Proteomic analysis of fatty liver induced by starvation of medaka fish larvae

When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obta...

Full description

Saved in:
Bibliographic Details
Published inCell Structure and Function Vol. 48; no. 2; pp. 123 - 133
Main Authors Ikeda, Tomoyo, Ishikawa, Tokiro, Ninagawa, Satoshi, Okada, Tetsuya, Ono, Masaya, Mori, Kazutoshi
Format Journal Article
LanguageEnglish
Published Japan Japan Society for Cell Biology 01.01.2023
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export
AbstractList When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export.
When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis. Key words: amino acid catabolism, β-oxidation, triacylglycerol, cholesterol, export
When medaka fish ( Oryzias latipes ) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.
When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7 days post-hatch (dph). We determined the mechanism of this starvation-induced development of fatty liver by proteomic analysis using livers obtained from larvae grown in the presence or absence of 2% glucose at 5 dph. Results showed that changes in the expression levels of enzymes involved in glycolysis or the tricarboxylic acid cycle were modest, whereas the expression levels of enzymes involved in amino acid catabolism or β-oxidation of fatty acids were significantly elevated, suggesting that they become major energy sources under starvation conditions. Expression levels of enzymes for the uptake and β-oxidation of fatty acids as well as synthesis of triacylglycerol were elevated, whereas those for the synthesis of cholesterol as well as export of cholesterol and triacylglycerol were decreased under starvation conditions, which explains the accumulation of triacylglycerol in the liver. Our results provide the basis for future research to understand how gene malfunction(s) affects the development of fatty liver, which can lead to nonalcoholic steatohepatitis and then to liver cirrhosis.
ArticleNumber 23014
Author Ikeda, Tomoyo
Okada, Tetsuya
Mori, Kazutoshi
Ono, Masaya
Ninagawa, Satoshi
Ishikawa, Tokiro
Author_xml – sequence: 1
  fullname: Ikeda, Tomoyo
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 2
  fullname: Ishikawa, Tokiro
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 3
  fullname: Ninagawa, Satoshi
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 4
  fullname: Okada, Tetsuya
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 5
  fullname: Ono, Masaya
  organization: National Cancer Center Research Institute
– sequence: 6
  fullname: Mori, Kazutoshi
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37380437$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1vEzEQhi1URD_gwB9AK3GBQ8rY3rW9J1RVfFQqggOcrVnvOHHYrIu9iZR_j5O0KeViS55Hj2fmPWcnYxyJsdccLrmo9QeX_aWQwOtn7IzLWs-kBjhhZyCNmmneqlN2nvMSQDSg9At2KrU0UEt9xr79SHGiuAquwhGHbQ65ir7yOE3baggbSlUY-7Wjvuq2VZ4wbXAKcdxBK-rxN1Y-5EU17Ar0kj33OGR6dX9fsF-fP_28_jq7_f7l5vrqduaUgWnWC0SlPYDxSODAdV0vve5Eq3tJ5LEhdKhV60zrvPANgcaeEITSwFUnL9jNwdtHXNq7FFaYtjZisPuHmOYW0xTcQBa16Y0RbSeNqeuuK4eSXHAnfS9A8uL6eHDdrbsykaNxSjg8kT6tjGFh53FjObS84VwWw7t7Q4p_1pQnuwrZ0TDgSHGdrTDlw7aRCgr69j90GdepLL5QrVCyEaJuCvX-QLkUc07kj91wsLvEbUnc7hMv7Jt_2z-SDxE_zrcs6c3pCDwsaKeqjRX7Y6d8rCwwWRrlX6y2v6s
Cites_doi 10.1023/A:1026756501669
10.1007/s11064-008-9895-2
10.1016/j.jhep.2014.10.039
10.1111/j.1478-3231.2009.02076.x
10.1038/mt.2011.6
10.1101/cshperspect.a041262
10.1172/JCI6223
10.3390/nu13082592
10.1172/JCI106016
10.1155/2010/612089
10.1016/j.bbalip.2007.05.003
10.1074/jbc.M405449200
10.1152/ajpendo.90949.2008
10.1007/s00125-005-1682-x
10.3390/ijms22041838
10.3390/jcm10051081
10.3390/biology10020092
10.1136/gutjnl-2012-302789
10.1093/jn/nxaa079
10.1152/ajpgi.00413.2005
10.1247/csf.11036
10.1002/cphy.c170012
10.1203/00006450-199606000-00025
10.1038/s12276-020-00504-8
10.3177/jnsv.64.90
10.1016/j.ymgme.2020.07.010
10.1194/jlr.M012872
10.1053/gast.2001.23256
10.1007/BF02534364
10.2741/757
10.1089/ars.2011.4357
10.1155/2012/897412
10.1146/annurev.nutr.26.061505.111258
10.1002/cpz1.90
10.1101/gad.13.10.1211
10.3390/pathogens7020036
10.1002/hep.32324
10.1038/s41467-019-09234-6
10.1007/s11064-008-9840-4
10.1107/S1399004714023827
10.1093/jb/mvp166
10.1093/ajcn/81.5.1126
10.1152/ajpgi.00521.2005
10.1016/j.bbapap.2014.12.029
10.1007/s00726-021-02981-1
10.3390/molecules27092647
10.1091/mbc.e09-02-0133
10.3233/TRD-160009
10.1097/MEG.0b013e328345c8c7
ContentType Journal Article
Copyright 2023 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology)
2023. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright 2023 The Author(s) 2023
Copyright_xml – notice: 2023 The Author(s) CC-BY 4.0 (Submission before October 2016: Copyright © Japan Society for Cell Biology)
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright 2023 The Author(s) 2023
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QP
7QR
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1247/csf.23014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Proteomic analysis of medaka fatty liver
EISSN 1347-3700
EndPage 133
ExternalDocumentID oai_doaj_org_article_a78d8829b38844bb84463121c3fd2031
10_1247_csf_23014
37380437
article_csf_48_2_48_23014_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29B
2WC
3O-
53G
5GY
5RE
6J9
7X7
88E
8AO
8FI
8FJ
ABUWG
ACIWK
ACPRK
ADBBV
AENEX
AFKRA
AHMBA
AI.
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
JSF
JSH
KQ8
M1P
M7P
M~E
OK1
P2P
PGMZT
PIMPY
PQQKQ
PSQYO
RJT
RNS
RPM
RZJ
TKC
TR2
UKHRP
VH1
X7M
XSB
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QP
7QR
7TK
7XB
8FD
8FE
8FH
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
LK8
P64
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c680t-d2aa67f008fae0c0cbbd3f7b297d3eefa5eaca769c89cf2f5e07adea0267016b3
IEDL.DBID RPM
ISSN 0386-7196
IngestDate Tue Oct 22 15:16:01 EDT 2024
Tue Sep 17 21:29:17 EDT 2024
Fri Aug 16 00:43:59 EDT 2024
Thu Oct 10 18:16:13 EDT 2024
Fri Dec 06 04:16:57 EST 2024
Sat Nov 02 11:56:52 EDT 2024
Thu Nov 07 05:16:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords β-oxidation
cholesterol
triacylglycerol
amino acid catabolism
export
Language English
License This is an open access article distributed under the terms of the Creative Commons BY (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c680t-d2aa67f008fae0c0cbbd3f7b297d3eefa5eaca769c89cf2f5e07adea0267016b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Biosignal Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915113/
PMID 37380437
PQID 2926352245
PQPubID 1996364
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a78d8829b38844bb84463121c3fd2031
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10915113
proquest_miscellaneous_2831295360
proquest_journals_2926352245
crossref_primary_10_1247_csf_23014
pubmed_primary_37380437
jstage_primary_article_csf_48_2_48_23014_article_char_en
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Saitama
PublicationTitle Cell Structure and Function
PublicationTitleAlternate Cell Struct. Funct.
PublicationYear 2023
Publisher Japan Society for Cell Biology
Japan Science and Technology Agency
Publisher_xml – name: Japan Society for Cell Biology
– name: Japan Science and Technology Agency
References Mori, K. 2009. Signalling pathways in the unfolded protein response: development from yeast to mammals. J. Biochem., 146: 743–750.
Wang, S., Bao, J., Li, J., Li, W., Tian, M., Qiu, C., Pang, F., Li, X., Yang, J., Hu, Y., Wang, S., and Jin, H. 2022. Fraxinellone Induces Hepatotoxicity in Zebrafish through Oxidative Stress and the Transporters Pathway. Molecules, 27: 2647.
Kaufman, R.J. 1999. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev., 13: 1211–1233.
Clare, C.E., Pestinger, V., Kwong, W.Y., Tutt, D.A.R., Xu, J., Byrne, H.M., Barrett, D.A., Emes, R.D., and Sinclair, K.D. 2021. Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int. J. Mol. Sci., 22: 1838.
Manoli, I. and Venditti, C.P. 2016. Disorders of branched chain amino acid metabolism. Transl. Sci. Rare Dis., 1: 91–110.
Shi, Y. and Cheng, D. 2009. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am. J. Physiol. Endocrinol. Metab., 297: E10–E18.
Yoo, H.C., Yu, Y.C., Sung, Y., and Han, J.M. 2020. Glutamine reliance in cell metabolism. Exp. Mol. Med., 52: 1496–1516.
Ono, M., Kamita, M., Murakoshi, Y., Matsubara, J., Honda, K., Miho, B., Sakuma, T., and Yamada, T. 2012. Biomarker Discovery of Pancreatic and Gastrointestinal Cancer by 2DICAL: 2-Dimensional Image-Converted Analysis of Liquid Chromatography and Mass Spectrometry. Int. J. Proteomics., 2012: 897412.
Marchese, L., Nascimento, J.F., Damasceno, F.S., Bringaud, F., Michels, P.A.M., and Silber, A.M. 2018. The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens, 7: 36.
Kotronen, A., Seppälä-Lindroos, A., Vehkavaara, S., Bergholm, R., Frayn, K.N., Fielding, B.A., and Yki-Järvinen, H. 2009. Liver fat and lipid oxidation in humans. Liver Int., 29: 1439–1446.
Kim, S.Z., Kupke, K.G., Ierardi-Curto, L., Holme, E., Greter, J., Tanguay, R.M., Poudrier, J., D’Astous, M., Lettre, F., Hahn, S.H., and Levy, H.L. 2000. Hepatocellular carcinoma despite long-term survival in chronic tyrosinaemia I. J. Inherit. Metab. Dis., 23: 791–804.
Brosnan, M.E. and Brosnan, J.T. 2020. Histidine Metabolism and Function. J. Nutr., 150: 2570s–2575s.
Oppici, E., Montioli, R., and Cellini, B. 2015. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview. Biochim. Biophys. Acta, 1854: 1212–1219.
Leal, N.A., Olteanu, H., Banerjee, R., and Bobik, T.A. 2004. Human ATP:Cob(I)alamin adenosyltransferase and its interaction with methionine synthase reductase. J. Biol. Chem., 279: 47536–47542.
Bradbury, M.W. 2006. Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am. J. Physiol. Gastrointest. Liver Physiol., 290: G194–G198.
Werge, M.P., McCann, A., Galsgaard, E.D., Holst, D., Bugge, A., Albrechtsen, N.J.W., and Gluud, L.L. 2021. The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J. Clin. Med., 10: 1081.
Koornneef, A., Maczuga, P., van Logtenstein, R., Borel, F., Blits, B., Ritsema, T., van Deventer, S., Petry, H., and Konstantinova, P. 2011. Apolipoprotein B knockdown by AAV-delivered shRNA lowers plasma cholesterol in mice. Mol. Ther., 19: 731–740.
Kersten, S., Seydoux, J., Peters, J.M., Gonzalez, F.J., Desvergne, B., and Wahli, W. 1999. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest., 103: 1489–1498.
Ishikawa, T., Taniguchi, Y., Okada, T., Takeda, S., and Mori, K. 2011. Vertebrate Unfolded Protein Response: Mammalian Signaling Pathways Are Conserved in Medaka Fish. Cell Struct. Funct., 36: 247–259.
Leandro, J. and Houten, S.M. 2020. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol. Genet. Metab., 131: 14–22.
Duval, C., Muller, M., and Kersten, S. 2007. PPARalpha and dyslipidemia. Biochim. Biophys. Acta, 1771: 961–971.
Shibata, K. 2018. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. J. Nutr. Sci. Vitaminol. (Tokyo), 64: 90–98.
Murín, R., Mohammadi, G., Leibfritz, D., and Hamprecht, B. 2009a. Glial metabolism of isoleucine. Neurochem. Res., 34: 194–204.
Badaloo, A., Reid, M., Soares, D., Forrester, T., and Jahoor, F. 2005. Relation between liver fat content and the rate of VLDL apolipoprotein B-100 synthesis in children with protein-energy malnutrition. Am. J. Clin. Nutr., 81: 1126–1132.
Tadin-Strapps, M., Peterson, L.B., Cumiskey, A.M., Rosa, R.L., Mendoza, V.H., Castro-Perez, J., Puig, O., Zhang, L., Strapps, W.R., Yendluri, S., Andrews, L., Pickering, V., J. Rice, J., Luo, L., Chen, Z., Tep, S., Ason, B., Somers, E.P., Sachs, A.B., Bartz, S.R., Tian, J., Chin, J., Hubbard, B.K., Wong, K.K., and Mitnaul, L.J. 2011. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J. Lipid Res., 52: 1084–1097.
Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E., Jenkins, S.L., Lachmann, A., Wojciechowicz, M.L., Kropiwnicki, E., Jagodnik, K.M., Jeon, M., and Ma’ayan, A. 2021. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc., 1: e90.
Sanyal, A.J., Campbell-Sargent, C., Mirshahi, F., Rizzo, W.B., Contos, M.J., Sterling, R.K., Luketic, V.A., Shiffman, M.L., and Clore, J.N. 2001. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology, 120: 1183–1192.
Murín, R., Mohammadi, G., Leibfritz, D., and Hamprecht, B. 2009b. Glial metabolism of valine. Neurochem. Res., 34: 1195–1203.
Jose, C., Melser, S., Benard, G., and Rossignol, R. 2013. Mitoplasticity: adaptation biology of the mitochondrion to the cellular redox state in physiology and carcinogenesis. Antioxid. Redox Signal., 18: 808–849.
Croci, I., Byrne, N.M., Choquette, S., Hills, A.P., Chachay, V.S., Clouston, A.D., O’Moore-Sullivan, T.M., Macdonald, G.A., Prins, J.B., and Hickman, I.J. 2013. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut, 62: 1625–1633.
Pawlak, M., Lefebvre, P., and Staels, B. 2015. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol., 62: 720–733.
Kelley, M.J. and Story, J.A. 1985. Effect of type of diet and feeding status on modulation of hepatic HMG-CoA reductase in rats. Lipids, 20: 53–55.
Bugianesi, E., Gastaldelli, A., Vanni, E., Gambino, R., Cassader, M., Baldi, S., Ponti, V., Pagano, G., Ferrannini, E., and Rizzetto, M. 2005. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia, 48: 634–642.
Alves-Bezerra, M. and Cohen, D.E. 2017. Triglyceride Metabolism in the Liver. Compr. Physiol., 8: 1–8.
Tang, Q., Tan, P., Ma, N., and Ma X. 2021. Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients, 13: 2592.
Andersen, S.M., Waagbø, R., and Espe, M. 2016. Functional amino acids in fish nutrition, health and welfare. Front. Biosci. (Elite Ed), 8: 143–169.
Reddy, J.K. and Rao, M.S. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol., 290: G852–G858.
Cahill, G.F., Jr. 2006. Fuel metabolism in starvation. Annu Rev Nutr., 26: 1–22.
Xu, H., Jiang, Y., Miao, X.M., Tao, Y.X., Xie, L., and Li, Y. 2021. A Model Construction of Starvation Induces Hepatic Steatosis and Transcriptome Analysis in Zebrafish Larvae. Biology (Basel)., 10: 92.
Dasarathy, S., Yang, Y., McCullough, A.J., Marczewski, S., Bennett, C., and Kalhan, S.C. 2011. Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur. J. Gastroenterol Hepatol., 23: 382–388.
Du, J., Zhu, S., Lim, R.R., and Chao, J.R. 2021. Proline metabolism and transport in retinal health and disease. Amino Acids, 53: 1789–1806.
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 10: 1523.
Kiema, T.R., Harijan, R.K., Strozyk, M., Fukao, T., Alexson, S.E., and Wierenga, R.K. 2014. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. Acta Crystallogr. D Biol. Crystallogr., 70: 3212–3225.
Owen, O.E., Felig, P., Morgan, A.P., Wahren, J., and Cahill, G.F., Jr. 1969. Liver and kidney metabolism during prolonged starvation. J Clin Invest., 48: 574–583.
Narkewicz, M.R., Thureen, P.J., Sauls, S.D., Tjoa, S., Nikolayevsky, N., and Fennessey, P.V. 1996. Serine and glycine metabolism in hepatocytes from mid gestation fetal lambs. Pediatr Res., 39: 1085–1090.
Rakhshandehroo, M., Knoch, B., Müller, M., and Kersten, S. 2010. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res., 2010: 612089.
Moore, M.P., Cunningham, R.P., Meers, G.M., Johnson, S.A., Wheeler, A.A., Ganga, R.R., Spencer, N.M., Pitt, J.B., Diaz-Arias, A., Swi, A.I.A., Hammoud, G.M., Ibdah, J.A., Parks, E.J., and Rector, R.S. 2022. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology, 76: 1452–1465.
Mori, K. 2022. Evolutionary Aspects of the Unfolded Protein Response. Cold Spring Harb Perspect Biol., 14: a041262.
Yamamoto, K., Takahara, K., Oyadomari, S., Okada, T., Sato, T., Harada, A., and Mori, K. 2010. Induction of Liver Steatosis and Lipid Droplet Formation in ATF6α-knockout Mice Burdened with Pharmacological Endoplasmic Reticulum Stress. Mol. Biol. Cell, 21: 29
44
45
46
47
48
49
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 19
  doi: 10.1023/A:1026756501669
– ident: 30
  doi: 10.1007/s11064-008-9895-2
– ident: 35
  doi: 10.1016/j.jhep.2014.10.039
– ident: 21
  doi: 10.1111/j.1478-3231.2009.02076.x
– ident: 20
  doi: 10.1038/mt.2011.6
– ident: 28
  doi: 10.1101/cshperspect.a041262
– ident: 17
  doi: 10.1172/JCI6223
– ident: 42
  doi: 10.3390/nu13082592
– ident: 34
  doi: 10.1172/JCI106016
– ident: 36
  doi: 10.1155/2010/612089
– ident: 12
  doi: 10.1016/j.bbalip.2007.05.003
– ident: 22
  doi: 10.1074/jbc.M405449200
– ident: 39
  doi: 10.1152/ajpendo.90949.2008
– ident: 6
  doi: 10.1007/s00125-005-1682-x
– ident: 8
  doi: 10.3390/ijms22041838
– ident: 44
  doi: 10.3390/jcm10051081
– ident: 46
  doi: 10.3390/biology10020092
– ident: 9
  doi: 10.1136/gutjnl-2012-302789
– ident: 5
  doi: 10.1093/jn/nxaa079
– ident: 4
  doi: 10.1152/ajpgi.00413.2005
– ident: 13
  doi: 10.1247/csf.11036
– ident: 1
  doi: 10.1002/cphy.c170012
– ident: 31
  doi: 10.1203/00006450-199606000-00025
– ident: 48
  doi: 10.1038/s12276-020-00504-8
– ident: 40
  doi: 10.3177/jnsv.64.90
– ident: 23
  doi: 10.1016/j.ymgme.2020.07.010
– ident: 41
  doi: 10.1194/jlr.M012872
– ident: 38
  doi: 10.1053/gast.2001.23256
– ident: 16
  doi: 10.1007/BF02534364
– ident: 2
  doi: 10.2741/757
– ident: 14
  doi: 10.1089/ars.2011.4357
– ident: 32
  doi: 10.1155/2012/897412
– ident: 7
  doi: 10.1146/annurev.nutr.26.061505.111258
– ident: 45
  doi: 10.1002/cpz1.90
– ident: 15
  doi: 10.1101/gad.13.10.1211
– ident: 25
  doi: 10.3390/pathogens7020036
– ident: 26
  doi: 10.1002/hep.32324
– ident: 49
  doi: 10.1038/s41467-019-09234-6
– ident: 29
  doi: 10.1007/s11064-008-9840-4
– ident: 18
  doi: 10.1107/S1399004714023827
– ident: 27
  doi: 10.1093/jb/mvp166
– ident: 3
  doi: 10.1093/ajcn/81.5.1126
– ident: 37
  doi: 10.1152/ajpgi.00521.2005
– ident: 33
  doi: 10.1016/j.bbapap.2014.12.029
– ident: 11
  doi: 10.1007/s00726-021-02981-1
– ident: 43
  doi: 10.3390/molecules27092647
– ident: 47
  doi: 10.1091/mbc.e09-02-0133
– ident: 24
  doi: 10.3233/TRD-160009
– ident: 10
  doi: 10.1097/MEG.0b013e328345c8c7
SSID ssj0025067
Score 2.37337
Snippet When medaka fish (Oryzias latipes) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7...
When medaka fish ( Oryzias latipes ) larvae are grown in the absence of exogenous nutrition, the liver becomes dark and positive to Oil Red O staining from 7...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
jstage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 123
SubjectTerms Acids
amino acid catabolism
Amino Acids
Animals
Autophagy
Cholesterol
Chromatography
Cirrhosis
Endoplasmic reticulum
Enzymes
export
Fatty acids
Fatty Acids - metabolism
Fatty liver
Fatty Liver - veterinary
Full
Genes
Glucose
Glycolysis
Larva - metabolism
Larvae
Liver
Mass spectrometry
Oryzias - metabolism
Peptides
Proteins
Proteomics
Scientific imaging
triacylglycerol
Tricarboxylic acid cycle
Triglycerides - metabolism
β-oxidation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEC2v0IIM4hrVsZ3YOQKiqpCKOFCpN2v8YgtVtuqmh_33zMTZpYuQuHDJIXbiyYwf39iTbxh7JyBYkX1TZyt9jbNfrD3C5ilo3AOktsu0D3n-pTu70J8v28t7qb4oJqzQAxfFnYCxEVFg75W1WnuPl041sgkqRylUcXyE3DhTs6vViil3rFC2qw12splTSGpzElaZop8bvbMSTYT9uAr9QEz2Pf0Nbv4ZNXlvGTp9zB7N-JG_L3IfsAdpOGT7JaPk-gk7_0q8C_SnMYeZboQvM88wjmt-TTEYHJ1wNGfkfs1RinlLlipho_ATeL5aLfg1FaSn7OL007ePZ_WcMaEOnRVjHSVAZzKu6xmSCCJ4H1U2XvYmqpQytDjPgun6YPuQZW6TMBATUBoqxH5ePWN7w3JILxjXIERqfJcsqtyjH2F6E2IT0R0BHbSp2NuN9txNIcZw5FCgih2q2E0qrtgH0uu2AnFZTzfQwm62sPuXhStmi1W2r9k8Se1o6-R0ofZ-lyzgFsd9xY43dnTz2Fw52RMBD0KXtmJvtsU4quioBIa0vMM6FiWgk21RsefF7NvWiQuKGKFQrp0OsfOVuyXD1WJi7iYWVkS46uX_0MsReygRcZX9oGO2N97epVeIkEb_ehoMvwD-Bg6Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxZuUggziGtVxnNg5IVpRVUhFHKi0t2j86haqpN1ND_vvO5N4d1mEuOwhdtbemfG8PPsNY58EOCOiLfJopM1R-_ncots8Fo1bgFDVkfKQ59_rswv1bVbNUsJtmcoq1zpxVNS-d5QjP5INwaagwak-39zm1DWKbldTC42H7FEh0ZSjPOvZNuCqxNhBVpSmzjWKWkIWkkofuWWkGuhC7dijEbYfbdEv9Mwuw7-czr9rJ_8wRqdP2X7yIvmXie3P2IPQPWePp76Sqxfs_AehL9D_jTkk0BHeRx5hGFb8mioxOIbiyFTP7YrjLlJilibhovAbeLxazvk1DYSX7OL068-Tszz1TchdbcSQewlQ64jWPUIQTjhrfRm1lY32ZQgRKtS2oOvGmcZFGasgNPgA1IwKPUBbvmJ7Xd-FN4wrECIUtg7GGmUxmtCNdr7wGJSAckpn7OOaeu3NBI_RUliBJG6RxO1I4owdE103EwjRenzQLy7bdEBa0Majt9_Y0hilLC6n6rKQhSujl6h5MmYmrmy-Zv0mraNMK8cPWm87MocFnv6MHa752KYTumy38pSxD5thPFt0YQJd6O9wjsEd0P22yNjrie2b1QkRinChcF87ArHzK3dHuqv5iN9NWKzo55YH_9_XW_aEettP-Z5Dtjcs7sI79IAG-34U83tlDAd6
  priority: 102
  providerName: ProQuest
Title Proteomic analysis of fatty liver induced by starvation of medaka fish larvae
URI https://www.jstage.jst.go.jp/article/csf/48/2/48_23014/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37380437
https://www.proquest.com/docview/2926352245
https://search.proquest.com/docview/2831295360
https://pubmed.ncbi.nlm.nih.gov/PMC10915113
https://doaj.org/article/a78d8829b38844bb84463121c3fd2031
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Cell Structure and Function, 2023, Vol.48(2), pp.123-133
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaDgN2Gbq31y7Qhl3dyLZsyce1aFEMSBEMK5CbIclSky11isQ95N-PlO1sGXbaxYdINhU-RFKmPwJ85toq7k0Se5WaGHe_OjYYNoeicaO1ywtP55CTm-L6Vnyd5bMDKIZvYULRvjWLs2Z5f9Ys5qG28uHejoc6sfF0ckFglhgoZONDOET_O-TofZqV89A3lmeqiCUqWI8nlAo5thtPlc8JdeMhSB8C9tlzSAG3H53RDwzN7ty_os6_iyf_8EZXx_C8DyPZl265L-DANS_haddYcvsKJlOCX6APjpnuUUfYyjOv23bLllSKwTAXR6nWzGwZrqI_maVJSFT_1MwvNnO2pAH3Gm6vLr9fXMd944TYFoq3cZ1qXUiP7t1rxy23xtSZlyYtZZ0553WO262WRWlVaX3qc8elrp2mblQYAprsDRw1q8a9AyY05y4xhVNGCYPphCylrZMasxItrJARfBq4Vz10-BgV5RXI7Qq5XQVuR3BOfN1NIEjr8MNqfVf1gq20VDWG-6XJlBLCIDlRZEma2MzXKW49EahOKrvHDHcSHaGqNFyI3u-RuV6j-UdwOsix6k10U6Ul4fBgBJNH8HE3jMZFb0x041aPOEfhCugFN4_gbSf2HfVBf3Bdewqx9y_3R1CfA4D3oL_v___WE3hGje-7w6BTOGrXj-4DhketGaFNzOQInpxf3ky_jcIhwyhYyC9f-xRB
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793,73745,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4IXxOcIDDCI12hO4sTOE2JoU4G1mtAm7c3y5zqYktFmD_3vuUvcjCLESx9ip-fe2ffl6-8I-cC0lSyYLA0yNyloP5cacJv7onGjtS-rgHnI2byanvGv5-V5TLitYlnlRif2itq1FnPk-3mNsClgcMqP179S7BqFt6uxhcZdsoPI6eWE7Bwczk--jyFXyfoesqyQVSpgs0VsoZyLfbsKWAWd8S2L1AP3gzX6Ab7Zhf-X2_l39eQf5ujoEXkY_Uj6aRD8Y3LHN0_IvaGz5PopmZ0g_gL-45jqCDtC20CD7ro1vcJaDArBOIjVUbOmsIqYmsVJQFT_1DRcrhb0Cgf8M3J2dHj6eZrGzgmprSTrUpdrXYkA9j1ozyyzxrgiCJPXwhXeB12CvtWiqq2sbchD6ZnQzmtsRwU-oCmek0nTNv4FoVwz5jNTeWkkNxBPiFpYlzkISzS3XCTk_YZ76noAyFAYWACLFbBY9SxOyAHydZyAmNb9g3Z5oeIRUVpIB_5-bQopOTdAjldFlme2CC4H3ZMQOUhl_JrNm0iHS5X3H0jvdmShl3D-E7K3kaOKZ3SlbndUQt6Nw3C68MpEN769gTkSVoA33Cwhu4PYR-qICYXIULCurQ2x9Su3R5rLRY_gjWis4OkWL_-_rrfk_vR0dqyOv8y_vSIPsNP9kP3ZI5NueeNfgz_UmTdx0_8GZVAL0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKxAXxJtAAYO4Rus4TuycEIWuyqOrFaJSb5Gf3UKVlN30sP-emcSbsghxySF2Ms54PA978g0hb5m2igWTpUFxk4L2c6kBt7lPGjda-6IMuA95PC-PTsTn0-I05j-tY1rlVif2itq1FvfIp7xC2BQwOMU0xLSIxcfZu8tfKVaQwpPWWE7jJtkDq8j4hOwdHM4X38bwq2B9PVmWqzKVIHgRZ4gLObXrgBnRmdixTj2IP1imH-Cnnfl_uaB_Z1L-YZpm98jd6FPS94MQ3Cc3fPOA3BqqTG4ekuMFYjHg38dURwgS2gYadNdt6AXmZVAIzGGKHTUbCqOI27TYCYjqn5qG8_WSXmCDf0ROZoffPxylsYpCakvFutRxrUsZwNYH7Zll1hiXB2l4JV3ufdAF6F4ty8qqygYeCs-kdl5jaSrwB03-mEyatvFPCRWaMZ-Z0iujhIHYQlbSusxBiKKFFTIhb7bcqy8HsIwagwxgcQ0srnsWJ-QA-Tp2QHzr_ka7Oqvjcqm1VA58_8rkSglhgJwo84xnNg-Ogx5KiBpmZXzN9kmkI1TN-wvSu25Z6hXogoTsb-exjut1XV9LV0Jej82w0vD4RDe-vYI-CkaAp90sIU-GaR-pIz4UokTBuHYEYucrd1ua82WP5o3IrOD15s_-P65X5DbIe_310_zLc3IHi94PG0H7ZNKtrvwLcI068zLK_G_CbA_9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteomic+analysis+of+fatty+liver+induced+by+starvation+of+medaka+fish+larvae&rft.jtitle=Cell+structure+and+function&rft.au=Ikeda%2C+Tomoyo&rft.au=Ishikawa%2C+Tokiro&rft.au=Ninagawa%2C+Satoshi&rft.au=Okada%2C+Tetsuya&rft.date=2023-01-01&rft.issn=0386-7196&rft.eissn=1347-3700&rft.volume=48&rft.issue=2&rft.spage=123&rft.epage=133&rft_id=info:doi/10.1247%2Fcsf.23014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1247_csf_23014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-7196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-7196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-7196&client=summon