Probabilistic forecasts, calibration and sharpness
Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distribution...
Saved in:
Published in | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 69; no. 2; pp. 243 - 268 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.04.2007
Blackwell Publishing Ltd Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Series | Journal of the Royal Statistical Society Series B |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration. Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection. |
---|---|
AbstractList | Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration . Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection. Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration. Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection. Reprinted by permission of Blackwell Publishers Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of "maximizing the sharpness of the predictive distributions subject to calibration". Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection. Copyright 2007 Royal Statistical Society. |
Author | Balabdaoui, Fadoua Raftery, Adrian E. Gneiting, Tilmann |
Author_xml | – sequence: 1 fullname: Gneiting, Tilmann – sequence: 2 fullname: Balabdaoui, Fadoua – sequence: 3 fullname: Raftery, Adrian E |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18579548$$DView record in Pascal Francis http://econpapers.repec.org/article/blajorssb/v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243-268.htm$$DView record in RePEc https://hal.science/hal-01575138$$DView record in HAL |
BookMark | eNqNUttu1DAQjVCRaAt_gMQKCSQksvgSX_IAUi_QglaAui08jhyvwzpkk8XOlt2_Z7Kp8tCX4sieUeacM8n4HCUHTdu4JJlQMqW43lVTmkmV5lrqKSNETQkRWk23j5LDsXCAOZd5qjLKniRHMVYEl1T8MGHfQ1uYwtc-dt5OyjY4a2IX306sqX0RTOfbZmKaxSQuTVg3LsanyePS1NE9u4vHyc2nj9dnl-ns28Xns5NZaqVmKhUZzamkeUkNkzxb5IQxTSknpbKEFlplpaWSS8Pz_hGZtIuF5Ya4Ui90ueDHyZtBd2lqWAe_MmEHrfFweTKD_h2hQgnK9S1F7OsBuw7tn42LHax8tK6uTePaTYRMYW-ZiQeBXIqcSZEh8OU9YNVuQoM_DDjmXOQ5Zwj6MoCCWzs7fmRRm6oNMRZwC9zIHI8d7v56MPg-xb3uY8aBSQ3LboVir-46mojDL4NprI-jKNVC4ZQ04j4MOBvaGIMrwfpuf09dML4GSqB3BlTQGwB6A8C-9d4ZsEUBfU9g7PEw9f1A_etrt_tvHlzN56eYIf_5wK9i14aRn0nGmZRYTocyutFtx7IJvwHdqgT8_HoB5z-uT6_OUbYfxYsBX5oWzK-A47qZM4ImI0owojj_B5Wu79A |
CitedBy_id | crossref_primary_10_1016_j_adapen_2022_100120 crossref_primary_10_1088_1742_6596_1037_5_052010 crossref_primary_10_5194_hess_24_2017_2020 crossref_primary_10_1016_j_jhydrol_2023_129450 crossref_primary_10_1111_j_1541_0420_2010_01406_x crossref_primary_10_1214_16_STS588 crossref_primary_10_1175_WAF_D_20_0082_1 crossref_primary_10_1029_2023WR034942 crossref_primary_10_1016_j_agrformet_2019_107621 crossref_primary_10_1098_rsos_231832 crossref_primary_10_1214_14_AOAS785 crossref_primary_10_1002_qj_559 crossref_primary_10_1016_j_visinf_2022_04_002 crossref_primary_10_1063_5_0010003 crossref_primary_10_1016_j_ijforecast_2021_11_001 crossref_primary_10_1109_TASLP_2024_3492799 crossref_primary_10_1016_j_jhydrol_2015_01_051 crossref_primary_10_1190_geo2021_0318_1 crossref_primary_10_1214_21_EJS1808 crossref_primary_10_1175_JHM_D_11_036_1 crossref_primary_10_1111_rssa_12866 crossref_primary_10_1017_eds_2022_20 crossref_primary_10_1093_erae_jbaa030 crossref_primary_10_1016_j_jhydrol_2011_07_011 crossref_primary_10_1175_2010MWR3511_1 crossref_primary_10_1198_jasa_2011_tm09294 crossref_primary_10_1111_j_1467_985X_2011_01012_x crossref_primary_10_1016_j_wace_2021_100384 crossref_primary_10_1109_TPAMI_2022_3152862 crossref_primary_10_5194_esd_11_1033_2020 crossref_primary_10_1016_j_canep_2021_101935 crossref_primary_10_1016_j_vaccine_2022_02_054 crossref_primary_10_5194_npg_27_473_2020 crossref_primary_10_1002_wat2_1246 crossref_primary_10_1016_j_ijforecast_2023_06_001 crossref_primary_10_3847_1538_4357_abd101 crossref_primary_10_1016_j_proenv_2015_05_017 crossref_primary_10_3390_en10101591 crossref_primary_10_1785_0120200026 crossref_primary_10_1109_TPWRS_2012_2232314 crossref_primary_10_1175_WAF_D_17_0127_1 crossref_primary_10_3390_w14081261 crossref_primary_10_1175_2010MWR3446_1 crossref_primary_10_1175_MWR_D_16_0260_1 crossref_primary_10_1002_joc_6346 crossref_primary_10_1080_20476965_2023_2200526 crossref_primary_10_1016_j_dss_2021_113626 crossref_primary_10_2139_ssrn_1713162 crossref_primary_10_1007_s10260_015_0343_6 crossref_primary_10_1016_j_ocemod_2023_102275 crossref_primary_10_1029_2022GL099012 crossref_primary_10_1175_2009MWR3046_1 crossref_primary_10_5194_gmd_7_1197_2014 crossref_primary_10_1017_S1743921316013089 crossref_primary_10_2139_ssrn_3258627 crossref_primary_10_1109_TPWRS_2018_2858265 crossref_primary_10_1007_s10651_024_00606_w crossref_primary_10_1016_j_mbs_2016_11_016 crossref_primary_10_1016_j_jhydrol_2014_05_028 crossref_primary_10_1016_j_envsoft_2019_04_008 crossref_primary_10_1155_2020_2858471 crossref_primary_10_1175_2009JHM1188_1 crossref_primary_10_1214_13_EJS823 crossref_primary_10_1029_2020EA001152 crossref_primary_10_1002_jae_1192 crossref_primary_10_1016_j_jhydrol_2014_07_049 crossref_primary_10_1080_27678490_2021_1936825 crossref_primary_10_1002_joc_6996 crossref_primary_10_1371_journal_pone_0150087 crossref_primary_10_1111_anzs_12087 crossref_primary_10_5194_ascmo_5_1_2019 crossref_primary_10_1029_2023WR034992 crossref_primary_10_1214_08_BA329 crossref_primary_10_1016_j_apenergy_2023_122109 crossref_primary_10_1785_0220240209 crossref_primary_10_1214_23_EJS2180 crossref_primary_10_1111_jmcb_13105 crossref_primary_10_1016_j_acags_2022_100091 crossref_primary_10_1111_j_1467_9876_2011_00772_x crossref_primary_10_5194_hess_25_4159_2021 crossref_primary_10_1007_s11222_010_9173_4 crossref_primary_10_1111_j_1541_0420_2011_01621_x crossref_primary_10_1002_wrcr_20087 crossref_primary_10_1175_WAF_D_16_0137_1 crossref_primary_10_1007_s10618_024_01056_5 crossref_primary_10_1002_qj_2839 crossref_primary_10_1103_PhysRevE_89_032112 crossref_primary_10_1214_19_BA1180 crossref_primary_10_1080_01621459_2011_643197 crossref_primary_10_1007_s13524_012_0193_x crossref_primary_10_1145_3717413_3717429 crossref_primary_10_1016_j_apenergy_2024_124186 crossref_primary_10_1007_s11222_016_9700_z crossref_primary_10_1111_rssb_12061 crossref_primary_10_1109_TSTE_2016_2610523 crossref_primary_10_1109_TITS_2021_3096854 crossref_primary_10_1175_MWR_D_12_00285_1 crossref_primary_10_1214_22_EJS1989 crossref_primary_10_1016_j_apenergy_2020_116289 crossref_primary_10_1016_j_rser_2018_07_042 crossref_primary_10_1007_s13143_016_0034_8 crossref_primary_10_1093_mnras_stab164 crossref_primary_10_1016_j_atmosres_2022_106458 crossref_primary_10_1002_joc_6788 crossref_primary_10_1109_ACCESS_2020_3003265 crossref_primary_10_1002_bimj_202100408 crossref_primary_10_5194_hess_19_2535_2015 crossref_primary_10_1016_j_jhydrol_2014_07_054 crossref_primary_10_1016_j_solener_2024_112801 crossref_primary_10_1007_s10530_023_03062_y crossref_primary_10_3390_e20030208 crossref_primary_10_1080_01621459_2016_1273117 crossref_primary_10_1214_20_AOAS1347 crossref_primary_10_5194_wes_3_371_2018 crossref_primary_10_1002_we_230 crossref_primary_10_1109_TFUZZ_2019_2922152 crossref_primary_10_1002_env_2900 crossref_primary_10_1371_journal_pntd_0008422 crossref_primary_10_1016_j_insmatheco_2015_03_001 crossref_primary_10_5194_hess_21_1573_2017 crossref_primary_10_1016_j_ijforecast_2021_05_013 crossref_primary_10_1063_5_0084302 crossref_primary_10_3390_su11041048 crossref_primary_10_1061_IJGNAI_GMENG_9248 crossref_primary_10_1186_s12879_022_07794_5 crossref_primary_10_2139_ssrn_4350792 crossref_primary_10_1080_07350015_2024_2316091 crossref_primary_10_1198_jcgs_2010_08135 crossref_primary_10_1109_TNNLS_2023_3342138 crossref_primary_10_1016_j_rser_2014_01_033 crossref_primary_10_1109_TSTE_2021_3131522 crossref_primary_10_1214_15_EJS1094 crossref_primary_10_1515_strm_2020_0037 crossref_primary_10_1198_jbes_2010_08110 crossref_primary_10_1080_00031305_2021_1967781 crossref_primary_10_1002_qj_3052 crossref_primary_10_1016_j_ijforecast_2021_05_008 crossref_primary_10_1016_j_geoderma_2023_116585 crossref_primary_10_3390_risks7020062 crossref_primary_10_1186_s13705_020_00247_4 crossref_primary_10_1016_j_jhydrol_2019_124095 crossref_primary_10_1007_s11749_008_0114_x crossref_primary_10_5194_wes_7_2393_2022 crossref_primary_10_1016_j_envsoft_2023_105732 crossref_primary_10_1016_j_jcpx_2023_100133 crossref_primary_10_1002_bimj_201500263 crossref_primary_10_2166_nh_2023_024 crossref_primary_10_1029_2019GL083189 crossref_primary_10_1016_j_annals_2018_12_019 crossref_primary_10_1002_joc_7269 crossref_primary_10_1002_qre_2223 crossref_primary_10_3390_e21080762 crossref_primary_10_1002_2014WR016277 crossref_primary_10_1109_JSTARS_2018_2840491 crossref_primary_10_1002_met_2098 crossref_primary_10_1007_s00376_024_4219_2 crossref_primary_10_1016_j_engappai_2025_110246 crossref_primary_10_1175_JHM_D_14_0048_1 crossref_primary_10_1175_MWR_D_16_0351_1 crossref_primary_10_1515_em_2021_0007 crossref_primary_10_1016_j_ijforecast_2018_02_003 crossref_primary_10_1080_00401706_2023_2271017 crossref_primary_10_1049_oap_cired_2017_0625 crossref_primary_10_1016_j_jhydrol_2009_12_028 crossref_primary_10_1016_j_jhydrol_2021_127323 crossref_primary_10_1080_10618600_2018_1482761 crossref_primary_10_1007_s00181_019_01720_6 crossref_primary_10_1177_0962280219833079 crossref_primary_10_1002_sim_70029 crossref_primary_10_1186_s41118_016_0017_8 crossref_primary_10_1175_2008MWR2565_1 crossref_primary_10_5547_01956574_37_1_dbun crossref_primary_10_1111_geb_12666 crossref_primary_10_1080_01621459_2021_1938582 crossref_primary_10_1175_MWR_D_16_0331_1 crossref_primary_10_1016_j_oceaneng_2024_119199 crossref_primary_10_3390_math11010074 crossref_primary_10_2166_nh_2019_094 crossref_primary_10_2139_ssrn_4511273 crossref_primary_10_1002_asl_267 crossref_primary_10_1002_qre_3303 crossref_primary_10_1002_bimj_201000145 crossref_primary_10_1016_j_solener_2020_06_005 crossref_primary_10_1175_JHM_D_19_0246_1 crossref_primary_10_1016_j_ijforecast_2015_12_004 crossref_primary_10_1287_mnsc_1120_1667 crossref_primary_10_1186_s12874_024_02397_x crossref_primary_10_5194_hess_21_5493_2017 crossref_primary_10_1016_j_ejor_2021_07_040 crossref_primary_10_1198_TECH_2009_08104 crossref_primary_10_3847_1538_4357_ad5ff0 crossref_primary_10_3390_w9020074 crossref_primary_10_1016_j_ijforecast_2018_01_005 crossref_primary_10_1007_s11222_022_10090_6 crossref_primary_10_1175_WAF_D_20_0066_1 crossref_primary_10_1175_WAF_D_17_0091_1 crossref_primary_10_1016_j_solener_2018_10_019 crossref_primary_10_1016_j_advwatres_2021_104037 crossref_primary_10_1038_ngeo1788 crossref_primary_10_2139_ssrn_2371204 crossref_primary_10_1016_j_ijforecast_2015_11_003 crossref_primary_10_1175_MWR_D_14_00108_1 crossref_primary_10_1016_j_eneco_2019_104497 crossref_primary_10_1002_for_2908 crossref_primary_10_1038_s41467_021_25257_4 crossref_primary_10_1109_JSYST_2020_3027716 crossref_primary_10_1016_j_ijforecast_2023_09_007 crossref_primary_10_1038_s41467_021_25695_0 crossref_primary_10_3390_app9102048 crossref_primary_10_3390_app9102043 crossref_primary_10_1029_2018WR024028 crossref_primary_10_1088_1748_9326_ad2891 crossref_primary_10_1175_MWR_D_19_0184_1 crossref_primary_10_1214_23_SS145 crossref_primary_10_1371_journal_pcbi_1012523 crossref_primary_10_1093_mnras_sty2922 crossref_primary_10_1080_1331677X_2021_1974921 crossref_primary_10_1016_j_jhydrol_2021_126676 crossref_primary_10_5194_npg_28_467_2021 crossref_primary_10_1016_j_envsoft_2013_12_008 crossref_primary_10_1111_j_1467_9868_2009_00726_x crossref_primary_10_1175_JHM_D_18_0105_1 crossref_primary_10_1109_ACCESS_2018_2877735 crossref_primary_10_1109_TSP_2019_2954973 crossref_primary_10_1016_j_jcp_2022_111902 crossref_primary_10_1016_j_frl_2023_104036 crossref_primary_10_1175_JAMC_D_13_0162_1 crossref_primary_10_1080_02626667_2023_2231437 crossref_primary_10_1371_journal_pcbi_1010771 crossref_primary_10_1016_j_csda_2011_04_013 crossref_primary_10_2139_ssrn_2807764 crossref_primary_10_1016_j_envsoft_2012_02_008 crossref_primary_10_1002_qj_4403 crossref_primary_10_1016_j_ijforecast_2010_07_004 crossref_primary_10_3390_app12189007 crossref_primary_10_1002_qj_4647 crossref_primary_10_1007_s00703_015_0426_9 crossref_primary_10_1080_10618600_2025_2458504 crossref_primary_10_1175_WAF_D_11_00022_1 crossref_primary_10_3201_eid2803_210267 crossref_primary_10_3390_en13133427 crossref_primary_10_1088_1757_899X_546_5_052014 crossref_primary_10_1002_jae_2810 crossref_primary_10_1002_met_1818 crossref_primary_10_12688_wellcomeopenres_19380_2 crossref_primary_10_12688_wellcomeopenres_19380_1 crossref_primary_10_20965_jaciii_2020_p0477 crossref_primary_10_1111_j_1541_0420_2009_01191_x crossref_primary_10_1016_j_rser_2021_111909 crossref_primary_10_1002_env_2742 crossref_primary_10_1016_j_ijforecast_2011_02_003 crossref_primary_10_1080_00295639_2020_1759310 crossref_primary_10_2139_ssrn_1504209 crossref_primary_10_1103_PhysRevLett_122_062502 crossref_primary_10_2139_ssrn_2566304 crossref_primary_10_1016_j_ejor_2021_06_044 crossref_primary_10_1111_rssa_12176 crossref_primary_10_1214_22_STS864 crossref_primary_10_1111_rssc_12153 crossref_primary_10_1016_j_solener_2021_07_010 crossref_primary_10_1214_24_EJS2316 crossref_primary_10_1175_MWR_D_16_0487_1 crossref_primary_10_1007_s10479_015_1846_0 crossref_primary_10_1093_biomet_asab047 crossref_primary_10_5194_ascmo_5_87_2019 crossref_primary_10_1016_j_jhydrol_2022_128432 crossref_primary_10_1002_sim_3758 crossref_primary_10_1093_jjfinec_nbt001 crossref_primary_10_3390_app13116520 crossref_primary_10_1016_j_jhydrol_2021_127285 crossref_primary_10_1109_TIA_2014_2300188 crossref_primary_10_1109_TII_2016_2569531 crossref_primary_10_1109_TIV_2017_2723823 crossref_primary_10_1016_j_cageo_2011_08_023 crossref_primary_10_1038_s41598_023_46568_0 crossref_primary_10_1038_s41598_024_67629_y crossref_primary_10_3389_fmars_2022_896961 crossref_primary_10_1016_j_seja_2024_100063 crossref_primary_10_1016_j_ijforecast_2024_05_003 crossref_primary_10_1111_j_1467_985X_2009_00616_x crossref_primary_10_1190_geo2022_0061_1 crossref_primary_10_1029_2011WR010748 crossref_primary_10_1002_qj_4436 crossref_primary_10_1002_env_2766 crossref_primary_10_1016_j_renene_2022_10_122 crossref_primary_10_1080_10618600_2018_1476252 crossref_primary_10_1109_TSE_2024_3388572 crossref_primary_10_3389_fpsyt_2023_1181740 crossref_primary_10_1038_s41524_024_01286_7 crossref_primary_10_1080_02664760902984642 crossref_primary_10_1016_j_rser_2022_112348 crossref_primary_10_1093_biomet_asx004 crossref_primary_10_1002_jrsm_1475 crossref_primary_10_1007_s13253_019_00358_2 crossref_primary_10_1093_jrsssc_qlaf011 crossref_primary_10_1002_2016WR019168 crossref_primary_10_1016_j_solener_2022_10_062 crossref_primary_10_1287_deca_2019_0399 crossref_primary_10_1002_qj_3115 crossref_primary_10_1175_2007MWR2411_1 crossref_primary_10_5194_ascmo_3_1_2017 crossref_primary_10_1016_j_solener_2019_10_041 crossref_primary_10_3390_en80910293 crossref_primary_10_1002_qre_2973 crossref_primary_10_1175_JCLI_D_18_0224_1 crossref_primary_10_1111_j_1467_985X_2007_00522_x crossref_primary_10_1080_01621459_2011_643745 crossref_primary_10_1198_jasa_2009_ap08615 crossref_primary_10_1287_deca_2019_0391 crossref_primary_10_1002_qj_2284 crossref_primary_10_2139_ssrn_2474438 crossref_primary_10_1016_j_atmosenv_2022_119259 crossref_primary_10_1016_j_econmod_2017_07_015 crossref_primary_10_1080_10618600_2024_2341899 crossref_primary_10_1109_TSG_2015_2424078 crossref_primary_10_1109_TPWRS_2016_2552983 crossref_primary_10_1016_j_ijepes_2021_107443 crossref_primary_10_1175_JHM_D_18_0027_1 crossref_primary_10_1214_18_AOAS1151 crossref_primary_10_1002_qj_3380 crossref_primary_10_1109_TSG_2016_2527820 crossref_primary_10_1021_acs_est_8b06326 crossref_primary_10_1007_s12667_017_0255_7 crossref_primary_10_3150_20_BEJ1298 crossref_primary_10_1371_journal_pone_0146247 crossref_primary_10_1175_JCLI_D_16_0652_1 crossref_primary_10_1137_17M1158860 crossref_primary_10_1186_1756_3305_4_230 crossref_primary_10_1002_met_1409 crossref_primary_10_1146_annurev_statistics_040722_053607 crossref_primary_10_1016_j_advwatres_2012_04_009 crossref_primary_10_2139_ssrn_1907799 crossref_primary_10_1016_j_ijforecast_2018_08_003 crossref_primary_10_1002_wrcr_20542 crossref_primary_10_1088_2632_2153_accace crossref_primary_10_1002_2014WR016473 crossref_primary_10_1016_j_future_2018_04_002 crossref_primary_10_1002_we_2553 crossref_primary_10_1073_pnas_1619938114 crossref_primary_10_1002_jae_3056 crossref_primary_10_1371_journal_pcbi_1008618 crossref_primary_10_1002_2014WR016617 crossref_primary_10_1016_j_ijforecast_2025_01_003 crossref_primary_10_1029_2006RG000202 crossref_primary_10_1002_qj_2624 crossref_primary_10_1002_qj_3718 crossref_primary_10_1016_j_rser_2021_111736 crossref_primary_10_1111_j_1751_5823_2011_00168_x crossref_primary_10_1016_j_rser_2023_113915 crossref_primary_10_1109_OAJPE_2020_3029979 crossref_primary_10_1002_env_1023 crossref_primary_10_1113_JP271671 crossref_primary_10_1002_qj_3952 crossref_primary_10_3847_1538_4357_aba2f2 crossref_primary_10_1007_s13253_018_0319_8 crossref_primary_10_1016_j_jhydrol_2017_10_038 crossref_primary_10_2139_ssrn_2602465 crossref_primary_10_1175_MWR_D_14_00312_1 crossref_primary_10_1016_j_spasta_2018_12_005 crossref_primary_10_1016_j_cma_2022_115396 crossref_primary_10_5194_hess_22_2953_2018 crossref_primary_10_1016_j_jcmds_2022_100063 crossref_primary_10_1007_s13253_011_0074_6 crossref_primary_10_1371_journal_pone_0247265 crossref_primary_10_1017_dce_2023_11 crossref_primary_10_1111_biom_13467 crossref_primary_10_3390_forecast4020028 crossref_primary_10_1016_j_ecoinf_2024_102825 crossref_primary_10_5194_hess_22_3533_2018 crossref_primary_10_1007_s13209_024_00297_3 crossref_primary_10_1007_s10260_020_00517_7 crossref_primary_10_1109_TII_2022_3180399 crossref_primary_10_3390_w8040125 crossref_primary_10_1080_14697688_2017_1383626 crossref_primary_10_1080_07350015_2024_2360592 crossref_primary_10_1109_JSEN_2018_2850804 crossref_primary_10_1016_j_asieco_2018_10_005 crossref_primary_10_1214_12_AOS973 crossref_primary_10_1007_s00477_022_02255_6 crossref_primary_10_1016_j_asjsur_2019_03_019 crossref_primary_10_1016_j_ijforecast_2012_10_005 crossref_primary_10_5194_nhess_24_2359_2024 crossref_primary_10_1051_swsc_2019016 crossref_primary_10_1007_s13351_011_0304_4 crossref_primary_10_1002_for_3120 crossref_primary_10_1214_11_AOAS497 crossref_primary_10_5194_hess_20_3601_2016 crossref_primary_10_1214_23_AOAS1810 crossref_primary_10_1016_j_wneu_2022_02_030 crossref_primary_10_1016_j_jhydrol_2017_10_057 crossref_primary_10_1029_2022JD037776 crossref_primary_10_1016_j_apenergy_2016_08_108 crossref_primary_10_1111_gean_12264 crossref_primary_10_1016_j_solener_2022_12_054 crossref_primary_10_1002_met_1435 crossref_primary_10_1016_j_ijforecast_2023_12_005 crossref_primary_10_1175_2007MWR2219_1 crossref_primary_10_1002_sim_9219 crossref_primary_10_1016_j_csda_2018_04_008 crossref_primary_10_5194_wes_5_1449_2020 crossref_primary_10_1002_for_1194 crossref_primary_10_1016_j_omega_2014_08_008 crossref_primary_10_1016_j_renene_2020_05_046 crossref_primary_10_1016_j_ijforecast_2023_12_003 crossref_primary_10_1109_TSTE_2020_2993524 crossref_primary_10_1002_qj_3983 crossref_primary_10_1287_deca_2013_0282 crossref_primary_10_1002_env_2368 crossref_primary_10_1155_2021_6655102 crossref_primary_10_5194_npg_27_35_2020 crossref_primary_10_1080_01621459_2016_1205501 crossref_primary_10_3390_stats7020031 crossref_primary_10_1098_rsif_2022_0659 crossref_primary_10_1007_s00780_020_00446_z crossref_primary_10_1007_s11222_025_10597_8 crossref_primary_10_1016_j_jeconom_2011_02_017 crossref_primary_10_1007_s00382_011_1191_1 crossref_primary_10_1007_s12652_023_04665_y crossref_primary_10_1007_s41096_025_00231_1 crossref_primary_10_1214_08_AOAS203 crossref_primary_10_1175_2008MWR2614_1 crossref_primary_10_3389_fenrg_2023_1296957 crossref_primary_10_3390_forecast3020022 crossref_primary_10_2139_ssrn_2593062 crossref_primary_10_1007_s10489_024_05346_9 crossref_primary_10_1016_j_patcog_2022_108536 crossref_primary_10_1016_j_apenergy_2023_121775 crossref_primary_10_1002_qj_4844 crossref_primary_10_1002_we_284 crossref_primary_10_1139_cjce_2014_0361 crossref_primary_10_2514_atcq_18_3_229 crossref_primary_10_1016_j_jcp_2025_113722 crossref_primary_10_1002_env_2315 crossref_primary_10_1155_2022_9186265 crossref_primary_10_3390_w11102126 crossref_primary_10_2166_hydro_2020_074 crossref_primary_10_1111_j_1467_9876_2009_00700_x crossref_primary_10_1214_13_AOAS709 crossref_primary_10_1175_2010MWR3305_1 crossref_primary_10_1175_MWR_D_14_00269_1 crossref_primary_10_1109_ACCESS_2024_3412807 crossref_primary_10_1017_S0950268824000876 crossref_primary_10_1214_23_BA1401 crossref_primary_10_1214_20_AOAS1405 crossref_primary_10_1002_2017WR020684 crossref_primary_10_1007_s00376_023_3184_5 crossref_primary_10_1002_qj_3521 crossref_primary_10_1111_j_1467_9876_2011_01026_x crossref_primary_10_1162_tacl_a_00483 crossref_primary_10_5194_gmd_15_251_2022 crossref_primary_10_1109_OJVT_2021_3065529 crossref_primary_10_1080_27678490_2022_2063080 crossref_primary_10_1016_j_soard_2019_03_006 crossref_primary_10_1186_s12917_016_0914_2 crossref_primary_10_1007_s00477_024_02754_8 crossref_primary_10_3390_atmos11080823 crossref_primary_10_1007_s11004_021_09988_0 crossref_primary_10_1007_s10651_008_0099_3 crossref_primary_10_1017_eds_2023_7 crossref_primary_10_2139_ssrn_2984522 crossref_primary_10_1080_07350015_2015_1087856 crossref_primary_10_1007_s42519_024_00376_5 crossref_primary_10_1016_j_amar_2023_100303 crossref_primary_10_1002_we_1872 crossref_primary_10_1016_j_ijforecast_2024_06_005 crossref_primary_10_1080_01621459_2020_1769634 crossref_primary_10_3390_w8040115 crossref_primary_10_1109_TPWRS_2010_2045774 crossref_primary_10_1109_TSTE_2014_2323851 crossref_primary_10_1016_j_ejor_2016_10_041 crossref_primary_10_1111_j_1467_985X_2012_01085_x crossref_primary_10_1016_j_ijforecast_2009_09_009 crossref_primary_10_1287_mnsc_2017_2936 crossref_primary_10_1016_j_jhydrol_2025_133005 crossref_primary_10_1016_j_jhydrol_2012_11_019 crossref_primary_10_1002_for_2242 crossref_primary_10_1109_TITS_2016_2620483 crossref_primary_10_1175_2008JHM956_1 crossref_primary_10_1111_rssc_12103 crossref_primary_10_5194_hess_25_1033_2021 crossref_primary_10_1016_j_solener_2021_05_050 crossref_primary_10_1002_qj_4635 crossref_primary_10_3390_forecast4010004 crossref_primary_10_3390_rs10111701 crossref_primary_10_5194_nhess_23_2857_2023 crossref_primary_10_1002_2014GL062472 crossref_primary_10_1016_j_aap_2020_105510 crossref_primary_10_1021_es302475v crossref_primary_10_1002_sam_11535 crossref_primary_10_1007_s00477_012_0563_3 crossref_primary_10_1175_MWR_D_14_00210_1 crossref_primary_10_1145_3533382 crossref_primary_10_1002_we_526 crossref_primary_10_1080_10618600_2020_1807996 crossref_primary_10_1080_10618600_2024_2308219 crossref_primary_10_1371_journal_pntd_0006526 crossref_primary_10_1002_qj_2906 crossref_primary_10_1103_PhysRevE_96_022121 crossref_primary_10_1016_j_wace_2017_10_003 crossref_primary_10_1109_TSTE_2018_2831238 crossref_primary_10_1126_sciadv_abg4778 crossref_primary_10_1175_MWR_D_17_0364_1 crossref_primary_10_1111_manc_12298 crossref_primary_10_1016_j_eneco_2022_106125 crossref_primary_10_1016_j_ijforecast_2013_09_009 crossref_primary_10_1016_j_apenergy_2023_122438 crossref_primary_10_1029_2020WR028392 crossref_primary_10_1175_MWR_D_15_0073_1 crossref_primary_10_1016_j_jbankfin_2020_105817 crossref_primary_10_1016_j_energ_2024_100005 crossref_primary_10_1016_j_jhydrol_2021_126520 crossref_primary_10_1002_we_309 crossref_primary_10_1093_biomet_ast020 crossref_primary_10_1200_PO_22_00606 crossref_primary_10_1016_j_energy_2022_123894 crossref_primary_10_1016_j_energy_2022_124744 crossref_primary_10_1109_TPWRS_2017_2775188 crossref_primary_10_3390_atmos12020253 crossref_primary_10_5194_hess_27_4529_2023 crossref_primary_10_1016_j_najef_2010_09_001 crossref_primary_10_1017_S1930297500007099 crossref_primary_10_1080_00401706_2024_2343062 crossref_primary_10_3390_ijerph17041381 crossref_primary_10_1016_j_apm_2020_12_043 crossref_primary_10_3847_1538_4357_ad452f crossref_primary_10_1016_j_jhydrol_2016_02_036 crossref_primary_10_1287_mnsc_2015_2389 crossref_primary_10_1016_j_spasta_2021_100524 crossref_primary_10_1016_j_infsof_2019_08_006 crossref_primary_10_1038_s41598_023_43024_x crossref_primary_10_1016_j_jhydrol_2018_05_029 crossref_primary_10_1175_MWR_D_15_0227_1 crossref_primary_10_1002_sam_11302 crossref_primary_10_1002_sta4_25 crossref_primary_10_5802_crgeos_160 crossref_primary_10_1016_j_atmosenv_2020_118146 crossref_primary_10_1109_TSG_2022_3171499 crossref_primary_10_1111_rssb_12154 crossref_primary_10_1175_2010MWR3129_1 crossref_primary_10_1371_journal_pwat_0000040 crossref_primary_10_1016_j_enggeo_2021_106288 crossref_primary_10_1214_11_AOS948 crossref_primary_10_1016_j_ijforecast_2020_02_001 crossref_primary_10_1002_met_2157 crossref_primary_10_1016_j_ecosta_2022_03_001 crossref_primary_10_1016_j_ijforecast_2019_06_003 crossref_primary_10_1016_j_apenergy_2024_124080 crossref_primary_10_1016_j_ejor_2017_08_056 crossref_primary_10_1515_revce_2024_0028 crossref_primary_10_1177_0738894210388125 crossref_primary_10_1146_annurev_statistics_032921_020240 crossref_primary_10_1080_10618600_2014_977447 crossref_primary_10_5194_tc_15_5169_2021 crossref_primary_10_1016_j_jhydrol_2011_01_013 crossref_primary_10_1002_wat2_1580 crossref_primary_10_1016_j_solener_2020_03_095 crossref_primary_10_2139_ssrn_4052357 crossref_primary_10_1175_MWR_D_15_0260_1 crossref_primary_10_2139_ssrn_2998535 crossref_primary_10_5194_hess_23_723_2019 crossref_primary_10_1016_j_apenergy_2024_125168 crossref_primary_10_1016_j_ijforecast_2022_12_006 crossref_primary_10_1175_2011MWR3659_1 crossref_primary_10_1002_qj_3806 crossref_primary_10_5194_acp_24_1673_2024 crossref_primary_10_1002_env_2380 crossref_primary_10_1093_gji_ggac056 crossref_primary_10_1002_cjs_11574 crossref_primary_10_1002_qj_2716 crossref_primary_10_1007_s00024_025_03682_6 crossref_primary_10_5194_ascmo_7_53_2021 crossref_primary_10_1017_eds_2023_22 crossref_primary_10_1021_acs_jcim_9b00975 crossref_primary_10_1111_jpg_12771 crossref_primary_10_1214_17_AOAS1104 crossref_primary_10_1016_j_sste_2017_12_002 crossref_primary_10_1214_13_STS445 crossref_primary_10_1002_qj_1873 crossref_primary_10_1002_env_2176 crossref_primary_10_1214_13_STS443 crossref_primary_10_5194_wes_7_2099_2022 crossref_primary_10_1002_ajae_12075 crossref_primary_10_1080_01621459_2016_1141685 crossref_primary_10_1016_j_jhydrol_2021_126966 crossref_primary_10_1002_ffo2_189 crossref_primary_10_1007_s10479_022_04913_y crossref_primary_10_1175_JHM_D_21_0099_1 crossref_primary_10_1016_j_envsoft_2010_01_009 crossref_primary_10_1214_21_AOS2160 crossref_primary_10_1103_PhysRevResearch_6_033266 crossref_primary_10_1016_j_ecosta_2019_03_003 crossref_primary_10_1109_TPWRS_2024_3381472 crossref_primary_10_1007_s11222_022_10154_7 crossref_primary_10_1214_12_AOAS579 crossref_primary_10_1109_TSG_2023_3254890 crossref_primary_10_1016_j_acags_2024_100161 crossref_primary_10_1093_infdis_jiw375 crossref_primary_10_1007_s00477_016_1329_0 crossref_primary_10_1016_j_ijforecast_2023_01_003 crossref_primary_10_3390_en14061679 crossref_primary_10_1029_2017WR022432 crossref_primary_10_1016_j_ijforecast_2020_03_007 crossref_primary_10_1287_deca_2016_0337 crossref_primary_10_1109_TITS_2024_3375936 crossref_primary_10_1175_WAF_D_20_0217_1 crossref_primary_10_1186_s40537_021_00494_y crossref_primary_10_1016_j_ijepes_2024_110244 crossref_primary_10_3847_1538_4357_ad0559 crossref_primary_10_1016_j_ijforecast_2020_11_001 crossref_primary_10_1016_j_renene_2015_02_022 crossref_primary_10_14778_3685800_3685813 crossref_primary_10_1016_j_ijforecast_2020_11_002 crossref_primary_10_1016_j_epidem_2025_100819 crossref_primary_10_1109_TSTE_2018_2858777 crossref_primary_10_1016_j_epidem_2025_100817 crossref_primary_10_1007_s13253_019_00369_z crossref_primary_10_1016_j_renene_2014_08_060 crossref_primary_10_1016_j_geoderma_2018_06_007 crossref_primary_10_1007_s11749_013_0320_z crossref_primary_10_5194_hess_20_4117_2016 crossref_primary_10_1002_eap_2904 crossref_primary_10_1016_j_jhydrol_2021_126578 crossref_primary_10_1080_23737484_2024_2318847 crossref_primary_10_1007_s00382_022_06182_8 crossref_primary_10_1002_qj_3185 crossref_primary_10_1016_j_ijforecast_2019_04_019 crossref_primary_10_1080_02626667_2021_1998510 crossref_primary_10_1080_02664763_2023_2272226 crossref_primary_10_1016_j_jretai_2021_05_003 crossref_primary_10_1371_journal_pone_0166724 crossref_primary_10_1002_aepp_13445 crossref_primary_10_1016_j_apenergy_2011_11_004 crossref_primary_10_1080_02626667_2017_1410278 crossref_primary_10_1175_WAF_D_18_0093_1 crossref_primary_10_1109_TSTE_2017_2782089 crossref_primary_10_1175_JHM_D_20_0019_1 crossref_primary_10_1016_j_jenvman_2020_111075 crossref_primary_10_1111_geb_13819 crossref_primary_10_1016_j_apenergy_2011_12_040 crossref_primary_10_1109_TSG_2013_2280650 crossref_primary_10_2139_ssrn_1684444 crossref_primary_10_1007_s00477_020_01928_4 crossref_primary_10_16993_tellusa_96 crossref_primary_10_1016_j_ijforecast_2022_06_005 crossref_primary_10_1109_JBHI_2023_3309302 crossref_primary_10_1016_j_rser_2017_05_234 crossref_primary_10_1093_biomtc_ujae107 crossref_primary_10_1016_j_jspi_2013_05_012 crossref_primary_10_1080_00401706_2024_2350421 crossref_primary_10_1016_j_eswa_2021_115872 crossref_primary_10_1093_biomet_asp054 crossref_primary_10_1002_bimj_201200037 crossref_primary_10_1029_2018WR023254 crossref_primary_10_1002_we_2195 crossref_primary_10_1109_TPWRS_2018_2861705 crossref_primary_10_1016_j_ijar_2020_12_007 crossref_primary_10_2139_ssrn_3476461 crossref_primary_10_1080_07011784_2022_2163189 crossref_primary_10_1515_strm_2015_0007 crossref_primary_10_3402_tellusa_v68_28393 crossref_primary_10_1007_s40808_022_01483_7 crossref_primary_10_1016_j_autcon_2023_104808 crossref_primary_10_1016_j_asoc_2022_109010 crossref_primary_10_1080_01605682_2022_2115411 crossref_primary_10_1016_j_jhydrol_2022_127912 crossref_primary_10_1063_5_0128131 crossref_primary_10_3390_w12082119 crossref_primary_10_1080_01621459_2020_1736081 crossref_primary_10_2166_nh_2018_177 crossref_primary_10_1109_TPWRS_2013_2288100 crossref_primary_10_1175_MWR_D_18_0369_1 crossref_primary_10_5194_hess_22_2057_2018 crossref_primary_10_1109_TPWRS_2021_3050837 crossref_primary_10_1016_j_jhydrol_2019_04_073 crossref_primary_10_1371_journal_pone_0151217 crossref_primary_10_1007_s00477_022_02239_6 crossref_primary_10_1016_j_ijforecast_2014_03_014 crossref_primary_10_1007_s12667_021_00486_0 crossref_primary_10_1029_2023WR035331 crossref_primary_10_1371_journal_pone_0315429 crossref_primary_10_1134_S1063773718120058 crossref_primary_10_1214_12_AOAS538 crossref_primary_10_1016_j_renene_2023_118993 crossref_primary_10_1007_s11749_008_0122_x crossref_primary_10_1029_2010WR009333 crossref_primary_10_1287_opre_2021_0792 crossref_primary_10_1007_s00477_020_01783_3 crossref_primary_10_2139_ssrn_1326464 crossref_primary_10_1016_j_ijforecast_2022_07_003 crossref_primary_10_1109_TSG_2021_3107159 crossref_primary_10_1214_12_AOAS554 crossref_primary_10_3390_risks5010002 crossref_primary_10_1002_jwmg_22227 crossref_primary_10_1093_jjfinec_nbz018 crossref_primary_10_1214_08_AOS597 crossref_primary_10_1175_WAF_D_20_0141_1 crossref_primary_10_3390_en5030621 crossref_primary_10_1175_WAF_D_12_00062_1 crossref_primary_10_1002_wcc_914 crossref_primary_10_1175_2009MWR3138_1 crossref_primary_10_1175_MWR_D_19_0217_1 crossref_primary_10_2118_212834_PA crossref_primary_10_1039_D4DD00174E crossref_primary_10_1214_12_AOAS564 crossref_primary_10_1214_12_AOAS563 crossref_primary_10_1287_deca_2021_0446 crossref_primary_10_1002_jae_2556 crossref_primary_10_1002_eap_70004 crossref_primary_10_1080_02664763_2021_1981833 crossref_primary_10_1016_j_jhydrol_2021_126798 crossref_primary_10_1088_1361_6471_ab907c crossref_primary_10_1111_jfir_12189 crossref_primary_10_2139_ssrn_2825380 crossref_primary_10_1214_11_AOS902 crossref_primary_10_1103_PhysRevC_98_034318 crossref_primary_10_1016_j_ijforecast_2009_12_015 crossref_primary_10_1080_10618600_2021_1872581 crossref_primary_10_1016_j_envsoft_2024_105981 crossref_primary_10_1016_j_csda_2016_06_018 crossref_primary_10_1175_MWR_D_12_00028_1 crossref_primary_10_1063_5_0214733 crossref_primary_10_3390_fire3020016 crossref_primary_10_1007_s11222_023_10212_8 crossref_primary_10_1021_acs_analchem_2c02034 crossref_primary_10_1016_j_physd_2012_01_007 crossref_primary_10_1016_j_apenergy_2016_11_111 crossref_primary_10_1080_00949655_2013_823612 crossref_primary_10_1002_ecm_1314 crossref_primary_10_1111_rssc_12250 crossref_primary_10_1175_2008MWR2579_1 crossref_primary_10_1007_s00362_024_01641_2 crossref_primary_10_1080_02664763_2023_2252208 crossref_primary_10_2166_nh_2022_063 crossref_primary_10_1175_JHM_D_19_0282_1 crossref_primary_10_3390_w10020177 crossref_primary_10_1016_j_apenergy_2020_115975 crossref_primary_10_1038_nclimate3041 crossref_primary_10_1109_TSTE_2021_3069111 crossref_primary_10_1029_2022WR032117 crossref_primary_10_3390_risks12010013 crossref_primary_10_5194_esd_13_1059_2022 crossref_primary_10_1016_j_solener_2024_112422 crossref_primary_10_1175_JCLI_D_13_00565_1 crossref_primary_10_1016_j_nucengdes_2019_110173 crossref_primary_10_1214_19_AOAS1247 crossref_primary_10_1007_s11707_019_0773_9 crossref_primary_10_1016_j_advwatres_2019_103471 crossref_primary_10_1080_02664760802192981 crossref_primary_10_1021_acs_analchem_8b04033 crossref_primary_10_1002_env_2864 crossref_primary_10_1016_j_advwatres_2019_103470 crossref_primary_10_1029_2011WR010643 crossref_primary_10_1073_pnas_1606316113 crossref_primary_10_20965_jaciii_2019_p0667 crossref_primary_10_1007_s10479_022_04611_9 crossref_primary_10_1007_s10182_010_0139_9 crossref_primary_10_2196_39336 crossref_primary_10_1016_j_enconman_2022_116297 crossref_primary_10_1016_j_spasta_2019_100398 crossref_primary_10_1109_TIA_2016_2518995 crossref_primary_10_1214_23_AOAS1784 crossref_primary_10_1016_j_agrformet_2022_109116 crossref_primary_10_2166_nh_2021_045 crossref_primary_10_1016_j_jhydrol_2019_04_022 crossref_primary_10_1109_TIT_2022_3143764 crossref_primary_10_1214_22_AOAS1697 crossref_primary_10_1002_env_2411 crossref_primary_10_1088_1742_6596_2265_2_022047 crossref_primary_10_1002_env_2894 crossref_primary_10_1175_MWR_D_19_0046_1 crossref_primary_10_1214_22_AOAS1693 crossref_primary_10_3390_atmos11030291 crossref_primary_10_17016_feds_2018_021 crossref_primary_10_1214_22_AOAS1679 crossref_primary_10_1080_16000870_2017_1327766 crossref_primary_10_1214_22_EJS2062 crossref_primary_10_1007_s11749_008_0116_8 crossref_primary_10_1175_MWR_D_18_0187_1 crossref_primary_10_1103_PhysRevE_99_032307 crossref_primary_10_1111_anzs_12230 crossref_primary_10_1016_j_csda_2014_02_008 crossref_primary_10_1214_23_AOAS1768 crossref_primary_10_1002_ecy_3431 crossref_primary_10_3402_tellusa_v65i0_21206 crossref_primary_10_1088_2632_2153_ad594a crossref_primary_10_1002_2014WR015462 crossref_primary_10_1109_TVT_2019_2918544 crossref_primary_10_1214_14_EJS964 crossref_primary_10_1214_22_AOAS1683 crossref_primary_10_1109_TSTE_2018_2841938 crossref_primary_10_1002_qj_3242 crossref_primary_10_1016_j_compchemeng_2021_107446 crossref_primary_10_1016_j_rser_2022_112224 crossref_primary_10_1002_qj_2397 crossref_primary_10_1093_mnras_stae2607 crossref_primary_10_1137_140957998 crossref_primary_10_5194_hess_24_1_2020 crossref_primary_10_1016_j_solener_2020_05_020 crossref_primary_10_1080_14697688_2017_1414491 crossref_primary_10_1177_1471082X18759140 crossref_primary_10_1002_jae_2959 crossref_primary_10_1016_j_egyai_2023_100269 crossref_primary_10_1186_s12874_021_01226_9 crossref_primary_10_1002_env_2830 crossref_primary_10_1109_TPWRS_2012_2187803 crossref_primary_10_1214_22_AOAS1671 crossref_primary_10_1002_env_2833 crossref_primary_10_1002_met_1971 crossref_primary_10_3390_ijerph20043040 crossref_primary_10_5194_nhess_13_1161_2013 crossref_primary_10_1175_WAF_D_18_0149_1 crossref_primary_10_1214_17_EJS1244 crossref_primary_10_1214_19_AOAS1281 crossref_primary_10_2139_ssrn_3372151 crossref_primary_10_1016_j_apenergy_2016_05_025 crossref_primary_10_2139_ssrn_4175343 crossref_primary_10_1016_j_jhydrol_2020_124812 crossref_primary_10_5194_hess_22_6591_2018 crossref_primary_10_1002_hyp_9263 crossref_primary_10_1016_j_rser_2021_110735 crossref_primary_10_1007_s00382_020_05313_3 crossref_primary_10_1111_rssc_12040 crossref_primary_10_1080_03610918_2021_1908559 crossref_primary_10_5194_asr_20_129_2024 crossref_primary_10_1016_j_jhydrol_2022_127896 crossref_primary_10_1016_j_advwatres_2021_103907 crossref_primary_10_1002_joc_4913 crossref_primary_10_5351_CSAM_2017_24_1_067 crossref_primary_10_3847_1538_4357_ac778e crossref_primary_10_1111_ecog_03098 crossref_primary_10_1016_j_renene_2018_02_006 crossref_primary_10_1175_WAF_D_19_0181_1 crossref_primary_10_1007_s11943_016_0177_1 crossref_primary_10_1016_j_ejor_2016_01_004 crossref_primary_10_1016_j_jhydrol_2015_04_065 crossref_primary_10_3208_jgssp_v10_OS_15_01 crossref_primary_10_1175_JHM_D_17_0110_1 crossref_primary_10_1145_3691346 crossref_primary_10_1214_15_AOAS843 crossref_primary_10_1371_journal_pone_0231416 crossref_primary_10_1016_j_ocemod_2016_01_004 crossref_primary_10_1080_02664763_2021_1962264 crossref_primary_10_1007_s11590_023_02023_7 crossref_primary_10_1016_j_jeconom_2012_06_006 crossref_primary_10_1002_qj_2183 crossref_primary_10_1109_TITS_2017_2762829 crossref_primary_10_1016_j_ijhydene_2020_06_209 crossref_primary_10_1016_j_cageo_2010_07_005 crossref_primary_10_1111_gcb_16590 crossref_primary_10_3390_en14164951 crossref_primary_10_5194_hess_26_197_2022 crossref_primary_10_1016_j_solener_2022_03_004 crossref_primary_10_1016_j_spasta_2017_09_003 crossref_primary_10_1111_j_1467_985X_2011_01019_x crossref_primary_10_1111_rssc_12062 crossref_primary_10_1093_ajae_aay039 crossref_primary_10_1137_20M1312204 crossref_primary_10_2139_ssrn_2541787 crossref_primary_10_1109_TPWRS_2019_2924224 crossref_primary_10_1049_oap_cired_2017_1185 crossref_primary_10_1177_09622802221109523 crossref_primary_10_1109_TSTE_2019_2920085 crossref_primary_10_1007_s00521_020_05139_4 crossref_primary_10_1016_j_ijforecast_2019_07_005 crossref_primary_10_1016_j_jastp_2020_105407 crossref_primary_10_1016_j_ijforecast_2022_11_005 crossref_primary_10_1016_j_ijforecast_2024_11_006 crossref_primary_10_3390_s21062160 crossref_primary_10_1002_env_2479 crossref_primary_10_2514_1_J059033 crossref_primary_10_1109_TASLP_2024_3361377 crossref_primary_10_2139_ssrn_1636718 crossref_primary_10_1146_annurev_statistics_062713_085831 crossref_primary_10_1016_j_ejor_2022_06_035 crossref_primary_10_1016_j_scitotenv_2024_176064 crossref_primary_10_1016_j_segan_2023_100998 crossref_primary_10_1002_qre_1967 crossref_primary_10_1109_MSP_2018_2885853 crossref_primary_10_1016_j_ress_2024_110094 crossref_primary_10_1111_biom_13355 crossref_primary_10_1016_j_ijforecast_2023_05_002 crossref_primary_10_1016_j_solener_2020_05_051 crossref_primary_10_1214_17_AOAS1041F crossref_primary_10_1109_TVCG_2020_3025072 crossref_primary_10_1175_MWR_D_12_00119_1 crossref_primary_10_1214_18_AOAS1236 crossref_primary_10_1029_2010WR010089 crossref_primary_10_5194_esd_14_1333_2023 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_1016_j_seja_2023_100048 crossref_primary_10_1007_s00376_024_3229_4 crossref_primary_10_1002_2017WR021616 crossref_primary_10_1007_s10462_024_10989_8 crossref_primary_10_1016_j_csda_2019_06_005 crossref_primary_10_1002_env_2493 crossref_primary_10_1175_JAMC_D_17_0121_1 crossref_primary_10_1002_qj_2521 crossref_primary_10_1214_12_SS102 crossref_primary_10_1109_TEM_2021_3067050 crossref_primary_10_2139_ssrn_2679663 crossref_primary_10_1002_qj_4701 crossref_primary_10_1002_qj_3615 crossref_primary_10_1016_j_envsoft_2020_104718 crossref_primary_10_1029_2018WR022601 crossref_primary_10_1016_j_apenergy_2020_116405 crossref_primary_10_1111_j_1467_9868_2010_00762_x crossref_primary_10_1111_biom_12237 crossref_primary_10_1175_JAMC_D_19_0093_1 crossref_primary_10_1002_env_2246 crossref_primary_10_1109_TPWRS_2016_2550867 crossref_primary_10_1080_00401706_2016_1211553 crossref_primary_10_1109_TPWRS_2017_2734563 crossref_primary_10_1016_j_ocecoaman_2021_105947 crossref_primary_10_1016_j_envsoft_2019_104550 crossref_primary_10_1016_j_agrformet_2021_108528 crossref_primary_10_1111_joes_12044 crossref_primary_10_1029_2018SW002026 crossref_primary_10_5194_hess_22_6257_2018 crossref_primary_10_1111_rssa_12273 crossref_primary_10_2139_ssrn_3938972 crossref_primary_10_1525_elementa_431 crossref_primary_10_5194_ascmo_11_23_2025 crossref_primary_10_1080_1331677X_2022_2107554 crossref_primary_10_1109_TPWRS_2019_2940756 crossref_primary_10_1016_j_energy_2017_06_137 crossref_primary_10_1111_rssc_12455 crossref_primary_10_1109_TSTE_2016_2555483 crossref_primary_10_1002_qj_3632 crossref_primary_10_1137_22M1532184 crossref_primary_10_1016_j_jhydrol_2010_01_018 crossref_primary_10_1214_14_AOAS744 crossref_primary_10_1214_14_AOAS743 crossref_primary_10_1002_qj_3637 crossref_primary_10_1002_env_2659 crossref_primary_10_1111_2041_210X_14052 crossref_primary_10_2139_ssrn_2051008 crossref_primary_10_3390_atmos12080966 crossref_primary_10_2139_ssrn_3098761 crossref_primary_10_5194_hess_20_3561_2016 crossref_primary_10_1016_j_trc_2016_10_011 crossref_primary_10_1137_22M1541915 crossref_primary_10_2139_ssrn_1154496 crossref_primary_10_1063_1_5089877 crossref_primary_10_1214_14_AOAS733 crossref_primary_10_1016_j_ejor_2017_12_021 crossref_primary_10_3390_risks10110204 crossref_primary_10_1175_2010WAF2222410_1 crossref_primary_10_1002_met_2215 crossref_primary_10_1016_j_apenergy_2024_122840 crossref_primary_10_1016_j_jmva_2016_11_005 crossref_primary_10_1016_j_socnet_2017_08_001 crossref_primary_10_1371_journal_pcbi_1006785 crossref_primary_10_1002_qj_2323 crossref_primary_10_1007_s00376_014_4073_8 crossref_primary_10_1186_s40537_021_00540_9 crossref_primary_10_1214_14_AOAS766 crossref_primary_10_1175_MWR_D_11_00075_1 crossref_primary_10_1016_j_jhydrol_2011_10_039 crossref_primary_10_1007_s11749_014_0380_8 crossref_primary_10_1111_rssa_12008 crossref_primary_10_1002_qj_4521 crossref_primary_10_1016_j_jobe_2023_107772 crossref_primary_10_1007_s11004_019_09802_y crossref_primary_10_1002_for_1272 crossref_primary_10_1016_j_eneco_2023_106602 crossref_primary_10_1214_09_BA401C crossref_primary_10_1007_s40565_015_0110_6 crossref_primary_10_1016_j_ijforecast_2014_08_001 crossref_primary_10_1016_j_enconman_2020_113234 crossref_primary_10_1016_j_ijforecast_2014_08_008 crossref_primary_10_1186_1471_2288_12_137 crossref_primary_10_1002_2012WR012757 crossref_primary_10_3390_w12020578 crossref_primary_10_1002_qj_3667 crossref_primary_10_1111_j_1467_9876_2011_01025_x |
Cites_doi | 10.1016/j.ijforecast.2003.09.011 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.1214/aoms/1177729394 10.2307/2527341 10.1029/1999WR900099 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2 10.1093/biomet/25.3-4.379 10.1007/BF00535293 10.2307/2987588 10.1023/A:1015085810154 10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2 10.1287/moor.28.1.141.14264 10.1126/science.1115255 10.1198/016214503000000765 10.1080/01621459.1997.10473615 10.1002/1099-131X(200007)19:4<375::AID-FOR779>3.0.CO;2-U 10.2307/3318616 10.1214/aos/1176347398 10.1016/S0169-2070(02)00009-2 10.1023/A:1009957816843 10.1002/0471249696 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2 10.1175/MWR2904.1 10.1111/j.2517-6161.1952.tb00104.x 10.1175/1520-0434(1999)014<0427:COPQPF>2.0.CO;2 10.1175/1520-0450(1972)011<0273:SAVPOT>2.0.CO;2 10.1007/978-94-010-1276-8_10 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 10.1016/S1574-0706(05)01005-0 10.1093/biomet/85.2.379 10.1111/j.1467-9868.2005.00525.x 10.1175/MWR2906.1 10.2307/2527342 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2 10.1007/BF00539368 10.1256/0035900021643593 10.1055/s-0038-1634384 10.1198/07350010152596718 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2 10.1198/016214506000000456 10.1080/07350015.1995.10524599 10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2 10.1016/0169-2070(92)90028-8 10.1214/aos/1176344689 10.1002/1099-131X(200007)19:4<255::AID-FOR773>3.0.CO;2-G 10.1080/01621459.1982.10477856 10.1002/for.3980040305 10.1016/j.ijforecast.2003.09.014 10.3402/tellusa.v55i1.12082 10.1093/biomet/81.1.115 10.3905/jod.1997.407971 10.1080/01621459.1985.10478154 10.2307/1403751 10.1002/for.876 10.1080/01621459.1985.10478117 10.1256/qj.04.71 10.1214/aos/1176346785 |
ContentType | Journal Article |
Copyright | Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd. 2007 INIST-CNRS 2007 Royal Statistical Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd. – notice: 2007 INIST-CNRS – notice: 2007 Royal Statistical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ BSCLL AAYXX CITATION IQODW DKI X2L 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6 1XC |
DOI | 10.1111/j.1467-9868.2007.00587.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis RePEc IDEAS RePEc Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA International Bibliography of the Social Sciences (IBSS) CrossRef |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-9868 |
EndPage | 268 |
ExternalDocumentID | oai_HAL_hal_01575138v1 1227394191 blajorssb_v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243_268_htm 18579548 10_1111_j_1467_9868_2007_00587_x RSSB587 4623266 ark_67375_WNG_DVTBRD87_8 US201300752073 |
Genre | article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OC 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAONW AAPXW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEHJ ABEML ABFAN ABHUG ABIVO ABLJU ABPFR ABPTD ABPVW ABWST ABYAD ABYWD ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIYS ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVGU AFVYC AFXHP AFXKK AFZJQ AGJLS AIHXQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ANFBD ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EFSUC EJD EMK F00 F5P FBQ FEDTE FVMVE G-S G.N GODZA H.T H.X HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NHB O66 O9- OJZSN OWPYF P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZGI ZL0 ZZTAW ~02 ~IA ~KM ~WT AAHBH AARHZ AAUAY ABPQH ABXSQ ADACV ADZMN ALUQN ATGXG BCRHZ BSCLL H13 IPSME OIG AANHP AAWIL ABAWQ ABDFA ABPQP ACHJO ACRPL ACYXJ ADNMO AGLNM AGQPQ AHQJS AIHAF AJNCP ALRMG AMVHM NU- AAYXX CITATION IQODW 02 08R 0R 31 3N 4S 8RP AS DKI GA HZ IA IPNFZ KM MEWTI NF P4A PQEST RIG WRC WT X X2L XHC Y3 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c6827-54191619f1a2634d902281130f7c01b874fc1636a393939546cddc3a0ef8d8fd3 |
IEDL.DBID | DR2 |
ISSN | 1369-7412 |
IngestDate | Fri May 09 12:09:16 EDT 2025 Fri Jul 11 03:38:49 EDT 2025 Fri Jul 11 04:04:03 EDT 2025 Wed Aug 13 06:52:43 EDT 2025 Wed Aug 18 03:51:57 EDT 2021 Mon Jul 21 09:14:56 EDT 2025 Tue Jul 01 03:43:01 EDT 2025 Thu Apr 24 22:54:51 EDT 2025 Wed Jan 22 17:01:02 EST 2025 Thu Jul 03 21:13:51 EDT 2025 Wed Oct 30 09:52:10 EDT 2024 Wed Dec 27 18:57:26 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Performance evaluation Rank statistic Density estimation Histogram Predictive distribution Non parametric estimation Cross validation Forecast model Hypothesis test Probabilistic assessment Posterior predictive assessment Model matching Cross-validation Forecast verification Ex post evaluation Integral transformation Posterior distribution Density forecast Model selection Time series Ensemble prediction system Prequential principle Proper scoring rule Statistical method Model diagnostics Probability integral transform |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6827-54191619f1a2634d902281130f7c01b874fc1636a393939546cddc3a0ef8d8fd3 |
Notes | http://dx.doi.org/10.1111/j.1467-9868.2007.00587.x ark:/67375/WNG-DVTBRD87-8 ArticleID:RSSB587 istex:4A85915CE3228C5C053DAA8317C5833DDE68D3F1 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 200959932 |
PQPubID | 39359 |
PageCount | 26 |
ParticipantIDs | hal_primary_oai_HAL_hal_01575138v1 proquest_miscellaneous_47281645 proquest_miscellaneous_36592654 proquest_journals_200959932 repec_primary_blajorssb_v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243_268_htm pascalfrancis_primary_18579548 crossref_citationtrail_10_1111_j_1467_9868_2007_00587_x crossref_primary_10_1111_j_1467_9868_2007_00587_x wiley_primary_10_1111_j_1467_9868_2007_00587_x_RSSB587 jstor_primary_4623266 istex_primary_ark_67375_WNG_DVTBRD87_8 fao_agris_US201300752073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2007 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: April 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationSeriesTitle | Journal of the Royal Statistical Society Series B |
PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Publishers – name: Blackwell – name: Royal Statistical Society – name: Oxford University Press |
References | DeGroot, M. H. and Fienberg, S. E. (1983) The comparison and evaluation of forecasters. Statistician, 12, 12-22. Pearson, K. (1933) On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random. Biometrika, 25, 379-410. Dawid, A. P. and Vovk, V. G. (1999) Prequential probability: principles and properties. Bernoulli, 5, 125-162. Murphy, A. H. and Winkler, R. L. (1992) Diagnostic verification of probability forecasts. Int. J. Forecast., 7, 435-455. Dawid, A. P. (1985a) The impossibility of inductive inference. J. Am. Statist. Ass., 80, 340-341. Moyeed, R. A. and Papritz, A. (2002) An empirical comparison of kriging methods for nonlinear spatial point prediction. Math. Geol., 34, 365-386. Shafer, G. and Vovk, V. (2001) Probability and Finance: It's Only a Game! New York: Wiley. Murphy, A. H. (1972) Scalar and vector partitions of the probability score: Part I, Two-state situation. J. Appl. Meteorol., 11, 273-278. Jolliffe, I. T. and Stephenson, D. B. (eds) (2003) Forecast Verification: a Practitioner's Guide in Atmospheric Science. Chichester: Wiley. Seillier-Moiseiwitsch, F. (1993) Sequential probability forecasts and the probability integral transform. Int. Statist. Rev., 61, 395-408. Diebold, F. X. and Mariano, R. S. (1995) Comparing predictive accuracy. J. Bus. Econ. Statist., 13, 253-263. Shephard, N. (1994) Partial non-Gaussian state space. Biometrika, 81, 115-131. Schervish, M. J. (1989) A general method for comparing probability assessors. Ann. Statist., 17, 1856-1879. Bremnes, J. B. (2004) Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mnthly Weath Rev., 132, 338-347. Smith, J. Q. (1985) Diagnostic checks of non-standard time series models. J. Forecast., 4, 283-291. Vovk, V. and Shafer, G. (2005) Good randomized sequential probability forecasting is always possible. J. R. Statist. Soc. B, 67, 747-763. Weigend, A. S. and Shi, S. (2000) Predicting daily probability distributions of S&P500 returns. J. Forecast., 19, 375-392. Diebold, F. X., Gunther, T. A. and Tay, A. S. (1998) Evaluating density forecasts with applications to financial risk management. Int. Econ. Rev., 39, 863-883. Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686-690. Anderson, J. L. (1996) A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim., 9, 1518-1530. Oakes, D. (1985) Self-calibrating priors do not exist. J. Am. Statist. Ass., 80, 339. Foster, D. P. and Vohra, R. V. (1998) Asymptotic calibration. Biometrika, 85, 379-390. Garratt, A., Lee, K., Pesaran, M. H. and Shin, Y. (2003) Forecast uncertainties in macroeconomic modelling: an application to the UK economy. J. Am. Statist. Ass., 98, 829-838. Brown, B. G., Katz, R. W. and Murphy, A. H. (1984) Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteorol., 23, 1184-1195. Candille, G. and Talagrand, O. (2005) Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc., 131, 2131-2150. Duffie, D. and Pan, J. (1997) An overview of value at risk. J. Deriv., 4, 7-49. Palmer, T. N. (2002) The economic value of ensemble forecasts as a tool for risk assessment: from days to decades. Q. J. R. Meteorol. Soc., 128, 747-774. Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995) Bayesian computing and stochastic systems (with discussion). Statist. Sci., 10, 3-66. Rubin, D. B. (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist., 12, 1151-1172. Blum, J. R., Hanson, D. L. and Koopmans, L. H. (1963) On the strong law of large numbers for a class of stochastic processes. Z. Wahrsch. Ver. Geb., 2, 1-11. Selten, R. (1998) Axiomatic characterization of the quadratic scoring rule. Exptl Econ., 1, 43-62. Dawid, A. P. (1984) Statistical theory: the prequential approach (with discussion). J. R. Statist. Soc. A, 147, 278-292. Berkowitz, J. (2001) Testing density forecasts, with applications to risk management. J. Bus. Econ. Statist., 19, 465-474. Frühwirth-Schnatter, S. (1996) Recursive residuals and model diagnostics for normal and non-normal state space models. Environ. Ecol. Statist., 3, 291-309. Gneiting, T. and Raftery, A. E. (2005) Weather forecasting with ensemble methods. Science, 310, 248-249. Gelman, A., Meng, X.-L. and Stern, H. (1996) Posterior predictive assessment of model fitness via realized discrepancies. Statist. Sin., 6, 733-807. Gneiting, T. and Raftery, A. E. (2006) Strictly proper scoring rules, prediction and estimation. J. Am. Statist. Ass., to be published. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mnthly Weath. Rev., 133, 1098-1198. Dawid, A. P. (1982) The well-calibrated Bayesian. J. Am. Statist. Ass., 77, 605-610. Good, I. J. (1952) Rational decisions. J. R. Statist. Soc. B, 14, 107-114. Roulston, M. S. and Smith, L. A. (2003) Combining dynamical and statistical ensembles. Tellus A, 55, 16-30. Boero, G. and Marrocu, E. (2004) The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts. Int. J. Forecast., 20, 305-320. Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997) Bayesian model averaging for linear regression models. J. Am. Statist. Ass., 92, 179-191. Granger, C. W. J. (2006) Some thoughts on the future of forecasting. Oxf. Bull. Econ. Statist., 67S, 707-711. Sandroni, A., Smorodinsky, R. and Vohra, R. V. (2003) Calibration with many checking rules. Math. Oper. Res., 28, 141-153. Roulston, M. S. and Smith, L. A. (2002) Evaluating probabilistic forecasts using information theory. Mnthly Weath. Rev., 130, 1653-1660. Murphy, A. H., Brown, B. G. and Chen, Y.-S. (1989) Diagnostic verification of temperature forecasts. Weath. Forecast., 4, 485-501. Schumacher, M., Graf, E. and Gerds, T. (2003) How to assess prognostic models for survival data: a case study in oncology. Meth. Inform. Med., 42, 564-571. Clements, M. P. and Smith, J. (2000) Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment. J. Forecast., 19, 255-276. Rosenblatt, M. (1952) Remarks on a multivariate transformation. Ann. Math. Statist., 23, 470-472. Krzysztofowicz, R. (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Wat. Resour. Res., 35, 2739-2750. Wallis, K. F. (2003) Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts. Int. J. Forecast., 19, 165-175. Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006) Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method. J. Am. Statist. Ass., 101, 968-979. Schervish, M. J. (1985) Comment. J. Am. Statist. Ass., 80, 341-342. Brier, G. W. (1950) Verification of forecasts expressed in terms of probability. Mnthly Weath. Rev., 78, 1-3. Murphy, A. H. and Winkler, R. L. (1987) A general framework for forecast verification. Mnthly Weath. Rev., 115, 1330-1338. Hamill, T. M. (2001) Interpretation of rank histograms for verifying ensemble forecasts. Mnthly Weath. Rev., 129, 550-560. Noceti, P., Smith, J. and Hodges, S. (2003) An evaluation of tests of distributional forecasts. J. Forecast., 22, 447-455. Bauwens, L., Giot, P., Grammig, J. and Veredas, D. (2004) A comparison of financial duration models via density forecasts. Int. J. Forecast., 20, 589-609. Christoffersen, P. F. (1998) Evaluating interval forecasts. Int. Econ. Rev., 39, 841-862. Staël von Holstein, C.-A. S. (1970) Assessment and Evaluation of Subjective Probability Distributions. Stockholm: Economics Research Institute. Hamill, T. M. and Colucci, S. J. (1997) Verification of Eta-RSM short-range ensemble forecasts. Mnthly Weath. Rev., 125, 1312-1327. Dawid, A. P. (1985b) Calibration-based empirical probability (with discussion). Ann. Statist., 13, 1251-1285. Krzysztofowicz, R. and Sigrest, A. A. (1999) Calibration of probabilistic quantitative precipitation forecasts. Weath. Forecast., 14, 427-442. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mnthly Weath. Rev., 133, 1155-1174. 2004; 20 2005; 131 2005; 133 1993; 61 1984; 23 1985b; 13 1970 2003; 19 1998; 85 1997; 4 2003; 98 1933; 25 2005; 67 2003; 55 1983; 12 1977 1992; 7 2004; 132 1952; 23 1950; 78 2000; 19 1985a; 80 1997; 92 2001 1987; 115 1984; 12 1999; 14 2001; 19 1986 1982 1996; 3 1972; 11 2006; 67S 2003; 42 1996; 9 1996; 6 1979; 7 1989; 4 1952; 14 1984; 147 1985; 4 2005; 310 2002; 130 1995; 13 2002; 34 1995; 10 1982; 77 1985; 80 1997 1995 2006 2005 1994 2004 2003 2002 1994; 81 2001; 129 1999; 5 1997; 125 1998; 39 1963; 2 1999; 35 2002; 128 2003; 28 1998; 1 2006; 101 2003; 22 1989; 17 DeGroot (2023040800083686500_) 1982 Moyeed (2023040800083686500_) 2002; 34 Garratt (2023040800083686500_) 2003; 98 Smith (2023040800083686500_) 1985; 4 Pearson (2023040800083686500_) 1933; 25 Bremnes (2023040800083686500_) 2004; 132 Raftery (2023040800083686500_) 1997; 92 Schervish (2023040800083686500_) 1989; 17 Clements (2023040800083686500_) 2000; 19 Besag (2023040800083686500_) 1995; 10 Murphy (2023040800083686500_) 1992; 7 Dawid (2023040800083686500_) 1986 Candille (2023040800083686500_) 2005; 131 Selten (2023040800083686500_) 1998; 1 Raftery (2023040800083686500_) 2005; 133 Hamill (2023040800083686500_) 2001; 129 Bernardo (2023040800083686500_) 1979; 7 Rubin (2023040800083686500_) 1984; 12 Bauwens (2023040800083686500_) 2004; 20 Jolliffe (2023040800083686500_) 2003 Roulston (2023040800083686500_) 2003; 55 Krzysztofowicz (2023040800083686500_) 1999; 14 Gelman (2023040800083686500_) 1996; 6 Gneiting (2023040800083686500_) 2005; 133 Brown (2023040800083686500_) 1984; 23 Dawid (2023040800083686500_) 1984; 147 Gschlöß l (2023040800083686500_) 2005 Boero (2023040800083686500_) 2004; 20 Duffie (2023040800083686500_) 1997; 4 Palmer (2023040800083686500_) 2002; 128 Murphy (2023040800083686500_) 1972; 11 Schumacher (2023040800083686500_) 2003; 42 Talagrand (2023040800083686500_) 1997 Weigend (2023040800083686500_) 2000; 19 Schervish (2023040800083686500_) 1985; 80 Gneiting (2023040800083686500_) 2006; 101 Wallis (2023040800083686500_) 2003; 19 Diebold (2023040800083686500_) 1995; 13 Staël von Holstein (2023040800083686500_) 1970 Winkler (2023040800083686500_) 1977 Shephard (2023040800083686500_) 1994; 81 Granger (2023040800083686500_) 2006; 67S Hamill (2023040800083686500_) 1997; 125 Rosenblatt (2023040800083686500_) 1952; 23 Anderson (2023040800083686500_) 1996; 9 Shafer (2023040800083686500_) 2001 Foster (2023040800083686500_) 1998; 85 Diebold (2023040800083686500_) 1998; 39 Corradi (2023040800083686500_) 2006 Sandroni (2023040800083686500_) 2003; 28 DeGroot (2023040800083686500_) 1983; 12 Berkowitz (2023040800083686500_) 2001; 19 Dawid (2023040800083686500_) 1985; 80 Oakes (2023040800083686500_) 1985; 80 Frühwirth-Schnatter (2023040800083686500_) 1996; 3 Good (2023040800083686500_) 1952; 14 Brier (2023040800083686500_) 1950; 78 Vovk (2023040800083686500_) 2005; 67 Krzysztofowicz (2023040800083686500_) 1999; 35 Noceti (2023040800083686500_) 2003; 22 Gneiting (2023040800083686500_) 2005; 310 Christoffersen (2023040800083686500_) 1998; 39 Roulston (2023040800083686500_) 2002; 130 Hoeting (2023040800083686500_) 1994 Gneiting (2023040800083686500_) 2006 Dawid (2023040800083686500_) 1982; 77 Dawid (2023040800083686500_) 1999; 5 Gneiting (2023040800083686500_) 2004 Murphy (2023040800083686500_) 1989; 4 Murphy (2023040800083686500_) 1987; 115 Gerds (2023040800083686500_) 2002 Blum (2023040800083686500_) 1963; 2 Brocklehurst (2023040800083686500_) 1995 Dawid (2023040800083686500_) 1985; 13 Seillier-Moiseiwitsch (2023040800083686500_) 1993; 61 |
References_xml | – reference: Shafer, G. and Vovk, V. (2001) Probability and Finance: It's Only a Game! New York: Wiley. – reference: Hamill, T. M. and Colucci, S. J. (1997) Verification of Eta-RSM short-range ensemble forecasts. Mnthly Weath. Rev., 125, 1312-1327. – reference: Murphy, A. H. and Winkler, R. L. (1992) Diagnostic verification of probability forecasts. Int. J. Forecast., 7, 435-455. – reference: DeGroot, M. H. and Fienberg, S. E. (1983) The comparison and evaluation of forecasters. Statistician, 12, 12-22. – reference: Dawid, A. P. (1982) The well-calibrated Bayesian. J. Am. Statist. Ass., 77, 605-610. – reference: Bauwens, L., Giot, P., Grammig, J. and Veredas, D. (2004) A comparison of financial duration models via density forecasts. Int. J. Forecast., 20, 589-609. – reference: Dawid, A. P. (1985a) The impossibility of inductive inference. J. Am. Statist. Ass., 80, 340-341. – reference: Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686-690. – reference: Berkowitz, J. (2001) Testing density forecasts, with applications to risk management. J. Bus. Econ. Statist., 19, 465-474. – reference: Murphy, A. H. and Winkler, R. L. (1987) A general framework for forecast verification. Mnthly Weath. Rev., 115, 1330-1338. – reference: Rosenblatt, M. (1952) Remarks on a multivariate transformation. Ann. Math. Statist., 23, 470-472. – reference: Smith, J. Q. (1985) Diagnostic checks of non-standard time series models. J. Forecast., 4, 283-291. – reference: Oakes, D. (1985) Self-calibrating priors do not exist. J. Am. Statist. Ass., 80, 339. – reference: Diebold, F. X., Gunther, T. A. and Tay, A. S. (1998) Evaluating density forecasts with applications to financial risk management. Int. Econ. Rev., 39, 863-883. – reference: Vovk, V. and Shafer, G. (2005) Good randomized sequential probability forecasting is always possible. J. R. Statist. Soc. B, 67, 747-763. – reference: Jolliffe, I. T. and Stephenson, D. B. (eds) (2003) Forecast Verification: a Practitioner's Guide in Atmospheric Science. Chichester: Wiley. – reference: Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mnthly Weath. Rev., 133, 1098-1198. – reference: Duffie, D. and Pan, J. (1997) An overview of value at risk. J. Deriv., 4, 7-49. – reference: Good, I. J. (1952) Rational decisions. J. R. Statist. Soc. B, 14, 107-114. – reference: Moyeed, R. A. and Papritz, A. (2002) An empirical comparison of kriging methods for nonlinear spatial point prediction. Math. Geol., 34, 365-386. – reference: Schervish, M. J. (1989) A general method for comparing probability assessors. Ann. Statist., 17, 1856-1879. – reference: Bremnes, J. B. (2004) Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mnthly Weath Rev., 132, 338-347. – reference: Brier, G. W. (1950) Verification of forecasts expressed in terms of probability. Mnthly Weath. Rev., 78, 1-3. – reference: Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006) Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method. J. Am. Statist. Ass., 101, 968-979. – reference: Selten, R. (1998) Axiomatic characterization of the quadratic scoring rule. Exptl Econ., 1, 43-62. – reference: Gneiting, T. and Raftery, A. E. (2005) Weather forecasting with ensemble methods. Science, 310, 248-249. – reference: Blum, J. R., Hanson, D. L. and Koopmans, L. H. (1963) On the strong law of large numbers for a class of stochastic processes. Z. Wahrsch. Ver. Geb., 2, 1-11. – reference: Candille, G. and Talagrand, O. (2005) Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc., 131, 2131-2150. – reference: Frühwirth-Schnatter, S. (1996) Recursive residuals and model diagnostics for normal and non-normal state space models. Environ. Ecol. Statist., 3, 291-309. – reference: Sandroni, A., Smorodinsky, R. and Vohra, R. V. (2003) Calibration with many checking rules. Math. Oper. Res., 28, 141-153. – reference: Weigend, A. S. and Shi, S. (2000) Predicting daily probability distributions of S&P500 returns. J. Forecast., 19, 375-392. – reference: Diebold, F. X. and Mariano, R. S. (1995) Comparing predictive accuracy. J. Bus. Econ. Statist., 13, 253-263. – reference: Roulston, M. S. and Smith, L. A. (2003) Combining dynamical and statistical ensembles. Tellus A, 55, 16-30. – reference: Noceti, P., Smith, J. and Hodges, S. (2003) An evaluation of tests of distributional forecasts. J. Forecast., 22, 447-455. – reference: Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995) Bayesian computing and stochastic systems (with discussion). Statist. Sci., 10, 3-66. – reference: Dawid, A. P. (1984) Statistical theory: the prequential approach (with discussion). J. R. Statist. Soc. A, 147, 278-292. – reference: Anderson, J. L. (1996) A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim., 9, 1518-1530. – reference: Christoffersen, P. F. (1998) Evaluating interval forecasts. Int. Econ. Rev., 39, 841-862. – reference: Krzysztofowicz, R. (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Wat. Resour. Res., 35, 2739-2750. – reference: Seillier-Moiseiwitsch, F. (1993) Sequential probability forecasts and the probability integral transform. Int. Statist. Rev., 61, 395-408. – reference: Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mnthly Weath. Rev., 133, 1155-1174. – reference: Schumacher, M., Graf, E. and Gerds, T. (2003) How to assess prognostic models for survival data: a case study in oncology. Meth. Inform. Med., 42, 564-571. – reference: Schervish, M. J. (1985) Comment. J. Am. Statist. Ass., 80, 341-342. – reference: Brown, B. G., Katz, R. W. and Murphy, A. H. (1984) Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteorol., 23, 1184-1195. – reference: Dawid, A. P. (1985b) Calibration-based empirical probability (with discussion). Ann. Statist., 13, 1251-1285. – reference: Boero, G. and Marrocu, E. (2004) The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts. Int. J. Forecast., 20, 305-320. – reference: Gneiting, T. and Raftery, A. E. (2006) Strictly proper scoring rules, prediction and estimation. J. Am. Statist. Ass., to be published. – reference: Staël von Holstein, C.-A. S. (1970) Assessment and Evaluation of Subjective Probability Distributions. Stockholm: Economics Research Institute. – reference: Dawid, A. P. and Vovk, V. G. (1999) Prequential probability: principles and properties. Bernoulli, 5, 125-162. – reference: Wallis, K. F. (2003) Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts. Int. J. Forecast., 19, 165-175. – reference: Krzysztofowicz, R. and Sigrest, A. A. (1999) Calibration of probabilistic quantitative precipitation forecasts. Weath. Forecast., 14, 427-442. – reference: Murphy, A. H., Brown, B. G. and Chen, Y.-S. (1989) Diagnostic verification of temperature forecasts. Weath. Forecast., 4, 485-501. – reference: Shephard, N. (1994) Partial non-Gaussian state space. Biometrika, 81, 115-131. – reference: Palmer, T. N. (2002) The economic value of ensemble forecasts as a tool for risk assessment: from days to decades. Q. J. R. Meteorol. Soc., 128, 747-774. – reference: Pearson, K. (1933) On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random. Biometrika, 25, 379-410. – reference: Clements, M. P. and Smith, J. (2000) Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment. J. Forecast., 19, 255-276. – reference: Granger, C. W. J. (2006) Some thoughts on the future of forecasting. Oxf. Bull. Econ. Statist., 67S, 707-711. – reference: Hamill, T. M. (2001) Interpretation of rank histograms for verifying ensemble forecasts. Mnthly Weath. Rev., 129, 550-560. – reference: Rubin, D. B. (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist., 12, 1151-1172. – reference: Gelman, A., Meng, X.-L. and Stern, H. (1996) Posterior predictive assessment of model fitness via realized discrepancies. Statist. Sin., 6, 733-807. – reference: Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997) Bayesian model averaging for linear regression models. J. Am. Statist. Ass., 92, 179-191. – reference: Foster, D. P. and Vohra, R. V. (1998) Asymptotic calibration. Biometrika, 85, 379-390. – reference: Garratt, A., Lee, K., Pesaran, M. H. and Shin, Y. (2003) Forecast uncertainties in macroeconomic modelling: an application to the UK economy. J. Am. Statist. Ass., 98, 829-838. – reference: Murphy, A. H. (1972) Scalar and vector partitions of the probability score: Part I, Two-state situation. J. Appl. Meteorol., 11, 273-278. – reference: Roulston, M. S. and Smith, L. A. (2002) Evaluating probabilistic forecasts using information theory. Mnthly Weath. Rev., 130, 1653-1660. – volume: 80 start-page: 341 year: 1985 end-page: 342 article-title: Comment publication-title: J. Am. Statist. Ass. – volume: 80 start-page: 339 year: 1985 article-title: Self‐calibrating priors do not exist publication-title: J. Am. Statist. Ass. – volume: 19 start-page: 255 year: 2000 end-page: 276 article-title: Evaluating the forecast densities of linear and non‐linear models: applications to output growth and unemployment publication-title: J. Forecast. – year: 2005 – volume: 5 start-page: 125 year: 1999 end-page: 162 article-title: Prequential probability: principles and properties publication-title: Bernoulli – year: 2001 – volume: 9 start-page: 1518 year: 1996 end-page: 1530 article-title: A method for producing and evaluating probabilistic forecasts from ensemble model integrations publication-title: J. Clim. – volume: 132 start-page: 338 year: 2004 end-page: 347 article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output publication-title: Mnthly Weath Rev. – volume: 13 start-page: 1251 year: 1985b end-page: 1285 article-title: Calibration‐based empirical probability (with discussion) publication-title: Ann. Statist. – volume: 34 start-page: 365 year: 2002 end-page: 386 article-title: An empirical comparison of kriging methods for nonlinear spatial point prediction publication-title: Math. Geol. – volume: 2 start-page: 1 year: 1963 end-page: 11 article-title: On the strong law of large numbers for a class of stochastic processes publication-title: Z. Wahrsch. Ver. Geb. – year: 1994 – volume: 101 start-page: 968 year: 2006 end-page: 979 article-title: Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime‐switching space‐time (RST) method publication-title: J. Am. Statist. Ass. – volume: 19 start-page: 375 year: 2000 end-page: 392 article-title: Predicting daily probability distributions of S&P500 returns publication-title: J. Forecast. – volume: 133 start-page: 1155 year: 2005 end-page: 1174 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mnthly Weath. Rev. – volume: 22 start-page: 447 year: 2003 end-page: 455 article-title: An evaluation of tests of distributional forecasts publication-title: J. Forecast. – volume: 7 start-page: 686 year: 1979 end-page: 690 article-title: Expected information as expected utility publication-title: Ann. Statist. – volume: 147 start-page: 278 year: 1984 end-page: 292 article-title: Statistical theory: the prequential approach (with discussion) publication-title: J. R. Statist. Soc. – volume: 67 start-page: 747 year: 2005 end-page: 763 article-title: Good randomized sequential probability forecasting is always possible publication-title: J. R. Statist. Soc. B – volume: 98 start-page: 829 year: 2003 end-page: 838 article-title: Forecast uncertainties in macroeconomic modelling: an application to the UK economy publication-title: J. Am. Statist. Ass. – volume: 6 start-page: 733 year: 1996 end-page: 807 article-title: Posterior predictive assessment of model fitness via realized discrepancies publication-title: Statist. Sin. – volume: 23 start-page: 1184 year: 1984 end-page: 1195 article-title: Time series models to simulate and forecast wind speed and wind power publication-title: J. Clim. Appl. Meteorol. – volume: 13 start-page: 253 year: 1995 end-page: 263 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Statist. – year: 2004 – volume: 61 start-page: 395 year: 1993 end-page: 408 article-title: Sequential probability forecasts and the probability integral transform publication-title: Int. Statist. Rev. – volume: 133 start-page: 1098 year: 2005 end-page: 1198 article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation publication-title: Mnthly Weath. Rev. – volume: 78 start-page: 1 year: 1950 end-page: 3 article-title: Verification of forecasts expressed in terms of probability publication-title: Mnthly Weath. Rev. – volume: 20 start-page: 305 year: 2004 end-page: 320 article-title: The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts publication-title: Int. J. Forecast. – volume: 128 start-page: 747 year: 2002 end-page: 774 article-title: The economic value of ensemble forecasts as a tool for risk assessment: from days to decades publication-title: Q. J. R. Meteorol. Soc. – volume: 12 start-page: 1151 year: 1984 end-page: 1172 article-title: Bayesianly justifiable and relevant frequency calculations for the applied statistician publication-title: Ann. Statist. – start-page: 210 year: 1986 end-page: 218 – volume: 7 start-page: 435 year: 1992 end-page: 455 article-title: Diagnostic verification of probability forecasts publication-title: Int. J. Forecast. – volume: 17 start-page: 1856 year: 1989 end-page: 1879 article-title: A general method for comparing probability assessors publication-title: Ann. Statist. – volume: 310 start-page: 248 year: 2005 end-page: 249 article-title: Weather forecasting with ensemble methods publication-title: Science – volume: 92 start-page: 179 year: 1997 end-page: 191 article-title: Bayesian model averaging for linear regression models publication-title: J. Am. Statist. Ass. – volume: 35 start-page: 2739 year: 1999 end-page: 2750 article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model publication-title: Wat. Resour. Res. – volume: 39 start-page: 863 year: 1998 end-page: 883 article-title: Evaluating density forecasts with applications to financial risk management publication-title: Int. Econ. Rev. – volume: 14 start-page: 107 year: 1952 end-page: 114 article-title: Rational decisions publication-title: J. R. Statist. Soc. B – volume: 25 start-page: 379 year: 1933 end-page: 410 article-title: On a method of determining whether a sample of size supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random publication-title: Biometrika – volume: 4 start-page: 7 year: 1997 end-page: 49 article-title: An overview of value at risk publication-title: J. Deriv. – start-page: 197 year: 2006 end-page: 284 – volume: 1 start-page: 43 year: 1998 end-page: 62 article-title: Axiomatic characterization of the quadratic scoring rule publication-title: Exptl Econ. – volume: 42 start-page: 564 year: 2003 end-page: 571 article-title: How to assess prognostic models for survival data: a case study in oncology publication-title: Meth. Inform. Med. – year: 2003 – volume: 14 start-page: 427 year: 1999 end-page: 442 article-title: Calibration of probabilistic quantitative precipitation forecasts publication-title: Weath. Forecast. – volume: 4 start-page: 283 year: 1985 end-page: 291 article-title: Diagnostic checks of non‐standard time series models publication-title: J. Forecast. – volume: 55 start-page: 16 year: 2003 end-page: 30 article-title: Combining dynamical and statistical ensembles publication-title: Tellus A – volume: 28 start-page: 141 year: 2003 end-page: 153 article-title: Calibration with many checking rules publication-title: Math. Oper. Res. – volume: 19 start-page: 465 year: 2001 end-page: 474 article-title: Testing density forecasts, with applications to risk management publication-title: J. Bus. Econ. Statist. – volume: 3 start-page: 291 year: 1996 end-page: 309 article-title: Recursive residuals and model diagnostics for normal and non‐normal state space models publication-title: Environ. Ecol. Statist. – volume: 39 start-page: 841 year: 1998 end-page: 862 article-title: Evaluating interval forecasts publication-title: Int. Econ. Rev. – volume: 10 start-page: 3 year: 1995 end-page: 66 article-title: Bayesian computing and stochastic systems (with discussion) publication-title: Statist. Sci. – volume: 80 start-page: 340 year: 1985a end-page: 341 article-title: The impossibility of inductive inference publication-title: J. Am. Statist. Ass. – volume: 19 start-page: 165 year: 2003 end-page: 175 article-title: Chi‐squared tests of interval and density forecasts, and the Bank of England's fan charts publication-title: Int. J. Forecast. – volume: 81 start-page: 115 year: 1994 end-page: 131 article-title: Partial non‐Gaussian state space publication-title: Biometrika – volume: 23 start-page: 470 year: 1952 end-page: 472 article-title: Remarks on a multivariate transformation publication-title: Ann. Math. Statist. – volume: 85 start-page: 379 year: 1998 end-page: 390 article-title: Asymptotic calibration publication-title: Biometrika – volume: 115 start-page: 1330 year: 1987 end-page: 1338 article-title: A general framework for forecast verification publication-title: Mnthly Weath. Rev. – start-page: 1 year: 1997 end-page: 25 – volume: 12 start-page: 12 year: 1983 end-page: 22 article-title: The comparison and evaluation of forecasters publication-title: Statistician – volume: 4 start-page: 485 year: 1989 end-page: 501 article-title: Diagnostic verification of temperature forecasts publication-title: Weath. Forecast. – volume: 20 start-page: 589 year: 2004 end-page: 609 article-title: A comparison of financial duration models via density forecasts publication-title: Int. J. Forecast. – start-page: 291 year: 1982 end-page: 314 – year: 2002 – volume: 11 start-page: 273 year: 1972 end-page: 278 article-title: Scalar and vector partitions of the probability score: Part I, Two‐state situation publication-title: J. Appl. Meteorol. – start-page: 127 year: 1977 end-page: 140 – volume: 77 start-page: 605 year: 1982 end-page: 610 article-title: The well‐calibrated Bayesian publication-title: J. Am. Statist. Ass. – volume: 67S start-page: 707 year: 2006 end-page: 711 article-title: Some thoughts on the future of forecasting publication-title: Oxf. Bull. Econ. Statist. – year: 1995 – volume: 130 start-page: 1653 year: 2002 end-page: 1660 article-title: Evaluating probabilistic forecasts using information theory publication-title: Mnthly Weath. Rev. – year: 1970 – volume: 131 start-page: 2131 year: 2005 end-page: 2150 article-title: Evaluation of probabilistic prediction systems for a scalar variable publication-title: Q. J. R. Meteorol. Soc. – year: 2006 article-title: Strictly proper scoring rules, prediction and estimation publication-title: J. Am. Statist. Ass. – volume: 125 start-page: 1312 year: 1997 end-page: 1327 article-title: Verification of Eta‐RSM short‐range ensemble forecasts publication-title: Mnthly Weath. Rev. – volume: 129 start-page: 550 year: 2001 end-page: 560 article-title: Interpretation of rank histograms for verifying ensemble forecasts publication-title: Mnthly Weath. Rev. – volume: 20 start-page: 305 year: 2004 ident: 2023040800083686500_ article-title: The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2003.09.011 – volume: 78 start-page: 1 year: 1950 ident: 2023040800083686500_ article-title: Verification of forecasts expressed in terms of probability publication-title: Mnthly Weath. Rev. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – volume: 23 start-page: 470 year: 1952 ident: 2023040800083686500_ article-title: Remarks on a multivariate transformation publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729394 – volume: 39 start-page: 841 year: 1998 ident: 2023040800083686500_ article-title: Evaluating interval forecasts publication-title: Int. Econ. Rev. doi: 10.2307/2527341 – start-page: 291 volume-title: Statistical Decision Theory and Related Topics III year: 1982 ident: 2023040800083686500_ – volume: 35 start-page: 2739 year: 1999 ident: 2023040800083686500_ article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model publication-title: Wat. Resour. Res. doi: 10.1029/1999WR900099 – volume: 125 start-page: 1312 year: 1997 ident: 2023040800083686500_ article-title: Verification of Eta-RSM short-range ensemble forecasts publication-title: Mnthly Weath. Rev. doi: 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2 – volume: 115 start-page: 1330 year: 1987 ident: 2023040800083686500_ article-title: A general framework for forecast verification publication-title: Mnthly Weath. Rev. doi: 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2 – volume: 10 start-page: 3 year: 1995 ident: 2023040800083686500_ article-title: Bayesian computing and stochastic systems (with discussion) publication-title: Statist. Sci. – volume: 25 start-page: 379 year: 1933 ident: 2023040800083686500_ article-title: On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random publication-title: Biometrika doi: 10.1093/biomet/25.3-4.379 – volume: 2 start-page: 1 year: 1963 ident: 2023040800083686500_ article-title: On the strong law of large numbers for a class of stochastic processes publication-title: Z. Wahrsch. Ver. Geb. doi: 10.1007/BF00535293 – volume: 12 start-page: 12 year: 1983 ident: 2023040800083686500_ article-title: The comparison and evaluation of forecasters publication-title: Statistician doi: 10.2307/2987588 – volume: 34 start-page: 365 year: 2002 ident: 2023040800083686500_ article-title: An empirical comparison of kriging methods for nonlinear spatial point prediction publication-title: Math. Geol. doi: 10.1023/A:1015085810154 – volume-title: Nonparametric efficient estimation of prediction error for incomplete data models year: 2002 ident: 2023040800083686500_ – volume: 130 start-page: 1653 year: 2002 ident: 2023040800083686500_ article-title: Evaluating probabilistic forecasts using information theory publication-title: Mnthly Weath. Rev. doi: 10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2 – volume: 80 start-page: 340 year: 1985 ident: 2023040800083686500_ article-title: The impossibility of inductive inference publication-title: J. Am. Statist. Ass. – volume: 28 start-page: 141 year: 2003 ident: 2023040800083686500_ article-title: Calibration with many checking rules publication-title: Math. Oper. Res. doi: 10.1287/moor.28.1.141.14264 – volume: 6 start-page: 733 year: 1996 ident: 2023040800083686500_ article-title: Posterior predictive assessment of model fitness via realized discrepancies publication-title: Statist. Sin. – volume: 310 start-page: 248 year: 2005 ident: 2023040800083686500_ article-title: Weather forecasting with ensemble methods publication-title: Science doi: 10.1126/science.1115255 – volume: 98 start-page: 829 year: 2003 ident: 2023040800083686500_ article-title: Forecast uncertainties in macroeconomic modelling: an application to the UK economy publication-title: J. Am. Statist. Ass. doi: 10.1198/016214503000000765 – volume: 92 start-page: 179 year: 1997 ident: 2023040800083686500_ article-title: Bayesian model averaging for linear regression models publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1997.10473615 – volume: 19 start-page: 375 year: 2000 ident: 2023040800083686500_ article-title: Predicting daily probability distributions of S&P500 returns publication-title: J. Forecast. doi: 10.1002/1099-131X(200007)19:4<375::AID-FOR779>3.0.CO;2-U – volume: 5 start-page: 125 year: 1999 ident: 2023040800083686500_ article-title: Prequential probability: principles and properties publication-title: Bernoulli doi: 10.2307/3318616 – volume-title: Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method. Technical Report 464 year: 2004 ident: 2023040800083686500_ – volume: 17 start-page: 1856 year: 1989 ident: 2023040800083686500_ article-title: A general method for comparing probability assessors publication-title: Ann. Statist. doi: 10.1214/aos/1176347398 – volume-title: Accounting for model uncertainty in linear regression year: 1994 ident: 2023040800083686500_ – volume: 147 start-page: 278 year: 1984 ident: 2023040800083686500_ article-title: Statistical theory: the prequential approach (with discussion) publication-title: J. R. Statist. Soc. – volume: 19 start-page: 165 year: 2003 ident: 2023040800083686500_ article-title: Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(02)00009-2 – volume: 1 start-page: 43 year: 1998 ident: 2023040800083686500_ article-title: Axiomatic characterization of the quadratic scoring rule publication-title: Exptl Econ. doi: 10.1023/A:1009957816843 – volume-title: Probability and Finance: It's Only a Game! year: 2001 ident: 2023040800083686500_ doi: 10.1002/0471249696 – volume: 132 start-page: 338 year: 2004 ident: 2023040800083686500_ article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output publication-title: Mnthly Weath Rev. doi: 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2 – volume: 133 start-page: 1098 year: 2005 ident: 2023040800083686500_ article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation publication-title: Mnthly Weath. Rev. doi: 10.1175/MWR2904.1 – volume: 14 start-page: 107 year: 1952 ident: 2023040800083686500_ article-title: Rational decisions publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1952.tb00104.x – volume: 14 start-page: 427 year: 1999 ident: 2023040800083686500_ article-title: Calibration of probabilistic quantitative precipitation forecasts publication-title: Weath. Forecast. doi: 10.1175/1520-0434(1999)014<0427:COPQPF>2.0.CO;2 – volume: 11 start-page: 273 year: 1972 ident: 2023040800083686500_ article-title: Scalar and vector partitions of the probability score: Part I, Two-state situation publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1972)011<0273:SAVPOT>2.0.CO;2 – start-page: 127 volume-title: Decision Making and Change in Human Affairs year: 1977 ident: 2023040800083686500_ doi: 10.1007/978-94-010-1276-8_10 – volume: 23 start-page: 1184 year: 1984 ident: 2023040800083686500_ article-title: Time series models to simulate and forecast wind speed and wind power publication-title: J. Clim. Appl. Meteorol. doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 – start-page: 197 volume-title: Handbook of Economic Forecasting year: 2006 ident: 2023040800083686500_ doi: 10.1016/S1574-0706(05)01005-0 – volume: 85 start-page: 379 year: 1998 ident: 2023040800083686500_ article-title: Asymptotic calibration publication-title: Biometrika doi: 10.1093/biomet/85.2.379 – year: 2006 ident: 2023040800083686500_ article-title: Strictly proper scoring rules, prediction and estimation publication-title: J. Am. Statist. Ass. – volume: 13 start-page: 1251 year: 1985 ident: 2023040800083686500_ article-title: Calibration-based empirical probability (with discussion) publication-title: Ann. Statist. – volume: 67 start-page: 747 year: 2005 ident: 2023040800083686500_ article-title: Good randomized sequential probability forecasting is always possible publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2005.00525.x – start-page: 210 volume-title: Encyclopedia of Statistical Sciences year: 1986 ident: 2023040800083686500_ – volume: 133 start-page: 1155 year: 2005 ident: 2023040800083686500_ article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mnthly Weath. Rev. doi: 10.1175/MWR2906.1 – volume: 39 start-page: 863 year: 1998 ident: 2023040800083686500_ article-title: Evaluating density forecasts with applications to financial risk management publication-title: Int. Econ. Rev. doi: 10.2307/2527342 – volume-title: Handbook of Software Reliability Engineering year: 1995 ident: 2023040800083686500_ – volume: 129 start-page: 550 year: 2001 ident: 2023040800083686500_ article-title: Interpretation of rank histograms for verifying ensemble forecasts publication-title: Mnthly Weath. Rev. doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2 – volume: 3 start-page: 291 year: 1996 ident: 2023040800083686500_ article-title: Recursive residuals and model diagnostics for normal and non-normal state space models publication-title: Environ. Ecol. Statist. doi: 10.1007/BF00539368 – volume: 128 start-page: 747 year: 2002 ident: 2023040800083686500_ article-title: The economic value of ensemble forecasts as a tool for risk assessment: from days to decades publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/0035900021643593 – volume-title: Forecast Verification: a Practitioner's Guide in Atmospheric Science year: 2003 ident: 2023040800083686500_ – volume: 42 start-page: 564 year: 2003 ident: 2023040800083686500_ article-title: How to assess prognostic models for survival data: a case study in oncology publication-title: Meth. Inform. Med. doi: 10.1055/s-0038-1634384 – volume: 19 start-page: 465 year: 2001 ident: 2023040800083686500_ article-title: Testing density forecasts, with applications to risk management publication-title: J. Bus. Econ. Statist. doi: 10.1198/07350010152596718 – volume: 9 start-page: 1518 year: 1996 ident: 2023040800083686500_ article-title: A method for producing and evaluating probabilistic forecasts from ensemble model integrations publication-title: J. Clim. doi: 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2 – volume: 101 start-page: 968 year: 2006 ident: 2023040800083686500_ article-title: Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method publication-title: J. Am. Statist. Ass. doi: 10.1198/016214506000000456 – volume: 13 start-page: 253 year: 1995 ident: 2023040800083686500_ article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Statist. doi: 10.1080/07350015.1995.10524599 – volume: 4 start-page: 485 year: 1989 ident: 2023040800083686500_ article-title: Diagnostic verification of temperature forecasts publication-title: Weath. Forecast. doi: 10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2 – volume: 7 start-page: 435 year: 1992 ident: 2023040800083686500_ article-title: Diagnostic verification of probability forecasts publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(92)90028-8 – volume: 7 start-page: 686 year: 1979 ident: 2023040800083686500_ article-title: Expected information as expected utility publication-title: Ann. Statist. doi: 10.1214/aos/1176344689 – volume: 19 start-page: 255 year: 2000 ident: 2023040800083686500_ article-title: Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment publication-title: J. Forecast. doi: 10.1002/1099-131X(200007)19:4<255::AID-FOR773>3.0.CO;2-G – volume: 77 start-page: 605 year: 1982 ident: 2023040800083686500_ article-title: The well-calibrated Bayesian publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1982.10477856 – volume: 4 start-page: 283 year: 1985 ident: 2023040800083686500_ article-title: Diagnostic checks of non-standard time series models publication-title: J. Forecast. doi: 10.1002/for.3980040305 – volume-title: Spatial modelling of claim frequency and claim size in insurance year: 2005 ident: 2023040800083686500_ – volume-title: Assessment and Evaluation of Subjective Probability Distributions year: 1970 ident: 2023040800083686500_ – volume: 20 start-page: 589 year: 2004 ident: 2023040800083686500_ article-title: A comparison of financial duration models via density forecasts publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2003.09.014 – volume: 67S start-page: 707 year: 2006 ident: 2023040800083686500_ article-title: Some thoughts on the future of forecasting publication-title: Oxf. Bull. Econ. Statist. – volume: 55 start-page: 16 year: 2003 ident: 2023040800083686500_ article-title: Combining dynamical and statistical ensembles publication-title: Tellus A doi: 10.3402/tellusa.v55i1.12082 – volume: 81 start-page: 115 year: 1994 ident: 2023040800083686500_ article-title: Partial non-Gaussian state space publication-title: Biometrika doi: 10.1093/biomet/81.1.115 – volume: 4 start-page: 7 year: 1997 ident: 2023040800083686500_ article-title: An overview of value at risk publication-title: J. Deriv. doi: 10.3905/jod.1997.407971 – volume: 80 start-page: 341 year: 1985 ident: 2023040800083686500_ article-title: Comment publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1985.10478154 – volume: 61 start-page: 395 year: 1993 ident: 2023040800083686500_ article-title: Sequential probability forecasts and the probability integral transform publication-title: Int. Statist. Rev. doi: 10.2307/1403751 – volume: 22 start-page: 447 year: 2003 ident: 2023040800083686500_ article-title: An evaluation of tests of distributional forecasts publication-title: J. Forecast. doi: 10.1002/for.876 – volume: 80 start-page: 339 year: 1985 ident: 2023040800083686500_ article-title: Self-calibrating priors do not exist publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1985.10478117 – volume: 131 start-page: 2131 year: 2005 ident: 2023040800083686500_ article-title: Evaluation of probabilistic prediction systems for a scalar variable publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/qj.04.71 – start-page: 1 volume-title: Proc. Wrkshp Predictability year: 1997 ident: 2023040800083686500_ – volume: 12 start-page: 1151 year: 1984 ident: 2023040800083686500_ article-title: Bayesianly justifiable and relevant frequency calculations for the applied statistician publication-title: Ann. Statist. doi: 10.1214/aos/1176346785 |
SSID | ssj0000673 |
Score | 2.4751556 |
Snippet | Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic... |
SourceID | hal proquest repec pascalfrancis crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 243 |
SubjectTerms | Analytical forecasting Autocorrelation Calibration Cross-validation cumulative distribution Density forecast diagnostic techniques Distribution Distribution theory Ensemble prediction system Evaluation Ex post evaluation Exact sciences and technology Forecast verification Forecasting Forecasts Histograms Inference from stochastic processes; time series analysis Mathematical methods Mathematics Model diagnostics Model testing Nonparametric inference Posterior predictive assessment prediction Predictive distribution Prequential principle Probabilities Probability Probability and statistics Probability forecasts Probability integral transform Probability theory and stochastic processes Proper scoring rule Sciences and techniques of general use Statistical analysis Statistical methods Statistics Stochastic processes Studies Time series time series analysis Time series forecasting United States Weather forecasting Wind power wind speed Wind velocity |
Title | Probabilistic forecasts, calibration and sharpness |
URI | https://api.istex.fr/ark:/67375/WNG-DVTBRD87-8/fulltext.pdf https://www.jstor.org/stable/4623266 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9868.2007.00587.x http://econpapers.repec.org/article/blajorssb/v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243-268.htm https://www.proquest.com/docview/200959932 https://www.proquest.com/docview/36592654 https://www.proquest.com/docview/47281645 https://hal.science/hal-01575138 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZge9kL16GFQYkQ4olMTXzN4y6MctGE2hX2ZvkSr6KjrZJ2Gvx6zknaQAdIE0JVLkrtOD4-Pudz_OWYkBcp48pSJxPjZTdhwUKX8qlLCm6ZC5kDj1wTZE9Eb8jenfGzJf8Jv4Vp4kO0L9ywZ9T2Gju4sdXvnTxXQq0iEXIl9xBPInUL8VE_-9Uo0-YTrDwBJ3qN1PPHG615qtvBTGE_QrbkJjbA1YrAiGxKU4FAQ7MSxhpU3SyLWeHWgW_tuY7vkvGqzg1hZby3mNs99_1aOMj_I5R75M4S4Mb7jUbeJ7eKyQOyhZi2CQn9kGQfSzAiSMrFCzGg5sKZal69iqF6WDrqSmwmPq5GppyhLd4mw-PXp4e9ZLl0Q-KEymTCGYwDYWwWUpMJynyOYXZS8JdBum5qlWTBARIUhub440w47x013SIor4Knj8jGZDopdkjsQxFSb5kNXc9SIw2VuVVcOREySK8iIlfNpN0yrjkur3Gh18Y3UqNQcNVNnHAHoeiriKRtzlkT2-MGeXZAE7Q5BxOsh4MMJ34BdWVgKSPyHNSjvRPG7e7tf9B4DTCX5ClVl2lEXtba0yYz5Ri5dZLrzydv9NGn04P-ERQE1dqu1atNyACoApqKSGdN3X4-ueISo_dFZHelf3ppjyqsQs4BimYRedb-C4YEZ4fMpJguKk1xgl1w9vcUTEIbCsYjclirdVu0vTBfpmVVWX2pqRE57L7BVsuNghjgFLYZHhnVGYh0NP8aEVFr8o1Fr_uDwQGcPf7XjLtkq3kzj7yrJ2RjXi6KpwAp57YDxuL9205tMn4AWMFh6Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgfWAvfA4tG2wRQjyRqont2HncVkaBUqF-wN4sx45Xsa6tknYa_PXcJW2gA6QJoSpplNpxfT6ff7YvvyPkZci4TKkRgbaiFTCXQpeyoQkynjLjIgMjcukg24s7I_b-jJ-twgHhuzAVP0S94IY9o7TX2MFxQfr3Xp7IWK6pCLkUTQCUDQzwjUT67X70q1mm1UtYSQDD6A23nj8-aWOsuuv0DM5j9JdsYBNcr10Y0Z9SFyBSV8XC2ACrjTybZ2YT-pZj1-kDMlnXunJZuWguF2nTfL9BCPmfxPKQ3F9hXP-oUspH5E42fUy2EdZWrNBPSPQpBzuCfrl4wwfgnBldLIrXPtQPi0d18fXU-sVY53M0xztkdPpmeNIJVtEbAhPLSAScwVQQpmcu1FFMmU2QaSeEIdMJ0wpTKZgzAAZjTRP8cBYbaw3VrcxJK52lT8nWdDbNdolvXeZCm7LUtSwLtdBUJKnk0sQugvTSI2LdTsqsqM0xwsZEbUxxhEKhYOBN3HMHoahrj4R1znlF73GLPLugCkqfgxVWo0GEe78AvCIwlh55AfpRPwmpuztHXYX3AHYJHlJ5FXrkVak-dTKdX6B7neDqS--tan8eHvfbUBBUa6fUrzohA6wKgMojBxv69vOfSy6QwM8j-2sFVCuTVGAVEg5oNPLIYf0r2BLcINLTbLYsFMU99pizv6dgAtowZtwjJ6Ve10WnE_11lhdFqq4U1XECp29wlHKjIAa4hGOO34yqCEQ6Xlx6JC5V-daiV_3B4Biu9v414yG51xl-7Kruu96HfbJdLdSjG9YzsrXIl9lzQJiL9KC0HD8AGh1lDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgldBe-BxaGGwVQjyRqok_87itlAJTNbUr7M1y7HgVHW2VtNPgr-cuaQMdIE0IVflQasfx-Xz-Of7ljpBXEeMqpVaGxsl2yHwKXcpFNsx4yqyPLYzIJUG2L3oj9uGcn6_4T_gtTOUfon7hhj2jtNfYwefO_97JEyXU2hMhV7IFeLLBRDvBMA6dQfyrVabVN1hJCKPoDVbPH--0MVTd9WYG-zHSJRvYAtdrBiPSKU0BEvVVKIwNrNrIs3lmN5FvOXR1H5DJutIVY2XSWi7Slv1-wx_k_5HKQ3J_hXCbh5VKPiJ3suljso2gtvIJ_YTEpzlYEWTl4oUmwObMmmJRvGlC9bB0VJammbpmMTb5HI3xDhl1354d98JV7IbQChXLkDOYCMLkzEcmFpS5BP3sRDBgemnbUaok8xagoDA0wR9nwjpnqWlnXjnlHX1KtqazabZLms5nPnIpS33bschIQ2WSKq6s8DGkVwGR62bSduXYHONrXOqNCY7UKBQMu4kr7iAUfR2QqM45r5x73CLPLmiCNhdgg_VoGOPKL8CuGExlQF6CetR3QsfdvcMTjdcAdEkeUXUVBeR1qT11MpNPkFwnuf7cf6c7n86OBh0oCKq1U6pXnZABUgU4FZD9DXX7-eSKS3TfF5C9tf7plUEqsAoJBywaB-Sg_hcsCS4PmWk2Wxaa4gq74OzvKZiENhSMB-S4VOu66PTSfJnlRZHqK02NSGD3DbZSbhTEAKewzfHIqI5BpOPF14CIUpNvLXo9GA6P4OzZv2Y8IPdOO1198r7_cY9sV2_pkYP1nGwt8mX2AuDlIt0v7cYPeJljuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+forecasts%2C+calibration+and+sharpness&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Gneiting%2C+T&rft.au=Balabdaoui%2C+F&rft.au=Raftery%2C+A+E&rft.date=2007-04-01&rft.issn=1369-7412&rft.volume=69&rft.issue=2&rft.spage=243&rft.epage=268&rft_id=info:doi/10.1111%2Fj.1467-9868.2007.00587.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |