Synthetic-biology approach for plant lignocellulose engineering
Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterize...
Saved in:
Published in | Plant Biotechnology Vol. 41; no. 3; pp. 213 - 230 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Society for Plant Biotechnology
25.09.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss. |
---|---|
AbstractList | Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss. Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss. |
ArticleNumber | 24.0630a |
Author | Mitsuda, Nobutaka Sakamoto, Shingo Yoshida, Kouki |
Author_xml | – sequence: 1 fullname: Yoshida, Kouki organization: Technology Center, Taisei Corporation – sequence: 2 fullname: Sakamoto, Shingo organization: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 3 fullname: Mitsuda, Nobutaka organization: Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40115770$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuLFDEUhYOMOA_9C1IwGzfV5lkPXAzD4AsGRNR1SKVuVaVJJ22SGuh_b6p7utHRhZskkHO--ziX6Mx5BwhdE7wSgpC3W6tc6oxPoCfnrR93K8pXuGJYPUMXhPG6rAjhZ_s3Lblo8Dm6jHGNMRUE0xfonGNCRF3jC3TzbefSBMnoMiMXWKG22-CVnorBh2JfrLBmdF6DtbP1EQpwo3EAwbjxJXo-KBvh1eN9hX58eP_97lN5_-Xj57vb-1JXDU0lBU5qUleU077vhr6nYmiVJqojTd1VAxtopVreNgSA0rZRTUNIOwDRTEGLMbtCNwfudu420GtwKSgrt8FsVNhJr4z888eZSY7-QWYMzdugmfDmkRD8zxlikhsTl5mUAz9HyUjdNqKq8CK9fiJd-zm4PF9WCSEYFqzJqte_t3Tq5bjcLLg9CHTwMQYYpDZJJeOXDo2VBMslUPl3oJJyuQ80M949YRzL_J_768G9jkmNcPKqkAO38C8vJ5Itx5Fx0upJBQmO_QLk_s7m |
CitedBy_id | crossref_primary_10_5511_plantbiotechnology_24_0630b crossref_primary_10_5511_plantbiotechnology_24_0000p |
Cites_doi | 10.1021/jf800806h 10.1126/science.adh3856 10.1038/ncomms11989 10.1111/tpj.12745 10.1007/s12155-015-9583-4 10.1186/s13068-021-02026-5 10.1016/j.molp.2022.12.015 10.1186/s12870-021-02842-9 10.1002/cssc.201903345 10.3389/fpls.2013.00067 10.1111/tpj.14196 10.1093/plphys/kiab546 10.1093/plphys/kiad549 10.1038/s41467-018-08252-0 10.1111/pbi.13935 10.1016/j.copbio.2018.09.003 10.1039/C4CP05004E 10.1126/sciadv.abo5738 10.1016/j.copbio.2018.12.008 10.3389/fpls.2019.01774 10.1104/pp.15.00815 10.1105/TPC.010063 10.1039/D3RA01546G 10.1126/sciadv.adf7714 10.1186/s13068-021-01891-4 10.1046/j.1365-313X.2002.01221.x 10.3389/fpls.2016.02056 10.1111/pbi.14186 10.5650/jos.ess18075 10.1093/jxb/ery208 10.1128/JB.180.17.4387-4391.1998 10.1093/pcp/pcw016 10.1104/pp.15.00690 10.1016/j.pbi.2010.03.001 10.1038/s41477-022-01151-9 10.3389/fpls.2020.00282 10.1038/s41477-018-0350-3 10.1126/science.1250161 10.1021/acssuschemeng.6b00520 10.1038/s41477-023-01459-0 10.1105/tpc.112.101287 10.3389/fpls.2019.00775 10.1007/s11103-009-9482-1 10.1111/tpj.12577 10.62840/lignin.1.0_30 10.1186/s13068-016-0639-2 10.3389/fpls.2022.943349 10.1111/pbi.12016 10.1016/j.carbpol.2020.117022 10.1186/s13068-020-01707-x 10.1111/nph.17349 10.1073/pnas.0307987100 10.1105/tpc.112.106625 10.1002/anie.202003105 10.1186/1754-6834-3-24 10.1093/plphys/kiab359 10.1073/pnas.1120992109 10.1111/tpj.15390 10.1007/s00253-018-8815-x 10.1016/j.plantsci.2019.02.004 10.1074/jbc.M109.036673 10.1016/j.pbi.2022.102313 10.1111/j.1365-313X.2008.03463.x 10.1073/pnas.2122309119 10.1111/tpj.16242 10.3389/fpls.2023.1181035 10.1111/j.1469-8137.2012.04337.x 10.1105/tpc.113.120881 10.1093/jxb/erac147 10.1111/tpj.12394 10.1002/cctc.202200511 10.1074/jbc.M111.284497 10.1111/j.1467-7652.2012.00692.x 10.1093/pcp/pcp060 10.1186/s13068-017-1007-6 10.1016/j.crvi.2004.02.009 10.1186/s13068-015-0379-8 10.1074/jbc.M115.684217 10.1111/nph.18518 10.1002/cssc.201701317 10.1093/plphys/kiac485 10.1111/j.1365-313X.2010.04391.x 10.1016/j.ymben.2021.04.011 10.1016/j.plantsci.2022.111476 10.1016/j.copbio.2019.02.019 10.1074/jbc.REV120.014561 10.1186/1754-6834-5-84 10.1104/pp.17.01462 10.1038/s41598-018-24328-9 10.1126/sciadv.1600393 10.1186/1754-6834-4-48 10.3389/fpls.2018.01893 10.1105/tpc.105.031542 10.3389/fbioe.2016.00058 10.1104/pp.15.01877 10.1007/s11101-023-09889-6 10.1002/cssc.202101492 10.1016/bs.abr.2022.02.001 10.1371/journal.pone.0158906 10.1146/annurev-arplant-042809-112315 10.1002/9781119844792.ch1 10.1038/s41477-019-0510-0 10.1111/pbi.12557 10.1186/s12870-014-0344-x 10.1016/bs.abr.2022.02.002 10.1186/s13068-015-0403-z 10.1111/nph.18136 10.1038/s41477-021-00975-1 10.1007/s10570-023-05422-2 10.1186/s13068-020-01736-6 10.1016/j.pbi.2022.102219 10.1016/j.tibtech.2022.09.007 10.1186/s12870-019-2135-x 10.1177/1535370218793890 10.1073/pnas.1914422117 10.1016/j.mec.2022.e00207 10.1016/j.biombioe.2014.11.022 10.3389/fpls.2022.1076298 10.1111/tpj.12420 |
ContentType | Journal Article |
Copyright | 2024 Japanese Society for Plant Biotechnology 2024 Japanese Society for Plant Biotechnology. 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Japanese Society for Plant Biotechnology 2024 Japanese Society for Plant Biotechnology |
Copyright_xml | – notice: 2024 Japanese Society for Plant Biotechnology – notice: 2024 Japanese Society for Plant Biotechnology. – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Japanese Society for Plant Biotechnology 2024 Japanese Society for Plant Biotechnology |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 7X8 5PM |
DOI | 10.5511/plantbiotechnology.24.0630a |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1347-6114 |
EndPage | 230 |
ExternalDocumentID | PMC11921142 40115770 10_5511_plantbiotechnology_24_0630a article_plantbiotechnology_41_3_41_24_0630a_article_char_en |
Genre | Journal Article |
GroupedDBID | 123 29O 2WC 53G ACIWK ACPRK AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS E3Z HYE JSF JSH KQ8 M~E OK1 RJT RNS RPM RZJ TR2 AAYXX CITATION OVT NPM 7QO 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c682t-2e417176242ddbfdd25f9ac1ab187b6f3f26a94981ee2298a88119fe1c3ae9003 |
ISSN | 1342-4580 |
IngestDate | Thu Aug 21 18:40:20 EDT 2025 Fri Jul 11 16:03:18 EDT 2025 Thu Jul 24 12:11:02 EDT 2025 Sun Mar 23 01:28:51 EDT 2025 Tue Jul 01 03:31:10 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Thu Oct 03 16:51:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | biomass hemicellulose lignin cell wall lignocellulose engineering |
Language | English |
License | 2024 Japanese Society for Plant Biotechnology. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, https://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c682t-2e417176242ddbfdd25f9ac1ab187b6f3f26a94981ee2298a88119fe1c3ae9003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11921142 |
PMID | 40115770 |
PQID | 3155530538 |
PQPubID | 1976388 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11921142 proquest_miscellaneous_3179856602 proquest_journals_3155530538 pubmed_primary_40115770 crossref_citationtrail_10_5511_plantbiotechnology_24_0630a crossref_primary_10_5511_plantbiotechnology_24_0630a jstage_primary_article_plantbiotechnology_41_3_41_24_0630a_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240925 |
PublicationDateYYYYMMDD | 2024-09-25 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240925 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo – name: c/o Academy Center, Yamabukicho 358-5, Shinjuku-ku, Tokyo 162-0801, Japan |
PublicationTitle | Plant Biotechnology |
PublicationTitleAlternate | Plant Biotechnol (Tokyo) |
PublicationYear | 2024 |
Publisher | Japanese Society for Plant Biotechnology Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society for Plant Biotechnology – name: Japan Science and Technology Agency |
References | Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, Zhu Y, Opietnik M, Santoro N, Foster CE, Yue F, et al. (2019) Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Sci 287: 110070 Mortimer JC (2019) Plant synthetic biology could drive a revolution in biofuels and medicine. Exp Biol Med (Maywood) 244: 323–331 Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, et al. (2023) Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. Nat Plants 9: 1530–1546 Li K, Wang H, Hu X, Liu Z, Wu Y, Huang C (2016) Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One 11: e0158906 Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8: 217 de Vries L, MacKay HA, Smith RA, Mottiar Y, Karlen SD, Unda F, Muirragui E, Bingman C, Meulen KV, Beebe ET, et al. (2022) pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiol 188: 1014–1027 Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV (2018) Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnol Biofuels 11: 2 Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17: 2281–2295 Muro-Villanueva F, Mao X, Chapple C (2019) Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol 56: 202–208 Ralph J, Kim H, Lu F, Smith RA, Karlen SD, Nuoendagula, Yoshioka K, Eugene A, Liu S, Sener C, et al. (2023) Lignins and lignification: new developments and emerging concepts. Recent Advances in Polyphenol Research 8. pp 1–50 Almeida AM, Marchiosi R, Abrahão J, Constantin RP, dos Santos WD, Ferrarese-Filho O (2024) Revisiting the shikimate pathway and highlighting their enzyme inhibitors. Phytochem Rev 23: 421–457 Gao Y, Lipton AS, Munson CR, Ma Y, Johnson KL, Murray DT, Scheller HV, Mortimer JC (2023) Elongated galactan side chains mediate cellulose-pectin interactions in engineered Arabidopsis secondary cell walls. Plant J 115: 529–545 Zhao Y, Yu X, Lam PY, Zhang K, Tobimatsu Y, Liu CJ (2021) Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nat Plants 7: 1288–1300 De Lorenzo G, Ferrari S, Giovannoni M, Mattei B, Cervone F (2019) Cell wall traits that influence plant development, immunity, and bioconversion. Plant J 97: 134–147 del Río JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Santos JI, Jiménez-Barbero J, Zhang L, Martínez AT (2008) Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. J Agric Food Chem 56: 9525–9534 Vanholme R, Sundin L, Seetso KC, Kim H, Liu X, Li J, De Meester B, Hoengenaert L, Goeminne G, Morreel K, et al. (2019) COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nat Plants 5: 1066–1075 Yokoyama R, Klevin B, Gupta A, Wang Y, Maeda HA (2022) 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Curr Opin Plant Biol 67: 102219 Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, et al. (2015) Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169: 2048–2063 Mottiar Y, Karlen SD, Goacher RE, Ralph J, Mansfield SD (2023a) Metabolic engineering of p-hydroxybenzoate in poplar lignin. Plant Biotechnol J 21: 176–188 Zhou S, Runge T, Karlen SD, Ralph J, Gonzales-Vigil E, Mansfield SD (2017) Chemical pulping advantages of zip-lignin hybrid poplar. ChemSusChem 10: 3565–3573 Zhang K, Bhuiya MW, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24: 3135–3152 Eudes A, Lin CY, De Ben C, Ortega J, Lee MY, Chen YC, Li G, Putnam DH, Mortimer JC, Ronald PC, et al. (2023) Field performance of switchgrass plants engineered for reduced recalcitrance. Front Plant Sci 14: 1181035 Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Cetinkol OP, et al. (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10: 609–620 Lin CY, Tian Y, Nelson-Vasilchik K, Hague J, Kakumanu R, Lee MY, Pidatala VR, Trinh J, De Ben CM, Dalton J, et al. (2022) Engineering sorghum for higher 4-hydroxybenzoic acid content. Metab Eng Commun 15: e00207 Unda F, Mottiar Y, Mahon EL, Karlen SD, Kim KH, Loqué D, Eudes A, Ralph J, Mansfield SD (2022) A new approach to zip-lignin: 3,4-dihydroxybenzoate is compatible with lignification. New Phytol 235: 234–246 Lao J, Oikawa A, Bromley JR, McInerney P, Suttangkakul A, Smith-Moritz AM, Plahar H, Chiu TY, González Fernández-Niño SM, Ebert B, et al. (2014) The plant glycosyltransferase clone collection for functional genomics. Plant J 79: 517–529 Dwivedi N, Yamamoto S, Zhao Y, Hou G, Bowling F, Tobimatsu Y, Liu CJ (2024) Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice. Plant Biotechnol J 22: 330–346 Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN Jr (2022) Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 40: 1454–1468 Shikinaka K, Otsuka Y, Nakamura M, Masai E, Katayama Y (2018) Utilization of lignocellulosic biomass via novel sustainable process. J Oleo Sci 67: 1059–1070 Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3: 24 Lu F, Karlen SD, Regner M, Kim H, Ralph SA, Sun RC, Kuroda K, Augustin MA, Mawson R, Sabarez H, et al. (2015) Naturally p-hydroxybenzoylated lignins in palms. BioEnergy Res 8: 934–952 Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, Sretenovic S, Gurel F, Coleman GD, Qi Y (2022) Boosting plant genome editing with a versatile CRISPR-combo system. Nat Plants 8: 513–525 Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. lignin-cell wall matrix interactions. C R Biol 327: 455–465 Berstis L, Elder T, Crowley M, Beckham GT (2016) Radical nature of C-lignin. ACS Sustain Chem & Eng 4: 5327–5335 Carpita NC, McCann MC (2020) Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 295: 15144–15157 Gondolf VM, Stoppel R, Ebert B, Rautengarten C, Liwanag AJ, Loqué D, Scheller HV (2014) A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis. BMC Plant Biol 14: 344 Wei H, Yang H, Ciesielski PN, Donohoe BS, McCann MC, Murphy AS, Peer WA, Ding S-Y, Himmel ME, Tucker MP (2015) Transgenic ferritin overproduction enhances thermochemical pretreatments in Arabidopsis. Biomass Bioenergy 72: 55–64 Hellinger J, Kim H, Ralph J, Karlen SD (2023) p-Coumaroylation of lignin occurs outside of commelinid monocots in the eudicot genus Morus (mulberry). Plant Physiol 191: 854–861 Johnson AM, Mottiar Y, Ogawa Y, Karaaslan MA, Zhang H, Hua Q, Mansfield SD, Renneckar S (2023) The formation of xylan hydrate crystals is affected by sidechain uronic acids but not by lignin. Cellulose 30: 8475–8494 De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, et al. (2022) Engineering curcumin biosynthesis in poplar affects lignification and biomass yield. Front Plant Sci 13: 943349 Anggara K, Sršan L, Jaroentomeechai T, Wu X, Rauschenbach S, Narimatsu Y, Clausen H, Ziegler T, Miller RL, Kern K (2023) Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 382: 219–223 Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77: 380–392 del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J (2022) Unconventional lignin monomers-extension of the lignin paradigm. In: Sibout R (ed) Advances in botanical research 104. Elsevier, INC., Amsterdam, pp 1–39 Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196: 978–1000 Lin CY, Vuu KM, Amer B, Shih PM, Baidoo EEK, Scheller HV, Eudes A (2021b) In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product. Metab Eng 66: 148–156 Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54: 559–568 Li Y, Xiong W, He F, Qi T, Sun Z, Liu Y, Bai S, Wang H, Wu Z, Fu C (2022) Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis and improves cell wall digestibility in switchgrass. J Exp Bot 73: 4157–4169 Lin CY, Jakes JE, Donohoe BS, Ciesielski PN, Yang H, Gleber SC, Vogt S, Ding SY, Peer WA, Murphy AS, et al. (2016) Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion. Biotechnol Biofuels 9: 225 Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29: 371–380 Wei H, Donohoe BS, Vinzant TB, Ciesielski PN, Wang W, Gedvilas LM, Zeng Y, Johnson DK, Ding SY, Himmel ME, et al. (2011) Elucidating the role of ferrous 88 89 110 111 112 113 114 115 116 90 117 91 118 92 119 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – reference: Wu Z, Ren H, Xiong W, Roje S, Liu Y, Su K, Fu C (2018) Methylenetetrahydrofolate reductase modulates methyl metabolism and lignin monomer methylation in maize. J Exp Bot 69: 3963–3973 – reference: Lin CY, Eudes A (2020) Strategies for the production of biochemicals in bioenergy crops. Biotechnol Biofuels 13: 71 – reference: del Río JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Santos JI, Jiménez-Barbero J, Zhang L, Martínez AT (2008) Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. J Agric Food Chem 56: 9525–9534 – reference: Oyarce P, De Meester B, Fonseca F, de Vries L, Goeminne G, Pallidis A, De Rycke R, Tsuji Y, Li Y, Van den Bosch S, et al. (2019) Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nat Plants 5: 225–237 – reference: Yu H, Liu C, Dixon RA (2021) A gene-editing/complementation strategy for tissue-specific lignin reduction while preserving biomass yield. Biotechnol Biofuels 14: 175 – reference: Srivastava AC, Chen F, Ray T, Pattathil S, Peña MJ, Avci U, Li H, Huhman DV, Backe J, Urbanowicz BR, et al. (2015) Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis. Biotechnol Biofuels 8: 1–18 – reference: Li Y, Xiong W, He F, Qi T, Sun Z, Liu Y, Bai S, Wang H, Wu Z, Fu C (2022) Down-regulation of PvSAMS impairs S-adenosyl-L-methionine and lignin biosynthesis and improves cell wall digestibility in switchgrass. J Exp Bot 73: 4157–4169 – reference: Yang M, Liu D, Baral NR, Lin CY, Simmons BA, Gladden JM, Eudes A, Scown CD (2022) Comparing in planta accumulation with microbial routes to set targets for a cost-competitive bioeconomy. Proc Natl Acad Sci USA 119: e2122309119 – reference: Lao J, Oikawa A, Bromley JR, McInerney P, Suttangkakul A, Smith-Moritz AM, Plahar H, Chiu TY, González Fernández-Niño SM, Ebert B, et al. (2014) The plant glycosyltransferase clone collection for functional genomics. Plant J 79: 517–529 – reference: Lam LPY, Tobimatsu Y, Suzuki S, Tanaka T, Yamamoto S, Takeda-Kimura Y, Osakabe Y, Osakabe K, Ralph J, Bartley LE, et al. (2024) Disruption of p-coumaroyl-CoA: Monolignol transferases in rice drastically alters lignin composition. Plant Physiol 194: 832–848 – reference: Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS (2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J 77: 380–392 – reference: Hatfield RD, Rancour DM, Marita JM (2016) Grass cell walls: A story of cross-Linking. Front Plant Sci 7: 2056 – reference: Zhou S, Runge T, Karlen SD, Ralph J, Gonzales-Vigil E, Mansfield SD (2017) Chemical pulping advantages of zip-lignin hybrid poplar. ChemSusChem 10: 3565–3573 – reference: Berstis L, Elder T, Crowley M, Beckham GT (2016) Radical nature of C-lignin. ACS Sustain Chem & Eng 4: 5327–5335 – reference: Pedersen GB, Blaschek L, Frandsen KE, Noack LC, Persson S (2023) Cellulose synthesis in land plants. Mol Plant 16: 206–231 – reference: Lin CY, Donohoe BS, Bomble YJ, Yang H, Yunes M, Sarai NS, Shollenberger T, Decker SR, Chen X, McCann MC, et al. (2021a) Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (panicum virgatum L.) biomass. Biotechnol Biofuels 14: 55 – reference: Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN Jr (2022) Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 40: 1454–1468 – reference: Shikinaka K, Otsuka Y, Nakamura M, Masai E, Katayama Y (2018) Utilization of lignocellulosic biomass via novel sustainable process. J Oleo Sci 67: 1059–1070 – reference: Li L, Hill-Skinner S, Liu S, Beuchle D, Tang HM, Yeh CT, Nettleton D, Schnable PS (2015) The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. Plant J 81: 493–504 – reference: Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13: 313–320 – reference: Karlen SD, Zhang C, Peck ML, Smith RA, Padmakshan D, Helmich KE, Free HC, Lee S, Smith BG, Lu F, et al. (2016) Monolignol ferulate conjugates are naturally incorporated into plant lignins. Sci Adv 2: e1600393 – reference: Unda F, Mottiar Y, Mahon EL, Karlen SD, Kim KH, Loqué D, Eudes A, Ralph J, Mansfield SD (2022) A new approach to zip-lignin: 3,4-dihydroxybenzoate is compatible with lignification. New Phytol 235: 234–246 – reference: Dwivedi N, Yamamoto S, Zhao Y, Hou G, Bowling F, Tobimatsu Y, Liu CJ (2024) Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice. Plant Biotechnol J 22: 330–346 – reference: Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem 287: 8347–8355 – reference: De Lorenzo G, Ferrari S, Giovannoni M, Mattei B, Cervone F (2019) Cell wall traits that influence plant development, immunity, and bioconversion. Plant J 97: 134–147 – reference: Hellinger J, Kim H, Ralph J, Karlen SD (2023) p-Coumaroylation of lignin occurs outside of commelinid monocots in the eudicot genus Morus (mulberry). Plant Physiol 191: 854–861 – reference: Eudes A, Zhao N, Sathitsuksanoh N, Baidoo EE, Lao J, Wang G, Yogiswara S, Lee TS, Singh S, Mortimer JC, et al. (2016b) Expression of S-adenosylmethionine hydrolase in tissues synthesizing secondary cell walls alters specific methylated cell wall fractions and improves biomass digestibility. Front Bioeng Biotechnol 4: 58 – reference: Li K, Wang H, Hu X, Liu Z, Wu Y, Huang C (2016) Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One 11: e0158906 – reference: Gao Y, Lipton AS, Munson CR, Ma Y, Johnson KL, Murray DT, Scheller HV, Mortimer JC (2023) Elongated galactan side chains mediate cellulose-pectin interactions in engineered Arabidopsis secondary cell walls. Plant J 115: 529–545 – reference: Voiniciuc C (2023) It’s time to go glyco in cell wall bioengineering. Curr Opin Plant Biol 71: 102313 – reference: Eudes A, Pereira JH, Yogiswara S, Wang G, Benites VT, Baidoo EE, Lee TS, Adams PD, Keasling JD, Loqué D (2016a) Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA:Shikimate hydroxycinnamoyl transferase to reduce lignin. Plant Cell Physiol 57: 568–579 – reference: Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, et al. (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344: 90–93 – reference: Ruprecht C, Bartetzko MP, Senf D, Lakhina A, Smith PJ, Soto MJ, Oh H, Yang JY, Chapla D, Silva DV, et al. (2020) A glycan array-Based assay for the identification and characterization of plant glycosyltransferases. Angew Chem Int Ed Engl 59: 12493–12498 – reference: Barros J, Temple S, Dixon RA (2019) Development and commercialization of reduced lignin alfalfa. Curr Opin Biotechnol 56: 48–54 – reference: de Vries L, MacKay HA, Smith RA, Mottiar Y, Karlen SD, Unda F, Muirragui E, Bingman C, Meulen KV, Beebe ET, et al. (2022) pHBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiol 188: 1014–1027 – reference: Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3: 24 – reference: Yokoyama R, Klevin B, Gupta A, Wang Y, Maeda HA (2022) 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Curr Opin Plant Biol 67: 102219 – reference: Sakamoto S, Kamimura N, Tokue Y, Nakata MT, Yamamoto M, Hu S, Masai E, Mitsuda N, Kajita S (2020) Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. Biotechnol Biofuels 13: 97 – reference: Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56: 240–249 – reference: Xiao C, Anderson CT (2013) Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 4: 67 – reference: Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196: 978–1000 – reference: Muro-Villanueva F, Mao X, Chapple C (2019) Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr Opin Biotechnol 56: 202–208 – reference: Lapierre C, Sibout R, Laurans F, Lesage-Descauses M-C, Déjardin A, Pilate G (2021) p-Coumaroylation of poplar lignins impacts lignin structure and improves wood saccharification. Plant Physiol 187: 1374–1386 – reference: Karlen SD, Fasahati P, Mazaheri M, Serate J, Smith RA, Sirobhushanam S, Chen M, Tymokhin VI, Cass CL, Liu S, et al. (2020) Assessing the viability of recovery of hydroxycinnamic acids from lignocellulosic biorefinery alkaline pretreatment waste streams. ChemSusChem 13: 2012–2024 – reference: Myburg AA, Hussey SG, Wang JP, Street NR, Mizrachi E (2019) Systems and synthetic biology of forest trees: A bioengineering paradigm for woody biomass feedstocks. Front Plant Sci 10: 775 – reference: Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29: 371–380 – reference: Gallego-Giraldo L, Liu C, Pose-Albacete S, Pattathil S, Peralta AG, Young J, Westpheling J, Hahn MG, Rao X, Knox JP, et al. (2020) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. Proc Natl Acad Sci USA 117: 3281–3290 – reference: Mayer MJ, Narbad A, Parr AJ, Parker ML, Walton NJ, Mellon FA, Michael AJ (2001) Rerouting the plant phenylpropanoid pathway by expression of a novel bacterial enoyl-coA hydratase/lyase enzyme function. Plant Cell 13: 1669–1682 – reference: Wang Y, Meng X, Tian Y, Kim KH, Jia L, Pu Y, Leem G, Kumar D, Eudes A, Ragauskas AJ, et al. (2021) Engineered sorghum bagasse enables a sustainable biorefinery with p-hydroxybenzoic acid-based deep eutectic solvent. ChemSusChem 14: 5235–5244 – reference: Liu C, Yu H, Voxeur A, Rao X, Dixon RA (2023) FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. Sci Adv 9: eadf7714 – reference: Buyel JF (2018) Plant molecular farming: Integration and exploitation of side streams to achieve sustainable biomanufacturing. Front Plant Sci 9: 1893 – reference: del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J (2022) Unconventional lignin monomers-extension of the lignin paradigm. In: Sibout R (ed) Advances in botanical research 104. Elsevier, INC., Amsterdam, pp 1–39 – reference: Eudes A, Lin CY, De Ben C, Ortega J, Lee MY, Chen YC, Li G, Putnam DH, Mortimer JC, Ronald PC, et al. (2023) Field performance of switchgrass plants engineered for reduced recalcitrance. Front Plant Sci 14: 1181035 – reference: Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV (2018) Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. Biotechnol Biofuels 11: 2 – reference: Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61: 263–289 – reference: Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54: 559–568 – reference: Ralph J, Kim H, Lu F, Smith RA, Karlen SD, Nuoendagula, Yoshioka K, Eugene A, Liu S, Sener C, et al. (2023) Lignins and lignification: new developments and emerging concepts. Recent Advances in Polyphenol Research 8. pp 1–50 – reference: El Houari I, Van Beirs C, Arents HE, Han H, Chanoca A, Opdenacker D, Pollier J, Storme V, Steenackers W, Quareshy M, et al. (2021) Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport. New Phytol 230: 2275–2291 – reference: Alcázar Magaña A, Kamimura N, Soumyanath A, Stevens JF, Maier CS (2021) Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J 107: 1299–1319 – reference: Carmona C, Langan P, Smith JC, Petridis L (2015) Why genetic modification of lignin leads to low-recalcitrance biomass. Phys Chem Chem Phys 17: 358–364 – reference: De Meester B, de Vries L, Özparpucu M, Gierlinger N, Corneillie S, Pallidis A, Goeminne G, Morreel K, De Bruyne M, De Rycke R, et al. (2018) Vessel-Specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in dwarfed ccr1 mutants restores vessel and xylary fiber integrity and increases biomass. Plant Physiol 176: 611–633 – reference: Kang X, Kirui A, Dickwella, Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T (2019) Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 10: 347 – reference: Anggara K, Sršan L, Jaroentomeechai T, Wu X, Rauschenbach S, Narimatsu Y, Clausen H, Ziegler T, Miller RL, Kern K (2023) Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 382: 219–223 – reference: Li Y, Meng X, Meng R, Cai T, Pu Y, Zhao ZM, Ragauskas AJ (2023) Valorization of homogeneous linear catechyl lignin: Opportunities and challenges. RSC Adv 13: 12750–12759 – reference: Cai Y, Zhang K, Kim H, Hou G, Zhang X, Yang H, Feng H, Miller L, Ralph J, Liu CJ (2016) Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase. Nat Commun 7: 11989 – reference: Smith RA, Gonzales-Vigil E, Karlen SD, Park JY, Lu F, Wilkerson CG, Samuels L, Ralph J, Mansfield SD (2015) Engineering monolignol p-coumarate conjugates into poplar and Arabidopsis lignins. Plant Physiol 169: 2992–3001 – reference: Lin CY, Tian Y, Nelson-Vasilchik K, Hague J, Kakumanu R, Lee MY, Pidatala VR, Trinh J, De Ben CM, Dalton J, et al. (2022) Engineering sorghum for higher 4-hydroxybenzoic acid content. Metab Eng Commun 15: e00207 – reference: Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J (2012) A polymer of caffeyl alcohol in plant seeds. Proc Natl Acad Sci USA 109: 1772–1777 – reference: Yu XH, Gou JY, Liu CJ (2009) BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: Bioinformatics and gene expression. Plant Mol Biol 70: 421–442 – reference: Zhang K, Bhuiya MW, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24: 3135–3152 – reference: Achterholt S, Priefert H, Steinbüchel A (1998) Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene. J Bacteriol 180: 4387–4391 – reference: Kim KH, Wang Y, Takada M, Eudes A, Yoo CG, Kim CS, Saddler J (2019) Deep eutectic solvent pretreatment of transgenic biomass with increased C6C1 lignin monomers. Front Plant Sci 10: 1774 – reference: Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, et al. (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26: 894–914 – reference: Weng JK, Mo H, Chapple C (2010) Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. Plant J 64: 898–911 – reference: Yang H, Wei H, Ma G, Antunes MS, Vogt S, Cox J, Zhang X, Liu X, Bu L, Gleber SC, et al. (2016) Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice. Plant Biotechnol J 14: 1998–2009 – reference: Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, et al. (2015) Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169: 2048–2063 – reference: Johnson AM, Mottiar Y, Ogawa Y, Karaaslan MA, Zhang H, Hua Q, Mansfield SD, Renneckar S (2023) The formation of xylan hydrate crystals is affected by sidechain uronic acids but not by lignin. Cellulose 30: 8475–8494 – reference: Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17: 2281–2295 – reference: Wei H, Yang H, Ciesielski PN, Donohoe BS, McCann MC, Murphy AS, Peer WA, Ding S-Y, Himmel ME, Tucker MP (2015) Transgenic ferritin overproduction enhances thermochemical pretreatments in Arabidopsis. Biomass Bioenergy 72: 55–64 – reference: Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, Sun L, Zheng K, Tang K, Auer M, et al. (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11: 325–335 – reference: Liwanag AJ, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, Oikawa A, Andersen MC, Clausen MH, Scheller HV (2012) Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. Plant Cell 24: 5024–5036 – reference: Gondolf VM, Stoppel R, Ebert B, Rautengarten C, Liwanag AJ, Loqué D, Scheller HV (2014) A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis. BMC Plant Biol 14: 344 – reference: Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8: 217 – reference: Hoengenaert L, Wouters M, Kim H, De Meester B, Morreel K, Vandersyppe S, Pollier J, Desmet S, Goeminne G, Ralph J, et al. (2022) Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. Sci Adv 8: eabo5738 – reference: Wei H, Donohoe BS, Vinzant TB, Ciesielski PN, Wang W, Gedvilas LM, Zeng Y, Johnson DK, Ding SY, Himmel ME, et al. (2011) Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass. Biotechnol Biofuels 4: 1–16 – reference: Hao Z, Yogiswara S, Wei T, Benites VT, Sinha A, Wang G, Baidoo EEK, Ronald PC, Scheller HV, Loqué D, et al. (2021) Expression of a bacterial 3-dehydroshikimate dehydratase (qsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). BMC Plant Biol 21: 56 – reference: Zhao Y, Yu X, Lam PY, Zhang K, Tobimatsu Y, Liu CJ (2021) Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nat Plants 7: 1288–1300 – reference: Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Cetinkol OP, et al. (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10: 609–620 – reference: Dippe M, Davari MD, Weigel B, Heinke R, Vogt T, Wessjohann LA (2022) Altering the regiospecificity of a catechol O-methyltransferase through rational design: Vanilloid vs. isovanilloid motifs in the B-ring of flavonoids. ChemCatChem 14: e202200511 – reference: Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, Zhu Y, Opietnik M, Santoro N, Foster CE, Yue F, et al. (2019) Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Sci 287: 110070 – reference: Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Down-regulation of poGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50: 1075–1089 – reference: Vanholme R, Sundin L, Seetso KC, Kim H, Liu X, Li J, De Meester B, Hoengenaert L, Goeminne G, Morreel K, et al. (2019) COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nat Plants 5: 1066–1075 – reference: Mottiar Y, Smith RA, Karlen SD, Ralph J, Mansfield SD (2023b) Evolution of p-coumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytol 237: 251–264 – reference: Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Le Bris P, Antelme S, Santoro N, Wilkerson CG, et al. (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in brachypodium distachyon. Plant J 77: 713–726 – reference: Cai Y, Bhuiya MW, Shanklin J, Liu CJ (2015) Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol. J Biol Chem 290: 26715–26724 – reference: Lu F, Karlen SD, Regner M, Kim H, Ralph SA, Sun RC, Kuroda K, Augustin MA, Mawson R, Sabarez H, et al. (2015) Naturally p-hydroxybenzoylated lignins in palms. BioEnergy Res 8: 934–952 – reference: Pan C, Li G, Malzahn AA, Cheng Y, Leyson B, Sretenovic S, Gurel F, Coleman GD, Qi Y (2022) Boosting plant genome editing with a versatile CRISPR-combo system. Nat Plants 8: 513–525 – reference: De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, et al. (2022) Engineering curcumin biosynthesis in poplar affects lignification and biomass yield. Front Plant Sci 13: 943349 – reference: Lin CY, Jakes JE, Donohoe BS, Ciesielski PN, Yang H, Gleber SC, Vogt S, Ding SY, Peer WA, Murphy AS, et al. (2016) Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion. Biotechnol Biofuels 9: 225 – reference: Almeida AM, Marchiosi R, Abrahão J, Constantin RP, dos Santos WD, Ferrarese-Filho O (2024) Revisiting the shikimate pathway and highlighting their enzyme inhibitors. Phytochem Rev 23: 421–457 – reference: Brandon AG, Scheller HV (2020) Engineering of bioenergy crops: Dominant genetic approaches to improve polysaccharide properties and composition in biomass. Front Plant Sci 11: 282 – reference: López-Malvar A, Butrón A, Samayoa LF, Figueroa-Garrido DJ, Malvar RA, Santiago R (2019) Genome-wide association analysis for maize stem cell wall-bound hydroxycinnamates. BMC Plant Biol 19: 519 – reference: Mottiar Y, Karlen SD, Goacher RE, Ralph J, Mansfield SD (2023a) Metabolic engineering of p-hydroxybenzoate in poplar lignin. Plant Biotechnol J 21: 176–188 – reference: Anders N, Wilson LFL, Sorieul M, Nikolovski N, Dupree P (2023) β-1, 4-Xylan backbone synthesis in higher plants: How complex can it be? Front Plant Sci 13: 1076298 – reference: Umezawa T, Tobimatsu Y, Yamamura M, Miyamoto T, Takeda Y, Koshiba T, Takada R, Lam PY, Suzuki S, Sakamoto M (2020) Lignin metabolic engineering in grasses for primary lignin valorization. Lignin 1: 30–41 – reference: Kim SJ, Kim MR, Bedgar DL, Moinuddin SG, Cardenas CL, Davin LB, Kang C, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci USA 101: 1455–1460 – reference: Carpita NC, McCann MC (2020) Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 295: 15144–15157 – reference: Petersen PD, Lau J, Ebert B, Yang F, Verhertbruggen Y, Kim JS, Varanasi P, Suttangkakul A, Auer M, Loqué D, et al. (2012) Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants. Biotechnol Biofuels 5: 84 – reference: Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, et al. (2023) Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. Nat Plants 9: 1530–1546 – reference: Ye ZH, Zhong R (2022) Outstanding questions on xylan biosynthesis. Plant Sci 325: 111476 – reference: Allen H, Wei D, Gu Y, Li S (2021) A historical perspective on the regulation of cellulose biosynthesis. Carbohydr Polym 252: 117022 – reference: Bhuiya MW, Liu CJ (2010) Engineering monolignol 4-O-methyltransferases to modulate lignin biosynthesis. J Biol Chem 285: 277–285 – reference: Lin CY, Vuu KM, Amer B, Shih PM, Baidoo EEK, Scheller HV, Eudes A (2021b) In-planta production of the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC): Stacking reduced biomass recalcitrance with value-added co-product. Metab Eng 66: 148–156 – reference: Mortimer JC (2019) Plant synthetic biology could drive a revolution in biofuels and medicine. Exp Biol Med (Maywood) 244: 323–331 – reference: Liu CJ, Eudes A (2022). Lignin synthesis and bioengineering approaches toward lignin modification. In: Sibout R (ed) Advances in botanical research 104. Elsevier, INC., Amsterdam, pp 41–96 – reference: Sibout R, Le Bris P, Legée F, Cézard L, Renault H, Lapierre C (2016) Structural redesigning Arabidopsis lignins into alkali-Soluble lignins through the expression of p-coumaroyl-CoA:Monolignol transferase PMT. Plant Physiol 170: 1358–1366 – reference: Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. lignin-cell wall matrix interactions. C R Biol 327: 455–465 – reference: Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep 8: 6538 – reference: Wang S, Bilal M, Hu H, Wang W, Zhang X (2018) 4-Hydroxybenzoic acid-a versatile platform intermediate for value-added compounds. Appl Microbiol Biotechnol 102: 3561–3571 – ident: 25 doi: 10.1021/jf800806h – ident: 6 doi: 10.1126/science.adh3856 – ident: 16 doi: 10.1038/ncomms11989 – ident: 54 doi: 10.1111/tpj.12745 – ident: 66 doi: 10.1007/s12155-015-9583-4 – ident: 115 doi: 10.1186/s13068-021-02026-5 – ident: 77 doi: 10.1016/j.molp.2022.12.015 – ident: 39 doi: 10.1186/s12870-021-02842-9 – ident: 45 doi: 10.1002/cssc.201903345 – ident: 107 doi: 10.3389/fpls.2013.00067 – ident: 20 doi: 10.1111/tpj.14196 – ident: 23 doi: 10.1093/plphys/kiab546 – ident: 49 doi: 10.1093/plphys/kiad549 – ident: 44 doi: 10.1038/s41467-018-08252-0 – ident: 69 doi: 10.1111/pbi.13935 – ident: 8 doi: 10.1016/j.copbio.2018.09.003 – ident: 17 doi: 10.1039/C4CP05004E – ident: 42 doi: 10.1126/sciadv.abo5738 – ident: 71 doi: 10.1016/j.copbio.2018.12.008 – ident: 47 doi: 10.3389/fpls.2019.01774 – ident: 89 doi: 10.1104/pp.15.00815 – ident: 67 doi: 10.1105/TPC.010063 – ident: 55 doi: 10.1039/D3RA01546G – ident: 62 doi: 10.1126/sciadv.adf7714 – ident: 57 doi: 10.1186/s13068-021-01891-4 – ident: 85 doi: 10.1046/j.1365-313X.2002.01221.x – ident: 40 doi: 10.3389/fpls.2016.02056 – ident: 27 doi: 10.1111/pbi.14186 – ident: 86 doi: 10.5650/jos.ess18075 – ident: 106 doi: 10.1093/jxb/ery208 – ident: 1 doi: 10.1128/JB.180.17.4387-4391.1998 – ident: 31 doi: 10.1093/pcp/pcw016 – ident: 36 doi: 10.1104/pp.15.00690 – ident: 88 doi: 10.1016/j.pbi.2010.03.001 – ident: 75 doi: 10.1038/s41477-022-01151-9 – ident: 12 doi: 10.3389/fpls.2020.00282 – ident: 74 doi: 10.1038/s41477-018-0350-3 – ident: 104 doi: 10.1126/science.1250161 – ident: 9 doi: 10.1021/acssuschemeng.6b00520 – ident: 11 doi: 10.1038/s41477-023-01459-0 – ident: 117 doi: 10.1105/tpc.112.101287 – ident: 72 doi: 10.3389/fpls.2019.00775 – ident: 116 doi: 10.1007/s11103-009-9482-1 – ident: 50 doi: 10.1111/tpj.12577 – ident: 92 doi: 10.62840/lignin.1.0_30 – ident: 59 doi: 10.1186/s13068-016-0639-2 – ident: 22 doi: 10.3389/fpls.2022.943349 – ident: 108 doi: 10.1111/pbi.12016 – ident: 3 doi: 10.1016/j.carbpol.2020.117022 – ident: 58 doi: 10.1186/s13068-020-01707-x – ident: 28 doi: 10.1111/nph.17349 – ident: 48 doi: 10.1073/pnas.0307987100 – ident: 64 doi: 10.1105/tpc.112.106625 – ident: 82 doi: 10.1002/anie.202003105 – ident: 114 doi: 10.1186/1754-6834-3-24 – ident: 51 doi: 10.1093/plphys/kiab359 – ident: 19 doi: 10.1073/pnas.1120992109 – ident: 2 doi: 10.1111/tpj.15390 – ident: 99 doi: 10.1007/s00253-018-8815-x – ident: 37 doi: 10.1016/j.plantsci.2019.02.004 – ident: 10 doi: 10.1074/jbc.M109.036673 – ident: 97 doi: 10.1016/j.pbi.2022.102313 – ident: 76 doi: 10.1111/j.1365-313X.2008.03463.x – ident: 110 doi: 10.1073/pnas.2122309119 – ident: 34 doi: 10.1111/tpj.16242 – ident: 30 doi: 10.3389/fpls.2023.1181035 – ident: 94 doi: 10.1111/j.1469-8137.2012.04337.x – ident: 98 doi: 10.1105/tpc.113.120881 – ident: 56 doi: 10.1093/jxb/erac147 – ident: 91 doi: 10.1111/tpj.12394 – ident: 26 doi: 10.1002/cctc.202200511 – ident: 105 doi: 10.1074/jbc.M111.284497 – ident: 29 doi: 10.1111/j.1467-7652.2012.00692.x – ident: 52 doi: 10.1093/pcp/pcp060 – ident: 7 doi: 10.1186/s13068-017-1007-6 – ident: 38 doi: 10.1016/j.crvi.2004.02.009 – ident: 96 doi: 10.1186/s13068-015-0379-8 – ident: 15 doi: 10.1074/jbc.M115.684217 – ident: 70 doi: 10.1111/nph.18518 – ident: 119 doi: 10.1002/cssc.201701317 – ident: 41 doi: 10.1093/plphys/kiac485 – ident: 103 doi: 10.1111/j.1365-313X.2010.04391.x – ident: 61 doi: 10.1016/j.ymben.2021.04.011 – ident: 112 doi: 10.1016/j.plantsci.2022.111476 – ident: 81 doi: 10.1016/j.copbio.2019.02.019 – ident: 18 doi: 10.1074/jbc.REV120.014561 – ident: 78 doi: 10.1186/1754-6834-5-84 – ident: 21 doi: 10.1104/pp.17.01462 – ident: 73 doi: 10.1038/s41598-018-24328-9 – ident: 46 doi: 10.1126/sciadv.1600393 – ident: 101 doi: 10.1186/1754-6834-4-48 – ident: 14 doi: 10.3389/fpls.2018.01893 – ident: 13 doi: 10.1105/tpc.105.031542 – ident: 32 doi: 10.3389/fbioe.2016.00058 – ident: 87 doi: 10.1104/pp.15.01877 – ident: 4 doi: 10.1007/s11101-023-09889-6 – ident: 100 doi: 10.1002/cssc.202101492 – ident: 24 doi: 10.1016/bs.abr.2022.02.001 – ident: 53 doi: 10.1371/journal.pone.0158906 – ident: 84 doi: 10.1146/annurev-arplant-042809-112315 – ident: 80 doi: 10.1002/9781119844792.ch1 – ident: 95 doi: 10.1038/s41477-019-0510-0 – ident: 109 doi: 10.1111/pbi.12557 – ident: 35 doi: 10.1186/s12870-014-0344-x – ident: 63 doi: 10.1016/bs.abr.2022.02.002 – ident: 90 doi: 10.1186/s13068-015-0403-z – ident: 93 doi: 10.1111/nph.18136 – ident: 118 doi: 10.1038/s41477-021-00975-1 – ident: 43 doi: 10.1007/s10570-023-05422-2 – ident: 83 doi: 10.1186/s13068-020-01736-6 – ident: 113 doi: 10.1016/j.pbi.2022.102219 – ident: 111 doi: 10.1016/j.tibtech.2022.09.007 – ident: 65 doi: 10.1186/s12870-019-2135-x – ident: 68 doi: 10.1177/1535370218793890 – ident: 33 doi: 10.1073/pnas.1914422117 – ident: 60 doi: 10.1016/j.mec.2022.e00207 – ident: 102 doi: 10.1016/j.biombioe.2014.11.022 – ident: 5 doi: 10.3389/fpls.2022.1076298 – ident: 79 doi: 10.1111/tpj.12420 |
SSID | ssj0025102 |
Score | 2.3503182 |
SecondaryResourceType | review_article |
Snippet | Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 213 |
SubjectTerms | Biology Biomass cell wall Cellulose Design factors Flowers & plants Hemicellulose Lignin Lignocellulose lignocellulose engineering Plant biomass Plants Polysaccharides Renewable resources Review |
Title | Synthetic-biology approach for plant lignocellulose engineering |
URI | https://www.jstage.jst.go.jp/article/plantbiotechnology/41/3/41_24.0630a/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/40115770 https://www.proquest.com/docview/3155530538 https://www.proquest.com/docview/3179856602 https://pubmed.ncbi.nlm.nih.gov/PMC11921142 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Plant Biotechnology, 2024/09/25, Vol.41(3), pp.213-230 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgfAgeEAwYgYGC4G1KN3_ki7cJbZqmUZDWSuUpchJnK62SaU0eyl_PnZ246aimwUsUOb7Euruc786-nwn5zLkKOeWpl-VB4YlUMi_lUnhxlopchwgSC5y_DYOTsTid-JPVtjFdXVKng-z3xrqS_5EqtIFcsUr2HyRrXwoNcA_yhStIGK53kvH5sgT_DZo9i6XUQoTr3YNXc2Db3nx6UVaYn2_muDddrQAI-47pD90XXlPbXDs6n6NqtjRrMzCplr20wc9qcTnNTT1Z1cymNlMjZxKkr2nOMbtVWZFO60VjKIZV2tTQsZ9yYAL3R5jyZDMd4Bet7cH8_moZYO9Ql4z2LCoXzBO-Oa5poLo2rE001aOdGTb4V6268U3WHZw7tO6aeWv8GDAxQOyw3qTWLeQPvyfH47OzZHQ0Gd0nDxgEE7zL6bRhOVglvSbeDfQx-dR-bP-WT635MQ9_gSt_oTZFKTc32_a8l9Fz8qwNO9xDo0MvyD1VbpNH5iDS5TZ52oOlfAkB3E29cju9ckGvXD1ed12v3J5evSLj46PR1xOvPWjDy4KI1R5TgkJYj6VCeZ4Wec78IpYZlSmNwjQoeMECGYs4okoxFkcyiiiNC0UzLhWmwl-TrbIq1Rvi5n6oAi6UXyAidJzFXOQyUlmIqEI5Fw750rEtyVoUejwMZZ5ANIo8T_7mecJEonnuEGGJrwwYy93ITo18LFH7x24iEjTheOmIbV-sggSj45DdTsZJawoWCQev3IeZk0cO-Wgfg6FGKchSVQ32CeMIgqcD5pAdoxJ2PAIDszA8cEi0piy2A4LArz8pp5caDJ4ioCEV7O3t43pHnqz-5F2yVV836j2403X6Qf8NfwDaFtgH |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic-biology+approach+for+plant+lignocellulose+engineering&rft.jtitle=Plant+biotechnology+%28Tokyo%2C+Japan%29&rft.au=Yoshida%2C+Kouki&rft.au=Sakamoto%2C+Shingo&rft.au=Mitsuda%2C+Nobutaka&rft.date=2024-09-25&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1342-4580&rft.eissn=1347-6114&rft.volume=41&rft.issue=3&rft_id=info:doi/10.5511%2Fplantbiotechnology.24.0630a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-4580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-4580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-4580&client=summon |