Transcriptome Dynamics of Developing Photoreceptors in Three‐Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks
The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of c...
Saved in:
Published in | Stem cells (Dayton, Ohio) Vol. 33; no. 12; pp. 3504 - 3518 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.12.2015
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504–3518 |
---|---|
AbstractList | The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504–3518 The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504-3518 The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox ( CRX ), an established marker of postmitotic photoreceptor precursors. The CRXp ‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. S tem C ells 2015;33:3504–3518 |
Author | Chaitankar, Vijender Homma, Kohei Kaya, Koray Dogan Rao, Mahendra Kaewkhaw, Rossukon Brooks, Matthew Zou, Jizhong Swaroop, Anand |
AuthorAffiliation | 3 Center for Regenerative Medicine National Institutes of Health Bethesda Maryland USA 5 Department of Physiology Nippon Medical School Tokyo Japan 1 Neurobiology‐Neurodegeneration & Repair Laboratory, National Eye Institute National Institutes of Health Bethesda Maryland USA 2 Research Center, Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok Thailand 4 iPSC Core, Center for Molecular Medicine National Heart, Lung, and Blood Institute Bethesda Maryland USA 6 The New York Stem Cell Foundation Research Institute New York NY 10023 |
AuthorAffiliation_xml | – name: 5 Department of Physiology Nippon Medical School Tokyo Japan – name: 4 iPSC Core, Center for Molecular Medicine National Heart, Lung, and Blood Institute Bethesda Maryland USA – name: 3 Center for Regenerative Medicine National Institutes of Health Bethesda Maryland USA – name: 2 Research Center, Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok Thailand – name: 1 Neurobiology‐Neurodegeneration & Repair Laboratory, National Eye Institute National Institutes of Health Bethesda Maryland USA – name: 6 The New York Stem Cell Foundation Research Institute New York NY 10023 |
Author_xml | – sequence: 1 givenname: Rossukon surname: Kaewkhaw fullname: Kaewkhaw, Rossukon organization: Mahidol University – sequence: 2 givenname: Koray Dogan surname: Kaya fullname: Kaya, Koray Dogan organization: National Institutes of Health – sequence: 3 givenname: Matthew surname: Brooks fullname: Brooks, Matthew organization: National Institutes of Health – sequence: 4 givenname: Kohei surname: Homma fullname: Homma, Kohei organization: Nippon Medical School – sequence: 5 givenname: Jizhong surname: Zou fullname: Zou, Jizhong organization: National Heart, Lung, and Blood Institute – sequence: 6 givenname: Vijender surname: Chaitankar fullname: Chaitankar, Vijender organization: National Institutes of Health – sequence: 7 givenname: Mahendra surname: Rao fullname: Rao, Mahendra organization: The New York Stem Cell Foundation Research Institute – sequence: 8 givenname: Anand surname: Swaroop fullname: Swaroop, Anand organization: National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26235913$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhSNURH9gwQsgS2xgMa3t2Jlkg4RmSovUAmqHteVxbjpuEzvYzlSz4xF4NV6BJ-GmPwgqkFjZlr9zfK7v3c22nHeQZc8Z3WeU8oOYoNvnjPNH2Q6TopqIipVbuKdFMZG0qraz3RgvKWVCluWTbJsXPJcVy3ey74ugXTTB9sl3QOYbpztrIvENmcMaWt9bd0E-rXzyAQwgFSKxjixWAeDH129z24GL1jvdkjNI1mkyG9o0BIh4Nrq3aWh1wtMCut4HxM7hywDOwPjG8dBpR2ZYDtGuJme-JnPbNBDAJasT-qLLGnQ7pphBi-ohNBrFpzpcAWYZZUeA-g-Qrn24ik-zx41uIzy7W_eyz-8OF7PjycnHo_eztycTU5ScTwQXdNoAQC4LU-WVboSul9yIHKRYlrQul1PJG67rBsyyypk2XMtaLLmsQZRNvpe9ufXth2UHtcHEWJ3qg-102CivrfrzxtmVuvBrJaYsz1mFBq_uDILHH4lJdTYarFE78ENUbFpSybmQxX-gBS1lMc0loi8foJd-CNiekZJSlDynJVIvfg__K_X9YCBwcAuY4GMM0Chj001DsBbbKkbVOHpqHD01jh4qXj9Q3Jv-jb1zv7YtbP4NqvPF4emN4ieRZe_7 |
CitedBy_id | crossref_primary_10_1167_iovs_19_27106 crossref_primary_10_1002_stem_3089 crossref_primary_10_1016_j_celrep_2016_10_074 crossref_primary_10_1007_s00439_018_1948_2 crossref_primary_10_3390_ijms23031408 crossref_primary_10_3389_fncel_2022_878351 crossref_primary_10_7717_peerj_15351 crossref_primary_10_1016_j_ydbio_2017_09_028 crossref_primary_10_1016_j_jtos_2020_11_004 crossref_primary_10_1167_iovs_17_23646 crossref_primary_10_1016_j_stem_2016_10_015 crossref_primary_10_1126_science_aau6348 crossref_primary_10_3390_cells11213412 crossref_primary_10_1038_s41598_020_67012_7 crossref_primary_10_1089_jop_2015_0143 crossref_primary_10_1002_stem_2783 crossref_primary_10_1088_1758_5090_ad6933 crossref_primary_10_1093_hmg_ddy239 crossref_primary_10_3389_fcell_2020_594290 crossref_primary_10_1038_s41598_018_34037_y crossref_primary_10_1007_s12035_019_1504_7 crossref_primary_10_3390_cancers12082304 crossref_primary_10_3389_fnsys_2016_00105 crossref_primary_10_1039_D1MO00407G crossref_primary_10_1016_j_preteyeres_2018_09_002 crossref_primary_10_1016_j_devcel_2017_10_029 crossref_primary_10_3390_ijms21041380 crossref_primary_10_1002_stem_3239 crossref_primary_10_1016_j_ydbio_2021_04_001 crossref_primary_10_1242_dev_189746 crossref_primary_10_1016_j_stemcr_2023_04_004 crossref_primary_10_1038_srep29784 crossref_primary_10_1016_j_preteyeres_2018_11_003 crossref_primary_10_1038_s41598_020_79651_x crossref_primary_10_3389_fncel_2023_1166641 crossref_primary_10_1016_j_preteyeres_2018_03_002 crossref_primary_10_3389_fcell_2022_878350 crossref_primary_10_1186_s13046_023_02608_1 crossref_primary_10_1002_sctm_17_0205 crossref_primary_10_1242_dmm_050193 crossref_primary_10_1038_s41467_021_25792_0 crossref_primary_10_1111_gtc_12472 crossref_primary_10_1073_pnas_1618551114 crossref_primary_10_1016_j_celrep_2022_110827 crossref_primary_10_1016_j_stemcr_2018_07_005 crossref_primary_10_1186_s12864_018_4499_y crossref_primary_10_1038_s41598_020_62047_2 crossref_primary_10_1073_pnas_2308204120 crossref_primary_10_1002_bies_201900187 crossref_primary_10_3390_genes11091090 crossref_primary_10_1016_j_exer_2019_04_018 crossref_primary_10_3389_fnins_2017_00742 crossref_primary_10_3390_ijms22137081 crossref_primary_10_1007_s11427_020_1836_7 crossref_primary_10_1002_sctm_18_0267 crossref_primary_10_1172_JCI154619 crossref_primary_10_1242_dev_143040 crossref_primary_10_1016_j_jchemneu_2018_02_002 crossref_primary_10_1002_cyto_a_23798 crossref_primary_10_1016_j_preteyeres_2016_06_001 crossref_primary_10_1016_j_exer_2021_108752 crossref_primary_10_1007_s12015_023_10553_x crossref_primary_10_1016_j_molmed_2021_01_001 crossref_primary_10_1016_j_celrep_2020_01_007 crossref_primary_10_3389_fcell_2020_00128 crossref_primary_10_1016_j_ydbio_2021_09_001 crossref_primary_10_1038_s41467_022_33848_y crossref_primary_10_3390_genes10120987 crossref_primary_10_1016_j_trsl_2022_06_001 crossref_primary_10_1038_s41598_018_20813_3 crossref_primary_10_7759_cureus_66814 crossref_primary_10_3390_jdb7030016 crossref_primary_10_1016_j_stem_2016_11_019 crossref_primary_10_1007_s00018_021_03917_4 crossref_primary_10_1371_journal_pgen_1009894 crossref_primary_10_1167_iovs_63_10_12 crossref_primary_10_1016_j_celrep_2017_06_045 crossref_primary_10_1002_stem_2755 crossref_primary_10_1146_annurev_cellbio_012023_013036 crossref_primary_10_3389_fcell_2022_870441 crossref_primary_10_1167_iovs_61_3_6 crossref_primary_10_1093_stmcls_sxab015 crossref_primary_10_1016_j_stemcr_2017_10_018 crossref_primary_10_3389_fendo_2023_1174600 crossref_primary_10_1126_scisignal_aag0245 crossref_primary_10_1016_j_stemcr_2019_09_009 crossref_primary_10_1167_tvst_10_10_15 crossref_primary_10_1155_2018_4968658 crossref_primary_10_1177_20417314211059876 crossref_primary_10_1101_cshperspect_a035683 crossref_primary_10_1016_j_gene_2021_146131 crossref_primary_10_1038_s41586_018_0076_4 crossref_primary_10_1016_j_omtn_2023_02_020 crossref_primary_10_3390_ijms221910244 crossref_primary_10_1242_dev_133108 crossref_primary_10_1073_pnas_1901572116 crossref_primary_10_1167_iovs_61_14_8 crossref_primary_10_1016_j_preteyeres_2019_03_001 crossref_primary_10_1167_iovs_65_13_30 crossref_primary_10_1016_j_phrs_2016_10_031 crossref_primary_10_1016_j_biomaterials_2019_01_028 crossref_primary_10_1177_2515841419835460 crossref_primary_10_1016_j_devcel_2016_05_023 crossref_primary_10_1016_j_celrep_2021_109461 crossref_primary_10_1186_s12868_016_0307_2 crossref_primary_10_1038_s41586_023_06392_y crossref_primary_10_1073_pnas_2011780117 crossref_primary_10_1177_1073858420943192 crossref_primary_10_1177_2515841418774433 |
Cites_doi | 10.1073/pnas.0905245106 10.1038/ncomms5047 10.1002/stem.2023 10.1242/dev.028308 10.1093/hmg/ddq378 10.1002/cne.22447 10.1016/j.ydbio.2013.10.006 10.1038/eye.2001.140 10.1016/j.bbrc.2010.01.007 10.1073/pnas.1324212111 10.1172/JCI72722 10.1186/1471-2148-11-169 10.1242/dev.00114 10.1073/pnas.0802627105 10.1093/hmg/10.15.1571 10.1093/hmg/ddh160 10.1371/journal.pgen.1002649 10.1038/83829 10.1371/journal.pone.0022817 10.1038/nrn2880 10.1016/j.brainres.2008.01.028 10.1038/ng774 10.1242/dev.129.12.2835 10.1002/cne.21730 10.1038/nature10997 10.1016/j.neuron.2010.01.018 10.1038/nn1155 10.1016/j.cell.2007.11.019 10.1523/JNEUROSCI.22-05-01640.2002 10.1523/JNEUROSCI.1709-11.2011 10.1074/jbc.M111.279026 10.1074/jbc.M111.271072 10.1038/nbt1384 10.1002/ar.1092120215 10.1016/j.exer.2008.07.016 10.1002/stem.674 10.1098/rstb.2011.0026 10.1016/j.brainres.2007.06.036 10.1101/gr.109405.110 10.1038/nrg2717 10.1016/S0079-6123(09)17502-7 10.1016/0165-3806(85)90211-1 10.1186/1749-8104-4-32 10.1073/pnas.1000102107 10.1093/hmg/ddh117 10.1242/dev.01451 10.1038/nature05161 10.1007/978-1-59745-194-9_19 10.1016/j.neuron.2004.08.041 10.1073/pnas.1212677110 10.1523/JNEUROSCI.0116-13.2013 10.1126/science.282.5391.1145 10.1016/S0301-0082(97)00079-8 10.1074/jbc.M111.257246 10.1242/dev.02598 10.1073/pnas.0508214103 10.1038/70591 10.1002/cne.902920402 10.1146/annurev.cellbio.042308.113259 10.1002/1096-9861(20001002)425:4<545::AID-CNE6>3.0.CO;2-3 10.1016/j.immuni.2006.03.022 10.1007/978-1-61779-848-1_23 10.1093/hmg/9.2.165 10.1016/j.stem.2012.05.009 10.1038/ncomms7286 10.1002/stem.1268 10.1073/pnas.0605934104 |
ContentType | Journal Article |
Copyright | 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press. 2015 AlphaMed Press |
Copyright_xml | – notice: 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press – notice: 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press. – notice: 2015 AlphaMed Press |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/stem.2122 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Genetics Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Transcriptome of Developing Human Photoreceptors |
EISSN | 1549-4918 |
EndPage | 3518 |
ExternalDocumentID | PMC4713319 3916587251 26235913 10_1002_stem_2122 STEM2122 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Young Scientists (B) from Japan Society for the Promotion of Science (JSPS) – fundername: National Eye Institute, National Institutes of Health – fundername: JSPS Postdoctoral Fellowships for Research Abroad – fundername: Intramural Research Program funderid: ZO1 EY000450 ; EY000474 – fundername: Intramural NIH HHS grantid: Z01 EY000450 – fundername: Intramural NIH HHS grantid: ZIA EY000450 – fundername: Intramural NIH HHS grantid: ZIA EY000474 – fundername: NEI NIH HHS grantid: EY000474 – fundername: Intramural Research Program grantid: ZO1 EY000450 ; EY000474 |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AHMMS AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AAYXX ABGNP ABJNI ABVGC ABXZS AGORE AJNCP ALXQX CITATION AAMMB ACVCV ADMTO AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJBYB AJDVS CGR CUY CVF ECM EIF NPM OBFPC 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 WIN 7X8 5PM |
ID | FETCH-LOGICAL-c6822-42407feee356c939af4adb2c43e54b80d8b752f2adfecb931ac2a5d4b25de48f3 |
IEDL.DBID | 24P |
ISSN | 1066-5099 1549-4918 |
IngestDate | Thu Aug 21 18:20:05 EDT 2025 Fri Jul 11 16:43:03 EDT 2025 Sun Aug 24 03:23:09 EDT 2025 Wed Aug 13 11:31:25 EDT 2025 Mon Jul 21 05:58:47 EDT 2025 Tue Jul 01 00:23:36 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Wed Jan 22 16:32:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Retina Three-dimensional organoid culture Global gene profiling Next generation sequencing Human rod and cone photoreceptors Stem cells |
Language | English |
License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6822-42407feee356c939af4adb2c43e54b80d8b752f2adfecb931ac2a5d4b25de48f3 |
Notes | This article was published online on 14 August 2015. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 4 September 2015. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2122 |
PMID | 26235913 |
PQID | 1755482308 |
PQPubID | 1046343 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4713319 proquest_miscellaneous_1780522456 proquest_miscellaneous_1760856735 proquest_journals_1755482308 pubmed_primary_26235913 crossref_citationtrail_10_1002_stem_2122 crossref_primary_10_1002_stem_2122 wiley_primary_10_1002_stem_2122_STEM2122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2015 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | Stem Cells |
PublicationYear | 2015 |
Publisher | Oxford University Press John Wiley and Sons Inc |
Publisher_xml | – name: Oxford University Press – name: John Wiley and Sons Inc |
References | 2010; 11 2007; 104 2008; 1236 2012; 485 2010; 107 2010; 19 2008; 509 2000; 9 2015; 33 2008; 1192 2011; 11 2008; 105 2008; 423 2012; 884 2011; 17 2012; 10 2006; 133 2013; 19 2010; 66 2010; 20 2004; 131 2011; 366 2010; 518 2014; 5 2006; 24 2003; 6 2003; 9 2007; 131 1990; 292 2008; 26 1985; 212 2001; 15 2010; 392 2013; 110 1998; 54 2011; 29 1998; 282 2011; 286 2006; 444 2014; 124 2001; 10 2004; 43 2009; 25 2015; 6 2011; 31 1999; 23 2001; 27 2001; 29 2009; 175 2013; 384 2014; 111 2011; 6 2013; 33 2000; 425 2013; 31 2002; 22 2004; 13 2002; 129 2008; 87 2009; 4 2008; 135 1998; 4 2006; 103 2012; 8 2009; 106 1985; 353 Barber (2022011117282538000_stem2122-bib-0072) 2013; 110 Ng (2022011117282538000_stem2122-bib-0015) 2011; 31 Meyer (2022011117282538000_stem2122-bib-0027) 2011; 29 Hsieh (2022011117282538000_stem2122-bib-0038) 2009; 4 Reichman (2022011117282538000_stem2122-bib-0028) 2014; 111 Lamba (2022011117282538000_stem2122-bib-0024) 2009; 175 Montana (2022011117282538000_stem2122-bib-0044) 2011; 286 MacLaren (2022011117282538000_stem2122-bib-0055) 2006; 444 Xiao (2022011117282538000_stem2122-bib-0062) 2000; 425 Brooks (2022011117282538000_stem2122-bib-0035) 2011; 17 Bumsted O'Brien Keely (2022011117282538000_stem2122-bib-0017) 2003; 9 Osakada (2022011117282538000_stem2122-bib-0023) 2008; 26 Pera (2022011117282538000_stem2122-bib-0020) 2004; 131 Wu (2022011117282538000_stem2122-bib-0047) 2013; 33 Zhong (2022011117282538000_stem2122-bib-0061) 2014; 5 Furukawa (2022011117282538000_stem2122-bib-0029) 2002; 22 Mellough (2022011117282538000_stem2122-bib-0031) 2015; 33 Bibb (2022011117282538000_stem2122-bib-0060) 2001; 10 Oh (2022011117282538000_stem2122-bib-0045) 2008; 1236 Pearson (2022011117282538000_stem2122-bib-0073) 2012; 485 Young (2022011117282538000_stem2122-bib-0037) 1985; 212 Nelson (2022011117282538000_stem2122-bib-0050) 2011; 6 Muranishi (2022011117282538000_stem2122-bib-0009) 2010; 392 Wright (2022011117282538000_stem2122-bib-0004) 2010; 11 Oron-Karni (2022011117282538000_stem2122-bib-0039) 2008; 135 Onishi (2022011117282538000_stem2122-bib-0053) 2010; 107 Hao (2022011117282538000_stem2122-bib-0066) 2012; 8 Yoshida (2022011117282538000_stem2122-bib-0067) 2004; 13 Roesch (2022011117282538000_stem2122-bib-0051) 2008; 509 Li (2022011117282538000_stem2122-bib-0048) 2004; 43 Fougerousse (2022011117282538000_stem2122-bib-0069) 2000; 9 Furukawa (2022011117282538000_stem2122-bib-0010) 1999; 23 Ng (2022011117282538000_stem2122-bib-0013) 2001; 27 Roger (2022011117282538000_stem2122-bib-0033) 2014; 124 Hendrickson (2022011117282538000_stem2122-bib-0016) 2008; 87 Onishi (2022011117282538000_stem2122-bib-0059) 2010; 107 Provis (2022011117282538000_stem2122-bib-0002) 1998; 54 Kuwahara (2022011117282538000_stem2122-bib-0032) 2015; 6 Meyer (2022011117282538000_stem2122-bib-0022) 2009; 106 Thomson (2022011117282538000_stem2122-bib-0019) 1998; 282 Wang (2022011117282538000_stem2122-bib-0064) 2004; 13 Curcio (2022011117282538000_stem2122-bib-0001) 1990; 292 Brooks (2022011117282538000_stem2122-bib-0034) 2012; 884 Hao (2022011117282538000_stem2122-bib-0052) 2011; 286 Sanes (2022011117282538000_stem2122-bib-0008) 2010; 66 Mu (2022011117282538000_stem2122-bib-0049) 2008; 105 Mears (2022011117282538000_stem2122-bib-0012) 2001; 29 Oh (2022011117282538000_stem2122-bib-0014) 2007; 104 Matsuda (2022011117282538000_stem2122-bib-0030) 2008; 423 Lakowski (2022011117282538000_stem2122-bib-0074) 2010; 19 Ng (2022011117282538000_stem2122-bib-0054) 2001; 27 Agathocleous (2022011117282538000_stem2122-bib-0007) 2009; 25 Brzezinski (2022011117282538000_stem2122-bib-0042) 2013; 384 Gomez (2022011117282538000_stem2122-bib-0070) 2006; 24 Postel (2022011117282538000_stem2122-bib-0057) 2013; 19 Takahashi (2022011117282538000_stem2122-bib-0018) 2007; 131 Hennig (2022011117282538000_stem2122-bib-0058) 2008; 1192 Zhong (2022011117282538000_stem2122-bib-0026) 2014; 5 Nishida (2022011117282538000_stem2122-bib-0041) 2003; 6 Allison (2022011117282538000_stem2122-bib-0005) 2010; 518 Zhu (2022011117282538000_stem2122-bib-0040) 2002; 129 Zhong (2022011117282538000_stem2122-bib-0063) 2011; 11 Boucherie (2022011117282538000_stem2122-bib-0021) 2013; 31 Lee (2022011117282538000_stem2122-bib-0071) 2011; 366 Curcio (2022011117282538000_stem2122-bib-0003) 2001; 15 Corbo (2022011117282538000_stem2122-bib-0011) 2010; 20 Fujitani (2022011117282538000_stem2122-bib-0046) 2006; 133 Chen (2022011117282538000_stem2122-bib-0065) 2002; 129 Kautzmann (2022011117282538000_stem2122-bib-0043) 2011; 286 He (2022011117282538000_stem2122-bib-0068) 1998; 4 Akimoto (2022011117282538000_stem2122-bib-0056) 2006; 103 Swaroop (2022011117282538000_stem2122-bib-0006) 2010; 11 Nakano (2022011117282538000_stem2122-bib-0025) 2012; 10 Young (2022011117282538000_stem2122-bib-0036) 1985; 353 |
References_xml | – volume: 282 start-page: 1145 year: 1998 end-page: 1147 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science – volume: 111 start-page: 8518 year: 2014 end-page: 8523 article-title: From confluent human iPS cells to self‐forming neural retina and retinal pigmented epithelium publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 1025 year: 2004 end-page: 1040 article-title: QRX, a novel homeobox gene, modulates photoreceptor gene expression publication-title: Hum Mol Genet – volume: 1192 start-page: 114 year: 2008 end-page: 133 article-title: Regulation of photoreceptor gene expression by Crx‐associated transcription factor network publication-title: Brain Res – volume: 392 start-page: 317 year: 2010 end-page: 322 article-title: Gene expression analysis of embryonic photoreceptor precursor cells using BAC‐Crx‐EGFP transgenic mouse publication-title: Biochem Biophys Res Commun – volume: 31 start-page: 408 year: 2013 end-page: 414 article-title: Brief report: Self‐organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors publication-title: Stem Cells – volume: 106 start-page: 16698 year: 2009 end-page: 16703 article-title: Modeling early retinal development with human embryonic and induced pluripotent stem cells publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 3034 year: 2011 end-page: 3054 article-title: Next‐generation sequencing facilitates quantitative analysis of wild‐type and Nrl(‐/‐) retinal transcriptomes publication-title: Mol Vis – volume: 4 start-page: 32 year: 2009 article-title: Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors publication-title: Neural Dev – volume: 31 start-page: 11118 year: 2011 end-page: 11125 article-title: Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development publication-title: J Neurosci – volume: 66 start-page: 15 year: 2010 end-page: 36 article-title: Design principles of insect and vertebrate visual systems publication-title: Neuron – volume: 25 start-page: 45 year: 2009 end-page: 69 article-title: From progenitors to differentiated cells in the vertebrate retina publication-title: Annu Rev Cell Dev Biol – volume: 33 start-page: 13053 year: 2013 end-page: 13065 article-title: Onecut1 is essential for horizontal cell genesis and retinal integrity publication-title: J Neurosci – volume: 131 start-page: 861 year: 2007 end-page: 872 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: 22 start-page: 1640 year: 2002 end-page: 1647 article-title: The mouse Crx 5'‐upstream transgene sequence directs cell‐specific and developmentally regulated expression in retinal photoreceptor cells publication-title: J Neurosci – volume: 286 start-page: 34893 year: 2011 end-page: 34902 article-title: The transcription factor neural retina leucine zipper (NRL) controls photoreceptor‐specific expression of myocyte enhancer factor Mef2c from an alternative promoter publication-title: J Biol Chem – volume: 10 start-page: 771 year: 2012 end-page: 785 article-title: Self‐formation of optic cups and storable stratified neural retina from human ESCs publication-title: Cell Stem Cell – volume: 6 start-page: 6286 year: 2015 article-title: Generation of a ciliary margin‐like stem cell niche from self‐organizing human retinal tissue publication-title: Nat Commun – volume: 509 start-page: 225 year: 2008 end-page: 238 article-title: The transcriptome of retinal Muller glial cells publication-title: J Comp Neurol – volume: 11 start-page: 563 year: 2010 end-page: 576 article-title: Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina publication-title: Nat Rev Neurosci – volume: 87 start-page: 415 year: 2008 end-page: 426 article-title: Rod photoreceptor differentiation in fetal and infant human retina publication-title: Exp Eye Res – volume: 105 start-page: 6942 year: 2008 end-page: 6947 article-title: Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2 publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1571 year: 2001 end-page: 1579 article-title: Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development publication-title: Hum Mol Genet – volume: 485 start-page: 99 year: 2012 end-page: 103 article-title: Restoration of vision after transplantation of photoreceptors publication-title: Nature – volume: 11 start-page: 169 year: 2011 article-title: The dynamics of vertebrate homeobox gene evolution: Gain and loss of genes in mouse and human lineages publication-title: BMC Evol Biol – volume: 11 start-page: 273 year: 2010 end-page: 284 article-title: Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait publication-title: Nat Rev Genet – volume: 6 start-page: e22817 year: 2011 article-title: Genome‐wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial fate publication-title: PLoS One – volume: 33 start-page: 2416 year: 2015 end-page: 2430 article-title: IGF‐1 signaling plays an important role in the formation of three‐dimensional laminated neural retina and other ocular structures from human embryonic stem cells publication-title: Stem Cells – volume: 131 start-page: 5515 year: 2004 end-page: 5525 article-title: Human embryonic stem cells: Prospects for development publication-title: Development – volume: 425 start-page: 545 year: 2000 end-page: 559 article-title: Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones publication-title: J Comp Neurol – volume: 9 start-page: 401 year: 2003 end-page: 409 article-title: Expression of photoreceptor‐associated molecules during human fetal eye development publication-title: Mol Vis – volume: 19 start-page: 4545 year: 2010 end-page: 4559 article-title: Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow‐sorted Crx‐positive donor cells publication-title: Hum Mol Genet – volume: 9 start-page: 165 year: 2000 end-page: 173 article-title: Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes publication-title: Hum Mol Genet – volume: 518 start-page: 4182 year: 2010 end-page: 4195 article-title: Ontogeny of cone photoreceptor mosaics in zebrafish publication-title: J Comp Neurol – volume: 54 start-page: 549 year: 1998 end-page: 580 article-title: Ontogeny of the primate fovea: A central issue in retinal development publication-title: Prog Neurobiol – volume: 43 start-page: 795 year: 2004 end-page: 807 article-title: Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors publication-title: Neuron – volume: 444 start-page: 203 year: 2006 end-page: 207 article-title: Retinal repair by transplantation of photoreceptor precursors publication-title: Nature – volume: 103 start-page: 3890 year: 2006 end-page: 3895 article-title: Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow‐sorted photoreceptors publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 1255 year: 2003 end-page: 1263 article-title: Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development publication-title: Nat Neurosci – volume: 135 start-page: 4037 year: 2008 end-page: 4047 article-title: Dual requirement for Pax6 in retinal progenitor cells publication-title: Development – volume: 286 start-page: 36921 year: 2011 end-page: 36931 article-title: Transcriptional regulation of neural retina leucine zipper (Nrl), a photoreceptor cell fate determinant publication-title: J Biol Chem – volume: 29 start-page: 447 year: 2001 end-page: 452 article-title: Nrl is required for rod photoreceptor development publication-title: Nat Genet – volume: 292 start-page: 497 year: 1990 end-page: 523 article-title: Human photoreceptor topography publication-title: J Comp Neurol – volume: 104 start-page: 1679 year: 2007 end-page: 1684 article-title: Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 215 year: 2008 end-page: 224 article-title: Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells publication-title: Nat Biotechnol – volume: 23 start-page: 466 year: 1999 end-page: 470 article-title: Retinopathy and attenuated circadian entrainment in Crx‐deficient mice publication-title: Nat Genet – volume: 13 start-page: 1487 year: 2004 end-page: 1503 article-title: Expression profiling of the developing and mature Nrl‐/‐ mouse retina: Identification of retinal disease candidates and transcriptional regulatory targets of Nrl publication-title: Hum Mol Genet – volume: 107 start-page: 11579 year: 2010 end-page: 11584 article-title: The orphan nuclear hormone receptor ERRbeta controls rod photoreceptor survival publication-title: Proc Natl Acad Sci USA – volume: 129 start-page: 2835 year: 2002 end-page: 2849 article-title: Six3‐mediated auto repression and eye development requires its interaction with members of the Groucho‐related family of co‐repressors publication-title: Development – volume: 5 start-page: 4047 year: 2014 article-title: Generation of three‐dimensional retinal tissue with functional photoreceptors from human iPSCs publication-title: Nat Commun – volume: 19 start-page: 2058 year: 2013 end-page: 2067 article-title: Analysis of cell surface markers specific for transplantable rod photoreceptors publication-title: Mol Vis – volume: 29 start-page: 1206 year: 2011 end-page: 1218 article-title: Optic vesicle‐like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment publication-title: Stem Cells – volume: 175 start-page: 23 year: 2009 end-page: 31 article-title: Strategies for retinal repair: Cell replacement and regeneration publication-title: Prog Brain Res – volume: 110 start-page: 354 year: 2013 end-page: 359 article-title: Repair of the degenerate retina by photoreceptor transplantation publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 376 year: 2001 end-page: 383 article-title: Photoreceptor topography in ageing and age‐related maculopathy publication-title: Eye (Lond) – volume: 884 start-page: 319 year: 2012 end-page: 334 article-title: Retinal transcriptome profiling by directional next‐generation sequencing using 100 ng of total RNA publication-title: Methods Mol Biol – volume: 384 start-page: 194 year: 2013 end-page: 204 article-title: Blimp1 (Prdm1) prevents re‐specification of photoreceptors into retinal bipolar cells by restricting competence publication-title: Dev Biol – volume: 366 start-page: 2286 year: 2011 end-page: 2296 article-title: Modelling familial dysautonomia in human induced pluripotent stem cells publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 353 start-page: 229 year: 1985 end-page: 239 article-title: Cell proliferation during postnatal development of the retina in the mouse publication-title: Brain Res – volume: 8 start-page: e1002649 year: 2012 article-title: Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis publication-title: PLoS Genet – volume: 286 start-page: 28247 year: 2011 end-page: 28255 article-title: Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis publication-title: J Biol Chem – volume: 133 start-page: 4439 year: 2006 end-page: 4450 article-title: Ptf1a determines horizontal and amacrine cell fates during mouse retinal development publication-title: Development – volume: 24 start-page: 741 year: 2006 end-page: 752 article-title: HS1 functions as an essential actin‐regulatory adaptor protein at the immune synapse publication-title: Immunity – volume: 129 start-page: 5363 year: 2002 end-page: 5375 article-title: The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation publication-title: Development – volume: 423 start-page: 259 year: 2008 end-page: 278 article-title: Analysis of gene function in the retina publication-title: Methods Mol Biol – volume: 1236 start-page: 16 year: 2008 end-page: 29 article-title: Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors publication-title: Brain Res – volume: 27 start-page: 94 year: 2001 end-page: 98 article-title: A thyroid hormone receptor that is required for the development of green cone photoreceptors publication-title: Nat Genet – volume: 212 start-page: 199 year: 1985 end-page: 205 article-title: Cell differentiation in the retina of the mouse publication-title: Anat Rec – volume: 20 start-page: 1512 year: 2010 end-page: 1525 article-title: CRX ChIP‐seq reveals the cis‐regulatory architecture of mouse photoreceptors publication-title: Genome Res – volume: 124 start-page: 631 year: 2014 end-page: 643 article-title: OTX2 loss causes rod differentiation defect in CRX‐associated congenital blindness publication-title: J Clin Invest – volume: 4 start-page: 32 year: 1998 article-title: Spatial and temporal expression of AP‐1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina publication-title: Mol Vis – volume: 107 start-page: 11579 year: 2010 end-page: 11584 article-title: The orphan nuclear hormone receptor ERRβ controls rod photoreceptor survival publication-title: Proc Natl Acad Sci USA – volume: 106 start-page: 16698 year: 2009 ident: 2022011117282538000_stem2122-bib-0022 article-title: Modeling early retinal development with human embryonic and induced pluripotent stem cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0905245106 – volume: 5 start-page: 4047 year: 2014 ident: 2022011117282538000_stem2122-bib-0061 article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs publication-title: Nat Commun doi: 10.1038/ncomms5047 – volume: 5 start-page: 4047 year: 2014 ident: 2022011117282538000_stem2122-bib-0026 article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs publication-title: Nat Commun doi: 10.1038/ncomms5047 – volume: 33 start-page: 2416 year: 2015 ident: 2022011117282538000_stem2122-bib-0031 article-title: IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells publication-title: Stem Cells doi: 10.1002/stem.2023 – volume: 135 start-page: 4037 year: 2008 ident: 2022011117282538000_stem2122-bib-0039 article-title: Dual requirement for Pax6 in retinal progenitor cells publication-title: Development doi: 10.1242/dev.028308 – volume: 19 start-page: 4545 year: 2010 ident: 2022011117282538000_stem2122-bib-0074 article-title: Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells publication-title: Hum Mol Genet doi: 10.1093/hmg/ddq378 – volume: 518 start-page: 4182 year: 2010 ident: 2022011117282538000_stem2122-bib-0005 article-title: Ontogeny of cone photoreceptor mosaics in zebrafish publication-title: J Comp Neurol doi: 10.1002/cne.22447 – volume: 384 start-page: 194 year: 2013 ident: 2022011117282538000_stem2122-bib-0042 article-title: Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence publication-title: Dev Biol doi: 10.1016/j.ydbio.2013.10.006 – volume: 15 start-page: 376 year: 2001 ident: 2022011117282538000_stem2122-bib-0003 article-title: Photoreceptor topography in ageing and age-related maculopathy publication-title: Eye (Lond) doi: 10.1038/eye.2001.140 – volume: 392 start-page: 317 year: 2010 ident: 2022011117282538000_stem2122-bib-0009 article-title: Gene expression analysis of embryonic photoreceptor precursor cells using BAC-Crx-EGFP transgenic mouse publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.01.007 – volume: 111 start-page: 8518 year: 2014 ident: 2022011117282538000_stem2122-bib-0028 article-title: From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1324212111 – volume: 124 start-page: 631 year: 2014 ident: 2022011117282538000_stem2122-bib-0033 article-title: OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness publication-title: J Clin Invest doi: 10.1172/JCI72722 – volume: 11 start-page: 169 year: 2011 ident: 2022011117282538000_stem2122-bib-0063 article-title: The dynamics of vertebrate homeobox gene evolution: Gain and loss of genes in mouse and human lineages publication-title: BMC Evol Biol doi: 10.1186/1471-2148-11-169 – volume: 129 start-page: 5363 year: 2002 ident: 2022011117282538000_stem2122-bib-0065 article-title: The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation publication-title: Development doi: 10.1242/dev.00114 – volume: 17 start-page: 3034 year: 2011 ident: 2022011117282538000_stem2122-bib-0035 article-title: Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes publication-title: Mol Vis – volume: 105 start-page: 6942 year: 2008 ident: 2022011117282538000_stem2122-bib-0049 article-title: Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0802627105 – volume: 10 start-page: 1571 year: 2001 ident: 2022011117282538000_stem2122-bib-0060 article-title: Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development publication-title: Hum Mol Genet doi: 10.1093/hmg/10.15.1571 – volume: 4 start-page: 32 year: 1998 ident: 2022011117282538000_stem2122-bib-0068 article-title: Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina publication-title: Mol Vis – volume: 13 start-page: 1487 year: 2004 ident: 2022011117282538000_stem2122-bib-0067 article-title: Expression profiling of the developing and mature Nrl-/- mouse retina: Identification of retinal disease candidates and transcriptional regulatory targets of Nrl publication-title: Hum Mol Genet doi: 10.1093/hmg/ddh160 – volume: 8 start-page: e1002649 year: 2012 ident: 2022011117282538000_stem2122-bib-0066 article-title: Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002649 – volume: 27 start-page: 94 year: 2001 ident: 2022011117282538000_stem2122-bib-0054 article-title: A thyroid hormone receptor that is required for the development of green cone photoreceptors publication-title: Nat Genet doi: 10.1038/83829 – volume: 6 start-page: e22817 year: 2011 ident: 2022011117282538000_stem2122-bib-0050 article-title: Genome-wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial fate publication-title: PLoS One doi: 10.1371/journal.pone.0022817 – volume: 11 start-page: 563 year: 2010 ident: 2022011117282538000_stem2122-bib-0006 article-title: Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina publication-title: Nat Rev Neurosci doi: 10.1038/nrn2880 – volume: 1236 start-page: 16 year: 2008 ident: 2022011117282538000_stem2122-bib-0045 article-title: Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors publication-title: Brain Res doi: 10.1016/j.brainres.2008.01.028 – volume: 29 start-page: 447 year: 2001 ident: 2022011117282538000_stem2122-bib-0012 article-title: Nrl is required for rod photoreceptor development publication-title: Nat Genet doi: 10.1038/ng774 – volume: 129 start-page: 2835 year: 2002 ident: 2022011117282538000_stem2122-bib-0040 article-title: Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors publication-title: Development doi: 10.1242/dev.129.12.2835 – volume: 509 start-page: 225 year: 2008 ident: 2022011117282538000_stem2122-bib-0051 article-title: The transcriptome of retinal Muller glial cells publication-title: J Comp Neurol doi: 10.1002/cne.21730 – volume: 485 start-page: 99 year: 2012 ident: 2022011117282538000_stem2122-bib-0073 article-title: Restoration of vision after transplantation of photoreceptors publication-title: Nature doi: 10.1038/nature10997 – volume: 66 start-page: 15 year: 2010 ident: 2022011117282538000_stem2122-bib-0008 article-title: Design principles of insect and vertebrate visual systems publication-title: Neuron doi: 10.1016/j.neuron.2010.01.018 – volume: 6 start-page: 1255 year: 2003 ident: 2022011117282538000_stem2122-bib-0041 article-title: Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development publication-title: Nat Neurosci doi: 10.1038/nn1155 – volume: 131 start-page: 861 year: 2007 ident: 2022011117282538000_stem2122-bib-0018 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 22 start-page: 1640 year: 2002 ident: 2022011117282538000_stem2122-bib-0029 article-title: The mouse Crx 5'-upstream transgene sequence directs cell-specific and developmentally regulated expression in retinal photoreceptor cells publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-05-01640.2002 – volume: 31 start-page: 11118 year: 2011 ident: 2022011117282538000_stem2122-bib-0015 article-title: Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1709-11.2011 – volume: 286 start-page: 36921 year: 2011 ident: 2022011117282538000_stem2122-bib-0044 article-title: Transcriptional regulation of neural retina leucine zipper (Nrl), a photoreceptor cell fate determinant publication-title: J Biol Chem doi: 10.1074/jbc.M111.279026 – volume: 286 start-page: 34893 year: 2011 ident: 2022011117282538000_stem2122-bib-0052 article-title: The transcription factor neural retina leucine zipper (NRL) controls photoreceptor-specific expression of myocyte enhancer factor Mef2c from an alternative promoter publication-title: J Biol Chem doi: 10.1074/jbc.M111.271072 – volume: 26 start-page: 215 year: 2008 ident: 2022011117282538000_stem2122-bib-0023 article-title: Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells publication-title: Nat Biotechnol doi: 10.1038/nbt1384 – volume: 212 start-page: 199 year: 1985 ident: 2022011117282538000_stem2122-bib-0037 article-title: Cell differentiation in the retina of the mouse publication-title: Anat Rec doi: 10.1002/ar.1092120215 – volume: 87 start-page: 415 year: 2008 ident: 2022011117282538000_stem2122-bib-0016 article-title: Rod photoreceptor differentiation in fetal and infant human retina publication-title: Exp Eye Res doi: 10.1016/j.exer.2008.07.016 – volume: 29 start-page: 1206 year: 2011 ident: 2022011117282538000_stem2122-bib-0027 article-title: Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment publication-title: Stem Cells doi: 10.1002/stem.674 – volume: 366 start-page: 2286 year: 2011 ident: 2022011117282538000_stem2122-bib-0071 article-title: Modelling familial dysautonomia in human induced pluripotent stem cells publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2011.0026 – volume: 1192 start-page: 114 year: 2008 ident: 2022011117282538000_stem2122-bib-0058 article-title: Regulation of photoreceptor gene expression by Crx-associated transcription factor network publication-title: Brain Res doi: 10.1016/j.brainres.2007.06.036 – volume: 20 start-page: 1512 year: 2010 ident: 2022011117282538000_stem2122-bib-0011 article-title: CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors publication-title: Genome Res doi: 10.1101/gr.109405.110 – volume: 11 start-page: 273 year: 2010 ident: 2022011117282538000_stem2122-bib-0004 article-title: Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait publication-title: Nat Rev Genet doi: 10.1038/nrg2717 – volume: 175 start-page: 23 year: 2009 ident: 2022011117282538000_stem2122-bib-0024 article-title: Strategies for retinal repair: Cell replacement and regeneration publication-title: Prog Brain Res doi: 10.1016/S0079-6123(09)17502-7 – volume: 353 start-page: 229 year: 1985 ident: 2022011117282538000_stem2122-bib-0036 article-title: Cell proliferation during postnatal development of the retina in the mouse publication-title: Brain Res doi: 10.1016/0165-3806(85)90211-1 – volume: 4 start-page: 32 year: 2009 ident: 2022011117282538000_stem2122-bib-0038 article-title: Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors publication-title: Neural Dev doi: 10.1186/1749-8104-4-32 – volume: 107 start-page: 11579 year: 2010 ident: 2022011117282538000_stem2122-bib-0053 article-title: The orphan nuclear hormone receptor ERRβ controls rod photoreceptor survival publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1000102107 – volume: 13 start-page: 1025 year: 2004 ident: 2022011117282538000_stem2122-bib-0064 article-title: QRX, a novel homeobox gene, modulates photoreceptor gene expression publication-title: Hum Mol Genet doi: 10.1093/hmg/ddh117 – volume: 131 start-page: 5515 year: 2004 ident: 2022011117282538000_stem2122-bib-0020 article-title: Human embryonic stem cells: Prospects for development publication-title: Development doi: 10.1242/dev.01451 – volume: 444 start-page: 203 year: 2006 ident: 2022011117282538000_stem2122-bib-0055 article-title: Retinal repair by transplantation of photoreceptor precursors publication-title: Nature doi: 10.1038/nature05161 – volume: 27 start-page: 94 year: 2001 ident: 2022011117282538000_stem2122-bib-0013 article-title: A thyroid hormone receptor that is required for the development of green cone photoreceptors publication-title: Nat Genet doi: 10.1038/83829 – volume: 423 start-page: 259 year: 2008 ident: 2022011117282538000_stem2122-bib-0030 article-title: Analysis of gene function in the retina publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-194-9_19 – volume: 107 start-page: 11579 year: 2010 ident: 2022011117282538000_stem2122-bib-0059 article-title: The orphan nuclear hormone receptor ERRbeta controls rod photoreceptor survival publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1000102107 – volume: 43 start-page: 795 year: 2004 ident: 2022011117282538000_stem2122-bib-0048 article-title: Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors publication-title: Neuron doi: 10.1016/j.neuron.2004.08.041 – volume: 110 start-page: 354 year: 2013 ident: 2022011117282538000_stem2122-bib-0072 article-title: Repair of the degenerate retina by photoreceptor transplantation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1212677110 – volume: 9 start-page: 401 year: 2003 ident: 2022011117282538000_stem2122-bib-0017 article-title: Expression of photoreceptor-associated molecules during human fetal eye development publication-title: Mol Vis – volume: 33 start-page: 13053 year: 2013 ident: 2022011117282538000_stem2122-bib-0047 article-title: Onecut1 is essential for horizontal cell genesis and retinal integrity publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0116-13.2013 – volume: 282 start-page: 1145 year: 1998 ident: 2022011117282538000_stem2122-bib-0019 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science doi: 10.1126/science.282.5391.1145 – volume: 54 start-page: 549 year: 1998 ident: 2022011117282538000_stem2122-bib-0002 article-title: Ontogeny of the primate fovea: A central issue in retinal development publication-title: Prog Neurobiol doi: 10.1016/S0301-0082(97)00079-8 – volume: 286 start-page: 28247 year: 2011 ident: 2022011117282538000_stem2122-bib-0043 article-title: Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis publication-title: J Biol Chem doi: 10.1074/jbc.M111.257246 – volume: 133 start-page: 4439 year: 2006 ident: 2022011117282538000_stem2122-bib-0046 article-title: Ptf1a determines horizontal and amacrine cell fates during mouse retinal development publication-title: Development doi: 10.1242/dev.02598 – volume: 103 start-page: 3890 year: 2006 ident: 2022011117282538000_stem2122-bib-0056 article-title: Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0508214103 – volume: 23 start-page: 466 year: 1999 ident: 2022011117282538000_stem2122-bib-0010 article-title: Retinopathy and attenuated circadian entrainment in Crx-deficient mice publication-title: Nat Genet doi: 10.1038/70591 – volume: 292 start-page: 497 year: 1990 ident: 2022011117282538000_stem2122-bib-0001 article-title: Human photoreceptor topography publication-title: J Comp Neurol doi: 10.1002/cne.902920402 – volume: 25 start-page: 45 year: 2009 ident: 2022011117282538000_stem2122-bib-0007 article-title: From progenitors to differentiated cells in the vertebrate retina publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.042308.113259 – volume: 425 start-page: 545 year: 2000 ident: 2022011117282538000_stem2122-bib-0062 article-title: Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones publication-title: J Comp Neurol doi: 10.1002/1096-9861(20001002)425:4<545::AID-CNE6>3.0.CO;2-3 – volume: 24 start-page: 741 year: 2006 ident: 2022011117282538000_stem2122-bib-0070 article-title: HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse publication-title: Immunity doi: 10.1016/j.immuni.2006.03.022 – volume: 884 start-page: 319 year: 2012 ident: 2022011117282538000_stem2122-bib-0034 article-title: Retinal transcriptome profiling by directional next-generation sequencing using 100 ng of total RNA publication-title: Methods Mol Biol doi: 10.1007/978-1-61779-848-1_23 – volume: 9 start-page: 165 year: 2000 ident: 2022011117282538000_stem2122-bib-0069 article-title: Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes publication-title: Hum Mol Genet doi: 10.1093/hmg/9.2.165 – volume: 10 start-page: 771 year: 2012 ident: 2022011117282538000_stem2122-bib-0025 article-title: Self-formation of optic cups and storable stratified neural retina from human ESCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.009 – volume: 6 start-page: 6286 year: 2015 ident: 2022011117282538000_stem2122-bib-0032 article-title: Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue publication-title: Nat Commun doi: 10.1038/ncomms7286 – volume: 31 start-page: 408 year: 2013 ident: 2022011117282538000_stem2122-bib-0021 article-title: Brief report: Self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors publication-title: Stem Cells doi: 10.1002/stem.1268 – volume: 104 start-page: 1679 year: 2007 ident: 2022011117282538000_stem2122-bib-0014 article-title: Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605934104 – volume: 19 start-page: 2058 year: 2013 ident: 2022011117282538000_stem2122-bib-0057 article-title: Analysis of cell surface markers specific for transplantable rod photoreceptors publication-title: Mol Vis |
SSID | ssj0014588 |
Score | 2.528199 |
Snippet | The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have... The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3504 |
SubjectTerms | Antigens, Differentiation - biosynthesis Cell Differentiation Cell Line Eye Proteins - biosynthesis Gene expression Global gene profiling Human Embryonic Stem Cells - cytology Human Embryonic Stem Cells - metabolism Human rod and cone photoreceptors Humans Next generation sequencing Photoreception Photoreceptors Retina Retinal Cone Photoreceptor Cells - cytology Retinal Cone Photoreceptor Cells - metabolism Retinal Rod Photoreceptor Cells - cytology Retinal Rod Photoreceptor Cells - metabolism Stem cells Three‐dimensional organoid culture Transcriptome Translational and Clinical Research |
Title | Transcriptome Dynamics of Developing Photoreceptors in Three‐Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2122 https://www.ncbi.nlm.nih.gov/pubmed/26235913 https://www.proquest.com/docview/1755482308 https://www.proquest.com/docview/1760856735 https://www.proquest.com/docview/1780522456 https://pubmed.ncbi.nlm.nih.gov/PMC4713319 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF5VRUhcEP8YCloQBy6myf74R5xQ3KqAWlVtKvVm7Xpn1UjBruKkUm88Aq_GK_AkzHgdQ1RAXKJYnk02mZ2Zbz073zD2ZiStlJCIWEqVxkpaQD8oR_HYSl95jEdVStXIh0fJwZn6dK7Pt9j7dS1M4IcYHriRZXT-mgzc2Hb3F2ko8Ry_Q8eL_vcWldYScb5Qx0MKgUowu1RnksQYFfM1rdBI7A5DN4PRDYR586Dk7wC2i0D799jdHjryD0HX99kW1A_Y7dBM8voh-96Fnc4JNF-AF6HVfMsbz4uhMoofXzS4ywY6zNIsWj6r-RS1CT--fiuI5z9wdPATKoQ2PPBtQovXlbmcLanVF15NA53VnJ_257DpO7psAJ80NXBTO37SOF70zVeWQf34KVcIS2kWE5jj6NXCGxxM5UIIQrthxILNj8LR9PYRO9vfm04O4r5hQ1wlCDRiRdtDDwBSJ1Uuc-OVcVZUSoJWNhu5zKZaeGGch8rmcmwqYbRTVmgHKvPyMduucZ5PGdfOWcq44vbQqcR74zObCwBlsgy8UhF7u9ZcWfVs5tRUY14GHmZRkpJLUnLEXg-il4HC409CO2v1l70VtyVCK9zQ4SYti9ir4TbaHyVVTA3NimQSRK1JKvW_ZKhxBKWYI_YkrKhhJgLxp87HMmLpxlobBIj_e_NOPbvoeMAVPWAY5_hXdKvy7z-uPJ3uHdKbZ_8v-pzdQWyow8mdHba9XKzgBeKvpX3Z2Rm-Fh8__wSh5TW0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELZWixBcEP8EFjCIA5ewrX_yI3FB7a4KbKvVblbaW2THtrZSSVZNi8SNR-DVeAWehBk7DVQLiFujjFMn47G_8Xi-IeTVgGvObcJizkUaC64tzIN8EA81d5WD9ahKMRt5OksmZ-LDuTzfIW83uTCBH6LfcEPL8PM1GjhuSO__Yg1FouM3MPPCBHxNJCxFs2TiuI8hYA6mj3UmSQzLYr7hFRqw_b7p9mp0BWJePSn5O4L1S9DhbXKrw470XVD2HbJj67vkeqgm-eUe-e7XHT8LNJ8sHYda8y1tHB33qVH0-KIBN9viaZZm2dJ5TQtQp_3x9dsYif4DSQc9wUxoRQPhpm3hulKX8xXW-oKrIvBZLehpdxAb_8OHA-ioqS1VtaEnjaHjrvrKKugfnvIZcCn2YmQX0Hq9dAoaY74QoFDfDGmw6SycTW_vk7PDg2I0ibuKDXGVANKIBfqHzlrLZVLlPFdOKKNZJbiVQmcDk-lUMseUcbbSOR-qiilphGbSWJE5_oDs1tDPR4RKYzSGXME_NCJxTrlM58xaobLMOiEi8nqjubLq6MyxqsaiDETMrEQll6jkiLzsRS8Dh8efhPY26i87M25LwFbg0YGXlkXkRX8bDBCjKqq2zRplEoCtScrlv2SwcgTGmCPyMIyovicMAKjMhzwi6dZY6wWQAHz7Tj2_8ETgAncYhjl8Cj8q__5y5WlxMMUfj_9f9Dm5MSmmR-XR-9nHJ-QmAEUZjvHskd3Vcm2fAhhb6Wfe5n4C7Jc4Jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELaqIhAXVJ5dWsAgDlyWJn7sQ5xQtlF5NIraVOptZa9tNVLYjfJA4sZP4K_xF_glzNibhaiAuGW148Sb8djf7Mx8Q8jLHtec24TFnIs0Flxb2Ad5L-5r7ioH51GVYjXy6Sg5uRDvL-XlDnmzqYUJ_BDdCze0DL9fo4HPjTv6RRqKPMevYeOF_feGD_YhrbMYdyEELMH0oc4kieFUzDe0Qj121A3dPoyuIczriZK_A1h_Ag33yJ0WOtK3Qdd3yY6t75GboZnkl_vkuz92_CbQfLK0CK3ml7RxtOgqo-j4qgEv22IyS7NY0mlNJ6BN--PrtwJ5_gNHBz3DQmhFA9-mXcJ1pebTFbb6gqtJoLOa0fM2Dxt_w0cD6KCpLVW1oWeNoUXbfGUV1A_f8hlgKc5iYGcwer1wCgZjuRCAUD8MWbDpKKSmLx-Qi-HxZHAStw0b4ioBoBELdA-dtZbLpMp5rpxQRrNKcCuFznom06lkjinjbKVz3lcVU9IIzaSxInP8IdmtYZ77hEpjNEZcwT00InFOuUznzFqhssw6ISLyaqO5smrZzLGpxqwMPMysRCWXqOSIvOhE54HC409Chxv1l60VL0uAVuDQgZOWReR5dxvsD4MqqrbNGmUSQK1JyuW_ZLBxBIaYI_IorKhuJgzwp8z7PCLp1lrrBJD_e_tOPb3yPOACXzD0c_gr_Kr8-8OV55PjU_zw-P9Fn5Fb42JYfnw3-nBAbgNMlCGJ55DsrhZr-wSg2Eo_9Sb3E_m7N1k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+Dynamics+of+Developing+Photoreceptors+in+Three-Dimensional+Retina+Cultures+Recapitulates+Temporal+Sequence+of+Human+Cone+and+Rod+Differentiation+Revealing+Cell+Surface+Markers+and+Gene+Networks&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Kaewkhaw%2C+Rossukon&rft.au=Kaya%2C+Koray+Dogan&rft.au=Brooks%2C+Matthew&rft.au=Homma%2C+Kohei&rft.date=2015-12-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=33&rft.issue=12&rft.spage=3504&rft.epage=3518&rft_id=info:doi/10.1002%2Fstem.2122&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |