Transport and Spatial Separation of Valley Coherence via Few Layer WS 2 Exciton-Polaritons

The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally...

Full description

Saved in:
Bibliographic Details
Published inACS photonics Vol. 11; no. 3; pp. 1078 - 1084
Main Authors De-Eknamkul, Chawina, Huang, Wenzhuo, Zhang, Xingwang, Ren, Yundong, Cubukcu, Ertugrul
Format Journal Article
LanguageEnglish
Published United States 20.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally the spatial separation of valley coherent emission into orthogonal directions through self-resonant exciton polaritons of a free-standing three-layer (3L) WS waveguide. This was achieved by patterning a photonic crystal consisting of a square array of holes allowing for the far field probing of valley coherence of engendered exciton-polaritons. Furthermore, we report detailed experimental modal characterization of this coupled system in good agreement with theory. Momentum space measurements reveal a degree of valley coherence in the range 30-60%. This work provides a platform for manipulation of valley excitons in coherent light-matter states for potential implementations of valley-coherent optoelectronics.
AbstractList The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the hexagonal lattice within each TMDC layer leads to valley-dependent excitonic emission of photoluminescence. Here, we demonstrate experimentally the spatial separation of valley coherent emission into orthogonal directions through self-resonant exciton polaritons of a free-standing three-layer (3L) WS waveguide. This was achieved by patterning a photonic crystal consisting of a square array of holes allowing for the far field probing of valley coherence of engendered exciton-polaritons. Furthermore, we report detailed experimental modal characterization of this coupled system in good agreement with theory. Momentum space measurements reveal a degree of valley coherence in the range 30-60%. This work provides a platform for manipulation of valley excitons in coherent light-matter states for potential implementations of valley-coherent optoelectronics.
Author Ren, Yundong
Cubukcu, Ertugrul
Zhang, Xingwang
De-Eknamkul, Chawina
Huang, Wenzhuo
Author_xml – sequence: 1
  givenname: Chawina
  surname: De-Eknamkul
  fullname: De-Eknamkul, Chawina
  organization: Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States
– sequence: 2
  givenname: Wenzhuo
  surname: Huang
  fullname: Huang, Wenzhuo
  organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, United State
– sequence: 3
  givenname: Xingwang
  surname: Zhang
  fullname: Zhang, Xingwang
  organization: Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
– sequence: 4
  givenname: Yundong
  surname: Ren
  fullname: Ren, Yundong
  organization: Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, United States
– sequence: 5
  givenname: Ertugrul
  surname: Cubukcu
  fullname: Cubukcu, Ertugrul
  organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, United State
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38576862$$D View this record in MEDLINE/PubMed
BookMark eNpNkNtKAzEQQINUrNb-gUh-YGuS2Uv2UUqrQkGhRcGXZTY7S1e2yZLUS__eLa3Sl5nzcobhXLGBdZYYu5FiIoWSd2hCt3ZbZxsTJmCEjHV8xi4VgIhiodTghIdsHMKHEEKKBNI0vmBD0EmW6lRdsveVRxs657ccbcWXHW4bbPmSOvQ9OstdzV-xbWnHp25Nnqwh_tUgn9M3X-COPH9bcsVnP6bp_4leXIt-T-GandfYBhof94it5rPV9DFaPD88Te8XkUm1ikxWEahMUA51VhoC0glQAkYpjZCLvEItjOwnaUrKxCSgIMXMSKWwVDmMWHw4a7wLwVNddL7ZoN8VUhT7WMVprOIYq9duD1r3WW6o-pf-0sAv8VJrQQ
Cites_doi 10.1038/nphoton.2017.65
10.1038/nphoton.2014.304
10.1021/acs.nanolett.6b01475
10.1103/PhysRevB.97.104203
10.1103/PhysRevB.97.041402
10.1103/PhysRevLett.113.076802
10.1038/natrevmats.2016.55
10.1039/D2NR04800K
10.1021/acsami.7b01947
10.1002/adom.201901003
10.1038/nphys3674
10.1038/s41565-019-0519-6
10.1364/OE.27.021367
10.1103/PhysRevB.90.041414
10.1021/acs.nanolett.7b04355
10.1103/PhysRevB.65.235112
10.1021/nl301164v
10.1038/nmat4792
10.1038/s41565-019-0492-0
10.1364/AO.32.002606
10.1021/nn305275h
10.1038/s41566-019-0348-z
10.1126/science.aan8010
10.1073/pnas.1406960111
10.1038/nnano.2013.151
10.1021/acs.nanolett.9b05056
10.1103/PhysRevB.97.205436
10.1103/PhysRevB.100.121301
10.1103/PhysRevB.92.245123
10.1038/nphoton.2017.86
10.1364/JOSAA.7.001470
10.1038/srep01755
10.1364/OPTICA.2.000740
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1021/acsphotonics.3c01484
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2330-4022
EndPage 1084
ExternalDocumentID 10_1021_acsphotonics_3c01484
38576862
Genre Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R21 EY033676
GroupedDBID ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
GNL
IH9
JG~
NPM
UI2
VF5
VG9
W1F
XKZ
AAYXX
CITATION
ID FETCH-LOGICAL-c682-c7de3270e93f7bce3e853e53c228a3909da80c1da8e8e5b5c53236a7c122ab293
IEDL.DBID ACS
ISSN 2330-4022
IngestDate Fri Aug 23 01:56:01 EDT 2024
Sat Nov 02 12:15:45 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords atomically thin waveguide
guided-mode resonance
directional propagation
2D materials
WS2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c682-c7de3270e93f7bce3e853e53c228a3909da80c1da8e8e5b5c53236a7c122ab293
ORCID 0000-0002-5561-681X
0000-0001-7776-9537
0000-0003-2161-3896
PMID 38576862
PageCount 7
ParticipantIDs crossref_primary_10_1021_acsphotonics_3c01484
pubmed_primary_38576862
PublicationCentury 2000
PublicationDate 2024-Mar-20
2024-03-20
PublicationDateYYYYMMDD 2024-03-20
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-Mar-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS photonics
PublicationTitleAlternate ACS Photonics
PublicationYear 2024
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1038/nphoton.2017.65
– ident: ref18/cit18
  doi: 10.1038/nphoton.2014.304
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.6b01475
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.97.104203
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.97.041402
– ident: ref1/cit1
  doi: 10.1103/PhysRevLett.113.076802
– ident: ref7/cit7
  doi: 10.1038/natrevmats.2016.55
– ident: ref12/cit12
  doi: 10.1039/D2NR04800K
– ident: ref3/cit3
  doi: 10.1021/acsami.7b01947
– ident: ref28/cit28
  doi: 10.1002/adom.201901003
– ident: ref14/cit14
  doi: 10.1038/nphys3674
– ident: ref20/cit20
  doi: 10.1038/s41565-019-0519-6
– ident: ref16/cit16
  doi: 10.1364/OE.27.021367
– ident: ref9/cit9
  doi: 10.1103/PhysRevB.90.041414
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.7b04355
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.65.235112
– ident: ref30/cit30
  doi: 10.1021/nl301164v
– ident: ref6/cit6
  doi: 10.1038/nmat4792
– ident: ref19/cit19
  doi: 10.1038/s41565-019-0492-0
– ident: ref26/cit26
  doi: 10.1364/AO.32.002606
– ident: ref23/cit23
  doi: 10.1021/nn305275h
– ident: ref15/cit15
  doi: 10.1038/s41566-019-0348-z
– ident: ref11/cit11
  doi: 10.1126/science.aan8010
– ident: ref10/cit10
  doi: 10.1073/pnas.1406960111
– ident: ref13/cit13
  doi: 10.1038/nnano.2013.151
– ident: ref5/cit5
  doi: 10.1021/acs.nanolett.9b05056
– ident: ref4/cit4
  doi: 10.1103/PhysRevB.97.205436
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.100.121301
– ident: ref2/cit2
  doi: 10.1103/PhysRevB.92.245123
– ident: ref8/cit8
  doi: 10.1038/nphoton.2017.86
– ident: ref25/cit25
  doi: 10.1364/JOSAA.7.001470
– ident: ref33/cit33
  doi: 10.1038/srep01755
– ident: ref24/cit24
  doi: 10.1364/OPTICA.2.000740
SSID ssj0001053664
Score 2.3630512
Snippet The optical response in two-dimensional transition-metal dichalcogenides (2D TMDCs) is dominated by excitons. The lack of spatial inversion symmetry in the...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1078
Title Transport and Spatial Separation of Valley Coherence via Few Layer WS 2 Exciton-Polaritons
URI https://www.ncbi.nlm.nih.gov/pubmed/38576862
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kJy_Wt_XFHrymbma7eRyltBTxBa3agxA2mw2KkBST-jr5H_yH_hJnk7S1iqCXEEiyhMlkvm92Z74l5AB9IJY8BisSUlitOAoxDgpphVqyCOFQ-4XO7OmZ07tsHQ_FcJYofl_BB_tQqmx0m-ZGKDZrcmVmwAr5T6SFhgm1-7MpFXQopxCMAszSTWYEk2a5X8aZA6M5WlnAS7dOzidNOmVVyX1znIdN9fpTs_GPb75MliqmSY9K11ghCzpZJfWKddLqn87WyM1U35zKBC-YEmt8rq9LVfA0oWlMr8yWKy_UNHMU7YH08U7Srn6iJxI5O73uU6CdZ4XhIfl4e78w-bI5z9bJoNsZtHtWteeCpRzk2sqNNAeXaZ_Hbqg01wjnWnAF4EnuMz-SHlM2HrWnRSiU4MAd6SobQIZIHTZILUkTvUWoEkJBxJxYK0RKT0s7AowvLOLMk5LLBrEmtg9GpbJGUKyIgx18tVxQWa5BNssPNL2beyZZcmD7nyPtkEVAamIqyYDtklr-MNZ7SC3ycL9wqE8aY84H
link.rule.ids 315,783,787,2772,27936,27937
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+and+Spatial+Separation+of+Valley+Coherence+via+Few+Layer+WS+2+Exciton%E2%80%93Polaritons&rft.jtitle=ACS+photonics&rft.au=De-Eknamkul%2C+Chawina&rft.au=Huang%2C+Wenzhuo&rft.au=Zhang%2C+Xingwang&rft.au=Ren%2C+Yundong&rft.date=2024-03-20&rft.issn=2330-4022&rft.eissn=2330-4022&rft.volume=11&rft.issue=3&rft.spage=1078&rft.epage=1084&rft_id=info:doi/10.1021%2Facsphotonics.3c01484&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsphotonics_3c01484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-4022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-4022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-4022&client=summon