Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients
Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients Douglas E. Befroy 1 , Kitt Falk Petersen 1 , Sylvie Dufour 2 , Graeme F. Mason 3 , Robin A. de Graaf 3 , Douglas L. Rothman 3 and Gerald I. Shulman 1 2 4 1 Department of Internal Medicine,...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 56; no. 5; pp. 1376 - 1381 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.05.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients
Douglas E. Befroy 1 ,
Kitt Falk Petersen 1 ,
Sylvie Dufour 2 ,
Graeme F. Mason 3 ,
Robin A. de Graaf 3 ,
Douglas L. Rothman 3 and
Gerald I. Shulman 1 2 4
1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
Address correspondence and reprint requests to Gerald I. Shulman, MD, PhD, Howard Hughes Medical Institute, Yale University
School of Medicine, The Anlyan Center, S269, P.O. Box 9812, New Haven, CT 06536-8012. E-mail: gerald.shulman{at}yale.edu
Abstract
Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the
mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased
mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type
2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes.
To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using
13 C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive
control subjects underwent 13 C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13 C label into C 4 glutamate during a [2- 13 C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by
30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g −1 · min −1 , P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g −1 · min −1 ). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated
with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial
oxidative phosphorylation.
COX, cytochrome oxidase
FID, free induction decay
IMCL, intramyocellular lipid
IRS-1, insulin receptor substrate-1
ISI, insulin sensitivity index
MRS, magnetic resonance spectroscopy
PDH, pyruvate dehydrogenase
PGC, peroxisome proliferator–activated receptor-γ coactivator
SDH, succinate dehydrogenase
TCA, tricarboxylic acid
Footnotes
Published ahead of print at http://diabetes.diabetesjournals.org on 7 February 2007. DOI: 10.2337/db06-0783.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Accepted January 31, 2007.
Received July 6, 2006.
DIABETES |
---|---|
AbstractList | Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using [sup.13]C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent [sup.13]C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of [sup.13]C label into [C.sub.4] glutamate during a [2-[sup.13]C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol x [g.sup.-1] x [min.sup.-1], P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol x [g.sup.-1] x [min.sup.-1]). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients Douglas E. Befroy 1 , Kitt Falk Petersen 1 , Sylvie Dufour 2 , Graeme F. Mason 3 , Robin A. de Graaf 3 , Douglas L. Rothman 3 and Gerald I. Shulman 1 2 4 1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut Address correspondence and reprint requests to Gerald I. Shulman, MD, PhD, Howard Hughes Medical Institute, Yale University School of Medicine, The Anlyan Center, S269, P.O. Box 9812, New Haven, CT 06536-8012. E-mail: gerald.shulman{at}yale.edu Abstract Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using 13 C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent 13 C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13 C label into C 4 glutamate during a [2- 13 C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g −1 · min −1 , P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g −1 · min −1 ). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. COX, cytochrome oxidase FID, free induction decay IMCL, intramyocellular lipid IRS-1, insulin receptor substrate-1 ISI, insulin sensitivity index MRS, magnetic resonance spectroscopy PDH, pyruvate dehydrogenase PGC, peroxisome proliferator–activated receptor-γ coactivator SDH, succinate dehydrogenase TCA, tricarboxylic acid Footnotes Published ahead of print at http://diabetes.diabetesjournals.org on 7 February 2007. DOI: 10.2337/db06-0783. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted January 31, 2007. Received July 6, 2006. DIABETES Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using 13 C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent 13 C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13 C label into C 4 glutamate during a [2- 13 C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g −1 · min −1 , P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g −1 · min −1 ). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using (13)C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent (13)C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of (13)C label into C(4) glutamate during a [2-(13)C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 +/- 5.1 nmol x g(-1) x min(-1), P = 0.02) compared with insulin-sensitive control subjects (96.1 +/- 16.3 nmol x g(-1) x min(-1)). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using 13C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent 13C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of 13C label into C4 glutamate during a [2-13C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 ± 5.1 nmol · g−1 · min−1, P = 0.02) compared with insulin-sensitive control subjects (96.1 ± 16.3 nmol · g−1 · min−1). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using (13)C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent (13)C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of (13)C label into C(4) glutamate during a [2-(13)C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 +/- 5.1 nmol x g(-1) x min(-1), P = 0.02) compared with insulin-sensitive control subjects (96.1 +/- 16.3 nmol x g(-1) x min(-1)). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation.Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains unknown. Recent studies have demonstrated increased intramyocellular lipid, decreased mitochondrial ATP synthesis, and decreased mitochondrial density in the muscle of lean, insulin-resistant offspring of type 2 diabetic patients. These data suggest an important role for mitochondrial dysfunction in the pathogenesis of type 2 diabetes. To further explore this hypothesis, we assessed rates of substrate oxidation in the muscle of these same individuals using (13)C magnetic resonance spectroscopy (MRS). Young, lean, insulin-resistant offspring of type 2 diabetic patients and insulin-sensitive control subjects underwent (13)C MRS studies to noninvasively assess rates of substrate oxidation in muscle by monitoring the incorporation of (13)C label into C(4) glutamate during a [2-(13)C]acetate infusion. Using this approach, we found that rates of muscle mitochondrial substrate oxidation were decreased by 30% in lean, insulin-resistant offspring (59.8 +/- 5.1 nmol x g(-1) x min(-1), P = 0.02) compared with insulin-sensitive control subjects (96.1 +/- 16.3 nmol x g(-1) x min(-1)). These data support the hypothesis that insulin resistance in skeletal muscle of insulin-resistant offspring is associated with dysregulation of intramyocellular fatty acid metabolism, possibly because of an inherited defect in the activity of mitochondrial oxidative phosphorylation. |
Audience | Professional |
Author | Douglas E. Befroy Gerald I. Shulman Kitt Falk Petersen Douglas L. Rothman Graeme F. Mason Sylvie Dufour Robin A. de Graaf |
AuthorAffiliation | 1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut |
AuthorAffiliation_xml | – name: 3 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut – name: 4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut – name: 2 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut – name: 1 Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut |
Author_xml | – sequence: 1 givenname: Douglas E. surname: Befroy fullname: Befroy, Douglas E. organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut – sequence: 2 givenname: Kitt Falk surname: Petersen fullname: Petersen, Kitt Falk organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut – sequence: 3 givenname: Sylvie surname: Dufour fullname: Dufour, Sylvie organization: Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut – sequence: 4 givenname: Graeme F. surname: Mason fullname: Mason, Graeme F. organization: Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut – sequence: 5 givenname: Robin A. surname: de Graaf fullname: de Graaf, Robin A. organization: Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut – sequence: 6 givenname: Douglas L. surname: Rothman fullname: Rothman, Douglas L. organization: Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut – sequence: 7 givenname: Gerald I. surname: Shulman fullname: Shulman, Gerald I. organization: Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18737323$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17287462$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1v0zAUhiM0xLrBBX8ARUggIZTNH0mc3CBNHYxKnYpgSNxZjnOcenLtLnbY9u9x19JSVPnCls9z3uNz_J4kR9ZZSJLXGJ0RStl526AyQ6yiz5IRrmmdUcJ-HSUjhDDJMKvZcXLi_S1CqIzrRXKMGalYXpJR4iaLpdA9tOm1Dk7OnW17LUz6Y2h86EWAdPagWxG0s6m26fXgpYHUqXRi_WC0zb6D1z4IG9KZUn7Za9utwjePS0hJeqlFA0HL9FuUABv8y-S5EsbDq81-mvz88vlm_DWbzq4m44tpJssKhwwXRDWKVRIzSpUqWyoxactcyZy2RZ7nhLRIEikYRkzJRihBRCOaqoZaxgg9TT6tdZdDs4BWxtq9MDy-byH6R-6E5vsRq-e8c785qeuioCQKvN8I9O5uAB_4QnsJxggLbvCcobzIa1xG8O1_4K0behub4wSXeUVxXUQoW0OdMMC1VS4WlR1YiLXjZyodry8iXlJWFyvRswN8XC0stDyY8GEvITIBHkInBu95dTXdZ7NDrHTGQAc8_sN4ts-_-XeW2yH-dVEE3m0A4aUwqhdWar_jKkZZHGnkztec7J33PSgudXjyVuxOG44RX_mZr_zMV37etbXN2IoeYD-u2bnu5vfR07x9ch_43aEoecExZSX9A46AA1s |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1038_ijo_2017_274 crossref_primary_10_1016_j_bbadis_2010_09_014 crossref_primary_10_3390_ijms252413238 crossref_primary_10_1016_j_ecl_2008_06_006 crossref_primary_10_1016_j_lfs_2020_118661 crossref_primary_10_1016_j_pharmthera_2011_04_004 crossref_primary_10_1016_j_ecl_2008_06_001 crossref_primary_10_3390_ijms10010306 crossref_primary_10_1016_j_drudis_2008_01_006 crossref_primary_10_1097_01_pra_0000388627_36781_6a crossref_primary_10_1210_clinem_dgae545 crossref_primary_10_1016_j_jnutbio_2014_05_006 crossref_primary_10_1007_s00404_023_07004_w crossref_primary_10_2337_dc08_0303 crossref_primary_10_1016_j_bpj_2016_07_028 crossref_primary_10_2337_dc14_0715 crossref_primary_10_3945_an_111_000737 crossref_primary_10_1007_s00125_010_1708_x crossref_primary_10_14336_AD_2019_0524 crossref_primary_10_1016_j_jbi_2021_103796 crossref_primary_10_1111_1750_3841_14723 crossref_primary_10_1016_S0140_6736_10_60408_4 crossref_primary_10_2337_db12_1650 crossref_primary_10_1042_BSR20120034 crossref_primary_10_1152_ajpendo_00220_2015 crossref_primary_10_3390_ijms241210015 crossref_primary_10_2337_db12_0558 crossref_primary_10_1152_ajpendo_00663_2011 crossref_primary_10_3389_fphys_2020_00963 crossref_primary_10_3945_jn_109_111179 crossref_primary_10_1186_s13287_022_03123_4 crossref_primary_10_1210_er_2012_1055 crossref_primary_10_1093_molehr_gau042 crossref_primary_10_1007_BF03346503 crossref_primary_10_1016_j_cmet_2020_09_008 crossref_primary_10_1021_acs_jproteome_7b00866 crossref_primary_10_1016_j_jdiacomp_2016_10_014 crossref_primary_10_1039_C5MB00158G crossref_primary_10_1210_jc_2016_3480 crossref_primary_10_2337_db11_1475 crossref_primary_10_3389_fphys_2023_1150265 crossref_primary_10_1210_en_2011_1502 crossref_primary_10_1016_j_exger_2016_01_008 crossref_primary_10_2165_11585920_000000000_00000 crossref_primary_10_2337_db10_0997 crossref_primary_10_1042_bse0470069 crossref_primary_10_1016_j_clnu_2011_02_009 crossref_primary_10_1007_s00125_014_3187_y crossref_primary_10_1007_s00439_013_1402_4 crossref_primary_10_1016_j_cmet_2010_04_004 crossref_primary_10_3109_15376516_2012_759305 crossref_primary_10_1038_srep22788 crossref_primary_10_1016_j_tem_2008_08_001 crossref_primary_10_3390_nu11030654 crossref_primary_10_3390_biomedicines11010121 crossref_primary_10_1530_JOE_13_0397 crossref_primary_10_1007_s00125_010_1768_y crossref_primary_10_1097_01_mol_0000319118_44995_9a crossref_primary_10_1155_2010_476279 crossref_primary_10_3945_jn_108_103754 crossref_primary_10_1161_CIRCRESAHA_107_165472 crossref_primary_10_1177_0884533613516168 crossref_primary_10_2337_db08_0949 crossref_primary_10_1074_jbc_M707192200 crossref_primary_10_3390_ijerph18052367 crossref_primary_10_1016_j_biopha_2021_111440 crossref_primary_10_1152_ajpendo_00051_2018 crossref_primary_10_1016_j_diabet_2014_03_006 crossref_primary_10_1016_j_atherosclerosis_2010_11_037 crossref_primary_10_1089_ars_2012_4910 crossref_primary_10_1146_annurev_nutr_012809_104747 crossref_primary_10_1073_pnas_1716990115 crossref_primary_10_1093_rheumatology_ken220 crossref_primary_10_2337_dc12_1161 crossref_primary_10_1002_hep_27091 crossref_primary_10_1007_s00125_008_1122_9 crossref_primary_10_1016_j_celrep_2017_02_035 crossref_primary_10_3390_ijms241713244 crossref_primary_10_1007_s13238_012_2043_4 crossref_primary_10_1089_ars_2009_2531 crossref_primary_10_1007_s12640_013_9414_3 crossref_primary_10_3389_fnut_2023_1067282 crossref_primary_10_1002_dmrr_812 crossref_primary_10_1371_journal_pone_0015234 crossref_primary_10_1210_jc_2012_3874 crossref_primary_10_3390_ijms252312860 crossref_primary_10_1210_clinem_dgac200 crossref_primary_10_1371_journal_pone_0224484 crossref_primary_10_1152_ajpendo_00590_2009 crossref_primary_10_2337_db09_1322 crossref_primary_10_2147_DNND_S247153 crossref_primary_10_1016_j_cmet_2007_12_002 crossref_primary_10_1016_j_molmet_2013_05_004 crossref_primary_10_1530_JOE_16_0598 crossref_primary_10_1073_pnas_1205675109 crossref_primary_10_1016_j_bbagen_2013_03_023 crossref_primary_10_1136_bmjdrc_2020_001204 crossref_primary_10_1152_ajpendo_90477_2008 crossref_primary_10_1172_JCI120843 crossref_primary_10_1371_journal_pone_0028536 crossref_primary_10_2337_db17_1124 crossref_primary_10_1053_j_ajkd_2017_01_051 crossref_primary_10_1177_1358863X20947467 crossref_primary_10_1371_journal_pone_0183978 crossref_primary_10_3389_fendo_2022_1024832 crossref_primary_10_1016_j_metabol_2014_02_009 crossref_primary_10_1016_j_jnutbio_2019_108315 crossref_primary_10_1159_000327960 crossref_primary_10_1093_nar_gku1160 crossref_primary_10_3389_fphys_2021_676265 crossref_primary_10_2337_db10_0174 crossref_primary_10_1016_j_bbrc_2008_01_017 crossref_primary_10_1016_j_bbrc_2010_09_115 crossref_primary_10_1016_j_bbrc_2012_12_084 crossref_primary_10_1016_j_diabet_2008_04_002 crossref_primary_10_1186_1471_2091_15_20 crossref_primary_10_1155_2013_805217 crossref_primary_10_1007_s11428_015_0036_7 crossref_primary_10_1016_j_lfs_2011_02_025 crossref_primary_10_1016_j_coemr_2022_100381 crossref_primary_10_1097_MCO_0b013e3282f0eca9 crossref_primary_10_1210_jc_2009_1590 crossref_primary_10_1152_ajpendo_00797_2007 crossref_primary_10_1093_hmg_ddq183 crossref_primary_10_3109_13813455_2012_656653 crossref_primary_10_1111_j_1399_5448_2009_00564_x crossref_primary_10_1007_s11010_020_03731_9 crossref_primary_10_2337_db24_0083 crossref_primary_10_1007_s00125_009_1483_8 crossref_primary_10_1016_j_jnutbio_2011_03_014 crossref_primary_10_1371_journal_pone_0040600 crossref_primary_10_1126_sciadv_adr8849 crossref_primary_10_1016_j_arcmed_2015_05_007 crossref_primary_10_1038_s41366_019_0473_2 crossref_primary_10_2174_1389203720666191119100759 crossref_primary_10_2337_db09_0214 crossref_primary_10_1172_JCI77812 crossref_primary_10_1056_NEJMra1011035 crossref_primary_10_2337_dc11_0777 crossref_primary_10_1155_2012_716056 crossref_primary_10_1007_s00424_021_02613_3 crossref_primary_10_3390_ijms24043399 crossref_primary_10_3389_fmolb_2022_959844 crossref_primary_10_1186_s12902_021_00687_9 crossref_primary_10_1007_s00210_023_02639_7 crossref_primary_10_1016_j_bbadis_2013_05_008 crossref_primary_10_1016_j_jnutbio_2014_03_003 crossref_primary_10_1073_pnas_1111308108 crossref_primary_10_1016_j_dsx_2020_06_006 crossref_primary_10_1210_en_2007_1444 crossref_primary_10_1016_j_gene_2024_148216 crossref_primary_10_1016_j_biopha_2024_116688 crossref_primary_10_1016_j_abb_2015_09_017 crossref_primary_10_2522_ptj_20080018 crossref_primary_10_1007_s00125_008_1069_x crossref_primary_10_1111_j_1467_789X_2012_00988_x crossref_primary_10_1210_jc_2015_2012 crossref_primary_10_1142_S0192415X20500329 crossref_primary_10_2165_00007256_200838090_00003 crossref_primary_10_1021_acs_jproteome_6b00022 crossref_primary_10_1038_s41387_022_00213_3 crossref_primary_10_1016_j_molmet_2017_10_006 crossref_primary_10_1002_mrm_25514 crossref_primary_10_1038_nm0410_400 crossref_primary_10_1016_j_molmet_2014_12_012 crossref_primary_10_1016_j_xcrm_2022_100763 crossref_primary_10_1210_jc_2011_0278 crossref_primary_10_3390_nu14214638 crossref_primary_10_1007_s00125_012_2456_x crossref_primary_10_1210_jc_2014_2512 crossref_primary_10_1210_er_2009_0003 crossref_primary_10_1210_endocr_bqaa158 crossref_primary_10_1073_pnas_0808889105 crossref_primary_10_3109_19390211_2014_887599 crossref_primary_10_1007_s11892_009_0033_6 crossref_primary_10_1007_s12010_016_2352_9 crossref_primary_10_1152_ajpendo_90255_2008 crossref_primary_10_1007_s11154_012_9234_4 crossref_primary_10_1097_MOL_0b013e328303e27e crossref_primary_10_1007_s00421_013_2657_0 crossref_primary_10_1152_japplphysiol_00091_2008 crossref_primary_10_2337_dc10_0663 crossref_primary_10_1007_s11892_008_0030_1 crossref_primary_10_1016_j_bcp_2015_06_032 crossref_primary_10_1016_j_lfs_2010_06_007 crossref_primary_10_1007_s00125_010_1776_y crossref_primary_10_1016_j_bbrc_2009_03_102 crossref_primary_10_3390_ijms241813724 crossref_primary_10_1186_1423_0127_16_112 crossref_primary_10_1007_s11695_009_9987_3 crossref_primary_10_1016_j_tem_2009_09_008 crossref_primary_10_2337_db13_1427 crossref_primary_10_1007_s00421_022_04929_z crossref_primary_10_1016_j_metabol_2020_154416 crossref_primary_10_2337_db12_1219 crossref_primary_10_1007_s00125_008_1153_2 crossref_primary_10_1016_j_bbadis_2010_12_007 crossref_primary_10_1152_ajpendo_00505_2009 crossref_primary_10_1073_pnas_0810339105 crossref_primary_10_1016_j_bbadis_2017_10_013 crossref_primary_10_3945_ajcn_2008_26717C crossref_primary_10_3945_ajcn_2008_26717A crossref_primary_10_4239_wjd_v12_i4_331 crossref_primary_10_1016_j_cmet_2012_03_005 crossref_primary_10_1093_gerona_glr263 crossref_primary_10_1210_endocr_bqaa017 crossref_primary_10_1210_er_2009_0027 crossref_primary_10_2217_clp_11_60 crossref_primary_10_1016_j_atherosclerosis_2021_11_026 crossref_primary_10_1016_j_metabol_2009_07_009 crossref_primary_10_3390_cells12242786 crossref_primary_10_2337_db09_0916 crossref_primary_10_1016_j_jep_2019_112054 crossref_primary_10_1152_ajpregu_00304_2011 crossref_primary_10_1210_jc_2015_3696 crossref_primary_10_1172_jci_insight_86612 crossref_primary_10_3390_ijms19010201 crossref_primary_10_2337_db12_1107 crossref_primary_10_1210_jc_2008_0630 crossref_primary_10_1016_j_tem_2012_05_007 crossref_primary_10_1371_journal_pone_0129579 crossref_primary_10_3390_cimb45110548 crossref_primary_10_1016_j_ejps_2012_03_004 crossref_primary_10_1172_JCI38793 crossref_primary_10_1097_MCO_0b013e328302f3ec crossref_primary_10_3109_13813455_2011_584538 crossref_primary_10_3760_cma_j_issn_0366_6999_20132975 crossref_primary_10_2337_dbi18_0030 crossref_primary_10_3390_ijms25147789 crossref_primary_10_1186_s13098_017_0298_x crossref_primary_10_2337_db08_0981 crossref_primary_10_1007_s11154_011_9168_2 crossref_primary_10_1152_ajpendo_00426_2017 crossref_primary_10_1210_jc_2012_3111 crossref_primary_10_1016_j_molcel_2011_07_019 crossref_primary_10_1152_ajpendo_00175_2016 crossref_primary_10_1038_s41598_021_02324_w crossref_primary_10_1016_j_cmet_2024_03_002 crossref_primary_10_3390_nu8070404 crossref_primary_10_1080_09168451_2018_1451742 crossref_primary_10_1039_C3MB70609E crossref_primary_10_1074_jbc_M800842200 crossref_primary_10_1016_j_ejphar_2021_174418 crossref_primary_10_1152_ajpcell_00345_2010 crossref_primary_10_1016_j_clnu_2014_12_007 crossref_primary_10_1152_ajpendo_00225_2013 crossref_primary_10_1111_obr_12862 crossref_primary_10_3389_fendo_2024_1474232 crossref_primary_10_2337_db13_1100 crossref_primary_10_1007_s11033_018_4551_7 crossref_primary_10_1038_s41401_019_0345_2 crossref_primary_10_2337_db11_1391 crossref_primary_10_1155_2015_972891 crossref_primary_10_1038_nm_3415 crossref_primary_10_3389_fphys_2022_1049560 crossref_primary_10_1016_j_bbadis_2015_12_019 crossref_primary_10_1016_S2213_8587_14_70065_8 crossref_primary_10_1016_j_bbrc_2009_07_064 crossref_primary_10_1080_0035919X_2018_1476421 crossref_primary_10_1530_EJE_16_0488 crossref_primary_10_1016_j_bbrc_2010_12_102 crossref_primary_10_1016_j_jmr_2010_09_010 crossref_primary_10_1152_ajpheart_00782_2007 crossref_primary_10_1073_pnas_1207287109 crossref_primary_10_1152_ajpregu_00659_2010 crossref_primary_10_1371_journal_pone_0004394 crossref_primary_10_1016_j_bbrc_2011_04_028 crossref_primary_10_1016_j_mce_2015_05_020 crossref_primary_10_1371_journal_pone_0010956 crossref_primary_10_1080_09638288_2021_1900929 crossref_primary_10_1016_j_dsx_2021_02_037 crossref_primary_10_1152_ajpendo_90558_2008 crossref_primary_10_1177_1721727X17731003 crossref_primary_10_2337_db16_1410 crossref_primary_10_1080_15376516_2020_1717704 crossref_primary_10_1038_s41387_024_00299_x crossref_primary_10_3390_antiox10081257 crossref_primary_10_1136_bmjdrc_2016_000312 crossref_primary_10_1016_j_bbrc_2010_06_106 crossref_primary_10_1155_2011_250496 crossref_primary_10_1152_ajpendo_00103_2012 crossref_primary_10_2337_db11_1725 crossref_primary_10_1210_jc_2007_1670 crossref_primary_10_1186_s12933_018_0798_5 crossref_primary_10_1021_pr200452j crossref_primary_10_1016_j_bbabio_2016_07_008 crossref_primary_10_1016_j_ecl_2010_12_009 crossref_primary_10_3389_fendo_2021_694893 crossref_primary_10_1161_ATVBAHA_110_217687 crossref_primary_10_1111_apha_13216 crossref_primary_10_1152_japplphysiol_01081_2012 crossref_primary_10_1586_eem_10_21 crossref_primary_10_1186_s40608_015_0070_4 crossref_primary_10_1016_j_eclnm_2010_05_002 crossref_primary_10_1136_bmjdrc_2020_001377 crossref_primary_10_1080_00032719_2010_520390 crossref_primary_10_1111_obr_13131 |
Cites_doi | 10.1056/NEJMoa031314 10.2337/diabetes.51.7.2005 10.2337/diacare.22.9.1462 10.2337/diabetes.48.8.1600 10.1038/ng1180 10.1126/science.1082889 10.1172/JCI10583 10.1093/ajcn/36.5.936 10.1007/s00125-005-1686-6 10.1007/s00125-005-1800-9 10.1074/jbc.M200958200 10.2337/diabetes.52.3.895 10.1371/journal.pmed.0020233 10.1172/JCI25151 10.2337/diabetes.48.5.1113 10.1002/mrm.1910380521 10.1172/JCI5001 10.2337/diabetes.51.3.797 10.1073/pnas.0608537103 10.1172/JCI200111775 10.7326/0003-4819-113-12-909 10.1007/s001250051123 10.1073/pnas.1032913100 10.1038/jcbfm.1992.61 10.2337/db06-S002 10.1016/S0026-0495(96)90260-7 10.1152/ajpendo.1999.276.5.E977 10.2337/diabetes.46.6.1001 10.1016/S0092-8674(00)80611-X 10.1073/pnas.120131997 10.1016/0022-2364(82)90286-4 10.2337/diabetes.48.6.1270 10.1007/s001250100032 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS COPYRIGHT 2007 American Diabetes Association Copyright American Diabetes Association May 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: COPYRIGHT 2007 American Diabetes Association – notice: Copyright American Diabetes Association May 2007 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 5PM |
DOI | 10.2337/db06-0783 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 1381 |
ExternalDocumentID | PMC2995532 1285943501 A164637956 17287462 18737323 10_2337_db06_0783 diabetes_56_5_1376 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: M01 RR000125 – fundername: NIDDK NIH HHS grantid: R01 DK049230 – fundername: NIA NIH HHS grantid: R01 AG023686 – fundername: NIDDK NIH HHS grantid: P30 DK045735 – fundername: NIDDK NIH HHS grantid: P01 DK068229 – fundername: NIA NIH HHS grantid: R56 AG023686 |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFFNX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ H~9 IAG IAO IEA IHR INH INR IOF IPO J5H K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 354 6PF AAFWJ AAKAS AAYOK AAYXX ACGFO ADGHP ADZCM AEGXH AERZD AIAGR AIZAD ALIPV BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM 1CY AI. IQODW MVM O5R O5S PJZUB PPXIY PQGLB VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK K9. PKEHL Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c681t-152fbf78c1733ff6d3c12d64fc43d544422d0c2ca7107fcbafa2abab89e9cd0c3 |
IEDL.DBID | 7X7 |
ISSN | 0012-1797 1939-327X |
IngestDate | Thu Aug 21 18:17:16 EDT 2025 Fri Jul 11 08:56:09 EDT 2025 Fri Jul 25 19:27:48 EDT 2025 Fri Jun 13 00:48:56 EDT 2025 Tue Jun 10 21:32:19 EDT 2025 Fri Jun 27 05:52:26 EDT 2025 Tue Jun 10 20:05:59 EDT 2025 Fri May 30 10:49:34 EDT 2025 Mon Jul 21 09:11:40 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Tue Jul 01 03:03:56 EDT 2025 Fri Jan 15 19:45:55 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Endocrinopathy Type 2 diabetes Human Pancreatic hormone Mitochondria Metabolic diseases Muscle Oxidation Insulin |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c681t-152fbf78c1733ff6d3c12d64fc43d544422d0c2ca7107fcbafa2abab89e9cd0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://diabetesjournals.org/diabetes/article-pdf/56/5/1376/388139/zdb00507001376.pdf |
PMID | 17287462 |
PQID | 216483195 |
PQPubID | 34443 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_70454916 gale_infotracgeneralonefile_A164637956 pascalfrancis_primary_18737323 crossref_citationtrail_10_2337_db06_0783 proquest_journals_216483195 gale_incontextgauss_8GL_A164637956 pubmed_primary_17287462 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2995532 gale_infotracacademiconefile_A164637956 highwire_diabetes_diabetes_56_5_1376 crossref_primary_10_2337_db06_0783 gale_incontextcollege_GICCO_A164637956 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-05-01 |
PublicationDateYYYYMMDD | 2007-05-01 |
PublicationDate_xml | – month: 05 year: 2007 text: 2007-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2007 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 2022031210484706100_R7 2022031210484706100_R6 2022031210484706100_R9 2022031210484706100_R8 2022031210484706100_R27 2022031210484706100_R26 2022031210484706100_R25 2022031210484706100_R24 2022031210484706100_R29 2022031210484706100_R28 2022031210484706100_R23 2022031210484706100_R22 2022031210484706100_R21 2022031210484706100_R20 2022031210484706100_R16 2022031210484706100_R15 2022031210484706100_R1 2022031210484706100_R14 2022031210484706100_R13 2022031210484706100_R3 2022031210484706100_R2 2022031210484706100_R19 2022031210484706100_R5 2022031210484706100_R18 2022031210484706100_R4 2022031210484706100_R17 2022031210484706100_R30 2022031210484706100_R12 2022031210484706100_R34 2022031210484706100_R11 2022031210484706100_R33 2022031210484706100_R10 2022031210484706100_R32 2022031210484706100_R31 |
References_xml | – ident: 2022031210484706100_R13 doi: 10.1056/NEJMoa031314 – ident: 2022031210484706100_R9 doi: 10.2337/diabetes.51.7.2005 – ident: 2022031210484706100_R18 doi: 10.2337/diacare.22.9.1462 – ident: 2022031210484706100_R5 doi: 10.2337/diabetes.48.8.1600 – ident: 2022031210484706100_R30 doi: 10.1038/ng1180 – ident: 2022031210484706100_R24 doi: 10.1126/science.1082889 – ident: 2022031210484706100_R7 doi: 10.1172/JCI10583 – ident: 2022031210484706100_R23 – ident: 2022031210484706100_R17 doi: 10.1093/ajcn/36.5.936 – ident: 2022031210484706100_R33 doi: 10.1007/s00125-005-1686-6 – ident: 2022031210484706100_R32 doi: 10.1007/s00125-005-1800-9 – ident: 2022031210484706100_R11 doi: 10.1074/jbc.M200958200 – ident: 2022031210484706100_R29 doi: 10.2337/diabetes.52.3.895 – ident: 2022031210484706100_R26 doi: 10.1371/journal.pmed.0020233 – ident: 2022031210484706100_R14 doi: 10.1172/JCI25151 – ident: 2022031210484706100_R6 doi: 10.2337/diabetes.48.5.1113 – ident: 2022031210484706100_R20 doi: 10.1002/mrm.1910380521 – ident: 2022031210484706100_R10 doi: 10.1172/JCI5001 – ident: 2022031210484706100_R25 doi: 10.2337/diabetes.51.3.797 – ident: 2022031210484706100_R19 doi: 10.1073/pnas.0608537103 – ident: 2022031210484706100_R16 doi: 10.1172/JCI200111775 – ident: 2022031210484706100_R1 doi: 10.7326/0003-4819-113-12-909 – ident: 2022031210484706100_R3 doi: 10.1007/s001250051123 – ident: 2022031210484706100_R31 doi: 10.1073/pnas.1032913100 – ident: 2022031210484706100_R22 doi: 10.1038/jcbfm.1992.61 – ident: 2022031210484706100_R34 doi: 10.2337/db06-S002 – ident: 2022031210484706100_R2 doi: 10.1016/S0026-0495(96)90260-7 – ident: 2022031210484706100_R4 doi: 10.1152/ajpendo.1999.276.5.E977 – ident: 2022031210484706100_R12 doi: 10.2337/diabetes.46.6.1001 – ident: 2022031210484706100_R27 doi: 10.1016/S0092-8674(00)80611-X – ident: 2022031210484706100_R15 doi: 10.1073/pnas.120131997 – ident: 2022031210484706100_R21 doi: 10.1016/0022-2364(82)90286-4 – ident: 2022031210484706100_R8 doi: 10.2337/diabetes.48.6.1270 – ident: 2022031210484706100_R28 doi: 10.1007/s001250100032 |
SSID | ssj0006060 |
Score | 2.425571 |
Snippet | Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients
Douglas E. Befroy 1 ,
Kitt Falk Petersen 1 ,... Insulin resistance is the best predictor for the development of diabetes in offspring of type 2 diabetic patients, but the mechanism responsible for it remains... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1376 |
SubjectTerms | Adult Biological and medical sciences Body Mass Index Carbon Isotopes Chemical properties Citric Acid Cycle Diabetes Diabetes Mellitus, Type 2 - genetics Diabetes Mellitus, Type 2 - metabolism Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Fatty acids Female Glucose Tolerance Test Health aspects Humans Hypotheses Insulin resistance Insulin Resistance - physiology Kinases Kinetics Life Style Lipids Magnetic Resonance Spectroscopy Male Medical sciences Metabolism Metabolites Mitochondria, Muscle - metabolism Models, Biological Musculoskeletal system Nuclear Family Oxidation Oxidation-Reduction Oxidation-reduction reaction Oxidation-reduction reactions Pathogenesis Phosphorylation Physiological aspects Spectrum analysis Type 2 diabetes |
Title | Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients |
URI | http://diabetes.diabetesjournals.org/content/56/5/1376.abstract https://www.ncbi.nlm.nih.gov/pubmed/17287462 https://www.proquest.com/docview/216483195 https://www.proquest.com/docview/70454916 https://pubmed.ncbi.nlm.nih.gov/PMC2995532 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZbC2MvY7_rdsvEKN1eTGNJtuSn0YV27ViaUlbIm7AkqwsMu6sT2J-_O8tO5hH2Yox1yJJ1Ot1Jn78j5NDnZeIZ87FL8zIWTsjY5MLFLLM-y73Nxi2IZnqZnd-Ir_N03mFzmg5W2dvE1lC72uIe-TEDv16BvqSf7n7FmDQKD1e7DBoPyS4ylyGiS87X8dYYfPPwB0rCkIVTBmIhxrk8dgYDaan4YDnqjXLPFIxAyaKBb-VDkottXui_YMq_Vqezp-RJ51bSk6AHz8iDsnpOHk27g_MXpL6AaQ_vcnQKUxhMXuVQ8yjajZafls5-L0J6Jbqo6HTVQDW09vQiYNXj67JBT7Na0pn34TAXizGMpYwGXM3C0qtA09q8JDdnp98n53GXayG2mUqWMSzj3nipbCI59z5z3CbMZcJbwV0qhGDMjS2zBXgk0ltT-IIVpjAqL3MLJfwV2anqqtwjlKXWJMY7eKoE-BfK26QsrZIQ3QljREQ-9p9c246IHPNh_NQQkODoaBwdjaMTkfdr0bvAvrFN6AjHTSObRYVwGRu2XDT0bzLTJ8igxiXEgVDbUPC2WDWNVl--DYQ-dEK-hlbZovtNAfqGTFkDyaOB5G3gCd8meNhrlO531Dc3aaZTnYCdj8hooG2bHivJJWfQ0YNe_XRnaRq9nhcRebcuBROB5z5FVdarRkukWYQwICKvg6puapaY7iBjEZEDJV4LIPn4sKRa_GhJyMGNSVPO9v_bpgPyOOyFI0D0DdlZ3q_Kt-DELc2onapwVZNkRHY_n15eXf8B8uhLcA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG_CYLPQGLxEW2wnTh4QGmOjZf2Ypk3am5fY8aiEkkFaAX8U_yN3dZISVPG2t6o-uXHv8rs7-_w7QrZtkgeWMeubMMl9YYT0s0QYn0XaRonV0d6iiGY0jvrn4vNFeLFGfjd3YbCsssHEBVCbUuMe-S6DuD4GewnfX3_zsWkUHq42HTScVRznv35Axla9G3wE9b5m7Ojw7KDv100FfB3FwcwHf2UzK2MdSM6tjQzXATORsFpwEwohGDN7mukUXK-0OkttytIszeIkTzSMcJj3FlkXHDKZHln_cDg-OW2hH7IBd-clYMj7KR2VEeNc7poMU3cZ844DbNxAw02MpZlpBdqxrq3Gqrj33_LNv_zh0X1yrw5k6b6zvAdkLS8ektuj-qj-ESkHADTwW4aOADQAZAuDtk4RqRaMuHTyc-oaOtFpQUfzCqahpaUDVx3vn-YVxrbFjE6sdcfHOIyJM2XUVfJMNT1xxLDVY3J-I4p4QnpFWeTPCGWhzoLMGvg2FhDRxFYHea5jCfmkyDLhkbfNX650TX2OHTi-KkiBUDsKtaNQOx551YpeO76PVUI7qDeF_BkFFuhot8mjYH0HE7WPnG1cQuYJs3UFr9J5Van407Aj9KYWsiU8lU7rixGwNuTm6kjudCSvHDP5KsHtxqJUs4e__BBGKlQBeBaPbHasbbniWHLJGSx0ozE_VWNbpdo30SNb7SiAEp40pUVezislkdgREg-PPHWmupxZYoOFiHlEdoy4FUC68-5IMf2yoD2HwCkMOXv-32faInf6Z6OhGg7GxxvkrtuJx_LUF6Q3-z7PX0IIOcs26xeXksubxoo_TUqJIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN-EwWahMXiJ2thOnDwgNG2Ula3rhJjUNy_xx6iEkkFaAX8a_x13ddISVPG2t6o-uXHv8rs7-_w7QvZcZiPHmAtNnNlQGCHDIhMmZIl2SeZ00l8U0YzOkuML8XESTzbI7_YuDJZVtpi4AGpTadwj7zGI61Owl7jnmqqI86PBu-tvITaQwoPWtpuGt5AT--sHZG_12-ERqPoVY4P3nw-Pw6bBQKiTNJqF4Ltc4WSqI8m5c4nhOmImEU4LbmIhBGOmr5nOwQ1Lp4vc5Swv8iLNbKZhhMO8t8htyeMIXzE5WeZ6fcgL_O2XiCEDqPSkRoxz2TMFJvEy5R1X2DqElqUYizTzGvTkfIONdRHwv4Wcf3nGwT1ytwlp6YG3wftkw5YPyNaoObR_SKohQA78lqEjgA-A29Kg1VPErAU3Lh3_nPrWTnRa0tG8hmlo5ejQ18mHn2yNUW45o2Pn_EEyDmMKTRn1NT1TTc89RWz9iFzciBoek82yKu1TQlmsi6hwBr5NBcQ2qdORtTqVkFmKohABedP-5Uo3JOjYi-OrgmQItaNQOwq1E5CXS9Frz_yxTmgf9aaQSaNEo9R-u0fB-g7H6gDZ27iEHBRm6wpe5fO6VumH047Q60bIVfBUOm-uSMDakKWrI7nfkbzyHOXrBPdai1Ltbv7qQ5yoWEXgYwKy07G21YpTySVnsNDt1vxUg3K1Wr6TAdldjgI84ZlTXtpqXiuJFI-QggTkiTfV1cwSWy0kLCCyY8RLASQ-746U0y8LAnQIoeKYs2f_faZdsgUIoU6HZyfb5I7fksc61edkc_Z9bl9ALDkrdhZvLSWXNw0TfwDpBovy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+Mitochondrial+Substrate+Oxidation+in+Muscle+of+Insulin-Resistant+Offspring+of+Type+2+Diabetic+Patients&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Befroy%2C+Douglas+E&rft.au=Kitt+Falk+Petersen&rft.au=Dufour%2C+Sylvie&rft.au=Mason%2C+Graeme+F&rft.date=2007-05-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=56&rft.issue=5&rft.spage=1376&rft_id=info:doi/10.2337%2Fdb06-0783&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1285943501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |