Integrative Analysis of Transcriptomic and Proteomic Data: Challenges, Solutions and Applications

ABSTRACT Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA trans...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in biotechnology Vol. 27; no. 2; pp. 63 - 75
Main Authors Nie, Lei, Wu, Gang, Culley, David E., Scholten, Johannes C. M., Zhang, Weiwen
Format Journal Article
LanguageEnglish
Published England Informa UK Ltd 01.04.2007
Taylor & Francis
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.
AbstractList Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.
ABSTRACT Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.
Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.
Author Culley, David E.
Zhang, Weiwen
Scholten, Johannes C. M.
Wu, Gang
Nie, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Nie
  fullname: Nie, Lei
  organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
– sequence: 2
  givenname: Gang
  surname: Wu
  fullname: Wu, Gang
  organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
– sequence: 3
  givenname: David E.
  surname: Culley
  fullname: Culley, David E.
  organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
– sequence: 4
  givenname: Johannes C. M.
  surname: Scholten
  fullname: Scholten, Johannes C. M.
  organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
– sequence: 5
  givenname: Weiwen
  surname: Zhang
  fullname: Zhang, Weiwen
  organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17578703$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCD-CCVhyAA4Hx-nOBSxS-KlUCidxXE6-3ceWsU9sB5d_jJAVBEcnFlsfP-0oz856RkyEMlpDHFF5R0PAaFNNaCFBAGeM1re-RERW8GSsN9ISMtv_jAtBTcpbSNQAIqsQDclpOpRWwEcGLIduriNl9t9VkQL9JLlWhr2YRh2SiW-WwdKbCoau-xpDt7vUeM76ppgv03g5XNr2svgW_zi4MaUdOVivvDO4KD8n9Hn2yj27vczL7-GE2_Ty-_PLpYjq5HBupaR7rXhoua4PYKZDApbZMC6SN7Opeqd5AB7KjUmgJEhuuKPZibnBuARqU7Jw839uuYrhZ25TbpUvGeo-DDevUKs5AUcl1IZ8dJkHWZbr8KMikqDmltIAvDoI15yAbDpod9awpFXXxPQrSRmuumCjg0zvgdVjHssktIxsqmdr2_OQWWs-XtmtX0S0xbtpfQSiA2gMmhpSi7Vvj8m6BOaLzLYV2G7n2n8gVJb2j_G1-QPNur3FDH-ISf4TouzbjxofYl-AZV6Z7SP72L_nCos8Lg9H-0ft_1T8Btzr51A
CODEN CRBTES
CitedBy_id crossref_primary_10_1093_toxsci_kfs189
crossref_primary_10_1021_mp4004749
crossref_primary_10_1152_ajpheart_00802_2012
crossref_primary_10_1186_s12859_016_1122_6
crossref_primary_10_1016_j_jprot_2009_06_009
crossref_primary_10_7717_peerj_239
crossref_primary_10_1016_j_jprot_2009_01_026
crossref_primary_10_1155_2011_780973
crossref_primary_10_1186_s12918_018_0620_8
crossref_primary_10_1016_j_phytochem_2011_01_005
crossref_primary_10_1016_j_jprot_2014_06_021
crossref_primary_10_1161_JAHA_121_023868
crossref_primary_10_1111_pbi_13671
crossref_primary_10_1080_07388550802543158
crossref_primary_10_1021_pr900755q
crossref_primary_10_1016_j_molmet_2021_101408
crossref_primary_10_1371_journal_pone_0006964
crossref_primary_10_1371_journal_pcbi_1000606
crossref_primary_10_1186_s13637_017_0059_z
crossref_primary_10_1007_s10142_014_0370_7
crossref_primary_10_1111_imb_12286
crossref_primary_10_1186_1754_6834_6_106
crossref_primary_10_1016_j_brainresbull_2011_07_021
crossref_primary_10_1007_s00018_012_1091_5
crossref_primary_10_1681_ASN_2020010071
crossref_primary_10_1186_s13068_022_02163_5
crossref_primary_10_1016_j_jprot_2013_07_004
crossref_primary_10_1099_mic_0_083576_0
crossref_primary_10_1016_j_gene_2015_11_016
crossref_primary_10_1007_s00425_014_2161_8
crossref_primary_10_1016_j_gene_2012_01_029
crossref_primary_10_1016_j_mimet_2015_06_013
crossref_primary_10_1371_journal_pone_0140650
crossref_primary_10_1021_pr400011k
crossref_primary_10_1016_j_fshw_2022_07_017
crossref_primary_10_1002_pmic_201500134
crossref_primary_10_1016_j_jad_2020_07_055
crossref_primary_10_1152_physiolgenomics_00034_2010
crossref_primary_10_1021_pr100651w
crossref_primary_10_1016_j_jprot_2020_103903
crossref_primary_10_1186_1752_0509_5_33
crossref_primary_10_1073_pnas_0812998106
crossref_primary_10_3389_fnmol_2023_1164426
crossref_primary_10_1111_1462_2920_13093
crossref_primary_10_1016_j_jbiotec_2007_08_020
crossref_primary_10_1016_j_jprot_2011_11_037
crossref_primary_10_1186_1471_2180_13_304
crossref_primary_10_1016_j_drugalcdep_2009_10_001
crossref_primary_10_1073_pnas_2200944119
crossref_primary_10_1002_pmic_201700173
crossref_primary_10_1039_c3mb70188c
crossref_primary_10_1128_MMBR_00066_17
crossref_primary_10_1021_pr900252n
crossref_primary_10_1186_s13068_024_02594_2
crossref_primary_10_1016_j_chemosphere_2016_09_070
crossref_primary_10_1093_bfgp_eln021
crossref_primary_10_1371_journal_pone_0072116
crossref_primary_10_1016_j_ijfoodmicro_2023_110136
crossref_primary_10_1016_j_molcel_2008_07_018
crossref_primary_10_1371_journal_pone_0074011
crossref_primary_10_3390_pr9050728
crossref_primary_10_1104_pp_109_152413
crossref_primary_10_1016_j_ajpath_2023_07_008
crossref_primary_10_2217_pgs_12_188
crossref_primary_10_1002_pmic_202000235
crossref_primary_10_1016_j_ijfoodmicro_2022_109930
crossref_primary_10_1016_j_cbpa_2019_01_001
crossref_primary_10_1080_17435390_2020_1851418
crossref_primary_10_1016_j_jprot_2011_02_017
crossref_primary_10_1186_s12864_017_3708_4
crossref_primary_10_1002_pmic_200800161
crossref_primary_10_3390_ijms23137180
crossref_primary_10_1128_AEM_03057_12
crossref_primary_10_1186_s12863_016_0389_y
crossref_primary_10_1016_j_cryobiol_2015_06_009
crossref_primary_10_1080_10408398_2015_1136805
crossref_primary_10_1111_tpj_13485
crossref_primary_10_1111_mmi_12859
crossref_primary_10_1016_j_procbio_2016_05_017
crossref_primary_10_1038_s41598_017_18889_4
crossref_primary_10_1074_mcp_M110_005231
crossref_primary_10_1074_mcp_M110_007492
crossref_primary_10_1128_mBio_02272_17
crossref_primary_10_1016_j_jprot_2015_11_012
crossref_primary_10_1093_molbev_msac087
crossref_primary_10_1016_j_isci_2024_111663
crossref_primary_10_1074_mcp_M111_010884
crossref_primary_10_1515_sagmb_2018_0028
crossref_primary_10_1016_j_jmb_2021_167267
crossref_primary_10_1371_journal_pcbi_1002277
crossref_primary_10_1007_s13277_015_4767_2
crossref_primary_10_1186_1754_6834_5_89
crossref_primary_10_1002_pmic_201600239
crossref_primary_10_1016_j_thromres_2015_02_003
crossref_primary_10_1002_elsc_201500143
crossref_primary_10_3389_fmicb_2019_00330
crossref_primary_10_1038_s41536_021_00168_6
crossref_primary_10_1371_journal_pone_0296254
crossref_primary_10_1111_j_1471_4159_2008_05561_x
crossref_primary_10_1128_AEM_02015_10
crossref_primary_10_1074_mcp_M900108_MCP200
crossref_primary_10_1016_j_chemosphere_2013_01_056
crossref_primary_10_3389_fncel_2024_1354520
crossref_primary_10_1111_mpp_12493
crossref_primary_10_1152_ajpendo_00356_2012
crossref_primary_10_1152_ajpregu_00463_2015
crossref_primary_10_1517_14728220902762910
crossref_primary_10_1039_c0mb00260g
crossref_primary_10_1155_2012_408690
crossref_primary_10_17660_ActaHortic_2017_1157_37
crossref_primary_10_1016_j_jprot_2009_09_015
crossref_primary_10_1016_j_neuint_2013_01_003
crossref_primary_10_1371_journal_pcbi_1000489
crossref_primary_10_1186_1471_2105_10_272
crossref_primary_10_1371_journal_pclm_0000403
crossref_primary_10_1016_j_devcel_2023_04_011
crossref_primary_10_1016_j_jprot_2011_11_006
crossref_primary_10_1007_s00429_024_02819_y
crossref_primary_10_1016_j_algal_2018_08_012
crossref_primary_10_1021_pr100693h
crossref_primary_10_1111_ppl_13482
crossref_primary_10_1021_acs_jafc_8b03099
crossref_primary_10_1097_MNH_0000000000000319
crossref_primary_10_1186_s12864_021_08135_7
crossref_primary_10_3390_pathogens13030188
crossref_primary_10_1016_j_jprot_2015_08_019
crossref_primary_10_1152_physiolgenomics_00128_2018
crossref_primary_10_1038_s41396_022_01226_7
crossref_primary_10_1002_tpg2_20372
crossref_primary_10_1016_j_bbapap_2013_02_029
crossref_primary_10_3390_ijms20194698
crossref_primary_10_3389_fpls_2016_01138
crossref_primary_10_1002_widm_1103
crossref_primary_10_1097_MBC_0000000000000290
crossref_primary_10_1039_c001702g
crossref_primary_10_1186_s12864_016_2458_z
crossref_primary_10_1371_journal_pone_0210850
crossref_primary_10_1016_j_plaphy_2016_12_006
crossref_primary_10_1186_s40249_023_01121_z
crossref_primary_10_1002_elps_201500393
crossref_primary_10_1093_molehr_gat082
crossref_primary_10_1007_s00429_015_1062_3
crossref_primary_10_1111_jnc_14664
crossref_primary_10_1371_journal_pone_0206634
crossref_primary_10_1007_s10295_017_1974_4
crossref_primary_10_1242_jeb_243411
crossref_primary_10_1002_pmic_202000032
crossref_primary_10_1016_j_envpol_2025_125755
crossref_primary_10_1242_jeb_162586
crossref_primary_10_1016_j_aquatox_2011_05_019
crossref_primary_10_1128_JVI_00213_10
crossref_primary_10_1007_s12031_011_9686_0
crossref_primary_10_1186_1471_2229_11_163
crossref_primary_10_1007_s10295_018_2017_5
crossref_primary_10_1016_j_celrep_2018_01_047
crossref_primary_10_1007_s10529_013_1291_6
crossref_primary_10_1099_mic_0_034793_0
crossref_primary_10_1371_journal_pone_0011240
crossref_primary_10_3389_fmicb_2019_01132
crossref_primary_10_1002_jssc_201200642
crossref_primary_10_1093_bioinformatics_btp325
crossref_primary_10_1086_BBLv227n2p117
crossref_primary_10_1152_physiolgenomics_00011_2012
crossref_primary_10_1016_j_advenzreg_2009_01_009
crossref_primary_10_1016_j_btre_2018_02_005
Cites_doi 10.1016/j.febslet.2004.12.001
10.1016/S1369-5274(03)00034-1
10.1016/S0378-1119(97)00400-9
10.1016/0022-2836(89)90260-X
10.1093/nar/gkf505
10.1007/978-1-4899-3242-6
10.1073/pnas.0634629100
10.1186/1471-2105-6-3
10.1002/1522-2683(20000601)21:11<2243::AID-ELPS2243>3.0.CO;2-K
10.1021/pr034038x
10.1016/S1477-3627(02)02169-4
10.1073/pnas.71.4.1342
10.1073/pnas.0406767101
10.1093/bioinformatics/17.6.520
10.1074/mcp.M200001-MCP200
10.1016/0959-437X(94)90070-1
10.1074/jbc.M304470200
10.1006/bbrc.1997.7852
10.1007/s10482-005-9024-z
10.1091/mbc.9.12.3273
10.1074/mcp.M400055-MCP200
10.1002/j.1460-2075.1995.tb06985.x
10.1002/pmic.200500856
10.1128/MCB.19.11.7357
10.1002/mas.20030
10.1021/ac00058a010
10.1186/1471-2164-5-30
10.1534/genetics.106.065862
10.1016/S0168-9525(03)00020-9
10.1186/1471-2164-7-296
10.1093/nar/gnh026
10.1128/MCB.19.3.1720
10.1080/00401706.1992.10485228
10.1128/JB.185.18.5442-5451.2003
10.1093/bioinformatics/btk019
10.1016/S0302-2838(02)00324-X
10.1074/mcp.R500011-MCP200
10.1002/bit.10860
10.1073/pnas.062526999
10.1093/bfgp/3.3.212
10.1016/0168-9525(94)90057-4
10.1074/mcp.M500082-MCP200
10.1093/bioinformatics/bth446
10.1074/mcp.M200055-MCP200
10.1016/j.ymeth.2004.08.021
10.1002/elps.1150180333
10.1038/nbt959
10.1016/S0168-9525(02)00047-1
10.1042/bst023076s
10.1529/biophysj.105.062521
10.1111/j.2517-6161.1964.tb00553.x
10.1074/mcp.M300129-MCP200
10.1074/mcp.M400099-MCP200
10.1111/j.1365-2958.2004.04289.x
10.1089/1536231041388348
10.1002/pmic.200600312
10.1093/bioinformatics/bth499
10.1006/jmbi.1997.1142
10.1016/j.bbrc.2005.11.055
10.1128/JB.184.10.2587-2594.2002
10.1038/nature01511
10.1093/bioinformatics/btl134
10.1002/pmic.200500930
10.1126/science.1075090
10.1074/mcp.M100019-MCP200
10.1007/s10142-002-0065-3
10.1126/science.292.5518.929
10.1016/0958-1669(95)80082-4
10.1093/bioinformatics/18.4.585
10.1016/j.mimet.2004.09.017
10.1016/j.copbio.2003.10.006
10.1093/nar/19.19.5247
10.1186/gb-2003-4-9-117
10.1073/pnas.242716699
10.1111/j.1365-2958.1992.tb01548.x
10.1038/nature02046
10.1016/S0092-8674(03)00926-7
10.1038/82367
10.1002/pmic.200500531
10.1101/gr.1485203
10.1093/nar/27.17.3567
10.1002/047172842X
10.1586/14789450.1.4.503
10.1093/bioinformatics/18.suppl_1.S105
10.1016/S0378-1119(00)00550-3
10.1093/nar/18.21.6339
10.1021/pr049976r
10.1074/mcp.M200008-MCP200
ContentType Journal Article
Copyright 2007 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2007
Copyright Taylor & Francis Ltd. Apr-Jun 2007
Copyright_xml – notice: 2007 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2007
– notice: Copyright Taylor & Francis Ltd. Apr-Jun 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X2
7X7
7XB
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0X
7QO
7TM
8FD
FR3
P64
7S9
L.6
7TB
7U5
F28
L7M
7X8
DOI 10.1080/07388550701334212
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SIRS Editorial
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Solid State and Superconductivity Abstracts
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts

Agricultural Science Database
MEDLINE

Engineering Research Database
AGRICOLA
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1549-7801
EndPage 75
ExternalDocumentID 1302561321
17578703
10_1080_07388550701334212
233316
Genre Research Article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GroupedDBID ---
.GJ
00X
03L
0BK
0R~
0VX
29F
30N
34G
36B
39C
3V.
4.4
53G
5GY
5VS
6J9
7X2
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
A8Z
AAGME
AAHBH
AAIKC
AAJMT
AALDU
AALIY
AAMIU
AAMNW
AAOAP
AAPUL
AAPXX
AAQRR
AAYOK
ABCCY
ABDBF
ABEFU
ABFIM
ABFMO
ABJNI
ABLIJ
ABLKL
ABPAQ
ABTAH
ABUWG
ABXUL
ABXYU
ACBBU
ACDHJ
ACGEJ
ACGFO
ACGFS
ACPRK
ACQMU
ACTIO
ACZPZ
ADBBV
ADCVX
ADGTB
ADGTR
ADOPC
ADRBQ
ADXPE
AEGXH
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AEYQI
AFDYB
AFKRA
AFKVX
AFRAH
AFWLO
AGDLA
AHDZW
AHMBA
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
APEBS
APNXG
AQRUH
ARAPS
ATCPS
AURDB
AWYRJ
BABNJ
BBNVY
BENPR
BFWEY
BGLVJ
BHPHI
BLEHA
BPHCQ
BVXVI
CAG
CCCUG
CCPQU
COF
CS3
CWRZV
DGEBU
DKSSO
DU5
E.-
EAP
EBC
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
EPL
EST
ESTFP
ESX
F5P
FYUFA
G8K
H13
HCIFZ
HGUVV
HMCUK
HZ~
I-F
ITG
ITH
JEPSP
KOO
KRBQP
KWAYT
KYCEM
LJTGL
LK8
M0K
M0L
M1P
M44
M4Z
M7P
ML0
MM.
NUSFT
O9-
OWHGL
P2P
P62
PCLFJ
PQQKQ
PROAC
PSQYO
RNANH
ROSJB
RRB
RTWRZ
RWL
S0X
SV3
TAE
TBQAZ
TDBHL
TFDNU
TFL
TFT
TFW
TN5
TQWBC
TTHFI
TUROJ
TUS
UHS
UKHRP
V1S
Y6R
ZGOLN
ZY4
~02
~1N
~KM
ACUHS
AEUYN
AAGDL
AAHIA
AAYXX
ABDPE
ABTAA
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
ACFTK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
TASJS
7QO
7TM
8FD
FR3
P64
7S9
L.6
7TB
7U5
F28
L7M
7X8
ID FETCH-LOGICAL-c681t-8f6c462caad7060468e385a196d2f77fc0d06d1658606a9471af5bcabe009a63
IEDL.DBID 7X7
ISSN 0738-8551
1549-7801
IngestDate Mon Jul 21 10:59:19 EDT 2025
Fri Jul 11 15:43:57 EDT 2025
Fri Jul 11 14:23:20 EDT 2025
Fri Jul 11 18:34:42 EDT 2025
Mon Jul 21 10:27:16 EDT 2025
Thu Jul 10 18:33:23 EDT 2025
Wed Aug 13 09:56:20 EDT 2025
Wed Feb 19 02:12:47 EST 2025
Tue Jul 01 01:53:22 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Dec 25 09:04:33 EST 2024
Tue Sep 17 11:17:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c681t-8f6c462caad7060468e385a196d2f77fc0d06d1658606a9471af5bcabe009a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Feature-1
ObjectType-Review-3
PMID 17578703
PQID 196916378
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_70620804
pubmed_primary_17578703
crossref_citationtrail_10_1080_07388550701334212
proquest_miscellaneous_19884735
informaworld_taylorfrancis_310_1080_07388550701334212
proquest_miscellaneous_36524111
proquest_journals_196916378
crossref_primary_10_1080_07388550701334212
proquest_miscellaneous_2440694083
informahealthcare_journals_10_1080_07388550701334212
proquest_miscellaneous_743071648
proquest_miscellaneous_21152652
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: Boca Raton
PublicationTitle Critical reviews in biotechnology
PublicationTitleAlternate Crit Rev Biotechnol
PublicationYear 2007
Publisher Informa UK Ltd
Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Informa UK Ltd
– name: Taylor & Francis
– name: Taylor & Francis Ltd
References Greenbaum D. (CIT0031) 2002; 18
Zhang W. (CIT0092) 2006; 89
Labbe A. (CIT0047) 2005
Poole E. S. (CIT0067) 1995; 14
Collins R. F. (CIT0021) 1995; 23
Lichtinghagen R. (CIT0051) 2002; 42
Purohit P. V. (CIT0068) 2004; 8
Resch A. (CIT0069) 2006; 6
CIT0034
Khodursky A. B. (CIT0044) 2003; 19
CIT0077
Durbin B. P. (CIT0025) 2002; 18
Chen G. (CIT0020) 2003; 2
Zhang W. (CIT0093) 2006; 6
Dethlefsen L. (CIT0024) 2005; 6
Selinger D. W. (CIT0076) 2000; 18
Rocha E. P. (CIT0072) 1999; 27
Berrar D. P. (CIT0011) 2003
Lithwick G. (CIT0052) 2003; 13
McLachlan G. J. (CIT0057) 2004
Orntoft T. F. (CIT0066) 2002; 1
Sorensen M. A. (CIT0080) 1989; 207
Aebersold R. (CIT0001) 2003; 422
Mootha V. K. (CIT0060) 2003; 115
Washburn M. P. (CIT0089) 2003; 100
Scherl A. (CIT0075) 2006; 7
Lee T. I. (CIT0050) 2002; 298
Beyer A. (CIT0012) 2004; 3
Box G. E. P. (CIT0014) 1964; 26
Brotz-Oesterhelt H. (CIT0017) 2005; 24
CIT0083
Gao J. (CIT0028) 2003; 2
Wang D. (CIT0088) 2004; 3
Greenbaum D. (CIT0032) 2003; 4
Horak C. E. (CIT0039) 2002; 2
Romby P. (CIT0073) 2003; 19
Vellanoweth R. L. (CIT0087) 1992; 6
Lee J. H. (CIT0049) 2003; 185
Anderle M. (CIT0003) 2004; 20
Troyanskaya O. (CIT0086) 2001; 17
Jung K. (CIT0042) 2005; 3
Kleinbaum D. G. (CIT0046) 1998
Nie L. (CIT0063) 2006; 339
Chen G. (CIT0019) 2002; 1
Scherl A. (CIT0074) 2005; 60
Nie L. (CIT0064) 2006; 174
Alter O. (CIT0002) 2004; 101
Beck G. R. (CIT0009) 2003; 278
Cox B. (CIT0023) 2005; 35
Shimizu T. (CIT0078) 2002; 184
Maziarz M. (CIT0054) 2005; 4
CIT0005
CIT0048
Rhodius V. A. (CIT0071) 2003; 6
Basler M. (CIT0008) 2006; 6
Akashi H. (CIT0006) 2002; 99
Berg O. G. (CIT0010) 1997; 270
Heidelberg J. F. (CIT0038) 2004; 22
Gowrishankar J. (CIT0030) 2004; 54
Ideker T. (CIT0041) 2001; 292
Anderson L. (CIT0004) 1997; 18
Hegde P. S. (CIT0037) 2003; 14
Shine J. (CIT0079) 1974; 71
Huber W. (CIT0040) 2002; 1
MacKay V. L. (CIT0053) 2004; 3
Faxen M. (CIT0026) 1991; 19
Spellman P. T. (CIT0081) 1998; 9
Brown C. M. (CIT0018) 1990; 18
Tuikkala J. (CIT0085) 2006; 22
Mehra A. (CIT0059) 2006; 90
Nie L. (CIT0065) 2006; 22
McCullagh P. (CIT0056) 1989
Kane J. F (CIT0043) 1995; 6
McCarthy J. E. G. (CIT0055) 1994; 10
Resing K. A. (CIT0070) 2005; 579
Aubert C. (CIT0007) 1998; 242
Conrads K. A. (CIT0022) 2005; 4
Ghaemmaghami S. (CIT0029) 2003; 425
Bø T. H. (CIT0013) 2004; 32
Bronstrup M (CIT0016) 2004; 1
Tjaden B. (CIT0084) 2002; 30
Wilkins M. R. (CIT0090) 2006; 6
Mehra A. (CIT0058) 2003; 84
Hack C. J (CIT0036) 2004; 3
Griffin T. J. (CIT0033) 2002; 1
Kim H. (CIT0045) 2005; 21
Mootha V. K. (CIT0061) 2003; 100
Breen E. J. (CIT0015) 2000; 21
CIT0027
Freiberg C. (CIT0035) 2002; 1
Munoz E. T. (CIT0062) 2004; 5
Stenstrom C. M. (CIT0082) 2001; 263
Yu X. L. (CIT0091) 1993; 65
References_xml – volume: 579
  start-page: 885
  year: 2005
  ident: CIT0070
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.12.001
– volume: 6
  start-page: 114
  year: 2003
  ident: CIT0071
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(03)00034-1
– ident: CIT0005
  doi: 10.1016/S0378-1119(97)00400-9
– volume: 207
  start-page: 365
  year: 1989
  ident: CIT0080
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(89)90260-X
– volume: 30
  start-page: 3732
  year: 2002
  ident: CIT0084
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf505
– volume-title: Generalized Linear Models
  year: 1989
  ident: CIT0056
  doi: 10.1007/978-1-4899-3242-6
– volume: 100
  start-page: 3107
  year: 2003
  ident: CIT0089
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0634629100
– volume: 6
  start-page: 3
  year: 2005
  ident: CIT0024
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-6-3
– volume: 21
  start-page: 2243
  year: 2000
  ident: CIT0015
  publication-title: Electrophoresis.
  doi: 10.1002/1522-2683(20000601)21:11<2243::AID-ELPS2243>3.0.CO;2-K
– volume: 2
  start-page: 643
  year: 2003
  ident: CIT0028
  publication-title: J. Proteome Res.
  doi: 10.1021/pr034038x
– volume: 1
  start-page: 20
  year: 2002
  ident: CIT0035
  publication-title: Targets.
  doi: 10.1016/S1477-3627(02)02169-4
– volume: 71
  start-page: 1342
  year: 1974
  ident: CIT0079
  publication-title: Proc. Natl. Acad. Sci. (USA).
  doi: 10.1073/pnas.71.4.1342
– volume: 101
  start-page: 16577
  year: 2004
  ident: CIT0002
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0406767101
– volume: 17
  start-page: 520
  year: 2001
  ident: CIT0086
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/17.6.520
– volume: 3
  start-page: 99
  year: 2005
  ident: CIT0042
  publication-title: REVSTAT-Statistical J.
– volume: 1
  start-page: 323
  year: 2002
  ident: CIT0033
  publication-title: Mol. Cell. Proteomics.
  doi: 10.1074/mcp.M200001-MCP200
– ident: CIT0077
  doi: 10.1016/0959-437X(94)90070-1
– volume: 278
  start-page: 41921
  year: 2003
  ident: CIT0009
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304470200
– volume-title: Applied Regression Analysis and Other Multivariate Methods
  year: 1998
  ident: CIT0046
– volume: 242
  start-page: 213
  year: 1998
  ident: CIT0007
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.7852
– volume: 89
  start-page: 221
  year: 2006
  ident: CIT0092
  publication-title: Antonie Van Leeuwenhoek.
  doi: 10.1007/s10482-005-9024-z
– volume: 9
  start-page: 3273
  year: 1998
  ident: CIT0081
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.9.12.3273
– ident: CIT0083
  doi: 10.1074/mcp.M400055-MCP200
– volume: 14
  start-page: 151
  year: 1995
  ident: CIT0067
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb06985.x
– volume: 6
  start-page: 4
  year: 2006
  ident: CIT0090
  publication-title: Proteomics.
  doi: 10.1002/pmic.200500856
– ident: CIT0027
  doi: 10.1128/MCB.19.11.7357
– volume: 24
  start-page: 549
  year: 2005
  ident: CIT0017
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.20030
– volume: 65
  start-page: 1355
  year: 1993
  ident: CIT0091
  publication-title: Anal. Chem.
  doi: 10.1021/ac00058a010
– volume: 5
  start-page: 30
  year: 2004
  ident: CIT0062
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-5-30
– volume: 174
  start-page: 2229
  year: 2006
  ident: CIT0064
  publication-title: Genetics.
  doi: 10.1534/genetics.106.065862
– volume: 19
  start-page: 155
  year: 2003
  ident: CIT0073
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(03)00020-9
– volume: 7
  start-page: 296
  year: 2006
  ident: CIT0075
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-7-296
– volume: 32
  start-page: e34
  year: 2004
  ident: CIT0013
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnh026
– ident: CIT0034
  doi: 10.1128/MCB.19.3.1720
– ident: CIT0048
  doi: 10.1080/00401706.1992.10485228
– volume: 185
  start-page: 5442
  year: 2003
  ident: CIT0049
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.18.5442-5451.2003
– volume: 22
  start-page: 566
  year: 2006
  ident: CIT0085
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btk019
– volume-title: Missing value estimation
  year: 2003
  ident: CIT0011
– volume: 42
  start-page: 398
  year: 2002
  ident: CIT0051
  publication-title: Eur. Urol.
  doi: 10.1016/S0302-2838(02)00324-X
– volume: 4
  start-page: 458
  year: 2005
  ident: CIT0054
  publication-title: Mol. Cell Proteomics.
  doi: 10.1074/mcp.R500011-MCP200
– volume: 84
  start-page: 822
  year: 2003
  ident: CIT0058
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10860
– volume: 99
  start-page: 3695
  year: 2002
  ident: CIT0006
  publication-title: Proc. Natl. Acad. Sci. (USA).
  doi: 10.1073/pnas.062526999
– volume: 3
  start-page: 212
  year: 2004
  ident: CIT0036
  publication-title: Brief. Funct. Genomic Proteomic.
  doi: 10.1093/bfgp/3.3.212
– volume: 10
  start-page: 402
  year: 1994
  ident: CIT0055
  publication-title: Trends Genet.
  doi: 10.1016/0168-9525(94)90057-4
– volume: 4
  start-page: 1284
  year: 2005
  ident: CIT0022
  publication-title: Mol. Cell. Proteomics.
  doi: 10.1074/mcp.M500082-MCP200
– volume: 20
  start-page: 3575
  year: 2004
  ident: CIT0003
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bth446
– volume: 2
  start-page: 107
  year: 2003
  ident: CIT0020
  publication-title: Mol. Cell Proteomics.
  doi: 10.1074/mcp.M200055-MCP200
– volume: 35
  start-page: 303
  year: 2005
  ident: CIT0023
  publication-title: Methods.
  doi: 10.1016/j.ymeth.2004.08.021
– volume: 18
  start-page: 533
  year: 1997
  ident: CIT0004
  publication-title: Electrophoresis.
  doi: 10.1002/elps.1150180333
– volume: 22
  start-page: 554
  year: 2004
  ident: CIT0038
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt959
– volume: 19
  start-page: 113
  year: 2003
  ident: CIT0044
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(02)00047-1
– volume: 23
  start-page: 7
  year: 1995
  ident: CIT0021
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst023076s
– volume: 90
  start-page: 1136
  year: 2006
  ident: CIT0059
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.062521
– volume: 26
  start-page: 211
  year: 1964
  ident: CIT0014
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– volume: 3
  start-page: 478
  year: 2004
  ident: CIT0053
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M300129-MCP200
– volume: 3
  start-page: 1083
  year: 2004
  ident: CIT0012
  publication-title: Mol. Cell. Proteomics.
  doi: 10.1074/mcp.M400099-MCP200
– volume: 54
  start-page: 598
  year: 2004
  ident: CIT0030
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2004.04289.x
– volume: 8
  start-page: 118
  year: 2004
  ident: CIT0068
  publication-title: OMICS
  doi: 10.1089/1536231041388348
– volume: 6
  start-page: 6194
  year: 2006
  ident: CIT0008
  publication-title: Proteomics.
  doi: 10.1002/pmic.200600312
– volume: 21
  start-page: 187
  year: 2005
  ident: CIT0045
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bth499
– volume: 270
  start-page: 544
  year: 1997
  ident: CIT0010
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1142
– volume: 339
  start-page: 603
  year: 2006
  ident: CIT0063
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.11.055
– volume: 184
  start-page: 2587
  year: 2002
  ident: CIT0078
  publication-title: Clostridium perfringens. J. Bacteriol.
  doi: 10.1128/JB.184.10.2587-2594.2002
– volume: 422
  start-page: 198
  year: 2003
  ident: CIT0001
  publication-title: Nature.
  doi: 10.1038/nature01511
– volume: 1
  start-page: 1
  year: 2002
  ident: CIT0040
  publication-title: Bioinformatics.
– volume: 22
  start-page: 1641
  year: 2006
  ident: CIT0065
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btl134
– volume: 6
  start-page: 4286
  year: 2006
  ident: CIT0093
  publication-title: Proteomics.
  doi: 10.1002/pmic.200500930
– volume: 298
  start-page: 799
  year: 2002
  ident: CIT0050
  publication-title: Science.
  doi: 10.1126/science.1075090
– volume: 1
  start-page: 37
  year: 2002
  ident: CIT0066
  publication-title: Mol. Cell Proteomics.
  doi: 10.1074/mcp.M100019-MCP200
– volume: 2
  start-page: 171
  year: 2002
  ident: CIT0039
  publication-title: Funct. Integr. Genomics.
  doi: 10.1007/s10142-002-0065-3
– volume: 292
  start-page: 929
  year: 2001
  ident: CIT0041
  publication-title: Science.
  doi: 10.1126/science.292.5518.929
– volume: 6
  start-page: 494
  year: 1995
  ident: CIT0043
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/0958-1669(95)80082-4
– volume: 18
  start-page: 585
  year: 2002
  ident: CIT0031
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/18.4.585
– volume: 60
  start-page: 247
  year: 2005
  ident: CIT0074
  publication-title: J. Microbiol. Methods.
  doi: 10.1016/j.mimet.2004.09.017
– volume: 14
  start-page: 647
  year: 2003
  ident: CIT0037
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2003.10.006
– volume: 19
  start-page: 5247
  year: 1991
  ident: CIT0026
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/19.19.5247
– volume: 4
  start-page: 117
  year: 2003
  ident: CIT0032
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-9-117
– volume: 100
  start-page: 605
  year: 2003
  ident: CIT0061
  publication-title: Proc. Natl. Acad. Sci. (USA).
  doi: 10.1073/pnas.242716699
– volume: 6
  start-page: 1105
  year: 1992
  ident: CIT0087
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1992.tb01548.x
– volume: 425
  start-page: 737
  year: 2003
  ident: CIT0029
  publication-title: Nature.
  doi: 10.1038/nature02046
– volume: 115
  start-page: 629
  year: 2003
  ident: CIT0060
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00926-7
– volume: 18
  start-page: 1262
  year: 2000
  ident: CIT0076
  publication-title: Nat. Biotechnol.
  doi: 10.1038/82367
– volume: 6
  start-page: 1867
  year: 2006
  ident: CIT0069
  publication-title: Proteomics.
  doi: 10.1002/pmic.200500531
– volume: 13
  start-page: 2665
  year: 2003
  ident: CIT0052
  publication-title: Genome Res.
  doi: 10.1101/gr.1485203
– volume: 27
  start-page: 3567
  year: 1999
  ident: CIT0072
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.17.3567
– volume-title: Analyzing microarray gene expression data
  year: 2004
  ident: CIT0057
  doi: 10.1002/047172842X
– volume: 1
  start-page: 503
  year: 2004
  ident: CIT0016
  publication-title: Expert Rev. Proteomics.
  doi: 10.1586/14789450.1.4.503
– volume: 18
  start-page: S105
  year: 2002
  ident: CIT0025
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S105
– volume: 263
  start-page: 273
  year: 2001
  ident: CIT0082
  publication-title: Gene
  doi: 10.1016/S0378-1119(00)00550-3
– volume: 18
  start-page: 6339
  year: 1990
  ident: CIT0018
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.21.6339
– start-page: 1S52
  year: 2005
  ident: CIT0047
  publication-title: BMC Genet.
– volume: 3
  start-page: 627
  year: 2004
  ident: CIT0088
  publication-title: J. Proteome Res.
  doi: 10.1021/pr049976r
– volume: 1
  start-page: 304
  year: 2002
  ident: CIT0019
  publication-title: Mol. Cell Proteomics.
  doi: 10.1074/mcp.M200008-MCP200
SSID ssj0005175
Score 2.2555022
SecondaryResourceType review_article
Snippet ABSTRACT Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow...
Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of...
SourceID proquest
pubmed
crossref
informaworld
informahealthcare
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Animals
Data collection
Data Interpretation, Statistical
DNA microarrays
gene expression
genomics
Humans
integration
messenger RNA
monitoring
proteome
proteomics
Proteomics - methods
RNA, Messenger - metabolism
statistical
Transcription, Genetic
transcriptome
transcriptomics
Title Integrative Analysis of Transcriptomic and Proteomic Data: Challenges, Solutions and Applications
URI https://www.tandfonline.com/doi/abs/10.1080/07388550701334212
https://www.ncbi.nlm.nih.gov/pubmed/17578703
https://www.proquest.com/docview/196916378
https://www.proquest.com/docview/19884735
https://www.proquest.com/docview/21152652
https://www.proquest.com/docview/2440694083
https://www.proquest.com/docview/36524111
https://www.proquest.com/docview/70620804
https://www.proquest.com/docview/743071648
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5B-wIPqMDGusIwEk_TLNLYSRxeUOlaChJVhTqt2kvk2o54QGlZ0__P2XHabih9adTknCg---6z7_IdwEeE0IlAK0g1U4zyNEipkEJTxXDqJehUjOOZ_TmNJzf8xyJa-NycjU-rrG2iM9R6pewe-SdL44LYIRFf1n-pLRplg6u-gsZTaFvmMjuok0Wyz_DoO55dHMSCCkQGdVDTUmvjOUflhQiI2aDoA7fU8aSlv3cpWI-ITJvhqHNL4w688HiSDKoB8BKemOIVPD9gGXwN8runhEDDRmoSErLKifNTzmrYT5OJLDSZWdoG9-9alvIzGda1VjZXZLeD5iQHB5HvE5iPR_PhhPrKClTFol9SkceKx6GSUjv2nFgYJiKJfazDPElyFegg1n1EJ7i-kSk6MJlHSyWXBiGZjNkptIpVYc6ARJynIkyNRsVywQLJDC4YdciFTlUUsS4Edb9myrOO2-IXf7J-TU76WBVduNw1WVeUG8eE-X_Kyvw03BxrFh3qMyvd9khe1TLJ2JF2vVrxB0-ph2YX3u-u4iy1oRdZmNXWighhizw3S-BC3FYqwCd8aJLg7itlxMzNd2F4B47uq1kC9R3iq_EukCYJjnYfV9H4Om-qob1XQ-IMPDs_2g09eFbtgNv8prfQKu-35h1Ct3J54SYo_orxtwtoDybXd7d4_Dqazn79AxX2PwE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_x8QA8TDA2KGxgJHiZZpHGTuIgTRMCupYv7aGTeItc2xEPKC00aNr_tD-SsxOXAkrfeGx6dhSf7-5nn_07gH2E0IlAL0g1U4zyNEipkEJTxdD0EgwqxvHMXl3H3T_8_Ca6mYP__i6MPVbpfaJz1Hqo7B75oaVxQeyQiJ-je2qLRtnkqq-gUc2KC_PvL67Yxj96p6jegzDsnPVPurQuKkBVLNolFXmseBwqKbUjjomFYSKS2L0O8yTJVaCDWLcxMCO0lyn6bplHAyUHBtGIjBl2Ow-LnGEct_fSO7-eD5S0Ha0v2oygAoGIz6FaJm985pjDEHAxm4N9EQVXa47U28mJr1e8qc3o10XBzip8qOErOa7m2xrMmeIjrEyRGq6D7NUMFOhHiec8IcOcuLDonJS9CU1koclvyxLhfp3KUh6RE1_aZfydTDbsnOTxVKL9E_TfY8w_w0IxLMwmkIjzVISp0TiPuGCBZAbXpzrkQqcqilgLAj-umapJzm2tjbus7blQX6uiBd8mTUYVw8csYf5GWVlt9eNZzaJpfWal243Jq9IpGZvRbtsrfuot3hJasDv5F52CzfTIwgwfrYgQtqZ0swSu-21hBHzDXpMEd5eiEaI398KwB47RslkC9R3ip_EWkCYJjmEGF-34ORvV1H5WQ-LiCduaOQy7sNTtX11ml73ri21Yrjbf7dGqL7BQPjyar4gay8GOM1YC2Ts7hycfnnbE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-xIk3jATH2QccYnrS9TLNIbSdxJk0IKBUdW1VNTOItcm1He5hStgYh_jP-vJ2duBRQ-sZjkrOt-Oz78J1_B_ABTehUohSkhmtORRZlVCppqOa49VJUKtbjzP4YJSe_xLfz-HwFbsJdGJdWGWSiF9Rmqt0Z-Z6DcUHbIZV7RZMVMe4P9i_-UldAygVaQzWNeoWc2usr9N5mX4d9ZPVHxgbHZ0cntCkwQHUiexWVRaJFwrRSxoPIJNJyGSscyrAiTQsdmSgxPVTSaOarDOW4KuKJVhOLlolKOHb7BFZT5xN1YPXweDT-eZte0vMgv7iDJJVoloSIqsP1xnceRwzNL-4isnd04kaDmPp7nv91D0W13Rb2OnGwAeuNMUsO6tX3HFZsuQlrCxCHL0ANGzwKlKokIKCQaUG8kvQiy92LJqo0ZOwwI_xTX1XqCzkKhV5mn8n8-M5THiyE3V_C2WPM-ivolNPSbgGJhcgky6zBVSUkjxS36K0aJqTJdBzzLkRhXnPdQJ67yht_8l5ARr3Pii58mje5qPE-lhGLB8zKGxkwW9YsXuRnXvmzmaIupJLzJe22A-MXRgn7ogu7868oIlzcR5V2eulIpHQVptspGPoFLIlxhPdtFMJfkUaDvb0Xjj0I1J3tFMhvhr8mukDaKAQqHXTh8Xde10v7lg2p1y78zdJp2IWnKBjy78PR6TY8q0_iXZ7VW-hU_y7tDpqQ1eRds1sJ5I8sH_4DVnF8Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Analysis+of+Transcriptomic+and+Proteomic+Data%3A+Challenges%2C+Solutions+and+Applications&rft.jtitle=Critical+reviews+in+biotechnology&rft.au=Nie%2C+Lei&rft.au=Wu%2C+Gang&rft.au=Culley%2C+David+E&rft.au=Scholten%2C+Johannes+C+M&rft.date=2007-04-01&rft.issn=0738-8551&rft.volume=27&rft.issue=2&rft.spage=63&rft.epage=75&rft_id=info:doi/10.1080%2F07388550701334212&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0738-8551&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0738-8551&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0738-8551&client=summon