Probabilistic forecasts, calibration and sharpness

Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distribution...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series B, Statistical methodology Vol. 69; no. 2; pp. 243 - 268
Main Authors Gneiting, Tilmann, Balabdaoui, Fadoua, Raftery, Adrian E
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.04.2007
Blackwell Publishing Ltd
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
SeriesJournal of the Royal Statistical Society Series B
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration. Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection.
AbstractList Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration . Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection.
Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of maximizing the sharpness of the predictive distributions subject to calibration. Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection. Reprinted by permission of Blackwell Publishers
Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic approach to the evaluation of predictive performance that is based on the paradigm of "maximizing the sharpness of the predictive distributions subject to calibration". Calibration refers to the statistical consistency between the distributional forecasts and the observations and is a joint property of the predictions and the events that materialize. Sharpness refers to the concentration of the predictive distributions and is a property of the forecasts only. A simple theoretical framework allows us to distinguish between probabilistic calibration, exceedance calibration and marginal calibration. We propose and study tools for checking calibration and sharpness, among them the probability integral transform histogram, marginal calibration plots, the sharpness diagram and proper scoring rules. The diagnostic approach is illustrated by an assessment and ranking of probabilistic forecasts of wind speed at the Stateline wind energy centre in the US Pacific Northwest. In combination with cross-validation or in the time series context, our proposal provides very general, nonparametric alternatives to the use of information criteria for model diagnostics and model selection. Copyright 2007 Royal Statistical Society.
Author Balabdaoui, Fadoua
Raftery, Adrian E.
Gneiting, Tilmann
Author_xml – sequence: 1
  fullname: Gneiting, Tilmann
– sequence: 2
  fullname: Balabdaoui, Fadoua
– sequence: 3
  fullname: Raftery, Adrian E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18579548$$DView record in Pascal Francis
http://econpapers.repec.org/article/blajorssb/v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243-268.htm$$DView record in RePEc
https://hal.science/hal-01575138$$DView record in HAL
BookMark eNqNUttu1DAQjVCRaAt_gMQKCSQksvgSX_IAUi_QglaAui08jhyvwzpkk8XOlt2_Z7Kp8tCX4sieUeacM8n4HCUHTdu4JJlQMqW43lVTmkmV5lrqKSNETQkRWk23j5LDsXCAOZd5qjLKniRHMVYEl1T8MGHfQ1uYwtc-dt5OyjY4a2IX306sqX0RTOfbZmKaxSQuTVg3LsanyePS1NE9u4vHyc2nj9dnl-ns28Xns5NZaqVmKhUZzamkeUkNkzxb5IQxTSknpbKEFlplpaWSS8Pz_hGZtIuF5Ya4Ui90ueDHyZtBd2lqWAe_MmEHrfFweTKD_h2hQgnK9S1F7OsBuw7tn42LHax8tK6uTePaTYRMYW-ZiQeBXIqcSZEh8OU9YNVuQoM_DDjmXOQ5Zwj6MoCCWzs7fmRRm6oNMRZwC9zIHI8d7v56MPg-xb3uY8aBSQ3LboVir-46mojDL4NprI-jKNVC4ZQ04j4MOBvaGIMrwfpuf09dML4GSqB3BlTQGwB6A8C-9d4ZsEUBfU9g7PEw9f1A_etrt_tvHlzN56eYIf_5wK9i14aRn0nGmZRYTocyutFtx7IJvwHdqgT8_HoB5z-uT6_OUbYfxYsBX5oWzK-A47qZM4ImI0owojj_B5Wu79A
CitedBy_id crossref_primary_10_1016_j_adapen_2022_100120
crossref_primary_10_1088_1742_6596_1037_5_052010
crossref_primary_10_5194_hess_24_2017_2020
crossref_primary_10_1016_j_jhydrol_2023_129450
crossref_primary_10_1111_j_1541_0420_2010_01406_x
crossref_primary_10_1214_16_STS588
crossref_primary_10_1175_WAF_D_20_0082_1
crossref_primary_10_1029_2023WR034942
crossref_primary_10_1016_j_agrformet_2019_107621
crossref_primary_10_1098_rsos_231832
crossref_primary_10_1214_14_AOAS785
crossref_primary_10_1002_qj_559
crossref_primary_10_1016_j_visinf_2022_04_002
crossref_primary_10_1063_5_0010003
crossref_primary_10_1016_j_ijforecast_2021_11_001
crossref_primary_10_1109_TASLP_2024_3492799
crossref_primary_10_1016_j_jhydrol_2015_01_051
crossref_primary_10_1190_geo2021_0318_1
crossref_primary_10_1214_21_EJS1808
crossref_primary_10_1175_JHM_D_11_036_1
crossref_primary_10_1111_rssa_12866
crossref_primary_10_1017_eds_2022_20
crossref_primary_10_1093_erae_jbaa030
crossref_primary_10_1016_j_jhydrol_2011_07_011
crossref_primary_10_1175_2010MWR3511_1
crossref_primary_10_1198_jasa_2011_tm09294
crossref_primary_10_1111_j_1467_985X_2011_01012_x
crossref_primary_10_1016_j_wace_2021_100384
crossref_primary_10_1109_TPAMI_2022_3152862
crossref_primary_10_5194_esd_11_1033_2020
crossref_primary_10_1016_j_canep_2021_101935
crossref_primary_10_1016_j_vaccine_2022_02_054
crossref_primary_10_5194_npg_27_473_2020
crossref_primary_10_1002_wat2_1246
crossref_primary_10_1016_j_ijforecast_2023_06_001
crossref_primary_10_3847_1538_4357_abd101
crossref_primary_10_1016_j_proenv_2015_05_017
crossref_primary_10_3390_en10101591
crossref_primary_10_1785_0120200026
crossref_primary_10_1109_TPWRS_2012_2232314
crossref_primary_10_1175_WAF_D_17_0127_1
crossref_primary_10_3390_w14081261
crossref_primary_10_1175_2010MWR3446_1
crossref_primary_10_1175_MWR_D_16_0260_1
crossref_primary_10_1002_joc_6346
crossref_primary_10_1080_20476965_2023_2200526
crossref_primary_10_1016_j_dss_2021_113626
crossref_primary_10_2139_ssrn_1713162
crossref_primary_10_1007_s10260_015_0343_6
crossref_primary_10_1016_j_ocemod_2023_102275
crossref_primary_10_1029_2022GL099012
crossref_primary_10_1175_2009MWR3046_1
crossref_primary_10_5194_gmd_7_1197_2014
crossref_primary_10_1017_S1743921316013089
crossref_primary_10_2139_ssrn_3258627
crossref_primary_10_1109_TPWRS_2018_2858265
crossref_primary_10_1007_s10651_024_00606_w
crossref_primary_10_1016_j_mbs_2016_11_016
crossref_primary_10_1016_j_jhydrol_2014_05_028
crossref_primary_10_1016_j_envsoft_2019_04_008
crossref_primary_10_1155_2020_2858471
crossref_primary_10_1175_2009JHM1188_1
crossref_primary_10_1214_13_EJS823
crossref_primary_10_1029_2020EA001152
crossref_primary_10_1002_jae_1192
crossref_primary_10_1016_j_jhydrol_2014_07_049
crossref_primary_10_1080_27678490_2021_1936825
crossref_primary_10_1002_joc_6996
crossref_primary_10_1371_journal_pone_0150087
crossref_primary_10_1111_anzs_12087
crossref_primary_10_5194_ascmo_5_1_2019
crossref_primary_10_1029_2023WR034992
crossref_primary_10_1214_08_BA329
crossref_primary_10_1016_j_apenergy_2023_122109
crossref_primary_10_1785_0220240209
crossref_primary_10_1214_23_EJS2180
crossref_primary_10_1111_jmcb_13105
crossref_primary_10_1016_j_acags_2022_100091
crossref_primary_10_1111_j_1467_9876_2011_00772_x
crossref_primary_10_5194_hess_25_4159_2021
crossref_primary_10_1007_s11222_010_9173_4
crossref_primary_10_1111_j_1541_0420_2011_01621_x
crossref_primary_10_1002_wrcr_20087
crossref_primary_10_1175_WAF_D_16_0137_1
crossref_primary_10_1007_s10618_024_01056_5
crossref_primary_10_1002_qj_2839
crossref_primary_10_1103_PhysRevE_89_032112
crossref_primary_10_1214_19_BA1180
crossref_primary_10_1080_01621459_2011_643197
crossref_primary_10_1007_s13524_012_0193_x
crossref_primary_10_1145_3717413_3717429
crossref_primary_10_1016_j_apenergy_2024_124186
crossref_primary_10_1007_s11222_016_9700_z
crossref_primary_10_1111_rssb_12061
crossref_primary_10_1109_TSTE_2016_2610523
crossref_primary_10_1109_TITS_2021_3096854
crossref_primary_10_1175_MWR_D_12_00285_1
crossref_primary_10_1214_22_EJS1989
crossref_primary_10_1016_j_apenergy_2020_116289
crossref_primary_10_1016_j_rser_2018_07_042
crossref_primary_10_1007_s13143_016_0034_8
crossref_primary_10_1093_mnras_stab164
crossref_primary_10_1016_j_atmosres_2022_106458
crossref_primary_10_1002_joc_6788
crossref_primary_10_1109_ACCESS_2020_3003265
crossref_primary_10_1002_bimj_202100408
crossref_primary_10_5194_hess_19_2535_2015
crossref_primary_10_1016_j_jhydrol_2014_07_054
crossref_primary_10_1016_j_solener_2024_112801
crossref_primary_10_1007_s10530_023_03062_y
crossref_primary_10_3390_e20030208
crossref_primary_10_1080_01621459_2016_1273117
crossref_primary_10_1214_20_AOAS1347
crossref_primary_10_5194_wes_3_371_2018
crossref_primary_10_1002_we_230
crossref_primary_10_1109_TFUZZ_2019_2922152
crossref_primary_10_1002_env_2900
crossref_primary_10_1371_journal_pntd_0008422
crossref_primary_10_1016_j_insmatheco_2015_03_001
crossref_primary_10_5194_hess_21_1573_2017
crossref_primary_10_1016_j_ijforecast_2021_05_013
crossref_primary_10_1063_5_0084302
crossref_primary_10_3390_su11041048
crossref_primary_10_1061_IJGNAI_GMENG_9248
crossref_primary_10_1186_s12879_022_07794_5
crossref_primary_10_2139_ssrn_4350792
crossref_primary_10_1080_07350015_2024_2316091
crossref_primary_10_1198_jcgs_2010_08135
crossref_primary_10_1109_TNNLS_2023_3342138
crossref_primary_10_1016_j_rser_2014_01_033
crossref_primary_10_1109_TSTE_2021_3131522
crossref_primary_10_1214_15_EJS1094
crossref_primary_10_1515_strm_2020_0037
crossref_primary_10_1198_jbes_2010_08110
crossref_primary_10_1080_00031305_2021_1967781
crossref_primary_10_1002_qj_3052
crossref_primary_10_1016_j_ijforecast_2021_05_008
crossref_primary_10_1016_j_geoderma_2023_116585
crossref_primary_10_3390_risks7020062
crossref_primary_10_1186_s13705_020_00247_4
crossref_primary_10_1016_j_jhydrol_2019_124095
crossref_primary_10_1007_s11749_008_0114_x
crossref_primary_10_5194_wes_7_2393_2022
crossref_primary_10_1016_j_envsoft_2023_105732
crossref_primary_10_1016_j_jcpx_2023_100133
crossref_primary_10_1002_bimj_201500263
crossref_primary_10_2166_nh_2023_024
crossref_primary_10_1029_2019GL083189
crossref_primary_10_1016_j_annals_2018_12_019
crossref_primary_10_1002_joc_7269
crossref_primary_10_1002_qre_2223
crossref_primary_10_3390_e21080762
crossref_primary_10_1002_2014WR016277
crossref_primary_10_1109_JSTARS_2018_2840491
crossref_primary_10_1002_met_2098
crossref_primary_10_1007_s00376_024_4219_2
crossref_primary_10_1016_j_engappai_2025_110246
crossref_primary_10_1175_JHM_D_14_0048_1
crossref_primary_10_1175_MWR_D_16_0351_1
crossref_primary_10_1515_em_2021_0007
crossref_primary_10_1016_j_ijforecast_2018_02_003
crossref_primary_10_1080_00401706_2023_2271017
crossref_primary_10_1049_oap_cired_2017_0625
crossref_primary_10_1016_j_jhydrol_2009_12_028
crossref_primary_10_1016_j_jhydrol_2021_127323
crossref_primary_10_1080_10618600_2018_1482761
crossref_primary_10_1007_s00181_019_01720_6
crossref_primary_10_1177_0962280219833079
crossref_primary_10_1002_sim_70029
crossref_primary_10_1186_s41118_016_0017_8
crossref_primary_10_1175_2008MWR2565_1
crossref_primary_10_5547_01956574_37_1_dbun
crossref_primary_10_1111_geb_12666
crossref_primary_10_1080_01621459_2021_1938582
crossref_primary_10_1175_MWR_D_16_0331_1
crossref_primary_10_1016_j_oceaneng_2024_119199
crossref_primary_10_3390_math11010074
crossref_primary_10_2166_nh_2019_094
crossref_primary_10_2139_ssrn_4511273
crossref_primary_10_1002_asl_267
crossref_primary_10_1002_qre_3303
crossref_primary_10_1002_bimj_201000145
crossref_primary_10_1016_j_solener_2020_06_005
crossref_primary_10_1175_JHM_D_19_0246_1
crossref_primary_10_1016_j_ijforecast_2015_12_004
crossref_primary_10_1287_mnsc_1120_1667
crossref_primary_10_1186_s12874_024_02397_x
crossref_primary_10_5194_hess_21_5493_2017
crossref_primary_10_1016_j_ejor_2021_07_040
crossref_primary_10_1198_TECH_2009_08104
crossref_primary_10_3847_1538_4357_ad5ff0
crossref_primary_10_3390_w9020074
crossref_primary_10_1016_j_ijforecast_2018_01_005
crossref_primary_10_1007_s11222_022_10090_6
crossref_primary_10_1175_WAF_D_20_0066_1
crossref_primary_10_1175_WAF_D_17_0091_1
crossref_primary_10_1016_j_solener_2018_10_019
crossref_primary_10_1016_j_advwatres_2021_104037
crossref_primary_10_1038_ngeo1788
crossref_primary_10_2139_ssrn_2371204
crossref_primary_10_1016_j_ijforecast_2015_11_003
crossref_primary_10_1175_MWR_D_14_00108_1
crossref_primary_10_1016_j_eneco_2019_104497
crossref_primary_10_1002_for_2908
crossref_primary_10_1038_s41467_021_25257_4
crossref_primary_10_1109_JSYST_2020_3027716
crossref_primary_10_1016_j_ijforecast_2023_09_007
crossref_primary_10_1038_s41467_021_25695_0
crossref_primary_10_3390_app9102048
crossref_primary_10_3390_app9102043
crossref_primary_10_1029_2018WR024028
crossref_primary_10_1088_1748_9326_ad2891
crossref_primary_10_1175_MWR_D_19_0184_1
crossref_primary_10_1214_23_SS145
crossref_primary_10_1371_journal_pcbi_1012523
crossref_primary_10_1093_mnras_sty2922
crossref_primary_10_1080_1331677X_2021_1974921
crossref_primary_10_1016_j_jhydrol_2021_126676
crossref_primary_10_5194_npg_28_467_2021
crossref_primary_10_1016_j_envsoft_2013_12_008
crossref_primary_10_1111_j_1467_9868_2009_00726_x
crossref_primary_10_1175_JHM_D_18_0105_1
crossref_primary_10_1109_ACCESS_2018_2877735
crossref_primary_10_1109_TSP_2019_2954973
crossref_primary_10_1016_j_jcp_2022_111902
crossref_primary_10_1016_j_frl_2023_104036
crossref_primary_10_1175_JAMC_D_13_0162_1
crossref_primary_10_1080_02626667_2023_2231437
crossref_primary_10_1371_journal_pcbi_1010771
crossref_primary_10_1016_j_csda_2011_04_013
crossref_primary_10_2139_ssrn_2807764
crossref_primary_10_1016_j_envsoft_2012_02_008
crossref_primary_10_1002_qj_4403
crossref_primary_10_1016_j_ijforecast_2010_07_004
crossref_primary_10_3390_app12189007
crossref_primary_10_1002_qj_4647
crossref_primary_10_1007_s00703_015_0426_9
crossref_primary_10_1080_10618600_2025_2458504
crossref_primary_10_1175_WAF_D_11_00022_1
crossref_primary_10_3201_eid2803_210267
crossref_primary_10_3390_en13133427
crossref_primary_10_1088_1757_899X_546_5_052014
crossref_primary_10_1002_jae_2810
crossref_primary_10_1002_met_1818
crossref_primary_10_12688_wellcomeopenres_19380_2
crossref_primary_10_12688_wellcomeopenres_19380_1
crossref_primary_10_20965_jaciii_2020_p0477
crossref_primary_10_1111_j_1541_0420_2009_01191_x
crossref_primary_10_1016_j_rser_2021_111909
crossref_primary_10_1002_env_2742
crossref_primary_10_1016_j_ijforecast_2011_02_003
crossref_primary_10_1080_00295639_2020_1759310
crossref_primary_10_2139_ssrn_1504209
crossref_primary_10_1103_PhysRevLett_122_062502
crossref_primary_10_2139_ssrn_2566304
crossref_primary_10_1016_j_ejor_2021_06_044
crossref_primary_10_1111_rssa_12176
crossref_primary_10_1214_22_STS864
crossref_primary_10_1111_rssc_12153
crossref_primary_10_1016_j_solener_2021_07_010
crossref_primary_10_1214_24_EJS2316
crossref_primary_10_1175_MWR_D_16_0487_1
crossref_primary_10_1007_s10479_015_1846_0
crossref_primary_10_1093_biomet_asab047
crossref_primary_10_5194_ascmo_5_87_2019
crossref_primary_10_1016_j_jhydrol_2022_128432
crossref_primary_10_1002_sim_3758
crossref_primary_10_1093_jjfinec_nbt001
crossref_primary_10_3390_app13116520
crossref_primary_10_1016_j_jhydrol_2021_127285
crossref_primary_10_1109_TIA_2014_2300188
crossref_primary_10_1109_TII_2016_2569531
crossref_primary_10_1109_TIV_2017_2723823
crossref_primary_10_1016_j_cageo_2011_08_023
crossref_primary_10_1038_s41598_023_46568_0
crossref_primary_10_1038_s41598_024_67629_y
crossref_primary_10_3389_fmars_2022_896961
crossref_primary_10_1016_j_seja_2024_100063
crossref_primary_10_1016_j_ijforecast_2024_05_003
crossref_primary_10_1111_j_1467_985X_2009_00616_x
crossref_primary_10_1190_geo2022_0061_1
crossref_primary_10_1029_2011WR010748
crossref_primary_10_1002_qj_4436
crossref_primary_10_1002_env_2766
crossref_primary_10_1016_j_renene_2022_10_122
crossref_primary_10_1080_10618600_2018_1476252
crossref_primary_10_1109_TSE_2024_3388572
crossref_primary_10_3389_fpsyt_2023_1181740
crossref_primary_10_1038_s41524_024_01286_7
crossref_primary_10_1080_02664760902984642
crossref_primary_10_1016_j_rser_2022_112348
crossref_primary_10_1093_biomet_asx004
crossref_primary_10_1002_jrsm_1475
crossref_primary_10_1007_s13253_019_00358_2
crossref_primary_10_1093_jrsssc_qlaf011
crossref_primary_10_1002_2016WR019168
crossref_primary_10_1016_j_solener_2022_10_062
crossref_primary_10_1287_deca_2019_0399
crossref_primary_10_1002_qj_3115
crossref_primary_10_1175_2007MWR2411_1
crossref_primary_10_5194_ascmo_3_1_2017
crossref_primary_10_1016_j_solener_2019_10_041
crossref_primary_10_3390_en80910293
crossref_primary_10_1002_qre_2973
crossref_primary_10_1175_JCLI_D_18_0224_1
crossref_primary_10_1111_j_1467_985X_2007_00522_x
crossref_primary_10_1080_01621459_2011_643745
crossref_primary_10_1198_jasa_2009_ap08615
crossref_primary_10_1287_deca_2019_0391
crossref_primary_10_1002_qj_2284
crossref_primary_10_2139_ssrn_2474438
crossref_primary_10_1016_j_atmosenv_2022_119259
crossref_primary_10_1016_j_econmod_2017_07_015
crossref_primary_10_1080_10618600_2024_2341899
crossref_primary_10_1109_TSG_2015_2424078
crossref_primary_10_1109_TPWRS_2016_2552983
crossref_primary_10_1016_j_ijepes_2021_107443
crossref_primary_10_1175_JHM_D_18_0027_1
crossref_primary_10_1214_18_AOAS1151
crossref_primary_10_1002_qj_3380
crossref_primary_10_1109_TSG_2016_2527820
crossref_primary_10_1021_acs_est_8b06326
crossref_primary_10_1007_s12667_017_0255_7
crossref_primary_10_3150_20_BEJ1298
crossref_primary_10_1371_journal_pone_0146247
crossref_primary_10_1175_JCLI_D_16_0652_1
crossref_primary_10_1137_17M1158860
crossref_primary_10_1186_1756_3305_4_230
crossref_primary_10_1002_met_1409
crossref_primary_10_1146_annurev_statistics_040722_053607
crossref_primary_10_1016_j_advwatres_2012_04_009
crossref_primary_10_2139_ssrn_1907799
crossref_primary_10_1016_j_ijforecast_2018_08_003
crossref_primary_10_1002_wrcr_20542
crossref_primary_10_1088_2632_2153_accace
crossref_primary_10_1002_2014WR016473
crossref_primary_10_1016_j_future_2018_04_002
crossref_primary_10_1002_we_2553
crossref_primary_10_1073_pnas_1619938114
crossref_primary_10_1002_jae_3056
crossref_primary_10_1371_journal_pcbi_1008618
crossref_primary_10_1002_2014WR016617
crossref_primary_10_1016_j_ijforecast_2025_01_003
crossref_primary_10_1029_2006RG000202
crossref_primary_10_1002_qj_2624
crossref_primary_10_1002_qj_3718
crossref_primary_10_1016_j_rser_2021_111736
crossref_primary_10_1111_j_1751_5823_2011_00168_x
crossref_primary_10_1016_j_rser_2023_113915
crossref_primary_10_1109_OAJPE_2020_3029979
crossref_primary_10_1002_env_1023
crossref_primary_10_1113_JP271671
crossref_primary_10_1002_qj_3952
crossref_primary_10_3847_1538_4357_aba2f2
crossref_primary_10_1007_s13253_018_0319_8
crossref_primary_10_1016_j_jhydrol_2017_10_038
crossref_primary_10_2139_ssrn_2602465
crossref_primary_10_1175_MWR_D_14_00312_1
crossref_primary_10_1016_j_spasta_2018_12_005
crossref_primary_10_1016_j_cma_2022_115396
crossref_primary_10_5194_hess_22_2953_2018
crossref_primary_10_1016_j_jcmds_2022_100063
crossref_primary_10_1007_s13253_011_0074_6
crossref_primary_10_1371_journal_pone_0247265
crossref_primary_10_1017_dce_2023_11
crossref_primary_10_1111_biom_13467
crossref_primary_10_3390_forecast4020028
crossref_primary_10_1016_j_ecoinf_2024_102825
crossref_primary_10_5194_hess_22_3533_2018
crossref_primary_10_1007_s13209_024_00297_3
crossref_primary_10_1007_s10260_020_00517_7
crossref_primary_10_1109_TII_2022_3180399
crossref_primary_10_3390_w8040125
crossref_primary_10_1080_14697688_2017_1383626
crossref_primary_10_1080_07350015_2024_2360592
crossref_primary_10_1109_JSEN_2018_2850804
crossref_primary_10_1016_j_asieco_2018_10_005
crossref_primary_10_1214_12_AOS973
crossref_primary_10_1007_s00477_022_02255_6
crossref_primary_10_1016_j_asjsur_2019_03_019
crossref_primary_10_1016_j_ijforecast_2012_10_005
crossref_primary_10_5194_nhess_24_2359_2024
crossref_primary_10_1051_swsc_2019016
crossref_primary_10_1007_s13351_011_0304_4
crossref_primary_10_1002_for_3120
crossref_primary_10_1214_11_AOAS497
crossref_primary_10_5194_hess_20_3601_2016
crossref_primary_10_1214_23_AOAS1810
crossref_primary_10_1016_j_wneu_2022_02_030
crossref_primary_10_1016_j_jhydrol_2017_10_057
crossref_primary_10_1029_2022JD037776
crossref_primary_10_1016_j_apenergy_2016_08_108
crossref_primary_10_1111_gean_12264
crossref_primary_10_1016_j_solener_2022_12_054
crossref_primary_10_1002_met_1435
crossref_primary_10_1016_j_ijforecast_2023_12_005
crossref_primary_10_1175_2007MWR2219_1
crossref_primary_10_1002_sim_9219
crossref_primary_10_1016_j_csda_2018_04_008
crossref_primary_10_5194_wes_5_1449_2020
crossref_primary_10_1002_for_1194
crossref_primary_10_1016_j_omega_2014_08_008
crossref_primary_10_1016_j_renene_2020_05_046
crossref_primary_10_1016_j_ijforecast_2023_12_003
crossref_primary_10_1109_TSTE_2020_2993524
crossref_primary_10_1002_qj_3983
crossref_primary_10_1287_deca_2013_0282
crossref_primary_10_1002_env_2368
crossref_primary_10_1155_2021_6655102
crossref_primary_10_5194_npg_27_35_2020
crossref_primary_10_1080_01621459_2016_1205501
crossref_primary_10_3390_stats7020031
crossref_primary_10_1098_rsif_2022_0659
crossref_primary_10_1007_s00780_020_00446_z
crossref_primary_10_1007_s11222_025_10597_8
crossref_primary_10_1016_j_jeconom_2011_02_017
crossref_primary_10_1007_s00382_011_1191_1
crossref_primary_10_1007_s12652_023_04665_y
crossref_primary_10_1007_s41096_025_00231_1
crossref_primary_10_1214_08_AOAS203
crossref_primary_10_1175_2008MWR2614_1
crossref_primary_10_3389_fenrg_2023_1296957
crossref_primary_10_3390_forecast3020022
crossref_primary_10_2139_ssrn_2593062
crossref_primary_10_1007_s10489_024_05346_9
crossref_primary_10_1016_j_patcog_2022_108536
crossref_primary_10_1016_j_apenergy_2023_121775
crossref_primary_10_1002_qj_4844
crossref_primary_10_1002_we_284
crossref_primary_10_1139_cjce_2014_0361
crossref_primary_10_2514_atcq_18_3_229
crossref_primary_10_1016_j_jcp_2025_113722
crossref_primary_10_1002_env_2315
crossref_primary_10_1155_2022_9186265
crossref_primary_10_3390_w11102126
crossref_primary_10_2166_hydro_2020_074
crossref_primary_10_1111_j_1467_9876_2009_00700_x
crossref_primary_10_1214_13_AOAS709
crossref_primary_10_1175_2010MWR3305_1
crossref_primary_10_1175_MWR_D_14_00269_1
crossref_primary_10_1109_ACCESS_2024_3412807
crossref_primary_10_1017_S0950268824000876
crossref_primary_10_1214_23_BA1401
crossref_primary_10_1214_20_AOAS1405
crossref_primary_10_1002_2017WR020684
crossref_primary_10_1007_s00376_023_3184_5
crossref_primary_10_1002_qj_3521
crossref_primary_10_1111_j_1467_9876_2011_01026_x
crossref_primary_10_1162_tacl_a_00483
crossref_primary_10_5194_gmd_15_251_2022
crossref_primary_10_1109_OJVT_2021_3065529
crossref_primary_10_1080_27678490_2022_2063080
crossref_primary_10_1016_j_soard_2019_03_006
crossref_primary_10_1186_s12917_016_0914_2
crossref_primary_10_1007_s00477_024_02754_8
crossref_primary_10_3390_atmos11080823
crossref_primary_10_1007_s11004_021_09988_0
crossref_primary_10_1007_s10651_008_0099_3
crossref_primary_10_1017_eds_2023_7
crossref_primary_10_2139_ssrn_2984522
crossref_primary_10_1080_07350015_2015_1087856
crossref_primary_10_1007_s42519_024_00376_5
crossref_primary_10_1016_j_amar_2023_100303
crossref_primary_10_1002_we_1872
crossref_primary_10_1016_j_ijforecast_2024_06_005
crossref_primary_10_1080_01621459_2020_1769634
crossref_primary_10_3390_w8040115
crossref_primary_10_1109_TPWRS_2010_2045774
crossref_primary_10_1109_TSTE_2014_2323851
crossref_primary_10_1016_j_ejor_2016_10_041
crossref_primary_10_1111_j_1467_985X_2012_01085_x
crossref_primary_10_1016_j_ijforecast_2009_09_009
crossref_primary_10_1287_mnsc_2017_2936
crossref_primary_10_1016_j_jhydrol_2025_133005
crossref_primary_10_1016_j_jhydrol_2012_11_019
crossref_primary_10_1002_for_2242
crossref_primary_10_1109_TITS_2016_2620483
crossref_primary_10_1175_2008JHM956_1
crossref_primary_10_1111_rssc_12103
crossref_primary_10_5194_hess_25_1033_2021
crossref_primary_10_1016_j_solener_2021_05_050
crossref_primary_10_1002_qj_4635
crossref_primary_10_3390_forecast4010004
crossref_primary_10_3390_rs10111701
crossref_primary_10_5194_nhess_23_2857_2023
crossref_primary_10_1002_2014GL062472
crossref_primary_10_1016_j_aap_2020_105510
crossref_primary_10_1021_es302475v
crossref_primary_10_1002_sam_11535
crossref_primary_10_1007_s00477_012_0563_3
crossref_primary_10_1175_MWR_D_14_00210_1
crossref_primary_10_1145_3533382
crossref_primary_10_1002_we_526
crossref_primary_10_1080_10618600_2020_1807996
crossref_primary_10_1080_10618600_2024_2308219
crossref_primary_10_1371_journal_pntd_0006526
crossref_primary_10_1002_qj_2906
crossref_primary_10_1103_PhysRevE_96_022121
crossref_primary_10_1016_j_wace_2017_10_003
crossref_primary_10_1109_TSTE_2018_2831238
crossref_primary_10_1126_sciadv_abg4778
crossref_primary_10_1175_MWR_D_17_0364_1
crossref_primary_10_1111_manc_12298
crossref_primary_10_1016_j_eneco_2022_106125
crossref_primary_10_1016_j_ijforecast_2013_09_009
crossref_primary_10_1016_j_apenergy_2023_122438
crossref_primary_10_1029_2020WR028392
crossref_primary_10_1175_MWR_D_15_0073_1
crossref_primary_10_1016_j_jbankfin_2020_105817
crossref_primary_10_1016_j_energ_2024_100005
crossref_primary_10_1016_j_jhydrol_2021_126520
crossref_primary_10_1002_we_309
crossref_primary_10_1093_biomet_ast020
crossref_primary_10_1200_PO_22_00606
crossref_primary_10_1016_j_energy_2022_123894
crossref_primary_10_1016_j_energy_2022_124744
crossref_primary_10_1109_TPWRS_2017_2775188
crossref_primary_10_3390_atmos12020253
crossref_primary_10_5194_hess_27_4529_2023
crossref_primary_10_1016_j_najef_2010_09_001
crossref_primary_10_1017_S1930297500007099
crossref_primary_10_1080_00401706_2024_2343062
crossref_primary_10_3390_ijerph17041381
crossref_primary_10_1016_j_apm_2020_12_043
crossref_primary_10_3847_1538_4357_ad452f
crossref_primary_10_1016_j_jhydrol_2016_02_036
crossref_primary_10_1287_mnsc_2015_2389
crossref_primary_10_1016_j_spasta_2021_100524
crossref_primary_10_1016_j_infsof_2019_08_006
crossref_primary_10_1038_s41598_023_43024_x
crossref_primary_10_1016_j_jhydrol_2018_05_029
crossref_primary_10_1175_MWR_D_15_0227_1
crossref_primary_10_1002_sam_11302
crossref_primary_10_1002_sta4_25
crossref_primary_10_5802_crgeos_160
crossref_primary_10_1016_j_atmosenv_2020_118146
crossref_primary_10_1109_TSG_2022_3171499
crossref_primary_10_1111_rssb_12154
crossref_primary_10_1175_2010MWR3129_1
crossref_primary_10_1371_journal_pwat_0000040
crossref_primary_10_1016_j_enggeo_2021_106288
crossref_primary_10_1214_11_AOS948
crossref_primary_10_1016_j_ijforecast_2020_02_001
crossref_primary_10_1002_met_2157
crossref_primary_10_1016_j_ecosta_2022_03_001
crossref_primary_10_1016_j_ijforecast_2019_06_003
crossref_primary_10_1016_j_apenergy_2024_124080
crossref_primary_10_1016_j_ejor_2017_08_056
crossref_primary_10_1515_revce_2024_0028
crossref_primary_10_1177_0738894210388125
crossref_primary_10_1146_annurev_statistics_032921_020240
crossref_primary_10_1080_10618600_2014_977447
crossref_primary_10_5194_tc_15_5169_2021
crossref_primary_10_1016_j_jhydrol_2011_01_013
crossref_primary_10_1002_wat2_1580
crossref_primary_10_1016_j_solener_2020_03_095
crossref_primary_10_2139_ssrn_4052357
crossref_primary_10_1175_MWR_D_15_0260_1
crossref_primary_10_2139_ssrn_2998535
crossref_primary_10_5194_hess_23_723_2019
crossref_primary_10_1016_j_apenergy_2024_125168
crossref_primary_10_1016_j_ijforecast_2022_12_006
crossref_primary_10_1175_2011MWR3659_1
crossref_primary_10_1002_qj_3806
crossref_primary_10_5194_acp_24_1673_2024
crossref_primary_10_1002_env_2380
crossref_primary_10_1093_gji_ggac056
crossref_primary_10_1002_cjs_11574
crossref_primary_10_1002_qj_2716
crossref_primary_10_1007_s00024_025_03682_6
crossref_primary_10_5194_ascmo_7_53_2021
crossref_primary_10_1017_eds_2023_22
crossref_primary_10_1021_acs_jcim_9b00975
crossref_primary_10_1111_jpg_12771
crossref_primary_10_1214_17_AOAS1104
crossref_primary_10_1016_j_sste_2017_12_002
crossref_primary_10_1214_13_STS445
crossref_primary_10_1002_qj_1873
crossref_primary_10_1002_env_2176
crossref_primary_10_1214_13_STS443
crossref_primary_10_5194_wes_7_2099_2022
crossref_primary_10_1002_ajae_12075
crossref_primary_10_1080_01621459_2016_1141685
crossref_primary_10_1016_j_jhydrol_2021_126966
crossref_primary_10_1002_ffo2_189
crossref_primary_10_1007_s10479_022_04913_y
crossref_primary_10_1175_JHM_D_21_0099_1
crossref_primary_10_1016_j_envsoft_2010_01_009
crossref_primary_10_1214_21_AOS2160
crossref_primary_10_1103_PhysRevResearch_6_033266
crossref_primary_10_1016_j_ecosta_2019_03_003
crossref_primary_10_1109_TPWRS_2024_3381472
crossref_primary_10_1007_s11222_022_10154_7
crossref_primary_10_1214_12_AOAS579
crossref_primary_10_1109_TSG_2023_3254890
crossref_primary_10_1016_j_acags_2024_100161
crossref_primary_10_1093_infdis_jiw375
crossref_primary_10_1007_s00477_016_1329_0
crossref_primary_10_1016_j_ijforecast_2023_01_003
crossref_primary_10_3390_en14061679
crossref_primary_10_1029_2017WR022432
crossref_primary_10_1016_j_ijforecast_2020_03_007
crossref_primary_10_1287_deca_2016_0337
crossref_primary_10_1109_TITS_2024_3375936
crossref_primary_10_1175_WAF_D_20_0217_1
crossref_primary_10_1186_s40537_021_00494_y
crossref_primary_10_1016_j_ijepes_2024_110244
crossref_primary_10_3847_1538_4357_ad0559
crossref_primary_10_1016_j_ijforecast_2020_11_001
crossref_primary_10_1016_j_renene_2015_02_022
crossref_primary_10_14778_3685800_3685813
crossref_primary_10_1016_j_ijforecast_2020_11_002
crossref_primary_10_1016_j_epidem_2025_100819
crossref_primary_10_1109_TSTE_2018_2858777
crossref_primary_10_1016_j_epidem_2025_100817
crossref_primary_10_1007_s13253_019_00369_z
crossref_primary_10_1016_j_renene_2014_08_060
crossref_primary_10_1016_j_geoderma_2018_06_007
crossref_primary_10_1007_s11749_013_0320_z
crossref_primary_10_5194_hess_20_4117_2016
crossref_primary_10_1002_eap_2904
crossref_primary_10_1016_j_jhydrol_2021_126578
crossref_primary_10_1080_23737484_2024_2318847
crossref_primary_10_1007_s00382_022_06182_8
crossref_primary_10_1002_qj_3185
crossref_primary_10_1016_j_ijforecast_2019_04_019
crossref_primary_10_1080_02626667_2021_1998510
crossref_primary_10_1080_02664763_2023_2272226
crossref_primary_10_1016_j_jretai_2021_05_003
crossref_primary_10_1371_journal_pone_0166724
crossref_primary_10_1002_aepp_13445
crossref_primary_10_1016_j_apenergy_2011_11_004
crossref_primary_10_1080_02626667_2017_1410278
crossref_primary_10_1175_WAF_D_18_0093_1
crossref_primary_10_1109_TSTE_2017_2782089
crossref_primary_10_1175_JHM_D_20_0019_1
crossref_primary_10_1016_j_jenvman_2020_111075
crossref_primary_10_1111_geb_13819
crossref_primary_10_1016_j_apenergy_2011_12_040
crossref_primary_10_1109_TSG_2013_2280650
crossref_primary_10_2139_ssrn_1684444
crossref_primary_10_1007_s00477_020_01928_4
crossref_primary_10_16993_tellusa_96
crossref_primary_10_1016_j_ijforecast_2022_06_005
crossref_primary_10_1109_JBHI_2023_3309302
crossref_primary_10_1016_j_rser_2017_05_234
crossref_primary_10_1093_biomtc_ujae107
crossref_primary_10_1016_j_jspi_2013_05_012
crossref_primary_10_1080_00401706_2024_2350421
crossref_primary_10_1016_j_eswa_2021_115872
crossref_primary_10_1093_biomet_asp054
crossref_primary_10_1002_bimj_201200037
crossref_primary_10_1029_2018WR023254
crossref_primary_10_1002_we_2195
crossref_primary_10_1109_TPWRS_2018_2861705
crossref_primary_10_1016_j_ijar_2020_12_007
crossref_primary_10_2139_ssrn_3476461
crossref_primary_10_1080_07011784_2022_2163189
crossref_primary_10_1515_strm_2015_0007
crossref_primary_10_3402_tellusa_v68_28393
crossref_primary_10_1007_s40808_022_01483_7
crossref_primary_10_1016_j_autcon_2023_104808
crossref_primary_10_1016_j_asoc_2022_109010
crossref_primary_10_1080_01605682_2022_2115411
crossref_primary_10_1016_j_jhydrol_2022_127912
crossref_primary_10_1063_5_0128131
crossref_primary_10_3390_w12082119
crossref_primary_10_1080_01621459_2020_1736081
crossref_primary_10_2166_nh_2018_177
crossref_primary_10_1109_TPWRS_2013_2288100
crossref_primary_10_1175_MWR_D_18_0369_1
crossref_primary_10_5194_hess_22_2057_2018
crossref_primary_10_1109_TPWRS_2021_3050837
crossref_primary_10_1016_j_jhydrol_2019_04_073
crossref_primary_10_1371_journal_pone_0151217
crossref_primary_10_1007_s00477_022_02239_6
crossref_primary_10_1016_j_ijforecast_2014_03_014
crossref_primary_10_1007_s12667_021_00486_0
crossref_primary_10_1029_2023WR035331
crossref_primary_10_1371_journal_pone_0315429
crossref_primary_10_1134_S1063773718120058
crossref_primary_10_1214_12_AOAS538
crossref_primary_10_1016_j_renene_2023_118993
crossref_primary_10_1007_s11749_008_0122_x
crossref_primary_10_1029_2010WR009333
crossref_primary_10_1287_opre_2021_0792
crossref_primary_10_1007_s00477_020_01783_3
crossref_primary_10_2139_ssrn_1326464
crossref_primary_10_1016_j_ijforecast_2022_07_003
crossref_primary_10_1109_TSG_2021_3107159
crossref_primary_10_1214_12_AOAS554
crossref_primary_10_3390_risks5010002
crossref_primary_10_1002_jwmg_22227
crossref_primary_10_1093_jjfinec_nbz018
crossref_primary_10_1214_08_AOS597
crossref_primary_10_1175_WAF_D_20_0141_1
crossref_primary_10_3390_en5030621
crossref_primary_10_1175_WAF_D_12_00062_1
crossref_primary_10_1002_wcc_914
crossref_primary_10_1175_2009MWR3138_1
crossref_primary_10_1175_MWR_D_19_0217_1
crossref_primary_10_2118_212834_PA
crossref_primary_10_1039_D4DD00174E
crossref_primary_10_1214_12_AOAS564
crossref_primary_10_1214_12_AOAS563
crossref_primary_10_1287_deca_2021_0446
crossref_primary_10_1002_jae_2556
crossref_primary_10_1002_eap_70004
crossref_primary_10_1080_02664763_2021_1981833
crossref_primary_10_1016_j_jhydrol_2021_126798
crossref_primary_10_1088_1361_6471_ab907c
crossref_primary_10_1111_jfir_12189
crossref_primary_10_2139_ssrn_2825380
crossref_primary_10_1214_11_AOS902
crossref_primary_10_1103_PhysRevC_98_034318
crossref_primary_10_1016_j_ijforecast_2009_12_015
crossref_primary_10_1080_10618600_2021_1872581
crossref_primary_10_1016_j_envsoft_2024_105981
crossref_primary_10_1016_j_csda_2016_06_018
crossref_primary_10_1175_MWR_D_12_00028_1
crossref_primary_10_1063_5_0214733
crossref_primary_10_3390_fire3020016
crossref_primary_10_1007_s11222_023_10212_8
crossref_primary_10_1021_acs_analchem_2c02034
crossref_primary_10_1016_j_physd_2012_01_007
crossref_primary_10_1016_j_apenergy_2016_11_111
crossref_primary_10_1080_00949655_2013_823612
crossref_primary_10_1002_ecm_1314
crossref_primary_10_1111_rssc_12250
crossref_primary_10_1175_2008MWR2579_1
crossref_primary_10_1007_s00362_024_01641_2
crossref_primary_10_1080_02664763_2023_2252208
crossref_primary_10_2166_nh_2022_063
crossref_primary_10_1175_JHM_D_19_0282_1
crossref_primary_10_3390_w10020177
crossref_primary_10_1016_j_apenergy_2020_115975
crossref_primary_10_1038_nclimate3041
crossref_primary_10_1109_TSTE_2021_3069111
crossref_primary_10_1029_2022WR032117
crossref_primary_10_3390_risks12010013
crossref_primary_10_5194_esd_13_1059_2022
crossref_primary_10_1016_j_solener_2024_112422
crossref_primary_10_1175_JCLI_D_13_00565_1
crossref_primary_10_1016_j_nucengdes_2019_110173
crossref_primary_10_1214_19_AOAS1247
crossref_primary_10_1007_s11707_019_0773_9
crossref_primary_10_1016_j_advwatres_2019_103471
crossref_primary_10_1080_02664760802192981
crossref_primary_10_1021_acs_analchem_8b04033
crossref_primary_10_1002_env_2864
crossref_primary_10_1016_j_advwatres_2019_103470
crossref_primary_10_1029_2011WR010643
crossref_primary_10_1073_pnas_1606316113
crossref_primary_10_20965_jaciii_2019_p0667
crossref_primary_10_1007_s10479_022_04611_9
crossref_primary_10_1007_s10182_010_0139_9
crossref_primary_10_2196_39336
crossref_primary_10_1016_j_enconman_2022_116297
crossref_primary_10_1016_j_spasta_2019_100398
crossref_primary_10_1109_TIA_2016_2518995
crossref_primary_10_1214_23_AOAS1784
crossref_primary_10_1016_j_agrformet_2022_109116
crossref_primary_10_2166_nh_2021_045
crossref_primary_10_1016_j_jhydrol_2019_04_022
crossref_primary_10_1109_TIT_2022_3143764
crossref_primary_10_1214_22_AOAS1697
crossref_primary_10_1002_env_2411
crossref_primary_10_1088_1742_6596_2265_2_022047
crossref_primary_10_1002_env_2894
crossref_primary_10_1175_MWR_D_19_0046_1
crossref_primary_10_1214_22_AOAS1693
crossref_primary_10_3390_atmos11030291
crossref_primary_10_17016_feds_2018_021
crossref_primary_10_1214_22_AOAS1679
crossref_primary_10_1080_16000870_2017_1327766
crossref_primary_10_1214_22_EJS2062
crossref_primary_10_1007_s11749_008_0116_8
crossref_primary_10_1175_MWR_D_18_0187_1
crossref_primary_10_1103_PhysRevE_99_032307
crossref_primary_10_1111_anzs_12230
crossref_primary_10_1016_j_csda_2014_02_008
crossref_primary_10_1214_23_AOAS1768
crossref_primary_10_1002_ecy_3431
crossref_primary_10_3402_tellusa_v65i0_21206
crossref_primary_10_1088_2632_2153_ad594a
crossref_primary_10_1002_2014WR015462
crossref_primary_10_1109_TVT_2019_2918544
crossref_primary_10_1214_14_EJS964
crossref_primary_10_1214_22_AOAS1683
crossref_primary_10_1109_TSTE_2018_2841938
crossref_primary_10_1002_qj_3242
crossref_primary_10_1016_j_compchemeng_2021_107446
crossref_primary_10_1016_j_rser_2022_112224
crossref_primary_10_1002_qj_2397
crossref_primary_10_1093_mnras_stae2607
crossref_primary_10_1137_140957998
crossref_primary_10_5194_hess_24_1_2020
crossref_primary_10_1016_j_solener_2020_05_020
crossref_primary_10_1080_14697688_2017_1414491
crossref_primary_10_1177_1471082X18759140
crossref_primary_10_1002_jae_2959
crossref_primary_10_1016_j_egyai_2023_100269
crossref_primary_10_1186_s12874_021_01226_9
crossref_primary_10_1002_env_2830
crossref_primary_10_1109_TPWRS_2012_2187803
crossref_primary_10_1214_22_AOAS1671
crossref_primary_10_1002_env_2833
crossref_primary_10_1002_met_1971
crossref_primary_10_3390_ijerph20043040
crossref_primary_10_5194_nhess_13_1161_2013
crossref_primary_10_1175_WAF_D_18_0149_1
crossref_primary_10_1214_17_EJS1244
crossref_primary_10_1214_19_AOAS1281
crossref_primary_10_2139_ssrn_3372151
crossref_primary_10_1016_j_apenergy_2016_05_025
crossref_primary_10_2139_ssrn_4175343
crossref_primary_10_1016_j_jhydrol_2020_124812
crossref_primary_10_5194_hess_22_6591_2018
crossref_primary_10_1002_hyp_9263
crossref_primary_10_1016_j_rser_2021_110735
crossref_primary_10_1007_s00382_020_05313_3
crossref_primary_10_1111_rssc_12040
crossref_primary_10_1080_03610918_2021_1908559
crossref_primary_10_5194_asr_20_129_2024
crossref_primary_10_1016_j_jhydrol_2022_127896
crossref_primary_10_1016_j_advwatres_2021_103907
crossref_primary_10_1002_joc_4913
crossref_primary_10_5351_CSAM_2017_24_1_067
crossref_primary_10_3847_1538_4357_ac778e
crossref_primary_10_1111_ecog_03098
crossref_primary_10_1016_j_renene_2018_02_006
crossref_primary_10_1175_WAF_D_19_0181_1
crossref_primary_10_1007_s11943_016_0177_1
crossref_primary_10_1016_j_ejor_2016_01_004
crossref_primary_10_1016_j_jhydrol_2015_04_065
crossref_primary_10_3208_jgssp_v10_OS_15_01
crossref_primary_10_1175_JHM_D_17_0110_1
crossref_primary_10_1145_3691346
crossref_primary_10_1214_15_AOAS843
crossref_primary_10_1371_journal_pone_0231416
crossref_primary_10_1016_j_ocemod_2016_01_004
crossref_primary_10_1080_02664763_2021_1962264
crossref_primary_10_1007_s11590_023_02023_7
crossref_primary_10_1016_j_jeconom_2012_06_006
crossref_primary_10_1002_qj_2183
crossref_primary_10_1109_TITS_2017_2762829
crossref_primary_10_1016_j_ijhydene_2020_06_209
crossref_primary_10_1016_j_cageo_2010_07_005
crossref_primary_10_1111_gcb_16590
crossref_primary_10_3390_en14164951
crossref_primary_10_5194_hess_26_197_2022
crossref_primary_10_1016_j_solener_2022_03_004
crossref_primary_10_1016_j_spasta_2017_09_003
crossref_primary_10_1111_j_1467_985X_2011_01019_x
crossref_primary_10_1111_rssc_12062
crossref_primary_10_1093_ajae_aay039
crossref_primary_10_1137_20M1312204
crossref_primary_10_2139_ssrn_2541787
crossref_primary_10_1109_TPWRS_2019_2924224
crossref_primary_10_1049_oap_cired_2017_1185
crossref_primary_10_1177_09622802221109523
crossref_primary_10_1109_TSTE_2019_2920085
crossref_primary_10_1007_s00521_020_05139_4
crossref_primary_10_1016_j_ijforecast_2019_07_005
crossref_primary_10_1016_j_jastp_2020_105407
crossref_primary_10_1016_j_ijforecast_2022_11_005
crossref_primary_10_1016_j_ijforecast_2024_11_006
crossref_primary_10_3390_s21062160
crossref_primary_10_1002_env_2479
crossref_primary_10_2514_1_J059033
crossref_primary_10_1109_TASLP_2024_3361377
crossref_primary_10_2139_ssrn_1636718
crossref_primary_10_1146_annurev_statistics_062713_085831
crossref_primary_10_1016_j_ejor_2022_06_035
crossref_primary_10_1016_j_scitotenv_2024_176064
crossref_primary_10_1016_j_segan_2023_100998
crossref_primary_10_1002_qre_1967
crossref_primary_10_1109_MSP_2018_2885853
crossref_primary_10_1016_j_ress_2024_110094
crossref_primary_10_1111_biom_13355
crossref_primary_10_1016_j_ijforecast_2023_05_002
crossref_primary_10_1016_j_solener_2020_05_051
crossref_primary_10_1214_17_AOAS1041F
crossref_primary_10_1109_TVCG_2020_3025072
crossref_primary_10_1175_MWR_D_12_00119_1
crossref_primary_10_1214_18_AOAS1236
crossref_primary_10_1029_2010WR010089
crossref_primary_10_5194_esd_14_1333_2023
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_1016_j_seja_2023_100048
crossref_primary_10_1007_s00376_024_3229_4
crossref_primary_10_1002_2017WR021616
crossref_primary_10_1007_s10462_024_10989_8
crossref_primary_10_1016_j_csda_2019_06_005
crossref_primary_10_1002_env_2493
crossref_primary_10_1175_JAMC_D_17_0121_1
crossref_primary_10_1002_qj_2521
crossref_primary_10_1214_12_SS102
crossref_primary_10_1109_TEM_2021_3067050
crossref_primary_10_2139_ssrn_2679663
crossref_primary_10_1002_qj_4701
crossref_primary_10_1002_qj_3615
crossref_primary_10_1016_j_envsoft_2020_104718
crossref_primary_10_1029_2018WR022601
crossref_primary_10_1016_j_apenergy_2020_116405
crossref_primary_10_1111_j_1467_9868_2010_00762_x
crossref_primary_10_1111_biom_12237
crossref_primary_10_1175_JAMC_D_19_0093_1
crossref_primary_10_1002_env_2246
crossref_primary_10_1109_TPWRS_2016_2550867
crossref_primary_10_1080_00401706_2016_1211553
crossref_primary_10_1109_TPWRS_2017_2734563
crossref_primary_10_1016_j_ocecoaman_2021_105947
crossref_primary_10_1016_j_envsoft_2019_104550
crossref_primary_10_1016_j_agrformet_2021_108528
crossref_primary_10_1111_joes_12044
crossref_primary_10_1029_2018SW002026
crossref_primary_10_5194_hess_22_6257_2018
crossref_primary_10_1111_rssa_12273
crossref_primary_10_2139_ssrn_3938972
crossref_primary_10_1525_elementa_431
crossref_primary_10_5194_ascmo_11_23_2025
crossref_primary_10_1080_1331677X_2022_2107554
crossref_primary_10_1109_TPWRS_2019_2940756
crossref_primary_10_1016_j_energy_2017_06_137
crossref_primary_10_1111_rssc_12455
crossref_primary_10_1109_TSTE_2016_2555483
crossref_primary_10_1002_qj_3632
crossref_primary_10_1137_22M1532184
crossref_primary_10_1016_j_jhydrol_2010_01_018
crossref_primary_10_1214_14_AOAS744
crossref_primary_10_1214_14_AOAS743
crossref_primary_10_1002_qj_3637
crossref_primary_10_1002_env_2659
crossref_primary_10_1111_2041_210X_14052
crossref_primary_10_2139_ssrn_2051008
crossref_primary_10_3390_atmos12080966
crossref_primary_10_2139_ssrn_3098761
crossref_primary_10_5194_hess_20_3561_2016
crossref_primary_10_1016_j_trc_2016_10_011
crossref_primary_10_1137_22M1541915
crossref_primary_10_2139_ssrn_1154496
crossref_primary_10_1063_1_5089877
crossref_primary_10_1214_14_AOAS733
crossref_primary_10_1016_j_ejor_2017_12_021
crossref_primary_10_3390_risks10110204
crossref_primary_10_1175_2010WAF2222410_1
crossref_primary_10_1002_met_2215
crossref_primary_10_1016_j_apenergy_2024_122840
crossref_primary_10_1016_j_jmva_2016_11_005
crossref_primary_10_1016_j_socnet_2017_08_001
crossref_primary_10_1371_journal_pcbi_1006785
crossref_primary_10_1002_qj_2323
crossref_primary_10_1007_s00376_014_4073_8
crossref_primary_10_1186_s40537_021_00540_9
crossref_primary_10_1214_14_AOAS766
crossref_primary_10_1175_MWR_D_11_00075_1
crossref_primary_10_1016_j_jhydrol_2011_10_039
crossref_primary_10_1007_s11749_014_0380_8
crossref_primary_10_1111_rssa_12008
crossref_primary_10_1002_qj_4521
crossref_primary_10_1016_j_jobe_2023_107772
crossref_primary_10_1007_s11004_019_09802_y
crossref_primary_10_1002_for_1272
crossref_primary_10_1016_j_eneco_2023_106602
crossref_primary_10_1214_09_BA401C
crossref_primary_10_1007_s40565_015_0110_6
crossref_primary_10_1016_j_ijforecast_2014_08_001
crossref_primary_10_1016_j_enconman_2020_113234
crossref_primary_10_1016_j_ijforecast_2014_08_008
crossref_primary_10_1186_1471_2288_12_137
crossref_primary_10_1002_2012WR012757
crossref_primary_10_3390_w12020578
crossref_primary_10_1002_qj_3667
crossref_primary_10_1111_j_1467_9876_2011_01025_x
Cites_doi 10.1016/j.ijforecast.2003.09.011
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1214/aoms/1177729394
10.2307/2527341
10.1029/1999WR900099
10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
10.1093/biomet/25.3-4.379
10.1007/BF00535293
10.2307/2987588
10.1023/A:1015085810154
10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2
10.1287/moor.28.1.141.14264
10.1126/science.1115255
10.1198/016214503000000765
10.1080/01621459.1997.10473615
10.1002/1099-131X(200007)19:4<375::AID-FOR779>3.0.CO;2-U
10.2307/3318616
10.1214/aos/1176347398
10.1016/S0169-2070(02)00009-2
10.1023/A:1009957816843
10.1002/0471249696
10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
10.1175/MWR2904.1
10.1111/j.2517-6161.1952.tb00104.x
10.1175/1520-0434(1999)014<0427:COPQPF>2.0.CO;2
10.1175/1520-0450(1972)011<0273:SAVPOT>2.0.CO;2
10.1007/978-94-010-1276-8_10
10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
10.1016/S1574-0706(05)01005-0
10.1093/biomet/85.2.379
10.1111/j.1467-9868.2005.00525.x
10.1175/MWR2906.1
10.2307/2527342
10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
10.1007/BF00539368
10.1256/0035900021643593
10.1055/s-0038-1634384
10.1198/07350010152596718
10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2
10.1198/016214506000000456
10.1080/07350015.1995.10524599
10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2
10.1016/0169-2070(92)90028-8
10.1214/aos/1176344689
10.1002/1099-131X(200007)19:4<255::AID-FOR773>3.0.CO;2-G
10.1080/01621459.1982.10477856
10.1002/for.3980040305
10.1016/j.ijforecast.2003.09.014
10.3402/tellusa.v55i1.12082
10.1093/biomet/81.1.115
10.3905/jod.1997.407971
10.1080/01621459.1985.10478154
10.2307/1403751
10.1002/for.876
10.1080/01621459.1985.10478117
10.1256/qj.04.71
10.1214/aos/1176346785
ContentType Journal Article
Copyright Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd.
2007 INIST-CNRS
2007 Royal Statistical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright 2007 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2007 INIST-CNRS
– notice: 2007 Royal Statistical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
DKI
X2L
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
DOI 10.1111/j.1467-9868.2007.00587.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
AGRICOLA

International Bibliography of the Social Sciences (IBSS)
CrossRef



Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9868
EndPage 268
ExternalDocumentID oai_HAL_hal_01575138v1
1227394191
blajorssb_v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243_268_htm
18579548
10_1111_j_1467_9868_2007_00587_x
RSSB587
4623266
ark_67375_WNG_DVTBRD87_8
US201300752073
Genre article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAPXW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEHJ
ABEML
ABFAN
ABHUG
ABIVO
ABLJU
ABPFR
ABPTD
ABPVW
ABWST
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVGU
AFVYC
AFXHP
AFXKK
AFZJQ
AGJLS
AIHXQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EFSUC
EJD
EMK
F00
F5P
FBQ
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
O66
O9-
OJZSN
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AARHZ
AAUAY
ABPQH
ABXSQ
ADACV
ADZMN
ALUQN
ATGXG
BCRHZ
BSCLL
H13
IPSME
OIG
AANHP
AAWIL
ABAWQ
ABDFA
ABPQP
ACHJO
ACRPL
ACYXJ
ADNMO
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
NU-
AAYXX
CITATION
IQODW
02
08R
0R
31
3N
4S
8RP
AS
DKI
GA
HZ
IA
IPNFZ
KM
MEWTI
NF
P4A
PQEST
RIG
WRC
WT
X
X2L
XHC
Y3
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
1XC
ID FETCH-LOGICAL-c6827-54191619f1a2634d902281130f7c01b874fc1636a393939546cddc3a0ef8d8fd3
IEDL.DBID DR2
ISSN 1369-7412
IngestDate Fri May 09 12:09:16 EDT 2025
Fri Jul 11 03:38:49 EDT 2025
Fri Jul 11 04:04:03 EDT 2025
Wed Aug 13 06:52:43 EDT 2025
Wed Aug 18 03:51:57 EDT 2021
Mon Jul 21 09:14:56 EDT 2025
Tue Jul 01 03:43:01 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
Wed Jan 22 17:01:02 EST 2025
Thu Jul 03 21:13:51 EDT 2025
Wed Oct 30 09:52:10 EDT 2024
Wed Dec 27 18:57:26 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Performance evaluation
Rank statistic
Density estimation
Histogram
Predictive distribution
Non parametric estimation
Cross validation
Forecast model
Hypothesis test
Probabilistic assessment
Posterior predictive assessment
Model matching
Cross-validation
Forecast verification
Ex post evaluation
Integral transformation
Posterior distribution
Density forecast
Model selection
Time series
Ensemble prediction system
Prequential principle
Proper scoring rule
Statistical method
Model diagnostics
Probability integral transform
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6827-54191619f1a2634d902281130f7c01b874fc1636a393939546cddc3a0ef8d8fd3
Notes http://dx.doi.org/10.1111/j.1467-9868.2007.00587.x
ark:/67375/WNG-DVTBRD87-8
ArticleID:RSSB587
istex:4A85915CE3228C5C053DAA8317C5833DDE68D3F1
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 200959932
PQPubID 39359
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_01575138v1
proquest_miscellaneous_47281645
proquest_miscellaneous_36592654
proquest_journals_200959932
repec_primary_blajorssb_v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243_268_htm
pascalfrancis_primary_18579548
crossref_citationtrail_10_1111_j_1467_9868_2007_00587_x
crossref_primary_10_1111_j_1467_9868_2007_00587_x
wiley_primary_10_1111_j_1467_9868_2007_00587_x_RSSB587
jstor_primary_4623266
istex_primary_ark_67375_WNG_DVTBRD87_8
fao_agris_US201300752073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2007
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: April 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationSeriesTitle Journal of the Royal Statistical Society Series B
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Publishers
– name: Blackwell
– name: Royal Statistical Society
– name: Oxford University Press
References DeGroot, M. H. and Fienberg, S. E. (1983) The comparison and evaluation of forecasters. Statistician, 12, 12-22.
Pearson, K. (1933) On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random. Biometrika, 25, 379-410.
Dawid, A. P. and Vovk, V. G. (1999) Prequential probability: principles and properties. Bernoulli, 5, 125-162.
Murphy, A. H. and Winkler, R. L. (1992) Diagnostic verification of probability forecasts. Int. J. Forecast., 7, 435-455.
Dawid, A. P. (1985a) The impossibility of inductive inference. J. Am. Statist. Ass., 80, 340-341.
Moyeed, R. A. and Papritz, A. (2002) An empirical comparison of kriging methods for nonlinear spatial point prediction. Math. Geol., 34, 365-386.
Shafer, G. and Vovk, V. (2001) Probability and Finance: It's Only a Game! New York: Wiley.
Murphy, A. H. (1972) Scalar and vector partitions of the probability score: Part I, Two-state situation. J. Appl. Meteorol., 11, 273-278.
Jolliffe, I. T. and Stephenson, D. B. (eds) (2003) Forecast Verification: a Practitioner's Guide in Atmospheric Science. Chichester: Wiley.
Seillier-Moiseiwitsch, F. (1993) Sequential probability forecasts and the probability integral transform. Int. Statist. Rev., 61, 395-408.
Diebold, F. X. and Mariano, R. S. (1995) Comparing predictive accuracy. J. Bus. Econ. Statist., 13, 253-263.
Shephard, N. (1994) Partial non-Gaussian state space. Biometrika, 81, 115-131.
Schervish, M. J. (1989) A general method for comparing probability assessors. Ann. Statist., 17, 1856-1879.
Bremnes, J. B. (2004) Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mnthly Weath Rev., 132, 338-347.
Smith, J. Q. (1985) Diagnostic checks of non-standard time series models. J. Forecast., 4, 283-291.
Vovk, V. and Shafer, G. (2005) Good randomized sequential probability forecasting is always possible. J. R. Statist. Soc. B, 67, 747-763.
Weigend, A. S. and Shi, S. (2000) Predicting daily probability distributions of S&P500 returns. J. Forecast., 19, 375-392.
Diebold, F. X., Gunther, T. A. and Tay, A. S. (1998) Evaluating density forecasts with applications to financial risk management. Int. Econ. Rev., 39, 863-883.
Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686-690.
Anderson, J. L. (1996) A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim., 9, 1518-1530.
Oakes, D. (1985) Self-calibrating priors do not exist. J. Am. Statist. Ass., 80, 339.
Foster, D. P. and Vohra, R. V. (1998) Asymptotic calibration. Biometrika, 85, 379-390.
Garratt, A., Lee, K., Pesaran, M. H. and Shin, Y. (2003) Forecast uncertainties in macroeconomic modelling: an application to the UK economy. J. Am. Statist. Ass., 98, 829-838.
Brown, B. G., Katz, R. W. and Murphy, A. H. (1984) Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteorol., 23, 1184-1195.
Candille, G. and Talagrand, O. (2005) Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc., 131, 2131-2150.
Duffie, D. and Pan, J. (1997) An overview of value at risk. J. Deriv., 4, 7-49.
Palmer, T. N. (2002) The economic value of ensemble forecasts as a tool for risk assessment: from days to decades. Q. J. R. Meteorol. Soc., 128, 747-774.
Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995) Bayesian computing and stochastic systems (with discussion). Statist. Sci., 10, 3-66.
Rubin, D. B. (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist., 12, 1151-1172.
Blum, J. R., Hanson, D. L. and Koopmans, L. H. (1963) On the strong law of large numbers for a class of stochastic processes. Z. Wahrsch. Ver. Geb., 2, 1-11.
Selten, R. (1998) Axiomatic characterization of the quadratic scoring rule. Exptl Econ., 1, 43-62.
Dawid, A. P. (1984) Statistical theory: the prequential approach (with discussion). J. R. Statist. Soc. A, 147, 278-292.
Berkowitz, J. (2001) Testing density forecasts, with applications to risk management. J. Bus. Econ. Statist., 19, 465-474.
Frühwirth-Schnatter, S. (1996) Recursive residuals and model diagnostics for normal and non-normal state space models. Environ. Ecol. Statist., 3, 291-309.
Gneiting, T. and Raftery, A. E. (2005) Weather forecasting with ensemble methods. Science, 310, 248-249.
Gelman, A., Meng, X.-L. and Stern, H. (1996) Posterior predictive assessment of model fitness via realized discrepancies. Statist. Sin., 6, 733-807.
Gneiting, T. and Raftery, A. E. (2006) Strictly proper scoring rules, prediction and estimation. J. Am. Statist. Ass., to be published.
Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mnthly Weath. Rev., 133, 1098-1198.
Dawid, A. P. (1982) The well-calibrated Bayesian. J. Am. Statist. Ass., 77, 605-610.
Good, I. J. (1952) Rational decisions. J. R. Statist. Soc. B, 14, 107-114.
Roulston, M. S. and Smith, L. A. (2003) Combining dynamical and statistical ensembles. Tellus A, 55, 16-30.
Boero, G. and Marrocu, E. (2004) The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts. Int. J. Forecast., 20, 305-320.
Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997) Bayesian model averaging for linear regression models. J. Am. Statist. Ass., 92, 179-191.
Granger, C. W. J. (2006) Some thoughts on the future of forecasting. Oxf. Bull. Econ. Statist., 67S, 707-711.
Sandroni, A., Smorodinsky, R. and Vohra, R. V. (2003) Calibration with many checking rules. Math. Oper. Res., 28, 141-153.
Roulston, M. S. and Smith, L. A. (2002) Evaluating probabilistic forecasts using information theory. Mnthly Weath. Rev., 130, 1653-1660.
Murphy, A. H., Brown, B. G. and Chen, Y.-S. (1989) Diagnostic verification of temperature forecasts. Weath. Forecast., 4, 485-501.
Schumacher, M., Graf, E. and Gerds, T. (2003) How to assess prognostic models for survival data: a case study in oncology. Meth. Inform. Med., 42, 564-571.
Clements, M. P. and Smith, J. (2000) Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment. J. Forecast., 19, 255-276.
Rosenblatt, M. (1952) Remarks on a multivariate transformation. Ann. Math. Statist., 23, 470-472.
Krzysztofowicz, R. (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Wat. Resour. Res., 35, 2739-2750.
Wallis, K. F. (2003) Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts. Int. J. Forecast., 19, 165-175.
Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006) Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method. J. Am. Statist. Ass., 101, 968-979.
Schervish, M. J. (1985) Comment. J. Am. Statist. Ass., 80, 341-342.
Brier, G. W. (1950) Verification of forecasts expressed in terms of probability. Mnthly Weath. Rev., 78, 1-3.
Murphy, A. H. and Winkler, R. L. (1987) A general framework for forecast verification. Mnthly Weath. Rev., 115, 1330-1338.
Hamill, T. M. (2001) Interpretation of rank histograms for verifying ensemble forecasts. Mnthly Weath. Rev., 129, 550-560.
Noceti, P., Smith, J. and Hodges, S. (2003) An evaluation of tests of distributional forecasts. J. Forecast., 22, 447-455.
Bauwens, L., Giot, P., Grammig, J. and Veredas, D. (2004) A comparison of financial duration models via density forecasts. Int. J. Forecast., 20, 589-609.
Christoffersen, P. F. (1998) Evaluating interval forecasts. Int. Econ. Rev., 39, 841-862.
Staël von Holstein, C.-A. S. (1970) Assessment and Evaluation of Subjective Probability Distributions. Stockholm: Economics Research Institute.
Hamill, T. M. and Colucci, S. J. (1997) Verification of Eta-RSM short-range ensemble forecasts. Mnthly Weath. Rev., 125, 1312-1327.
Dawid, A. P. (1985b) Calibration-based empirical probability (with discussion). Ann. Statist., 13, 1251-1285.
Krzysztofowicz, R. and Sigrest, A. A. (1999) Calibration of probabilistic quantitative precipitation forecasts. Weath. Forecast., 14, 427-442.
Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mnthly Weath. Rev., 133, 1155-1174.
2004; 20
2005; 131
2005; 133
1993; 61
1984; 23
1985b; 13
1970
2003; 19
1998; 85
1997; 4
2003; 98
1933; 25
2005; 67
2003; 55
1983; 12
1977
1992; 7
2004; 132
1952; 23
1950; 78
2000; 19
1985a; 80
1997; 92
2001
1987; 115
1984; 12
1999; 14
2001; 19
1986
1982
1996; 3
1972; 11
2006; 67S
2003; 42
1996; 9
1996; 6
1979; 7
1989; 4
1952; 14
1984; 147
1985; 4
2005; 310
2002; 130
1995; 13
2002; 34
1995; 10
1982; 77
1985; 80
1997
1995
2006
2005
1994
2004
2003
2002
1994; 81
2001; 129
1999; 5
1997; 125
1998; 39
1963; 2
1999; 35
2002; 128
2003; 28
1998; 1
2006; 101
2003; 22
1989; 17
DeGroot (2023040800083686500_) 1982
Moyeed (2023040800083686500_) 2002; 34
Garratt (2023040800083686500_) 2003; 98
Smith (2023040800083686500_) 1985; 4
Pearson (2023040800083686500_) 1933; 25
Bremnes (2023040800083686500_) 2004; 132
Raftery (2023040800083686500_) 1997; 92
Schervish (2023040800083686500_) 1989; 17
Clements (2023040800083686500_) 2000; 19
Besag (2023040800083686500_) 1995; 10
Murphy (2023040800083686500_) 1992; 7
Dawid (2023040800083686500_) 1986
Candille (2023040800083686500_) 2005; 131
Selten (2023040800083686500_) 1998; 1
Raftery (2023040800083686500_) 2005; 133
Hamill (2023040800083686500_) 2001; 129
Bernardo (2023040800083686500_) 1979; 7
Rubin (2023040800083686500_) 1984; 12
Bauwens (2023040800083686500_) 2004; 20
Jolliffe (2023040800083686500_) 2003
Roulston (2023040800083686500_) 2003; 55
Krzysztofowicz (2023040800083686500_) 1999; 14
Gelman (2023040800083686500_) 1996; 6
Gneiting (2023040800083686500_) 2005; 133
Brown (2023040800083686500_) 1984; 23
Dawid (2023040800083686500_) 1984; 147
Gschlöß l (2023040800083686500_) 2005
Boero (2023040800083686500_) 2004; 20
Duffie (2023040800083686500_) 1997; 4
Palmer (2023040800083686500_) 2002; 128
Murphy (2023040800083686500_) 1972; 11
Schumacher (2023040800083686500_) 2003; 42
Talagrand (2023040800083686500_) 1997
Weigend (2023040800083686500_) 2000; 19
Schervish (2023040800083686500_) 1985; 80
Gneiting (2023040800083686500_) 2006; 101
Wallis (2023040800083686500_) 2003; 19
Diebold (2023040800083686500_) 1995; 13
Staël von Holstein (2023040800083686500_) 1970
Winkler (2023040800083686500_) 1977
Shephard (2023040800083686500_) 1994; 81
Granger (2023040800083686500_) 2006; 67S
Hamill (2023040800083686500_) 1997; 125
Rosenblatt (2023040800083686500_) 1952; 23
Anderson (2023040800083686500_) 1996; 9
Shafer (2023040800083686500_) 2001
Foster (2023040800083686500_) 1998; 85
Diebold (2023040800083686500_) 1998; 39
Corradi (2023040800083686500_) 2006
Sandroni (2023040800083686500_) 2003; 28
DeGroot (2023040800083686500_) 1983; 12
Berkowitz (2023040800083686500_) 2001; 19
Dawid (2023040800083686500_) 1985; 80
Oakes (2023040800083686500_) 1985; 80
Frühwirth-Schnatter (2023040800083686500_) 1996; 3
Good (2023040800083686500_) 1952; 14
Brier (2023040800083686500_) 1950; 78
Vovk (2023040800083686500_) 2005; 67
Krzysztofowicz (2023040800083686500_) 1999; 35
Noceti (2023040800083686500_) 2003; 22
Gneiting (2023040800083686500_) 2005; 310
Christoffersen (2023040800083686500_) 1998; 39
Roulston (2023040800083686500_) 2002; 130
Hoeting (2023040800083686500_) 1994
Gneiting (2023040800083686500_) 2006
Dawid (2023040800083686500_) 1982; 77
Dawid (2023040800083686500_) 1999; 5
Gneiting (2023040800083686500_) 2004
Murphy (2023040800083686500_) 1989; 4
Murphy (2023040800083686500_) 1987; 115
Gerds (2023040800083686500_) 2002
Blum (2023040800083686500_) 1963; 2
Brocklehurst (2023040800083686500_) 1995
Dawid (2023040800083686500_) 1985; 13
Seillier-Moiseiwitsch (2023040800083686500_) 1993; 61
References_xml – reference: Shafer, G. and Vovk, V. (2001) Probability and Finance: It's Only a Game! New York: Wiley.
– reference: Hamill, T. M. and Colucci, S. J. (1997) Verification of Eta-RSM short-range ensemble forecasts. Mnthly Weath. Rev., 125, 1312-1327.
– reference: Murphy, A. H. and Winkler, R. L. (1992) Diagnostic verification of probability forecasts. Int. J. Forecast., 7, 435-455.
– reference: DeGroot, M. H. and Fienberg, S. E. (1983) The comparison and evaluation of forecasters. Statistician, 12, 12-22.
– reference: Dawid, A. P. (1982) The well-calibrated Bayesian. J. Am. Statist. Ass., 77, 605-610.
– reference: Bauwens, L., Giot, P., Grammig, J. and Veredas, D. (2004) A comparison of financial duration models via density forecasts. Int. J. Forecast., 20, 589-609.
– reference: Dawid, A. P. (1985a) The impossibility of inductive inference. J. Am. Statist. Ass., 80, 340-341.
– reference: Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686-690.
– reference: Berkowitz, J. (2001) Testing density forecasts, with applications to risk management. J. Bus. Econ. Statist., 19, 465-474.
– reference: Murphy, A. H. and Winkler, R. L. (1987) A general framework for forecast verification. Mnthly Weath. Rev., 115, 1330-1338.
– reference: Rosenblatt, M. (1952) Remarks on a multivariate transformation. Ann. Math. Statist., 23, 470-472.
– reference: Smith, J. Q. (1985) Diagnostic checks of non-standard time series models. J. Forecast., 4, 283-291.
– reference: Oakes, D. (1985) Self-calibrating priors do not exist. J. Am. Statist. Ass., 80, 339.
– reference: Diebold, F. X., Gunther, T. A. and Tay, A. S. (1998) Evaluating density forecasts with applications to financial risk management. Int. Econ. Rev., 39, 863-883.
– reference: Vovk, V. and Shafer, G. (2005) Good randomized sequential probability forecasting is always possible. J. R. Statist. Soc. B, 67, 747-763.
– reference: Jolliffe, I. T. and Stephenson, D. B. (eds) (2003) Forecast Verification: a Practitioner's Guide in Atmospheric Science. Chichester: Wiley.
– reference: Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mnthly Weath. Rev., 133, 1098-1198.
– reference: Duffie, D. and Pan, J. (1997) An overview of value at risk. J. Deriv., 4, 7-49.
– reference: Good, I. J. (1952) Rational decisions. J. R. Statist. Soc. B, 14, 107-114.
– reference: Moyeed, R. A. and Papritz, A. (2002) An empirical comparison of kriging methods for nonlinear spatial point prediction. Math. Geol., 34, 365-386.
– reference: Schervish, M. J. (1989) A general method for comparing probability assessors. Ann. Statist., 17, 1856-1879.
– reference: Bremnes, J. B. (2004) Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mnthly Weath Rev., 132, 338-347.
– reference: Brier, G. W. (1950) Verification of forecasts expressed in terms of probability. Mnthly Weath. Rev., 78, 1-3.
– reference: Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006) Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method. J. Am. Statist. Ass., 101, 968-979.
– reference: Selten, R. (1998) Axiomatic characterization of the quadratic scoring rule. Exptl Econ., 1, 43-62.
– reference: Gneiting, T. and Raftery, A. E. (2005) Weather forecasting with ensemble methods. Science, 310, 248-249.
– reference: Blum, J. R., Hanson, D. L. and Koopmans, L. H. (1963) On the strong law of large numbers for a class of stochastic processes. Z. Wahrsch. Ver. Geb., 2, 1-11.
– reference: Candille, G. and Talagrand, O. (2005) Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc., 131, 2131-2150.
– reference: Frühwirth-Schnatter, S. (1996) Recursive residuals and model diagnostics for normal and non-normal state space models. Environ. Ecol. Statist., 3, 291-309.
– reference: Sandroni, A., Smorodinsky, R. and Vohra, R. V. (2003) Calibration with many checking rules. Math. Oper. Res., 28, 141-153.
– reference: Weigend, A. S. and Shi, S. (2000) Predicting daily probability distributions of S&P500 returns. J. Forecast., 19, 375-392.
– reference: Diebold, F. X. and Mariano, R. S. (1995) Comparing predictive accuracy. J. Bus. Econ. Statist., 13, 253-263.
– reference: Roulston, M. S. and Smith, L. A. (2003) Combining dynamical and statistical ensembles. Tellus A, 55, 16-30.
– reference: Noceti, P., Smith, J. and Hodges, S. (2003) An evaluation of tests of distributional forecasts. J. Forecast., 22, 447-455.
– reference: Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995) Bayesian computing and stochastic systems (with discussion). Statist. Sci., 10, 3-66.
– reference: Dawid, A. P. (1984) Statistical theory: the prequential approach (with discussion). J. R. Statist. Soc. A, 147, 278-292.
– reference: Anderson, J. L. (1996) A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim., 9, 1518-1530.
– reference: Christoffersen, P. F. (1998) Evaluating interval forecasts. Int. Econ. Rev., 39, 841-862.
– reference: Krzysztofowicz, R. (1999) Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Wat. Resour. Res., 35, 2739-2750.
– reference: Seillier-Moiseiwitsch, F. (1993) Sequential probability forecasts and the probability integral transform. Int. Statist. Rev., 61, 395-408.
– reference: Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mnthly Weath. Rev., 133, 1155-1174.
– reference: Schumacher, M., Graf, E. and Gerds, T. (2003) How to assess prognostic models for survival data: a case study in oncology. Meth. Inform. Med., 42, 564-571.
– reference: Schervish, M. J. (1985) Comment. J. Am. Statist. Ass., 80, 341-342.
– reference: Brown, B. G., Katz, R. W. and Murphy, A. H. (1984) Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteorol., 23, 1184-1195.
– reference: Dawid, A. P. (1985b) Calibration-based empirical probability (with discussion). Ann. Statist., 13, 1251-1285.
– reference: Boero, G. and Marrocu, E. (2004) The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts. Int. J. Forecast., 20, 305-320.
– reference: Gneiting, T. and Raftery, A. E. (2006) Strictly proper scoring rules, prediction and estimation. J. Am. Statist. Ass., to be published.
– reference: Staël von Holstein, C.-A. S. (1970) Assessment and Evaluation of Subjective Probability Distributions. Stockholm: Economics Research Institute.
– reference: Dawid, A. P. and Vovk, V. G. (1999) Prequential probability: principles and properties. Bernoulli, 5, 125-162.
– reference: Wallis, K. F. (2003) Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts. Int. J. Forecast., 19, 165-175.
– reference: Krzysztofowicz, R. and Sigrest, A. A. (1999) Calibration of probabilistic quantitative precipitation forecasts. Weath. Forecast., 14, 427-442.
– reference: Murphy, A. H., Brown, B. G. and Chen, Y.-S. (1989) Diagnostic verification of temperature forecasts. Weath. Forecast., 4, 485-501.
– reference: Shephard, N. (1994) Partial non-Gaussian state space. Biometrika, 81, 115-131.
– reference: Palmer, T. N. (2002) The economic value of ensemble forecasts as a tool for risk assessment: from days to decades. Q. J. R. Meteorol. Soc., 128, 747-774.
– reference: Pearson, K. (1933) On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random. Biometrika, 25, 379-410.
– reference: Clements, M. P. and Smith, J. (2000) Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment. J. Forecast., 19, 255-276.
– reference: Granger, C. W. J. (2006) Some thoughts on the future of forecasting. Oxf. Bull. Econ. Statist., 67S, 707-711.
– reference: Hamill, T. M. (2001) Interpretation of rank histograms for verifying ensemble forecasts. Mnthly Weath. Rev., 129, 550-560.
– reference: Rubin, D. B. (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist., 12, 1151-1172.
– reference: Gelman, A., Meng, X.-L. and Stern, H. (1996) Posterior predictive assessment of model fitness via realized discrepancies. Statist. Sin., 6, 733-807.
– reference: Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997) Bayesian model averaging for linear regression models. J. Am. Statist. Ass., 92, 179-191.
– reference: Foster, D. P. and Vohra, R. V. (1998) Asymptotic calibration. Biometrika, 85, 379-390.
– reference: Garratt, A., Lee, K., Pesaran, M. H. and Shin, Y. (2003) Forecast uncertainties in macroeconomic modelling: an application to the UK economy. J. Am. Statist. Ass., 98, 829-838.
– reference: Murphy, A. H. (1972) Scalar and vector partitions of the probability score: Part I, Two-state situation. J. Appl. Meteorol., 11, 273-278.
– reference: Roulston, M. S. and Smith, L. A. (2002) Evaluating probabilistic forecasts using information theory. Mnthly Weath. Rev., 130, 1653-1660.
– volume: 80
  start-page: 341
  year: 1985
  end-page: 342
  article-title: Comment
  publication-title: J. Am. Statist. Ass.
– volume: 80
  start-page: 339
  year: 1985
  article-title: Self‐calibrating priors do not exist
  publication-title: J. Am. Statist. Ass.
– volume: 19
  start-page: 255
  year: 2000
  end-page: 276
  article-title: Evaluating the forecast densities of linear and non‐linear models: applications to output growth and unemployment
  publication-title: J. Forecast.
– year: 2005
– volume: 5
  start-page: 125
  year: 1999
  end-page: 162
  article-title: Prequential probability: principles and properties
  publication-title: Bernoulli
– year: 2001
– volume: 9
  start-page: 1518
  year: 1996
  end-page: 1530
  article-title: A method for producing and evaluating probabilistic forecasts from ensemble model integrations
  publication-title: J. Clim.
– volume: 132
  start-page: 338
  year: 2004
  end-page: 347
  article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output
  publication-title: Mnthly Weath Rev.
– volume: 13
  start-page: 1251
  year: 1985b
  end-page: 1285
  article-title: Calibration‐based empirical probability (with discussion)
  publication-title: Ann. Statist.
– volume: 34
  start-page: 365
  year: 2002
  end-page: 386
  article-title: An empirical comparison of kriging methods for nonlinear spatial point prediction
  publication-title: Math. Geol.
– volume: 2
  start-page: 1
  year: 1963
  end-page: 11
  article-title: On the strong law of large numbers for a class of stochastic processes
  publication-title: Z. Wahrsch. Ver. Geb.
– year: 1994
– volume: 101
  start-page: 968
  year: 2006
  end-page: 979
  article-title: Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime‐switching space‐time (RST) method
  publication-title: J. Am. Statist. Ass.
– volume: 19
  start-page: 375
  year: 2000
  end-page: 392
  article-title: Predicting daily probability distributions of S&P500 returns
  publication-title: J. Forecast.
– volume: 133
  start-page: 1155
  year: 2005
  end-page: 1174
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mnthly Weath. Rev.
– volume: 22
  start-page: 447
  year: 2003
  end-page: 455
  article-title: An evaluation of tests of distributional forecasts
  publication-title: J. Forecast.
– volume: 7
  start-page: 686
  year: 1979
  end-page: 690
  article-title: Expected information as expected utility
  publication-title: Ann. Statist.
– volume: 147
  start-page: 278
  year: 1984
  end-page: 292
  article-title: Statistical theory: the prequential approach (with discussion)
  publication-title: J. R. Statist. Soc.
– volume: 67
  start-page: 747
  year: 2005
  end-page: 763
  article-title: Good randomized sequential probability forecasting is always possible
  publication-title: J. R. Statist. Soc. B
– volume: 98
  start-page: 829
  year: 2003
  end-page: 838
  article-title: Forecast uncertainties in macroeconomic modelling: an application to the UK economy
  publication-title: J. Am. Statist. Ass.
– volume: 6
  start-page: 733
  year: 1996
  end-page: 807
  article-title: Posterior predictive assessment of model fitness via realized discrepancies
  publication-title: Statist. Sin.
– volume: 23
  start-page: 1184
  year: 1984
  end-page: 1195
  article-title: Time series models to simulate and forecast wind speed and wind power
  publication-title: J. Clim. Appl. Meteorol.
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Statist.
– year: 2004
– volume: 61
  start-page: 395
  year: 1993
  end-page: 408
  article-title: Sequential probability forecasts and the probability integral transform
  publication-title: Int. Statist. Rev.
– volume: 133
  start-page: 1098
  year: 2005
  end-page: 1198
  article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
  publication-title: Mnthly Weath. Rev.
– volume: 78
  start-page: 1
  year: 1950
  end-page: 3
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mnthly Weath. Rev.
– volume: 20
  start-page: 305
  year: 2004
  end-page: 320
  article-title: The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts
  publication-title: Int. J. Forecast.
– volume: 128
  start-page: 747
  year: 2002
  end-page: 774
  article-title: The economic value of ensemble forecasts as a tool for risk assessment: from days to decades
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 12
  start-page: 1151
  year: 1984
  end-page: 1172
  article-title: Bayesianly justifiable and relevant frequency calculations for the applied statistician
  publication-title: Ann. Statist.
– start-page: 210
  year: 1986
  end-page: 218
– volume: 7
  start-page: 435
  year: 1992
  end-page: 455
  article-title: Diagnostic verification of probability forecasts
  publication-title: Int. J. Forecast.
– volume: 17
  start-page: 1856
  year: 1989
  end-page: 1879
  article-title: A general method for comparing probability assessors
  publication-title: Ann. Statist.
– volume: 310
  start-page: 248
  year: 2005
  end-page: 249
  article-title: Weather forecasting with ensemble methods
  publication-title: Science
– volume: 92
  start-page: 179
  year: 1997
  end-page: 191
  article-title: Bayesian model averaging for linear regression models
  publication-title: J. Am. Statist. Ass.
– volume: 35
  start-page: 2739
  year: 1999
  end-page: 2750
  article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model
  publication-title: Wat. Resour. Res.
– volume: 39
  start-page: 863
  year: 1998
  end-page: 883
  article-title: Evaluating density forecasts with applications to financial risk management
  publication-title: Int. Econ. Rev.
– volume: 14
  start-page: 107
  year: 1952
  end-page: 114
  article-title: Rational decisions
  publication-title: J. R. Statist. Soc. B
– volume: 25
  start-page: 379
  year: 1933
  end-page: 410
  article-title: On a method of determining whether a sample of size supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random
  publication-title: Biometrika
– volume: 4
  start-page: 7
  year: 1997
  end-page: 49
  article-title: An overview of value at risk
  publication-title: J. Deriv.
– start-page: 197
  year: 2006
  end-page: 284
– volume: 1
  start-page: 43
  year: 1998
  end-page: 62
  article-title: Axiomatic characterization of the quadratic scoring rule
  publication-title: Exptl Econ.
– volume: 42
  start-page: 564
  year: 2003
  end-page: 571
  article-title: How to assess prognostic models for survival data: a case study in oncology
  publication-title: Meth. Inform. Med.
– year: 2003
– volume: 14
  start-page: 427
  year: 1999
  end-page: 442
  article-title: Calibration of probabilistic quantitative precipitation forecasts
  publication-title: Weath. Forecast.
– volume: 4
  start-page: 283
  year: 1985
  end-page: 291
  article-title: Diagnostic checks of non‐standard time series models
  publication-title: J. Forecast.
– volume: 55
  start-page: 16
  year: 2003
  end-page: 30
  article-title: Combining dynamical and statistical ensembles
  publication-title: Tellus A
– volume: 28
  start-page: 141
  year: 2003
  end-page: 153
  article-title: Calibration with many checking rules
  publication-title: Math. Oper. Res.
– volume: 19
  start-page: 465
  year: 2001
  end-page: 474
  article-title: Testing density forecasts, with applications to risk management
  publication-title: J. Bus. Econ. Statist.
– volume: 3
  start-page: 291
  year: 1996
  end-page: 309
  article-title: Recursive residuals and model diagnostics for normal and non‐normal state space models
  publication-title: Environ. Ecol. Statist.
– volume: 39
  start-page: 841
  year: 1998
  end-page: 862
  article-title: Evaluating interval forecasts
  publication-title: Int. Econ. Rev.
– volume: 10
  start-page: 3
  year: 1995
  end-page: 66
  article-title: Bayesian computing and stochastic systems (with discussion)
  publication-title: Statist. Sci.
– volume: 80
  start-page: 340
  year: 1985a
  end-page: 341
  article-title: The impossibility of inductive inference
  publication-title: J. Am. Statist. Ass.
– volume: 19
  start-page: 165
  year: 2003
  end-page: 175
  article-title: Chi‐squared tests of interval and density forecasts, and the Bank of England's fan charts
  publication-title: Int. J. Forecast.
– volume: 81
  start-page: 115
  year: 1994
  end-page: 131
  article-title: Partial non‐Gaussian state space
  publication-title: Biometrika
– volume: 23
  start-page: 470
  year: 1952
  end-page: 472
  article-title: Remarks on a multivariate transformation
  publication-title: Ann. Math. Statist.
– volume: 85
  start-page: 379
  year: 1998
  end-page: 390
  article-title: Asymptotic calibration
  publication-title: Biometrika
– volume: 115
  start-page: 1330
  year: 1987
  end-page: 1338
  article-title: A general framework for forecast verification
  publication-title: Mnthly Weath. Rev.
– start-page: 1
  year: 1997
  end-page: 25
– volume: 12
  start-page: 12
  year: 1983
  end-page: 22
  article-title: The comparison and evaluation of forecasters
  publication-title: Statistician
– volume: 4
  start-page: 485
  year: 1989
  end-page: 501
  article-title: Diagnostic verification of temperature forecasts
  publication-title: Weath. Forecast.
– volume: 20
  start-page: 589
  year: 2004
  end-page: 609
  article-title: A comparison of financial duration models via density forecasts
  publication-title: Int. J. Forecast.
– start-page: 291
  year: 1982
  end-page: 314
– year: 2002
– volume: 11
  start-page: 273
  year: 1972
  end-page: 278
  article-title: Scalar and vector partitions of the probability score: Part I, Two‐state situation
  publication-title: J. Appl. Meteorol.
– start-page: 127
  year: 1977
  end-page: 140
– volume: 77
  start-page: 605
  year: 1982
  end-page: 610
  article-title: The well‐calibrated Bayesian
  publication-title: J. Am. Statist. Ass.
– volume: 67S
  start-page: 707
  year: 2006
  end-page: 711
  article-title: Some thoughts on the future of forecasting
  publication-title: Oxf. Bull. Econ. Statist.
– year: 1995
– volume: 130
  start-page: 1653
  year: 2002
  end-page: 1660
  article-title: Evaluating probabilistic forecasts using information theory
  publication-title: Mnthly Weath. Rev.
– year: 1970
– volume: 131
  start-page: 2131
  year: 2005
  end-page: 2150
  article-title: Evaluation of probabilistic prediction systems for a scalar variable
  publication-title: Q. J. R. Meteorol. Soc.
– year: 2006
  article-title: Strictly proper scoring rules, prediction and estimation
  publication-title: J. Am. Statist. Ass.
– volume: 125
  start-page: 1312
  year: 1997
  end-page: 1327
  article-title: Verification of Eta‐RSM short‐range ensemble forecasts
  publication-title: Mnthly Weath. Rev.
– volume: 129
  start-page: 550
  year: 2001
  end-page: 560
  article-title: Interpretation of rank histograms for verifying ensemble forecasts
  publication-title: Mnthly Weath. Rev.
– volume: 20
  start-page: 305
  year: 2004
  ident: 2023040800083686500_
  article-title: The performance of SETAR models: a regime conditional evaluation of point, interval and density forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2003.09.011
– volume: 78
  start-page: 1
  year: 1950
  ident: 2023040800083686500_
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mnthly Weath. Rev.
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 23
  start-page: 470
  year: 1952
  ident: 2023040800083686500_
  article-title: Remarks on a multivariate transformation
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729394
– volume: 39
  start-page: 841
  year: 1998
  ident: 2023040800083686500_
  article-title: Evaluating interval forecasts
  publication-title: Int. Econ. Rev.
  doi: 10.2307/2527341
– start-page: 291
  volume-title: Statistical Decision Theory and Related Topics III
  year: 1982
  ident: 2023040800083686500_
– volume: 35
  start-page: 2739
  year: 1999
  ident: 2023040800083686500_
  article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model
  publication-title: Wat. Resour. Res.
  doi: 10.1029/1999WR900099
– volume: 125
  start-page: 1312
  year: 1997
  ident: 2023040800083686500_
  article-title: Verification of Eta-RSM short-range ensemble forecasts
  publication-title: Mnthly Weath. Rev.
  doi: 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
– volume: 115
  start-page: 1330
  year: 1987
  ident: 2023040800083686500_
  article-title: A general framework for forecast verification
  publication-title: Mnthly Weath. Rev.
  doi: 10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
– volume: 10
  start-page: 3
  year: 1995
  ident: 2023040800083686500_
  article-title: Bayesian computing and stochastic systems (with discussion)
  publication-title: Statist. Sci.
– volume: 25
  start-page: 379
  year: 1933
  ident: 2023040800083686500_
  article-title: On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probably been drawn at random
  publication-title: Biometrika
  doi: 10.1093/biomet/25.3-4.379
– volume: 2
  start-page: 1
  year: 1963
  ident: 2023040800083686500_
  article-title: On the strong law of large numbers for a class of stochastic processes
  publication-title: Z. Wahrsch. Ver. Geb.
  doi: 10.1007/BF00535293
– volume: 12
  start-page: 12
  year: 1983
  ident: 2023040800083686500_
  article-title: The comparison and evaluation of forecasters
  publication-title: Statistician
  doi: 10.2307/2987588
– volume: 34
  start-page: 365
  year: 2002
  ident: 2023040800083686500_
  article-title: An empirical comparison of kriging methods for nonlinear spatial point prediction
  publication-title: Math. Geol.
  doi: 10.1023/A:1015085810154
– volume-title: Nonparametric efficient estimation of prediction error for incomplete data models
  year: 2002
  ident: 2023040800083686500_
– volume: 130
  start-page: 1653
  year: 2002
  ident: 2023040800083686500_
  article-title: Evaluating probabilistic forecasts using information theory
  publication-title: Mnthly Weath. Rev.
  doi: 10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2
– volume: 80
  start-page: 340
  year: 1985
  ident: 2023040800083686500_
  article-title: The impossibility of inductive inference
  publication-title: J. Am. Statist. Ass.
– volume: 28
  start-page: 141
  year: 2003
  ident: 2023040800083686500_
  article-title: Calibration with many checking rules
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.1.141.14264
– volume: 6
  start-page: 733
  year: 1996
  ident: 2023040800083686500_
  article-title: Posterior predictive assessment of model fitness via realized discrepancies
  publication-title: Statist. Sin.
– volume: 310
  start-page: 248
  year: 2005
  ident: 2023040800083686500_
  article-title: Weather forecasting with ensemble methods
  publication-title: Science
  doi: 10.1126/science.1115255
– volume: 98
  start-page: 829
  year: 2003
  ident: 2023040800083686500_
  article-title: Forecast uncertainties in macroeconomic modelling: an application to the UK economy
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214503000000765
– volume: 92
  start-page: 179
  year: 1997
  ident: 2023040800083686500_
  article-title: Bayesian model averaging for linear regression models
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1997.10473615
– volume: 19
  start-page: 375
  year: 2000
  ident: 2023040800083686500_
  article-title: Predicting daily probability distributions of S&P500 returns
  publication-title: J. Forecast.
  doi: 10.1002/1099-131X(200007)19:4<375::AID-FOR779>3.0.CO;2-U
– volume: 5
  start-page: 125
  year: 1999
  ident: 2023040800083686500_
  article-title: Prequential probability: principles and properties
  publication-title: Bernoulli
  doi: 10.2307/3318616
– volume-title: Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method. Technical Report 464
  year: 2004
  ident: 2023040800083686500_
– volume: 17
  start-page: 1856
  year: 1989
  ident: 2023040800083686500_
  article-title: A general method for comparing probability assessors
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176347398
– volume-title: Accounting for model uncertainty in linear regression
  year: 1994
  ident: 2023040800083686500_
– volume: 147
  start-page: 278
  year: 1984
  ident: 2023040800083686500_
  article-title: Statistical theory: the prequential approach (with discussion)
  publication-title: J. R. Statist. Soc.
– volume: 19
  start-page: 165
  year: 2003
  ident: 2023040800083686500_
  article-title: Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(02)00009-2
– volume: 1
  start-page: 43
  year: 1998
  ident: 2023040800083686500_
  article-title: Axiomatic characterization of the quadratic scoring rule
  publication-title: Exptl Econ.
  doi: 10.1023/A:1009957816843
– volume-title: Probability and Finance: It's Only a Game!
  year: 2001
  ident: 2023040800083686500_
  doi: 10.1002/0471249696
– volume: 132
  start-page: 338
  year: 2004
  ident: 2023040800083686500_
  article-title: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output
  publication-title: Mnthly Weath Rev.
  doi: 10.1175/1520-0493(2004)132<0338:PFOPIT>2.0.CO;2
– volume: 133
  start-page: 1098
  year: 2005
  ident: 2023040800083686500_
  article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
  publication-title: Mnthly Weath. Rev.
  doi: 10.1175/MWR2904.1
– volume: 14
  start-page: 107
  year: 1952
  ident: 2023040800083686500_
  article-title: Rational decisions
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1952.tb00104.x
– volume: 14
  start-page: 427
  year: 1999
  ident: 2023040800083686500_
  article-title: Calibration of probabilistic quantitative precipitation forecasts
  publication-title: Weath. Forecast.
  doi: 10.1175/1520-0434(1999)014<0427:COPQPF>2.0.CO;2
– volume: 11
  start-page: 273
  year: 1972
  ident: 2023040800083686500_
  article-title: Scalar and vector partitions of the probability score: Part I, Two-state situation
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1972)011<0273:SAVPOT>2.0.CO;2
– start-page: 127
  volume-title: Decision Making and Change in Human Affairs
  year: 1977
  ident: 2023040800083686500_
  doi: 10.1007/978-94-010-1276-8_10
– volume: 23
  start-page: 1184
  year: 1984
  ident: 2023040800083686500_
  article-title: Time series models to simulate and forecast wind speed and wind power
  publication-title: J. Clim. Appl. Meteorol.
  doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
– start-page: 197
  volume-title: Handbook of Economic Forecasting
  year: 2006
  ident: 2023040800083686500_
  doi: 10.1016/S1574-0706(05)01005-0
– volume: 85
  start-page: 379
  year: 1998
  ident: 2023040800083686500_
  article-title: Asymptotic calibration
  publication-title: Biometrika
  doi: 10.1093/biomet/85.2.379
– year: 2006
  ident: 2023040800083686500_
  article-title: Strictly proper scoring rules, prediction and estimation
  publication-title: J. Am. Statist. Ass.
– volume: 13
  start-page: 1251
  year: 1985
  ident: 2023040800083686500_
  article-title: Calibration-based empirical probability (with discussion)
  publication-title: Ann. Statist.
– volume: 67
  start-page: 747
  year: 2005
  ident: 2023040800083686500_
  article-title: Good randomized sequential probability forecasting is always possible
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2005.00525.x
– start-page: 210
  volume-title: Encyclopedia of Statistical Sciences
  year: 1986
  ident: 2023040800083686500_
– volume: 133
  start-page: 1155
  year: 2005
  ident: 2023040800083686500_
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mnthly Weath. Rev.
  doi: 10.1175/MWR2906.1
– volume: 39
  start-page: 863
  year: 1998
  ident: 2023040800083686500_
  article-title: Evaluating density forecasts with applications to financial risk management
  publication-title: Int. Econ. Rev.
  doi: 10.2307/2527342
– volume-title: Handbook of Software Reliability Engineering
  year: 1995
  ident: 2023040800083686500_
– volume: 129
  start-page: 550
  year: 2001
  ident: 2023040800083686500_
  article-title: Interpretation of rank histograms for verifying ensemble forecasts
  publication-title: Mnthly Weath. Rev.
  doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
– volume: 3
  start-page: 291
  year: 1996
  ident: 2023040800083686500_
  article-title: Recursive residuals and model diagnostics for normal and non-normal state space models
  publication-title: Environ. Ecol. Statist.
  doi: 10.1007/BF00539368
– volume: 128
  start-page: 747
  year: 2002
  ident: 2023040800083686500_
  article-title: The economic value of ensemble forecasts as a tool for risk assessment: from days to decades
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/0035900021643593
– volume-title: Forecast Verification: a Practitioner's Guide in Atmospheric Science
  year: 2003
  ident: 2023040800083686500_
– volume: 42
  start-page: 564
  year: 2003
  ident: 2023040800083686500_
  article-title: How to assess prognostic models for survival data: a case study in oncology
  publication-title: Meth. Inform. Med.
  doi: 10.1055/s-0038-1634384
– volume: 19
  start-page: 465
  year: 2001
  ident: 2023040800083686500_
  article-title: Testing density forecasts, with applications to risk management
  publication-title: J. Bus. Econ. Statist.
  doi: 10.1198/07350010152596718
– volume: 9
  start-page: 1518
  year: 1996
  ident: 2023040800083686500_
  article-title: A method for producing and evaluating probabilistic forecasts from ensemble model integrations
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2
– volume: 101
  start-page: 968
  year: 2006
  ident: 2023040800083686500_
  article-title: Calibrated probabilistic forecasting at the Stateline wind energy centre: the regime-switching space-time (RST) method
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214506000000456
– volume: 13
  start-page: 253
  year: 1995
  ident: 2023040800083686500_
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Statist.
  doi: 10.1080/07350015.1995.10524599
– volume: 4
  start-page: 485
  year: 1989
  ident: 2023040800083686500_
  article-title: Diagnostic verification of temperature forecasts
  publication-title: Weath. Forecast.
  doi: 10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2
– volume: 7
  start-page: 435
  year: 1992
  ident: 2023040800083686500_
  article-title: Diagnostic verification of probability forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(92)90028-8
– volume: 7
  start-page: 686
  year: 1979
  ident: 2023040800083686500_
  article-title: Expected information as expected utility
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344689
– volume: 19
  start-page: 255
  year: 2000
  ident: 2023040800083686500_
  article-title: Evaluating the forecast densities of linear and non-linear models: applications to output growth and unemployment
  publication-title: J. Forecast.
  doi: 10.1002/1099-131X(200007)19:4<255::AID-FOR773>3.0.CO;2-G
– volume: 77
  start-page: 605
  year: 1982
  ident: 2023040800083686500_
  article-title: The well-calibrated Bayesian
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1982.10477856
– volume: 4
  start-page: 283
  year: 1985
  ident: 2023040800083686500_
  article-title: Diagnostic checks of non-standard time series models
  publication-title: J. Forecast.
  doi: 10.1002/for.3980040305
– volume-title: Spatial modelling of claim frequency and claim size in insurance
  year: 2005
  ident: 2023040800083686500_
– volume-title: Assessment and Evaluation of Subjective Probability Distributions
  year: 1970
  ident: 2023040800083686500_
– volume: 20
  start-page: 589
  year: 2004
  ident: 2023040800083686500_
  article-title: A comparison of financial duration models via density forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2003.09.014
– volume: 67S
  start-page: 707
  year: 2006
  ident: 2023040800083686500_
  article-title: Some thoughts on the future of forecasting
  publication-title: Oxf. Bull. Econ. Statist.
– volume: 55
  start-page: 16
  year: 2003
  ident: 2023040800083686500_
  article-title: Combining dynamical and statistical ensembles
  publication-title: Tellus A
  doi: 10.3402/tellusa.v55i1.12082
– volume: 81
  start-page: 115
  year: 1994
  ident: 2023040800083686500_
  article-title: Partial non-Gaussian state space
  publication-title: Biometrika
  doi: 10.1093/biomet/81.1.115
– volume: 4
  start-page: 7
  year: 1997
  ident: 2023040800083686500_
  article-title: An overview of value at risk
  publication-title: J. Deriv.
  doi: 10.3905/jod.1997.407971
– volume: 80
  start-page: 341
  year: 1985
  ident: 2023040800083686500_
  article-title: Comment
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1985.10478154
– volume: 61
  start-page: 395
  year: 1993
  ident: 2023040800083686500_
  article-title: Sequential probability forecasts and the probability integral transform
  publication-title: Int. Statist. Rev.
  doi: 10.2307/1403751
– volume: 22
  start-page: 447
  year: 2003
  ident: 2023040800083686500_
  article-title: An evaluation of tests of distributional forecasts
  publication-title: J. Forecast.
  doi: 10.1002/for.876
– volume: 80
  start-page: 339
  year: 1985
  ident: 2023040800083686500_
  article-title: Self-calibrating priors do not exist
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1985.10478117
– volume: 131
  start-page: 2131
  year: 2005
  ident: 2023040800083686500_
  article-title: Evaluation of probabilistic prediction systems for a scalar variable
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1256/qj.04.71
– start-page: 1
  volume-title: Proc. Wrkshp Predictability
  year: 1997
  ident: 2023040800083686500_
– volume: 12
  start-page: 1151
  year: 1984
  ident: 2023040800083686500_
  article-title: Bayesianly justifiable and relevant frequency calculations for the applied statistician
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176346785
SSID ssj0000673
Score 2.4751556
Snippet Probabilistic forecasts of continuous variables take the form of predictive densities or predictive cumulative distribution functions. We propose a diagnostic...
SourceID hal
proquest
repec
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 243
SubjectTerms Analytical forecasting
Autocorrelation
Calibration
Cross-validation
cumulative distribution
Density forecast
diagnostic techniques
Distribution
Distribution theory
Ensemble prediction system
Evaluation
Ex post evaluation
Exact sciences and technology
Forecast verification
Forecasting
Forecasts
Histograms
Inference from stochastic processes; time series analysis
Mathematical methods
Mathematics
Model diagnostics
Model testing
Nonparametric inference
Posterior predictive assessment
prediction
Predictive distribution
Prequential principle
Probabilities
Probability
Probability and statistics
Probability forecasts
Probability integral transform
Probability theory and stochastic processes
Proper scoring rule
Sciences and techniques of general use
Statistical analysis
Statistical methods
Statistics
Stochastic processes
Studies
Time series
time series analysis
Time series forecasting
United States
Weather forecasting
Wind power
wind speed
Wind velocity
Title Probabilistic forecasts, calibration and sharpness
URI https://api.istex.fr/ark:/67375/WNG-DVTBRD87-8/fulltext.pdf
https://www.jstor.org/stable/4623266
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9868.2007.00587.x
http://econpapers.repec.org/article/blajorssb/v_3a69_3ay_3a2007_3ai_3a2_3ap_3a243-268.htm
https://www.proquest.com/docview/200959932
https://www.proquest.com/docview/36592654
https://www.proquest.com/docview/47281645
https://hal.science/hal-01575138
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZge9kL16GFQYkQ4olMTXzN4y6MctGE2hX2ZvkSr6KjrZJ2Gvx6zknaQAdIE0JVLkrtOD4-Pudz_OWYkBcp48pSJxPjZTdhwUKX8qlLCm6ZC5kDj1wTZE9Eb8jenfGzJf8Jv4Vp4kO0L9ywZ9T2Gju4sdXvnTxXQq0iEXIl9xBPInUL8VE_-9Uo0-YTrDwBJ3qN1PPHG615qtvBTGE_QrbkJjbA1YrAiGxKU4FAQ7MSxhpU3SyLWeHWgW_tuY7vkvGqzg1hZby3mNs99_1aOMj_I5R75M4S4Mb7jUbeJ7eKyQOyhZi2CQn9kGQfSzAiSMrFCzGg5sKZal69iqF6WDrqSmwmPq5GppyhLd4mw-PXp4e9ZLl0Q-KEymTCGYwDYWwWUpMJynyOYXZS8JdBum5qlWTBARIUhub440w47x013SIor4Knj8jGZDopdkjsQxFSb5kNXc9SIw2VuVVcOREySK8iIlfNpN0yrjkur3Gh18Y3UqNQcNVNnHAHoeiriKRtzlkT2-MGeXZAE7Q5BxOsh4MMJ34BdWVgKSPyHNSjvRPG7e7tf9B4DTCX5ClVl2lEXtba0yYz5Ri5dZLrzydv9NGn04P-ERQE1dqu1atNyACoApqKSGdN3X4-ueISo_dFZHelf3ppjyqsQs4BimYRedb-C4YEZ4fMpJguKk1xgl1w9vcUTEIbCsYjclirdVu0vTBfpmVVWX2pqRE57L7BVsuNghjgFLYZHhnVGYh0NP8aEVFr8o1Fr_uDwQGcPf7XjLtkq3kzj7yrJ2RjXi6KpwAp57YDxuL9205tMn4AWMFh6Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgfWAvfA4tG2wRQjyRqont2HncVkaBUqF-wN4sx45Xsa6tknYa_PXcJW2gA6QJoSpplNpxfT6ff7YvvyPkZci4TKkRgbaiFTCXQpeyoQkynjLjIgMjcukg24s7I_b-jJ-twgHhuzAVP0S94IY9o7TX2MFxQfr3Xp7IWK6pCLkUTQCUDQzwjUT67X70q1mm1UtYSQDD6A23nj8-aWOsuuv0DM5j9JdsYBNcr10Y0Z9SFyBSV8XC2ACrjTybZ2YT-pZj1-kDMlnXunJZuWguF2nTfL9BCPmfxPKQ3F9hXP-oUspH5E42fUy2EdZWrNBPSPQpBzuCfrl4wwfgnBldLIrXPtQPi0d18fXU-sVY53M0xztkdPpmeNIJVtEbAhPLSAScwVQQpmcu1FFMmU2QaSeEIdMJ0wpTKZgzAAZjTRP8cBYbaw3VrcxJK52lT8nWdDbNdolvXeZCm7LUtSwLtdBUJKnk0sQugvTSI2LdTsqsqM0xwsZEbUxxhEKhYOBN3HMHoahrj4R1znlF73GLPLugCkqfgxVWo0GEe78AvCIwlh55AfpRPwmpuztHXYX3AHYJHlJ5FXrkVak-dTKdX6B7neDqS--tan8eHvfbUBBUa6fUrzohA6wKgMojBxv69vOfSy6QwM8j-2sFVCuTVGAVEg5oNPLIYf0r2BLcINLTbLYsFMU99pizv6dgAtowZtwjJ6Ve10WnE_11lhdFqq4U1XECp29wlHKjIAa4hGOO34yqCEQ6Xlx6JC5V-daiV_3B4Biu9v414yG51xl-7Kruu96HfbJdLdSjG9YzsrXIl9lzQJiL9KC0HD8AGh1lDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgldBe-BxaGGwVQjyRqok_87itlAJTNbUr7M1y7HgVHW2VtNPgr-cuaQMdIE0IVflQasfx-Xz-Of7ljpBXEeMqpVaGxsl2yHwKXcpFNsx4yqyPLYzIJUG2L3oj9uGcn6_4T_gtTOUfon7hhj2jtNfYwefO_97JEyXU2hMhV7IFeLLBRDvBMA6dQfyrVabVN1hJCKPoDVbPH--0MVTd9WYG-zHSJRvYAtdrBiPSKU0BEvVVKIwNrNrIs3lmN5FvOXR1H5DJutIVY2XSWi7Slv1-wx_k_5HKQ3J_hXCbh5VKPiJ3suljso2gtvIJ_YTEpzlYEWTl4oUmwObMmmJRvGlC9bB0VJammbpmMTb5HI3xDhl1354d98JV7IbQChXLkDOYCMLkzEcmFpS5BP3sRDBgemnbUaok8xagoDA0wR9nwjpnqWlnXjnlHX1KtqazabZLms5nPnIpS33bschIQ2WSKq6s8DGkVwGR62bSduXYHONrXOqNCY7UKBQMu4kr7iAUfR2QqM45r5x73CLPLmiCNhdgg_VoGOPKL8CuGExlQF6CetR3QsfdvcMTjdcAdEkeUXUVBeR1qT11MpNPkFwnuf7cf6c7n86OBh0oCKq1U6pXnZABUgU4FZD9DXX7-eSKS3TfF5C9tf7plUEqsAoJBywaB-Sg_hcsCS4PmWk2Wxaa4gq74OzvKZiENhSMB-S4VOu66PTSfJnlRZHqK02NSGD3DbZSbhTEAKewzfHIqI5BpOPF14CIUpNvLXo9GA6P4OzZv2Y8IPdOO1198r7_cY9sV2_pkYP1nGwt8mX2AuDlIt0v7cYPeJljuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+forecasts%2C+calibration+and+sharpness&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Gneiting%2C+T&rft.au=Balabdaoui%2C+F&rft.au=Raftery%2C+A+E&rft.date=2007-04-01&rft.issn=1369-7412&rft.volume=69&rft.issue=2&rft.spage=243&rft.epage=268&rft_id=info:doi/10.1111%2Fj.1467-9868.2007.00587.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon