Comparative Antioxidant Activities of Curcumin and Its Demethoxy and Hydrogenated Derivatives

The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhy...

Full description

Saved in:
Bibliographic Details
Published inBiological & Pharmaceutical Bulletin Vol. 30; no. 1; pp. 74 - 78
Main Authors Somparn, Poorichaya, Phisalaphong, Chada, Nakornchai, Somjai, Unchern, Supeenun, Morales, Noppawan Phumala
Format Journal Article
LanguageEnglish
Japanese
Published Japan The Pharmaceutical Society of Japan 2007
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>.Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and β diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity.
AbstractList The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC;hexahydrocurcumin, HHC;octahydrocurcumin;OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>>Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and β diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity. Oxidative stress plays a major role in the pathogenesis of various diseases including neurodegenerative diseases, myocardial ischemia-reperfusion injury and cancer. Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5,-dione], the principal yellow pigment isolated from turmeric (Curcuma longa Linn), is known as a potent antioxidant comparable to α-tocopherol. Its antioxidant activities have been studied in several in vitro models. 1) Despite its poor bioavailability, 2-4) the therapeutic benefits of curcumin in animals have been demonstrated in several oxidative stress models such as Alzheimer's disease, 5) ethanol induced oxidative injury in brain, liver, heart and kidney, 6,7) and myocardial ischemic damage. 8) It is possible that the metabolites of curcumin could mediate major antioxidant activities in vivo. In mouse, curcumin is first biotransformed to dihydrocurcumin (DHC) and tetrahydrocurcumin (THC) and these compounds are subsequently converted to monoglucuronide conjugates including curcumin-glucuronide, dihydrocurcumin-glucuronide and tetrahydrocurcumin-glucuronide. 9)
The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>>Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and beta diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity.
The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>.Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and β diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity.
Author Somparn, Poorichaya
Morales, Noppawan Phumala
Nakornchai, Somjai
Phisalaphong, Chada
Unchern, Supeenun
Author_xml – sequence: 1
  fullname: Somparn, Poorichaya
  organization: Department of Pharmacology, Faculty of Pharmacy, Mahidol University
– sequence: 2
  fullname: Phisalaphong, Chada
  organization: Government Pharmaceutical Organization
– sequence: 3
  fullname: Nakornchai, Somjai
  organization: Department of Pharmacology, Faculty of Pharmacy, Mahidol University
– sequence: 4
  fullname: Unchern, Supeenun
  organization: Department of Pharmacology, Faculty of Science, Mahidol University
– sequence: 5
  fullname: Morales, Noppawan Phumala
  organization: Department of Pharmacology, Faculty of Science, Mahidol University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17202663$$D View this record in MEDLINE/PubMed
BookMark eNpFkM1u3CAUhVGVqpmkXfQFKktddeHp5ceAN5VGkzaJFKmbdlkhjHHCyIYp4Cjz9mXiSbO5oHs-zkHnAp354C1CHzGsMWHya7fv1hTWgr1BK0yZqBuCmzO0ghbLmuNGnqOLlHYAIIDQd-gcCwKEc7pCf7Zh2uuos3u01cZnF55cr32uNqasXHY2VWGotnM08-R8pX1f3eZUXdnJ5ofwdHje3Bz6GO6t19n2RYru8dkwvUdvBz0m--F0XqLfP77_2t7Udz-vb7ebu9pwiXPdaiCY9UZ3mnREGN7xltlh6JnWFNoOG0tMK6TRQgpoJGtER3gPRIDkDHN6iT4vvvsY_s42ZbULc_QlUmHGWsqhGBbqy0KZGFKKdlD76CYdDwqDOhapSpGKghJH9tPJce4m27-Sp-YKcL0ARXVGj8GPztvXXJNE58IYFCmtKwAKgBXgplwFOw6JQQhOjlHfFqddyvre_o_SMTsz2pdP4WWUxy-CedBRWU__ARP2nPk
CitedBy_id crossref_primary_10_1002_mnfr_200800029
crossref_primary_10_1016_j_envres_2023_116971
crossref_primary_10_1016_j_ejmech_2016_07_017
crossref_primary_10_3390_nutraceuticals3030031
crossref_primary_10_1007_s10973_017_6582_z
crossref_primary_10_3109_10717544_2014_941076
crossref_primary_10_3109_10715762_2011_571681
crossref_primary_10_1002_bkcs_10273
crossref_primary_10_3390_biom10060831
crossref_primary_10_3389_fnut_2023_1221935
crossref_primary_10_3390_molecules18021693
crossref_primary_10_4103_1673_5374_255979
crossref_primary_10_1007_s10695_023_01209_1
crossref_primary_10_1248_bpb_b21_00992
crossref_primary_10_5662_wjm_v13_i3_29
crossref_primary_10_1016_j_phymed_2022_154606
crossref_primary_10_3390_pharmaceutics9040045
crossref_primary_10_3390_scipharm85010011
crossref_primary_10_1016_j_ijbiomac_2014_06_055
crossref_primary_10_3390_biom11091325
crossref_primary_10_3390_molecules15107035
crossref_primary_10_3390_antiox10081239
crossref_primary_10_3390_nu15204403
crossref_primary_10_1016_j_fbio_2023_102591
crossref_primary_10_1016_j_jchemneu_2020_101915
crossref_primary_10_2147_OTT_S313961
crossref_primary_10_1007_s12010_013_0256_5
crossref_primary_10_3390_ijms20051033
crossref_primary_10_1016_j_cbi_2008_05_009
crossref_primary_10_1016_j_nano_2014_09_004
crossref_primary_10_1371_journal_pone_0114908
crossref_primary_10_1016_j_biomaterials_2010_06_007
crossref_primary_10_1093_carcin_bgm123
crossref_primary_10_3389_fphar_2020_00487
crossref_primary_10_1002_jat_2814
crossref_primary_10_1016_j_fct_2013_07_032
crossref_primary_10_1080_10498850_2017_1376025
crossref_primary_10_1248_cpb_56_162
crossref_primary_10_1007_s11356_022_20593_4
crossref_primary_10_1007_s11356_021_15538_2
crossref_primary_10_1016_j_bmcl_2016_10_068
crossref_primary_10_1590_S1415_475738420150046
crossref_primary_10_1016_j_foodhyd_2016_11_036
crossref_primary_10_1007_s00432_019_03107_7
crossref_primary_10_1073_pnas_1016217108
crossref_primary_10_1155_2014_396708
crossref_primary_10_1016_j_freeradbiomed_2017_07_006
crossref_primary_10_1155_2020_6611877
crossref_primary_10_2478_asn_2020_0014
crossref_primary_10_1620_tjem_239_25
crossref_primary_10_1002_med_21349
crossref_primary_10_1016_j_bmcl_2012_06_071
crossref_primary_10_1016_j_pbb_2014_08_005
crossref_primary_10_1080_00387010_2019_1690521
crossref_primary_10_1080_10242422_2022_2073227
crossref_primary_10_1002_ptr_6694
crossref_primary_10_1016_j_bcp_2008_08_008
crossref_primary_10_1007_s10068_013_0033_9
crossref_primary_10_2147_IJN_S453347
crossref_primary_10_1007_s12640_011_9249_8
crossref_primary_10_1111_jfbc_12507
crossref_primary_10_3390_nu11122989
crossref_primary_10_3390_molecules26123542
crossref_primary_10_1002_ptr_3608
crossref_primary_10_1111_cbdd_12021
crossref_primary_10_1016_j_fct_2022_113260
crossref_primary_10_1016_j_foodchem_2016_07_102
crossref_primary_10_1016_j_molstruc_2022_133265
crossref_primary_10_1371_journal_pone_0087919
crossref_primary_10_1016_j_intimp_2007_08_018
crossref_primary_10_1186_s13048_020_00731_7
crossref_primary_10_1016_j_jtcme_2018_06_001
crossref_primary_10_1093_bbb_zbac204
crossref_primary_10_1021_acsabm_2c00969
crossref_primary_10_1016_j_abb_2018_03_030
crossref_primary_10_1088_1757_899X_349_1_012015
crossref_primary_10_1016_j_cbpc_2018_09_002
crossref_primary_10_1002_ptr_6683
crossref_primary_10_1080_10826076_2017_1293549
crossref_primary_10_1007_s10895_010_0750_x
crossref_primary_10_3390_nu13124552
crossref_primary_10_1016_j_biotechadv_2014_04_004
crossref_primary_10_1016_j_biotechadv_2016_04_004
crossref_primary_10_1107_S1600536808025543
crossref_primary_10_1093_nutrit_nuu064
crossref_primary_10_1371_journal_pone_0291000
crossref_primary_10_1016_j_neulet_2010_08_035
crossref_primary_10_3390_antiox11071281
crossref_primary_10_1016_j_tiv_2023_105583
crossref_primary_10_1016_j_colsurfa_2022_129809
crossref_primary_10_3390_molecules20010185
crossref_primary_10_3390_molecules27020361
crossref_primary_10_1016_j_bbadis_2021_166317
crossref_primary_10_1111_1541_4337_12047
crossref_primary_10_1016_j_molcatb_2017_02_013
crossref_primary_10_1016_j_fct_2012_11_055
crossref_primary_10_1158_0008_5472_CAN_09_3025
crossref_primary_10_2478_fhort_2018_0010
crossref_primary_10_4155_fmc_2018_0152
crossref_primary_10_1089_pho_2014_3805
crossref_primary_10_1039_D2FO03892G
crossref_primary_10_1007_s40995_016_0016_9
crossref_primary_10_1016_j_vph_2012_09_002
crossref_primary_10_1007_s10792_017_0530_6
crossref_primary_10_1016_j_supflu_2016_03_020
crossref_primary_10_5487_TR_2019_35_1_065
crossref_primary_10_1155_2020_8856135
crossref_primary_10_3109_10715762_2011_653966
crossref_primary_10_1179_1607845414Y_0000000177
crossref_primary_10_1017_S0007114508965752
crossref_primary_10_1016_j_jff_2021_104410
crossref_primary_10_1002_elan_201200560
crossref_primary_10_1007_s11095_009_9955_6
crossref_primary_10_3390_ani9110953
crossref_primary_10_5483_BMBRep_2012_45_4_221
crossref_primary_10_2174_1389450121666200804113745
crossref_primary_10_3390_ijms222111384
crossref_primary_10_18231_j_ijpca_2021_011
crossref_primary_10_3389_fphar_2017_00871
crossref_primary_10_3923_ajaps_2010_60_66
crossref_primary_10_1016_j_ejphar_2023_175605
crossref_primary_10_1016_j_transci_2013_12_015
crossref_primary_10_1016_j_lfs_2023_122119
crossref_primary_10_1016_j_ijms_2019_01_002
crossref_primary_10_3390_molecules27072101
crossref_primary_10_1016_j_aquaculture_2019_05_045
crossref_primary_10_1016_j_ejpb_2014_05_011
crossref_primary_10_1016_j_jep_2020_113015
crossref_primary_10_1111_cbdd_12847
crossref_primary_10_1177_1934578X1701200424
crossref_primary_10_1002_open_201800287
crossref_primary_10_1155_2021_9927864
crossref_primary_10_1002_ptr_5448
crossref_primary_10_3390_ijms23010142
crossref_primary_10_2174_2665978601666200212110603
crossref_primary_10_1002_med_20188
crossref_primary_10_1080_10667857_2018_1432171
crossref_primary_10_1016_j_phymed_2021_153755
crossref_primary_10_3390_molecules27165236
crossref_primary_10_1590_1678_4499_20180386
crossref_primary_10_30782_jrvm_795808
crossref_primary_10_1039_c4ra00227j
crossref_primary_10_1016_j_psj_2021_101061
crossref_primary_10_30901_2227_8834_2022_2_67_73
crossref_primary_10_1134_S1070428022030150
crossref_primary_10_1002_ptr_3137
crossref_primary_10_1248_bpb_b15_00209
crossref_primary_10_1016_j_phrs_2023_106953
crossref_primary_10_1016_j_bbadis_2011_09_004
crossref_primary_10_2174_0929867329666220607161328
crossref_primary_10_1016_j_ijbiomac_2015_09_026
crossref_primary_10_1007_s12035_023_03821_x
crossref_primary_10_1021_jf100122a
crossref_primary_10_1039_C3FO60370A
crossref_primary_10_1007_s43440_019_00050_9
crossref_primary_10_1017_S1462399411002055
crossref_primary_10_1016_j_bmcl_2012_08_080
crossref_primary_10_1016_j_bcp_2007_08_016
crossref_primary_10_1007_s00709_013_0516_9
crossref_primary_10_3390_molecules28176203
crossref_primary_10_12965_jer_2346040_020
crossref_primary_10_1016_j_fct_2018_11_012
crossref_primary_10_53879_id_61_05_14041
crossref_primary_10_1002_cbf_2955
crossref_primary_10_1002_chir_23511
crossref_primary_10_1002_biof_1068
crossref_primary_10_1021_jf902244g
crossref_primary_10_1002_mnfr_201200131
crossref_primary_10_1002_app_42966
crossref_primary_10_1080_10408398_2018_1546669
crossref_primary_10_1186_s12263_016_0520_4
crossref_primary_10_3906_sag_1501_93
crossref_primary_10_1007_s11064_008_9775_9
crossref_primary_10_1080_10408398_2015_1077195
crossref_primary_10_12965_jer_2244586_293
crossref_primary_10_1158_1940_6207_CAPR_12_0410
crossref_primary_10_1186_s12970_014_0066_3
crossref_primary_10_1016_j_neulet_2008_09_067
crossref_primary_10_3390_biomedicines9101476
crossref_primary_10_1007_s13346_017_0429_9
crossref_primary_10_1007_s00204_007_0263_9
crossref_primary_10_1016_j_freeradbiomed_2008_06_013
crossref_primary_10_1016_j_lfs_2017_12_008
crossref_primary_10_1039_C4AY02690J
crossref_primary_10_1016_j_ijpharm_2018_11_073
crossref_primary_10_1016_j_jnutbio_2022_108973
crossref_primary_10_1038_hr_2011_180
crossref_primary_10_2217_fon_11_145
crossref_primary_10_3390_molecules190913282
crossref_primary_10_3390_life13061373
crossref_primary_10_2174_0929867329666220817125800
crossref_primary_10_1002_med_21592
crossref_primary_10_1517_13543784_16_12_1921
crossref_primary_10_1016_j_biopha_2020_111078
crossref_primary_10_1016_j_prostaglandins_2024_106867
crossref_primary_10_1017_S0007114518001630
crossref_primary_10_1111_cea_13258
crossref_primary_10_1007_s11095_008_9579_2
crossref_primary_10_3390_molecules26164884
crossref_primary_10_2174_2665978603666220610161741
crossref_primary_10_1111_1750_3841_13793
crossref_primary_10_1007_s13318_019_00545_z
crossref_primary_10_1016_j_ejmech_2011_01_039
crossref_primary_10_2174_1573413718666220414151940
crossref_primary_10_3389_fnagi_2022_944697
crossref_primary_10_1016_j_ccr_2023_215233
crossref_primary_10_3390_toxins2010128
crossref_primary_10_1134_S1061934812040132
crossref_primary_10_3390_cosmetics8010004
crossref_primary_10_1002_ptr_6035
crossref_primary_10_1002_jcp_26249
crossref_primary_10_1016_j_neuro_2012_09_011
crossref_primary_10_1016_j_phrs_2016_12_037
crossref_primary_10_1007_s11010_022_04447_8
crossref_primary_10_3390_molecules191220839
crossref_primary_10_1016_j_jddst_2020_102271
crossref_primary_10_1111_jcmm_12267
crossref_primary_10_14218_ERHM_2018_00024
crossref_primary_10_1080_87559129_2020_1717523
crossref_primary_10_3390_molecules28237711
crossref_primary_10_1039_C4MD00305E
crossref_primary_10_1016_j_fct_2014_04_016
crossref_primary_10_1371_journal_pone_0189211
crossref_primary_10_1002_mnfr_200700316
crossref_primary_10_11124_jbisrir_2015_1684
crossref_primary_10_1007_s00210_011_0624_z
crossref_primary_10_1152_ajpendo_00629_2013
crossref_primary_10_1186_s12906_020_03182_1
crossref_primary_10_1007_s12263_009_0152_3
crossref_primary_10_1002_jcp_28411
crossref_primary_10_1016_j_bbrc_2012_01_005
crossref_primary_10_2217_nnm_2023_0213
crossref_primary_10_1007_s12640_020_00269_y
crossref_primary_10_1007_s13205_018_1425_6
crossref_primary_10_1016_j_taap_2018_02_020
crossref_primary_10_1007_s00011_011_0430_6
crossref_primary_10_1016_j_jddst_2021_102343
crossref_primary_10_34087_cbusbed_755807
crossref_primary_10_3390_futurepharmacol4010016
crossref_primary_10_1124_pr_110_004044
crossref_primary_10_3390_pr7070417
Cites_doi 10.1111/j.1745-4522.1995.tb00028.x
10.1002/biof.5520130125
10.1271/bbb.64.503
10.1021/jf9911242
10.1016/0300-483X(81)90027-5
10.1016/j.biocel.2004.01.030
10.1016/j.lfs.2005.12.007
10.1248/cpb.53.281
10.1016/j.freeradbiomed.2005.09.008
10.1021/ja991446m
10.2174/1567205053585882
10.1016/j.phrs.2003.11.005
10.1016/0300-483X(80)90122-5
10.1039/p19730002379
10.1016/0006-2952(96)00302-4
10.1093/jn/131.8.2090
10.1016/S0009-2797(99)00096-4
10.1016/S0891-5849(03)00325-3
10.1055/s-2001-18860
10.1021/jm020200g
10.1016/j.bbagen.2005.09.008
10.1016/j.foodchem.2005.06.037
ContentType Journal Article
Copyright 2007 The Pharmaceutical Society of Japan
Copyright Japan Science and Technology Agency 2007
Copyright_xml – notice: 2007 The Pharmaceutical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2007
CorporateAuthor bGovernment Pharmaceutical Organization
aDepartment of Pharmacology
Faculty of Pharmacy
Faculty of Science
Mahidol University
cDepartment of Pharmacology
CorporateAuthor_xml – name: aDepartment of Pharmacology
– name: bGovernment Pharmaceutical Organization
– name: Faculty of Pharmacy
– name: cDepartment of Pharmacology
– name: Faculty of Science
– name: Mahidol University
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
DOI 10.1248/bpb.30.74
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5215
EndPage 78
ExternalDocumentID 3121360081
10_1248_bpb_30_74
17202663
cs7biolo_2007_003001_015_0074_00781077624
article_bpb_30_1_30_1_74_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.55
1CY
23N
2WC
53G
5GY
6J9
AAUGY
ABTAH
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
P2P
RJT
RZJ
TKC
TR2
VH1
X7M
XSB
ZXP
ZY4
ABJNI
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
ID FETCH-LOGICAL-c681t-9a0214dcaba2b27c6b694effd4aa309b1ce2c978ca787058457b26d0270864163
ISSN 0918-6158
IngestDate Thu Oct 10 17:21:02 EDT 2024
Fri Aug 23 01:02:44 EDT 2024
Sat Sep 28 08:20:31 EDT 2024
Fri May 31 15:04:18 EDT 2024
Thu Aug 17 20:25:39 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c681t-9a0214dcaba2b27c6b694effd4aa309b1ce2c978ca787058457b26d0270864163
OpenAccessLink https://www.jstage.jst.go.jp/article/bpb/30/1/30_1_74/_article/-char/en
PMID 17202663
PQID 1449360694
PQPubID 1966364
PageCount 5
ParticipantIDs proquest_journals_1449360694
crossref_primary_10_1248_bpb_30_74
pubmed_primary_17202663
medicalonline_journals_cs7biolo_2007_003001_015_0074_00781077624
jstage_primary_article_bpb_30_1_30_1_74_article_char_en
PublicationCentury 2000
PublicationDate 2007
20070000
2007-Jan
2007-00-00
20070101
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Biological & Pharmaceutical Bulletin
PublicationTitleAlternate Biol Pharm Bull
PublicationYear 2007
Publisher The Pharmaceutical Society of Japan
Pharmaceutical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Pharmaceutical Society of Japan
– name: Japan Science and Technology Agency
References 3) Cheng A. L., Lin J. K., Hsu M. M., Shen T. S., Ko J. Y., Lin J. T., Wu M. S., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang U. J., Tsai C. C., Hsieh C. Y., Proc. Am. Soc. Clin. Oncol., 17, 558a (1998).
7) Rukkumani R., Aruna K., Varma P. S., Rajasekaran K. N., Menon V. P. M., J. Pharm. Pharmaceu. Sci., 7, 274—283 (2004).
31) Priyadarsini I. K., Maity D. K., Naik G. H., Sudheer K., Unnikrishnan M. K., Satav J. G., Mohan H., Free Radic. Biol. Med., 35, 475—484 (2003).
16) Ahsan H., Parveen N., Khan N. U., Hadi S. M., Int. Chem. Biol., 121, 161—175 (1999).
25) Schaich K. M., Borg D. C., Free Radic. Res. Commun., 9, 267—278 (1990).
24) Dang S. L., Chen W. F., Zhou B., Yang L., Liu Z. L., Food Chem., 98, 112—119 (2005).
23) Liegois C., Lermusieau G., Collin S., J. Agric. Food Chem., 48, 1129—1134 (2000).
29) Chen W. F., Deng S. L., Zhou B., Yang L., Liu Z. L., Free Radic. Biol. Med., 40, 526—535 (2006).
21) Ohtsu H., Xiao Z., Ishida J., Nagai M., Wang H. K., Itokawa H., Su C. Y., Shin C., Shih C., Chiang T., Chang E., Lee Y., Tsai M. Y., Chang C., Lee K. H., J. Med. Chem., 45, 5037—5042 (2002).
28) Song E. K., Cho H., Kim J. S., Kim N. Y., An N. H., Kim J. A., Lee S. H., Kim Y. C., Planta. Med., 67, 876—877 (2001).
8) Manikandan P., Sumitra M., Aishwarya S., Manohar B. M., Lokanadam B., Puvanakrihnan R., Int. J. Biochem. Cell Biol., 36, 1967—1980 (2004).
27) Sugiyama Y., Kawakishi S., Osawa T., Biochem. Pharm., 52, 519—525 (1996).
22) Chan C. W., HO C. T., J. Food Lipid, 2, 35—46 (1995).
9) Lin J. K., Pan M. H., Lin-Shian S. Y., Biofactor, 13, 153—158 (2000).
2) Ravindranath V., Chandrasekhra N., Toxicology, 16, 259—265 (1980).
12) Venkatesen P., Unnikrishnan M. K., Sudheer Kumar M., Rao M. N. A., Curr. Sci., 84, 74—78 (2003).
15) Pari L., Murugan P., Pharm. Res., 49, 481—486 (2004).
11) Ireson C. R., Jones D. J. L., Orr S., Coughtrie M. W. H., Boocock D. J., Williams P., Farmer P. B., Steward W. P., Gescher A. J., Cencer Epidemiol. Biomarkers Prev., 11, 105—111 (2002).
26) Gulcin L., Alici H. A., Cesur M., Chem. Pharm. Bull., 53, 281—285 (2005).
17) Wei Q. Y., Chen W. F., Zhou B., Yang L., Liu Z. L., Biochem. Biophys. Acta, 1760, 70—77 (2006).
20) Vevkateswarlu S., Ramachandra M. S., Rambabu M., Subbaraju G. V., Indian J. Chem., 40B, 495—497 (2001).
10) Radindranath V., Chandrasekhara N., Toxicology, 22, 337—344 (1982
1) Maheshari R. K., Singh A. K., Gaddipati J., Srimal R. C., Life Sci., 78, 2081—2087 (2006).
18) Jayaprakasha G. K., Rao J. L., Sakariah K. K., Food Chem., 98, 720—724 (2006).
5) Ringman J. M., Frautschy S. A., Cole G. M., Masterman D. L., Cummings J., Current Alzheimer Res., 2, 131—136 (2005).
4) Shientarma R. A., Hill K. A., McLelland H. R., Ireson C. R., Euden S. A., Manson W. P., Clin. Cancer Res., 7, 1834—1900 (2001).
6) Rajakrihna V., Viswanathan P., Rajasekharan K. N., Menon V. P., Phytother. Res., 1, 571—574 (1999).
19) Roughley P. J., Whiting D. A., J. Chem. Soc., Perkin Trans. 1, 20, 2379–2388 (1973).
30) Jovanovic S. V., Steenken S., Boone C. W., Simic M. G., J. Am. Chem. Soc., 121, 9677—9678 (1999).
14) Khope S. M., Priyadarisni K. I., Guha S. N., Satav J. G., Venkatesan P., Rao M. N., Biosci. Biotechnol. Biochem., 64, 503—509 (2000).
13) Okada K., Wangpoengtrskul C., Tanaka T., Toyokuni S., Uchida K., Osawa T., J. Nutr., 131, 2090—2095 (2001).
23
Rajakrihna V., Viswanathan P., Raja (6) 1999; 1
Rukkumani R., Aruna K., Varma P. S. (7) 2004; 7
OKADA K (13) 2001; 131
26
27
28
Chen W. F., Deng S. L., Zhou B., Ya (29) 2006; 40
Lin J. K., Pan M. H., Lin-Shian S. (9) 2000; 13
Chan C. W., HO C. T. (22) 1995; 2
Ireson C. R., Jones D. J. L., Orr S (11) 2002; 11
Dang S. L., Chen W. F., Zhou B., Ya (24) 2005; 98
30
31
10
Cheng A. L., Lin J. K., Hsu M. M. (3) 1998; 17
14
Roughley P. J., Whiting D. A. (19) 1973; 20
15
Vevkateswarlu S., Ramachandra M. S. (20) 2001; 40B
Shientarma R. A., Hill K. A., McLel (4) 2001; 7
18
1
2
Ahsan H., Parveen N., Khan N. U., H (16) 1999; 121
Wei Q. Y., Chen W. F., Zhou B., Yan (17) 2006; 1760
8
Venkatesen P., Unnikrishnan M. K. (12) 2003; 84
Ringman J. M., Frautschy S. A., Col (5) 2005; 2
21
(25) 1990; 9
References_xml – volume: 40B
  start-page: 495
  issn: 0019-5103
  year: 2001
  ident: 20
  publication-title: Indian J. Chem.
  contributor:
    fullname: Vevkateswarlu S., Ramachandra M. S.
– volume: 11
  start-page: 105
  year: 2002
  ident: 11
  publication-title: Cencer Epidemiol. Biomarkers Prev.
  contributor:
    fullname: Ireson C. R., Jones D. J. L., Orr S
– volume: 2
  start-page: 35
  issn: 0915-6607
  year: 1995
  ident: 22
  publication-title: J. Food Lipid
  doi: 10.1111/j.1745-4522.1995.tb00028.x
  contributor:
    fullname: Chan C. W., HO C. T.
– volume: 7
  start-page: 1834
  issn: 1078-0432
  year: 2001
  ident: 4
  publication-title: Clin. Cancer Res.
  contributor:
    fullname: Shientarma R. A., Hill K. A., McLel
– volume: 84
  start-page: 74
  issn: 0011-3891
  year: 2003
  ident: 12
  publication-title: Curr. Sci.
  contributor:
    fullname: Venkatesen P., Unnikrishnan M. K.
– volume: 13
  start-page: 153
  year: 2000
  ident: 9
  publication-title: Biofactor
  doi: 10.1002/biof.5520130125
  contributor:
    fullname: Lin J. K., Pan M. H., Lin-Shian S.
– ident: 14
  doi: 10.1271/bbb.64.503
– ident: 23
  doi: 10.1021/jf9911242
– ident: 10
  doi: 10.1016/0300-483X(81)90027-5
– ident: 8
  doi: 10.1016/j.biocel.2004.01.030
– ident: 1
  doi: 10.1016/j.lfs.2005.12.007
– ident: 26
  doi: 10.1248/cpb.53.281
– volume: 40
  start-page: 526
  issn: 0891-5849
  year: 2006
  ident: 29
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2005.09.008
  contributor:
    fullname: Chen W. F., Deng S. L., Zhou B., Ya
– volume: 17
  start-page: 558a
  issn: 0936-6555
  year: 1998
  ident: 3
  publication-title: Proc. Am. Soc. Clin. Oncol.
  contributor:
    fullname: Cheng A. L., Lin J. K., Hsu M. M.
– ident: 30
  doi: 10.1021/ja991446m
– volume: 2
  start-page: 131
  issn: 1567-2050
  year: 2005
  ident: 5
  publication-title: Current Alzheimer Res.
  doi: 10.2174/1567205053585882
  contributor:
    fullname: Ringman J. M., Frautschy S. A., Col
– ident: 15
  doi: 10.1016/j.phrs.2003.11.005
– volume: 1
  start-page: 571
  issn: 0951-418X
  year: 1999
  ident: 6
  publication-title: Phytother. Res.
  contributor:
    fullname: Rajakrihna V., Viswanathan P., Raja
– ident: 2
  doi: 10.1016/0300-483X(80)90122-5
– volume: 20
  start-page: 2379-
  issn: 1472-7781
  year: 1973
  ident: 19
  publication-title: J. Chem. Soc., Perkin Trans. 1
  doi: 10.1039/p19730002379
  contributor:
    fullname: Roughley P. J., Whiting D. A.
– ident: 27
  doi: 10.1016/0006-2952(96)00302-4
– volume: 131
  start-page: 2090
  issn: 0022-3166
  issue: 8
  year: 2001
  ident: 13
  publication-title: J. Nutr.
  doi: 10.1093/jn/131.8.2090
  contributor:
    fullname: OKADA K
– volume: 121
  start-page: 161
  issn: 1074-5521
  year: 1999
  ident: 16
  publication-title: Int. Chem. Biol.
  doi: 10.1016/S0009-2797(99)00096-4
  contributor:
    fullname: Ahsan H., Parveen N., Khan N. U., H
– ident: 31
  doi: 10.1016/S0891-5849(03)00325-3
– volume: 98
  start-page: 112
  issn: 0308-8146
  year: 2005
  ident: 24
  publication-title: Food Chem.
  contributor:
    fullname: Dang S. L., Chen W. F., Zhou B., Ya
– ident: 28
  doi: 10.1055/s-2001-18860
– volume: 7
  start-page: 274
  issn: 0015-749X
  year: 2004
  ident: 7
  publication-title: J. Pharm. Pharmaceu. Sci.
  contributor:
    fullname: Rukkumani R., Aruna K., Varma P. S.
– ident: 21
  doi: 10.1021/jm020200g
– volume: 1760
  start-page: 70
  issn: 0006-3002
  year: 2006
  ident: 17
  publication-title: Biochem. Biophys. Acta
  doi: 10.1016/j.bbagen.2005.09.008
  contributor:
    fullname: Wei Q. Y., Chen W. F., Zhou B., Yan
– ident: 18
  doi: 10.1016/j.foodchem.2005.06.037
– volume: 9
  start-page: 267
  issn: 8755-0199
  issue: 3/6
  year: 1990
  ident: 25
  publication-title: Free Radic. Res. Commun.
SSID ssj0007023
ssib023156946
ssib002483627
ssib002822050
ssib017383521
Score 2.3974028
Snippet The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated...
SourceID proquest
crossref
pubmed
medicalonline
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 74
SubjectTerms Amidines - chemistry
antioxidant activity
Antioxidants - chemistry
Antioxidants - pharmacology
Biphenyl Compounds
Chromans - pharmacology
curcumin
Curcumin - analogs & derivatives
Curcumin - chemistry
Curcumin - pharmacology
Diarylheptanoids
Erythrocyte Membrane - drug effects
Free Radical Scavengers - pharmacology
Free Radicals - chemistry
Hemolysis - drug effects
hexahydrocurcumin
Humans
Hydrogenation
In Vitro Techniques
Linoleic Acid - chemistry
Lipid Peroxidation - drug effects
Molecular Structure
octahydrocurcumin
Oxidants - chemistry
Picrates - chemistry
Structure-Activity Relationship
tetrahydrocurcumin
Time Factors
Title Comparative Antioxidant Activities of Curcumin and Its Demethoxy and Hydrogenated Derivatives
URI https://www.jstage.jst.go.jp/article/bpb/30/1/30_1_74/_article/-char/en
http://mol.medicalonline.jp/library/journal/download?GoodsID=cs7biolo/2007/003001/015&name=0074-0078e
https://www.ncbi.nlm.nih.gov/pubmed/17202663
https://www.proquest.com/docview/1449360694
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biological and Pharmaceutical Bulletin, 2007, Vol.30(1), pp.74-78
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbKggQSQtDlKCzIQmhfui25GjtvRGUhXdi2anelfUGRnaRqK_VQD7Tll_HzmLGTNOGQFnixKtd2LM_hGdvzDSFvRqORw13ealiJxxuOy-MGjw0PkRE9M0ls7qg47vOuG1w6Z1etq0rle-HV0nYjm9G338aV_AtVoQ7oilGyf0HZfFCogN9AXyiBwlDeiMbtAnS3j88WrycxrFTdj1ROiIkGlG1vV9F2NtGvjjubNegYlTf6WkMvBbt4tYBPCLQ938O0v6oB16Xr3kmuI5FV-uPSQXgJwhvV7AKBR8ZiJ-rD3nnfH3T3z4HGIhb1ftAZ-p_9ftDrfpT5Gc9iNhWTetf_1Bt024HfyTsNt0vwtrdzcFbbwemgG5WOKljOVj9NK3uQCktwBibBvHgqaXLwZjWaezPROtl2GPjLOuozU9rpZU6RObUG1jl_0r1cZwf6ZZewHIx8kEvZtI1m1qEEuh2tmQLBwiydeEFvw24eguUUosmFBTcRB8lybpHbFkIMqi2hBBQHlkHBEeYY0JxrRpPZaPnmmhWM7JbroWOe2hDMUIkJ8-VIMbFg2Lf5tEuW1J0pOBOIEnF_pi_4NNDKn_0mZT9dPCQPUseH-pqLH5HKVFTJoQ9st5jt6DFVT5HVHU-V3G1naQir5Dil6u6EXuxjBdcnqksOu747JF8K0kAL0kD30kAXI5pJAwXepyANNJcGVVOUBlqQhsfk8sPpRTtopMlDGpHLzU3DE4gGGEdCCktaLHIlLHAyGsWOELbhSTNKrMhjPBK4ZYEZ3mLScmPDYuDko5fyhBzMF_PkGaGmFGbMpZQ2S5xESp7wGByD2JBAEGhZI68zQoRLjRETom8N1AqBWqFthMypEaZJlDdJ1UbWxNQFsFf2B8ZdgpqrkXclmoapBlqHN-bSGjnK2GDf23Qcz3Yx8L1GnmrW2E-fWQaY7vbz___2C3JP34fgseUROdistslLMOQ38pWSmR9Wbu2a
link.rule.ids 315,783,787,4033,27937,27938,27939
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Antioxidant+Activities+of+Curcumin+and+Its+Demethoxy+and+Hydrogenated+Derivatives&rft.jtitle=Biological+%26+Pharmaceutical+Bulletin&rft.au=Poorichaya+SOMPARNa&rft.au=Chada+PHISALAPHONGb&rft.au=Somjai+NAKORNCHAIa&rft.au=Supeenun+UNCHERNc&rft.date=2007&rft.pub=Pharmaceutical+Society+of+Japan&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=30&rft.issue=1&rft.spage=74&rft.epage=78&rft_id=info:doi/10.1248%2Fbpb.30.74&rft.externalDocID=cs7biolo_2007_003001_015_0074_00781077624
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon