Integrative Analysis of Transcriptomic and Proteomic Data: Challenges, Solutions and Applications
ABSTRACT Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA trans...
Saved in:
Published in | Critical reviews in biotechnology Vol. 27; no. 2; pp. 63 - 75 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Informa UK Ltd
01.04.2007
Taylor & Francis Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed. |
---|---|
AbstractList | Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed. ABSTRACT Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed. Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed.Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms are DNA microarrays that measure messenger RNA transcript levels, and gel-free proteomic analyses that quantify protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or only observed a weak correlation. In addition to various biological factors, it is suggested that the poor correlation could be quite possibly due to the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these efforts is to enhance understanding of the relationship between transcriptomes and proteomes so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one-dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary statistical solutions. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation are also discussed. |
Author | Culley, David E. Zhang, Weiwen Scholten, Johannes C. M. Wu, Gang Nie, Lei |
Author_xml | – sequence: 1 givenname: Lei surname: Nie fullname: Nie, Lei organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA – sequence: 2 givenname: Gang surname: Wu fullname: Wu, Gang organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA – sequence: 3 givenname: David E. surname: Culley fullname: Culley, David E. organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA – sequence: 4 givenname: Johannes C. M. surname: Scholten fullname: Scholten, Johannes C. M. organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA – sequence: 5 givenname: Weiwen surname: Zhang fullname: Zhang, Weiwen organization: Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17578703$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCD-CCVhyAA4Hx-nOBSxS-KlUCidxXE6-3ceWsU9sB5d_jJAVBEcnFlsfP-0oz856RkyEMlpDHFF5R0PAaFNNaCFBAGeM1re-RERW8GSsN9ISMtv_jAtBTcpbSNQAIqsQDclpOpRWwEcGLIduriNl9t9VkQL9JLlWhr2YRh2SiW-WwdKbCoau-xpDt7vUeM76ppgv03g5XNr2svgW_zi4MaUdOVivvDO4KD8n9Hn2yj27vczL7-GE2_Ty-_PLpYjq5HBupaR7rXhoua4PYKZDApbZMC6SN7Opeqd5AB7KjUmgJEhuuKPZibnBuARqU7Jw839uuYrhZ25TbpUvGeo-DDevUKs5AUcl1IZ8dJkHWZbr8KMikqDmltIAvDoI15yAbDpod9awpFXXxPQrSRmuumCjg0zvgdVjHssktIxsqmdr2_OQWWs-XtmtX0S0xbtpfQSiA2gMmhpSi7Vvj8m6BOaLzLYV2G7n2n8gVJb2j_G1-QPNur3FDH-ISf4TouzbjxofYl-AZV6Z7SP72L_nCos8Lg9H-0ft_1T8Btzr51A |
CODEN | CRBTES |
CitedBy_id | crossref_primary_10_1093_toxsci_kfs189 crossref_primary_10_1021_mp4004749 crossref_primary_10_1152_ajpheart_00802_2012 crossref_primary_10_1186_s12859_016_1122_6 crossref_primary_10_1016_j_jprot_2009_06_009 crossref_primary_10_7717_peerj_239 crossref_primary_10_1016_j_jprot_2009_01_026 crossref_primary_10_1155_2011_780973 crossref_primary_10_1186_s12918_018_0620_8 crossref_primary_10_1016_j_phytochem_2011_01_005 crossref_primary_10_1016_j_jprot_2014_06_021 crossref_primary_10_1161_JAHA_121_023868 crossref_primary_10_1111_pbi_13671 crossref_primary_10_1080_07388550802543158 crossref_primary_10_1021_pr900755q crossref_primary_10_1016_j_molmet_2021_101408 crossref_primary_10_1371_journal_pone_0006964 crossref_primary_10_1371_journal_pcbi_1000606 crossref_primary_10_1186_s13637_017_0059_z crossref_primary_10_1007_s10142_014_0370_7 crossref_primary_10_1111_imb_12286 crossref_primary_10_1186_1754_6834_6_106 crossref_primary_10_1016_j_brainresbull_2011_07_021 crossref_primary_10_1007_s00018_012_1091_5 crossref_primary_10_1681_ASN_2020010071 crossref_primary_10_1186_s13068_022_02163_5 crossref_primary_10_1016_j_jprot_2013_07_004 crossref_primary_10_1099_mic_0_083576_0 crossref_primary_10_1016_j_gene_2015_11_016 crossref_primary_10_1007_s00425_014_2161_8 crossref_primary_10_1016_j_gene_2012_01_029 crossref_primary_10_1016_j_mimet_2015_06_013 crossref_primary_10_1371_journal_pone_0140650 crossref_primary_10_1021_pr400011k crossref_primary_10_1016_j_fshw_2022_07_017 crossref_primary_10_1002_pmic_201500134 crossref_primary_10_1016_j_jad_2020_07_055 crossref_primary_10_1152_physiolgenomics_00034_2010 crossref_primary_10_1021_pr100651w crossref_primary_10_1016_j_jprot_2020_103903 crossref_primary_10_1186_1752_0509_5_33 crossref_primary_10_1073_pnas_0812998106 crossref_primary_10_3389_fnmol_2023_1164426 crossref_primary_10_1111_1462_2920_13093 crossref_primary_10_1016_j_jbiotec_2007_08_020 crossref_primary_10_1016_j_jprot_2011_11_037 crossref_primary_10_1186_1471_2180_13_304 crossref_primary_10_1016_j_drugalcdep_2009_10_001 crossref_primary_10_1073_pnas_2200944119 crossref_primary_10_1002_pmic_201700173 crossref_primary_10_1039_c3mb70188c crossref_primary_10_1128_MMBR_00066_17 crossref_primary_10_1021_pr900252n crossref_primary_10_1186_s13068_024_02594_2 crossref_primary_10_1016_j_chemosphere_2016_09_070 crossref_primary_10_1093_bfgp_eln021 crossref_primary_10_1371_journal_pone_0072116 crossref_primary_10_1016_j_ijfoodmicro_2023_110136 crossref_primary_10_1016_j_molcel_2008_07_018 crossref_primary_10_1371_journal_pone_0074011 crossref_primary_10_3390_pr9050728 crossref_primary_10_1104_pp_109_152413 crossref_primary_10_1016_j_ajpath_2023_07_008 crossref_primary_10_2217_pgs_12_188 crossref_primary_10_1002_pmic_202000235 crossref_primary_10_1016_j_ijfoodmicro_2022_109930 crossref_primary_10_1016_j_cbpa_2019_01_001 crossref_primary_10_1080_17435390_2020_1851418 crossref_primary_10_1016_j_jprot_2011_02_017 crossref_primary_10_1186_s12864_017_3708_4 crossref_primary_10_1002_pmic_200800161 crossref_primary_10_3390_ijms23137180 crossref_primary_10_1128_AEM_03057_12 crossref_primary_10_1186_s12863_016_0389_y crossref_primary_10_1016_j_cryobiol_2015_06_009 crossref_primary_10_1080_10408398_2015_1136805 crossref_primary_10_1111_tpj_13485 crossref_primary_10_1111_mmi_12859 crossref_primary_10_1016_j_procbio_2016_05_017 crossref_primary_10_1038_s41598_017_18889_4 crossref_primary_10_1074_mcp_M110_005231 crossref_primary_10_1074_mcp_M110_007492 crossref_primary_10_1128_mBio_02272_17 crossref_primary_10_1016_j_jprot_2015_11_012 crossref_primary_10_1093_molbev_msac087 crossref_primary_10_1016_j_isci_2024_111663 crossref_primary_10_1074_mcp_M111_010884 crossref_primary_10_1515_sagmb_2018_0028 crossref_primary_10_1016_j_jmb_2021_167267 crossref_primary_10_1371_journal_pcbi_1002277 crossref_primary_10_1007_s13277_015_4767_2 crossref_primary_10_1186_1754_6834_5_89 crossref_primary_10_1002_pmic_201600239 crossref_primary_10_1016_j_thromres_2015_02_003 crossref_primary_10_1002_elsc_201500143 crossref_primary_10_3389_fmicb_2019_00330 crossref_primary_10_1038_s41536_021_00168_6 crossref_primary_10_1371_journal_pone_0296254 crossref_primary_10_1111_j_1471_4159_2008_05561_x crossref_primary_10_1128_AEM_02015_10 crossref_primary_10_1074_mcp_M900108_MCP200 crossref_primary_10_1016_j_chemosphere_2013_01_056 crossref_primary_10_3389_fncel_2024_1354520 crossref_primary_10_1111_mpp_12493 crossref_primary_10_1152_ajpendo_00356_2012 crossref_primary_10_1152_ajpregu_00463_2015 crossref_primary_10_1517_14728220902762910 crossref_primary_10_1039_c0mb00260g crossref_primary_10_1155_2012_408690 crossref_primary_10_17660_ActaHortic_2017_1157_37 crossref_primary_10_1016_j_jprot_2009_09_015 crossref_primary_10_1016_j_neuint_2013_01_003 crossref_primary_10_1371_journal_pcbi_1000489 crossref_primary_10_1186_1471_2105_10_272 crossref_primary_10_1371_journal_pclm_0000403 crossref_primary_10_1016_j_devcel_2023_04_011 crossref_primary_10_1016_j_jprot_2011_11_006 crossref_primary_10_1007_s00429_024_02819_y crossref_primary_10_1016_j_algal_2018_08_012 crossref_primary_10_1021_pr100693h crossref_primary_10_1111_ppl_13482 crossref_primary_10_1021_acs_jafc_8b03099 crossref_primary_10_1097_MNH_0000000000000319 crossref_primary_10_1186_s12864_021_08135_7 crossref_primary_10_3390_pathogens13030188 crossref_primary_10_1016_j_jprot_2015_08_019 crossref_primary_10_1152_physiolgenomics_00128_2018 crossref_primary_10_1038_s41396_022_01226_7 crossref_primary_10_1002_tpg2_20372 crossref_primary_10_1016_j_bbapap_2013_02_029 crossref_primary_10_3390_ijms20194698 crossref_primary_10_3389_fpls_2016_01138 crossref_primary_10_1002_widm_1103 crossref_primary_10_1097_MBC_0000000000000290 crossref_primary_10_1039_c001702g crossref_primary_10_1186_s12864_016_2458_z crossref_primary_10_1371_journal_pone_0210850 crossref_primary_10_1016_j_plaphy_2016_12_006 crossref_primary_10_1186_s40249_023_01121_z crossref_primary_10_1002_elps_201500393 crossref_primary_10_1093_molehr_gat082 crossref_primary_10_1007_s00429_015_1062_3 crossref_primary_10_1111_jnc_14664 crossref_primary_10_1371_journal_pone_0206634 crossref_primary_10_1007_s10295_017_1974_4 crossref_primary_10_1242_jeb_243411 crossref_primary_10_1002_pmic_202000032 crossref_primary_10_1016_j_envpol_2025_125755 crossref_primary_10_1242_jeb_162586 crossref_primary_10_1016_j_aquatox_2011_05_019 crossref_primary_10_1128_JVI_00213_10 crossref_primary_10_1007_s12031_011_9686_0 crossref_primary_10_1186_1471_2229_11_163 crossref_primary_10_1007_s10295_018_2017_5 crossref_primary_10_1016_j_celrep_2018_01_047 crossref_primary_10_1007_s10529_013_1291_6 crossref_primary_10_1099_mic_0_034793_0 crossref_primary_10_1371_journal_pone_0011240 crossref_primary_10_3389_fmicb_2019_01132 crossref_primary_10_1002_jssc_201200642 crossref_primary_10_1093_bioinformatics_btp325 crossref_primary_10_1086_BBLv227n2p117 crossref_primary_10_1152_physiolgenomics_00011_2012 crossref_primary_10_1016_j_advenzreg_2009_01_009 crossref_primary_10_1016_j_btre_2018_02_005 |
Cites_doi | 10.1016/j.febslet.2004.12.001 10.1016/S1369-5274(03)00034-1 10.1016/S0378-1119(97)00400-9 10.1016/0022-2836(89)90260-X 10.1093/nar/gkf505 10.1007/978-1-4899-3242-6 10.1073/pnas.0634629100 10.1186/1471-2105-6-3 10.1002/1522-2683(20000601)21:11<2243::AID-ELPS2243>3.0.CO;2-K 10.1021/pr034038x 10.1016/S1477-3627(02)02169-4 10.1073/pnas.71.4.1342 10.1073/pnas.0406767101 10.1093/bioinformatics/17.6.520 10.1074/mcp.M200001-MCP200 10.1016/0959-437X(94)90070-1 10.1074/jbc.M304470200 10.1006/bbrc.1997.7852 10.1007/s10482-005-9024-z 10.1091/mbc.9.12.3273 10.1074/mcp.M400055-MCP200 10.1002/j.1460-2075.1995.tb06985.x 10.1002/pmic.200500856 10.1128/MCB.19.11.7357 10.1002/mas.20030 10.1021/ac00058a010 10.1186/1471-2164-5-30 10.1534/genetics.106.065862 10.1016/S0168-9525(03)00020-9 10.1186/1471-2164-7-296 10.1093/nar/gnh026 10.1128/MCB.19.3.1720 10.1080/00401706.1992.10485228 10.1128/JB.185.18.5442-5451.2003 10.1093/bioinformatics/btk019 10.1016/S0302-2838(02)00324-X 10.1074/mcp.R500011-MCP200 10.1002/bit.10860 10.1073/pnas.062526999 10.1093/bfgp/3.3.212 10.1016/0168-9525(94)90057-4 10.1074/mcp.M500082-MCP200 10.1093/bioinformatics/bth446 10.1074/mcp.M200055-MCP200 10.1016/j.ymeth.2004.08.021 10.1002/elps.1150180333 10.1038/nbt959 10.1016/S0168-9525(02)00047-1 10.1042/bst023076s 10.1529/biophysj.105.062521 10.1111/j.2517-6161.1964.tb00553.x 10.1074/mcp.M300129-MCP200 10.1074/mcp.M400099-MCP200 10.1111/j.1365-2958.2004.04289.x 10.1089/1536231041388348 10.1002/pmic.200600312 10.1093/bioinformatics/bth499 10.1006/jmbi.1997.1142 10.1016/j.bbrc.2005.11.055 10.1128/JB.184.10.2587-2594.2002 10.1038/nature01511 10.1093/bioinformatics/btl134 10.1002/pmic.200500930 10.1126/science.1075090 10.1074/mcp.M100019-MCP200 10.1007/s10142-002-0065-3 10.1126/science.292.5518.929 10.1016/0958-1669(95)80082-4 10.1093/bioinformatics/18.4.585 10.1016/j.mimet.2004.09.017 10.1016/j.copbio.2003.10.006 10.1093/nar/19.19.5247 10.1186/gb-2003-4-9-117 10.1073/pnas.242716699 10.1111/j.1365-2958.1992.tb01548.x 10.1038/nature02046 10.1016/S0092-8674(03)00926-7 10.1038/82367 10.1002/pmic.200500531 10.1101/gr.1485203 10.1093/nar/27.17.3567 10.1002/047172842X 10.1586/14789450.1.4.503 10.1093/bioinformatics/18.suppl_1.S105 10.1016/S0378-1119(00)00550-3 10.1093/nar/18.21.6339 10.1021/pr049976r 10.1074/mcp.M200008-MCP200 |
ContentType | Journal Article |
Copyright | 2007 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2007 Copyright Taylor & Francis Ltd. Apr-Jun 2007 |
Copyright_xml | – notice: 2007 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2007 – notice: Copyright Taylor & Francis Ltd. Apr-Jun 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X2 7X7 7XB 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS S0X 7QO 7TM 8FD FR3 P64 7S9 L.6 7TB 7U5 F28 L7M 7X8 |
DOI | 10.1080/07388550701334212 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SIRS Editorial Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts ANTE: Abstracts in New Technology & Engineering Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Solid State and Superconductivity Abstracts Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts Agricultural Science Database MEDLINE Engineering Research Database AGRICOLA Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1549-7801 |
EndPage | 75 |
ExternalDocumentID | 1302561321 17578703 10_1080_07388550701334212 233316 |
Genre | Research Article Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GroupedDBID | --- .GJ 00X 03L 0BK 0R~ 0VX 29F 30N 34G 36B 39C 3V. 4.4 53G 5GY 5VS 6J9 7X2 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ A8Z AAGME AAHBH AAIKC AAJMT AALDU AALIY AAMIU AAMNW AAOAP AAPUL AAPXX AAQRR AAYOK ABCCY ABDBF ABEFU ABFIM ABFMO ABJNI ABLIJ ABLKL ABPAQ ABTAH ABUWG ABXUL ABXYU ACBBU ACDHJ ACGEJ ACGFO ACGFS ACPRK ACQMU ACTIO ACZPZ ADBBV ADCVX ADGTB ADGTR ADOPC ADRBQ ADXPE AEGXH AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AEYQI AFDYB AFKRA AFKVX AFRAH AFWLO AGDLA AHDZW AHMBA AIAGR AIJEM AJWEG AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU APEBS APNXG AQRUH ARAPS ATCPS AURDB AWYRJ BABNJ BBNVY BENPR BFWEY BGLVJ BHPHI BLEHA BPHCQ BVXVI CAG CCCUG CCPQU COF CS3 CWRZV DGEBU DKSSO DU5 E.- EAP EBC EBD EBS EDH EJD EMB EMK EMOBN EPL EST ESTFP ESX F5P FYUFA G8K H13 HCIFZ HGUVV HMCUK HZ~ I-F ITG ITH JEPSP KOO KRBQP KWAYT KYCEM LJTGL LK8 M0K M0L M1P M44 M4Z M7P ML0 MM. NUSFT O9- OWHGL P2P P62 PCLFJ PQQKQ PROAC PSQYO RNANH ROSJB RRB RTWRZ RWL S0X SV3 TAE TBQAZ TDBHL TFDNU TFL TFT TFW TN5 TQWBC TTHFI TUROJ TUS UHS UKHRP V1S Y6R ZGOLN ZY4 ~02 ~1N ~KM ACUHS AEUYN AAGDL AAHIA AAYXX ABDPE ABTAA ADYSH AFRVT AIYEW AMPGV CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK ACFTK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS TASJS 7QO 7TM 8FD FR3 P64 7S9 L.6 7TB 7U5 F28 L7M 7X8 |
ID | FETCH-LOGICAL-c681t-8f6c462caad7060468e385a196d2f77fc0d06d1658606a9471af5bcabe009a63 |
IEDL.DBID | 7X7 |
ISSN | 0738-8551 1549-7801 |
IngestDate | Mon Jul 21 10:59:19 EDT 2025 Fri Jul 11 15:43:57 EDT 2025 Fri Jul 11 14:23:20 EDT 2025 Fri Jul 11 18:34:42 EDT 2025 Mon Jul 21 10:27:16 EDT 2025 Thu Jul 10 18:33:23 EDT 2025 Wed Aug 13 09:56:20 EDT 2025 Wed Feb 19 02:12:47 EST 2025 Tue Jul 01 01:53:22 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Wed Dec 25 09:04:33 EST 2024 Tue Sep 17 11:17:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c681t-8f6c462caad7060468e385a196d2f77fc0d06d1658606a9471af5bcabe009a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Feature-1 ObjectType-Review-3 |
PMID | 17578703 |
PQID | 196916378 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_70620804 pubmed_primary_17578703 crossref_citationtrail_10_1080_07388550701334212 proquest_miscellaneous_19884735 informaworld_taylorfrancis_310_1080_07388550701334212 proquest_miscellaneous_36524111 proquest_journals_196916378 crossref_primary_10_1080_07388550701334212 proquest_miscellaneous_2440694083 informahealthcare_journals_10_1080_07388550701334212 proquest_miscellaneous_743071648 proquest_miscellaneous_21152652 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-01 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Boca Raton |
PublicationTitle | Critical reviews in biotechnology |
PublicationTitleAlternate | Crit Rev Biotechnol |
PublicationYear | 2007 |
Publisher | Informa UK Ltd Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Informa UK Ltd – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Greenbaum D. (CIT0031) 2002; 18 Zhang W. (CIT0092) 2006; 89 Labbe A. (CIT0047) 2005 Poole E. S. (CIT0067) 1995; 14 Collins R. F. (CIT0021) 1995; 23 Lichtinghagen R. (CIT0051) 2002; 42 Purohit P. V. (CIT0068) 2004; 8 Resch A. (CIT0069) 2006; 6 CIT0034 Khodursky A. B. (CIT0044) 2003; 19 CIT0077 Durbin B. P. (CIT0025) 2002; 18 Chen G. (CIT0020) 2003; 2 Zhang W. (CIT0093) 2006; 6 Dethlefsen L. (CIT0024) 2005; 6 Selinger D. W. (CIT0076) 2000; 18 Rocha E. P. (CIT0072) 1999; 27 Berrar D. P. (CIT0011) 2003 Lithwick G. (CIT0052) 2003; 13 McLachlan G. J. (CIT0057) 2004 Orntoft T. F. (CIT0066) 2002; 1 Sorensen M. A. (CIT0080) 1989; 207 Aebersold R. (CIT0001) 2003; 422 Mootha V. K. (CIT0060) 2003; 115 Washburn M. P. (CIT0089) 2003; 100 Scherl A. (CIT0075) 2006; 7 Lee T. I. (CIT0050) 2002; 298 Beyer A. (CIT0012) 2004; 3 Box G. E. P. (CIT0014) 1964; 26 Brotz-Oesterhelt H. (CIT0017) 2005; 24 CIT0083 Gao J. (CIT0028) 2003; 2 Wang D. (CIT0088) 2004; 3 Greenbaum D. (CIT0032) 2003; 4 Horak C. E. (CIT0039) 2002; 2 Romby P. (CIT0073) 2003; 19 Vellanoweth R. L. (CIT0087) 1992; 6 Lee J. H. (CIT0049) 2003; 185 Anderle M. (CIT0003) 2004; 20 Troyanskaya O. (CIT0086) 2001; 17 Jung K. (CIT0042) 2005; 3 Kleinbaum D. G. (CIT0046) 1998 Nie L. (CIT0063) 2006; 339 Chen G. (CIT0019) 2002; 1 Scherl A. (CIT0074) 2005; 60 Nie L. (CIT0064) 2006; 174 Alter O. (CIT0002) 2004; 101 Beck G. R. (CIT0009) 2003; 278 Cox B. (CIT0023) 2005; 35 Shimizu T. (CIT0078) 2002; 184 Maziarz M. (CIT0054) 2005; 4 CIT0005 CIT0048 Rhodius V. A. (CIT0071) 2003; 6 Basler M. (CIT0008) 2006; 6 Akashi H. (CIT0006) 2002; 99 Berg O. G. (CIT0010) 1997; 270 Heidelberg J. F. (CIT0038) 2004; 22 Gowrishankar J. (CIT0030) 2004; 54 Ideker T. (CIT0041) 2001; 292 Anderson L. (CIT0004) 1997; 18 Hegde P. S. (CIT0037) 2003; 14 Shine J. (CIT0079) 1974; 71 Huber W. (CIT0040) 2002; 1 MacKay V. L. (CIT0053) 2004; 3 Faxen M. (CIT0026) 1991; 19 Spellman P. T. (CIT0081) 1998; 9 Brown C. M. (CIT0018) 1990; 18 Tuikkala J. (CIT0085) 2006; 22 Mehra A. (CIT0059) 2006; 90 Nie L. (CIT0065) 2006; 22 McCullagh P. (CIT0056) 1989 Kane J. F (CIT0043) 1995; 6 McCarthy J. E. G. (CIT0055) 1994; 10 Resing K. A. (CIT0070) 2005; 579 Aubert C. (CIT0007) 1998; 242 Conrads K. A. (CIT0022) 2005; 4 Ghaemmaghami S. (CIT0029) 2003; 425 Bø T. H. (CIT0013) 2004; 32 Bronstrup M (CIT0016) 2004; 1 Tjaden B. (CIT0084) 2002; 30 Wilkins M. R. (CIT0090) 2006; 6 Mehra A. (CIT0058) 2003; 84 Hack C. J (CIT0036) 2004; 3 Griffin T. J. (CIT0033) 2002; 1 Kim H. (CIT0045) 2005; 21 Mootha V. K. (CIT0061) 2003; 100 Breen E. J. (CIT0015) 2000; 21 CIT0027 Freiberg C. (CIT0035) 2002; 1 Munoz E. T. (CIT0062) 2004; 5 Stenstrom C. M. (CIT0082) 2001; 263 Yu X. L. (CIT0091) 1993; 65 |
References_xml | – volume: 579 start-page: 885 year: 2005 ident: CIT0070 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.12.001 – volume: 6 start-page: 114 year: 2003 ident: CIT0071 publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(03)00034-1 – ident: CIT0005 doi: 10.1016/S0378-1119(97)00400-9 – volume: 207 start-page: 365 year: 1989 ident: CIT0080 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(89)90260-X – volume: 30 start-page: 3732 year: 2002 ident: CIT0084 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf505 – volume-title: Generalized Linear Models year: 1989 ident: CIT0056 doi: 10.1007/978-1-4899-3242-6 – volume: 100 start-page: 3107 year: 2003 ident: CIT0089 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0634629100 – volume: 6 start-page: 3 year: 2005 ident: CIT0024 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-6-3 – volume: 21 start-page: 2243 year: 2000 ident: CIT0015 publication-title: Electrophoresis. doi: 10.1002/1522-2683(20000601)21:11<2243::AID-ELPS2243>3.0.CO;2-K – volume: 2 start-page: 643 year: 2003 ident: CIT0028 publication-title: J. Proteome Res. doi: 10.1021/pr034038x – volume: 1 start-page: 20 year: 2002 ident: CIT0035 publication-title: Targets. doi: 10.1016/S1477-3627(02)02169-4 – volume: 71 start-page: 1342 year: 1974 ident: CIT0079 publication-title: Proc. Natl. Acad. Sci. (USA). doi: 10.1073/pnas.71.4.1342 – volume: 101 start-page: 16577 year: 2004 ident: CIT0002 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0406767101 – volume: 17 start-page: 520 year: 2001 ident: CIT0086 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/17.6.520 – volume: 3 start-page: 99 year: 2005 ident: CIT0042 publication-title: REVSTAT-Statistical J. – volume: 1 start-page: 323 year: 2002 ident: CIT0033 publication-title: Mol. Cell. Proteomics. doi: 10.1074/mcp.M200001-MCP200 – ident: CIT0077 doi: 10.1016/0959-437X(94)90070-1 – volume: 278 start-page: 41921 year: 2003 ident: CIT0009 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304470200 – volume-title: Applied Regression Analysis and Other Multivariate Methods year: 1998 ident: CIT0046 – volume: 242 start-page: 213 year: 1998 ident: CIT0007 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.7852 – volume: 89 start-page: 221 year: 2006 ident: CIT0092 publication-title: Antonie Van Leeuwenhoek. doi: 10.1007/s10482-005-9024-z – volume: 9 start-page: 3273 year: 1998 ident: CIT0081 publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.9.12.3273 – ident: CIT0083 doi: 10.1074/mcp.M400055-MCP200 – volume: 14 start-page: 151 year: 1995 ident: CIT0067 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb06985.x – volume: 6 start-page: 4 year: 2006 ident: CIT0090 publication-title: Proteomics. doi: 10.1002/pmic.200500856 – ident: CIT0027 doi: 10.1128/MCB.19.11.7357 – volume: 24 start-page: 549 year: 2005 ident: CIT0017 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20030 – volume: 65 start-page: 1355 year: 1993 ident: CIT0091 publication-title: Anal. Chem. doi: 10.1021/ac00058a010 – volume: 5 start-page: 30 year: 2004 ident: CIT0062 publication-title: BMC Genomics. doi: 10.1186/1471-2164-5-30 – volume: 174 start-page: 2229 year: 2006 ident: CIT0064 publication-title: Genetics. doi: 10.1534/genetics.106.065862 – volume: 19 start-page: 155 year: 2003 ident: CIT0073 publication-title: Trends Genet. doi: 10.1016/S0168-9525(03)00020-9 – volume: 7 start-page: 296 year: 2006 ident: CIT0075 publication-title: BMC Genomics. doi: 10.1186/1471-2164-7-296 – volume: 32 start-page: e34 year: 2004 ident: CIT0013 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gnh026 – ident: CIT0034 doi: 10.1128/MCB.19.3.1720 – ident: CIT0048 doi: 10.1080/00401706.1992.10485228 – volume: 185 start-page: 5442 year: 2003 ident: CIT0049 publication-title: J. Bacteriol. doi: 10.1128/JB.185.18.5442-5451.2003 – volume: 22 start-page: 566 year: 2006 ident: CIT0085 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btk019 – volume-title: Missing value estimation year: 2003 ident: CIT0011 – volume: 42 start-page: 398 year: 2002 ident: CIT0051 publication-title: Eur. Urol. doi: 10.1016/S0302-2838(02)00324-X – volume: 4 start-page: 458 year: 2005 ident: CIT0054 publication-title: Mol. Cell Proteomics. doi: 10.1074/mcp.R500011-MCP200 – volume: 84 start-page: 822 year: 2003 ident: CIT0058 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10860 – volume: 99 start-page: 3695 year: 2002 ident: CIT0006 publication-title: Proc. Natl. Acad. Sci. (USA). doi: 10.1073/pnas.062526999 – volume: 3 start-page: 212 year: 2004 ident: CIT0036 publication-title: Brief. Funct. Genomic Proteomic. doi: 10.1093/bfgp/3.3.212 – volume: 10 start-page: 402 year: 1994 ident: CIT0055 publication-title: Trends Genet. doi: 10.1016/0168-9525(94)90057-4 – volume: 4 start-page: 1284 year: 2005 ident: CIT0022 publication-title: Mol. Cell. Proteomics. doi: 10.1074/mcp.M500082-MCP200 – volume: 20 start-page: 3575 year: 2004 ident: CIT0003 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bth446 – volume: 2 start-page: 107 year: 2003 ident: CIT0020 publication-title: Mol. Cell Proteomics. doi: 10.1074/mcp.M200055-MCP200 – volume: 35 start-page: 303 year: 2005 ident: CIT0023 publication-title: Methods. doi: 10.1016/j.ymeth.2004.08.021 – volume: 18 start-page: 533 year: 1997 ident: CIT0004 publication-title: Electrophoresis. doi: 10.1002/elps.1150180333 – volume: 22 start-page: 554 year: 2004 ident: CIT0038 publication-title: Nat. Biotechnol. doi: 10.1038/nbt959 – volume: 19 start-page: 113 year: 2003 ident: CIT0044 publication-title: Trends Genet. doi: 10.1016/S0168-9525(02)00047-1 – volume: 23 start-page: 7 year: 1995 ident: CIT0021 publication-title: Biochem. Soc. Trans. doi: 10.1042/bst023076s – volume: 90 start-page: 1136 year: 2006 ident: CIT0059 publication-title: Biophys. J. doi: 10.1529/biophysj.105.062521 – volume: 26 start-page: 211 year: 1964 ident: CIT0014 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1964.tb00553.x – volume: 3 start-page: 478 year: 2004 ident: CIT0053 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M300129-MCP200 – volume: 3 start-page: 1083 year: 2004 ident: CIT0012 publication-title: Mol. Cell. Proteomics. doi: 10.1074/mcp.M400099-MCP200 – volume: 54 start-page: 598 year: 2004 ident: CIT0030 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2004.04289.x – volume: 8 start-page: 118 year: 2004 ident: CIT0068 publication-title: OMICS doi: 10.1089/1536231041388348 – volume: 6 start-page: 6194 year: 2006 ident: CIT0008 publication-title: Proteomics. doi: 10.1002/pmic.200600312 – volume: 21 start-page: 187 year: 2005 ident: CIT0045 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bth499 – volume: 270 start-page: 544 year: 1997 ident: CIT0010 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1142 – volume: 339 start-page: 603 year: 2006 ident: CIT0063 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.11.055 – volume: 184 start-page: 2587 year: 2002 ident: CIT0078 publication-title: Clostridium perfringens. J. Bacteriol. doi: 10.1128/JB.184.10.2587-2594.2002 – volume: 422 start-page: 198 year: 2003 ident: CIT0001 publication-title: Nature. doi: 10.1038/nature01511 – volume: 1 start-page: 1 year: 2002 ident: CIT0040 publication-title: Bioinformatics. – volume: 22 start-page: 1641 year: 2006 ident: CIT0065 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btl134 – volume: 6 start-page: 4286 year: 2006 ident: CIT0093 publication-title: Proteomics. doi: 10.1002/pmic.200500930 – volume: 298 start-page: 799 year: 2002 ident: CIT0050 publication-title: Science. doi: 10.1126/science.1075090 – volume: 1 start-page: 37 year: 2002 ident: CIT0066 publication-title: Mol. Cell Proteomics. doi: 10.1074/mcp.M100019-MCP200 – volume: 2 start-page: 171 year: 2002 ident: CIT0039 publication-title: Funct. Integr. Genomics. doi: 10.1007/s10142-002-0065-3 – volume: 292 start-page: 929 year: 2001 ident: CIT0041 publication-title: Science. doi: 10.1126/science.292.5518.929 – volume: 6 start-page: 494 year: 1995 ident: CIT0043 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/0958-1669(95)80082-4 – volume: 18 start-page: 585 year: 2002 ident: CIT0031 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/18.4.585 – volume: 60 start-page: 247 year: 2005 ident: CIT0074 publication-title: J. Microbiol. Methods. doi: 10.1016/j.mimet.2004.09.017 – volume: 14 start-page: 647 year: 2003 ident: CIT0037 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2003.10.006 – volume: 19 start-page: 5247 year: 1991 ident: CIT0026 publication-title: Nucleic Acid Res. doi: 10.1093/nar/19.19.5247 – volume: 4 start-page: 117 year: 2003 ident: CIT0032 publication-title: Genome Biol. doi: 10.1186/gb-2003-4-9-117 – volume: 100 start-page: 605 year: 2003 ident: CIT0061 publication-title: Proc. Natl. Acad. Sci. (USA). doi: 10.1073/pnas.242716699 – volume: 6 start-page: 1105 year: 1992 ident: CIT0087 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1992.tb01548.x – volume: 425 start-page: 737 year: 2003 ident: CIT0029 publication-title: Nature. doi: 10.1038/nature02046 – volume: 115 start-page: 629 year: 2003 ident: CIT0060 publication-title: Cell doi: 10.1016/S0092-8674(03)00926-7 – volume: 18 start-page: 1262 year: 2000 ident: CIT0076 publication-title: Nat. Biotechnol. doi: 10.1038/82367 – volume: 6 start-page: 1867 year: 2006 ident: CIT0069 publication-title: Proteomics. doi: 10.1002/pmic.200500531 – volume: 13 start-page: 2665 year: 2003 ident: CIT0052 publication-title: Genome Res. doi: 10.1101/gr.1485203 – volume: 27 start-page: 3567 year: 1999 ident: CIT0072 publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.17.3567 – volume-title: Analyzing microarray gene expression data year: 2004 ident: CIT0057 doi: 10.1002/047172842X – volume: 1 start-page: 503 year: 2004 ident: CIT0016 publication-title: Expert Rev. Proteomics. doi: 10.1586/14789450.1.4.503 – volume: 18 start-page: S105 year: 2002 ident: CIT0025 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S105 – volume: 263 start-page: 273 year: 2001 ident: CIT0082 publication-title: Gene doi: 10.1016/S0378-1119(00)00550-3 – volume: 18 start-page: 6339 year: 1990 ident: CIT0018 publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.21.6339 – start-page: 1S52 year: 2005 ident: CIT0047 publication-title: BMC Genet. – volume: 3 start-page: 627 year: 2004 ident: CIT0088 publication-title: J. Proteome Res. doi: 10.1021/pr049976r – volume: 1 start-page: 304 year: 2002 ident: CIT0019 publication-title: Mol. Cell Proteomics. doi: 10.1074/mcp.M200008-MCP200 |
SSID | ssj0005175 |
Score | 2.2555022 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow... Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of... |
SourceID | proquest pubmed crossref informaworld informahealthcare |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | Animals Data collection Data Interpretation, Statistical DNA microarrays gene expression genomics Humans integration messenger RNA monitoring proteome proteomics Proteomics - methods RNA, Messenger - metabolism statistical Transcription, Genetic transcriptome transcriptomics |
Title | Integrative Analysis of Transcriptomic and Proteomic Data: Challenges, Solutions and Applications |
URI | https://www.tandfonline.com/doi/abs/10.1080/07388550701334212 https://www.ncbi.nlm.nih.gov/pubmed/17578703 https://www.proquest.com/docview/196916378 https://www.proquest.com/docview/19884735 https://www.proquest.com/docview/21152652 https://www.proquest.com/docview/2440694083 https://www.proquest.com/docview/36524111 https://www.proquest.com/docview/70620804 https://www.proquest.com/docview/743071648 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5B-wIPqMDGusIwEk_TLNLYSRxeUOlaChJVhTqt2kvk2o54QGlZ0__P2XHabih9adTknCg---6z7_IdwEeE0IlAK0g1U4zyNEipkEJTxXDqJehUjOOZ_TmNJzf8xyJa-NycjU-rrG2iM9R6pewe-SdL44LYIRFf1n-pLRplg6u-gsZTaFvmMjuok0Wyz_DoO55dHMSCCkQGdVDTUmvjOUflhQiI2aDoA7fU8aSlv3cpWI-ITJvhqHNL4w688HiSDKoB8BKemOIVPD9gGXwN8runhEDDRmoSErLKifNTzmrYT5OJLDSZWdoG9-9alvIzGda1VjZXZLeD5iQHB5HvE5iPR_PhhPrKClTFol9SkceKx6GSUjv2nFgYJiKJfazDPElyFegg1n1EJ7i-kSk6MJlHSyWXBiGZjNkptIpVYc6ARJynIkyNRsVywQLJDC4YdciFTlUUsS4Edb9myrOO2-IXf7J-TU76WBVduNw1WVeUG8eE-X_Kyvw03BxrFh3qMyvd9khe1TLJ2JF2vVrxB0-ph2YX3u-u4iy1oRdZmNXWighhizw3S-BC3FYqwCd8aJLg7itlxMzNd2F4B47uq1kC9R3iq_EukCYJjnYfV9H4Om-qob1XQ-IMPDs_2g09eFbtgNv8prfQKu-35h1Ct3J54SYo_orxtwtoDybXd7d4_Dqazn79AxX2PwE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_x8QA8TDA2KGxgJHiZZpHGTuIgTRMCupYv7aGTeItc2xEPKC00aNr_tD-SsxOXAkrfeGx6dhSf7-5nn_07gH2E0IlAL0g1U4zyNEipkEJTxdD0EgwqxvHMXl3H3T_8_Ca6mYP__i6MPVbpfaJz1Hqo7B75oaVxQeyQiJ-je2qLRtnkqq-gUc2KC_PvL67Yxj96p6jegzDsnPVPurQuKkBVLNolFXmseBwqKbUjjomFYSKS2L0O8yTJVaCDWLcxMCO0lyn6bplHAyUHBtGIjBl2Ow-LnGEct_fSO7-eD5S0Ha0v2oygAoGIz6FaJm985pjDEHAxm4N9EQVXa47U28mJr1e8qc3o10XBzip8qOErOa7m2xrMmeIjrEyRGq6D7NUMFOhHiec8IcOcuLDonJS9CU1koclvyxLhfp3KUh6RE1_aZfydTDbsnOTxVKL9E_TfY8w_w0IxLMwmkIjzVISp0TiPuGCBZAbXpzrkQqcqilgLAj-umapJzm2tjbus7blQX6uiBd8mTUYVw8csYf5GWVlt9eNZzaJpfWal243Jq9IpGZvRbtsrfuot3hJasDv5F52CzfTIwgwfrYgQtqZ0swSu-21hBHzDXpMEd5eiEaI398KwB47RslkC9R3ip_EWkCYJjmEGF-34ORvV1H5WQ-LiCduaOQy7sNTtX11ml73ri21Yrjbf7dGqL7BQPjyar4gay8GOM1YC2Ts7hycfnnbE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-xIk3jATH2QccYnrS9TLNIbSdxJk0IKBUdW1VNTOItcm1He5hStgYh_jP-vJ2duBRQ-sZjkrOt-Oz78J1_B_ABTehUohSkhmtORRZlVCppqOa49VJUKtbjzP4YJSe_xLfz-HwFbsJdGJdWGWSiF9Rmqt0Z-Z6DcUHbIZV7RZMVMe4P9i_-UldAygVaQzWNeoWc2usr9N5mX4d9ZPVHxgbHZ0cntCkwQHUiexWVRaJFwrRSxoPIJNJyGSscyrAiTQsdmSgxPVTSaOarDOW4KuKJVhOLlolKOHb7BFZT5xN1YPXweDT-eZte0vMgv7iDJJVoloSIqsP1xnceRwzNL-4isnd04kaDmPp7nv91D0W13Rb2OnGwAeuNMUsO6tX3HFZsuQlrCxCHL0ANGzwKlKokIKCQaUG8kvQiy92LJqo0ZOwwI_xTX1XqCzkKhV5mn8n8-M5THiyE3V_C2WPM-ivolNPSbgGJhcgky6zBVSUkjxS36K0aJqTJdBzzLkRhXnPdQJ67yht_8l5ARr3Pii58mje5qPE-lhGLB8zKGxkwW9YsXuRnXvmzmaIupJLzJe22A-MXRgn7ogu7868oIlzcR5V2eulIpHQVptspGPoFLIlxhPdtFMJfkUaDvb0Xjj0I1J3tFMhvhr8mukDaKAQqHXTh8Xde10v7lg2p1y78zdJp2IWnKBjy78PR6TY8q0_iXZ7VW-hU_y7tDpqQ1eRds1sJ5I8sH_4DVnF8Vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Analysis+of+Transcriptomic+and+Proteomic+Data%3A+Challenges%2C+Solutions+and+Applications&rft.jtitle=Critical+reviews+in+biotechnology&rft.au=Nie%2C+Lei&rft.au=Wu%2C+Gang&rft.au=Culley%2C+David+E&rft.au=Scholten%2C+Johannes+C+M&rft.date=2007-04-01&rft.issn=0738-8551&rft.volume=27&rft.issue=2&rft.spage=63&rft.epage=75&rft_id=info:doi/10.1080%2F07388550701334212&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0738-8551&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0738-8551&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0738-8551&client=summon |