Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data
In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency's Sentin...
Saved in:
Published in | GIScience and remote sensing Vol. 57; no. 1; pp. 1 - 20 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.01.2020
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2019.1650447 |
Cover
Loading…
Abstract | In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency's Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar's chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar's test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research. |
---|---|
AbstractList | In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency’s Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar’s chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar’s test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research. In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency’s Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar’s chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar’s test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research. |
Author | Abdi, Abdulhakim Mohamed |
Author_xml | – sequence: 1 givenname: Abdulhakim Mohamed orcidid: 0000-0001-6486-8747 surname: Abdi fullname: Abdi, Abdulhakim Mohamed email: hakim.abdi@cec.lu.se organization: Department of Physical Geography and Ecosystem Science, Lund University |
BackLink | https://lup.lub.lu.se/record/8830807b-7443-481d-b5f6-3f2e91c501f7$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/8830807b-7443-481d-b5f6-3f2e91c501f7$$DView record from Swedish Publication Index |
BookMark | eNqNkktv1DAUhSNUJNrCT0Dykk2KHT8jNqCKR6WRWABr68a5mXHliYOdUHXR_44zMyCBxGPhh6xzvivfey6qszGOWFXPGb1i1NCXTArDFOVXDWXtFVOSCqEfVeesFbzWTaPOyr1o6lX0pLrI-ZZSLhmT59XDBsaeuPgNE1lvYd2WjMQFyNkP3sHs40gmTENMexgdkjiQPbidH5EEhDT6cUsgbGPy826fiR8JkC4mhHDAZQcTFuYq-4TjXHyhbkgPMzytHg8QMj47nZfVl3dvP19_qDcf399cv9nUThk217JV0KqWNYYz0KxFyjqnse1BKOkkACoKfSu1o0oqhcg7J1CoQTqjARp-Wd0cuX2EWzslv4d0byN4e3iIaWshzd4FtK1oZdf1ndEGBBhuGgMDEw77BntHsbDgyMp3OC3dL7QpphmCTZhLX9zOhsVmtEUVTn3M1hheZqY7q4Xgtgyut50clOVDgy1zkrJBlxqbP9YIy1RWd2L_J-7FETel-HXBPNu9zw5DmQ7GJduGG6N1S9naKXmUuhRzTjj8rM2oXdNmf6TNrmmzp7QV36vffM7Phy_PCXz4p_v10e3HQ8ruYgq9neE-xDSkEjqfLf874jvYqPD5 |
CitedBy_id | crossref_primary_10_1016_j_jafr_2024_101350 crossref_primary_10_1002_ieam_4704 crossref_primary_10_1016_j_jag_2023_103402 crossref_primary_10_1111_emr_12579 crossref_primary_10_1186_s40562_025_00377_7 crossref_primary_10_3390_app14041638 crossref_primary_10_1007_s10596_024_10317_7 crossref_primary_10_1016_j_asr_2024_06_010 crossref_primary_10_3390_rs14133041 crossref_primary_10_1016_j_ecolind_2021_108438 crossref_primary_10_1007_s10530_022_02910_7 crossref_primary_10_1016_j_aei_2021_101380 crossref_primary_10_1080_22797254_2022_2083984 crossref_primary_10_1016_j_jag_2022_102948 crossref_primary_10_1007_s11004_023_10113_6 crossref_primary_10_3390_rs15225364 crossref_primary_10_3390_ijgi12060219 crossref_primary_10_1016_j_asr_2024_07_066 crossref_primary_10_1016_j_rsase_2022_100843 crossref_primary_10_3390_land13050700 crossref_primary_10_1007_s00267_023_01826_9 crossref_primary_10_3390_quat6020028 crossref_primary_10_1016_j_ecolind_2022_108961 crossref_primary_10_1088_1755_1315_1241_1_012112 crossref_primary_10_1002_gch2_202300155 crossref_primary_10_1016_j_jclepro_2024_142971 crossref_primary_10_1071_CP23340 crossref_primary_10_3390_rs14174169 crossref_primary_10_1007_s11356_025_36292_9 crossref_primary_10_1016_j_jafrearsci_2023_105050 crossref_primary_10_3390_rs16050893 crossref_primary_10_1016_j_jag_2022_102718 crossref_primary_10_3390_ijgi11080423 crossref_primary_10_3389_fenvs_2022_896158 crossref_primary_10_3390_rs15082027 crossref_primary_10_1080_10106049_2021_1924295 crossref_primary_10_1111_tgis_12684 crossref_primary_10_3390_rs16122219 crossref_primary_10_1016_j_landusepol_2024_107305 crossref_primary_10_1155_2023_6657171 crossref_primary_10_1007_s11042_024_18828_2 crossref_primary_10_1016_j_sciaf_2023_e01595 crossref_primary_10_1007_s40808_025_02283_5 crossref_primary_10_1007_s12518_024_00549_8 crossref_primary_10_1007_s12145_025_01748_6 crossref_primary_10_3390_land11122209 crossref_primary_10_1016_j_heliyon_2021_e08405 crossref_primary_10_3390_rs12142276 crossref_primary_10_1142_S0219467823500365 crossref_primary_10_1007_s12517_024_12132_x crossref_primary_10_3390_d14040240 crossref_primary_10_29023_alanyaakademik_1095574 crossref_primary_10_3390_rs13101902 crossref_primary_10_3390_rs15133241 crossref_primary_10_1016_j_envadv_2022_100209 crossref_primary_10_1016_j_envpol_2021_117788 crossref_primary_10_3390_electronics12040896 crossref_primary_10_1016_j_rsase_2024_101259 crossref_primary_10_1080_01431161_2024_2379515 crossref_primary_10_3390_f14091788 crossref_primary_10_3390_land11030351 crossref_primary_10_1016_j_ecolind_2024_112516 crossref_primary_10_1016_j_rsase_2021_100565 crossref_primary_10_1016_j_rsase_2024_101257 crossref_primary_10_3390_app10228083 crossref_primary_10_1007_s10661_021_08958_7 crossref_primary_10_5194_essd_14_4967_2022 crossref_primary_10_3390_w16091267 crossref_primary_10_1109_JSTARS_2024_3490775 crossref_primary_10_3390_rs14030616 crossref_primary_10_3390_rs14215554 crossref_primary_10_1016_j_ecolind_2021_108200 crossref_primary_10_14358_PERS_24_00026R2 crossref_primary_10_3390_rs13152983 crossref_primary_10_1093_ijlct_ctae280 crossref_primary_10_3390_s22228750 crossref_primary_10_12688_f1000research_124604_1 crossref_primary_10_3390_rs11222716 crossref_primary_10_3390_rs12071201 crossref_primary_10_1016_j_ecolind_2022_108989 crossref_primary_10_1007_s11356_022_22063_3 crossref_primary_10_1007_s12517_021_08555_5 crossref_primary_10_1016_j_cities_2025_105850 crossref_primary_10_1016_j_iswcr_2023_09_005 crossref_primary_10_3390_ijgi12050206 crossref_primary_10_3390_app13021173 crossref_primary_10_1016_j_prevetmed_2022_105660 crossref_primary_10_3390_land13030335 crossref_primary_10_3390_rs16132390 crossref_primary_10_3390_rs15133257 crossref_primary_10_3390_f15101739 crossref_primary_10_1080_01431161_2023_2292015 crossref_primary_10_3390_su15108005 crossref_primary_10_1016_j_isprsjprs_2023_11_026 crossref_primary_10_3390_rs16193611 crossref_primary_10_3897_VCS_89746 crossref_primary_10_3390_ijgi10040231 crossref_primary_10_1007_s11356_021_15782_6 crossref_primary_10_1007_s40808_021_01296_0 crossref_primary_10_3390_land11101692 crossref_primary_10_1016_j_isprsjprs_2023_10_018 crossref_primary_10_1109_JSTARS_2023_3247624 crossref_primary_10_1007_s10661_021_09729_0 crossref_primary_10_3390_agronomy12081948 crossref_primary_10_1111_aje_13300 crossref_primary_10_1016_j_inffus_2022_06_003 crossref_primary_10_3390_s24051587 crossref_primary_10_1016_j_agwat_2025_109416 crossref_primary_10_1007_s10661_023_11140_w crossref_primary_10_3390_rs16244730 crossref_primary_10_3390_rs13214405 crossref_primary_10_1016_j_envc_2021_100237 crossref_primary_10_1016_j_rse_2022_113144 crossref_primary_10_3390_ijgi13010005 crossref_primary_10_1016_j_heliyon_2024_e39020 crossref_primary_10_3390_ijgi9040277 crossref_primary_10_61186_jsaeh_11_3_1 crossref_primary_10_1097_MNM_0000000000001723 crossref_primary_10_3390_rs12071225 crossref_primary_10_1016_j_ecoinf_2024_102868 crossref_primary_10_1016_j_uclim_2022_101116 crossref_primary_10_1088_1748_9326_abcfe3 crossref_primary_10_3390_rs12101620 crossref_primary_10_3390_rs13040777 crossref_primary_10_1016_j_agwat_2023_108456 crossref_primary_10_1007_s11069_024_06481_9 crossref_primary_10_1016_j_ecoinf_2021_101522 crossref_primary_10_1016_j_ufug_2023_128095 crossref_primary_10_1080_15481603_2023_2257978 crossref_primary_10_1080_17538947_2022_2099022 crossref_primary_10_3390_w15193364 crossref_primary_10_1080_1747423X_2023_2234921 crossref_primary_10_1007_s41870_023_01673_1 crossref_primary_10_3390_rs12244093 crossref_primary_10_1016_j_rsase_2024_101349 crossref_primary_10_1109_TGRS_2021_3113856 crossref_primary_10_1111_2041_210X_14333 crossref_primary_10_3390_app14041578 crossref_primary_10_1016_j_rsase_2024_101223 crossref_primary_10_1016_j_ejrs_2024_03_003 crossref_primary_10_1016_j_rsase_2022_100773 crossref_primary_10_1016_j_rse_2022_112980 crossref_primary_10_1016_j_asr_2024_07_013 crossref_primary_10_1007_s10661_024_12856_z crossref_primary_10_1007_s10462_023_10617_x crossref_primary_10_1109_JSTARS_2023_3308041 crossref_primary_10_1007_s42452_022_05028_6 crossref_primary_10_1109_TGRS_2024_3386171 crossref_primary_10_1016_j_geomat_2025_100050 crossref_primary_10_1016_j_sciaf_2023_e01718 crossref_primary_10_1007_s12517_024_11945_0 crossref_primary_10_3390_rs12203314 crossref_primary_10_3390_rs13204067 crossref_primary_10_1080_19376812_2024_2424378 crossref_primary_10_3390_app112110309 crossref_primary_10_1088_1757_899X_1119_1_012006 crossref_primary_10_1016_j_catena_2021_105854 crossref_primary_10_1007_s12665_024_12060_9 crossref_primary_10_3390_agriculture12091429 crossref_primary_10_3390_rs13081494 crossref_primary_10_1007_s00521_024_10165_7 crossref_primary_10_1016_j_rsase_2023_100968 crossref_primary_10_1016_j_compag_2022_107249 crossref_primary_10_1038_s41598_020_73167_0 crossref_primary_10_1080_10106049_2022_2123959 crossref_primary_10_3390_rs16122168 crossref_primary_10_3390_resources13070095 crossref_primary_10_1080_10106049_2021_1939441 crossref_primary_10_3390_rs16050868 crossref_primary_10_3390_land12051101 crossref_primary_10_3390_su13168848 crossref_primary_10_1016_j_compag_2021_106090 crossref_primary_10_1016_j_ecoinf_2021_101545 crossref_primary_10_1088_2631_8695_acfa64 crossref_primary_10_14710_jil_22_2_313_325 crossref_primary_10_3390_rs16111946 crossref_primary_10_3390_rs15235576 crossref_primary_10_3390_rs16071305 crossref_primary_10_3390_rs14174388 crossref_primary_10_1016_j_atech_2023_100193 crossref_primary_10_1016_j_ecoinf_2021_101422 crossref_primary_10_3390_f16030487 crossref_primary_10_1016_j_ufug_2020_126714 crossref_primary_10_1186_s13717_021_00285_6 crossref_primary_10_3390_rs12244190 crossref_primary_10_1080_10106049_2022_2152496 crossref_primary_10_1007_s12517_021_08267_w crossref_primary_10_1111_gcb_16110 crossref_primary_10_1016_j_rsase_2021_100616 crossref_primary_10_3390_geographies3010005 crossref_primary_10_1109_JSTARS_2021_3103754 crossref_primary_10_1007_s11269_022_03234_w crossref_primary_10_1016_j_rama_2023_10_007 crossref_primary_10_3390_rs12071135 crossref_primary_10_1016_j_scitotenv_2023_161757 crossref_primary_10_1371_journal_pone_0304034 crossref_primary_10_1002_ldr_3692 crossref_primary_10_1016_j_ejrs_2021_06_006 crossref_primary_10_1016_j_uclim_2023_101712 crossref_primary_10_3390_rs12152469 crossref_primary_10_1007_s41685_024_00330_0 crossref_primary_10_3390_risks12120185 crossref_primary_10_2478_ceer_2021_0054 crossref_primary_10_3390_rs14194837 crossref_primary_10_3390_ijgi11030202 crossref_primary_10_3390_rs13245064 crossref_primary_10_3390_rs16020390 crossref_primary_10_3390_su14159139 crossref_primary_10_1109_ACCESS_2024_3510565 crossref_primary_10_1016_j_ufug_2024_128589 crossref_primary_10_1007_s10668_023_03558_6 crossref_primary_10_1016_j_asr_2022_05_038 crossref_primary_10_3390_rs13050876 crossref_primary_10_3389_frsen_2024_1374862 crossref_primary_10_1016_j_rsase_2023_101035 crossref_primary_10_3390_rs13132497 crossref_primary_10_1016_j_asr_2024_10_060 crossref_primary_10_1007_s10661_024_12598_y crossref_primary_10_1007_s11600_022_00814_7 crossref_primary_10_1007_s11356_024_33288_9 crossref_primary_10_1080_20964471_2021_1948178 crossref_primary_10_1088_1748_9326_ad5742 crossref_primary_10_1016_j_heliyon_2023_e21253 crossref_primary_10_3390_land13091413 crossref_primary_10_3390_rs13245054 crossref_primary_10_1007_s12145_024_01586_y crossref_primary_10_1016_j_asoc_2024_112055 crossref_primary_10_3390_land13030396 crossref_primary_10_3390_app14020652 crossref_primary_10_1002_ldr_4654 crossref_primary_10_1088_1748_9326_ad560a crossref_primary_10_3390_w13243627 crossref_primary_10_47164_ijngc_v14i2_1137 crossref_primary_10_3390_rs16111850 crossref_primary_10_3390_su15118582 crossref_primary_10_3390_cli9040058 crossref_primary_10_1007_s12517_022_09947_x crossref_primary_10_59324_ejtas_2024_2_2__55 crossref_primary_10_1016_j_envpol_2021_117711 crossref_primary_10_1016_j_heliyon_2024_e38419 crossref_primary_10_1080_15481603_2021_1943214 crossref_primary_10_3390_rs16020386 crossref_primary_10_1117_1_JRS_18_034515 crossref_primary_10_1007_s10661_023_11783_9 crossref_primary_10_1007_s12517_023_11770_x crossref_primary_10_3390_rs12183062 crossref_primary_10_1007_s10661_024_13178_w crossref_primary_10_1080_15481603_2023_2211881 crossref_primary_10_1080_15481603_2023_2287291 crossref_primary_10_3390_rs13224704 crossref_primary_10_3390_f14030511 crossref_primary_10_1007_s10708_023_10982_8 crossref_primary_10_3390_rs12203357 crossref_primary_10_1088_2631_8695_ad5c2c crossref_primary_10_3390_fi14040100 crossref_primary_10_33688_aucbd_1198890 crossref_primary_10_1016_j_acags_2025_100227 crossref_primary_10_3390_atmos15060700 crossref_primary_10_1007_s12517_022_11035_z crossref_primary_10_3390_su162310263 crossref_primary_10_1016_j_isprsjprs_2023_04_008 crossref_primary_10_3390_rs14143354 crossref_primary_10_4995_raet_2023_19014 crossref_primary_10_1016_j_catena_2024_108367 crossref_primary_10_1007_s12145_023_01008_5 crossref_primary_10_1016_j_jenvman_2022_116175 crossref_primary_10_1109_ACCESS_2021_3122569 crossref_primary_10_3390_ijgi10070459 crossref_primary_10_1080_10106049_2022_2063408 crossref_primary_10_3390_rs14235941 crossref_primary_10_2478_mgr_2024_0006 crossref_primary_10_3390_rs14205232 crossref_primary_10_1109_ACCESS_2021_3102215 crossref_primary_10_3390_rs15163958 crossref_primary_10_1080_10106049_2023_2236579 crossref_primary_10_1007_s12145_025_01720_4 crossref_primary_10_1016_j_asr_2021_10_020 crossref_primary_10_1016_j_compag_2024_109541 crossref_primary_10_1080_14498596_2024_2378362 crossref_primary_10_1007_s42979_021_00929_6 crossref_primary_10_1080_17538947_2023_2218119 crossref_primary_10_3390_urbansci5030068 crossref_primary_10_1109_JSTARS_2021_3100923 crossref_primary_10_5814_j_issn_1674_764x_2023_05_009 crossref_primary_10_1007_s12665_023_10901_7 crossref_primary_10_3390_land12040784 crossref_primary_10_1016_j_cacint_2024_100179 crossref_primary_10_1016_j_ijdrr_2024_104909 crossref_primary_10_1016_j_ecolind_2023_111246 crossref_primary_10_3390_ijgi10020102 crossref_primary_10_1080_10106049_2023_2184500 crossref_primary_10_3390_ijgi11060333 crossref_primary_10_1080_10106049_2021_1923827 crossref_primary_10_1002_vms3_1097 crossref_primary_10_1155_2024_3937558 crossref_primary_10_1186_s13717_024_00511_x crossref_primary_10_1007_s12145_024_01346_y crossref_primary_10_1080_01431161_2020_1763512 crossref_primary_10_1080_22797254_2023_2173659 crossref_primary_10_3390_agronomy11122373 crossref_primary_10_3390_land11091397 crossref_primary_10_1016_j_jenvman_2024_122658 crossref_primary_10_53093_mephoj_943347 crossref_primary_10_1016_j_ecolind_2023_110025 crossref_primary_10_3390_rs12244010 crossref_primary_10_1016_j_envc_2024_100866 crossref_primary_10_3390_rs13020185 crossref_primary_10_1007_s12145_021_00744_w crossref_primary_10_1016_j_ecolind_2023_110020 crossref_primary_10_3389_feart_2020_560933 crossref_primary_10_1109_JSTARS_2024_3491804 crossref_primary_10_3390_su14095700 crossref_primary_10_1080_10095020_2022_2035656 crossref_primary_10_3390_rs12152411 crossref_primary_10_1080_02626667_2022_2049271 crossref_primary_10_3390_rs14010138 crossref_primary_10_3390_rs16214013 crossref_primary_10_3390_rs15030750 crossref_primary_10_3390_rs14112688 crossref_primary_10_1016_j_isprsjprs_2022_09_015 crossref_primary_10_1007_s13201_024_02250_y crossref_primary_10_3390_rs13030334 crossref_primary_10_7868_25000640230106 crossref_primary_10_1155_2021_5564286 crossref_primary_10_1016_j_ecolind_2024_112036 crossref_primary_10_1016_j_rsase_2021_100515 crossref_primary_10_3390_app11094154 crossref_primary_10_1016_j_heliyon_2024_e26913 crossref_primary_10_5194_essd_16_3307_2024 crossref_primary_10_1016_j_ejrs_2022_03_012 crossref_primary_10_3390_s25020431 crossref_primary_10_1038_s41598_022_09974_4 crossref_primary_10_3390_rs13040586 crossref_primary_10_1080_17538947_2024_2376255 crossref_primary_10_1088_1755_1315_1038_1_012041 crossref_primary_10_1007_s10661_025_13686_3 crossref_primary_10_1007_s12145_022_00874_9 crossref_primary_10_1515_geo_2022_0499 crossref_primary_10_3390_rs13040580 crossref_primary_10_3390_su15031858 crossref_primary_10_3390_s21030958 crossref_primary_10_1080_27658511_2024_2345442 crossref_primary_10_3390_rs15102501 crossref_primary_10_1007_s10661_023_12112_w crossref_primary_10_26833_ijeg_1538708 crossref_primary_10_1016_j_jag_2023_103333 crossref_primary_10_1016_j_catena_2023_107200 crossref_primary_10_1002_ldr_3980 crossref_primary_10_3390_jmse11020379 crossref_primary_10_3390_rs12122005 crossref_primary_10_3390_rs12121952 crossref_primary_10_3390_app10134574 crossref_primary_10_1016_j_ecoinf_2023_102273 crossref_primary_10_3390_earth5040044 |
Cites_doi | 10.1016/S0167-8809(01)00243-2 10.1080/10106049.2019.1568586 10.1007/bf00994018 10.3390/rs9010022 10.1016/j.isprsjprs.2012.04.001 10.1016/j.scitotenv.2018.07.353 10.1016/j.rse.2012.08.017 10.1016/j.csda.2009.04.009 10.1016/j.rse.2016.02.028 10.3389/fpls.2016.01419 10.1109/LGRS.2018.2803259 10.1080/07038992.1997.10855204 10.1080/09296174.2013.830554 10.1038/530144a 10.1080/2150704X.2017.1295479 10.1016/j.spacepol.2015.01.001 10.1016/j.asr.2008.02.012 10.31223/osf.io/w79ea 10.1016/j.rse.2014.02.015 10.1080/014311699212560 10.1016/0005-2728(87)90216-7 10.1016/0197-2456(81)90001-5 10.1016/j.rse.2017.05.024 10.1080/07038992.2018.1437719 10.3390/rs8060488 10.1016/j.rse.2011.11.026 10.1002/joc.5086 10.1007/978-1-4842-2734-3 10.3390/rs70302899 10.1002/ecs2.1436 10.1016/S0034-4257(01)00222-X 10.1111/j.1461-0248.2006.00997.x 10.1080/01431161.2015.1088674 10.1080/01431160600589179 10.1162/089976698300017197 10.1080/01431168308948546 10.1007/978-1-4614-6849-3 10.1007/978-0-387-84858-7_15 10.1016/j.jag.2014.08.001 10.1007/978-1-4614-6849-3_4 10.1109/LGRS.2017.2681128 10.3390/rs9010095 10.1080/01431161.2018.1433343 10.1007/s00484-012-0588-9 10.1142/s0129065797000227 10.1016/B978-0-12-811318-9.00033-8 10.1038/nature23285 10.1080/01431161.2018.1528400 10.3390/rs10040635 10.1080/2150704X.2013.782112 10.1080/01431161.2016.1246775 10.1016/j.rse.2012.10.031 10.1023/a:1010933404324 10.2307/20038423 10.1016/j.isprsjprs.2010.11.001 10.1016/j.scitotenv.2018.03.324 10.1080/01431161.2017.1399477 10.3390/rs10111794 10.1016/j.rse.2013.08.029 10.1093/treephys/28.7.1037 10.1007/s11063-018-9883-8 10.1016/j.jag.2014.10.012 10.2307/1313119 10.1672/08-34.1 10.1111/geb.12311 10.1007/bf02295996 10.1016/j.jag.2018.06.007 10.1016/j.isprsjprs.2011.11.002 10.1016/j.rse.2017.03.021 10.1080/01431160500275762 10.1364/AO.4.000011 10.3390/rs8030166 10.3390/rs8110888 10.1214/aos/1013203451 10.1080/01431160304987 10.18637/jss.v028.i05 10.1016/j.isprsjprs.2014.03.009 10.1080/01431160701352154 10.1080/15481603.2017.1370169 10.1016/j.rse.2018.11.032 10.1016/j.jag.2012.09.002 10.1016/S0168-1923(99)00092-1 10.1145/2939672.2939785 |
ContentType | Journal Article |
Copyright | 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019 |
Copyright_xml | – notice: 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019 |
CorporateAuthor | Dept of Physical Geography and Ecosystem Science Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Centre for Environmental and Climate Science (CEC) Centrum för miljö- och klimatvetenskap (CEC) Institutionen för naturgeografi och ekosystemvetenskap |
CorporateAuthor_xml | – name: Dept of Physical Geography and Ecosystem Science – name: Naturvetenskapliga fakulteten – name: Lund University – name: Centre for Environmental and Climate Science (CEC) – name: Institutionen för naturgeografi och ekosystemvetenskap – name: Centrum för miljö- och klimatvetenskap (CEC) – name: Faculty of Science – name: Lunds universitet |
DBID | 0YH AAYXX CITATION 7S9 L.6 ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA |
DOI | 10.1080/15481603.2019.1650447 |
DatabaseName | Taylor & Francis Open Access CrossRef AGRICOLA AGRICOLA - Academic SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Environmental Sciences |
EISSN | 1943-7226 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_9495bbdb878a4a83828af14ced2edc0e oai_portal_research_lu_se_publications_8830807b_7443_481d_b5f6_3f2e91c501f7 oai_lup_lub_lu_se_8830807b_7443_481d_b5f6_3f2e91c501f7 10_1080_15481603_2019_1650447 1650447 |
Genre | Article |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 ABJNI ACDHJ ACZPZ ADOPC ADTPV AGCHP AI. AMATQ AOWAS AURDB BFWEY CWRZV D8T D95 EJD GROUPED_DOAJ NUSFT PCLFJ VH1 ZZAVC |
ID | FETCH-LOGICAL-c681t-596a96912831a719e01bc7e9da465c5aae60ad957c06566ee3bc4e46f5c87aa23 |
IEDL.DBID | 0YH |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:26:05 EDT 2025 Fri Aug 22 03:13:16 EDT 2025 Sat Apr 05 03:33:44 EDT 2025 Mon May 05 20:01:07 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Tue Jul 01 02:27:27 EDT 2025 Wed Dec 25 09:08:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c681t-596a96912831a719e01bc7e9da465c5aae60ad957c06566ee3bc4e46f5c87aa23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6486-8747 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1650447 |
PQID | 2388779012 |
PQPubID | 24069 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1080_15481603_2019_1650447 swepub_primary_oai_lup_lub_lu_se_8830807b_7443_481d_b5f6_3f2e91c501f7 informaworld_taylorfrancis_310_1080_15481603_2019_1650447 crossref_primary_10_1080_15481603_2019_1650447 swepub_primary_oai_portal_research_lu_se_publications_8830807b_7443_481d_b5f6_3f2e91c501f7 doaj_primary_oai_doaj_org_article_9495bbdb878a4a83828af14ced2edc0e proquest_miscellaneous_2388779012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-02 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | CIT0072 CIT0074 CIT0073 CIT0076 CIT0075 CIT0078 CIT0077 CIT0070 Nair V. (CIT0071) 2010 Cook D. (CIT0018) 2016 CIT0083 CIT0082 CIT0085 R Core Team (CIT0080) 2017 CIT0084 CIT0086 CIT0001 CIT0089 CIT0088 Bergstra J. (CIT0006) 2012; 13 Czaplewski R. L. (CIT0020) 1992; 58 CIT0081 CIT0003 CIT0002 CIT0005 CIT0004 CIT0007 CIT0009 CIT0008 CIT0094 CIT0093 CIT0096 CIT0095 CIT0010 Brink H. (CIT0011) 2017 CIT0098 CIT0012 CIT0099 CIT0092 CIT0091 Tachikawa T. (CIT0087) 2011 CIT0014 Vapnik V. (CIT0090) 1982 CIT0013 CIT0016 CIT0017 CIT0019 CIT0021 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 CIT0030 CIT0032 CIT0031 CIT0033 Zerega E. (CIT0097) 2018 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 Rakitianskaia A. (CIT0079) 2015 CIT0041 CIT0043 CIT0042 CIT0045 CIT0044 He H. (CIT0040) 2008; 9 CIT0047 CIT0046 CIT0049 CIT0048 Kuwata K. (CIT0056) 2015 CIT0050 CIT0052 CIT0051 CIT0054 CIT0053 CIT0055 CIT0058 CIT0057 Chen T. (CIT0015) 2016 CIT0059 CIT0061 CIT0060 CIT0063 CIT0062 CIT0065 CIT0064 CIT0067 CIT0100 CIT0066 CIT0069 CIT0068 Goodfellow I. (CIT0034) 2016 |
References_xml | – ident: CIT0046 doi: 10.1016/S0167-8809(01)00243-2 – ident: CIT0064 doi: 10.1080/10106049.2019.1568586 – ident: CIT0019 doi: 10.1007/bf00994018 – ident: CIT0082 – ident: CIT0060 doi: 10.3390/rs9010022 – ident: CIT0083 doi: 10.1016/j.isprsjprs.2012.04.001 – ident: CIT0095 doi: 10.1016/j.scitotenv.2018.07.353 – ident: CIT0077 doi: 10.1016/j.rse.2012.08.017 – ident: CIT0050 doi: 10.1016/j.csda.2009.04.009 – ident: CIT0049 doi: 10.1016/j.rse.2016.02.028 – volume-title: Paper Presented at the 2011 IEEE International Geoscience and Remote Sensing Symposium year: 2011 ident: CIT0087 – ident: CIT0068 doi: 10.3389/fpls.2016.01419 – ident: CIT0032 doi: 10.1109/LGRS.2018.2803259 – ident: CIT0003 doi: 10.1080/07038992.1997.10855204 – ident: CIT0093 doi: 10.1080/09296174.2013.830554 – ident: CIT0092 doi: 10.1038/530144a – ident: CIT0017 doi: 10.1080/2150704X.2017.1295479 – ident: CIT0037 doi: 10.1016/j.spacepol.2015.01.001 – ident: CIT0016 doi: 10.1016/j.asr.2008.02.012 – ident: CIT0070 – ident: CIT0001 doi: 10.31223/osf.io/w79ea – volume: 9 start-page: 1263 year: 2008 ident: CIT0040 publication-title: IEEE Transactions on Knowledge & Data Engineering – ident: CIT0074 doi: 10.1016/j.rse.2014.02.015 – ident: CIT0085 doi: 10.1080/014311699212560 – ident: CIT0086 doi: 10.1016/0005-2728(87)90216-7 – ident: CIT0057 doi: 10.1016/0197-2456(81)90001-5 – ident: CIT0099 doi: 10.1016/j.rse.2017.05.024 – ident: CIT0041 doi: 10.1080/07038992.2018.1437719 – ident: CIT0078 doi: 10.3390/rs8060488 – ident: CIT0023 doi: 10.1016/j.rse.2011.11.026 – ident: CIT0027 doi: 10.1002/joc.5086 – ident: CIT0008 doi: 10.1007/978-1-4842-2734-3 – volume-title: Real-world Machine Learning year: 2017 ident: CIT0011 – volume: 58 start-page: 189 issue: 2 year: 1992 ident: CIT0020 publication-title: Photogrammetric Engineering & Remote Sensing – ident: CIT0089 doi: 10.3390/rs70302899 – ident: CIT0088 doi: 10.1002/ecs2.1436 – ident: CIT0014 – ident: CIT0024 doi: 10.1016/S0034-4257(01)00222-X – volume-title: Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI year: 2016 ident: CIT0018 – ident: CIT0039 doi: 10.1111/j.1461-0248.2006.00997.x – ident: CIT0035 doi: 10.1080/01431161.2015.1088674 – ident: CIT0096 doi: 10.1080/01431160600589179 – volume-title: Paper Presented at the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) year: 2015 ident: CIT0056 – volume-title: Assessing Edge Pixel Classification and Growing Stock Volume Estimation in Forest Stands Using a Machine Learning Algorithm and Sentinel-2 Data year: 2018 ident: CIT0097 – ident: CIT0022 doi: 10.1162/089976698300017197 – ident: CIT0043 doi: 10.1080/01431168308948546 – ident: CIT0053 doi: 10.1007/978-1-4614-6849-3 – volume-title: Paper Presented at the Proceedings of the 27th International Conference on Machine Learning (ICML–10 year: 2010 ident: CIT0071 – ident: CIT0038 doi: 10.1007/978-0-387-84858-7_15 – ident: CIT0072 doi: 10.1016/j.jag.2014.08.001 – ident: CIT0054 doi: 10.1007/978-1-4614-6849-3_4 – ident: CIT0055 doi: 10.1109/LGRS.2017.2681128 – ident: CIT0045 doi: 10.3390/rs9010095 – ident: CIT0066 doi: 10.1080/01431161.2018.1433343 – ident: CIT0012 doi: 10.1007/s00484-012-0588-9 – ident: CIT0031 doi: 10.1142/s0129065797000227 – ident: CIT0048 doi: 10.1016/B978-0-12-811318-9.00033-8 – ident: CIT0007 doi: 10.1038/nature23285 – ident: CIT0042 doi: 10.1080/01431161.2018.1528400 – ident: CIT0047 doi: 10.3390/rs10040635 – ident: CIT0061 doi: 10.1080/2150704X.2013.782112 – ident: CIT0059 doi: 10.1080/01431161.2016.1246775 – ident: CIT0075 doi: 10.1016/j.rse.2012.10.031 – ident: CIT0010 doi: 10.1023/a:1010933404324 – ident: CIT0009 doi: 10.2307/20038423 – ident: CIT0036 – ident: CIT0069 doi: 10.1016/j.isprsjprs.2010.11.001 – ident: CIT0002 doi: 10.1016/j.scitotenv.2018.03.324 – ident: CIT0063 doi: 10.1080/01431161.2017.1399477 – ident: CIT0076 doi: 10.3390/rs10111794 – ident: CIT0026 doi: 10.1016/j.rse.2013.08.029 – ident: CIT0058 doi: 10.1093/treephys/28.7.1037 – ident: CIT0084 doi: 10.1007/s11063-018-9883-8 – ident: CIT0013 doi: 10.1016/j.jag.2014.10.012 – ident: CIT0073 doi: 10.2307/1313119 – ident: CIT0033 doi: 10.1672/08-34.1 – ident: CIT0004 doi: 10.1111/geb.12311 – ident: CIT0067 doi: 10.1007/bf02295996 – ident: CIT0091 doi: 10.1016/j.jag.2018.06.007 – ident: CIT0081 doi: 10.1016/j.isprsjprs.2011.11.002 – ident: CIT0051 doi: 10.1016/j.rse.2017.03.021 – ident: CIT0021 doi: 10.1080/01431160500275762 – volume: 13 start-page: 281 year: 2012 ident: CIT0006 publication-title: Journal of Machine Learning Research – ident: CIT0030 doi: 10.1364/AO.4.000011 – ident: CIT0044 doi: 10.3390/rs8030166 – ident: CIT0094 doi: 10.3390/rs8110888 – ident: CIT0029 doi: 10.1214/aos/1013203451 – ident: CIT0098 doi: 10.1080/01431160304987 – ident: CIT0052 doi: 10.18637/jss.v028.i05 – ident: CIT0005 doi: 10.1016/j.isprsjprs.2014.03.009 – ident: CIT0065 doi: 10.1080/01431160701352154 – start-page: 168 volume-title: Deep Learning year: 2016 ident: CIT0034 – volume-title: R: A Language and Environment for Statistical Computing year: 2017 ident: CIT0080 – ident: CIT0028 doi: 10.1080/15481603.2017.1370169 – ident: CIT0100 doi: 10.1016/j.rse.2018.11.032 – volume-title: Paper Presented at the 2015 IEEE Symposium Series on Computational Intelligence year: 2015 ident: CIT0079 – volume-title: Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (springer Series in Statistics) year: 1982 ident: CIT0090 – ident: CIT0025 doi: 10.1016/j.jag.2012.09.002 – ident: CIT0062 doi: 10.1016/S0168-1923(99)00092-1 – start-page: 785 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: CIT0015 doi: 10.1145/2939672.2939785 |
SSID | ssj0035115 |
Score | 2.6347914 |
Snippet | In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer... |
SourceID | doaj swepub proquest crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | autumn boreal Boreal ecosystems chi-square distribution classification Earth and Related Environmental Sciences Earth Observation Engineering and Technology Environmental Engineering Environmental Sciences Fjärranalysteknik Geovetenskap och miljövetenskap Geovetenskap och relaterad miljövetenskap Image classification Jordobservationsteknik land use and land cover maps Land-cover Land-use landscapes machine learning Miljövetenskap Natural Sciences Naturgeografi Naturresursteknik Naturvetenskap Physical Geography prediction Remote Sensing Sentinel-2 spring summer support vector machines Sweden Teknik winter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15Kn2T7QoXSmxPraemYloRQ2l7aQOhFyNJoE9i1l3j30EP_ezWyN92UwvbQg8EIWxKasfXN-PM3hLzNMUNQSfIKeGMryWOoTN4mKgHB6IxIfCy1AT9_0ecX8uOlutwp9YWcsFEeeFy4Y5sRfNvG1jTGS29EjhB8YjJA5BBDDfj2zXveNpga38H4dUwVpVSZYyRdi-2_O6Y-xjZsQlqXPWIZoUisrbKzKxXx_j-kS-8C0F1R0bIRnT0kDyYESU_GmT8i96B7TA5PBsxp98sf9B0t52PKYnhCfn7yXaQBqZoUz5DKSDcD0IDAGZlCxTh09fsXAtonuiwsS6BTWYk59Yt5f3O9vloO9LqjnmbnySCzdDcgi4oihX5OvyL9qINFxSmyT5-Si7PTbx_Oq6noQhW0YetKWe2ttnnbEsw3zELN2tCAjV5qFZT3oGsfrWpCjVAQQLRBgtRJBdN4z8UzctD1HRwSmiK3KcdDIKCVgXsDdQCTgoqGJavTjMjtorswKZJjYYyFY5Nw6dZWDm3lJlvNyNHtbatRkmPfDe_RorcXo6J2ach-5iY_c_v8bEbsrj-4dUmopLH6iRN7JvBm6zwuP734ScZ30G8GlwGTQcVHxmfkdPSqO9NcbFb5aPPhBnDGiDxG07pGSuHyQNG1KmknEgfLgqpZymN9_0s_YyznJgGpq6m_1U5m-J86f_4_VvIFuc8xaYF5LP6SHKxvNvAqI7t1-7o8xL8AqG9IVw priority: 102 providerName: Directory of Open Access Journals |
Title | Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1650447 https://www.proquest.com/docview/2388779012 https://lup.lub.lu.se/record/8830807b-7443-481d-b5f6-3f2e91c501f7 oai:portal.research.lu.se:publications/8830807b-7443-481d-b5f6-3f2e91c501f7 https://doaj.org/article/9495bbdb878a4a83828af14ced2edc0e |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgXLggPtXlozIS4pYSO05iHwtqtULQC1QCLpbjjLeVdpPVJnvgwH9nxknKLgIViUOiaBXb2cw4fjN5ecPYK4wZfB6UTECWJlGy9onGZSLJwOsCEYmrY23Aj-fF_EK9_5JPbMJupFVSDB0GoYj4rKbJ7apuYsS9IZRN1ZGJmGWOBWIMpcrb7I4kb0WXTr_Op4cxvSbLo2SqwmAJ20wf8fytm73lKar4_6Zhuo9Ed9VF44p0dp_dG6EkPxls_4DdguYhOzzpKLndrr7z1zweD7mL7hH78QH_MffE2eR0RJxGvu2Ae0LQRBmKVuLrX98S8DbwVaRbAh_rSyy4Wy7azVV_uer4VcMdRy9CtBm764hOxYlLv-CfiIfUwDKRnGioj9nF2ennd_NkrL6Q-EKLPslN4UxhcP3KhCuFgVRUvgRTO1XkPncOitTVJi99SpgQIKu8AlWE3OvSOZk9YQdN28Ah46GWJmBgBBlUykunIfWgg89rLYIpwoyp6aZbP0qTU4WMpRWjgulkK0u2sqOtZuz4utl60Oa4qcFbsuj1ySStHX9oNws7zlRrMGSsqrrSpXbK6QxDUheE8lBLqH0KM2Z2_cH2MbMShjIoNrvhAl5OzmNxGtO7GddAu-0sIidN0o9Cztjp4FV7l7ncrnGrcLMdWK0zHKOsbKlUZnGg2lZ5KGwWJBjh81QEHOvbH_oZgjo7Kkldjv2td1LE_9T50_-4Cc_YXUlJC8pjyefsoN9s4QUiu746inMX91l6fhSzIz8B_5dFpg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgHODCb7Ty00iIW0rsOIl9HGjTgK4XNmniYjnOczetTaomPYDE_46fk4x2Ag1ph0hRFT8nzqv9vZfP3yPknY8ZbOoEj4DnKhK8tJH0y0SUgJWZRySmDLUBj6bZ4Yn4cpqebuyFQVolxtCuE4oIczX-uTEZPVDiPiDMxvLIyMxSY-ZBhhD5bXInVVmOVQySeDrMxvidLA2aqcJHS77NsIvnX2a21qcg439FxHQbim7Ki4Yl6eABscPDdEyUi_G6Lcb25xWdx5s97UNyv0esdK9zsUfkFlSPye5egzn0evGDvqfhvEuRNE_Ir4nvilqkhlI8Q-okXTdALQJ1ZCYFZ6DLP1sWaO3oIrA6gfZlLGbUzGf16rw9WzT0vKKGemf1oDaYa5C1RZGyP6PfkO5UwTziFNmuT8nJwf7xp8OoL_IQ2UyyNvLvzKhM-WUyYSZnCmJW2BxUaUSW2tQYyGJTqjS3MUJPgKSwAkTmUitzY3jyjOxUdQW7hLqSK-fjL0igEJYbCbEF6WxaSuZU5kZEDK9W214BHQtxzDXrhVKHodY41Lof6hEZXzZbdhIg1zX4iH5zeTEqeIcf6tVM9xOCVj4yLYqykLk0wsjER77GMWGh5FDaGEZEbXqdbkMCx3XVVnRyzQ28HVxU-9kCPwGZCup1oz1Ak6gwyfiI7He-u3Wb8_XSH4U_dANaysT3kRc6FyLRvqNSF6nLdOI4KGbTmDnf1_e_2OliR90LVp319pYbmej_Mv78BoPwhtw9PD6a6Mnn6dcX5B7HPAmmzvhLstOu1vDKg8m2eB1mi98Z4mda |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgSIgXxk-t_DQS4i0lcZzEfhywasCokGAS4sWynXM30SZVkz4Mif8dn5OMdgINaQ-Roqg-J-7F_u7y-TtCXvqYwWaOswhYISPOShsJv0xEKViRe0Siy1Ab8NM0PzzmH75lA5uw6WmVGEO7TigizNX4ci9LNzDiXiPKxurISMyS48RjDM6L6-RGjuLhuIsjng6TMX4my4JkKvfBkm8zbOL5l5mt5Smo-F_QMN1GopvqomFFmuwSMzxLR0T5MV63Zmx_XpB5vNLD3iG3e7xK9zsHu0uuQXWP7O03mEGvF2f0FQ3nXYKkuU9-HfmeqEViKMUzJE7SdQPUIkxHXlJwBbr8s2GB1o4uAqcTaF_EYkb1fFavTtuTRUNPK6qpd1UPaYO5BjlbFAn7M_oFyU4VzCNGkev6gBxPDr6-PYz6Eg-RzUXSRpnMtcylXyTTRBeJhDgxtgBZap5nNtMa8liXMitsjMATIDWWA89dZkWhNUsfkp2qrmCPUFcy6Xz0BSkYbpkWEFsQzmalSJzM3Yjw4Z9Vttc_xzIcc5X0MqnDUCscatUP9YiMz5stOwGQyxq8Qbc5_zHqd4cL9Wqm-ulASR-XGlMaUQjNtUh93Ktdwi2UDEobw4jITadTbUjfuK7WikovuYEXg4cqP1fgByBdQb1ulIdnAvUlEzYiB53rbt3mfL30h_GHakAJkfo-CqMKzlPlOyqVyVyuUsdAJjaLE-f7-v4XO13kqHq5qpPe3nIjD_1fxh9dYRCek5uf303U0fvpx8fkFsMkCebN2BOy067W8NQjydY8C3PFb1UKZf4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+cover+and+land+use+classification+performance+of+machine+learning+algorithms+in+a+boreal+landscape+using+Sentinel-2+data&rft.jtitle=GIScience+and+remote+sensing&rft.au=Abdi%2C+Abdulhakim&rft.date=2020-01-02&rft.issn=1548-1603&rft.volume=57&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1080%2F15481603.2019.1650447&rft.externalDocID=oai_portal_research_lu_se_publications_8830807b_7443_481d_b5f6_3f2e91c501f7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |