Comparative Antioxidant Activities of Curcumin and Its Demethoxy and Hydrogenated Derivatives
The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhy...
Saved in:
Published in | Biological & Pharmaceutical Bulletin Vol. 30; no. 1; pp. 74 - 78 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Japan
The Pharmaceutical Society of Japan
2007
Pharmaceutical Society of Japan Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>.Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and β diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity. |
---|---|
AbstractList | The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC;hexahydrocurcumin, HHC;octahydrocurcumin;OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>>Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and β diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity. Oxidative stress plays a major role in the pathogenesis of various diseases including neurodegenerative diseases, myocardial ischemia-reperfusion injury and cancer. Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5,-dione], the principal yellow pigment isolated from turmeric (Curcuma longa Linn), is known as a potent antioxidant comparable to α-tocopherol. Its antioxidant activities have been studied in several in vitro models. 1) Despite its poor bioavailability, 2-4) the therapeutic benefits of curcumin in animals have been demonstrated in several oxidative stress models such as Alzheimer's disease, 5) ethanol induced oxidative injury in brain, liver, heart and kidney, 6,7) and myocardial ischemic damage. 8) It is possible that the metabolites of curcumin could mediate major antioxidant activities in vivo. In mouse, curcumin is first biotransformed to dihydrocurcumin (DHC) and tetrahydrocurcumin (THC) and these compounds are subsequently converted to monoglucuronide conjugates including curcumin-glucuronide, dihydrocurcumin-glucuronide and tetrahydrocurcumin-glucuronide. 9) The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>>Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and beta diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity. The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>.Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and β diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity. |
Author | Somparn, Poorichaya Morales, Noppawan Phumala Nakornchai, Somjai Phisalaphong, Chada Unchern, Supeenun |
Author_xml | – sequence: 1 fullname: Somparn, Poorichaya organization: Department of Pharmacology, Faculty of Pharmacy, Mahidol University – sequence: 2 fullname: Phisalaphong, Chada organization: Government Pharmaceutical Organization – sequence: 3 fullname: Nakornchai, Somjai organization: Department of Pharmacology, Faculty of Pharmacy, Mahidol University – sequence: 4 fullname: Unchern, Supeenun organization: Department of Pharmacology, Faculty of Science, Mahidol University – sequence: 5 fullname: Morales, Noppawan Phumala organization: Department of Pharmacology, Faculty of Science, Mahidol University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17202663$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkM1u3CAUhVGVqpmkXfQFKktddeHp5ceAN5VGkzaJFKmbdlkhjHHCyIYp4Cjz9mXiSbO5oHs-zkHnAp354C1CHzGsMWHya7fv1hTWgr1BK0yZqBuCmzO0ghbLmuNGnqOLlHYAIIDQd-gcCwKEc7pCf7Zh2uuos3u01cZnF55cr32uNqasXHY2VWGotnM08-R8pX1f3eZUXdnJ5ofwdHje3Bz6GO6t19n2RYru8dkwvUdvBz0m--F0XqLfP77_2t7Udz-vb7ebu9pwiXPdaiCY9UZ3mnREGN7xltlh6JnWFNoOG0tMK6TRQgpoJGtER3gPRIDkDHN6iT4vvvsY_s42ZbULc_QlUmHGWsqhGBbqy0KZGFKKdlD76CYdDwqDOhapSpGKghJH9tPJce4m27-Sp-YKcL0ARXVGj8GPztvXXJNE58IYFCmtKwAKgBXgplwFOw6JQQhOjlHfFqddyvre_o_SMTsz2pdP4WWUxy-CedBRWU__ARP2nPk |
CitedBy_id | crossref_primary_10_1002_mnfr_200800029 crossref_primary_10_1016_j_envres_2023_116971 crossref_primary_10_1016_j_ejmech_2016_07_017 crossref_primary_10_3390_nutraceuticals3030031 crossref_primary_10_1007_s10973_017_6582_z crossref_primary_10_3109_10717544_2014_941076 crossref_primary_10_3109_10715762_2011_571681 crossref_primary_10_1002_bkcs_10273 crossref_primary_10_3390_biom10060831 crossref_primary_10_3389_fnut_2023_1221935 crossref_primary_10_3390_molecules18021693 crossref_primary_10_4103_1673_5374_255979 crossref_primary_10_1007_s10695_023_01209_1 crossref_primary_10_1248_bpb_b21_00992 crossref_primary_10_5662_wjm_v13_i3_29 crossref_primary_10_1016_j_phymed_2022_154606 crossref_primary_10_3390_pharmaceutics9040045 crossref_primary_10_3390_scipharm85010011 crossref_primary_10_1016_j_ijbiomac_2014_06_055 crossref_primary_10_3390_biom11091325 crossref_primary_10_3390_molecules15107035 crossref_primary_10_3390_antiox10081239 crossref_primary_10_3390_nu15204403 crossref_primary_10_1016_j_fbio_2023_102591 crossref_primary_10_1016_j_jchemneu_2020_101915 crossref_primary_10_2147_OTT_S313961 crossref_primary_10_1007_s12010_013_0256_5 crossref_primary_10_3390_ijms20051033 crossref_primary_10_1016_j_cbi_2008_05_009 crossref_primary_10_1016_j_nano_2014_09_004 crossref_primary_10_1371_journal_pone_0114908 crossref_primary_10_1016_j_biomaterials_2010_06_007 crossref_primary_10_1093_carcin_bgm123 crossref_primary_10_3389_fphar_2020_00487 crossref_primary_10_1002_jat_2814 crossref_primary_10_1016_j_fct_2013_07_032 crossref_primary_10_1080_10498850_2017_1376025 crossref_primary_10_1248_cpb_56_162 crossref_primary_10_1007_s11356_022_20593_4 crossref_primary_10_1007_s11356_021_15538_2 crossref_primary_10_1016_j_bmcl_2016_10_068 crossref_primary_10_1590_S1415_475738420150046 crossref_primary_10_1016_j_foodhyd_2016_11_036 crossref_primary_10_1007_s00432_019_03107_7 crossref_primary_10_1073_pnas_1016217108 crossref_primary_10_1155_2014_396708 crossref_primary_10_1016_j_freeradbiomed_2017_07_006 crossref_primary_10_1155_2020_6611877 crossref_primary_10_2478_asn_2020_0014 crossref_primary_10_1620_tjem_239_25 crossref_primary_10_1002_med_21349 crossref_primary_10_1016_j_bmcl_2012_06_071 crossref_primary_10_1016_j_pbb_2014_08_005 crossref_primary_10_1080_00387010_2019_1690521 crossref_primary_10_1080_10242422_2022_2073227 crossref_primary_10_1002_ptr_6694 crossref_primary_10_1016_j_bcp_2008_08_008 crossref_primary_10_1007_s10068_013_0033_9 crossref_primary_10_2147_IJN_S453347 crossref_primary_10_1007_s12640_011_9249_8 crossref_primary_10_1111_jfbc_12507 crossref_primary_10_3390_nu11122989 crossref_primary_10_3390_molecules26123542 crossref_primary_10_1002_ptr_3608 crossref_primary_10_1111_cbdd_12021 crossref_primary_10_1016_j_fct_2022_113260 crossref_primary_10_1016_j_foodchem_2016_07_102 crossref_primary_10_1016_j_molstruc_2022_133265 crossref_primary_10_1371_journal_pone_0087919 crossref_primary_10_1016_j_intimp_2007_08_018 crossref_primary_10_1186_s13048_020_00731_7 crossref_primary_10_1016_j_jtcme_2018_06_001 crossref_primary_10_1093_bbb_zbac204 crossref_primary_10_1021_acsabm_2c00969 crossref_primary_10_1016_j_abb_2018_03_030 crossref_primary_10_1088_1757_899X_349_1_012015 crossref_primary_10_1016_j_cbpc_2018_09_002 crossref_primary_10_1002_ptr_6683 crossref_primary_10_1080_10826076_2017_1293549 crossref_primary_10_1007_s10895_010_0750_x crossref_primary_10_3390_nu13124552 crossref_primary_10_1016_j_biotechadv_2014_04_004 crossref_primary_10_1016_j_biotechadv_2016_04_004 crossref_primary_10_1107_S1600536808025543 crossref_primary_10_1093_nutrit_nuu064 crossref_primary_10_1371_journal_pone_0291000 crossref_primary_10_1016_j_neulet_2010_08_035 crossref_primary_10_3390_antiox11071281 crossref_primary_10_1016_j_tiv_2023_105583 crossref_primary_10_1016_j_colsurfa_2022_129809 crossref_primary_10_3390_molecules20010185 crossref_primary_10_3390_molecules27020361 crossref_primary_10_1016_j_bbadis_2021_166317 crossref_primary_10_1111_1541_4337_12047 crossref_primary_10_1016_j_molcatb_2017_02_013 crossref_primary_10_1016_j_fct_2012_11_055 crossref_primary_10_1158_0008_5472_CAN_09_3025 crossref_primary_10_2478_fhort_2018_0010 crossref_primary_10_4155_fmc_2018_0152 crossref_primary_10_1089_pho_2014_3805 crossref_primary_10_1039_D2FO03892G crossref_primary_10_1007_s40995_016_0016_9 crossref_primary_10_1016_j_vph_2012_09_002 crossref_primary_10_1007_s10792_017_0530_6 crossref_primary_10_1016_j_supflu_2016_03_020 crossref_primary_10_5487_TR_2019_35_1_065 crossref_primary_10_1155_2020_8856135 crossref_primary_10_3109_10715762_2011_653966 crossref_primary_10_1179_1607845414Y_0000000177 crossref_primary_10_1017_S0007114508965752 crossref_primary_10_1016_j_jff_2021_104410 crossref_primary_10_1002_elan_201200560 crossref_primary_10_1007_s11095_009_9955_6 crossref_primary_10_3390_ani9110953 crossref_primary_10_5483_BMBRep_2012_45_4_221 crossref_primary_10_2174_1389450121666200804113745 crossref_primary_10_3390_ijms222111384 crossref_primary_10_18231_j_ijpca_2021_011 crossref_primary_10_3389_fphar_2017_00871 crossref_primary_10_3923_ajaps_2010_60_66 crossref_primary_10_1016_j_ejphar_2023_175605 crossref_primary_10_1016_j_transci_2013_12_015 crossref_primary_10_1016_j_lfs_2023_122119 crossref_primary_10_1016_j_ijms_2019_01_002 crossref_primary_10_3390_molecules27072101 crossref_primary_10_1016_j_aquaculture_2019_05_045 crossref_primary_10_1016_j_ejpb_2014_05_011 crossref_primary_10_1016_j_jep_2020_113015 crossref_primary_10_1111_cbdd_12847 crossref_primary_10_1177_1934578X1701200424 crossref_primary_10_1002_open_201800287 crossref_primary_10_1155_2021_9927864 crossref_primary_10_1002_ptr_5448 crossref_primary_10_3390_ijms23010142 crossref_primary_10_2174_2665978601666200212110603 crossref_primary_10_1002_med_20188 crossref_primary_10_1080_10667857_2018_1432171 crossref_primary_10_1016_j_phymed_2021_153755 crossref_primary_10_3390_molecules27165236 crossref_primary_10_1590_1678_4499_20180386 crossref_primary_10_30782_jrvm_795808 crossref_primary_10_1039_c4ra00227j crossref_primary_10_1016_j_psj_2021_101061 crossref_primary_10_30901_2227_8834_2022_2_67_73 crossref_primary_10_1134_S1070428022030150 crossref_primary_10_1002_ptr_3137 crossref_primary_10_1248_bpb_b15_00209 crossref_primary_10_1016_j_phrs_2023_106953 crossref_primary_10_1016_j_bbadis_2011_09_004 crossref_primary_10_2174_0929867329666220607161328 crossref_primary_10_1016_j_ijbiomac_2015_09_026 crossref_primary_10_1007_s12035_023_03821_x crossref_primary_10_1021_jf100122a crossref_primary_10_1039_C3FO60370A crossref_primary_10_1007_s43440_019_00050_9 crossref_primary_10_1017_S1462399411002055 crossref_primary_10_1016_j_bmcl_2012_08_080 crossref_primary_10_1016_j_bcp_2007_08_016 crossref_primary_10_1007_s00709_013_0516_9 crossref_primary_10_3390_molecules28176203 crossref_primary_10_12965_jer_2346040_020 crossref_primary_10_1016_j_fct_2018_11_012 crossref_primary_10_53879_id_61_05_14041 crossref_primary_10_1002_cbf_2955 crossref_primary_10_1002_chir_23511 crossref_primary_10_1002_biof_1068 crossref_primary_10_1021_jf902244g crossref_primary_10_1002_mnfr_201200131 crossref_primary_10_1002_app_42966 crossref_primary_10_1080_10408398_2018_1546669 crossref_primary_10_1186_s12263_016_0520_4 crossref_primary_10_3906_sag_1501_93 crossref_primary_10_1007_s11064_008_9775_9 crossref_primary_10_1080_10408398_2015_1077195 crossref_primary_10_12965_jer_2244586_293 crossref_primary_10_1158_1940_6207_CAPR_12_0410 crossref_primary_10_1186_s12970_014_0066_3 crossref_primary_10_1016_j_neulet_2008_09_067 crossref_primary_10_3390_biomedicines9101476 crossref_primary_10_1007_s13346_017_0429_9 crossref_primary_10_1007_s00204_007_0263_9 crossref_primary_10_1016_j_freeradbiomed_2008_06_013 crossref_primary_10_1016_j_lfs_2017_12_008 crossref_primary_10_1039_C4AY02690J crossref_primary_10_1016_j_ijpharm_2018_11_073 crossref_primary_10_1016_j_jnutbio_2022_108973 crossref_primary_10_1038_hr_2011_180 crossref_primary_10_2217_fon_11_145 crossref_primary_10_3390_molecules190913282 crossref_primary_10_3390_life13061373 crossref_primary_10_2174_0929867329666220817125800 crossref_primary_10_1002_med_21592 crossref_primary_10_1517_13543784_16_12_1921 crossref_primary_10_1016_j_biopha_2020_111078 crossref_primary_10_1016_j_prostaglandins_2024_106867 crossref_primary_10_1017_S0007114518001630 crossref_primary_10_1111_cea_13258 crossref_primary_10_1007_s11095_008_9579_2 crossref_primary_10_3390_molecules26164884 crossref_primary_10_2174_2665978603666220610161741 crossref_primary_10_1111_1750_3841_13793 crossref_primary_10_1007_s13318_019_00545_z crossref_primary_10_1016_j_ejmech_2011_01_039 crossref_primary_10_2174_1573413718666220414151940 crossref_primary_10_3389_fnagi_2022_944697 crossref_primary_10_1016_j_ccr_2023_215233 crossref_primary_10_3390_toxins2010128 crossref_primary_10_1134_S1061934812040132 crossref_primary_10_3390_cosmetics8010004 crossref_primary_10_1002_ptr_6035 crossref_primary_10_1002_jcp_26249 crossref_primary_10_1016_j_neuro_2012_09_011 crossref_primary_10_1016_j_phrs_2016_12_037 crossref_primary_10_1007_s11010_022_04447_8 crossref_primary_10_3390_molecules191220839 crossref_primary_10_1016_j_jddst_2020_102271 crossref_primary_10_1111_jcmm_12267 crossref_primary_10_14218_ERHM_2018_00024 crossref_primary_10_1080_87559129_2020_1717523 crossref_primary_10_3390_molecules28237711 crossref_primary_10_1039_C4MD00305E crossref_primary_10_1016_j_fct_2014_04_016 crossref_primary_10_1371_journal_pone_0189211 crossref_primary_10_1002_mnfr_200700316 crossref_primary_10_11124_jbisrir_2015_1684 crossref_primary_10_1007_s00210_011_0624_z crossref_primary_10_1152_ajpendo_00629_2013 crossref_primary_10_1186_s12906_020_03182_1 crossref_primary_10_1007_s12263_009_0152_3 crossref_primary_10_1002_jcp_28411 crossref_primary_10_1016_j_bbrc_2012_01_005 crossref_primary_10_2217_nnm_2023_0213 crossref_primary_10_1007_s12640_020_00269_y crossref_primary_10_1007_s13205_018_1425_6 crossref_primary_10_1016_j_taap_2018_02_020 crossref_primary_10_1007_s00011_011_0430_6 crossref_primary_10_1016_j_jddst_2021_102343 crossref_primary_10_34087_cbusbed_755807 crossref_primary_10_3390_futurepharmacol4010016 crossref_primary_10_1124_pr_110_004044 crossref_primary_10_3390_pr7070417 |
Cites_doi | 10.1111/j.1745-4522.1995.tb00028.x 10.1002/biof.5520130125 10.1271/bbb.64.503 10.1021/jf9911242 10.1016/0300-483X(81)90027-5 10.1016/j.biocel.2004.01.030 10.1016/j.lfs.2005.12.007 10.1248/cpb.53.281 10.1016/j.freeradbiomed.2005.09.008 10.1021/ja991446m 10.2174/1567205053585882 10.1016/j.phrs.2003.11.005 10.1016/0300-483X(80)90122-5 10.1039/p19730002379 10.1016/0006-2952(96)00302-4 10.1093/jn/131.8.2090 10.1016/S0009-2797(99)00096-4 10.1016/S0891-5849(03)00325-3 10.1055/s-2001-18860 10.1021/jm020200g 10.1016/j.bbagen.2005.09.008 10.1016/j.foodchem.2005.06.037 |
ContentType | Journal Article |
Copyright | 2007 The Pharmaceutical Society of Japan Copyright Japan Science and Technology Agency 2007 |
Copyright_xml | – notice: 2007 The Pharmaceutical Society of Japan – notice: Copyright Japan Science and Technology Agency 2007 |
CorporateAuthor | bGovernment Pharmaceutical Organization aDepartment of Pharmacology Faculty of Pharmacy Faculty of Science Mahidol University cDepartment of Pharmacology |
CorporateAuthor_xml | – name: aDepartment of Pharmacology – name: bGovernment Pharmaceutical Organization – name: Faculty of Pharmacy – name: cDepartment of Pharmacology – name: Faculty of Science – name: Mahidol University |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 |
DOI | 10.1248/bpb.30.74 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5215 |
EndPage | 78 |
ExternalDocumentID | 3121360081 10_1248_bpb_30_74 17202663 cs7biolo_2007_003001_015_0074_00781077624 article_bpb_30_1_30_1_74_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- .55 1CY 23N 2WC 53G 5GY 6J9 AAUGY ABTAH ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 MOJWN OK1 P2P RJT RZJ TKC TR2 VH1 X7M XSB ZXP ZY4 ABJNI CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 |
ID | FETCH-LOGICAL-c681t-9a0214dcaba2b27c6b694effd4aa309b1ce2c978ca787058457b26d0270864163 |
ISSN | 0918-6158 |
IngestDate | Thu Oct 10 17:21:02 EDT 2024 Fri Aug 23 01:02:44 EDT 2024 Sat Sep 28 08:20:31 EDT 2024 Fri May 31 15:04:18 EDT 2024 Thu Aug 17 20:25:39 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c681t-9a0214dcaba2b27c6b694effd4aa309b1ce2c978ca787058457b26d0270864163 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bpb/30/1/30_1_74/_article/-char/en |
PMID | 17202663 |
PQID | 1449360694 |
PQPubID | 1966364 |
PageCount | 5 |
ParticipantIDs | proquest_journals_1449360694 crossref_primary_10_1248_bpb_30_74 pubmed_primary_17202663 medicalonline_journals_cs7biolo_2007_003001_015_0074_00781077624 jstage_primary_article_bpb_30_1_30_1_74_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2007 20070000 2007-Jan 2007-00-00 20070101 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – year: 2007 text: 2007 |
PublicationDecade | 2000 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Biological & Pharmaceutical Bulletin |
PublicationTitleAlternate | Biol Pharm Bull |
PublicationYear | 2007 |
Publisher | The Pharmaceutical Society of Japan Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 3) Cheng A. L., Lin J. K., Hsu M. M., Shen T. S., Ko J. Y., Lin J. T., Wu M. S., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang U. J., Tsai C. C., Hsieh C. Y., Proc. Am. Soc. Clin. Oncol., 17, 558a (1998). 7) Rukkumani R., Aruna K., Varma P. S., Rajasekaran K. N., Menon V. P. M., J. Pharm. Pharmaceu. Sci., 7, 274—283 (2004). 31) Priyadarsini I. K., Maity D. K., Naik G. H., Sudheer K., Unnikrishnan M. K., Satav J. G., Mohan H., Free Radic. Biol. Med., 35, 475—484 (2003). 16) Ahsan H., Parveen N., Khan N. U., Hadi S. M., Int. Chem. Biol., 121, 161—175 (1999). 25) Schaich K. M., Borg D. C., Free Radic. Res. Commun., 9, 267—278 (1990). 24) Dang S. L., Chen W. F., Zhou B., Yang L., Liu Z. L., Food Chem., 98, 112—119 (2005). 23) Liegois C., Lermusieau G., Collin S., J. Agric. Food Chem., 48, 1129—1134 (2000). 29) Chen W. F., Deng S. L., Zhou B., Yang L., Liu Z. L., Free Radic. Biol. Med., 40, 526—535 (2006). 21) Ohtsu H., Xiao Z., Ishida J., Nagai M., Wang H. K., Itokawa H., Su C. Y., Shin C., Shih C., Chiang T., Chang E., Lee Y., Tsai M. Y., Chang C., Lee K. H., J. Med. Chem., 45, 5037—5042 (2002). 28) Song E. K., Cho H., Kim J. S., Kim N. Y., An N. H., Kim J. A., Lee S. H., Kim Y. C., Planta. Med., 67, 876—877 (2001). 8) Manikandan P., Sumitra M., Aishwarya S., Manohar B. M., Lokanadam B., Puvanakrihnan R., Int. J. Biochem. Cell Biol., 36, 1967—1980 (2004). 27) Sugiyama Y., Kawakishi S., Osawa T., Biochem. Pharm., 52, 519—525 (1996). 22) Chan C. W., HO C. T., J. Food Lipid, 2, 35—46 (1995). 9) Lin J. K., Pan M. H., Lin-Shian S. Y., Biofactor, 13, 153—158 (2000). 2) Ravindranath V., Chandrasekhra N., Toxicology, 16, 259—265 (1980). 12) Venkatesen P., Unnikrishnan M. K., Sudheer Kumar M., Rao M. N. A., Curr. Sci., 84, 74—78 (2003). 15) Pari L., Murugan P., Pharm. Res., 49, 481—486 (2004). 11) Ireson C. R., Jones D. J. L., Orr S., Coughtrie M. W. H., Boocock D. J., Williams P., Farmer P. B., Steward W. P., Gescher A. J., Cencer Epidemiol. Biomarkers Prev., 11, 105—111 (2002). 26) Gulcin L., Alici H. A., Cesur M., Chem. Pharm. Bull., 53, 281—285 (2005). 17) Wei Q. Y., Chen W. F., Zhou B., Yang L., Liu Z. L., Biochem. Biophys. Acta, 1760, 70—77 (2006). 20) Vevkateswarlu S., Ramachandra M. S., Rambabu M., Subbaraju G. V., Indian J. Chem., 40B, 495—497 (2001). 10) Radindranath V., Chandrasekhara N., Toxicology, 22, 337—344 (1982 1) Maheshari R. K., Singh A. K., Gaddipati J., Srimal R. C., Life Sci., 78, 2081—2087 (2006). 18) Jayaprakasha G. K., Rao J. L., Sakariah K. K., Food Chem., 98, 720—724 (2006). 5) Ringman J. M., Frautschy S. A., Cole G. M., Masterman D. L., Cummings J., Current Alzheimer Res., 2, 131—136 (2005). 4) Shientarma R. A., Hill K. A., McLelland H. R., Ireson C. R., Euden S. A., Manson W. P., Clin. Cancer Res., 7, 1834—1900 (2001). 6) Rajakrihna V., Viswanathan P., Rajasekharan K. N., Menon V. P., Phytother. Res., 1, 571—574 (1999). 19) Roughley P. J., Whiting D. A., J. Chem. Soc., Perkin Trans. 1, 20, 2379–2388 (1973). 30) Jovanovic S. V., Steenken S., Boone C. W., Simic M. G., J. Am. Chem. Soc., 121, 9677—9678 (1999). 14) Khope S. M., Priyadarisni K. I., Guha S. N., Satav J. G., Venkatesan P., Rao M. N., Biosci. Biotechnol. Biochem., 64, 503—509 (2000). 13) Okada K., Wangpoengtrskul C., Tanaka T., Toyokuni S., Uchida K., Osawa T., J. Nutr., 131, 2090—2095 (2001). 23 Rajakrihna V., Viswanathan P., Raja (6) 1999; 1 Rukkumani R., Aruna K., Varma P. S. (7) 2004; 7 OKADA K (13) 2001; 131 26 27 28 Chen W. F., Deng S. L., Zhou B., Ya (29) 2006; 40 Lin J. K., Pan M. H., Lin-Shian S. (9) 2000; 13 Chan C. W., HO C. T. (22) 1995; 2 Ireson C. R., Jones D. J. L., Orr S (11) 2002; 11 Dang S. L., Chen W. F., Zhou B., Ya (24) 2005; 98 30 31 10 Cheng A. L., Lin J. K., Hsu M. M. (3) 1998; 17 14 Roughley P. J., Whiting D. A. (19) 1973; 20 15 Vevkateswarlu S., Ramachandra M. S. (20) 2001; 40B Shientarma R. A., Hill K. A., McLel (4) 2001; 7 18 1 2 Ahsan H., Parveen N., Khan N. U., H (16) 1999; 121 Wei Q. Y., Chen W. F., Zhou B., Yan (17) 2006; 1760 8 Venkatesen P., Unnikrishnan M. K. (12) 2003; 84 Ringman J. M., Frautschy S. A., Col (5) 2005; 2 21 (25) 1990; 9 |
References_xml | – volume: 40B start-page: 495 issn: 0019-5103 year: 2001 ident: 20 publication-title: Indian J. Chem. contributor: fullname: Vevkateswarlu S., Ramachandra M. S. – volume: 11 start-page: 105 year: 2002 ident: 11 publication-title: Cencer Epidemiol. Biomarkers Prev. contributor: fullname: Ireson C. R., Jones D. J. L., Orr S – volume: 2 start-page: 35 issn: 0915-6607 year: 1995 ident: 22 publication-title: J. Food Lipid doi: 10.1111/j.1745-4522.1995.tb00028.x contributor: fullname: Chan C. W., HO C. T. – volume: 7 start-page: 1834 issn: 1078-0432 year: 2001 ident: 4 publication-title: Clin. Cancer Res. contributor: fullname: Shientarma R. A., Hill K. A., McLel – volume: 84 start-page: 74 issn: 0011-3891 year: 2003 ident: 12 publication-title: Curr. Sci. contributor: fullname: Venkatesen P., Unnikrishnan M. K. – volume: 13 start-page: 153 year: 2000 ident: 9 publication-title: Biofactor doi: 10.1002/biof.5520130125 contributor: fullname: Lin J. K., Pan M. H., Lin-Shian S. – ident: 14 doi: 10.1271/bbb.64.503 – ident: 23 doi: 10.1021/jf9911242 – ident: 10 doi: 10.1016/0300-483X(81)90027-5 – ident: 8 doi: 10.1016/j.biocel.2004.01.030 – ident: 1 doi: 10.1016/j.lfs.2005.12.007 – ident: 26 doi: 10.1248/cpb.53.281 – volume: 40 start-page: 526 issn: 0891-5849 year: 2006 ident: 29 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2005.09.008 contributor: fullname: Chen W. F., Deng S. L., Zhou B., Ya – volume: 17 start-page: 558a issn: 0936-6555 year: 1998 ident: 3 publication-title: Proc. Am. Soc. Clin. Oncol. contributor: fullname: Cheng A. L., Lin J. K., Hsu M. M. – ident: 30 doi: 10.1021/ja991446m – volume: 2 start-page: 131 issn: 1567-2050 year: 2005 ident: 5 publication-title: Current Alzheimer Res. doi: 10.2174/1567205053585882 contributor: fullname: Ringman J. M., Frautschy S. A., Col – ident: 15 doi: 10.1016/j.phrs.2003.11.005 – volume: 1 start-page: 571 issn: 0951-418X year: 1999 ident: 6 publication-title: Phytother. Res. contributor: fullname: Rajakrihna V., Viswanathan P., Raja – ident: 2 doi: 10.1016/0300-483X(80)90122-5 – volume: 20 start-page: 2379- issn: 1472-7781 year: 1973 ident: 19 publication-title: J. Chem. Soc., Perkin Trans. 1 doi: 10.1039/p19730002379 contributor: fullname: Roughley P. J., Whiting D. A. – ident: 27 doi: 10.1016/0006-2952(96)00302-4 – volume: 131 start-page: 2090 issn: 0022-3166 issue: 8 year: 2001 ident: 13 publication-title: J. Nutr. doi: 10.1093/jn/131.8.2090 contributor: fullname: OKADA K – volume: 121 start-page: 161 issn: 1074-5521 year: 1999 ident: 16 publication-title: Int. Chem. Biol. doi: 10.1016/S0009-2797(99)00096-4 contributor: fullname: Ahsan H., Parveen N., Khan N. U., H – ident: 31 doi: 10.1016/S0891-5849(03)00325-3 – volume: 98 start-page: 112 issn: 0308-8146 year: 2005 ident: 24 publication-title: Food Chem. contributor: fullname: Dang S. L., Chen W. F., Zhou B., Ya – ident: 28 doi: 10.1055/s-2001-18860 – volume: 7 start-page: 274 issn: 0015-749X year: 2004 ident: 7 publication-title: J. Pharm. Pharmaceu. Sci. contributor: fullname: Rukkumani R., Aruna K., Varma P. S. – ident: 21 doi: 10.1021/jm020200g – volume: 1760 start-page: 70 issn: 0006-3002 year: 2006 ident: 17 publication-title: Biochem. Biophys. Acta doi: 10.1016/j.bbagen.2005.09.008 contributor: fullname: Wei Q. Y., Chen W. F., Zhou B., Yan – ident: 18 doi: 10.1016/j.foodchem.2005.06.037 – volume: 9 start-page: 267 issn: 8755-0199 issue: 3/6 year: 1990 ident: 25 publication-title: Free Radic. Res. Commun. |
SSID | ssj0007023 ssib023156946 ssib002483627 ssib002822050 ssib017383521 |
Score | 2.3974028 |
Snippet | The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated... |
SourceID | proquest crossref pubmed medicalonline jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 74 |
SubjectTerms | Amidines - chemistry antioxidant activity Antioxidants - chemistry Antioxidants - pharmacology Biphenyl Compounds Chromans - pharmacology curcumin Curcumin - analogs & derivatives Curcumin - chemistry Curcumin - pharmacology Diarylheptanoids Erythrocyte Membrane - drug effects Free Radical Scavengers - pharmacology Free Radicals - chemistry Hemolysis - drug effects hexahydrocurcumin Humans Hydrogenation In Vitro Techniques Linoleic Acid - chemistry Lipid Peroxidation - drug effects Molecular Structure octahydrocurcumin Oxidants - chemistry Picrates - chemistry Structure-Activity Relationship tetrahydrocurcumin Time Factors |
Title | Comparative Antioxidant Activities of Curcumin and Its Demethoxy and Hydrogenated Derivatives |
URI | https://www.jstage.jst.go.jp/article/bpb/30/1/30_1_74/_article/-char/en http://mol.medicalonline.jp/library/journal/download?GoodsID=cs7biolo/2007/003001/015&name=0074-0078e https://www.ncbi.nlm.nih.gov/pubmed/17202663 https://www.proquest.com/docview/1449360694 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biological and Pharmaceutical Bulletin, 2007, Vol.30(1), pp.74-78 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbKggQSQtDlKCzIQmhfui25GjtvRGUhXdi2anelfUGRnaRqK_VQD7Tll_HzmLGTNOGQFnixKtd2LM_hGdvzDSFvRqORw13ealiJxxuOy-MGjw0PkRE9M0ls7qg47vOuG1w6Z1etq0rle-HV0nYjm9G338aV_AtVoQ7oilGyf0HZfFCogN9AXyiBwlDeiMbtAnS3j88WrycxrFTdj1ROiIkGlG1vV9F2NtGvjjubNegYlTf6WkMvBbt4tYBPCLQ938O0v6oB16Xr3kmuI5FV-uPSQXgJwhvV7AKBR8ZiJ-rD3nnfH3T3z4HGIhb1ftAZ-p_9ftDrfpT5Gc9iNhWTetf_1Bt024HfyTsNt0vwtrdzcFbbwemgG5WOKljOVj9NK3uQCktwBibBvHgqaXLwZjWaezPROtl2GPjLOuozU9rpZU6RObUG1jl_0r1cZwf6ZZewHIx8kEvZtI1m1qEEuh2tmQLBwiydeEFvw24eguUUosmFBTcRB8lybpHbFkIMqi2hBBQHlkHBEeYY0JxrRpPZaPnmmhWM7JbroWOe2hDMUIkJ8-VIMbFg2Lf5tEuW1J0pOBOIEnF_pi_4NNDKn_0mZT9dPCQPUseH-pqLH5HKVFTJoQ9st5jt6DFVT5HVHU-V3G1naQir5Dil6u6EXuxjBdcnqksOu747JF8K0kAL0kD30kAXI5pJAwXepyANNJcGVVOUBlqQhsfk8sPpRTtopMlDGpHLzU3DE4gGGEdCCktaLHIlLHAyGsWOELbhSTNKrMhjPBK4ZYEZ3mLScmPDYuDko5fyhBzMF_PkGaGmFGbMpZQ2S5xESp7wGByD2JBAEGhZI68zQoRLjRETom8N1AqBWqFthMypEaZJlDdJ1UbWxNQFsFf2B8ZdgpqrkXclmoapBlqHN-bSGjnK2GDf23Qcz3Yx8L1GnmrW2E-fWQaY7vbz___2C3JP34fgseUROdistslLMOQ38pWSmR9Wbu2a |
link.rule.ids | 315,783,787,4033,27937,27938,27939 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Antioxidant+Activities+of+Curcumin+and+Its+Demethoxy+and+Hydrogenated+Derivatives&rft.jtitle=Biological+%26+Pharmaceutical+Bulletin&rft.au=Poorichaya+SOMPARNa&rft.au=Chada+PHISALAPHONGb&rft.au=Somjai+NAKORNCHAIa&rft.au=Supeenun+UNCHERNc&rft.date=2007&rft.pub=Pharmaceutical+Society+of+Japan&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=30&rft.issue=1&rft.spage=74&rft.epage=78&rft_id=info:doi/10.1248%2Fbpb.30.74&rft.externalDocID=cs7biolo_2007_003001_015_0074_00781077624 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon |