Transport and Spatial Separation of Valley Coherence via Few Layer WS 2 Exciton-Polaritons
The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally...
Saved in:
Published in | ACS photonics Vol. 11; no. 3; pp. 1078 - 1084 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
20.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally the spatial separation of valley coherent emission into orthogonal directions through self-resonant exciton polaritons of a free-standing three-layer (3L) WS
waveguide. This was achieved by patterning a photonic crystal consisting of a square array of holes allowing for the far field probing of valley coherence of engendered exciton-polaritons. Furthermore, we report detailed experimental modal characterization of this coupled system in good agreement with theory. Momentum space measurements reveal a degree of valley coherence in the range 30-60%. This work provides a platform for manipulation of valley excitons in coherent light-matter states for potential implementations of valley-coherent optoelectronics. |
---|---|
AbstractList | The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally the spatial separation of valley coherent emission into orthogonal directions through self-resonant exciton polaritons of a free-standing three-layer (3L) WS
waveguide. This was achieved by patterning a photonic crystal consisting of a square array of holes allowing for the far field probing of valley coherence of engendered exciton-polaritons. Furthermore, we report detailed experimental modal characterization of this coupled system in good agreement with theory. Momentum space measurements reveal a degree of valley coherence in the range 30-60%. This work provides a platform for manipulation of valley excitons in coherent light-matter states for potential implementations of valley-coherent optoelectronics. |
Author | Ren, Yundong Cubukcu, Ertugrul Zhang, Xingwang De-Eknamkul, Chawina Huang, Wenzhuo |
Author_xml | – sequence: 1 givenname: Chawina surname: De-Eknamkul fullname: De-Eknamkul, Chawina organization: Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States – sequence: 2 givenname: Wenzhuo surname: Huang fullname: Huang, Wenzhuo organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, United State – sequence: 3 givenname: Xingwang surname: Zhang fullname: Zhang, Xingwang organization: Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China – sequence: 4 givenname: Yundong surname: Ren fullname: Ren, Yundong organization: Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States – sequence: 5 givenname: Ertugrul surname: Cubukcu fullname: Cubukcu, Ertugrul organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, United State |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38576862$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkNtKAzEQQINUrNb-gUh-YGuS2Uv2UUqrQkGhRcGXZTY7S1e2yZLUS__eLa3Sl5nzcobhXLGBdZYYu5FiIoWSd2hCt3ZbZxsTJmCEjHV8xi4VgIhiodTghIdsHMKHEEKKBNI0vmBD0EmW6lRdsveVRxs657ccbcWXHW4bbPmSOvQ9OstdzV-xbWnHp25Nnqwh_tUgn9M3X-COPH9bcsVnP6bp_4leXIt-T-GandfYBhof94it5rPV9DFaPD88Te8XkUm1ikxWEahMUA51VhoC0glQAkYpjZCLvEItjOwnaUrKxCSgIMXMSKWwVDmMWHw4a7wLwVNddL7ZoN8VUhT7WMVprOIYq9duD1r3WW6o-pf-0sAv8VJrQQ |
Cites_doi | 10.1038/nphoton.2017.65 10.1038/nphoton.2014.304 10.1021/acs.nanolett.6b01475 10.1103/PhysRevB.97.104203 10.1103/PhysRevB.97.041402 10.1103/PhysRevLett.113.076802 10.1038/natrevmats.2016.55 10.1039/D2NR04800K 10.1021/acsami.7b01947 10.1002/adom.201901003 10.1038/nphys3674 10.1038/s41565-019-0519-6 10.1364/OE.27.021367 10.1103/PhysRevB.90.041414 10.1021/acs.nanolett.7b04355 10.1103/PhysRevB.65.235112 10.1021/nl301164v 10.1038/nmat4792 10.1038/s41565-019-0492-0 10.1364/AO.32.002606 10.1021/nn305275h 10.1038/s41566-019-0348-z 10.1126/science.aan8010 10.1073/pnas.1406960111 10.1038/nnano.2013.151 10.1021/acs.nanolett.9b05056 10.1103/PhysRevB.97.205436 10.1103/PhysRevB.100.121301 10.1103/PhysRevB.92.245123 10.1038/nphoton.2017.86 10.1364/JOSAA.7.001470 10.1038/srep01755 10.1364/OPTICA.2.000740 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION |
DOI | 10.1021/acsphotonics.3c01484 |
DatabaseName | PubMed CrossRef |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2330-4022 |
EndPage | 1084 |
ExternalDocumentID | 10_1021_acsphotonics_3c01484 38576862 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R21 EY033676 |
GroupedDBID | ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK GNL IH9 JG~ NPM UI2 VF5 VG9 W1F XKZ AAYXX CITATION |
ID | FETCH-LOGICAL-c682-c7de3270e93f7bce3e853e53c228a3909da80c1da8e8e5b5c53236a7c122ab293 |
IEDL.DBID | ACS |
ISSN | 2330-4022 |
IngestDate | Fri Aug 23 01:56:01 EDT 2024 Sat Nov 02 12:15:45 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | atomically thin waveguide guided-mode resonance directional propagation 2D materials WS2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c682-c7de3270e93f7bce3e853e53c228a3909da80c1da8e8e5b5c53236a7c122ab293 |
ORCID | 0000-0002-5561-681X 0000-0001-7776-9537 0000-0003-2161-3896 |
PMID | 38576862 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1021_acsphotonics_3c01484 pubmed_primary_38576862 |
PublicationCentury | 2000 |
PublicationDate | 2024-Mar-20 2024-03-20 |
PublicationDateYYYYMMDD | 2024-03-20 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-Mar-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS photonics |
PublicationTitleAlternate | ACS Photonics |
PublicationYear | 2024 |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1038/nphoton.2017.65 – ident: ref18/cit18 doi: 10.1038/nphoton.2014.304 – ident: ref17/cit17 doi: 10.1021/acs.nanolett.6b01475 – ident: ref27/cit27 doi: 10.1103/PhysRevB.97.104203 – ident: ref29/cit29 doi: 10.1103/PhysRevB.97.041402 – ident: ref1/cit1 doi: 10.1103/PhysRevLett.113.076802 – ident: ref7/cit7 doi: 10.1038/natrevmats.2016.55 – ident: ref12/cit12 doi: 10.1039/D2NR04800K – ident: ref3/cit3 doi: 10.1021/acsami.7b01947 – ident: ref28/cit28 doi: 10.1002/adom.201901003 – ident: ref14/cit14 doi: 10.1038/nphys3674 – ident: ref20/cit20 doi: 10.1038/s41565-019-0519-6 – ident: ref16/cit16 doi: 10.1364/OE.27.021367 – ident: ref9/cit9 doi: 10.1103/PhysRevB.90.041414 – ident: ref22/cit22 doi: 10.1021/acs.nanolett.7b04355 – ident: ref21/cit21 doi: 10.1103/PhysRevB.65.235112 – ident: ref30/cit30 doi: 10.1021/nl301164v – ident: ref6/cit6 doi: 10.1038/nmat4792 – ident: ref19/cit19 doi: 10.1038/s41565-019-0492-0 – ident: ref26/cit26 doi: 10.1364/AO.32.002606 – ident: ref23/cit23 doi: 10.1021/nn305275h – ident: ref15/cit15 doi: 10.1038/s41566-019-0348-z – ident: ref11/cit11 doi: 10.1126/science.aan8010 – ident: ref10/cit10 doi: 10.1073/pnas.1406960111 – ident: ref13/cit13 doi: 10.1038/nnano.2013.151 – ident: ref5/cit5 doi: 10.1021/acs.nanolett.9b05056 – ident: ref4/cit4 doi: 10.1103/PhysRevB.97.205436 – ident: ref32/cit32 doi: 10.1103/PhysRevB.100.121301 – ident: ref2/cit2 doi: 10.1103/PhysRevB.92.245123 – ident: ref8/cit8 doi: 10.1038/nphoton.2017.86 – ident: ref25/cit25 doi: 10.1364/JOSAA.7.001470 – ident: ref33/cit33 doi: 10.1038/srep01755 – ident: ref24/cit24 doi: 10.1364/OPTICA.2.000740 |
SSID | ssj0001053664 |
Score | 2.3630512 |
Snippet | The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 1078 |
Title | Transport and Spatial Separation of Valley Coherence via Few Layer WS 2 Exciton-Polaritons |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38576862 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kJy_Wt_XFHrymbma7eRyltBTxBa3agxA2mw2KkBST-jr5H_yH_hJnk7S1iqCXEEiyhMlkvm92Z74l5AB9IJY8BisSUlitOAoxDgpphVqyCOFQ-4XO7OmZ07tsHQ_FcJYofl_BB_tQqmx0m-ZGKDZrcmVmwAr5T6SFhgm1-7MpFXQopxCMAszSTWYEk2a5X8aZA6M5WlnAS7dOzidNOmVVyX1znIdN9fpTs_GPb75MliqmSY9K11ghCzpZJfWKddLqn87WyM1U35zKBC-YEmt8rq9LVfA0oWlMr8yWKy_UNHMU7YH08U7Srn6iJxI5O73uU6CdZ4XhIfl4e78w-bI5z9bJoNsZtHtWteeCpRzk2sqNNAeXaZ_Hbqg01wjnWnAF4EnuMz-SHlM2HrWnRSiU4MAd6SobQIZIHTZILUkTvUWoEkJBxJxYK0RKT0s7AowvLOLMk5LLBrEmtg9GpbJGUKyIgx18tVxQWa5BNssPNL2beyZZcmD7nyPtkEVAamIqyYDtklr-MNZ7SC3ycL9wqE8aY84H |
link.rule.ids | 315,783,787,2772,27936,27937 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+and+Spatial+Separation+of+Valley+Coherence+via+Few+Layer+WS+2+Exciton%E2%80%93Polaritons&rft.jtitle=ACS+photonics&rft.au=De-Eknamkul%2C+Chawina&rft.au=Huang%2C+Wenzhuo&rft.au=Zhang%2C+Xingwang&rft.au=Ren%2C+Yundong&rft.date=2024-03-20&rft.issn=2330-4022&rft.eissn=2330-4022&rft.volume=11&rft.issue=3&rft.spage=1078&rft.epage=1084&rft_id=info:doi/10.1021%2Facsphotonics.3c01484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsphotonics_3c01484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-4022&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-4022&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-4022&client=summon |