident: 41
  doi: 10.1093/plphys/kiac485
– ident: 103
  doi: 10.1111/j.1365-313X.2010.04391.x
– ident: 61
  doi: 10.1016/j.ymben.2021.04.011
– ident: 112
  doi: 10.1016/j.plantsci.2022.111476
– ident: 81
  doi: 10.1016/j.copbio.2019.02.019
– ident: 18
  doi: 10.1074/jbc.REV120.014561
– ident: 78
  doi: 10.1186/1754-6834-5-84
– ident: 21
  doi: 10.1104/pp.17.01462
– ident: 73
  doi: 10.1038/s41598-018-24328-9
– ident: 46
  doi: 10.1126/sciadv.1600393
– ident: 101
  doi: 10.1186/1754-6834-4-48
– ident: 14
  doi: 10.3389/fpls.2018.01893
– ident: 13
  doi: 10.1105/tpc.105.031542
– ident: 32
  doi: 10.3389/fbioe.2016.00058
– ident: 87
  doi: 10.1104/pp.15.01877
– ident: 4
  doi: 10.1007/s11101-023-09889-6
– ident: 100
  doi: 10.1002/cssc.202101492
– ident: 24
  doi: 10.1016/bs.abr.2022.02.001
– ident: 53
  doi: 10.1371/journal.pone.0158906
– ident: 84
  doi: 10.1146/annurev-arplant-042809-112315
– ident: 80
  doi: 10.1002/9781119844792.ch1
– ident: 95
  doi: 10.1038/s41477-019-0510-0
– ident: 109
  doi: 10.1111/pbi.12557
– ident: 35
  doi: 10.1186/s12870-014-0344-x
– ident: 63
  doi: 10.1016/bs.abr.2022.02.002
– ident: 90
  doi: 10.1186/s13068-015-0403-z
– ident: 93
  doi: 10.1111/nph.18136
– ident: 118
  doi: 10.1038/s41477-021-00975-1
– ident: 43
  doi: 10.1007/s10570-023-05422-2
– ident: 83
  doi: 10.1186/s13068-020-01736-6
– ident: 113
  doi: 10.1016/j.pbi.2022.102219
– ident: 111
  doi: 10.1016/j.tibtech.2022.09.007
– ident: 65
  doi: 10.1186/s12870-019-2135-x
– ident: 68
  doi: 10.1177/1535370218793890
– ident: 33
  doi: 10.1073/pnas.1914422117
– ident: 60
  doi: 10.1016/j.mec.2022.e00207
– ident: 102
  doi: 10.1016/j.biombioe.2014.11.022
– ident: 5
  doi: 10.3389/fpls.2022.1076298
– ident: 79
  doi: 10.1111/tpj.12420
SSID ssj0025102
Score 2.3503182
SecondaryResourceType review_article
Snippet Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms Biology
Biomass
cell wall
Cellulose
Design factors
Flowers & plants
Hemicellulose
Lignin
Lignocellulose
lignocellulose engineering
Plant biomass
Plants
Polysaccharides
Renewable resources
Review
Title Synthetic-biology approach for plant lignocellulose engineering
URI https://www.jstage.jst.go.jp/article/plantbiotechnology/41/3/41_24.0630a/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/40115770
https://www.proquest.com/docview/3155530538
https://www.proquest.com/docview/3179856602
https://pubmed.ncbi.nlm.nih.gov/PMC11921142
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Plant Biotechnology, 2024/09/25, Vol.41(3), pp.213-230
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgfAgeEAwYgYGC4G1KN3_ki7cJbZqmUZDWSuUpchJnK62SaU0eyl_PnZ246aimwUsUOb7Euruc786-nwn5zLkKOeWpl-VB4YlUMi_lUnhxlopchwgSC5y_DYOTsTid-JPVtjFdXVKng-z3xrqS_5EqtIFcsUr2HyRrXwoNcA_yhStIGK53kvH5sgT_DZo9i6XUQoTr3YNXc2Db3nx6UVaYn2_muDddrQAI-47pD90XXlPbXDs6n6NqtjRrMzCplr20wc9qcTnNTT1Z1cymNlMjZxKkr2nOMbtVWZFO60VjKIZV2tTQsZ9yYAL3R5jyZDMd4Bet7cH8_moZYO9Ql4z2LCoXzBO-Oa5poLo2rE001aOdGTb4V6268U3WHZw7tO6aeWv8GDAxQOyw3qTWLeQPvyfH47OzZHQ0Gd0nDxgEE7zL6bRhOVglvSbeDfQx-dR-bP-WT635MQ9_gSt_oTZFKTc32_a8l9Fz8qwNO9xDo0MvyD1VbpNH5iDS5TZ52oOlfAkB3E29cju9ckGvXD1ed12v3J5evSLj46PR1xOvPWjDy4KI1R5TgkJYj6VCeZ4Wec78IpYZlSmNwjQoeMECGYs4okoxFkcyiiiNC0UzLhWmwl-TrbIq1Rvi5n6oAi6UXyAidJzFXOQyUlmIqEI5Fw750rEtyVoUejwMZZ5ANIo8T_7mecJEonnuEGGJrwwYy93ITo18LFH7x24iEjTheOmIbV-sggSj45DdTsZJawoWCQev3IeZk0cO-Wgfg6FGKchSVQ32CeMIgqcD5pAdoxJ2PAIDszA8cEi0piy2A4LArz8pp5caDJ4ioCEV7O3t43pHnqz-5F2yVV836j2403X6Qf8NfwDaFtgH
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic-biology+approach+for+plant+lignocellulose+engineering&rft.jtitle=Plant+biotechnology+%28Tokyo%2C+Japan%29&rft.au=Yoshida%2C+Kouki&rft.au=Sakamoto%2C+Shingo&rft.au=Mitsuda%2C+Nobutaka&rft.date=2024-09-25&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1342-4580&rft.eissn=1347-6114&rft.volume=41&rft.issue=3&rft_id=info:doi/10.5511%2Fplantbiotechnology.24.0630a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-4580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-4580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-4580&client=summon