Proteomic analysis of fatty liver induced by starvation of medaka fish larvae
When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obta...
Saved in:
Published in | Cell Structure and Function Vol. 48; no. 2; pp. 123 - 133 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japan Society for Cell Biology
01.01.2023
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export |
---|---|
AbstractList | When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export. When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis. Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export When medaka fish ( Oryzias latipes ) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis. When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis. |
ArticleNumber | 23014 |
Author | Ikeda, Tomoyo Okada, Tetsuya Mori, Kazutoshi Ono, Masaya Ninagawa, Satoshi Ishikawa, Tokiro |
Author_xml | – sequence: 1 fullname: Ikeda, Tomoyo organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 2 fullname: Ishikawa, Tokiro organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 3 fullname: Ninagawa, Satoshi organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 4 fullname: Okada, Tetsuya organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 5 fullname: Ono, Masaya organization: National Cancer Center Research Institute – sequence: 6 fullname: Mori, Kazutoshi organization: Department of Biophysics, Graduate School of Science, Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37380437$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1vEzEQhi1URD_gwB9AK3GBQ8rY3rW9J1RVfFQqggOcrVnvOHHYrIu9iZR_j5O0KeViS55Hj2fmPWcnYxyJsdccLrmo9QeX_aWQwOtn7IzLWs-kBjhhZyCNmmneqlN2nvMSQDSg9At2KrU0UEt9xr79SHGiuAquwhGHbQ65ir7yOE3baggbSlUY-7Wjvuq2VZ4wbXAKcdxBK-rxN1Y-5EU17Ar0kj33OGR6dX9fsF-fP_28_jq7_f7l5vrqduaUgWnWC0SlPYDxSODAdV0vve5Eq3tJ5LEhdKhV60zrvPANgcaeEITSwFUnL9jNwdtHXNq7FFaYtjZisPuHmOYW0xTcQBa16Y0RbSeNqeuuK4eSXHAnfS9A8uL6eHDdrbsykaNxSjg8kT6tjGFh53FjObS84VwWw7t7Q4p_1pQnuwrZ0TDgSHGdrTDlw7aRCgr69j90GdepLL5QrVCyEaJuCvX-QLkUc07kj91wsLvEbUnc7hMv7Jt_2z-SDxE_zrcs6c3pCDwsaKeqjRX7Y6d8rCwwWRrlX6y2v6s |
Cites_doi | 10.1023/A:1026756501669 10.1007/s11064-008-9895-2 10.1016/j.jhep.2014.10.039 10.1111/j.1478-3231.2009.02076.x 10.1038/mt.2011.6 10.1101/cshperspect.a041262 10.1172/JCI6223 10.3390/nu13082592 10.1172/JCI106016 10.1155/2010/612089 10.1016/j.bbalip.2007.05.003 10.1074/jbc.M405449200 10.1152/ajpendo.90949.2008 10.1007/s00125-005-1682-x 10.3390/ijms22041838 10.3390/jcm10051081 10.3390/biology10020092 10.1136/gutjnl-2012-302789 10.1093/jn/nxaa079 10.1152/ajpgi.00413.2005 10.1247/csf.11036 10.1002/cphy.c170012 10.1203/00006450-199606000-00025 10.1038/s12276-020-00504-8 10.3177/jnsv.64.90 10.1016/j.ymgme.2020.07.010 10.1194/jlr.M012872 10.1053/gast.2001.23256 10.1007/BF02534364 10.2741/757 10.1089/ars.2011.4357 10.1155/2012/897412 10.1146/annurev.nutr.26.061505.111258 10.1002/cpz1.90 10.1101/gad.13.10.1211 10.3390/pathogens7020036 10.1002/hep.32324 10.1038/s41467-019-09234-6 10.1007/s11064-008-9840-4 10.1107/S1399004714023827 10.1093/jb/mvp166 10.1093/ajcn/81.5.1126 10.1152/ajpgi.00521.2005 10.1016/j.bbapap.2014.12.029 10.1007/s00726-021-02981-1 10.3390/molecules27092647 10.1091/mbc.e09-02-0133 10.3233/TRD-160009 10.1097/MEG.0b013e328345c8c7 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology) 2023. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright 2023 The Author(s) 2023 |
Copyright_xml | – notice: 2023 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology) – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright 2023 The Author(s) 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QP 7QR 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1247/csf.23014 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Proteomic analysis of medaka fatty liver |
EISSN | 1347-3700 |
EndPage | 133 |
ExternalDocumentID | oai_doaj_org_article_a78d8829b38844bb84463121c3fd2031 10_1247_csf_23014 37380437 article_csf_48_2_48_23014_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 .GJ 29B 2WC 3O- 53G 5GY 5RE 6J9 7X7 88E 8AO 8FI 8FJ ABUWG ACIWK ACPRK ADBBV AENEX AFKRA AHMBA AI. ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK JSF JSH KQ8 M1P M7P M~E OK1 P2P PGMZT PIMPY PQQKQ PSQYO RJT RNS RPM RZJ TKC TR2 UKHRP VH1 X7M XSB ZXP CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QP 7QR 7TK 7XB 8FD 8FE 8FH 8FK AZQEC DWQXO FR3 GNUQQ K9. LK8 P64 PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c680t-d2aa67f008fae0c0cbbd3f7b297d3eefa5eaca769c89cf2f5e07adea0267016b3 |
IEDL.DBID | RPM |
ISSN | 0386-7196 |
IngestDate | Tue Oct 22 15:16:01 EDT 2024 Tue Sep 17 21:29:17 EDT 2024 Fri Aug 16 00:43:59 EDT 2024 Thu Oct 10 18:16:13 EDT 2024 Fri Dec 06 04:16:57 EST 2024 Sat Nov 02 11:56:52 EDT 2024 Thu Nov 07 05:16:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | β-oxidation cholesterol triacylglycerol amino acid catabolism export |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons BY (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c680t-d2aa67f008fae0c0cbbd3f7b297d3eefa5eaca769c89cf2f5e07adea0267016b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Biosignal Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915113/ |
PMID | 37380437 |
PQID | 2926352245 |
PQPubID | 1996364 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a78d8829b38844bb84463121c3fd2031 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10915113 proquest_miscellaneous_2831295360 proquest_journals_2926352245 crossref_primary_10_1247_csf_23014 pubmed_primary_37380437 jstage_primary_article_csf_48_2_48_23014_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Saitama |
PublicationTitle | Cell Structure and Function |
PublicationTitleAlternate | Cell Struct. Funct. |
PublicationYear | 2023 |
Publisher | Japan Society for Cell Biology Japan Science and Technology Agency |
Publisher_xml | – name: Japan Society for Cell Biology – name: Japan Science and Technology Agency |
References | Mori, K. 2009. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem., 146: 743–750. Wang, S., Bao, J., Li, J., Li, W., Tian, M., Qiu, C., Pang, F., Li, X., Yang, J., Hu, Y., Wang, S., and Jin, H. 2022. Fraxinellone Induces Hepatotoxicity in Zebrafish through Oxidative Stress and the Transporters Pathway. Molecules, 27: 2647. Kaufman, R.J. 1999. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev., 13: 1211–1233. Clare, C.E., Pestinger, V., Kwong, W.Y., Tutt, D.A.R., Xu, J., Byrne, H.M., Barrett, D.A., Emes, R.D., and Sinclair, K.D. 2021. Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int. J. Mol. Sci., 22: 1838. Manoli, I. and Venditti, C.P. 2016. Disorders of branched chain amino acid metabolism. Transl. Sci. Rare Dis., 1: 91–110. Shi, Y. and Cheng, D. 2009. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am. J. Physiol. Endocrinol. Metab., 297: E10–E18. Yoo, H.C., Yu, Y.C., Sung, Y., and Han, J.M. 2020. Glutamine reliance in cell metabolism. Exp. Mol. Med., 52: 1496–1516. Ono, M., Kamita, M., Murakoshi, Y., Matsubara, J., Honda, K., Miho, B., Sakuma, T., and Yamada, T. 2012. Biomarker Discovery of Pancreatic and Gastrointestinal Cancer by 2DICAL: 2-Dimensional Image-Converted Analysis of Liquid Chromatography and Mass Spectrometry. Int. J. Proteomics., 2012: 897412. Marchese, L., Nascimento, J.F., Damasceno, F.S., Bringaud, F., Michels, P.A.M., and Silber, A.M. 2018. The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens, 7: 36. Kotronen, A., Seppälä-Lindroos, A., Vehkavaara, S., Bergholm, R., Frayn, K.N., Fielding, B.A., and Yki-Järvinen, H. 2009. Liver fat and lipid oxidation in humans. Liver Int., 29: 1439–1446. Kim, S.Z., Kupke, K.G., Ierardi-Curto, L., Holme, E., Greter, J., Tanguay, R.M., Poudrier, J., D’Astous, M., Lettre, F., Hahn, S.H., and Levy, H.L. 2000. Hepatocellular carcinoma despite long-term survival in chronic tyrosinaemia I. J. Inherit. Metab. Dis., 23: 791–804. Brosnan, M.E. and Brosnan, J.T. 2020. Histidine Metabolism and Function. J. Nutr., 150: 2570s–2575s. Oppici, E., Montioli, R., and Cellini, B. 2015. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview. Biochim. Biophys. Acta, 1854: 1212–1219. Leal, N.A., Olteanu, H., Banerjee, R., and Bobik, T.A. 2004. Human ATP:Cob(I)alamin adenosyltransferase and its interaction with methionine synthase reductase. J. Biol. Chem., 279: 47536–47542. Bradbury, M.W. 2006. Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am. J. Physiol. Gastrointest. Liver Physiol., 290: G194–G198. Werge, M.P., McCann, A., Galsgaard, E.D., Holst, D., Bugge, A., Albrechtsen, N.J.W., and Gluud, L.L. 2021. The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J. Clin. Med., 10: 1081. Koornneef, A., Maczuga, P., van Logtenstein, R., Borel, F., Blits, B., Ritsema, T., van Deventer, S., Petry, H., and Konstantinova, P. 2011. Apolipoprotein B knockdown by AAV-delivered shRNA lowers plasma cholesterol in mice. Mol. Ther., 19: 731–740. Kersten, S., Seydoux, J., Peters, J.M., Gonzalez, F.J., Desvergne, B., and Wahli, W. 1999. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest., 103: 1489–1498. Ishikawa, T., Taniguchi, Y., Okada, T., Takeda, S., and Mori, K. 2011. Vertebrate Unfolded Protein Response: Mammalian Signaling Pathways Are Conserved in Medaka Fish. Cell Struct. Funct., 36: 247–259. Leandro, J. and Houten, S.M. 2020. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol. Genet. Metab., 131: 14–22. Duval, C., Muller, M., and Kersten, S. 2007. PPARalpha and dyslipidemia. Biochim. Biophys. Acta, 1771: 961–971. Shibata, K. 2018. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. J. Nutr. Sci. Vitaminol. (Tokyo), 64: 90–98. Murín, R., Mohammadi, G., Leibfritz, D., and Hamprecht, B. 2009a. Glial metabolism of isoleucine. Neurochem. Res., 34: 194–204. Badaloo, A., Reid, M., Soares, D., Forrester, T., and Jahoor, F. 2005. Relation between liver fat content and the rate of VLDL apolipoprotein B-100 synthesis in children with protein-energy malnutrition. Am. J. Clin. Nutr., 81: 1126–1132. Tadin-Strapps, M., Peterson, L.B., Cumiskey, A.M., Rosa, R.L., Mendoza, V.H., Castro-Perez, J., Puig, O., Zhang, L., Strapps, W.R., Yendluri, S., Andrews, L., Pickering, V., J. Rice, J., Luo, L., Chen, Z., Tep, S., Ason, B., Somers, E.P., Sachs, A.B., Bartz, S.R., Tian, J., Chin, J., Hubbard, B.K., Wong, K.K., and Mitnaul, L.J. 2011. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J. Lipid Res., 52: 1084–1097. Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E., Jenkins, S.L., Lachmann, A., Wojciechowicz, M.L., Kropiwnicki, E., Jagodnik, K.M., Jeon, M., and Ma’ayan, A. 2021. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc., 1: e90. Sanyal, A.J., Campbell-Sargent, C., Mirshahi, F., Rizzo, W.B., Contos, M.J., Sterling, R.K., Luketic, V.A., Shiffman, M.L., and Clore, J.N. 2001. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology, 120: 1183–1192. Murín, R., Mohammadi, G., Leibfritz, D., and Hamprecht, B. 2009b. Glial metabolism of valine. Neurochem. Res., 34: 1195–1203. Jose, C., Melser, S., Benard, G., and Rossignol, R. 2013. Mitoplasticity: adaptation biology of the mitochondrion to the cellular redox state in physiology and carcinogenesis. Antioxid. Redox Signal., 18: 808–849. Croci, I., Byrne, N.M., Choquette, S., Hills, A.P., Chachay, V.S., Clouston, A.D., O’Moore-Sullivan, T.M., Macdonald, G.A., Prins, J.B., and Hickman, I.J. 2013. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut, 62: 1625–1633. Pawlak, M., Lefebvre, P., and Staels, B. 2015. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol., 62: 720–733. Kelley, M.J. and Story, J.A. 1985. Effect of type of diet and feeding status on modulation of hepatic HMG-CoA reductase in rats. Lipids, 20: 53–55. Bugianesi, E., Gastaldelli, A., Vanni, E., Gambino, R., Cassader, M., Baldi, S., Ponti, V., Pagano, G., Ferrannini, E., and Rizzetto, M. 2005. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia, 48: 634–642. Alves-Bezerra, M. and Cohen, D.E. 2017. Triglyceride Metabolism in the Liver. Compr. Physiol., 8: 1–8. Tang, Q., Tan, P., Ma, N., and Ma X. 2021. Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients, 13: 2592. Andersen, S.M., Waagbø, R., and Espe, M. 2016. Functional amino acids in fish nutrition, health and welfare. Front. Biosci. (Elite Ed), 8: 143–169. Reddy, J.K. and Rao, M.S. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol., 290: G852–G858. Cahill, G.F., Jr. 2006. Fuel metabolism in starvation. Annu Rev Nutr., 26: 1–22. Xu, H., Jiang, Y., Miao, X.M., Tao, Y.X., Xie, L., and Li, Y. 2021. A Model Construction of Starvation Induces Hepatic Steatosis and Transcriptome Analysis in Zebrafish Larvae. Biology (Basel)., 10: 92. Dasarathy, S., Yang, Y., McCullough, A.J., Marczewski, S., Bennett, C., and Kalhan, S.C. 2011. Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur. J. Gastroenterol Hepatol., 23: 382–388. Du, J., Zhu, S., Lim, R.R., and Chao, J.R. 2021. Proline metabolism and transport in retinal health and disease. Amino Acids, 53: 1789–1806. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 10: 1523. Kiema, T.R., Harijan, R.K., Strozyk, M., Fukao, T., Alexson, S.E., and Wierenga, R.K. 2014. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. Acta Crystallogr. D Biol. Crystallogr., 70: 3212–3225. Owen, O.E., Felig, P., Morgan, A.P., Wahren, J., and Cahill, G.F., Jr. 1969. Liver and kidney metabolism during prolonged starvation. J Clin Invest., 48: 574–583. Narkewicz, M.R., Thureen, P.J., Sauls, S.D., Tjoa, S., Nikolayevsky, N., and Fennessey, P.V. 1996. Serine and glycine metabolism in hepatocytes from mid gestation fetal lambs. Pediatr Res., 39: 1085–1090. Rakhshandehroo, M., Knoch, B., Müller, M., and Kersten, S. 2010. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res., 2010: 612089. Moore, M.P., Cunningham, R.P., Meers, G.M., Johnson, S.A., Wheeler, A.A., Ganga, R.R., Spencer, N.M., Pitt, J.B., Diaz-Arias, A., Swi, A.I.A., Hammoud, G.M., Ibdah, J.A., Parks, E.J., and Rector, R.S. 2022. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology, 76: 1452–1465. Mori, K. 2022. Evolutionary Aspects of the Unfolded Protein Response. Cold Spring Harb Perspect Biol., 14: a041262. Yamamoto, K., Takahara, K., Oyadomari, S., Okada, T., Sato, T., Harada, A., and Mori, K. 2010. Induction of Liver Steatosis and Lipid Droplet Formation in ATF6α-knockout Mice Burdened with Pharmacological Endoplasmic Reticulum Stress. Mol. Biol. Cell, 21: 29 44 45 46 47 48 49 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 19 doi: 10.1023/A:1026756501669 – ident: 30 doi: 10.1007/s11064-008-9895-2 – ident: 35 doi: 10.1016/j.jhep.2014.10.039 – ident: 21 doi: 10.1111/j.1478-3231.2009.02076.x – ident: 20 doi: 10.1038/mt.2011.6 – ident: 28 doi: 10.1101/cshperspect.a041262 – ident: 17 doi: 10.1172/JCI6223 – ident: 42 doi: 10.3390/nu13082592 – ident: 34 doi: 10.1172/JCI106016 – ident: 36 doi: 10.1155/2010/612089 – ident: 12 doi: 10.1016/j.bbalip.2007.05.003 – ident: 22 doi: 10.1074/jbc.M405449200 – ident: 39 doi: 10.1152/ajpendo.90949.2008 – ident: 6 doi: 10.1007/s00125-005-1682-x – ident: 8 doi: 10.3390/ijms22041838 – ident: 44 doi: 10.3390/jcm10051081 – ident: 46 doi: 10.3390/biology10020092 – ident: 9 doi: 10.1136/gutjnl-2012-302789 – ident: 5 doi: 10.1093/jn/nxaa079 – ident: 4 doi: 10.1152/ajpgi.00413.2005 – ident: 13 doi: 10.1247/csf.11036 – ident: 1 doi: 10.1002/cphy.c170012 – ident: 31 doi: 10.1203/00006450-199606000-00025 – ident: 48 doi: 10.1038/s12276-020-00504-8 – ident: 40 doi: 10.3177/jnsv.64.90 – ident: 23 doi: 10.1016/j.ymgme.2020.07.010 – ident: 41 doi: 10.1194/jlr.M012872 – ident: 38 doi: 10.1053/gast.2001.23256 – ident: 16 doi: 10.1007/BF02534364 – ident: 2 doi: 10.2741/757 – ident: 14 doi: 10.1089/ars.2011.4357 – ident: 32 doi: 10.1155/2012/897412 – ident: 7 doi: 10.1146/annurev.nutr.26.061505.111258 – ident: 45 doi: 10.1002/cpz1.90 – ident: 15 doi: 10.1101/gad.13.10.1211 – ident: 25 doi: 10.3390/pathogens7020036 – ident: 26 doi: 10.1002/hep.32324 – ident: 49 doi: 10.1038/s41467-019-09234-6 – ident: 29 doi: 10.1007/s11064-008-9840-4 – ident: 18 doi: 10.1107/S1399004714023827 – ident: 27 doi: 10.1093/jb/mvp166 – ident: 3 doi: 10.1093/ajcn/81.5.1126 – ident: 37 doi: 10.1152/ajpgi.00521.2005 – ident: 33 doi: 10.1016/j.bbapap.2014.12.029 – ident: 11 doi: 10.1007/s00726-021-02981-1 – ident: 43 doi: 10.3390/molecules27092647 – ident: 47 doi: 10.1091/mbc.e09-02-0133 – ident: 24 doi: 10.3233/TRD-160009 – ident: 10 doi: 10.1097/MEG.0b013e328345c8c7 |
SSID | ssj0025067 |
Score | 2.37337 |
Snippet | When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7... When medaka fish ( Oryzias latipes ) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7... |
SourceID | doaj pubmedcentral proquest crossref pubmed jstage |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 123 |
SubjectTerms | Acids amino acid catabolism Amino Acids Animals Autophagy Cholesterol Chromatography Cirrhosis Endoplasmic reticulum Enzymes export Fatty acids Fatty Acids - metabolism Fatty liver Fatty Liver - veterinary Full Genes Glucose Glycolysis Larva - metabolism Larvae Liver Mass spectrometry Oryzias - metabolism Peptides Proteins Proteomics Scientific imaging triacylglycerol Tricarboxylic acid cycle Triglycerides - metabolism β-oxidation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEC2v0IIM4hrVsZ3YOQKiqpCKOFCpN2v8YgtVtuqmh_33zMTZpYuQuHDJIXbiyYwf39iTbxh7JyBYkX1TZyt9jbNfrD3C5ilo3AOktsu0D3n-pTu70J8v28t7qb4oJqzQAxfFnYCxEVFg75W1WnuPl041sgkqRylUcXyE3DhTs6vViil3rFC2qw12splTSGpzElaZop8bvbMSTYT9uAr9QEz2Pf0Nbv4ZNXlvGTp9zB7N-JG_L3IfsAdpOGT7JaPk-gk7_0q8C_SnMYeZboQvM88wjmt-TTEYHJ1wNGfkfs1RinlLlipho_ATeL5aLfg1FaSn7OL007ePZ_WcMaEOnRVjHSVAZzKu6xmSCCJ4H1U2XvYmqpQytDjPgun6YPuQZW6TMBATUBoqxH5ePWN7w3JILxjXIERqfJcsqtyjH2F6E2IT0R0BHbSp2NuN9txNIcZw5FCgih2q2E0qrtgH0uu2AnFZTzfQwm62sPuXhStmi1W2r9k8Se1o6-R0ofZ-lyzgFsd9xY43dnTz2Fw52RMBD0KXtmJvtsU4quioBIa0vMM6FiWgk21RsefF7NvWiQuKGKFQrp0OsfOVuyXD1WJi7iYWVkS46uX_0MsReygRcZX9oGO2N97epVeIkEb_ehoMvwD-Bg6Y priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxZuUggziGtVxnNg5IVpRVUhFHKi0t2j86haqpN1ND_vvO5N4d1mEuOwhdtbemfG8PPsNY58EOCOiLfJopM1R-_ncots8Fo1bgFDVkfKQ59_rswv1bVbNUsJtmcoq1zpxVNS-d5QjP5INwaagwak-39zm1DWKbldTC42H7FEh0ZSjPOvZNuCqxNhBVpSmzjWKWkIWkkofuWWkGuhC7dijEbYfbdEv9Mwuw7-czr9rJ_8wRqdP2X7yIvmXie3P2IPQPWePp76Sqxfs_AehL9D_jTkk0BHeRx5hGFb8mioxOIbiyFTP7YrjLlJilibhovAbeLxazvk1DYSX7OL068-Tszz1TchdbcSQewlQ64jWPUIQTjhrfRm1lY32ZQgRKtS2oOvGmcZFGasgNPgA1IwKPUBbvmJ7Xd-FN4wrECIUtg7GGmUxmtCNdr7wGJSAckpn7OOaeu3NBI_RUliBJG6RxO1I4owdE103EwjRenzQLy7bdEBa0Majt9_Y0hilLC6n6rKQhSujl6h5MmYmrmy-Zv0mraNMK8cPWm87MocFnv6MHa752KYTumy38pSxD5thPFt0YQJd6O9wjsEd0P22yNjrie2b1QkRinChcF87ArHzK3dHuqv5iN9NWKzo55YH_9_XW_aEettP-Z5Dtjcs7sI79IAG-34U83tlDAd6 priority: 102 providerName: ProQuest |
Title | Proteomic analysis of fatty liver induced by starvation of medaka fish larvae |
URI | https://www.jstage.jst.go.jp/article/csf/48/2/48_23014/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37380437 https://www.proquest.com/docview/2926352245 https://search.proquest.com/docview/2831295360 https://pubmed.ncbi.nlm.nih.gov/PMC10915113 https://doaj.org/article/a78d8829b38844bb84463121c3fd2031 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Cell Structure and Function, 2023, Vol.48(2), pp.123-133 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaDgN2Gbq31y7Qhl3dyLZsyce1aFEMSBEMK5CbIclSky11isQ95N-PlO1sGXbaxYdINhU-RFKmPwJ85toq7k0Se5WaGHe_OjYYNoeicaO1ywtP55CTm-L6Vnyd5bMDKIZvYULRvjWLs2Z5f9Ys5qG28uHejoc6sfF0ckFglhgoZONDOET_O-TofZqV89A3lmeqiCUqWI8nlAo5thtPlc8JdeMhSB8C9tlzSAG3H53RDwzN7ty_os6_iyf_8EZXx_C8DyPZl265L-DANS_haddYcvsKJlOCX6APjpnuUUfYyjOv23bLllSKwTAXR6nWzGwZrqI_maVJSFT_1MwvNnO2pAH3Gm6vLr9fXMd944TYFoq3cZ1qXUiP7t1rxy23xtSZlyYtZZ0553WO262WRWlVaX3qc8elrp2mblQYAprsDRw1q8a9AyY05y4xhVNGCYPphCylrZMasxItrJARfBq4Vz10-BgV5RXI7Qq5XQVuR3BOfN1NIEjr8MNqfVf1gq20VDWG-6XJlBLCIDlRZEma2MzXKW49EahOKrvHDHcSHaGqNFyI3u-RuV6j-UdwOsix6k10U6Ul4fBgBJNH8HE3jMZFb0x041aPOEfhCugFN4_gbSf2HfVBf3Bdewqx9y_3R1CfA4D3oL_v___WE3hGje-7w6BTOGrXj-4DhketGaFNzOQInpxf3ky_jcIhwyhYyC9f-xRB |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793,73745,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4IXxOcIDDCI12hO4sTOE2JoU4G1mtAm7c3y5zqYktFmD_3vuUvcjCLESx9ip-fe2ffl6-8I-cC0lSyYLA0yNyloP5cacJv7onGjtS-rgHnI2byanvGv5-V5TLitYlnlRif2itq1FnPk-3mNsClgcMqP179S7BqFt6uxhcZdsoPI6eWE7Bwczk--jyFXyfoesqyQVSpgs0VsoZyLfbsKWAWd8S2L1AP3gzX6Ab7Zhf-X2_l39eQf5ujoEXkY_Uj6aRD8Y3LHN0_IvaGz5PopmZ0g_gL-45jqCDtC20CD7ro1vcJaDArBOIjVUbOmsIqYmsVJQFT_1DRcrhb0Cgf8M3J2dHj6eZrGzgmprSTrUpdrXYkA9j1ozyyzxrgiCJPXwhXeB12CvtWiqq2sbchD6ZnQzmtsRwU-oCmek0nTNv4FoVwz5jNTeWkkNxBPiFpYlzkISzS3XCTk_YZ76noAyFAYWACLFbBY9SxOyAHydZyAmNb9g3Z5oeIRUVpIB_5-bQopOTdAjldFlme2CC4H3ZMQOUhl_JrNm0iHS5X3H0jvdmShl3D-E7K3kaOKZ3SlbndUQt6Nw3C68MpEN769gTkSVoA33Cwhu4PYR-qICYXIULCurQ2x9Su3R5rLRY_gjWis4OkWL_-_rrfk_vR0dqyOv8y_vSIPsNP9kP3ZI5NueeNfgz_UmTdx0_8GZVAL0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKxAXxJtAAYO4Rus4TuycEIWuyqOrFaJSb5Gf3UKVlN30sP-emcSbsghxySF2Ms54PA978g0hb5m2igWTpUFxk4L2c6kBt7lPGjda-6IMuA95PC-PTsTn0-I05j-tY1rlVif2itq1FvfIp7xC2BQwOMU0xLSIxcfZu8tfKVaQwpPWWE7jJtkDq8j4hOwdHM4X38bwq2B9PVmWqzKVIHgRZ4gLObXrgBnRmdixTj2IP1imH-Cnnfl_uaB_Z1L-YZpm98jd6FPS94MQ3Cc3fPOA3BqqTG4ekuMFYjHg38dURwgS2gYadNdt6AXmZVAIzGGKHTUbCqOI27TYCYjqn5qG8_WSXmCDf0ROZoffPxylsYpCakvFutRxrUsZwNYH7Zll1hiXB2l4JV3ufdAF6F4ty8qqygYeCs-kdl5jaSrwB03-mEyatvFPCRWaMZ-Z0iujhIHYQlbSusxBiKKFFTIhb7bcqy8HsIwagwxgcQ0srnsWJ-QA-Tp2QHzr_ka7Oqvjcqm1VA58_8rkSglhgJwo84xnNg-Ogx5KiBpmZXzN9kmkI1TN-wvSu25Z6hXogoTsb-exjut1XV9LV0Jej82w0vD4RDe-vYI-CkaAp90sIU-GaR-pIz4UokTBuHYEYucrd1ua82WP5o3IrOD15s_-P65X5DbIe_310_zLc3IHi94PG0H7ZNKtrvwLcI068zLK_G_CbA_9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteomic+analysis+of+fatty+liver+induced+by+starvation+of+medaka+fish+larvae&rft.jtitle=Cell+structure+and+function&rft.au=Ikeda%2C+Tomoyo&rft.au=Ishikawa%2C+Tokiro&rft.au=Ninagawa%2C+Satoshi&rft.au=Okada%2C+Tetsuya&rft.date=2023-01-01&rft.issn=0386-7196&rft.eissn=1347-3700&rft.volume=48&rft.issue=2&rft.spage=123&rft.epage=133&rft_id=info:doi/10.1247%2Fcsf.23014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1247_csf_23014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-7196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-7196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-7196&client=summon |