Transcriptome Dynamics of Developing Photoreceptors in Three‐Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks

The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of c...

Full description

Saved in:
Bibliographic Details
Published inStem cells (Dayton, Ohio) Vol. 33; no. 12; pp. 3504 - 3518
Main Authors Kaewkhaw, Rossukon, Kaya, Koray Dogan, Brooks, Matthew, Homma, Kohei, Zou, Jizhong, Chaitankar, Vijender, Rao, Mahendra, Swaroop, Anand
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.12.2015
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504–3518
AbstractList The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.
The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.
The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells  2015;33:3504–3518
The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504-3518
The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox ( CRX ), an established marker of postmitotic photoreceptor precursors. The CRXp ‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. S tem C ells 2015;33:3504–3518
Author Chaitankar, Vijender
Homma, Kohei
Kaya, Koray Dogan
Rao, Mahendra
Kaewkhaw, Rossukon
Brooks, Matthew
Zou, Jizhong
Swaroop, Anand
AuthorAffiliation 3 Center for Regenerative Medicine National Institutes of Health Bethesda Maryland USA
5 Department of Physiology Nippon Medical School Tokyo Japan
1 Neurobiology‐Neurodegeneration & Repair Laboratory, National Eye Institute National Institutes of Health Bethesda Maryland USA
2 Research Center, Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok Thailand
4 iPSC Core, Center for Molecular Medicine National Heart, Lung, and Blood Institute Bethesda Maryland USA
6 The New York Stem Cell Foundation Research Institute New York NY 10023
AuthorAffiliation_xml – name: 5 Department of Physiology Nippon Medical School Tokyo Japan
– name: 4 iPSC Core, Center for Molecular Medicine National Heart, Lung, and Blood Institute Bethesda Maryland USA
– name: 3 Center for Regenerative Medicine National Institutes of Health Bethesda Maryland USA
– name: 2 Research Center, Faculty of Medicine Ramathibodi Hospital Mahidol University Bangkok Thailand
– name: 1 Neurobiology‐Neurodegeneration & Repair Laboratory, National Eye Institute National Institutes of Health Bethesda Maryland USA
– name: 6 The New York Stem Cell Foundation Research Institute New York NY 10023
Author_xml – sequence: 1
  givenname: Rossukon
  surname: Kaewkhaw
  fullname: Kaewkhaw, Rossukon
  organization: Mahidol University
– sequence: 2
  givenname: Koray Dogan
  surname: Kaya
  fullname: Kaya, Koray Dogan
  organization: National Institutes of Health
– sequence: 3
  givenname: Matthew
  surname: Brooks
  fullname: Brooks, Matthew
  organization: National Institutes of Health
– sequence: 4
  givenname: Kohei
  surname: Homma
  fullname: Homma, Kohei
  organization: Nippon Medical School
– sequence: 5
  givenname: Jizhong
  surname: Zou
  fullname: Zou, Jizhong
  organization: National Heart, Lung, and Blood Institute
– sequence: 6
  givenname: Vijender
  surname: Chaitankar
  fullname: Chaitankar, Vijender
  organization: National Institutes of Health
– sequence: 7
  givenname: Mahendra
  surname: Rao
  fullname: Rao, Mahendra
  organization: The New York Stem Cell Foundation Research Institute
– sequence: 8
  givenname: Anand
  surname: Swaroop
  fullname: Swaroop, Anand
  organization: National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26235913$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURH9gwQsgS2xgMa3t2Jlkg4RmSovUAmqHteVxbjpuEzvYzlSz4xF4NV6BJ-GmPwgqkFjZlr9zfK7v3c22nHeQZc8Z3WeU8oOYoNvnjPNH2Q6TopqIipVbuKdFMZG0qraz3RgvKWVCluWTbJsXPJcVy3ey74ugXTTB9sl3QOYbpztrIvENmcMaWt9bd0E-rXzyAQwgFSKxjixWAeDH129z24GL1jvdkjNI1mkyG9o0BIh4Nrq3aWh1wtMCut4HxM7hywDOwPjG8dBpR2ZYDtGuJme-JnPbNBDAJasT-qLLGnQ7pphBi-ohNBrFpzpcAWYZZUeA-g-Qrn24ik-zx41uIzy7W_eyz-8OF7PjycnHo_eztycTU5ScTwQXdNoAQC4LU-WVboSul9yIHKRYlrQul1PJG67rBsyyypk2XMtaLLmsQZRNvpe9ufXth2UHtcHEWJ3qg-102CivrfrzxtmVuvBrJaYsz1mFBq_uDILHH4lJdTYarFE78ENUbFpSybmQxX-gBS1lMc0loi8foJd-CNiekZJSlDynJVIvfg__K_X9YCBwcAuY4GMM0Chj001DsBbbKkbVOHpqHD01jh4qXj9Q3Jv-jb1zv7YtbP4NqvPF4emN4ieRZe_7
CitedBy_id crossref_primary_10_1167_iovs_19_27106
crossref_primary_10_1002_stem_3089
crossref_primary_10_1016_j_celrep_2016_10_074
crossref_primary_10_1007_s00439_018_1948_2
crossref_primary_10_3390_ijms23031408
crossref_primary_10_3389_fncel_2022_878351
crossref_primary_10_7717_peerj_15351
crossref_primary_10_1016_j_ydbio_2017_09_028
crossref_primary_10_1016_j_jtos_2020_11_004
crossref_primary_10_1167_iovs_17_23646
crossref_primary_10_1016_j_stem_2016_10_015
crossref_primary_10_1126_science_aau6348
crossref_primary_10_3390_cells11213412
crossref_primary_10_1038_s41598_020_67012_7
crossref_primary_10_1089_jop_2015_0143
crossref_primary_10_1002_stem_2783
crossref_primary_10_1088_1758_5090_ad6933
crossref_primary_10_1093_hmg_ddy239
crossref_primary_10_3389_fcell_2020_594290
crossref_primary_10_1038_s41598_018_34037_y
crossref_primary_10_1007_s12035_019_1504_7
crossref_primary_10_3390_cancers12082304
crossref_primary_10_3389_fnsys_2016_00105
crossref_primary_10_1039_D1MO00407G
crossref_primary_10_1016_j_preteyeres_2018_09_002
crossref_primary_10_1016_j_devcel_2017_10_029
crossref_primary_10_3390_ijms21041380
crossref_primary_10_1002_stem_3239
crossref_primary_10_1016_j_ydbio_2021_04_001
crossref_primary_10_1242_dev_189746
crossref_primary_10_1016_j_stemcr_2023_04_004
crossref_primary_10_1038_srep29784
crossref_primary_10_1016_j_preteyeres_2018_11_003
crossref_primary_10_1038_s41598_020_79651_x
crossref_primary_10_3389_fncel_2023_1166641
crossref_primary_10_1016_j_preteyeres_2018_03_002
crossref_primary_10_3389_fcell_2022_878350
crossref_primary_10_1186_s13046_023_02608_1
crossref_primary_10_1002_sctm_17_0205
crossref_primary_10_1242_dmm_050193
crossref_primary_10_1038_s41467_021_25792_0
crossref_primary_10_1111_gtc_12472
crossref_primary_10_1073_pnas_1618551114
crossref_primary_10_1016_j_celrep_2022_110827
crossref_primary_10_1016_j_stemcr_2018_07_005
crossref_primary_10_1186_s12864_018_4499_y
crossref_primary_10_1038_s41598_020_62047_2
crossref_primary_10_1073_pnas_2308204120
crossref_primary_10_1002_bies_201900187
crossref_primary_10_3390_genes11091090
crossref_primary_10_1016_j_exer_2019_04_018
crossref_primary_10_3389_fnins_2017_00742
crossref_primary_10_3390_ijms22137081
crossref_primary_10_1007_s11427_020_1836_7
crossref_primary_10_1002_sctm_18_0267
crossref_primary_10_1172_JCI154619
crossref_primary_10_1242_dev_143040
crossref_primary_10_1016_j_jchemneu_2018_02_002
crossref_primary_10_1002_cyto_a_23798
crossref_primary_10_1016_j_preteyeres_2016_06_001
crossref_primary_10_1016_j_exer_2021_108752
crossref_primary_10_1007_s12015_023_10553_x
crossref_primary_10_1016_j_molmed_2021_01_001
crossref_primary_10_1016_j_celrep_2020_01_007
crossref_primary_10_3389_fcell_2020_00128
crossref_primary_10_1016_j_ydbio_2021_09_001
crossref_primary_10_1038_s41467_022_33848_y
crossref_primary_10_3390_genes10120987
crossref_primary_10_1016_j_trsl_2022_06_001
crossref_primary_10_1038_s41598_018_20813_3
crossref_primary_10_7759_cureus_66814
crossref_primary_10_3390_jdb7030016
crossref_primary_10_1016_j_stem_2016_11_019
crossref_primary_10_1007_s00018_021_03917_4
crossref_primary_10_1371_journal_pgen_1009894
crossref_primary_10_1167_iovs_63_10_12
crossref_primary_10_1016_j_celrep_2017_06_045
crossref_primary_10_1002_stem_2755
crossref_primary_10_1146_annurev_cellbio_012023_013036
crossref_primary_10_3389_fcell_2022_870441
crossref_primary_10_1167_iovs_61_3_6
crossref_primary_10_1093_stmcls_sxab015
crossref_primary_10_1016_j_stemcr_2017_10_018
crossref_primary_10_3389_fendo_2023_1174600
crossref_primary_10_1126_scisignal_aag0245
crossref_primary_10_1016_j_stemcr_2019_09_009
crossref_primary_10_1167_tvst_10_10_15
crossref_primary_10_1155_2018_4968658
crossref_primary_10_1177_20417314211059876
crossref_primary_10_1101_cshperspect_a035683
crossref_primary_10_1016_j_gene_2021_146131
crossref_primary_10_1038_s41586_018_0076_4
crossref_primary_10_1016_j_omtn_2023_02_020
crossref_primary_10_3390_ijms221910244
crossref_primary_10_1242_dev_133108
crossref_primary_10_1073_pnas_1901572116
crossref_primary_10_1167_iovs_61_14_8
crossref_primary_10_1016_j_preteyeres_2019_03_001
crossref_primary_10_1167_iovs_65_13_30
crossref_primary_10_1016_j_phrs_2016_10_031
crossref_primary_10_1016_j_biomaterials_2019_01_028
crossref_primary_10_1177_2515841419835460
crossref_primary_10_1016_j_devcel_2016_05_023
crossref_primary_10_1016_j_celrep_2021_109461
crossref_primary_10_1186_s12868_016_0307_2
crossref_primary_10_1038_s41586_023_06392_y
crossref_primary_10_1073_pnas_2011780117
crossref_primary_10_1177_1073858420943192
crossref_primary_10_1177_2515841418774433
Cites_doi 10.1073/pnas.0905245106
10.1038/ncomms5047
10.1002/stem.2023
10.1242/dev.028308
10.1093/hmg/ddq378
10.1002/cne.22447
10.1016/j.ydbio.2013.10.006
10.1038/eye.2001.140
10.1016/j.bbrc.2010.01.007
10.1073/pnas.1324212111
10.1172/JCI72722
10.1186/1471-2148-11-169
10.1242/dev.00114
10.1073/pnas.0802627105
10.1093/hmg/10.15.1571
10.1093/hmg/ddh160
10.1371/journal.pgen.1002649
10.1038/83829
10.1371/journal.pone.0022817
10.1038/nrn2880
10.1016/j.brainres.2008.01.028
10.1038/ng774
10.1242/dev.129.12.2835
10.1002/cne.21730
10.1038/nature10997
10.1016/j.neuron.2010.01.018
10.1038/nn1155
10.1016/j.cell.2007.11.019
10.1523/JNEUROSCI.22-05-01640.2002
10.1523/JNEUROSCI.1709-11.2011
10.1074/jbc.M111.279026
10.1074/jbc.M111.271072
10.1038/nbt1384
10.1002/ar.1092120215
10.1016/j.exer.2008.07.016
10.1002/stem.674
10.1098/rstb.2011.0026
10.1016/j.brainres.2007.06.036
10.1101/gr.109405.110
10.1038/nrg2717
10.1016/S0079-6123(09)17502-7
10.1016/0165-3806(85)90211-1
10.1186/1749-8104-4-32
10.1073/pnas.1000102107
10.1093/hmg/ddh117
10.1242/dev.01451
10.1038/nature05161
10.1007/978-1-59745-194-9_19
10.1016/j.neuron.2004.08.041
10.1073/pnas.1212677110
10.1523/JNEUROSCI.0116-13.2013
10.1126/science.282.5391.1145
10.1016/S0301-0082(97)00079-8
10.1074/jbc.M111.257246
10.1242/dev.02598
10.1073/pnas.0508214103
10.1038/70591
10.1002/cne.902920402
10.1146/annurev.cellbio.042308.113259
10.1002/1096-9861(20001002)425:4<545::AID-CNE6>3.0.CO;2-3
10.1016/j.immuni.2006.03.022
10.1007/978-1-61779-848-1_23
10.1093/hmg/9.2.165
10.1016/j.stem.2012.05.009
10.1038/ncomms7286
10.1002/stem.1268
10.1073/pnas.0605934104
ContentType Journal Article
Copyright 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press
2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press.
2015 AlphaMed Press
Copyright_xml – notice: 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press
– notice: 2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press.
– notice: 2015 AlphaMed Press
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/stem.2122
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Genetics Abstracts

Genetics Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Transcriptome of Developing Human Photoreceptors
EISSN 1549-4918
EndPage 3518
ExternalDocumentID PMC4713319
3916587251
26235913
10_1002_stem_2122
STEM2122
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Young Scientists (B) from Japan Society for the Promotion of Science (JSPS)
– fundername: National Eye Institute, National Institutes of Health
– fundername: JSPS Postdoctoral Fellowships for Research Abroad
– fundername: Intramural Research Program
  funderid: ZO1 EY000450 ; EY000474
– fundername: Intramural NIH HHS
  grantid: Z01 EY000450
– fundername: Intramural NIH HHS
  grantid: ZIA EY000450
– fundername: Intramural NIH HHS
  grantid: ZIA EY000474
– fundername: NEI NIH HHS
  grantid: EY000474
– fundername: Intramural Research Program
  grantid: ZO1 EY000450 ; EY000474
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AHMMS
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NU-
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
AAYXX
ABGNP
ABJNI
ABVGC
ABXZS
AGORE
AJNCP
ALXQX
CITATION
AAMMB
ACVCV
ADMTO
AEFGJ
AFFQV
AGXDD
AHGBF
AIDQK
AIDYY
AJBYB
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
OBFPC
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
WIN
7X8
5PM
ID FETCH-LOGICAL-c6822-42407feee356c939af4adb2c43e54b80d8b752f2adfecb931ac2a5d4b25de48f3
IEDL.DBID 24P
ISSN 1066-5099
1549-4918
IngestDate Thu Aug 21 18:20:05 EDT 2025
Fri Jul 11 16:43:03 EDT 2025
Sun Aug 24 03:23:09 EDT 2025
Wed Aug 13 11:31:25 EDT 2025
Mon Jul 21 05:58:47 EDT 2025
Tue Jul 01 00:23:36 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Wed Jan 22 16:32:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Retina
Three-dimensional organoid culture
Global gene profiling
Next generation sequencing
Human rod and cone photoreceptors
Stem cells
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/4.0
2015 This article is a U.S. Government work and is in the public domain in the USA. STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press AlphaMed Press.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6822-42407feee356c939af4adb2c43e54b80d8b752f2adfecb931ac2a5d4b25de48f3
Notes This article was published online on 14 August 2015. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected 4 September 2015.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2122
PMID 26235913
PQID 1755482308
PQPubID 1046343
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4713319
proquest_miscellaneous_1780522456
proquest_miscellaneous_1760856735
proquest_journals_1755482308
pubmed_primary_26235913
crossref_citationtrail_10_1002_stem_2122
crossref_primary_10_1002_stem_2122
wiley_primary_10_1002_stem_2122_STEM2122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2015
Publisher Oxford University Press
John Wiley and Sons Inc
Publisher_xml – name: Oxford University Press
– name: John Wiley and Sons Inc
References 2010; 11
2007; 104
2008; 1236
2012; 485
2010; 107
2010; 19
2008; 509
2000; 9
2015; 33
2008; 1192
2011; 11
2008; 105
2008; 423
2012; 884
2011; 17
2012; 10
2006; 133
2013; 19
2010; 66
2010; 20
2004; 131
2011; 366
2010; 518
2014; 5
2006; 24
2003; 6
2003; 9
2007; 131
1990; 292
2008; 26
1985; 212
2001; 15
2010; 392
2013; 110
1998; 54
2011; 29
1998; 282
2011; 286
2006; 444
2014; 124
2001; 10
2004; 43
2009; 25
2015; 6
2011; 31
1999; 23
2001; 27
2001; 29
2009; 175
2013; 384
2014; 111
2011; 6
2013; 33
2000; 425
2013; 31
2002; 22
2004; 13
2002; 129
2008; 87
2009; 4
2008; 135
1998; 4
2006; 103
2012; 8
2009; 106
1985; 353
Barber (2022011117282538000_stem2122-bib-0072) 2013; 110
Ng (2022011117282538000_stem2122-bib-0015) 2011; 31
Meyer (2022011117282538000_stem2122-bib-0027) 2011; 29
Hsieh (2022011117282538000_stem2122-bib-0038) 2009; 4
Reichman (2022011117282538000_stem2122-bib-0028) 2014; 111
Lamba (2022011117282538000_stem2122-bib-0024) 2009; 175
Montana (2022011117282538000_stem2122-bib-0044) 2011; 286
MacLaren (2022011117282538000_stem2122-bib-0055) 2006; 444
Xiao (2022011117282538000_stem2122-bib-0062) 2000; 425
Brooks (2022011117282538000_stem2122-bib-0035) 2011; 17
Bumsted O'Brien Keely (2022011117282538000_stem2122-bib-0017) 2003; 9
Osakada (2022011117282538000_stem2122-bib-0023) 2008; 26
Pera (2022011117282538000_stem2122-bib-0020) 2004; 131
Wu (2022011117282538000_stem2122-bib-0047) 2013; 33
Zhong (2022011117282538000_stem2122-bib-0061) 2014; 5
Furukawa (2022011117282538000_stem2122-bib-0029) 2002; 22
Mellough (2022011117282538000_stem2122-bib-0031) 2015; 33
Bibb (2022011117282538000_stem2122-bib-0060) 2001; 10
Oh (2022011117282538000_stem2122-bib-0045) 2008; 1236
Pearson (2022011117282538000_stem2122-bib-0073) 2012; 485
Young (2022011117282538000_stem2122-bib-0037) 1985; 212
Nelson (2022011117282538000_stem2122-bib-0050) 2011; 6
Muranishi (2022011117282538000_stem2122-bib-0009) 2010; 392
Wright (2022011117282538000_stem2122-bib-0004) 2010; 11
Oron-Karni (2022011117282538000_stem2122-bib-0039) 2008; 135
Onishi (2022011117282538000_stem2122-bib-0053) 2010; 107
Hao (2022011117282538000_stem2122-bib-0066) 2012; 8
Yoshida (2022011117282538000_stem2122-bib-0067) 2004; 13
Roesch (2022011117282538000_stem2122-bib-0051) 2008; 509
Li (2022011117282538000_stem2122-bib-0048) 2004; 43
Fougerousse (2022011117282538000_stem2122-bib-0069) 2000; 9
Furukawa (2022011117282538000_stem2122-bib-0010) 1999; 23
Ng (2022011117282538000_stem2122-bib-0013) 2001; 27
Roger (2022011117282538000_stem2122-bib-0033) 2014; 124
Hendrickson (2022011117282538000_stem2122-bib-0016) 2008; 87
Onishi (2022011117282538000_stem2122-bib-0059) 2010; 107
Provis (2022011117282538000_stem2122-bib-0002) 1998; 54
Kuwahara (2022011117282538000_stem2122-bib-0032) 2015; 6
Meyer (2022011117282538000_stem2122-bib-0022) 2009; 106
Thomson (2022011117282538000_stem2122-bib-0019) 1998; 282
Wang (2022011117282538000_stem2122-bib-0064) 2004; 13
Curcio (2022011117282538000_stem2122-bib-0001) 1990; 292
Brooks (2022011117282538000_stem2122-bib-0034) 2012; 884
Hao (2022011117282538000_stem2122-bib-0052) 2011; 286
Sanes (2022011117282538000_stem2122-bib-0008) 2010; 66
Mu (2022011117282538000_stem2122-bib-0049) 2008; 105
Mears (2022011117282538000_stem2122-bib-0012) 2001; 29
Oh (2022011117282538000_stem2122-bib-0014) 2007; 104
Matsuda (2022011117282538000_stem2122-bib-0030) 2008; 423
Lakowski (2022011117282538000_stem2122-bib-0074) 2010; 19
Ng (2022011117282538000_stem2122-bib-0054) 2001; 27
Agathocleous (2022011117282538000_stem2122-bib-0007) 2009; 25
Brzezinski (2022011117282538000_stem2122-bib-0042) 2013; 384
Gomez (2022011117282538000_stem2122-bib-0070) 2006; 24
Postel (2022011117282538000_stem2122-bib-0057) 2013; 19
Takahashi (2022011117282538000_stem2122-bib-0018) 2007; 131
Hennig (2022011117282538000_stem2122-bib-0058) 2008; 1192
Zhong (2022011117282538000_stem2122-bib-0026) 2014; 5
Nishida (2022011117282538000_stem2122-bib-0041) 2003; 6
Allison (2022011117282538000_stem2122-bib-0005) 2010; 518
Zhu (2022011117282538000_stem2122-bib-0040) 2002; 129
Zhong (2022011117282538000_stem2122-bib-0063) 2011; 11
Boucherie (2022011117282538000_stem2122-bib-0021) 2013; 31
Lee (2022011117282538000_stem2122-bib-0071) 2011; 366
Curcio (2022011117282538000_stem2122-bib-0003) 2001; 15
Corbo (2022011117282538000_stem2122-bib-0011) 2010; 20
Fujitani (2022011117282538000_stem2122-bib-0046) 2006; 133
Chen (2022011117282538000_stem2122-bib-0065) 2002; 129
Kautzmann (2022011117282538000_stem2122-bib-0043) 2011; 286
He (2022011117282538000_stem2122-bib-0068) 1998; 4
Akimoto (2022011117282538000_stem2122-bib-0056) 2006; 103
Swaroop (2022011117282538000_stem2122-bib-0006) 2010; 11
Nakano (2022011117282538000_stem2122-bib-0025) 2012; 10
Young (2022011117282538000_stem2122-bib-0036) 1985; 353
References_xml – volume: 282
  start-page: 1145
  year: 1998
  end-page: 1147
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
– volume: 111
  start-page: 8518
  year: 2014
  end-page: 8523
  article-title: From confluent human iPS cells to self‐forming neural retina and retinal pigmented epithelium
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 1025
  year: 2004
  end-page: 1040
  article-title: QRX, a novel homeobox gene, modulates photoreceptor gene expression
  publication-title: Hum Mol Genet
– volume: 1192
  start-page: 114
  year: 2008
  end-page: 133
  article-title: Regulation of photoreceptor gene expression by Crx‐associated transcription factor network
  publication-title: Brain Res
– volume: 392
  start-page: 317
  year: 2010
  end-page: 322
  article-title: Gene expression analysis of embryonic photoreceptor precursor cells using BAC‐Crx‐EGFP transgenic mouse
  publication-title: Biochem Biophys Res Commun
– volume: 31
  start-page: 408
  year: 2013
  end-page: 414
  article-title: Brief report: Self‐organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors
  publication-title: Stem Cells
– volume: 106
  start-page: 16698
  year: 2009
  end-page: 16703
  article-title: Modeling early retinal development with human embryonic and induced pluripotent stem cells
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 3034
  year: 2011
  end-page: 3054
  article-title: Next‐generation sequencing facilitates quantitative analysis of wild‐type and Nrl(‐/‐) retinal transcriptomes
  publication-title: Mol Vis
– volume: 4
  start-page: 32
  year: 2009
  article-title: Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors
  publication-title: Neural Dev
– volume: 31
  start-page: 11118
  year: 2011
  end-page: 11125
  article-title: Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development
  publication-title: J Neurosci
– volume: 66
  start-page: 15
  year: 2010
  end-page: 36
  article-title: Design principles of insect and vertebrate visual systems
  publication-title: Neuron
– volume: 25
  start-page: 45
  year: 2009
  end-page: 69
  article-title: From progenitors to differentiated cells in the vertebrate retina
  publication-title: Annu Rev Cell Dev Biol
– volume: 33
  start-page: 13053
  year: 2013
  end-page: 13065
  article-title: Onecut1 is essential for horizontal cell genesis and retinal integrity
  publication-title: J Neurosci
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 22
  start-page: 1640
  year: 2002
  end-page: 1647
  article-title: The mouse Crx 5'‐upstream transgene sequence directs cell‐specific and developmentally regulated expression in retinal photoreceptor cells
  publication-title: J Neurosci
– volume: 286
  start-page: 34893
  year: 2011
  end-page: 34902
  article-title: The transcription factor neural retina leucine zipper (NRL) controls photoreceptor‐specific expression of myocyte enhancer factor Mef2c from an alternative promoter
  publication-title: J Biol Chem
– volume: 10
  start-page: 771
  year: 2012
  end-page: 785
  article-title: Self‐formation of optic cups and storable stratified neural retina from human ESCs
  publication-title: Cell Stem Cell
– volume: 6
  start-page: 6286
  year: 2015
  article-title: Generation of a ciliary margin‐like stem cell niche from self‐organizing human retinal tissue
  publication-title: Nat Commun
– volume: 509
  start-page: 225
  year: 2008
  end-page: 238
  article-title: The transcriptome of retinal Muller glial cells
  publication-title: J Comp Neurol
– volume: 11
  start-page: 563
  year: 2010
  end-page: 576
  article-title: Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina
  publication-title: Nat Rev Neurosci
– volume: 87
  start-page: 415
  year: 2008
  end-page: 426
  article-title: Rod photoreceptor differentiation in fetal and infant human retina
  publication-title: Exp Eye Res
– volume: 105
  start-page: 6942
  year: 2008
  end-page: 6947
  article-title: Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 1571
  year: 2001
  end-page: 1579
  article-title: Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development
  publication-title: Hum Mol Genet
– volume: 485
  start-page: 99
  year: 2012
  end-page: 103
  article-title: Restoration of vision after transplantation of photoreceptors
  publication-title: Nature
– volume: 11
  start-page: 169
  year: 2011
  article-title: The dynamics of vertebrate homeobox gene evolution: Gain and loss of genes in mouse and human lineages
  publication-title: BMC Evol Biol
– volume: 11
  start-page: 273
  year: 2010
  end-page: 284
  article-title: Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait
  publication-title: Nat Rev Genet
– volume: 6
  start-page: e22817
  year: 2011
  article-title: Genome‐wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial fate
  publication-title: PLoS One
– volume: 33
  start-page: 2416
  year: 2015
  end-page: 2430
  article-title: IGF‐1 signaling plays an important role in the formation of three‐dimensional laminated neural retina and other ocular structures from human embryonic stem cells
  publication-title: Stem Cells
– volume: 131
  start-page: 5515
  year: 2004
  end-page: 5525
  article-title: Human embryonic stem cells: Prospects for development
  publication-title: Development
– volume: 425
  start-page: 545
  year: 2000
  end-page: 559
  article-title: Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones
  publication-title: J Comp Neurol
– volume: 9
  start-page: 401
  year: 2003
  end-page: 409
  article-title: Expression of photoreceptor‐associated molecules during human fetal eye development
  publication-title: Mol Vis
– volume: 19
  start-page: 4545
  year: 2010
  end-page: 4559
  article-title: Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow‐sorted Crx‐positive donor cells
  publication-title: Hum Mol Genet
– volume: 9
  start-page: 165
  year: 2000
  end-page: 173
  article-title: Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes
  publication-title: Hum Mol Genet
– volume: 518
  start-page: 4182
  year: 2010
  end-page: 4195
  article-title: Ontogeny of cone photoreceptor mosaics in zebrafish
  publication-title: J Comp Neurol
– volume: 54
  start-page: 549
  year: 1998
  end-page: 580
  article-title: Ontogeny of the primate fovea: A central issue in retinal development
  publication-title: Prog Neurobiol
– volume: 43
  start-page: 795
  year: 2004
  end-page: 807
  article-title: Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors
  publication-title: Neuron
– volume: 444
  start-page: 203
  year: 2006
  end-page: 207
  article-title: Retinal repair by transplantation of photoreceptor precursors
  publication-title: Nature
– volume: 103
  start-page: 3890
  year: 2006
  end-page: 3895
  article-title: Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow‐sorted photoreceptors
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 1255
  year: 2003
  end-page: 1263
  article-title: Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development
  publication-title: Nat Neurosci
– volume: 135
  start-page: 4037
  year: 2008
  end-page: 4047
  article-title: Dual requirement for Pax6 in retinal progenitor cells
  publication-title: Development
– volume: 286
  start-page: 36921
  year: 2011
  end-page: 36931
  article-title: Transcriptional regulation of neural retina leucine zipper (Nrl), a photoreceptor cell fate determinant
  publication-title: J Biol Chem
– volume: 29
  start-page: 447
  year: 2001
  end-page: 452
  article-title: Nrl is required for rod photoreceptor development
  publication-title: Nat Genet
– volume: 292
  start-page: 497
  year: 1990
  end-page: 523
  article-title: Human photoreceptor topography
  publication-title: J Comp Neurol
– volume: 104
  start-page: 1679
  year: 2007
  end-page: 1684
  article-title: Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 215
  year: 2008
  end-page: 224
  article-title: Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells
  publication-title: Nat Biotechnol
– volume: 23
  start-page: 466
  year: 1999
  end-page: 470
  article-title: Retinopathy and attenuated circadian entrainment in Crx‐deficient mice
  publication-title: Nat Genet
– volume: 13
  start-page: 1487
  year: 2004
  end-page: 1503
  article-title: Expression profiling of the developing and mature Nrl‐/‐ mouse retina: Identification of retinal disease candidates and transcriptional regulatory targets of Nrl
  publication-title: Hum Mol Genet
– volume: 107
  start-page: 11579
  year: 2010
  end-page: 11584
  article-title: The orphan nuclear hormone receptor ERRbeta controls rod photoreceptor survival
  publication-title: Proc Natl Acad Sci USA
– volume: 129
  start-page: 2835
  year: 2002
  end-page: 2849
  article-title: Six3‐mediated auto repression and eye development requires its interaction with members of the Groucho‐related family of co‐repressors
  publication-title: Development
– volume: 5
  start-page: 4047
  year: 2014
  article-title: Generation of three‐dimensional retinal tissue with functional photoreceptors from human iPSCs
  publication-title: Nat Commun
– volume: 19
  start-page: 2058
  year: 2013
  end-page: 2067
  article-title: Analysis of cell surface markers specific for transplantable rod photoreceptors
  publication-title: Mol Vis
– volume: 29
  start-page: 1206
  year: 2011
  end-page: 1218
  article-title: Optic vesicle‐like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment
  publication-title: Stem Cells
– volume: 175
  start-page: 23
  year: 2009
  end-page: 31
  article-title: Strategies for retinal repair: Cell replacement and regeneration
  publication-title: Prog Brain Res
– volume: 110
  start-page: 354
  year: 2013
  end-page: 359
  article-title: Repair of the degenerate retina by photoreceptor transplantation
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 376
  year: 2001
  end-page: 383
  article-title: Photoreceptor topography in ageing and age‐related maculopathy
  publication-title: Eye (Lond)
– volume: 884
  start-page: 319
  year: 2012
  end-page: 334
  article-title: Retinal transcriptome profiling by directional next‐generation sequencing using 100 ng of total RNA
  publication-title: Methods Mol Biol
– volume: 384
  start-page: 194
  year: 2013
  end-page: 204
  article-title: Blimp1 (Prdm1) prevents re‐specification of photoreceptors into retinal bipolar cells by restricting competence
  publication-title: Dev Biol
– volume: 366
  start-page: 2286
  year: 2011
  end-page: 2296
  article-title: Modelling familial dysautonomia in human induced pluripotent stem cells
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 353
  start-page: 229
  year: 1985
  end-page: 239
  article-title: Cell proliferation during postnatal development of the retina in the mouse
  publication-title: Brain Res
– volume: 8
  start-page: e1002649
  year: 2012
  article-title: Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis
  publication-title: PLoS Genet
– volume: 286
  start-page: 28247
  year: 2011
  end-page: 28255
  article-title: Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis
  publication-title: J Biol Chem
– volume: 133
  start-page: 4439
  year: 2006
  end-page: 4450
  article-title: Ptf1a determines horizontal and amacrine cell fates during mouse retinal development
  publication-title: Development
– volume: 24
  start-page: 741
  year: 2006
  end-page: 752
  article-title: HS1 functions as an essential actin‐regulatory adaptor protein at the immune synapse
  publication-title: Immunity
– volume: 129
  start-page: 5363
  year: 2002
  end-page: 5375
  article-title: The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation
  publication-title: Development
– volume: 423
  start-page: 259
  year: 2008
  end-page: 278
  article-title: Analysis of gene function in the retina
  publication-title: Methods Mol Biol
– volume: 1236
  start-page: 16
  year: 2008
  end-page: 29
  article-title: Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors
  publication-title: Brain Res
– volume: 27
  start-page: 94
  year: 2001
  end-page: 98
  article-title: A thyroid hormone receptor that is required for the development of green cone photoreceptors
  publication-title: Nat Genet
– volume: 212
  start-page: 199
  year: 1985
  end-page: 205
  article-title: Cell differentiation in the retina of the mouse
  publication-title: Anat Rec
– volume: 20
  start-page: 1512
  year: 2010
  end-page: 1525
  article-title: CRX ChIP‐seq reveals the cis‐regulatory architecture of mouse photoreceptors
  publication-title: Genome Res
– volume: 124
  start-page: 631
  year: 2014
  end-page: 643
  article-title: OTX2 loss causes rod differentiation defect in CRX‐associated congenital blindness
  publication-title: J Clin Invest
– volume: 4
  start-page: 32
  year: 1998
  article-title: Spatial and temporal expression of AP‐1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina
  publication-title: Mol Vis
– volume: 107
  start-page: 11579
  year: 2010
  end-page: 11584
  article-title: The orphan nuclear hormone receptor ERRβ controls rod photoreceptor survival
  publication-title: Proc Natl Acad Sci USA
– volume: 106
  start-page: 16698
  year: 2009
  ident: 2022011117282538000_stem2122-bib-0022
  article-title: Modeling early retinal development with human embryonic and induced pluripotent stem cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0905245106
– volume: 5
  start-page: 4047
  year: 2014
  ident: 2022011117282538000_stem2122-bib-0061
  article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs
  publication-title: Nat Commun
  doi: 10.1038/ncomms5047
– volume: 5
  start-page: 4047
  year: 2014
  ident: 2022011117282538000_stem2122-bib-0026
  article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs
  publication-title: Nat Commun
  doi: 10.1038/ncomms5047
– volume: 33
  start-page: 2416
  year: 2015
  ident: 2022011117282538000_stem2122-bib-0031
  article-title: IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.2023
– volume: 135
  start-page: 4037
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0039
  article-title: Dual requirement for Pax6 in retinal progenitor cells
  publication-title: Development
  doi: 10.1242/dev.028308
– volume: 19
  start-page: 4545
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0074
  article-title: Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq378
– volume: 518
  start-page: 4182
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0005
  article-title: Ontogeny of cone photoreceptor mosaics in zebrafish
  publication-title: J Comp Neurol
  doi: 10.1002/cne.22447
– volume: 384
  start-page: 194
  year: 2013
  ident: 2022011117282538000_stem2122-bib-0042
  article-title: Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2013.10.006
– volume: 15
  start-page: 376
  year: 2001
  ident: 2022011117282538000_stem2122-bib-0003
  article-title: Photoreceptor topography in ageing and age-related maculopathy
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2001.140
– volume: 392
  start-page: 317
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0009
  article-title: Gene expression analysis of embryonic photoreceptor precursor cells using BAC-Crx-EGFP transgenic mouse
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.01.007
– volume: 111
  start-page: 8518
  year: 2014
  ident: 2022011117282538000_stem2122-bib-0028
  article-title: From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1324212111
– volume: 124
  start-page: 631
  year: 2014
  ident: 2022011117282538000_stem2122-bib-0033
  article-title: OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness
  publication-title: J Clin Invest
  doi: 10.1172/JCI72722
– volume: 11
  start-page: 169
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0063
  article-title: The dynamics of vertebrate homeobox gene evolution: Gain and loss of genes in mouse and human lineages
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-11-169
– volume: 129
  start-page: 5363
  year: 2002
  ident: 2022011117282538000_stem2122-bib-0065
  article-title: The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation
  publication-title: Development
  doi: 10.1242/dev.00114
– volume: 17
  start-page: 3034
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0035
  article-title: Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes
  publication-title: Mol Vis
– volume: 105
  start-page: 6942
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0049
  article-title: Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0802627105
– volume: 10
  start-page: 1571
  year: 2001
  ident: 2022011117282538000_stem2122-bib-0060
  article-title: Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/10.15.1571
– volume: 4
  start-page: 32
  year: 1998
  ident: 2022011117282538000_stem2122-bib-0068
  article-title: Spatial and temporal expression of AP-1 responsive rod photoreceptor genes and bZIP transcription factors during development of the rat retina
  publication-title: Mol Vis
– volume: 13
  start-page: 1487
  year: 2004
  ident: 2022011117282538000_stem2122-bib-0067
  article-title: Expression profiling of the developing and mature Nrl-/- mouse retina: Identification of retinal disease candidates and transcriptional regulatory targets of Nrl
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddh160
– volume: 8
  start-page: e1002649
  year: 2012
  ident: 2022011117282538000_stem2122-bib-0066
  article-title: Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002649
– volume: 27
  start-page: 94
  year: 2001
  ident: 2022011117282538000_stem2122-bib-0054
  article-title: A thyroid hormone receptor that is required for the development of green cone photoreceptors
  publication-title: Nat Genet
  doi: 10.1038/83829
– volume: 6
  start-page: e22817
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0050
  article-title: Genome-wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial fate
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022817
– volume: 11
  start-page: 563
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0006
  article-title: Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2880
– volume: 1236
  start-page: 16
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0045
  article-title: Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2008.01.028
– volume: 29
  start-page: 447
  year: 2001
  ident: 2022011117282538000_stem2122-bib-0012
  article-title: Nrl is required for rod photoreceptor development
  publication-title: Nat Genet
  doi: 10.1038/ng774
– volume: 129
  start-page: 2835
  year: 2002
  ident: 2022011117282538000_stem2122-bib-0040
  article-title: Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors
  publication-title: Development
  doi: 10.1242/dev.129.12.2835
– volume: 509
  start-page: 225
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0051
  article-title: The transcriptome of retinal Muller glial cells
  publication-title: J Comp Neurol
  doi: 10.1002/cne.21730
– volume: 485
  start-page: 99
  year: 2012
  ident: 2022011117282538000_stem2122-bib-0073
  article-title: Restoration of vision after transplantation of photoreceptors
  publication-title: Nature
  doi: 10.1038/nature10997
– volume: 66
  start-page: 15
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0008
  article-title: Design principles of insect and vertebrate visual systems
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.01.018
– volume: 6
  start-page: 1255
  year: 2003
  ident: 2022011117282538000_stem2122-bib-0041
  article-title: Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development
  publication-title: Nat Neurosci
  doi: 10.1038/nn1155
– volume: 131
  start-page: 861
  year: 2007
  ident: 2022011117282538000_stem2122-bib-0018
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 22
  start-page: 1640
  year: 2002
  ident: 2022011117282538000_stem2122-bib-0029
  article-title: The mouse Crx 5'-upstream transgene sequence directs cell-specific and developmentally regulated expression in retinal photoreceptor cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-05-01640.2002
– volume: 31
  start-page: 11118
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0015
  article-title: Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1709-11.2011
– volume: 286
  start-page: 36921
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0044
  article-title: Transcriptional regulation of neural retina leucine zipper (Nrl), a photoreceptor cell fate determinant
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.279026
– volume: 286
  start-page: 34893
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0052
  article-title: The transcription factor neural retina leucine zipper (NRL) controls photoreceptor-specific expression of myocyte enhancer factor Mef2c from an alternative promoter
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.271072
– volume: 26
  start-page: 215
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0023
  article-title: Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1384
– volume: 212
  start-page: 199
  year: 1985
  ident: 2022011117282538000_stem2122-bib-0037
  article-title: Cell differentiation in the retina of the mouse
  publication-title: Anat Rec
  doi: 10.1002/ar.1092120215
– volume: 87
  start-page: 415
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0016
  article-title: Rod photoreceptor differentiation in fetal and infant human retina
  publication-title: Exp Eye Res
  doi: 10.1016/j.exer.2008.07.016
– volume: 29
  start-page: 1206
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0027
  article-title: Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment
  publication-title: Stem Cells
  doi: 10.1002/stem.674
– volume: 366
  start-page: 2286
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0071
  article-title: Modelling familial dysautonomia in human induced pluripotent stem cells
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2011.0026
– volume: 1192
  start-page: 114
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0058
  article-title: Regulation of photoreceptor gene expression by Crx-associated transcription factor network
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2007.06.036
– volume: 20
  start-page: 1512
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0011
  article-title: CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors
  publication-title: Genome Res
  doi: 10.1101/gr.109405.110
– volume: 11
  start-page: 273
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0004
  article-title: Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2717
– volume: 175
  start-page: 23
  year: 2009
  ident: 2022011117282538000_stem2122-bib-0024
  article-title: Strategies for retinal repair: Cell replacement and regeneration
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(09)17502-7
– volume: 353
  start-page: 229
  year: 1985
  ident: 2022011117282538000_stem2122-bib-0036
  article-title: Cell proliferation during postnatal development of the retina in the mouse
  publication-title: Brain Res
  doi: 10.1016/0165-3806(85)90211-1
– volume: 4
  start-page: 32
  year: 2009
  ident: 2022011117282538000_stem2122-bib-0038
  article-title: Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors
  publication-title: Neural Dev
  doi: 10.1186/1749-8104-4-32
– volume: 107
  start-page: 11579
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0053
  article-title: The orphan nuclear hormone receptor ERRβ controls rod photoreceptor survival
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1000102107
– volume: 13
  start-page: 1025
  year: 2004
  ident: 2022011117282538000_stem2122-bib-0064
  article-title: QRX, a novel homeobox gene, modulates photoreceptor gene expression
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddh117
– volume: 131
  start-page: 5515
  year: 2004
  ident: 2022011117282538000_stem2122-bib-0020
  article-title: Human embryonic stem cells: Prospects for development
  publication-title: Development
  doi: 10.1242/dev.01451
– volume: 444
  start-page: 203
  year: 2006
  ident: 2022011117282538000_stem2122-bib-0055
  article-title: Retinal repair by transplantation of photoreceptor precursors
  publication-title: Nature
  doi: 10.1038/nature05161
– volume: 27
  start-page: 94
  year: 2001
  ident: 2022011117282538000_stem2122-bib-0013
  article-title: A thyroid hormone receptor that is required for the development of green cone photoreceptors
  publication-title: Nat Genet
  doi: 10.1038/83829
– volume: 423
  start-page: 259
  year: 2008
  ident: 2022011117282538000_stem2122-bib-0030
  article-title: Analysis of gene function in the retina
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-194-9_19
– volume: 107
  start-page: 11579
  year: 2010
  ident: 2022011117282538000_stem2122-bib-0059
  article-title: The orphan nuclear hormone receptor ERRbeta controls rod photoreceptor survival
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1000102107
– volume: 43
  start-page: 795
  year: 2004
  ident: 2022011117282538000_stem2122-bib-0048
  article-title: Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.08.041
– volume: 110
  start-page: 354
  year: 2013
  ident: 2022011117282538000_stem2122-bib-0072
  article-title: Repair of the degenerate retina by photoreceptor transplantation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1212677110
– volume: 9
  start-page: 401
  year: 2003
  ident: 2022011117282538000_stem2122-bib-0017
  article-title: Expression of photoreceptor-associated molecules during human fetal eye development
  publication-title: Mol Vis
– volume: 33
  start-page: 13053
  year: 2013
  ident: 2022011117282538000_stem2122-bib-0047
  article-title: Onecut1 is essential for horizontal cell genesis and retinal integrity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0116-13.2013
– volume: 282
  start-page: 1145
  year: 1998
  ident: 2022011117282538000_stem2122-bib-0019
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 54
  start-page: 549
  year: 1998
  ident: 2022011117282538000_stem2122-bib-0002
  article-title: Ontogeny of the primate fovea: A central issue in retinal development
  publication-title: Prog Neurobiol
  doi: 10.1016/S0301-0082(97)00079-8
– volume: 286
  start-page: 28247
  year: 2011
  ident: 2022011117282538000_stem2122-bib-0043
  article-title: Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.257246
– volume: 133
  start-page: 4439
  year: 2006
  ident: 2022011117282538000_stem2122-bib-0046
  article-title: Ptf1a determines horizontal and amacrine cell fates during mouse retinal development
  publication-title: Development
  doi: 10.1242/dev.02598
– volume: 103
  start-page: 3890
  year: 2006
  ident: 2022011117282538000_stem2122-bib-0056
  article-title: Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0508214103
– volume: 23
  start-page: 466
  year: 1999
  ident: 2022011117282538000_stem2122-bib-0010
  article-title: Retinopathy and attenuated circadian entrainment in Crx-deficient mice
  publication-title: Nat Genet
  doi: 10.1038/70591
– volume: 292
  start-page: 497
  year: 1990
  ident: 2022011117282538000_stem2122-bib-0001
  article-title: Human photoreceptor topography
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902920402
– volume: 25
  start-page: 45
  year: 2009
  ident: 2022011117282538000_stem2122-bib-0007
  article-title: From progenitors to differentiated cells in the vertebrate retina
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.042308.113259
– volume: 425
  start-page: 545
  year: 2000
  ident: 2022011117282538000_stem2122-bib-0062
  article-title: Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones
  publication-title: J Comp Neurol
  doi: 10.1002/1096-9861(20001002)425:4<545::AID-CNE6>3.0.CO;2-3
– volume: 24
  start-page: 741
  year: 2006
  ident: 2022011117282538000_stem2122-bib-0070
  article-title: HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.03.022
– volume: 884
  start-page: 319
  year: 2012
  ident: 2022011117282538000_stem2122-bib-0034
  article-title: Retinal transcriptome profiling by directional next-generation sequencing using 100 ng of total RNA
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-848-1_23
– volume: 9
  start-page: 165
  year: 2000
  ident: 2022011117282538000_stem2122-bib-0069
  article-title: Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/9.2.165
– volume: 10
  start-page: 771
  year: 2012
  ident: 2022011117282538000_stem2122-bib-0025
  article-title: Self-formation of optic cups and storable stratified neural retina from human ESCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.009
– volume: 6
  start-page: 6286
  year: 2015
  ident: 2022011117282538000_stem2122-bib-0032
  article-title: Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue
  publication-title: Nat Commun
  doi: 10.1038/ncomms7286
– volume: 31
  start-page: 408
  year: 2013
  ident: 2022011117282538000_stem2122-bib-0021
  article-title: Brief report: Self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors
  publication-title: Stem Cells
  doi: 10.1002/stem.1268
– volume: 104
  start-page: 1679
  year: 2007
  ident: 2022011117282538000_stem2122-bib-0014
  article-title: Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0605934104
– volume: 19
  start-page: 2058
  year: 2013
  ident: 2022011117282538000_stem2122-bib-0057
  article-title: Analysis of cell surface markers specific for transplantable rod photoreceptors
  publication-title: Mol Vis
SSID ssj0014588
Score 2.528199
Snippet The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have...
The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3504
SubjectTerms Antigens, Differentiation - biosynthesis
Cell Differentiation
Cell Line
Eye Proteins - biosynthesis
Gene expression
Global gene profiling
Human Embryonic Stem Cells - cytology
Human Embryonic Stem Cells - metabolism
Human rod and cone photoreceptors
Humans
Next generation sequencing
Photoreception
Photoreceptors
Retina
Retinal Cone Photoreceptor Cells - cytology
Retinal Cone Photoreceptor Cells - metabolism
Retinal Rod Photoreceptor Cells - cytology
Retinal Rod Photoreceptor Cells - metabolism
Stem cells
Three‐dimensional organoid culture
Transcriptome
Translational and Clinical Research
Title Transcriptome Dynamics of Developing Photoreceptors in Three‐Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2122
https://www.ncbi.nlm.nih.gov/pubmed/26235913
https://www.proquest.com/docview/1755482308
https://www.proquest.com/docview/1760856735
https://www.proquest.com/docview/1780522456
https://pubmed.ncbi.nlm.nih.gov/PMC4713319
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF5VRUhcEP8YCloQBy6myf74R5xQ3KqAWlVtKvVm7Xpn1UjBruKkUm88Aq_GK_AkzHgdQ1RAXKJYnk02mZ2Zbz073zD2ZiStlJCIWEqVxkpaQD8oR_HYSl95jEdVStXIh0fJwZn6dK7Pt9j7dS1M4IcYHriRZXT-mgzc2Hb3F2ko8Ry_Q8eL_vcWldYScb5Qx0MKgUowu1RnksQYFfM1rdBI7A5DN4PRDYR586Dk7wC2i0D799jdHjryD0HX99kW1A_Y7dBM8voh-96Fnc4JNF-AF6HVfMsbz4uhMoofXzS4ywY6zNIsWj6r-RS1CT--fiuI5z9wdPATKoQ2PPBtQovXlbmcLanVF15NA53VnJ_257DpO7psAJ80NXBTO37SOF70zVeWQf34KVcIS2kWE5jj6NXCGxxM5UIIQrthxILNj8LR9PYRO9vfm04O4r5hQ1wlCDRiRdtDDwBSJ1Uuc-OVcVZUSoJWNhu5zKZaeGGch8rmcmwqYbRTVmgHKvPyMduucZ5PGdfOWcq44vbQqcR74zObCwBlsgy8UhF7u9ZcWfVs5tRUY14GHmZRkpJLUnLEXg-il4HC409CO2v1l70VtyVCK9zQ4SYti9ir4TbaHyVVTA3NimQSRK1JKvW_ZKhxBKWYI_YkrKhhJgLxp87HMmLpxlobBIj_e_NOPbvoeMAVPWAY5_hXdKvy7z-uPJ3uHdKbZ_8v-pzdQWyow8mdHba9XKzgBeKvpX3Z2Rm-Fh8__wSh5TW0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELZWixBcEP8EFjCIA5ewrX_yI3FB7a4KbKvVblbaW2THtrZSSVZNi8SNR-DVeAWehBk7DVQLiFujjFMn47G_8Xi-IeTVgGvObcJizkUaC64tzIN8EA81d5WD9ahKMRt5OksmZ-LDuTzfIW83uTCBH6LfcEPL8PM1GjhuSO__Yg1FouM3MPPCBHxNJCxFs2TiuI8hYA6mj3UmSQzLYr7hFRqw_b7p9mp0BWJePSn5O4L1S9DhbXKrw470XVD2HbJj67vkeqgm-eUe-e7XHT8LNJ8sHYda8y1tHB33qVH0-KIBN9viaZZm2dJ5TQtQp_3x9dsYif4DSQc9wUxoRQPhpm3hulKX8xXW-oKrIvBZLehpdxAb_8OHA-ioqS1VtaEnjaHjrvrKKugfnvIZcCn2YmQX0Hq9dAoaY74QoFDfDGmw6SycTW_vk7PDg2I0ibuKDXGVANKIBfqHzlrLZVLlPFdOKKNZJbiVQmcDk-lUMseUcbbSOR-qiilphGbSWJE5_oDs1tDPR4RKYzSGXME_NCJxTrlM58xaobLMOiEi8nqjubLq6MyxqsaiDETMrEQll6jkiLzsRS8Dh8efhPY26i87M25LwFbg0YGXlkXkRX8bDBCjKqq2zRplEoCtScrlv2SwcgTGmCPyMIyovicMAKjMhzwi6dZY6wWQAHz7Tj2_8ETgAncYhjl8Cj8q__5y5WlxMMUfj_9f9Dm5MSmmR-XR-9nHJ-QmAEUZjvHskd3Vcm2fAhhb6Wfe5n4C7Jc4Jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELaqIhAXVJ5dWsAgDlyWJn7sQ5xQtlF5NIraVOptZa9tNVLYjfJA4sZP4K_xF_glzNibhaiAuGW148Sb8djf7Mx8Q8jLHtec24TFnIs0Flxb2Ad5L-5r7ioH51GVYjXy6Sg5uRDvL-XlDnmzqYUJ_BDdCze0DL9fo4HPjTv6RRqKPMevYeOF_feGD_YhrbMYdyEELMH0oc4kieFUzDe0Qj121A3dPoyuIczriZK_A1h_Ag33yJ0WOtK3Qdd3yY6t75GboZnkl_vkuz92_CbQfLK0CK3ml7RxtOgqo-j4qgEv22IyS7NY0mlNJ6BN--PrtwJ5_gNHBz3DQmhFA9-mXcJ1pebTFbb6gqtJoLOa0fM2Dxt_w0cD6KCpLVW1oWeNoUXbfGUV1A_f8hlgKc5iYGcwer1wCgZjuRCAUD8MWbDpKKSmLx-Qi-HxZHAStw0b4ioBoBELdA-dtZbLpMp5rpxQRrNKcCuFznom06lkjinjbKVz3lcVU9IIzaSxInP8IdmtYZ77hEpjNEZcwT00InFOuUznzFqhssw6ISLyaqO5smrZzLGpxqwMPMysRCWXqOSIvOhE54HC409Chxv1l60VL0uAVuDQgZOWReR5dxvsD4MqqrbNGmUSQK1JyuW_ZLBxBIaYI_IorKhuJgzwp8z7PCLp1lrrBJD_e_tOPb3yPOACXzD0c_gr_Kr8-8OV55PjU_zw-P9Fn5Fb42JYfnw3-nBAbgNMlCGJ55DsrhZr-wSg2Eo_9Sb3E_m7N1k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+Dynamics+of+Developing+Photoreceptors+in+Three-Dimensional+Retina+Cultures+Recapitulates+Temporal+Sequence+of+Human+Cone+and+Rod+Differentiation+Revealing+Cell+Surface+Markers+and+Gene+Networks&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Kaewkhaw%2C+Rossukon&rft.au=Kaya%2C+Koray+Dogan&rft.au=Brooks%2C+Matthew&rft.au=Homma%2C+Kohei&rft.date=2015-12-01&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=33&rft.issue=12&rft.spage=3504&rft.epage=3518&rft_id=info:doi/10.1002%2Fstem.2122&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon