Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients

Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients Douglas E. Befroy 1 , Kitt Falk Petersen 1 , Sylvie Dufour 2 , Graeme F. Mason 3 , Robin A. de Graaf 3 , Douglas L. Rothman 3 and Gerald I. Shulman 1 2 4 1 Department of Internal Medicine,...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 56; no. 5; pp. 1376 - 1381
Main Authors Befroy, Douglas E., Petersen, Kitt Falk, Dufour, Sylvie, Mason, Graeme F., de Graaf, Robin A., Rothman, Douglas L., Shulman, Gerald I.
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.05.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients Douglas E. Befroy 1 , Kitt Falk Petersen 1 , Sylvie Dufour 2 , Graeme F. Mason 3 , Robin A. de Graaf 3 , Douglas L. Rothman 3 and Gerald I. Shulman 1 2 4 1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut Address correspondence and reprint requests to Gerald I. Shulman, MD, PhD, Howard Hughes Medical Institute, Yale University School of Medicine, The Anlyan Center, S269, P.O. Box 9812, New Haven, CT 06536-8012. E-mail: gerald.shulman{at}yale.edu Abstract Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using 13 C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent 13 C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13 C label into C 4 glutamate during a [2- 13 C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g −1 · min −1 , P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g −1 · min −1 ). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. COX, cytochrome oxidase FID, free induction decay IMCL, intramyocellular lipid IRS-1, insulin receptor substrate-1 ISI, insulin sensitivity index MRS, magnetic resonance spectroscopy PDH, pyruvate dehydrogenase PGC, peroxisome proliferator–activated receptor-γ coactivator SDH, succinate dehydrogenase TCA, tricarboxylic acid Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 7 February 2007. DOI: 10.2337/db06-0783. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted January 31, 2007. Received July 6, 2006. DIABETES
AbstractList Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using [sup.13]C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent [sup.13]C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of [sup.13]C label into [C.sub.4] glutamate during a [2-[sup.13]C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol x [g.sup.-1] x [min.sup.-1], P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol x [g.sup.-1] x [min.sup.-1]). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.
Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients Douglas E. Befroy 1 , Kitt Falk Petersen 1 , Sylvie Dufour 2 , Graeme F. Mason 3 , Robin A. de Graaf 3 , Douglas L. Rothman 3 and Gerald I. Shulman 1 2 4 1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut Address correspondence and reprint requests to Gerald I. Shulman, MD, PhD, Howard Hughes Medical Institute, Yale University School of Medicine, The Anlyan Center, S269, P.O. Box 9812, New Haven, CT 06536-8012. E-mail: gerald.shulman{at}yale.edu Abstract Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using 13 C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent 13 C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13 C label into C 4 glutamate during a [2- 13 C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g −1 · min −1 , P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g −1 · min −1 ). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. COX, cytochrome oxidase FID, free induction decay IMCL, intramyocellular lipid IRS-1, insulin receptor substrate-1 ISI, insulin sensitivity index MRS, magnetic resonance spectroscopy PDH, pyruvate dehydrogenase PGC, peroxisome proliferator–activated receptor-γ coactivator SDH, succinate dehydrogenase TCA, tricarboxylic acid Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 7 February 2007. DOI: 10.2337/db06-0783. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted January 31, 2007. Received July 6, 2006. DIABETES
Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using 13 C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent 13 C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13 C label into C 4 glutamate during a [2- 13 C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g −1 · min −1 , P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g −1 · min −1 ). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.
Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using (13)C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent (13)C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of (13)C label into C(4) glutamate during a [2-(13)C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 +/- 5.1 nmol x g(-1) x min(-1), P = 0.02) compared with insulin-sensitive control subjects (96.1 +/- 16.3 nmol x g(-1) x min(-1)). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.
Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using 13C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent 13C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13C label into C4 glutamate during a [2-13C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g−1 · min−1, P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g−1 · min−1). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.
Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using (13)C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent (13)C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of (13)C label into C(4) glutamate during a [2-(13)C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 +/- 5.1 nmol x g(-1) x min(-1), P = 0.02) compared with insulin-sensitive control subjects (96.1 +/- 16.3 nmol x g(-1) x min(-1)). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using (13)C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent (13)C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of (13)C label into C(4) glutamate during a [2-(13)C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 +/- 5.1 nmol x g(-1) x min(-1), P = 0.02) compared with insulin-sensitive control subjects (96.1 +/- 16.3 nmol x g(-1) x min(-1)). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.
Audience Professional
Author Douglas E. Befroy
Gerald I. Shulman
Kitt Falk Petersen
Douglas L. Rothman
Graeme F. Mason
Sylvie Dufour
Robin A. de Graaf
AuthorAffiliation 1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
AuthorAffiliation_xml – name: 3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
– name: 4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
– name: 2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
– name: 1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
Author_xml – sequence: 1
  givenname: Douglas E.
  surname: Befroy
  fullname: Befroy, Douglas E.
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
– sequence: 2
  givenname: Kitt Falk
  surname: Petersen
  fullname: Petersen, Kitt Falk
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
– sequence: 3
  givenname: Sylvie
  surname: Dufour
  fullname: Dufour, Sylvie
  organization: Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
– sequence: 4
  givenname: Graeme F.
  surname: Mason
  fullname: Mason, Graeme F.
  organization: Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
– sequence: 5
  givenname: Robin A.
  surname: de Graaf
  fullname: de Graaf, Robin A.
  organization: Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
– sequence: 6
  givenname: Douglas L.
  surname: Rothman
  fullname: Rothman, Douglas L.
  organization: Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
– sequence: 7
  givenname: Gerald I.
  surname: Shulman
  fullname: Shulman, Gerald I.
  organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18737323$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17287462$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v0zAUhiM0xLrBBX8ARUggIZTNH0mc3CBNHYxKnYpgSNxZjnOcenLtLnbY9u9x19JSVPnCls9z3uNz_J4kR9ZZSJLXGJ0RStl526AyQ6yiz5IRrmmdUcJ-HSUjhDDJMKvZcXLi_S1CqIzrRXKMGalYXpJR4iaLpdA9tOm1Dk7OnW17LUz6Y2h86EWAdPagWxG0s6m26fXgpYHUqXRi_WC0zb6D1z4IG9KZUn7Za9utwjePS0hJeqlFA0HL9FuUABv8y-S5EsbDq81-mvz88vlm_DWbzq4m44tpJssKhwwXRDWKVRIzSpUqWyoxactcyZy2RZ7nhLRIEikYRkzJRihBRCOaqoZaxgg9TT6tdZdDs4BWxtq9MDy-byH6R-6E5vsRq-e8c785qeuioCQKvN8I9O5uAB_4QnsJxggLbvCcobzIa1xG8O1_4K0behub4wSXeUVxXUQoW0OdMMC1VS4WlR1YiLXjZyodry8iXlJWFyvRswN8XC0stDyY8GEvITIBHkInBu95dTXdZ7NDrHTGQAc8_sN4ts-_-XeW2yH-dVEE3m0A4aUwqhdWar_jKkZZHGnkztec7J33PSgudXjyVuxOG44RX_mZr_zMV37etbXN2IoeYD-u2bnu5vfR07x9ch_43aEoecExZSX9A46AA1s
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1038_ijo_2017_274
crossref_primary_10_1016_j_bbadis_2010_09_014
crossref_primary_10_3390_ijms252413238
crossref_primary_10_1016_j_ecl_2008_06_006
crossref_primary_10_1016_j_lfs_2020_118661
crossref_primary_10_1016_j_pharmthera_2011_04_004
crossref_primary_10_1016_j_ecl_2008_06_001
crossref_primary_10_3390_ijms10010306
crossref_primary_10_1016_j_drudis_2008_01_006
crossref_primary_10_1097_01_pra_0000388627_36781_6a
crossref_primary_10_1210_clinem_dgae545
crossref_primary_10_1016_j_jnutbio_2014_05_006
crossref_primary_10_1007_s00404_023_07004_w
crossref_primary_10_2337_dc08_0303
crossref_primary_10_1016_j_bpj_2016_07_028
crossref_primary_10_2337_dc14_0715
crossref_primary_10_3945_an_111_000737
crossref_primary_10_1007_s00125_010_1708_x
crossref_primary_10_14336_AD_2019_0524
crossref_primary_10_1016_j_jbi_2021_103796
crossref_primary_10_1111_1750_3841_14723
crossref_primary_10_1016_S0140_6736_10_60408_4
crossref_primary_10_2337_db12_1650
crossref_primary_10_1042_BSR20120034
crossref_primary_10_1152_ajpendo_00220_2015
crossref_primary_10_3390_ijms241210015
crossref_primary_10_2337_db12_0558
crossref_primary_10_1152_ajpendo_00663_2011
crossref_primary_10_3389_fphys_2020_00963
crossref_primary_10_3945_jn_109_111179
crossref_primary_10_1186_s13287_022_03123_4
crossref_primary_10_1210_er_2012_1055
crossref_primary_10_1093_molehr_gau042
crossref_primary_10_1007_BF03346503
crossref_primary_10_1016_j_cmet_2020_09_008
crossref_primary_10_1021_acs_jproteome_7b00866
crossref_primary_10_1016_j_jdiacomp_2016_10_014
crossref_primary_10_1039_C5MB00158G
crossref_primary_10_1210_jc_2016_3480
crossref_primary_10_2337_db11_1475
crossref_primary_10_3389_fphys_2023_1150265
crossref_primary_10_1210_en_2011_1502
crossref_primary_10_1016_j_exger_2016_01_008
crossref_primary_10_2165_11585920_000000000_00000
crossref_primary_10_2337_db10_0997
crossref_primary_10_1042_bse0470069
crossref_primary_10_1016_j_clnu_2011_02_009
crossref_primary_10_1007_s00125_014_3187_y
crossref_primary_10_1007_s00439_013_1402_4
crossref_primary_10_1016_j_cmet_2010_04_004
crossref_primary_10_3109_15376516_2012_759305
crossref_primary_10_1038_srep22788
crossref_primary_10_1016_j_tem_2008_08_001
crossref_primary_10_3390_nu11030654
crossref_primary_10_3390_biomedicines11010121
crossref_primary_10_1530_JOE_13_0397
crossref_primary_10_1007_s00125_010_1768_y
crossref_primary_10_1097_01_mol_0000319118_44995_9a
crossref_primary_10_1155_2010_476279
crossref_primary_10_3945_jn_108_103754
crossref_primary_10_1161_CIRCRESAHA_107_165472
crossref_primary_10_1177_0884533613516168
crossref_primary_10_2337_db08_0949
crossref_primary_10_1074_jbc_M707192200
crossref_primary_10_3390_ijerph18052367
crossref_primary_10_1016_j_biopha_2021_111440
crossref_primary_10_1152_ajpendo_00051_2018
crossref_primary_10_1016_j_diabet_2014_03_006
crossref_primary_10_1016_j_atherosclerosis_2010_11_037
crossref_primary_10_1089_ars_2012_4910
crossref_primary_10_1146_annurev_nutr_012809_104747
crossref_primary_10_1073_pnas_1716990115
crossref_primary_10_1093_rheumatology_ken220
crossref_primary_10_2337_dc12_1161
crossref_primary_10_1002_hep_27091
crossref_primary_10_1007_s00125_008_1122_9
crossref_primary_10_1016_j_celrep_2017_02_035
crossref_primary_10_3390_ijms241713244
crossref_primary_10_1007_s13238_012_2043_4
crossref_primary_10_1089_ars_2009_2531
crossref_primary_10_1007_s12640_013_9414_3
crossref_primary_10_3389_fnut_2023_1067282
crossref_primary_10_1002_dmrr_812
crossref_primary_10_1371_journal_pone_0015234
crossref_primary_10_1210_jc_2012_3874
crossref_primary_10_3390_ijms252312860
crossref_primary_10_1210_clinem_dgac200
crossref_primary_10_1371_journal_pone_0224484
crossref_primary_10_1152_ajpendo_00590_2009
crossref_primary_10_2337_db09_1322
crossref_primary_10_2147_DNND_S247153
crossref_primary_10_1016_j_cmet_2007_12_002
crossref_primary_10_1016_j_molmet_2013_05_004
crossref_primary_10_1530_JOE_16_0598
crossref_primary_10_1073_pnas_1205675109
crossref_primary_10_1016_j_bbagen_2013_03_023
crossref_primary_10_1136_bmjdrc_2020_001204
crossref_primary_10_1152_ajpendo_90477_2008
crossref_primary_10_1172_JCI120843
crossref_primary_10_1371_journal_pone_0028536
crossref_primary_10_2337_db17_1124
crossref_primary_10_1053_j_ajkd_2017_01_051
crossref_primary_10_1177_1358863X20947467
crossref_primary_10_1371_journal_pone_0183978
crossref_primary_10_3389_fendo_2022_1024832
crossref_primary_10_1016_j_metabol_2014_02_009
crossref_primary_10_1016_j_jnutbio_2019_108315
crossref_primary_10_1159_000327960
crossref_primary_10_1093_nar_gku1160
crossref_primary_10_3389_fphys_2021_676265
crossref_primary_10_2337_db10_0174
crossref_primary_10_1016_j_bbrc_2008_01_017
crossref_primary_10_1016_j_bbrc_2010_09_115
crossref_primary_10_1016_j_bbrc_2012_12_084
crossref_primary_10_1016_j_diabet_2008_04_002
crossref_primary_10_1186_1471_2091_15_20
crossref_primary_10_1155_2013_805217
crossref_primary_10_1007_s11428_015_0036_7
crossref_primary_10_1016_j_lfs_2011_02_025
crossref_primary_10_1016_j_coemr_2022_100381
crossref_primary_10_1097_MCO_0b013e3282f0eca9
crossref_primary_10_1210_jc_2009_1590
crossref_primary_10_1152_ajpendo_00797_2007
crossref_primary_10_1093_hmg_ddq183
crossref_primary_10_3109_13813455_2012_656653
crossref_primary_10_1111_j_1399_5448_2009_00564_x
crossref_primary_10_1007_s11010_020_03731_9
crossref_primary_10_2337_db24_0083
crossref_primary_10_1007_s00125_009_1483_8
crossref_primary_10_1016_j_jnutbio_2011_03_014
crossref_primary_10_1371_journal_pone_0040600
crossref_primary_10_1126_sciadv_adr8849
crossref_primary_10_1016_j_arcmed_2015_05_007
crossref_primary_10_1038_s41366_019_0473_2
crossref_primary_10_2174_1389203720666191119100759
crossref_primary_10_2337_db09_0214
crossref_primary_10_1172_JCI77812
crossref_primary_10_1056_NEJMra1011035
crossref_primary_10_2337_dc11_0777
crossref_primary_10_1155_2012_716056
crossref_primary_10_1007_s00424_021_02613_3
crossref_primary_10_3390_ijms24043399
crossref_primary_10_3389_fmolb_2022_959844
crossref_primary_10_1186_s12902_021_00687_9
crossref_primary_10_1007_s00210_023_02639_7
crossref_primary_10_1016_j_bbadis_2013_05_008
crossref_primary_10_1016_j_jnutbio_2014_03_003
crossref_primary_10_1073_pnas_1111308108
crossref_primary_10_1016_j_dsx_2020_06_006
crossref_primary_10_1210_en_2007_1444
crossref_primary_10_1016_j_gene_2024_148216
crossref_primary_10_1016_j_biopha_2024_116688
crossref_primary_10_1016_j_abb_2015_09_017
crossref_primary_10_2522_ptj_20080018
crossref_primary_10_1007_s00125_008_1069_x
crossref_primary_10_1111_j_1467_789X_2012_00988_x
crossref_primary_10_1210_jc_2015_2012
crossref_primary_10_1142_S0192415X20500329
crossref_primary_10_2165_00007256_200838090_00003
crossref_primary_10_1021_acs_jproteome_6b00022
crossref_primary_10_1038_s41387_022_00213_3
crossref_primary_10_1016_j_molmet_2017_10_006
crossref_primary_10_1002_mrm_25514
crossref_primary_10_1038_nm0410_400
crossref_primary_10_1016_j_molmet_2014_12_012
crossref_primary_10_1016_j_xcrm_2022_100763
crossref_primary_10_1210_jc_2011_0278
crossref_primary_10_3390_nu14214638
crossref_primary_10_1007_s00125_012_2456_x
crossref_primary_10_1210_jc_2014_2512
crossref_primary_10_1210_er_2009_0003
crossref_primary_10_1210_endocr_bqaa158
crossref_primary_10_1073_pnas_0808889105
crossref_primary_10_3109_19390211_2014_887599
crossref_primary_10_1007_s11892_009_0033_6
crossref_primary_10_1007_s12010_016_2352_9
crossref_primary_10_1152_ajpendo_90255_2008
crossref_primary_10_1007_s11154_012_9234_4
crossref_primary_10_1097_MOL_0b013e328303e27e
crossref_primary_10_1007_s00421_013_2657_0
crossref_primary_10_1152_japplphysiol_00091_2008
crossref_primary_10_2337_dc10_0663
crossref_primary_10_1007_s11892_008_0030_1
crossref_primary_10_1016_j_bcp_2015_06_032
crossref_primary_10_1016_j_lfs_2010_06_007
crossref_primary_10_1007_s00125_010_1776_y
crossref_primary_10_1016_j_bbrc_2009_03_102
crossref_primary_10_3390_ijms241813724
crossref_primary_10_1186_1423_0127_16_112
crossref_primary_10_1007_s11695_009_9987_3
crossref_primary_10_1016_j_tem_2009_09_008
crossref_primary_10_2337_db13_1427
crossref_primary_10_1007_s00421_022_04929_z
crossref_primary_10_1016_j_metabol_2020_154416
crossref_primary_10_2337_db12_1219
crossref_primary_10_1007_s00125_008_1153_2
crossref_primary_10_1016_j_bbadis_2010_12_007
crossref_primary_10_1152_ajpendo_00505_2009
crossref_primary_10_1073_pnas_0810339105
crossref_primary_10_1016_j_bbadis_2017_10_013
crossref_primary_10_3945_ajcn_2008_26717C
crossref_primary_10_3945_ajcn_2008_26717A
crossref_primary_10_4239_wjd_v12_i4_331
crossref_primary_10_1016_j_cmet_2012_03_005
crossref_primary_10_1093_gerona_glr263
crossref_primary_10_1210_endocr_bqaa017
crossref_primary_10_1210_er_2009_0027
crossref_primary_10_2217_clp_11_60
crossref_primary_10_1016_j_atherosclerosis_2021_11_026
crossref_primary_10_1016_j_metabol_2009_07_009
crossref_primary_10_3390_cells12242786
crossref_primary_10_2337_db09_0916
crossref_primary_10_1016_j_jep_2019_112054
crossref_primary_10_1152_ajpregu_00304_2011
crossref_primary_10_1210_jc_2015_3696
crossref_primary_10_1172_jci_insight_86612
crossref_primary_10_3390_ijms19010201
crossref_primary_10_2337_db12_1107
crossref_primary_10_1210_jc_2008_0630
crossref_primary_10_1016_j_tem_2012_05_007
crossref_primary_10_1371_journal_pone_0129579
crossref_primary_10_3390_cimb45110548
crossref_primary_10_1016_j_ejps_2012_03_004
crossref_primary_10_1172_JCI38793
crossref_primary_10_1097_MCO_0b013e328302f3ec
crossref_primary_10_3109_13813455_2011_584538
crossref_primary_10_3760_cma_j_issn_0366_6999_20132975
crossref_primary_10_2337_dbi18_0030
crossref_primary_10_3390_ijms25147789
crossref_primary_10_1186_s13098_017_0298_x
crossref_primary_10_2337_db08_0981
crossref_primary_10_1007_s11154_011_9168_2
crossref_primary_10_1152_ajpendo_00426_2017
crossref_primary_10_1210_jc_2012_3111
crossref_primary_10_1016_j_molcel_2011_07_019
crossref_primary_10_1152_ajpendo_00175_2016
crossref_primary_10_1038_s41598_021_02324_w
crossref_primary_10_1016_j_cmet_2024_03_002
crossref_primary_10_3390_nu8070404
crossref_primary_10_1080_09168451_2018_1451742
crossref_primary_10_1039_C3MB70609E
crossref_primary_10_1074_jbc_M800842200
crossref_primary_10_1016_j_ejphar_2021_174418
crossref_primary_10_1152_ajpcell_00345_2010
crossref_primary_10_1016_j_clnu_2014_12_007
crossref_primary_10_1152_ajpendo_00225_2013
crossref_primary_10_1111_obr_12862
crossref_primary_10_3389_fendo_2024_1474232
crossref_primary_10_2337_db13_1100
crossref_primary_10_1007_s11033_018_4551_7
crossref_primary_10_1038_s41401_019_0345_2
crossref_primary_10_2337_db11_1391
crossref_primary_10_1155_2015_972891
crossref_primary_10_1038_nm_3415
crossref_primary_10_3389_fphys_2022_1049560
crossref_primary_10_1016_j_bbadis_2015_12_019
crossref_primary_10_1016_S2213_8587_14_70065_8
crossref_primary_10_1016_j_bbrc_2009_07_064
crossref_primary_10_1080_0035919X_2018_1476421
crossref_primary_10_1530_EJE_16_0488
crossref_primary_10_1016_j_bbrc_2010_12_102
crossref_primary_10_1016_j_jmr_2010_09_010
crossref_primary_10_1152_ajpheart_00782_2007
crossref_primary_10_1073_pnas_1207287109
crossref_primary_10_1152_ajpregu_00659_2010
crossref_primary_10_1371_journal_pone_0004394
crossref_primary_10_1016_j_bbrc_2011_04_028
crossref_primary_10_1016_j_mce_2015_05_020
crossref_primary_10_1371_journal_pone_0010956
crossref_primary_10_1080_09638288_2021_1900929
crossref_primary_10_1016_j_dsx_2021_02_037
crossref_primary_10_1152_ajpendo_90558_2008
crossref_primary_10_1177_1721727X17731003
crossref_primary_10_2337_db16_1410
crossref_primary_10_1080_15376516_2020_1717704
crossref_primary_10_1038_s41387_024_00299_x
crossref_primary_10_3390_antiox10081257
crossref_primary_10_1136_bmjdrc_2016_000312
crossref_primary_10_1016_j_bbrc_2010_06_106
crossref_primary_10_1155_2011_250496
crossref_primary_10_1152_ajpendo_00103_2012
crossref_primary_10_2337_db11_1725
crossref_primary_10_1210_jc_2007_1670
crossref_primary_10_1186_s12933_018_0798_5
crossref_primary_10_1021_pr200452j
crossref_primary_10_1016_j_bbabio_2016_07_008
crossref_primary_10_1016_j_ecl_2010_12_009
crossref_primary_10_3389_fendo_2021_694893
crossref_primary_10_1161_ATVBAHA_110_217687
crossref_primary_10_1111_apha_13216
crossref_primary_10_1152_japplphysiol_01081_2012
crossref_primary_10_1586_eem_10_21
crossref_primary_10_1186_s40608_015_0070_4
crossref_primary_10_1016_j_eclnm_2010_05_002
crossref_primary_10_1136_bmjdrc_2020_001377
crossref_primary_10_1080_00032719_2010_520390
crossref_primary_10_1111_obr_13131
Cites_doi 10.1056/NEJMoa031314
10.2337/diabetes.51.7.2005
10.2337/diacare.22.9.1462
10.2337/diabetes.48.8.1600
10.1038/ng1180
10.1126/science.1082889
10.1172/JCI10583
10.1093/ajcn/36.5.936
10.1007/s00125-005-1686-6
10.1007/s00125-005-1800-9
10.1074/jbc.M200958200
10.2337/diabetes.52.3.895
10.1371/journal.pmed.0020233
10.1172/JCI25151
10.2337/diabetes.48.5.1113
10.1002/mrm.1910380521
10.1172/JCI5001
10.2337/diabetes.51.3.797
10.1073/pnas.0608537103
10.1172/JCI200111775
10.7326/0003-4819-113-12-909
10.1007/s001250051123
10.1073/pnas.1032913100
10.1038/jcbfm.1992.61
10.2337/db06-S002
10.1016/S0026-0495(96)90260-7
10.1152/ajpendo.1999.276.5.E977
10.2337/diabetes.46.6.1001
10.1016/S0092-8674(00)80611-X
10.1073/pnas.120131997
10.1016/0022-2364(82)90286-4
10.2337/diabetes.48.6.1270
10.1007/s001250100032
ContentType Journal Article
Copyright 2007 INIST-CNRS
COPYRIGHT 2007 American Diabetes Association
Copyright American Diabetes Association May 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: COPYRIGHT 2007 American Diabetes Association
– notice: Copyright American Diabetes Association May 2007
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
5PM
DOI 10.2337/db06-0783
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Research Library Prep
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 1381
ExternalDocumentID PMC2995532
1285943501
A164637956
17287462
18737323
10_2337_db06_0783
diabetes_56_5_1376
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: M01 RR000125
– fundername: NIDDK NIH HHS
  grantid: R01 DK049230
– fundername: NIA NIH HHS
  grantid: R01 AG023686
– fundername: NIDDK NIH HHS
  grantid: P30 DK045735
– fundername: NIDDK NIH HHS
  grantid: P01 DK068229
– fundername: NIA NIH HHS
  grantid: R56 AG023686
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFFNX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
J5H
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
354
6PF
AAFWJ
AAKAS
AAYOK
AAYXX
ACGFO
ADGHP
ADZCM
AEGXH
AERZD
AIAGR
AIZAD
ALIPV
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
1CY
AI.
IQODW
MVM
O5R
O5S
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FK
K9.
PKEHL
Q9U
7X8
5PM
ID FETCH-LOGICAL-c681t-152fbf78c1733ff6d3c12d64fc43d544422d0c2ca7107fcbafa2abab89e9cd0c3
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Thu Aug 21 18:17:16 EDT 2025
Fri Jul 11 08:56:09 EDT 2025
Fri Jul 25 19:27:48 EDT 2025
Fri Jun 13 00:48:56 EDT 2025
Tue Jun 10 21:32:19 EDT 2025
Fri Jun 27 05:52:26 EDT 2025
Tue Jun 10 20:05:59 EDT 2025
Fri May 30 10:49:34 EDT 2025
Mon Jul 21 09:11:40 EDT 2025
Thu Apr 24 23:02:59 EDT 2025
Tue Jul 01 03:03:56 EDT 2025
Fri Jan 15 19:45:55 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Endocrinopathy
Type 2 diabetes
Human
Pancreatic hormone
Mitochondria
Metabolic diseases
Muscle
Oxidation
Insulin
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c681t-152fbf78c1733ff6d3c12d64fc43d544422d0c2ca7107fcbafa2abab89e9cd0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://diabetesjournals.org/diabetes/article-pdf/56/5/1376/388139/zdb00507001376.pdf
PMID 17287462
PQID 216483195
PQPubID 34443
PageCount 6
ParticipantIDs proquest_miscellaneous_70454916
gale_infotracgeneralonefile_A164637956
pascalfrancis_primary_18737323
crossref_citationtrail_10_2337_db06_0783
proquest_journals_216483195
gale_incontextgauss_8GL_A164637956
pubmed_primary_17287462
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2995532
gale_infotracacademiconefile_A164637956
highwire_diabetes_diabetes_56_5_1376
crossref_primary_10_2337_db06_0783
gale_incontextcollege_GICCO_A164637956
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-01
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2007
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022031210484706100_R7
2022031210484706100_R6
2022031210484706100_R9
2022031210484706100_R8
2022031210484706100_R27
2022031210484706100_R26
2022031210484706100_R25
2022031210484706100_R24
2022031210484706100_R29
2022031210484706100_R28
2022031210484706100_R23
2022031210484706100_R22
2022031210484706100_R21
2022031210484706100_R20
2022031210484706100_R16
2022031210484706100_R15
2022031210484706100_R1
2022031210484706100_R14
2022031210484706100_R13
2022031210484706100_R3
2022031210484706100_R2
2022031210484706100_R19
2022031210484706100_R5
2022031210484706100_R18
2022031210484706100_R4
2022031210484706100_R17
2022031210484706100_R30
2022031210484706100_R12
2022031210484706100_R34
2022031210484706100_R11
2022031210484706100_R33
2022031210484706100_R10
2022031210484706100_R32
2022031210484706100_R31
References_xml – ident: 2022031210484706100_R13
  doi: 10.1056/NEJMoa031314
– ident: 2022031210484706100_R9
  doi: 10.2337/diabetes.51.7.2005
– ident: 2022031210484706100_R18
  doi: 10.2337/diacare.22.9.1462
– ident: 2022031210484706100_R5
  doi: 10.2337/diabetes.48.8.1600
– ident: 2022031210484706100_R30
  doi: 10.1038/ng1180
– ident: 2022031210484706100_R24
  doi: 10.1126/science.1082889
– ident: 2022031210484706100_R7
  doi: 10.1172/JCI10583
– ident: 2022031210484706100_R23
– ident: 2022031210484706100_R17
  doi: 10.1093/ajcn/36.5.936
– ident: 2022031210484706100_R33
  doi: 10.1007/s00125-005-1686-6
– ident: 2022031210484706100_R32
  doi: 10.1007/s00125-005-1800-9
– ident: 2022031210484706100_R11
  doi: 10.1074/jbc.M200958200
– ident: 2022031210484706100_R29
  doi: 10.2337/diabetes.52.3.895
– ident: 2022031210484706100_R26
  doi: 10.1371/journal.pmed.0020233
– ident: 2022031210484706100_R14
  doi: 10.1172/JCI25151
– ident: 2022031210484706100_R6
  doi: 10.2337/diabetes.48.5.1113
– ident: 2022031210484706100_R20
  doi: 10.1002/mrm.1910380521
– ident: 2022031210484706100_R10
  doi: 10.1172/JCI5001
– ident: 2022031210484706100_R25
  doi: 10.2337/diabetes.51.3.797
– ident: 2022031210484706100_R19
  doi: 10.1073/pnas.0608537103
– ident: 2022031210484706100_R16
  doi: 10.1172/JCI200111775
– ident: 2022031210484706100_R1
  doi: 10.7326/0003-4819-113-12-909
– ident: 2022031210484706100_R3
  doi: 10.1007/s001250051123
– ident: 2022031210484706100_R31
  doi: 10.1073/pnas.1032913100
– ident: 2022031210484706100_R22
  doi: 10.1038/jcbfm.1992.61
– ident: 2022031210484706100_R34
  doi: 10.2337/db06-S002
– ident: 2022031210484706100_R2
  doi: 10.1016/S0026-0495(96)90260-7
– ident: 2022031210484706100_R4
  doi: 10.1152/ajpendo.1999.276.5.E977
– ident: 2022031210484706100_R12
  doi: 10.2337/diabetes.46.6.1001
– ident: 2022031210484706100_R27
  doi: 10.1016/S0092-8674(00)80611-X
– ident: 2022031210484706100_R15
  doi: 10.1073/pnas.120131997
– ident: 2022031210484706100_R21
  doi: 10.1016/0022-2364(82)90286-4
– ident: 2022031210484706100_R8
  doi: 10.2337/diabetes.48.6.1270
– ident: 2022031210484706100_R28
  doi: 10.1007/s001250100032
SSID ssj0006060
Score 2.425571
Snippet Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients Douglas E. Befroy 1 , Kitt Falk Petersen 1 ,...
Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1376
SubjectTerms Adult
Biological and medical sciences
Body Mass Index
Carbon Isotopes
Chemical properties
Citric Acid Cycle
Diabetes
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - metabolism
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fatty acids
Female
Glucose Tolerance Test
Health aspects
Humans
Hypotheses
Insulin resistance
Insulin Resistance - physiology
Kinases
Kinetics
Life Style
Lipids
Magnetic Resonance Spectroscopy
Male
Medical sciences
Metabolism
Metabolites
Mitochondria, Muscle - metabolism
Models, Biological
Musculoskeletal system
Nuclear Family
Oxidation
Oxidation-Reduction
Oxidation-reduction reaction
Oxidation-reduction reactions
Pathogenesis
Phosphorylation
Physiological aspects
Spectrum analysis
Type 2 diabetes
Title Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients
URI http://diabetes.diabetesjournals.org/content/56/5/1376.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17287462
https://www.proquest.com/docview/216483195
https://www.proquest.com/docview/70454916
https://pubmed.ncbi.nlm.nih.gov/PMC2995532
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZbC2MvY7_rdsvEKN1eTGNJtuSn0YV27ViaUlbIm7AkqwsMu6sT2J-_O8tO5hH2Yox1yJJ1Ot1Jn78j5NDnZeIZ87FL8zIWTsjY5MLFLLM-y73Nxi2IZnqZnd-Ir_N03mFzmg5W2dvE1lC72uIe-TEDv16BvqSf7n7FmDQKD1e7DBoPyS4ylyGiS87X8dYYfPPwB0rCkIVTBmIhxrk8dgYDaan4YDnqjXLPFIxAyaKBb-VDkottXui_YMq_Vqezp-RJ51bSk6AHz8iDsnpOHk27g_MXpL6AaQ_vcnQKUxhMXuVQ8yjajZafls5-L0J6Jbqo6HTVQDW09vQiYNXj67JBT7Na0pn34TAXizGMpYwGXM3C0qtA09q8JDdnp98n53GXayG2mUqWMSzj3nipbCI59z5z3CbMZcJbwV0qhGDMjS2zBXgk0ltT-IIVpjAqL3MLJfwV2anqqtwjlKXWJMY7eKoE-BfK26QsrZIQ3QljREQ-9p9c246IHPNh_NQQkODoaBwdjaMTkfdr0bvAvrFN6AjHTSObRYVwGRu2XDT0bzLTJ8igxiXEgVDbUPC2WDWNVl--DYQ-dEK-hlbZovtNAfqGTFkDyaOB5G3gCd8meNhrlO531Dc3aaZTnYCdj8hooG2bHivJJWfQ0YNe_XRnaRq9nhcRebcuBROB5z5FVdarRkukWYQwICKvg6puapaY7iBjEZEDJV4LIPn4sKRa_GhJyMGNSVPO9v_bpgPyOOyFI0D0DdlZ3q_Kt-DELc2onapwVZNkRHY_n15eXf8B8uhLcA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG_CYLPQGLxEW2wnTh4QGmOjZf2Ypk3am5fY8aiEkkFaAX8U_yN3dZISVPG2t6o-uXHv8rs7-_w7QrZtkgeWMeubMMl9YYT0s0QYn0XaRonV0d6iiGY0jvrn4vNFeLFGfjd3YbCsssHEBVCbUuMe-S6DuD4GewnfX3_zsWkUHq42HTScVRznv35Axla9G3wE9b5m7Ojw7KDv100FfB3FwcwHf2UzK2MdSM6tjQzXATORsFpwEwohGDN7mukUXK-0OkttytIszeIkTzSMcJj3FlkXHDKZHln_cDg-OW2hH7IBd-clYMj7KR2VEeNc7poMU3cZ844DbNxAw02MpZlpBdqxrq3Gqrj33_LNv_zh0X1yrw5k6b6zvAdkLS8ektuj-qj-ESkHADTwW4aOADQAZAuDtk4RqRaMuHTyc-oaOtFpQUfzCqahpaUDVx3vn-YVxrbFjE6sdcfHOIyJM2XUVfJMNT1xxLDVY3J-I4p4QnpFWeTPCGWhzoLMGvg2FhDRxFYHea5jCfmkyDLhkbfNX650TX2OHTi-KkiBUDsKtaNQOx551YpeO76PVUI7qDeF_BkFFuhot8mjYH0HE7WPnG1cQuYJs3UFr9J5Van407Aj9KYWsiU8lU7rixGwNuTm6kjudCSvHDP5KsHtxqJUs4e__BBGKlQBeBaPbHasbbniWHLJGSx0ozE_VWNbpdo30SNb7SiAEp40pUVezislkdgREg-PPHWmupxZYoOFiHlEdoy4FUC68-5IMf2yoD2HwCkMOXv-32faInf6Z6OhGg7GxxvkrtuJx_LUF6Q3-z7PX0IIOcs26xeXksubxoo_TUqJIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN-EwWahMXiJ2thOnDwgNG2Ula3rhJjUNy_xx6iEkkFaAX8a_x13ddISVPG2t6o-uXHv8rs7-_w7QvZcZiPHmAtNnNlQGCHDIhMmZIl2SeZ00l8U0YzOkuML8XESTzbI7_YuDJZVtpi4AGpTadwj7zGI61Owl7jnmqqI86PBu-tvITaQwoPWtpuGt5AT--sHZG_12-ERqPoVY4P3nw-Pw6bBQKiTNJqF4Ltc4WSqI8m5c4nhOmImEU4LbmIhBGOmr5nOwQ1Lp4vc5Swv8iLNbKZhhMO8t8htyeMIXzE5WeZ6fcgL_O2XiCEDqPSkRoxz2TMFJvEy5R1X2DqElqUYizTzGvTkfIONdRHwv4Wcf3nGwT1ytwlp6YG3wftkw5YPyNaoObR_SKohQA78lqEjgA-A29Kg1VPErAU3Lh3_nPrWTnRa0tG8hmlo5ejQ18mHn2yNUW45o2Pn_EEyDmMKTRn1NT1TTc89RWz9iFzciBoek82yKu1TQlmsi6hwBr5NBcQ2qdORtTqVkFmKohABedP-5Uo3JOjYi-OrgmQItaNQOwq1E5CXS9Frz_yxTmgf9aaQSaNEo9R-u0fB-g7H6gDZ27iEHBRm6wpe5fO6VumH047Q60bIVfBUOm-uSMDakKWrI7nfkbzyHOXrBPdai1Ltbv7qQ5yoWEXgYwKy07G21YpTySVnsNDt1vxUg3K1Wr6TAdldjgI84ZlTXtpqXiuJFI-QggTkiTfV1cwSWy0kLCCyY8RLASQ-746U0y8LAnQIoeKYs2f_faZdsgUIoU6HZyfb5I7fksc61edkc_Z9bl9ALDkrdhZvLSWXNw0TfwDpBovy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+Mitochondrial+Substrate+Oxidation+in+Muscle+of+Insulin-Resistant+Offspring+of+Type+2+Diabetic+Patients&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Befroy%2C+Douglas+E&rft.au=Kitt+Falk+Petersen&rft.au=Dufour%2C+Sylvie&rft.au=Mason%2C+Graeme+F&rft.date=2007-05-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=56&rft.issue=5&rft.spage=1376&rft_id=info:doi/10.2337%2Fdb06-0783&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1285943501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon