Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data

In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency's Sentin...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 57; no. 1; pp. 1 - 20
Main Author Abdi, Abdulhakim Mohamed
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.01.2020
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2019.1650447

Cover

Loading…
Abstract In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency's Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar's chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar's test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research.
AbstractList In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency’s Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar’s chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar’s test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research.
In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency’s Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar’s chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar’s test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research.
Author Abdi, Abdulhakim Mohamed
Author_xml – sequence: 1
  givenname: Abdulhakim Mohamed
  orcidid: 0000-0001-6486-8747
  surname: Abdi
  fullname: Abdi, Abdulhakim Mohamed
  email: hakim.abdi@cec.lu.se
  organization: Department of Physical Geography and Ecosystem Science, Lund University
BackLink https://lup.lub.lu.se/record/8830807b-7443-481d-b5f6-3f2e91c501f7$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/8830807b-7443-481d-b5f6-3f2e91c501f7$$DView record from Swedish Publication Index
BookMark eNqNkktv1DAUhSNUJNrCT0Dykk2KHT8jNqCKR6WRWABr68a5mXHliYOdUHXR_44zMyCBxGPhh6xzvivfey6qszGOWFXPGb1i1NCXTArDFOVXDWXtFVOSCqEfVeesFbzWTaPOyr1o6lX0pLrI-ZZSLhmT59XDBsaeuPgNE1lvYd2WjMQFyNkP3sHs40gmTENMexgdkjiQPbidH5EEhDT6cUsgbGPy826fiR8JkC4mhHDAZQcTFuYq-4TjXHyhbkgPMzytHg8QMj47nZfVl3dvP19_qDcf399cv9nUThk217JV0KqWNYYz0KxFyjqnse1BKOkkACoKfSu1o0oqhcg7J1CoQTqjARp-Wd0cuX2EWzslv4d0byN4e3iIaWshzd4FtK1oZdf1ndEGBBhuGgMDEw77BntHsbDgyMp3OC3dL7QpphmCTZhLX9zOhsVmtEUVTn3M1hheZqY7q4Xgtgyut50clOVDgy1zkrJBlxqbP9YIy1RWd2L_J-7FETel-HXBPNu9zw5DmQ7GJduGG6N1S9naKXmUuhRzTjj8rM2oXdNmf6TNrmmzp7QV36vffM7Phy_PCXz4p_v10e3HQ8ruYgq9neE-xDSkEjqfLf874jvYqPD5
CitedBy_id crossref_primary_10_1016_j_jafr_2024_101350
crossref_primary_10_1002_ieam_4704
crossref_primary_10_1016_j_jag_2023_103402
crossref_primary_10_1111_emr_12579
crossref_primary_10_1186_s40562_025_00377_7
crossref_primary_10_3390_app14041638
crossref_primary_10_1007_s10596_024_10317_7
crossref_primary_10_1016_j_asr_2024_06_010
crossref_primary_10_3390_rs14133041
crossref_primary_10_1016_j_ecolind_2021_108438
crossref_primary_10_1007_s10530_022_02910_7
crossref_primary_10_1016_j_aei_2021_101380
crossref_primary_10_1080_22797254_2022_2083984
crossref_primary_10_1016_j_jag_2022_102948
crossref_primary_10_1007_s11004_023_10113_6
crossref_primary_10_3390_rs15225364
crossref_primary_10_3390_ijgi12060219
crossref_primary_10_1016_j_asr_2024_07_066
crossref_primary_10_1016_j_rsase_2022_100843
crossref_primary_10_3390_land13050700
crossref_primary_10_1007_s00267_023_01826_9
crossref_primary_10_3390_quat6020028
crossref_primary_10_1016_j_ecolind_2022_108961
crossref_primary_10_1088_1755_1315_1241_1_012112
crossref_primary_10_1002_gch2_202300155
crossref_primary_10_1016_j_jclepro_2024_142971
crossref_primary_10_1071_CP23340
crossref_primary_10_3390_rs14174169
crossref_primary_10_1007_s11356_025_36292_9
crossref_primary_10_1016_j_jafrearsci_2023_105050
crossref_primary_10_3390_rs16050893
crossref_primary_10_1016_j_jag_2022_102718
crossref_primary_10_3390_ijgi11080423
crossref_primary_10_3389_fenvs_2022_896158
crossref_primary_10_3390_rs15082027
crossref_primary_10_1080_10106049_2021_1924295
crossref_primary_10_1111_tgis_12684
crossref_primary_10_3390_rs16122219
crossref_primary_10_1016_j_landusepol_2024_107305
crossref_primary_10_1155_2023_6657171
crossref_primary_10_1007_s11042_024_18828_2
crossref_primary_10_1016_j_sciaf_2023_e01595
crossref_primary_10_1007_s40808_025_02283_5
crossref_primary_10_1007_s12518_024_00549_8
crossref_primary_10_1007_s12145_025_01748_6
crossref_primary_10_3390_land11122209
crossref_primary_10_1016_j_heliyon_2021_e08405
crossref_primary_10_3390_rs12142276
crossref_primary_10_1142_S0219467823500365
crossref_primary_10_1007_s12517_024_12132_x
crossref_primary_10_3390_d14040240
crossref_primary_10_29023_alanyaakademik_1095574
crossref_primary_10_3390_rs13101902
crossref_primary_10_3390_rs15133241
crossref_primary_10_1016_j_envadv_2022_100209
crossref_primary_10_1016_j_envpol_2021_117788
crossref_primary_10_3390_electronics12040896
crossref_primary_10_1016_j_rsase_2024_101259
crossref_primary_10_1080_01431161_2024_2379515
crossref_primary_10_3390_f14091788
crossref_primary_10_3390_land11030351
crossref_primary_10_1016_j_ecolind_2024_112516
crossref_primary_10_1016_j_rsase_2021_100565
crossref_primary_10_1016_j_rsase_2024_101257
crossref_primary_10_3390_app10228083
crossref_primary_10_1007_s10661_021_08958_7
crossref_primary_10_5194_essd_14_4967_2022
crossref_primary_10_3390_w16091267
crossref_primary_10_1109_JSTARS_2024_3490775
crossref_primary_10_3390_rs14030616
crossref_primary_10_3390_rs14215554
crossref_primary_10_1016_j_ecolind_2021_108200
crossref_primary_10_14358_PERS_24_00026R2
crossref_primary_10_3390_rs13152983
crossref_primary_10_1093_ijlct_ctae280
crossref_primary_10_3390_s22228750
crossref_primary_10_12688_f1000research_124604_1
crossref_primary_10_3390_rs11222716
crossref_primary_10_3390_rs12071201
crossref_primary_10_1016_j_ecolind_2022_108989
crossref_primary_10_1007_s11356_022_22063_3
crossref_primary_10_1007_s12517_021_08555_5
crossref_primary_10_1016_j_cities_2025_105850
crossref_primary_10_1016_j_iswcr_2023_09_005
crossref_primary_10_3390_ijgi12050206
crossref_primary_10_3390_app13021173
crossref_primary_10_1016_j_prevetmed_2022_105660
crossref_primary_10_3390_land13030335
crossref_primary_10_3390_rs16132390
crossref_primary_10_3390_rs15133257
crossref_primary_10_3390_f15101739
crossref_primary_10_1080_01431161_2023_2292015
crossref_primary_10_3390_su15108005
crossref_primary_10_1016_j_isprsjprs_2023_11_026
crossref_primary_10_3390_rs16193611
crossref_primary_10_3897_VCS_89746
crossref_primary_10_3390_ijgi10040231
crossref_primary_10_1007_s11356_021_15782_6
crossref_primary_10_1007_s40808_021_01296_0
crossref_primary_10_3390_land11101692
crossref_primary_10_1016_j_isprsjprs_2023_10_018
crossref_primary_10_1109_JSTARS_2023_3247624
crossref_primary_10_1007_s10661_021_09729_0
crossref_primary_10_3390_agronomy12081948
crossref_primary_10_1111_aje_13300
crossref_primary_10_1016_j_inffus_2022_06_003
crossref_primary_10_3390_s24051587
crossref_primary_10_1016_j_agwat_2025_109416
crossref_primary_10_1007_s10661_023_11140_w
crossref_primary_10_3390_rs16244730
crossref_primary_10_3390_rs13214405
crossref_primary_10_1016_j_envc_2021_100237
crossref_primary_10_1016_j_rse_2022_113144
crossref_primary_10_3390_ijgi13010005
crossref_primary_10_1016_j_heliyon_2024_e39020
crossref_primary_10_3390_ijgi9040277
crossref_primary_10_61186_jsaeh_11_3_1
crossref_primary_10_1097_MNM_0000000000001723
crossref_primary_10_3390_rs12071225
crossref_primary_10_1016_j_ecoinf_2024_102868
crossref_primary_10_1016_j_uclim_2022_101116
crossref_primary_10_1088_1748_9326_abcfe3
crossref_primary_10_3390_rs12101620
crossref_primary_10_3390_rs13040777
crossref_primary_10_1016_j_agwat_2023_108456
crossref_primary_10_1007_s11069_024_06481_9
crossref_primary_10_1016_j_ecoinf_2021_101522
crossref_primary_10_1016_j_ufug_2023_128095
crossref_primary_10_1080_15481603_2023_2257978
crossref_primary_10_1080_17538947_2022_2099022
crossref_primary_10_3390_w15193364
crossref_primary_10_1080_1747423X_2023_2234921
crossref_primary_10_1007_s41870_023_01673_1
crossref_primary_10_3390_rs12244093
crossref_primary_10_1016_j_rsase_2024_101349
crossref_primary_10_1109_TGRS_2021_3113856
crossref_primary_10_1111_2041_210X_14333
crossref_primary_10_3390_app14041578
crossref_primary_10_1016_j_rsase_2024_101223
crossref_primary_10_1016_j_ejrs_2024_03_003
crossref_primary_10_1016_j_rsase_2022_100773
crossref_primary_10_1016_j_rse_2022_112980
crossref_primary_10_1016_j_asr_2024_07_013
crossref_primary_10_1007_s10661_024_12856_z
crossref_primary_10_1007_s10462_023_10617_x
crossref_primary_10_1109_JSTARS_2023_3308041
crossref_primary_10_1007_s42452_022_05028_6
crossref_primary_10_1109_TGRS_2024_3386171
crossref_primary_10_1016_j_geomat_2025_100050
crossref_primary_10_1016_j_sciaf_2023_e01718
crossref_primary_10_1007_s12517_024_11945_0
crossref_primary_10_3390_rs12203314
crossref_primary_10_3390_rs13204067
crossref_primary_10_1080_19376812_2024_2424378
crossref_primary_10_3390_app112110309
crossref_primary_10_1088_1757_899X_1119_1_012006
crossref_primary_10_1016_j_catena_2021_105854
crossref_primary_10_1007_s12665_024_12060_9
crossref_primary_10_3390_agriculture12091429
crossref_primary_10_3390_rs13081494
crossref_primary_10_1007_s00521_024_10165_7
crossref_primary_10_1016_j_rsase_2023_100968
crossref_primary_10_1016_j_compag_2022_107249
crossref_primary_10_1038_s41598_020_73167_0
crossref_primary_10_1080_10106049_2022_2123959
crossref_primary_10_3390_rs16122168
crossref_primary_10_3390_resources13070095
crossref_primary_10_1080_10106049_2021_1939441
crossref_primary_10_3390_rs16050868
crossref_primary_10_3390_land12051101
crossref_primary_10_3390_su13168848
crossref_primary_10_1016_j_compag_2021_106090
crossref_primary_10_1016_j_ecoinf_2021_101545
crossref_primary_10_1088_2631_8695_acfa64
crossref_primary_10_14710_jil_22_2_313_325
crossref_primary_10_3390_rs16111946
crossref_primary_10_3390_rs15235576
crossref_primary_10_3390_rs16071305
crossref_primary_10_3390_rs14174388
crossref_primary_10_1016_j_atech_2023_100193
crossref_primary_10_1016_j_ecoinf_2021_101422
crossref_primary_10_3390_f16030487
crossref_primary_10_1016_j_ufug_2020_126714
crossref_primary_10_1186_s13717_021_00285_6
crossref_primary_10_3390_rs12244190
crossref_primary_10_1080_10106049_2022_2152496
crossref_primary_10_1007_s12517_021_08267_w
crossref_primary_10_1111_gcb_16110
crossref_primary_10_1016_j_rsase_2021_100616
crossref_primary_10_3390_geographies3010005
crossref_primary_10_1109_JSTARS_2021_3103754
crossref_primary_10_1007_s11269_022_03234_w
crossref_primary_10_1016_j_rama_2023_10_007
crossref_primary_10_3390_rs12071135
crossref_primary_10_1016_j_scitotenv_2023_161757
crossref_primary_10_1371_journal_pone_0304034
crossref_primary_10_1002_ldr_3692
crossref_primary_10_1016_j_ejrs_2021_06_006
crossref_primary_10_1016_j_uclim_2023_101712
crossref_primary_10_3390_rs12152469
crossref_primary_10_1007_s41685_024_00330_0
crossref_primary_10_3390_risks12120185
crossref_primary_10_2478_ceer_2021_0054
crossref_primary_10_3390_rs14194837
crossref_primary_10_3390_ijgi11030202
crossref_primary_10_3390_rs13245064
crossref_primary_10_3390_rs16020390
crossref_primary_10_3390_su14159139
crossref_primary_10_1109_ACCESS_2024_3510565
crossref_primary_10_1016_j_ufug_2024_128589
crossref_primary_10_1007_s10668_023_03558_6
crossref_primary_10_1016_j_asr_2022_05_038
crossref_primary_10_3390_rs13050876
crossref_primary_10_3389_frsen_2024_1374862
crossref_primary_10_1016_j_rsase_2023_101035
crossref_primary_10_3390_rs13132497
crossref_primary_10_1016_j_asr_2024_10_060
crossref_primary_10_1007_s10661_024_12598_y
crossref_primary_10_1007_s11600_022_00814_7
crossref_primary_10_1007_s11356_024_33288_9
crossref_primary_10_1080_20964471_2021_1948178
crossref_primary_10_1088_1748_9326_ad5742
crossref_primary_10_1016_j_heliyon_2023_e21253
crossref_primary_10_3390_land13091413
crossref_primary_10_3390_rs13245054
crossref_primary_10_1007_s12145_024_01586_y
crossref_primary_10_1016_j_asoc_2024_112055
crossref_primary_10_3390_land13030396
crossref_primary_10_3390_app14020652
crossref_primary_10_1002_ldr_4654
crossref_primary_10_1088_1748_9326_ad560a
crossref_primary_10_3390_w13243627
crossref_primary_10_47164_ijngc_v14i2_1137
crossref_primary_10_3390_rs16111850
crossref_primary_10_3390_su15118582
crossref_primary_10_3390_cli9040058
crossref_primary_10_1007_s12517_022_09947_x
crossref_primary_10_59324_ejtas_2024_2_2__55
crossref_primary_10_1016_j_envpol_2021_117711
crossref_primary_10_1016_j_heliyon_2024_e38419
crossref_primary_10_1080_15481603_2021_1943214
crossref_primary_10_3390_rs16020386
crossref_primary_10_1117_1_JRS_18_034515
crossref_primary_10_1007_s10661_023_11783_9
crossref_primary_10_1007_s12517_023_11770_x
crossref_primary_10_3390_rs12183062
crossref_primary_10_1007_s10661_024_13178_w
crossref_primary_10_1080_15481603_2023_2211881
crossref_primary_10_1080_15481603_2023_2287291
crossref_primary_10_3390_rs13224704
crossref_primary_10_3390_f14030511
crossref_primary_10_1007_s10708_023_10982_8
crossref_primary_10_3390_rs12203357
crossref_primary_10_1088_2631_8695_ad5c2c
crossref_primary_10_3390_fi14040100
crossref_primary_10_33688_aucbd_1198890
crossref_primary_10_1016_j_acags_2025_100227
crossref_primary_10_3390_atmos15060700
crossref_primary_10_1007_s12517_022_11035_z
crossref_primary_10_3390_su162310263
crossref_primary_10_1016_j_isprsjprs_2023_04_008
crossref_primary_10_3390_rs14143354
crossref_primary_10_4995_raet_2023_19014
crossref_primary_10_1016_j_catena_2024_108367
crossref_primary_10_1007_s12145_023_01008_5
crossref_primary_10_1016_j_jenvman_2022_116175
crossref_primary_10_1109_ACCESS_2021_3122569
crossref_primary_10_3390_ijgi10070459
crossref_primary_10_1080_10106049_2022_2063408
crossref_primary_10_3390_rs14235941
crossref_primary_10_2478_mgr_2024_0006
crossref_primary_10_3390_rs14205232
crossref_primary_10_1109_ACCESS_2021_3102215
crossref_primary_10_3390_rs15163958
crossref_primary_10_1080_10106049_2023_2236579
crossref_primary_10_1007_s12145_025_01720_4
crossref_primary_10_1016_j_asr_2021_10_020
crossref_primary_10_1016_j_compag_2024_109541
crossref_primary_10_1080_14498596_2024_2378362
crossref_primary_10_1007_s42979_021_00929_6
crossref_primary_10_1080_17538947_2023_2218119
crossref_primary_10_3390_urbansci5030068
crossref_primary_10_1109_JSTARS_2021_3100923
crossref_primary_10_5814_j_issn_1674_764x_2023_05_009
crossref_primary_10_1007_s12665_023_10901_7
crossref_primary_10_3390_land12040784
crossref_primary_10_1016_j_cacint_2024_100179
crossref_primary_10_1016_j_ijdrr_2024_104909
crossref_primary_10_1016_j_ecolind_2023_111246
crossref_primary_10_3390_ijgi10020102
crossref_primary_10_1080_10106049_2023_2184500
crossref_primary_10_3390_ijgi11060333
crossref_primary_10_1080_10106049_2021_1923827
crossref_primary_10_1002_vms3_1097
crossref_primary_10_1155_2024_3937558
crossref_primary_10_1186_s13717_024_00511_x
crossref_primary_10_1007_s12145_024_01346_y
crossref_primary_10_1080_01431161_2020_1763512
crossref_primary_10_1080_22797254_2023_2173659
crossref_primary_10_3390_agronomy11122373
crossref_primary_10_3390_land11091397
crossref_primary_10_1016_j_jenvman_2024_122658
crossref_primary_10_53093_mephoj_943347
crossref_primary_10_1016_j_ecolind_2023_110025
crossref_primary_10_3390_rs12244010
crossref_primary_10_1016_j_envc_2024_100866
crossref_primary_10_3390_rs13020185
crossref_primary_10_1007_s12145_021_00744_w
crossref_primary_10_1016_j_ecolind_2023_110020
crossref_primary_10_3389_feart_2020_560933
crossref_primary_10_1109_JSTARS_2024_3491804
crossref_primary_10_3390_su14095700
crossref_primary_10_1080_10095020_2022_2035656
crossref_primary_10_3390_rs12152411
crossref_primary_10_1080_02626667_2022_2049271
crossref_primary_10_3390_rs14010138
crossref_primary_10_3390_rs16214013
crossref_primary_10_3390_rs15030750
crossref_primary_10_3390_rs14112688
crossref_primary_10_1016_j_isprsjprs_2022_09_015
crossref_primary_10_1007_s13201_024_02250_y
crossref_primary_10_3390_rs13030334
crossref_primary_10_7868_25000640230106
crossref_primary_10_1155_2021_5564286
crossref_primary_10_1016_j_ecolind_2024_112036
crossref_primary_10_1016_j_rsase_2021_100515
crossref_primary_10_3390_app11094154
crossref_primary_10_1016_j_heliyon_2024_e26913
crossref_primary_10_5194_essd_16_3307_2024
crossref_primary_10_1016_j_ejrs_2022_03_012
crossref_primary_10_3390_s25020431
crossref_primary_10_1038_s41598_022_09974_4
crossref_primary_10_3390_rs13040586
crossref_primary_10_1080_17538947_2024_2376255
crossref_primary_10_1088_1755_1315_1038_1_012041
crossref_primary_10_1007_s10661_025_13686_3
crossref_primary_10_1007_s12145_022_00874_9
crossref_primary_10_1515_geo_2022_0499
crossref_primary_10_3390_rs13040580
crossref_primary_10_3390_su15031858
crossref_primary_10_3390_s21030958
crossref_primary_10_1080_27658511_2024_2345442
crossref_primary_10_3390_rs15102501
crossref_primary_10_1007_s10661_023_12112_w
crossref_primary_10_26833_ijeg_1538708
crossref_primary_10_1016_j_jag_2023_103333
crossref_primary_10_1016_j_catena_2023_107200
crossref_primary_10_1002_ldr_3980
crossref_primary_10_3390_jmse11020379
crossref_primary_10_3390_rs12122005
crossref_primary_10_3390_rs12121952
crossref_primary_10_3390_app10134574
crossref_primary_10_1016_j_ecoinf_2023_102273
crossref_primary_10_3390_earth5040044
Cites_doi 10.1016/S0167-8809(01)00243-2
10.1080/10106049.2019.1568586
10.1007/bf00994018
10.3390/rs9010022
10.1016/j.isprsjprs.2012.04.001
10.1016/j.scitotenv.2018.07.353
10.1016/j.rse.2012.08.017
10.1016/j.csda.2009.04.009
10.1016/j.rse.2016.02.028
10.3389/fpls.2016.01419
10.1109/LGRS.2018.2803259
10.1080/07038992.1997.10855204
10.1080/09296174.2013.830554
10.1038/530144a
10.1080/2150704X.2017.1295479
10.1016/j.spacepol.2015.01.001
10.1016/j.asr.2008.02.012
10.31223/osf.io/w79ea
10.1016/j.rse.2014.02.015
10.1080/014311699212560
10.1016/0005-2728(87)90216-7
10.1016/0197-2456(81)90001-5
10.1016/j.rse.2017.05.024
10.1080/07038992.2018.1437719
10.3390/rs8060488
10.1016/j.rse.2011.11.026
10.1002/joc.5086
10.1007/978-1-4842-2734-3
10.3390/rs70302899
10.1002/ecs2.1436
10.1016/S0034-4257(01)00222-X
10.1111/j.1461-0248.2006.00997.x
10.1080/01431161.2015.1088674
10.1080/01431160600589179
10.1162/089976698300017197
10.1080/01431168308948546
10.1007/978-1-4614-6849-3
10.1007/978-0-387-84858-7_15
10.1016/j.jag.2014.08.001
10.1007/978-1-4614-6849-3_4
10.1109/LGRS.2017.2681128
10.3390/rs9010095
10.1080/01431161.2018.1433343
10.1007/s00484-012-0588-9
10.1142/s0129065797000227
10.1016/B978-0-12-811318-9.00033-8
10.1038/nature23285
10.1080/01431161.2018.1528400
10.3390/rs10040635
10.1080/2150704X.2013.782112
10.1080/01431161.2016.1246775
10.1016/j.rse.2012.10.031
10.1023/a:1010933404324
10.2307/20038423
10.1016/j.isprsjprs.2010.11.001
10.1016/j.scitotenv.2018.03.324
10.1080/01431161.2017.1399477
10.3390/rs10111794
10.1016/j.rse.2013.08.029
10.1093/treephys/28.7.1037
10.1007/s11063-018-9883-8
10.1016/j.jag.2014.10.012
10.2307/1313119
10.1672/08-34.1
10.1111/geb.12311
10.1007/bf02295996
10.1016/j.jag.2018.06.007
10.1016/j.isprsjprs.2011.11.002
10.1016/j.rse.2017.03.021
10.1080/01431160500275762
10.1364/AO.4.000011
10.3390/rs8030166
10.3390/rs8110888
10.1214/aos/1013203451
10.1080/01431160304987
10.18637/jss.v028.i05
10.1016/j.isprsjprs.2014.03.009
10.1080/01431160701352154
10.1080/15481603.2017.1370169
10.1016/j.rse.2018.11.032
10.1016/j.jag.2012.09.002
10.1016/S0168-1923(99)00092-1
10.1145/2939672.2939785
ContentType Journal Article
Copyright 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019
Copyright_xml – notice: 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019
CorporateAuthor Dept of Physical Geography and Ecosystem Science
Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
Centre for Environmental and Climate Science (CEC)
Centrum för miljö- och klimatvetenskap (CEC)
Institutionen för naturgeografi och ekosystemvetenskap
CorporateAuthor_xml – name: Dept of Physical Geography and Ecosystem Science
– name: Naturvetenskapliga fakulteten
– name: Lund University
– name: Centre for Environmental and Climate Science (CEC)
– name: Institutionen för naturgeografi och ekosystemvetenskap
– name: Centrum för miljö- och klimatvetenskap (CEC)
– name: Faculty of Science
– name: Lunds universitet
DBID 0YH
AAYXX
CITATION
7S9
L.6
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOA
DOI 10.1080/15481603.2019.1650447
DatabaseName Taylor & Francis Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Environmental Sciences
EISSN 1943-7226
EndPage 20
ExternalDocumentID oai_doaj_org_article_9495bbdb878a4a83828af14ced2edc0e
oai_portal_research_lu_se_publications_8830807b_7443_481d_b5f6_3f2e91c501f7
oai_lup_lub_lu_se_8830807b_7443_481d_b5f6_3f2e91c501f7
10_1080_15481603_2019_1650447
1650447
Genre Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
ABJNI
ACDHJ
ACZPZ
ADOPC
ADTPV
AGCHP
AI.
AMATQ
AOWAS
AURDB
BFWEY
CWRZV
D8T
D95
EJD
GROUPED_DOAJ
NUSFT
PCLFJ
VH1
ZZAVC
ID FETCH-LOGICAL-c681t-596a96912831a719e01bc7e9da465c5aae60ad957c06566ee3bc4e46f5c87aa23
IEDL.DBID 0YH
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:26:05 EDT 2025
Fri Aug 22 03:13:16 EDT 2025
Sat Apr 05 03:33:44 EDT 2025
Mon May 05 20:01:07 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Tue Jul 01 02:27:27 EDT 2025
Wed Dec 25 09:08:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c681t-596a96912831a719e01bc7e9da465c5aae60ad957c06566ee3bc4e46f5c87aa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6486-8747
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1650447
PQID 2388779012
PQPubID 24069
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_15481603_2019_1650447
swepub_primary_oai_lup_lub_lu_se_8830807b_7443_481d_b5f6_3f2e91c501f7
informaworld_taylorfrancis_310_1080_15481603_2019_1650447
crossref_primary_10_1080_15481603_2019_1650447
swepub_primary_oai_portal_research_lu_se_publications_8830807b_7443_481d_b5f6_3f2e91c501f7
doaj_primary_oai_doaj_org_article_9495bbdb878a4a83828af14ced2edc0e
proquest_miscellaneous_2388779012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References CIT0072
CIT0074
CIT0073
CIT0076
CIT0075
CIT0078
CIT0077
CIT0070
Nair V. (CIT0071) 2010
Cook D. (CIT0018) 2016
CIT0083
CIT0082
CIT0085
R Core Team (CIT0080) 2017
CIT0084
CIT0086
CIT0001
CIT0089
CIT0088
Bergstra J. (CIT0006) 2012; 13
Czaplewski R. L. (CIT0020) 1992; 58
CIT0081
CIT0003
CIT0002
CIT0005
CIT0004
CIT0007
CIT0009
CIT0008
CIT0094
CIT0093
CIT0096
CIT0095
CIT0010
Brink H. (CIT0011) 2017
CIT0098
CIT0012
CIT0099
CIT0092
CIT0091
Tachikawa T. (CIT0087) 2011
CIT0014
Vapnik V. (CIT0090) 1982
CIT0013
CIT0016
CIT0017
CIT0019
CIT0021
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
CIT0030
CIT0032
CIT0031
CIT0033
Zerega E. (CIT0097) 2018
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
Rakitianskaia A. (CIT0079) 2015
CIT0041
CIT0043
CIT0042
CIT0045
CIT0044
He H. (CIT0040) 2008; 9
CIT0047
CIT0046
CIT0049
CIT0048
Kuwata K. (CIT0056) 2015
CIT0050
CIT0052
CIT0051
CIT0054
CIT0053
CIT0055
CIT0058
CIT0057
Chen T. (CIT0015) 2016
CIT0059
CIT0061
CIT0060
CIT0063
CIT0062
CIT0065
CIT0064
CIT0067
CIT0100
CIT0066
CIT0069
CIT0068
Goodfellow I. (CIT0034) 2016
References_xml – ident: CIT0046
  doi: 10.1016/S0167-8809(01)00243-2
– ident: CIT0064
  doi: 10.1080/10106049.2019.1568586
– ident: CIT0019
  doi: 10.1007/bf00994018
– ident: CIT0082
– ident: CIT0060
  doi: 10.3390/rs9010022
– ident: CIT0083
  doi: 10.1016/j.isprsjprs.2012.04.001
– ident: CIT0095
  doi: 10.1016/j.scitotenv.2018.07.353
– ident: CIT0077
  doi: 10.1016/j.rse.2012.08.017
– ident: CIT0050
  doi: 10.1016/j.csda.2009.04.009
– ident: CIT0049
  doi: 10.1016/j.rse.2016.02.028
– volume-title: Paper Presented at the 2011 IEEE International Geoscience and Remote Sensing Symposium
  year: 2011
  ident: CIT0087
– ident: CIT0068
  doi: 10.3389/fpls.2016.01419
– ident: CIT0032
  doi: 10.1109/LGRS.2018.2803259
– ident: CIT0003
  doi: 10.1080/07038992.1997.10855204
– ident: CIT0093
  doi: 10.1080/09296174.2013.830554
– ident: CIT0092
  doi: 10.1038/530144a
– ident: CIT0017
  doi: 10.1080/2150704X.2017.1295479
– ident: CIT0037
  doi: 10.1016/j.spacepol.2015.01.001
– ident: CIT0016
  doi: 10.1016/j.asr.2008.02.012
– ident: CIT0070
– ident: CIT0001
  doi: 10.31223/osf.io/w79ea
– volume: 9
  start-page: 1263
  year: 2008
  ident: CIT0040
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– ident: CIT0074
  doi: 10.1016/j.rse.2014.02.015
– ident: CIT0085
  doi: 10.1080/014311699212560
– ident: CIT0086
  doi: 10.1016/0005-2728(87)90216-7
– ident: CIT0057
  doi: 10.1016/0197-2456(81)90001-5
– ident: CIT0099
  doi: 10.1016/j.rse.2017.05.024
– ident: CIT0041
  doi: 10.1080/07038992.2018.1437719
– ident: CIT0078
  doi: 10.3390/rs8060488
– ident: CIT0023
  doi: 10.1016/j.rse.2011.11.026
– ident: CIT0027
  doi: 10.1002/joc.5086
– ident: CIT0008
  doi: 10.1007/978-1-4842-2734-3
– volume-title: Real-world Machine Learning
  year: 2017
  ident: CIT0011
– volume: 58
  start-page: 189
  issue: 2
  year: 1992
  ident: CIT0020
  publication-title: Photogrammetric Engineering & Remote Sensing
– ident: CIT0089
  doi: 10.3390/rs70302899
– ident: CIT0088
  doi: 10.1002/ecs2.1436
– ident: CIT0014
– ident: CIT0024
  doi: 10.1016/S0034-4257(01)00222-X
– volume-title: Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI
  year: 2016
  ident: CIT0018
– ident: CIT0039
  doi: 10.1111/j.1461-0248.2006.00997.x
– ident: CIT0035
  doi: 10.1080/01431161.2015.1088674
– ident: CIT0096
  doi: 10.1080/01431160600589179
– volume-title: Paper Presented at the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
  year: 2015
  ident: CIT0056
– volume-title: Assessing Edge Pixel Classification and Growing Stock Volume Estimation in Forest Stands Using a Machine Learning Algorithm and Sentinel-2 Data
  year: 2018
  ident: CIT0097
– ident: CIT0022
  doi: 10.1162/089976698300017197
– ident: CIT0043
  doi: 10.1080/01431168308948546
– ident: CIT0053
  doi: 10.1007/978-1-4614-6849-3
– volume-title: Paper Presented at the Proceedings of the 27th International Conference on Machine Learning (ICML–10
  year: 2010
  ident: CIT0071
– ident: CIT0038
  doi: 10.1007/978-0-387-84858-7_15
– ident: CIT0072
  doi: 10.1016/j.jag.2014.08.001
– ident: CIT0054
  doi: 10.1007/978-1-4614-6849-3_4
– ident: CIT0055
  doi: 10.1109/LGRS.2017.2681128
– ident: CIT0045
  doi: 10.3390/rs9010095
– ident: CIT0066
  doi: 10.1080/01431161.2018.1433343
– ident: CIT0012
  doi: 10.1007/s00484-012-0588-9
– ident: CIT0031
  doi: 10.1142/s0129065797000227
– ident: CIT0048
  doi: 10.1016/B978-0-12-811318-9.00033-8
– ident: CIT0007
  doi: 10.1038/nature23285
– ident: CIT0042
  doi: 10.1080/01431161.2018.1528400
– ident: CIT0047
  doi: 10.3390/rs10040635
– ident: CIT0061
  doi: 10.1080/2150704X.2013.782112
– ident: CIT0059
  doi: 10.1080/01431161.2016.1246775
– ident: CIT0075
  doi: 10.1016/j.rse.2012.10.031
– ident: CIT0010
  doi: 10.1023/a:1010933404324
– ident: CIT0009
  doi: 10.2307/20038423
– ident: CIT0036
– ident: CIT0069
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: CIT0002
  doi: 10.1016/j.scitotenv.2018.03.324
– ident: CIT0063
  doi: 10.1080/01431161.2017.1399477
– ident: CIT0076
  doi: 10.3390/rs10111794
– ident: CIT0026
  doi: 10.1016/j.rse.2013.08.029
– ident: CIT0058
  doi: 10.1093/treephys/28.7.1037
– ident: CIT0084
  doi: 10.1007/s11063-018-9883-8
– ident: CIT0013
  doi: 10.1016/j.jag.2014.10.012
– ident: CIT0073
  doi: 10.2307/1313119
– ident: CIT0033
  doi: 10.1672/08-34.1
– ident: CIT0004
  doi: 10.1111/geb.12311
– ident: CIT0067
  doi: 10.1007/bf02295996
– ident: CIT0091
  doi: 10.1016/j.jag.2018.06.007
– ident: CIT0081
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: CIT0051
  doi: 10.1016/j.rse.2017.03.021
– ident: CIT0021
  doi: 10.1080/01431160500275762
– volume: 13
  start-page: 281
  year: 2012
  ident: CIT0006
  publication-title: Journal of Machine Learning Research
– ident: CIT0030
  doi: 10.1364/AO.4.000011
– ident: CIT0044
  doi: 10.3390/rs8030166
– ident: CIT0094
  doi: 10.3390/rs8110888
– ident: CIT0029
  doi: 10.1214/aos/1013203451
– ident: CIT0098
  doi: 10.1080/01431160304987
– ident: CIT0052
  doi: 10.18637/jss.v028.i05
– ident: CIT0005
  doi: 10.1016/j.isprsjprs.2014.03.009
– ident: CIT0065
  doi: 10.1080/01431160701352154
– start-page: 168
  volume-title: Deep Learning
  year: 2016
  ident: CIT0034
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2017
  ident: CIT0080
– ident: CIT0028
  doi: 10.1080/15481603.2017.1370169
– ident: CIT0100
  doi: 10.1016/j.rse.2018.11.032
– volume-title: Paper Presented at the 2015 IEEE Symposium Series on Computational Intelligence
  year: 2015
  ident: CIT0079
– volume-title: Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (springer Series in Statistics)
  year: 1982
  ident: CIT0090
– ident: CIT0025
  doi: 10.1016/j.jag.2012.09.002
– ident: CIT0062
  doi: 10.1016/S0168-1923(99)00092-1
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: CIT0015
  doi: 10.1145/2939672.2939785
SSID ssj0035115
Score 2.6347914
Snippet In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer...
SourceID doaj
swepub
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms autumn
boreal
Boreal ecosystems
chi-square distribution
classification
Earth and Related Environmental Sciences
Earth Observation
Engineering and Technology
Environmental Engineering
Environmental Sciences
Fjärranalysteknik
Geovetenskap och miljövetenskap
Geovetenskap och relaterad miljövetenskap
Image classification
Jordobservationsteknik
land use and land cover maps
Land-cover
Land-use
landscapes
machine learning
Miljövetenskap
Natural Sciences
Naturgeografi
Naturresursteknik
Naturvetenskap
Physical Geography
prediction
Remote Sensing
Sentinel-2
spring
summer
support vector machines
Sweden
Teknik
winter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15Kn2T7QoXSmxPraemYloRQ2l7aQOhFyNJoE9i1l3j30EP_ezWyN92UwvbQg8EIWxKasfXN-PM3hLzNMUNQSfIKeGMryWOoTN4mKgHB6IxIfCy1AT9_0ecX8uOlutwp9YWcsFEeeFy4Y5sRfNvG1jTGS29EjhB8YjJA5BBDDfj2zXveNpga38H4dUwVpVSZYyRdi-2_O6Y-xjZsQlqXPWIZoUisrbKzKxXx_j-kS-8C0F1R0bIRnT0kDyYESU_GmT8i96B7TA5PBsxp98sf9B0t52PKYnhCfn7yXaQBqZoUz5DKSDcD0IDAGZlCxTh09fsXAtonuiwsS6BTWYk59Yt5f3O9vloO9LqjnmbnySCzdDcgi4oihX5OvyL9qINFxSmyT5-Si7PTbx_Oq6noQhW0YetKWe2ttnnbEsw3zELN2tCAjV5qFZT3oGsfrWpCjVAQQLRBgtRJBdN4z8UzctD1HRwSmiK3KcdDIKCVgXsDdQCTgoqGJavTjMjtorswKZJjYYyFY5Nw6dZWDm3lJlvNyNHtbatRkmPfDe_RorcXo6J2ach-5iY_c_v8bEbsrj-4dUmopLH6iRN7JvBm6zwuP734ScZ30G8GlwGTQcVHxmfkdPSqO9NcbFb5aPPhBnDGiDxG07pGSuHyQNG1KmknEgfLgqpZymN9_0s_YyznJgGpq6m_1U5m-J86f_4_VvIFuc8xaYF5LP6SHKxvNvAqI7t1-7o8xL8AqG9IVw
  priority: 102
  providerName: Directory of Open Access Journals
Title Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1650447
https://www.proquest.com/docview/2388779012
https://lup.lub.lu.se/record/8830807b-7443-481d-b5f6-3f2e91c501f7
oai:portal.research.lu.se:publications/8830807b-7443-481d-b5f6-3f2e91c501f7
https://doaj.org/article/9495bbdb878a4a83828af14ced2edc0e
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgXLggPtXlozIS4pYSO05iHwtqtULQC1QCLpbjjLeVdpPVJnvgwH9nxknKLgIViUOiaBXb2cw4fjN5ecPYK4wZfB6UTECWJlGy9onGZSLJwOsCEYmrY23Aj-fF_EK9_5JPbMJupFVSDB0GoYj4rKbJ7apuYsS9IZRN1ZGJmGWOBWIMpcrb7I4kb0WXTr_Op4cxvSbLo2SqwmAJ20wf8fytm73lKar4_6Zhuo9Ed9VF44p0dp_dG6EkPxls_4DdguYhOzzpKLndrr7z1zweD7mL7hH78QH_MffE2eR0RJxGvu2Ae0LQRBmKVuLrX98S8DbwVaRbAh_rSyy4Wy7azVV_uer4VcMdRy9CtBm764hOxYlLv-CfiIfUwDKRnGioj9nF2ennd_NkrL6Q-EKLPslN4UxhcP3KhCuFgVRUvgRTO1XkPncOitTVJi99SpgQIKu8AlWE3OvSOZk9YQdN28Ah46GWJmBgBBlUykunIfWgg89rLYIpwoyp6aZbP0qTU4WMpRWjgulkK0u2sqOtZuz4utl60Oa4qcFbsuj1ySStHX9oNws7zlRrMGSsqrrSpXbK6QxDUheE8lBLqH0KM2Z2_cH2MbMShjIoNrvhAl5OzmNxGtO7GddAu-0sIidN0o9Cztjp4FV7l7ncrnGrcLMdWK0zHKOsbKlUZnGg2lZ5KGwWJBjh81QEHOvbH_oZgjo7Kkldjv2td1LE_9T50_-4Cc_YXUlJC8pjyefsoN9s4QUiu746inMX91l6fhSzIz8B_5dFpg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgHODCb7Ty00iIW0rsOIl9HGjTgK4XNmniYjnOczetTaomPYDE_46fk4x2Ag1ph0hRFT8nzqv9vZfP3yPknY8ZbOoEj4DnKhK8tJH0y0SUgJWZRySmDLUBj6bZ4Yn4cpqebuyFQVolxtCuE4oIczX-uTEZPVDiPiDMxvLIyMxSY-ZBhhD5bXInVVmOVQySeDrMxvidLA2aqcJHS77NsIvnX2a21qcg439FxHQbim7Ki4Yl6eABscPDdEyUi_G6Lcb25xWdx5s97UNyv0esdK9zsUfkFlSPye5egzn0evGDvqfhvEuRNE_Ir4nvilqkhlI8Q-okXTdALQJ1ZCYFZ6DLP1sWaO3oIrA6gfZlLGbUzGf16rw9WzT0vKKGemf1oDaYa5C1RZGyP6PfkO5UwTziFNmuT8nJwf7xp8OoL_IQ2UyyNvLvzKhM-WUyYSZnCmJW2BxUaUSW2tQYyGJTqjS3MUJPgKSwAkTmUitzY3jyjOxUdQW7hLqSK-fjL0igEJYbCbEF6WxaSuZU5kZEDK9W214BHQtxzDXrhVKHodY41Lof6hEZXzZbdhIg1zX4iH5zeTEqeIcf6tVM9xOCVj4yLYqykLk0wsjER77GMWGh5FDaGEZEbXqdbkMCx3XVVnRyzQ28HVxU-9kCPwGZCup1oz1Ak6gwyfiI7He-u3Wb8_XSH4U_dANaysT3kRc6FyLRvqNSF6nLdOI4KGbTmDnf1_e_2OliR90LVp319pYbmej_Mv78BoPwhtw9PD6a6Mnn6dcX5B7HPAmmzvhLstOu1vDKg8m2eB1mi98Z4mda
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgSIgXxk-t_DQS4i0lcZzEfhywasCokGAS4sWynXM30SZVkz4Mif8dn5OMdgINaQ-Roqg-J-7F_u7y-TtCXvqYwWaOswhYISPOShsJv0xEKViRe0Siy1Ab8NM0PzzmH75lA5uw6WmVGEO7TigizNX4ci9LNzDiXiPKxurISMyS48RjDM6L6-RGjuLhuIsjng6TMX4my4JkKvfBkm8zbOL5l5mt5Smo-F_QMN1GopvqomFFmuwSMzxLR0T5MV63Zmx_XpB5vNLD3iG3e7xK9zsHu0uuQXWP7O03mEGvF2f0FQ3nXYKkuU9-HfmeqEViKMUzJE7SdQPUIkxHXlJwBbr8s2GB1o4uAqcTaF_EYkb1fFavTtuTRUNPK6qpd1UPaYO5BjlbFAn7M_oFyU4VzCNGkev6gBxPDr6-PYz6Eg-RzUXSRpnMtcylXyTTRBeJhDgxtgBZap5nNtMa8liXMitsjMATIDWWA89dZkWhNUsfkp2qrmCPUFcy6Xz0BSkYbpkWEFsQzmalSJzM3Yjw4Z9Vttc_xzIcc5X0MqnDUCscatUP9YiMz5stOwGQyxq8Qbc5_zHqd4cL9Wqm-ulASR-XGlMaUQjNtUh93Ktdwi2UDEobw4jITadTbUjfuK7WikovuYEXg4cqP1fgByBdQb1ulIdnAvUlEzYiB53rbt3mfL30h_GHakAJkfo-CqMKzlPlOyqVyVyuUsdAJjaLE-f7-v4XO13kqHq5qpPe3nIjD_1fxh9dYRCek5uf303U0fvpx8fkFsMkCebN2BOy067W8NQjydY8C3PFb1UKZf4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+cover+and+land+use+classification+performance+of+machine+learning+algorithms+in+a+boreal+landscape+using+Sentinel-2+data&rft.jtitle=GIScience+and+remote+sensing&rft.au=Abdi%2C+Abdulhakim&rft.date=2020-01-02&rft.issn=1548-1603&rft.volume=57&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1080%2F15481603.2019.1650447&rft.externalDocID=oai_portal_research_lu_se_publications_8830807b_7443_481d_b5f6_3f2e91c501f7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon