Mesoporous activated carbon yielded from pre-leached cassava peels

The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a pa...

Full description

Saved in:
Bibliographic Details
Published inBioresources and bioprocessing Vol. 8; no. 1; pp. 53 - 12
Main Authors Kayiwa, R., Kasedde, H., Lubwama, M., Kirabira, J. B.
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 24.06.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2197-4365
2197-4365
DOI10.1186/s40643-021-00407-0

Cover

Loading…
Abstract The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm 3 g −1 and BET surface area of 1684 m 2 g −1 . The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm 3 g −1 ) relative to the micropore volume (0.281 cm 3 g −1 ) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na + ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm −1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.
AbstractList The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation-carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm g and BET surface area of 1684 m g . The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm g ) relative to the micropore volume (0.281 cm g ) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C-H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.
The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm 3 g −1 and BET surface area of 1684 m 2 g −1 . The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm 3 g −1 ) relative to the micropore volume (0.281 cm 3 g −1 ) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na + ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm −1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.
The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation-carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g-1 and BET surface area of 1684 m2g-1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g-1) relative to the micropore volume (0.281 cm3g-1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C-H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm-1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation-carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g-1 and BET surface area of 1684 m2g-1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g-1) relative to the micropore volume (0.281 cm3g-1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C-H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm-1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.
Abstract The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g−1 and BET surface area of 1684 m2g−1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g−1) relative to the micropore volume (0.281 cm3g−1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm−1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.
The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g−1 and BET surface area of 1684 m2g−1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g−1) relative to the micropore volume (0.281 cm3g−1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm−1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.
ArticleNumber 53
Author Lubwama, M.
Kayiwa, R.
Kirabira, J. B.
Kasedde, H.
Author_xml – sequence: 1
  givenname: R.
  orcidid: 0000-0002-7181-6520
  surname: Kayiwa
  fullname: Kayiwa, R.
  email: ronald.kayiwa@mak.ac.ug
  organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University
– sequence: 2
  givenname: H.
  surname: Kasedde
  fullname: Kasedde, H.
  organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University
– sequence: 3
  givenname: M.
  surname: Lubwama
  fullname: Lubwama, M.
  organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University
– sequence: 4
  givenname: J. B.
  surname: Kirabira
  fullname: Kirabira, J. B.
  organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38650239$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLaV_gAOKxIVLYMZfiU8IKmgrFXGBs-U4k21W2TjY2ZX67_FuSml76Mkf896b5_F7zY7GMBJjbxE-Itb6U5KgpSiBYwkgoSrhBTvhaKpSCq2OHuyP2VlKawBAIQVK9Yodi1or4MKcsK8_KIUpxLBNhfNzv3MztYV3sQljcdvT0OZjF8OmmCKVAzl_c6in5HaumIiG9Ia97NyQ6OxuPWW_v3_7dX5ZXv-8uDr_cl16XcNcGlOJWnS-8yg4oXNcGlE1vqZaaWyQt0rV0AIppzlH3fKm0VhJIx1HQi1O2dWi2wa3tlPsNy7e2uB6e7gIcWVdnHs_kK2wQqid74xB6SowXDVGcKkkETSgstbnRWvaNhtqPY1zdMMj0ceVsb-xq7CzCFnSaJMVPtwpxPBnS2m2mz55GgY3Uh6mFSAVopZYZej7J9B12MYxz8pyJaXWKPXe0ruHlu69_PurDOALwMeQUqTuHoJg95mwSyZszoQ9ZMJCJtVPSL6f3dyH_bP64XmqWKgp9xlXFP_bfob1F2l8yB8
CitedBy_id crossref_primary_10_1021_acs_energyfuels_4c01935
crossref_primary_10_3390_w14213371
crossref_primary_10_1007_s11356_024_35621_8
crossref_primary_10_1016_j_biteb_2021_100772
crossref_primary_10_1016_j_jece_2024_114948
crossref_primary_10_1038_s41598_024_52112_5
crossref_primary_10_3390_c8010002
crossref_primary_10_1016_j_materresbull_2022_111800
crossref_primary_10_1016_j_vacuum_2024_113687
crossref_primary_10_1007_s13399_024_06030_1
crossref_primary_10_1007_s13399_023_04039_6
crossref_primary_10_1016_j_diamond_2021_108655
crossref_primary_10_1007_s42452_024_05946_7
crossref_primary_10_1038_s41598_024_76297_x
crossref_primary_10_1016_j_jcou_2022_101996
crossref_primary_10_1016_j_est_2022_105876
Cites_doi 10.1016/S0961-9534(01)00027-7
10.1016/j.cej.2015.01.135
10.1007/s00396-012-2674-2
10.1016/j.wasman.2018.09.050
10.15376/biores.15.2.2133-2146
10.1016/j.jtice.2019.02.019
10.2166/wpt.2013.023
10.1016/J.WATRES.2018.07.037
10.1002/jctb.280560114
10.2478/s11532-007-0017-9
10.1016/j.jaap.2009.12.003
10.1016/j.carbon.2015.05.029
10.2166/wst.2020.585
10.1016/j.colsurfa.2017.06.028
10.1016/S0165-2370(01)00167-X
10.1016/j.smallrumres.2015.09.010
10.1016/j.biortech.2017.06.023
10.1002/9783527618286.ch24a
10.1016/j.renene.2019.04.068
10.1016/j.carbon.2015.06.036
10.1016/j.biortech.2005.04.029
10.1016/j.biortech.2008.01.041
10.1016/j.carbon.2007.08.021
10.1016/j.biortech.2003.09.015
10.1016/j.crgsc.2021.100083
10.3390/en12122314
10.1016/j.jaap.2011.12.020
10.1016/j.rser.2014.07.142
10.17159/2411-9717/2015/v115n12a1
10.1016/j.biortech.2009.12.123
10.1016/j.colsurfa.2003.12.020
10.1155/2015/415961
10.1016/j.biortech.2007.09.042
10.1039/c2jm34066f
10.1016/j.renene.2006.02.017
10.1016/j.rser.2015.02.051
10.1002/adsu.201700115
10.1016/j.arabjc.2012.07.018
10.1016/j.jpowsour.2013.03.174
10.1016/j.rser.2017.04.117
10.1016/J.SERJ.2017.06.003
10.1016/j.colsurfa.2004.04.007
10.1520/jte20170160
10.1016/j.carbon.2017.08.044
10.1016/0008-6223(92)90178-Y
10.1016/j.rser.2016.06.064
10.1016/j.virusres.2020.198017
10.1016/j.indcrop.2008.02.012
10.1007/1-4020-5172-7_15
10.1016/j.cropro.2018.09.015
10.1515/hf-2015-0051
10.1016/S0960-8524(01)00212-7
10.1051/matecconf/201710306012
10.1063/5.0001464
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.1186/s40643-021-00407-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Engineering Collection
Biological Sciences
ProQuest Biological Science Database (NC LIVE)
ProQuest Engineering Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection (ProQuest)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2197-4365
EndPage 12
ExternalDocumentID oai_doaj_org_article_717108acf9914a70925b932454ee0b05
PMC10991969
38650239
10_1186_s40643_021_00407_0
Genre Journal Article
GrantInformation_xml – fundername: Government of Uganda through the Research and Innovation Fund - Makerere University. Grant No. RIF1/CEDAT/007
  grantid: RIF/CEDAT/007
– fundername: African Centre of Excellence in Materials, Product Development & Nanotechnology (MAPRONANO ACE)
GroupedDBID 0R~
5VS
8FE
8FG
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACPRK
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ASPBG
AVWKF
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
C24
C6C
CCPQU
DIK
EBLON
EBS
GROUPED_DOAJ
HCIFZ
IAO
IHR
ISR
ITC
KQ8
L6V
LK8
M7P
M7S
M~E
OK1
PGMZT
PIMPY
PROAC
PTHSS
RPM
RSV
RVI
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c680t-997383fcfc132e1aa24937bc8e8561b12d5580d0e5a62216d2bb617494a21e163
IEDL.DBID DOA
ISSN 2197-4365
IngestDate Wed Aug 27 01:23:21 EDT 2025
Thu Aug 21 18:34:29 EDT 2025
Fri Sep 05 05:36:37 EDT 2025
Fri Jul 25 10:59:19 EDT 2025
Wed Feb 19 02:08:57 EST 2025
Thu Apr 24 23:11:16 EDT 2025
Tue Jul 01 01:24:38 EDT 2025
Fri Feb 21 02:48:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Surface area and pore volume
Pre-leaching
Activated carbon
FTIR
Cassava peel
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c680t-997383fcfc132e1aa24937bc8e8561b12d5580d0e5a62216d2bb617494a21e163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7181-6520
OpenAccessLink https://doaj.org/article/717108acf9914a70925b932454ee0b05
PMID 38650239
PQID 2544661465
PQPubID 2034794
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_717108acf9914a70925b932454ee0b05
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10991969
proquest_miscellaneous_3045116417
proquest_journals_2544661465
pubmed_primary_38650239
crossref_primary_10_1186_s40643_021_00407_0
crossref_citationtrail_10_1186_s40643_021_00407_0
springer_journals_10_1186_s40643_021_00407_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-24
PublicationDateYYYYMMDD 2021-06-24
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-24
  day: 24
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Bioresources and bioprocessing
PublicationTitleAbbrev Bioresour. Bioprocess
PublicationTitleAlternate Bioresour Bioprocess
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Daifullah, Girgis, Gad (CR9) 2004; 235
Ekebafe, Imanah, Okieimen (CR11) 2012; 10
Bhatnagar, Sillanpää, Witek-Krowiak (CR7) 2015; 270
Xu, Zhao, Sima, Zhao, Mašek, Cao (CR56) 2017; 241
Mopoung, Moonsri, Palas, Khumpai (CR33) 2015
Rodríguez-Reinoso, Loureiro, Kartel (CR44) 2006
Idress, Shahril, Zuraidin, Jasamai (CR19) 2019; 12
Beakou, El Hassani, Houssaini, Belbahloul, Oukani, Anouar (CR5) 2017; 27
Kalderis, Bethanis, Paraskeva, Diamadopoulos (CR21) 2008; 99
Savova, Apak, Ekinci, Yardim, Petrov, Budinova (CR48) 2001; 21
Lozano-Castelló, Calo, Cazorla-Amorós, Linares-Solano (CR28) 2007; 45
Mukiibi, Alicai, Kawuki, Okao-Okuja, Tairo, Sseruwagi (CR35) 2019; 115
Sun, Cheng (CR53) 2002; 83
CR31
Liu, Liu, Sun, Sun, Liu, Stevens (CR27) 2018; 2
Sharypov, Marin, Beregovtsova, Baryshnikov, Kuznetsov, Cebolla, Weber (CR49) 2002; 64
Uthumporn, Shariffa, Fazilah, Karim (CR54) 2012; 290
Simate, Ndlovu, Seepe (CR51) 2015; 115
Adekunle, Orsat, Raghavan (CR1) 2016; 64
Casco, Martínez-Escandell, Kaneko, Silvestre-Albero, Rodríguez-Reinoso (CR8) 2015; 93
CR3
Menya, Olupot, Storz, Lubwama, Kiros (CR30) 2018; 81
Gani, Naruse (CR12) 2007; 32
Rodriguez-Reinoso, Schuth, Sing, Weitkamp (CR43) 2002
Ismanto, Wang, Soetaredjo, Ismadji (CR20) 2010; 101
Gratuito, Panyathanmaporn, Chumnanklang, Sirinuntawittaya, Dutta (CR15) 2008; 99
Huang, Zhao (CR17) 2016; 70
Liu, Sun, Sun, Liu, Snape, Li (CR26) 2015; 94
Wang, Kaskel (CR55) 2012; 22
Parvathi, Shoba, Prakash, Sivamani (CR41) 2018; 46
Santos, Ferreira, Siqueira, Melo, Silva, Andrade (CR47) 2015; 133
Barskov, Zappi, Buchireddy, Dufreche, Guillory, Gang (CR4) 2019; 142
Rachman, Tri, Martia, Pambudi, Jovita, Kurniawan (CR42) 2017; 8
Okudoh, Trois, Workneh, Schmidt (CR38) 2014; 39
Yahya, Al-Qodah, Ngah (CR57) 2015; 46
Molina-Sabio, Rodríguez-Reinoso (CR32) 2004; 241
Li, Yang, Peng, Zhang, Guo, Xia (CR25) 2008; 28
Kayiwa, Kasedde, Lubwama, Kirabira (CR22) 2021
Salahudeen, Ajinomoh, Omaga, Akpaka (CR46) 2014; 3
González-García (CR14) 2018; 82
Belcaid, Beakou, El Hassani, Bouhsina, Anouar (CR6) 2020
Moreno-Piraján, Giraldo (CR34) 2010; 87
Sudaryanto, Hartono, Irawaty, Hindarso, Ismadji (CR52) 2006; 97
Lu, Zhang, Yin, Bai, Zhang, Li (CR29) 2017; 124
Gergova, Petrov, Minkova (CR13) 1993; 56
Saka (CR45) 2012; 95
He, Ling, Qiu, Yu, Zhang, Yu, Zheng (CR16) 2013; 240
Nwabanne, Igbokwe (CR37) 2008; 3
Alves, Cabrera-Codony, Barceló, Rodriguez-Mozaz, Pinheiro, Gonzalez-Olmos (CR2) 2018; 144
Omotosho, Sangodoyin (CR40) 2013; 8
Ndongo, Nsami, Mbadcam (CR36) 2020; 15
Zdravkov, Čermák, Šefara, Janků (CR58) 2007; 5
Kwiatkowski, Broniek (CR23) 2017; 529
Omotosho, Amori (CR39) 2016; 6
Laine, Yunes (CR24) 1992; 30
Ibeh, García-Mateos, Rosas, Rodríguez-Mirasol, Cordero (CR18) 2019; 97
Daud, Ali (CR10) 2004; 93
Shirima, Legg, Maeda, Tumwegamire, Mkamilo, Mtunda (CR50) 2020; 286
BD Zdravkov (407_CR58) 2007; 5
RA Rachman (407_CR42) 2017; 8
A Adekunle (407_CR1) 2016; 64
K Gergova (407_CR13) 1993; 56
VI Sharypov (407_CR49) 2002; 64
407_CR31
S Mopoung (407_CR33) 2015
M Kwiatkowski (407_CR23) 2017; 529
DR Mukiibi (407_CR35) 2019; 115
LO Ekebafe (407_CR11) 2012; 10
JT Nwabanne (407_CR37) 2008; 3
D Kalderis (407_CR21) 2008; 99
C Parvathi (407_CR41) 2018; 46
F Rodríguez-Reinoso (407_CR44) 2006
N Salahudeen (407_CR46) 2014; 3
VLF Santos (407_CR47) 2015; 133
D Savova (407_CR48) 2001; 21
PO Ibeh (407_CR18) 2019; 97
A Bhatnagar (407_CR7) 2015; 270
Y Huang (407_CR17) 2016; 70
U Uthumporn (407_CR54) 2012; 290
MA Yahya (407_CR57) 2015; 46
X Xu (407_CR56) 2017; 241
Y Lu (407_CR29) 2017; 124
J Liu (407_CR26) 2015; 94
ME Casco (407_CR8) 2015; 93
S Barskov (407_CR4) 2019; 142
AE Ismanto (407_CR20) 2010; 101
BH Beakou (407_CR5) 2017; 27
RR Shirima (407_CR50) 2020; 286
WMAW Daud (407_CR10) 2004; 93
A Gani (407_CR12) 2007; 32
F Rodriguez-Reinoso (407_CR43) 2002
Y Sun (407_CR53) 2002; 83
M Idress (407_CR19) 2019; 12
Y Sudaryanto (407_CR52) 2006; 97
P González-García (407_CR14) 2018; 82
W Li (407_CR25) 2008; 28
M Molina-Sabio (407_CR32) 2004; 241
O Omotosho (407_CR39) 2016; 6
J Wang (407_CR55) 2012; 22
V Okudoh (407_CR38) 2014; 39
GS Simate (407_CR51) 2015; 115
OA Omotosho (407_CR40) 2013; 8
D Lozano-Castelló (407_CR28) 2007; 45
C Saka (407_CR45) 2012; 95
A Belcaid (407_CR6) 2020
R Kayiwa (407_CR22) 2021
X He (407_CR16) 2013; 240
JC Moreno-Piraján (407_CR34) 2010; 87
AAM Daifullah (407_CR9) 2004; 235
MKB Gratuito (407_CR15) 2008; 99
J Liu (407_CR27) 2018; 2
GK Ndongo (407_CR36) 2020; 15
J Laine (407_CR24) 1992; 30
E Menya (407_CR30) 2018; 81
TC Alves (407_CR2) 2018; 144
407_CR3
References_xml – volume: 21
  start-page: 133
  issue: 2
  year: 2001
  end-page: 142
  ident: CR48
  article-title: Biomass conversion to carbon adsorbents and gas
  publication-title: Biomass Bioenerg
  doi: 10.1016/S0961-9534(01)00027-7
– volume: 270
  start-page: 244
  year: 2015
  end-page: 271
  ident: CR7
  article-title: Agricultural waste peels as versatile biomass for water purification—a review
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.01.135
– volume: 290
  start-page: 1481
  issue: 15
  year: 2012
  end-page: 1491
  ident: CR54
  article-title: Effects of NaOH treatment of cereal starch granules on the extent of granular starch hydrolysis
  publication-title: Colloid Polym Sci
  doi: 10.1007/s00396-012-2674-2
– volume: 81
  start-page: 104
  year: 2018
  end-page: 116
  ident: CR30
  article-title: Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2018.09.050
– volume: 15
  start-page: 2133
  issue: 2
  year: 2020
  end-page: 2146
  ident: CR36
  article-title: Ferromagnetic activated carbon from cassava (Manihot dulcis) peels activated by iron(lll) chloride: synthesis and characterization
  publication-title: BioResources
  doi: 10.15376/biores.15.2.2133-2146
– volume: 97
  start-page: 480
  year: 2019
  end-page: 488
  ident: CR18
  article-title: Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2019.02.019
– volume: 8
  start-page: 215
  issue: 2
  year: 2013
  end-page: 224
  ident: CR40
  article-title: Production and utilization of cassava peel activated carbon in treatment of effluent from cassava processing industry
  publication-title: Water Pract Technol
  doi: 10.2166/wpt.2013.023
– volume: 144
  start-page: 402
  year: 2018
  end-page: 412
  ident: CR2
  article-title: Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon
  publication-title: Water Res
  doi: 10.1016/J.WATRES.2018.07.037
– volume: 56
  start-page: 77
  issue: 1
  year: 1993
  end-page: 82
  ident: CR13
  article-title: A comparison of adsorption characteristics of various activated carbons
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.280560114
– volume: 5
  start-page: 385
  issue: 2
  year: 2007
  end-page: 395
  ident: CR58
  article-title: Pore classification in the characterization of porous materials: a perspective
  publication-title: Cent Eur J Chem
  doi: 10.2478/s11532-007-0017-9
– volume: 87
  start-page: 288
  issue: 2
  year: 2010
  end-page: 290
  ident: CR34
  article-title: Study of activated carbons by pyrolysis of cassava peel in the presence of chloride zinc
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/j.jaap.2009.12.003
– volume: 93
  start-page: 11
  year: 2015
  end-page: 21
  ident: CR8
  article-title: Very high methane uptake on activated carbons prepared from mesophase pitch: a compromise between microporosity and bulk density
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.05.029
– year: 2020
  ident: CR6
  article-title: Efficient removal of Cr (VI) and Co (II) from aqueous solution by activated carbon from Crantz agricultural bio-waste
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2020.585
– volume: 529
  start-page: 443
  year: 2017
  end-page: 453
  ident: CR23
  article-title: An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2017.06.028
– volume: 6
  start-page: 815
  year: 2016
  end-page: 820
  ident: CR39
  article-title: Effect of zinc chloride activation on physicochemical characteristics of cassava peel and waste bamboo activated carbon
  publication-title: Int J Chem Mol Eng
– volume: 64
  start-page: 15
  issue: 1
  year: 2002
  end-page: 28
  ident: CR49
  article-title: Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/S0165-2370(01)00167-X
– volume: 133
  start-page: 88
  year: 2015
  end-page: 92
  ident: CR47
  article-title: Rumen parameters of sheep fed cassava peel as a replacement for corn
  publication-title: Small Rumin Res
  doi: 10.1016/j.smallrumres.2015.09.010
– volume: 241
  start-page: 887
  year: 2017
  end-page: 899
  ident: CR56
  article-title: Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2017.06.023
– start-page: 1766
  year: 2002
  end-page: 1827
  ident: CR43
  article-title: Carbons
  publication-title: Handbbok of porous solids, 69469
  doi: 10.1002/9783527618286.ch24a
– volume: 142
  start-page: 624
  year: 2019
  end-page: 642
  ident: CR4
  article-title: Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.04.068
– volume: 94
  start-page: 243
  year: 2015
  end-page: 255
  ident: CR26
  article-title: Spherical potassium intercalated activated carbon beads for pulverised fuel CO2 post-combustion capture
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.06.036
– volume: 97
  start-page: 734
  issue: 5
  year: 2006
  end-page: 739
  ident: CR52
  article-title: High surface area activated carbon prepared from cassava peel by chemical activation
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2005.04.029
– volume: 99
  start-page: 6809
  issue: 15
  year: 2008
  end-page: 6816
  ident: CR21
  article-title: Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2008.01.041
– volume: 45
  start-page: 2529
  issue: 13
  year: 2007
  end-page: 2536
  ident: CR28
  article-title: Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.08.021
– volume: 93
  start-page: 63
  issue: 1
  year: 2004
  end-page: 69
  ident: CR10
  article-title: Comparison on pore development of activated carbon produced from palm shell and coconut shell
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2003.09.015
– year: 2021
  ident: CR22
  article-title: Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon
  publication-title: Curr Res Green Sustain Chem
  doi: 10.1016/j.crgsc.2021.100083
– volume: 12
  start-page: 1
  issue: 12
  year: 2019
  end-page: 11
  ident: CR19
  article-title: Experimental investigation of methane hydrate induction time in the presence of cassava peel as a hydrate inhibitor
  publication-title: Energies
  doi: 10.3390/en12122314
– volume: 95
  start-page: 21
  year: 2012
  end-page: 24
  ident: CR45
  article-title: BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/j.jaap.2011.12.020
– volume: 39
  start-page: 1035
  year: 2014
  end-page: 1052
  ident: CR38
  article-title: The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.142
– volume: 115
  start-page: 1137
  issue: 12
  year: 2015
  end-page: 1141
  ident: CR51
  article-title: Removal of heavy metals using cassava peel waste biomass in a multi-stage countercurrent batch operation
  publication-title: J Southern Afr Inst Min Metal
  doi: 10.17159/2411-9717/2015/v115n12a1
– volume: 101
  start-page: 3534
  issue: 10
  year: 2010
  end-page: 3540
  ident: CR20
  article-title: Preparation of capacitor’s electrode from cassava peel waste
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2009.12.123
– volume: 235
  start-page: 1
  issue: 1–3
  year: 2004
  end-page: 10
  ident: CR9
  article-title: A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2003.12.020
– year: 2015
  ident: CR33
  article-title: Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution
  publication-title: Sci World J
  doi: 10.1155/2015/415961
– volume: 99
  start-page: 4887
  issue: 11
  year: 2008
  end-page: 4895
  ident: CR15
  article-title: Production of activated carbon from coconut shell: optimization using response surface methodology
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2007.09.042
– volume: 22
  start-page: 23710
  issue: 45
  year: 2012
  end-page: 23725
  ident: CR55
  article-title: KOH activation of carbon-based materials for energy storage
  publication-title: J Mater Chem
  doi: 10.1039/c2jm34066f
– volume: 32
  start-page: 649
  issue: 4
  year: 2007
  end-page: 661
  ident: CR12
  article-title: Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.02.017
– volume: 46
  start-page: 218
  year: 2015
  end-page: 235
  ident: CR57
  article-title: Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.02.051
– volume: 2
  start-page: 1700115
  issue: 2
  year: 2018
  ident: CR27
  article-title: High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO capture
  publication-title: Adv Sustain Syst
  doi: 10.1002/adsu.201700115
– volume: 10
  start-page: S174
  year: 2012
  end-page: S178
  ident: CR11
  article-title: Effect of carbonization on the processing characteristics of rubber seed shell
  publication-title: Arab J Chem
  doi: 10.1016/j.arabjc.2012.07.018
– volume: 240
  start-page: 109
  year: 2013
  end-page: 113
  ident: CR16
  article-title: Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.174
– volume: 82
  start-page: 1393
  year: 2018
  end-page: 1414
  ident: CR14
  article-title: Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.117
– volume: 27
  start-page: 215
  issue: 5
  year: 2017
  end-page: 222
  ident: CR5
  article-title: Novel activated carbon from Crantz for removal of methylene blue
  publication-title: Sustain Environ Res
  doi: 10.1016/J.SERJ.2017.06.003
– volume: 241
  start-page: 15
  issue: 1–3
  year: 2004
  end-page: 25
  ident: CR32
  article-title: Role of chemical activation in the development of carbon porosity
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2004.04.007
– volume: 46
  start-page: 20170160
  issue: 6
  year: 2018
  ident: CR41
  article-title: Manihot esculenta peel powder: effective adsorbent for removal of various textile dyes from aqueous solutions
  publication-title: J Test Eval
  doi: 10.1520/jte20170160
– ident: CR3
– volume: 3
  start-page: 75
  issue: 2
  year: 2014
  end-page: 80
  ident: CR46
  article-title: Production of activated carbon from cassava
  publication-title: J Appl Phytotechnol Environ Sanit
– volume: 124
  start-page: 64
  year: 2017
  end-page: 71
  ident: CR29
  article-title: Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.044
– ident: CR31
– volume: 30
  start-page: 601
  issue: 4
  year: 1992
  end-page: 604
  ident: CR24
  article-title: Effect of the preparation method on the pore size distribution of activated carbon from coconut shell
  publication-title: Carbon
  doi: 10.1016/0008-6223(92)90178-Y
– volume: 64
  start-page: 518
  year: 2016
  end-page: 530
  ident: CR1
  article-title: Lignocellulosic bioethanol: a review and design conceptualization study of production from cassava peels
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.06.064
– volume: 286
  start-page: 198017
  year: 2020
  ident: CR50
  article-title: Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2020.198017
– volume: 28
  start-page: 190
  issue: 2
  year: 2008
  end-page: 198
  ident: CR25
  article-title: Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2008.02.012
– start-page: 133
  year: 2006
  end-page: 144
  ident: CR44
  article-title: Porous carbons in gas separation and storage
  publication-title: Combined and hybrid adsorbents
  doi: 10.1007/1-4020-5172-7_15
– volume: 115
  start-page: 104
  year: 2019
  end-page: 112
  ident: CR35
  article-title: Resistance of advanced cassava breeding clones to infection by major viruses in Uganda
  publication-title: Crop Prot
  doi: 10.1016/j.cropro.2018.09.015
– volume: 70
  start-page: 195
  issue: 3
  year: 2016
  end-page: 202
  ident: CR17
  article-title: Preparation and characterization of activated carbon fibers from liquefied wood by KOH activation
  publication-title: Holzforschung
  doi: 10.1515/hf-2015-0051
– volume: 3
  start-page: 829
  issue: 11
  year: 2008
  end-page: 834
  ident: CR37
  article-title: Kinetics and equilibrium modeling of nickel adsorption by cassava peel
  publication-title: J Eng Appl Sci
– volume: 8
  start-page: 235
  issue: 1
  year: 2017
  end-page: 239
  ident: CR42
  article-title: Cassava peel biosorbent (manihot utilissima ) for removal chromium (Vi) with microbial fuel cell system of combination techniques
  publication-title: Proc Int Conf Green Technol
– volume: 83
  start-page: 1
  issue: 1
  year: 2002
  end-page: 11
  ident: CR53
  article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review
  publication-title: Biores Technol
  doi: 10.1016/S0960-8524(01)00212-7
– volume: 290
  start-page: 1481
  issue: 15
  year: 2012
  ident: 407_CR54
  publication-title: Colloid Polym Sci
  doi: 10.1007/s00396-012-2674-2
– volume: 56
  start-page: 77
  issue: 1
  year: 1993
  ident: 407_CR13
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.280560114
– year: 2020
  ident: 407_CR6
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2020.585
– year: 2015
  ident: 407_CR33
  publication-title: Sci World J
  doi: 10.1155/2015/415961
– volume: 64
  start-page: 15
  issue: 1
  year: 2002
  ident: 407_CR49
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/S0165-2370(01)00167-X
– volume: 21
  start-page: 133
  issue: 2
  year: 2001
  ident: 407_CR48
  publication-title: Biomass Bioenerg
  doi: 10.1016/S0961-9534(01)00027-7
– volume: 241
  start-page: 15
  issue: 1–3
  year: 2004
  ident: 407_CR32
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2004.04.007
– volume: 87
  start-page: 288
  issue: 2
  year: 2010
  ident: 407_CR34
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/j.jaap.2009.12.003
– volume: 27
  start-page: 215
  issue: 5
  year: 2017
  ident: 407_CR5
  publication-title: Sustain Environ Res
  doi: 10.1016/J.SERJ.2017.06.003
– volume: 93
  start-page: 63
  issue: 1
  year: 2004
  ident: 407_CR10
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2003.09.015
– volume: 115
  start-page: 104
  year: 2019
  ident: 407_CR35
  publication-title: Crop Prot
  doi: 10.1016/j.cropro.2018.09.015
– volume: 115
  start-page: 1137
  issue: 12
  year: 2015
  ident: 407_CR51
  publication-title: J Southern Afr Inst Min Metal
  doi: 10.17159/2411-9717/2015/v115n12a1
– volume: 235
  start-page: 1
  issue: 1–3
  year: 2004
  ident: 407_CR9
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2003.12.020
– volume: 97
  start-page: 734
  issue: 5
  year: 2006
  ident: 407_CR52
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2005.04.029
– volume: 240
  start-page: 109
  year: 2013
  ident: 407_CR16
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.174
– volume: 30
  start-page: 601
  issue: 4
  year: 1992
  ident: 407_CR24
  publication-title: Carbon
  doi: 10.1016/0008-6223(92)90178-Y
– volume: 5
  start-page: 385
  issue: 2
  year: 2007
  ident: 407_CR58
  publication-title: Cent Eur J Chem
  doi: 10.2478/s11532-007-0017-9
– volume: 270
  start-page: 244
  year: 2015
  ident: 407_CR7
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.01.135
– volume: 46
  start-page: 20170160
  issue: 6
  year: 2018
  ident: 407_CR41
  publication-title: J Test Eval
  doi: 10.1520/jte20170160
– volume: 144
  start-page: 402
  year: 2018
  ident: 407_CR2
  publication-title: Water Res
  doi: 10.1016/J.WATRES.2018.07.037
– volume: 2
  start-page: 1700115
  issue: 2
  year: 2018
  ident: 407_CR27
  publication-title: Adv Sustain Syst
  doi: 10.1002/adsu.201700115
– volume: 15
  start-page: 2133
  issue: 2
  year: 2020
  ident: 407_CR36
  publication-title: BioResources
  doi: 10.15376/biores.15.2.2133-2146
– year: 2021
  ident: 407_CR22
  publication-title: Curr Res Green Sustain Chem
  doi: 10.1016/j.crgsc.2021.100083
– volume: 94
  start-page: 243
  year: 2015
  ident: 407_CR26
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.06.036
– volume: 81
  start-page: 104
  year: 2018
  ident: 407_CR30
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2018.09.050
– volume: 64
  start-page: 518
  year: 2016
  ident: 407_CR1
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.06.064
– ident: 407_CR31
  doi: 10.1051/matecconf/201710306012
– volume: 8
  start-page: 215
  issue: 2
  year: 2013
  ident: 407_CR40
  publication-title: Water Pract Technol
  doi: 10.2166/wpt.2013.023
– volume: 133
  start-page: 88
  year: 2015
  ident: 407_CR47
  publication-title: Small Rumin Res
  doi: 10.1016/j.smallrumres.2015.09.010
– ident: 407_CR3
  doi: 10.1063/5.0001464
– volume: 6
  start-page: 815
  year: 2016
  ident: 407_CR39
  publication-title: Int J Chem Mol Eng
– volume: 99
  start-page: 6809
  issue: 15
  year: 2008
  ident: 407_CR21
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2008.01.041
– volume: 142
  start-page: 624
  year: 2019
  ident: 407_CR4
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.04.068
– volume: 82
  start-page: 1393
  year: 2018
  ident: 407_CR14
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.117
– start-page: 133
  volume-title: Combined and hybrid adsorbents
  year: 2006
  ident: 407_CR44
  doi: 10.1007/1-4020-5172-7_15
– volume: 241
  start-page: 887
  year: 2017
  ident: 407_CR56
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2017.06.023
– start-page: 1766
  volume-title: Handbbok of porous solids, 69469
  year: 2002
  ident: 407_CR43
  doi: 10.1002/9783527618286.ch24a
– volume: 101
  start-page: 3534
  issue: 10
  year: 2010
  ident: 407_CR20
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2009.12.123
– volume: 8
  start-page: 235
  issue: 1
  year: 2017
  ident: 407_CR42
  publication-title: Proc Int Conf Green Technol
– volume: 93
  start-page: 11
  year: 2015
  ident: 407_CR8
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.05.029
– volume: 83
  start-page: 1
  issue: 1
  year: 2002
  ident: 407_CR53
  publication-title: Biores Technol
  doi: 10.1016/S0960-8524(01)00212-7
– volume: 39
  start-page: 1035
  year: 2014
  ident: 407_CR38
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.142
– volume: 45
  start-page: 2529
  issue: 13
  year: 2007
  ident: 407_CR28
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.08.021
– volume: 32
  start-page: 649
  issue: 4
  year: 2007
  ident: 407_CR12
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.02.017
– volume: 99
  start-page: 4887
  issue: 11
  year: 2008
  ident: 407_CR15
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2007.09.042
– volume: 46
  start-page: 218
  year: 2015
  ident: 407_CR57
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.02.051
– volume: 95
  start-page: 21
  year: 2012
  ident: 407_CR45
  publication-title: J Anal Appl Pyrol
  doi: 10.1016/j.jaap.2011.12.020
– volume: 97
  start-page: 480
  year: 2019
  ident: 407_CR18
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2019.02.019
– volume: 12
  start-page: 1
  issue: 12
  year: 2019
  ident: 407_CR19
  publication-title: Energies
  doi: 10.3390/en12122314
– volume: 3
  start-page: 829
  issue: 11
  year: 2008
  ident: 407_CR37
  publication-title: J Eng Appl Sci
– volume: 22
  start-page: 23710
  issue: 45
  year: 2012
  ident: 407_CR55
  publication-title: J Mater Chem
  doi: 10.1039/c2jm34066f
– volume: 286
  start-page: 198017
  year: 2020
  ident: 407_CR50
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2020.198017
– volume: 10
  start-page: S174
  year: 2012
  ident: 407_CR11
  publication-title: Arab J Chem
  doi: 10.1016/j.arabjc.2012.07.018
– volume: 70
  start-page: 195
  issue: 3
  year: 2016
  ident: 407_CR17
  publication-title: Holzforschung
  doi: 10.1515/hf-2015-0051
– volume: 124
  start-page: 64
  year: 2017
  ident: 407_CR29
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.044
– volume: 28
  start-page: 190
  issue: 2
  year: 2008
  ident: 407_CR25
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2008.02.012
– volume: 529
  start-page: 443
  year: 2017
  ident: 407_CR23
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2017.06.028
– volume: 3
  start-page: 75
  issue: 2
  year: 2014
  ident: 407_CR46
  publication-title: J Appl Phytotechnol Environ Sanit
SSID ssj0001343145
Score 2.272062
Snippet The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is...
Abstract The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 53
SubjectTerms Absorption spectra
Activated carbon
Agricultural wastes
Biochemical Engineering
Boiling points
Carbonization
Carboxyl group
Cassava
Cassava peel
Cellulose
Chemistry
Chemistry and Materials Science
Environmental Engineering/Biotechnology
Fourier transforms
FTIR
Genotypes
Industrial and Production Engineering
Infrared spectroscopy
Leaching
Melting points
Potassium hydroxides
Pre-leaching
Scanning electron microscopy
Sodium hydroxide
Surface area
Surface area and pore volume
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcoED4k1gQUHiBtbarh07J8QiygppObHS3iy_AkirtDRlJf49M27SUh57TO1Kzjwy33heAC-tTn6WZMtCJxVTRiZmW22YySoSPjEhU6Hw6afm5Ex9PNfn44XbMKZVTt_E8qFOi0h35EfUSotsSaPfLL8zmhpF0dVxhMZ1uCHQ0pCc2_mH3R3LDM2j0lOtjG2OBkUmmFFeAomvYXzPHpW2_f_Cmn-nTP4RNy3maH4Hbo84sn67YfxduJb7e3Drt-6C9-H4NA8LhNfo29dUvnCJsDLV0a_Coq9_UuYaPlJ5SU2pIBeltTOtD4O_9PUyo9V8AGfz95_fnbBxZAKLjeVr1rYGXc4udhG9zCy8R-9qZkK02SJQCkImrS1PPGvfSCmaJENADKNa5aXIiM0ewkG_6PNjqLNG3cedQaWoujYGYZNpdCc6rpCPXQViIpyLYz9xGmtx4YpfYRu3IbZDYrtCbMcreLX9z3LTTePK3cfEj-1O6oRdflisvrhRsRy6o4JbHzsEusob3kodEJMqrXLmgesKDiduulE9B7cTpgpebJdRsSha4vuMjHEUQhboTApTwaMN87cnoUGpVBVcgd0Ti72j7q_0376W5t0UiaSWRBW8niRod67_0-LJ1a_xFG7KItQNk-oQDtarH_kZoqV1eF5U4hcWeQ8n
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC4kHtSDmPiamMgI3rRxurdfczRLQhDiyUBuTb9GhTAbdtaA_z5VvTOrq1HIcaa7oanH1FdTL4C3ViU_S6JloROSSSMSs60yzGQZCZ-YkKlQ-OyzPj2Xny7UxVgUNkzZ7lNIsnypi1pb_WGQZD0ZpRSQ5BmGjvp9hb47DWyYjzUO5c_KDI2iVFOFzK1Ht6xQadZ_G8L8O1Hyj2hpMUInT-DxiB7rj2t278K93O_Bg_k0tG0PHv3WX_ApHJ3lYYEAG737mgoYrhFYpjr6ZVj09U_KXcNHKjCpKRnksjR3pvVh8Ne-vspoN5_B-cnxl_kpG4cmsKhts2Jta9Dp7GIX0c_M3Hv0r2YmRJstQqXARVLKNqnJymshuE4iBEQxspVe8Izo7Dns9Is-v4Q6K9R-3BlkirJrY-A2Ga063jUSOdlVwCciujh2FKfBFpeueBZWuzXhHRLeFcK7poJ3mzNX634a_919RLzZ7KRe2OXFYvnVjarl0CHljfWxQ6grvWlaoQKiUqlkzk1oVAUHE2fdqKCDo85sBE00Lr_ZLCOzKF7i-4yMcRRE5uhOclPBi7UgbG5Co1KpLrgCuyUiW1fdXum_fyvtuykWSU2JKng_SdOve_2bFvt32_4KHooi8JoJeQA7q-WPfIj4aRVeF3W5ARhCD5c
  priority: 102
  providerName: Springer Nature
Title Mesoporous activated carbon yielded from pre-leached cassava peels
URI https://link.springer.com/article/10.1186/s40643-021-00407-0
https://www.ncbi.nlm.nih.gov/pubmed/38650239
https://www.proquest.com/docview/2544661465
https://www.proquest.com/docview/3045116417
https://pubmed.ncbi.nlm.nih.gov/PMC10991969
https://doaj.org/article/717108acf9914a70925b932454ee0b05
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aX_RB_HZrPVbwTUOTXL720Tt6FqFFxELfQr4WhbJXumfB_74z2b3zzs8XXxayyUKYmTC_2Zn5hZDXViU_TaKhoRWSSiMStY0y1GQZEZ-YkLFR-ORUH5_JD-fqfOuqL6wJG-iBB8EdQrjBmfWxBSAjvWGNUAEwh1QyZxYG9lLWsK1gqvxdmYJjlGrdJWP1YS_R-VKsSEDDNZTteKJC2P87lPlrseRPGdPiiBYPyP0RQdbvhp0_JLdy94jc2-IVfExmJ7lfArCGqL7GxoVrAJSpjv4qLLv6O9aswRAbS2osArkopM443_f-2teXGfzlE3K2OPo8P6bjZQk0astWtGkMBJttbCPEl5l7D3HV1IRoswWIFLhISlmWWFZeC8F1EiEAepGN9IJnQGVPyV637PJzUmcFpx5WBpmibJsYuE1Gq5a3TIIG24rwteBcHJnE8UKLC1ciCqvdIGwHwnZF2I5V5M3mm8uBR-Ovq2eoj81K5MAuL8Ay3GgZ7l-WUZGDtTbdeDB7h4xsCEk0TL_aTMORwjyJ7zIoxmHymEMYyU1Fng3K3-wEr0jFfuCK2B2z2Nnq7kz39Uuh7cYcJJIRVeTt2oJ-7OvPstj_H7J4Qe6KYvqaCnlA9lZX3_JLQFOrMCG37eL9hNyZHZ1-_ASjuZD41PNJOVKT8gPsBu1sG3I
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBYwEJ1jV3uza6wNCBFqltIkQaqXelt31GpAqO8RpUf8Uv5EZPxLCo7cek91E63nsfON5ATxXMjfDnGfMFlwwkfKcqUymLPXCET5JradC4ck0GR-JD8fyeAN-9rUwlFbZ34nNRZ1Xjt6Rb1MrLbIliXwz-85oahRFV_sRGq1Y7PvzH-iy1a_33iN_X3C-u3P4bsy6qQLMJSpasCxL0SsrXOHQEfOxMeiADFPrlFeIJWzMcylVlEdemoTzOMm5tWjmRSYMjz3CF_zfK7ApqKJ1AJujnenHT6u3OkM0yEL21Tkq2a4FGX1GmRCkMCmL1ixgMyjgX-j27yTNPyK1jQHcvQk3OuQavm1F7RZs-PI2XP-tn-EdGE18XSGgr07rkAomzhDI5qEzc1uV4TnlyuFHKmgJKfnkpGkmTet1bc5MOPNop-_C0aWQ8x4Myqr0DyD0Em8b3GlF7kSRORurPE1kEReRQMkpAoh7wmnXdTCnQRonuvFkVKJbYmsktm6IraMAXi5_M2v7d1y4e0T8WO6k3tvNF9X8i-5UWaMDHEfKuAKhtTBplHFpEQULKbyPbCQD2Oq5qbsLodYr8Q3g2XIZVZniM6b0yBhNQesY3dc4DeB-y_zlSWg0K9UhB6DWxGLtqOsr5bevTbtwin1SE6QAXvUStDrX_2nx8OLHeApXx4eTA32wN91_BNd4I-AJ42ILBov5qX-MWG1hn3QKEsLny9bJX1KrS64
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQJTmBt4rVj54AQpSwtpRUHKvXm2o4DSFWybLZF_Wv8Omby2GV59Nbjrr0rZx6ebzIvgGdaFnZc8Jy5kgsmFC-YzqViKghP-ES5QIXCe_vZ9oH4cCgP1-DnUAtDaZXDndhe1EXt6R35iFppkS3J5Kjs0yI-bU1eT78zmiBFkdZhnEYnIrvh7Ae6b82rnS3k9XPOJ-8-v91m_YQB5jOdzFmeK_TQSl96dMpCai06I2PlvA4acYVLeSGlTookSJtxnmYFdw5NvsiF5WlAKIP_ewkuq7HKyfHTk_fL9ztjNM1CDnU6Ohs1gsw_o5wIUh3FkhVb2I4M-BfO_Ttd84-YbWsKJzfgeo9h4zed0N2EtVDdgmu_dTa8DZt7oakR2tcnTUylE6cIaYvY25mrq_iMsubwI5W2xJSGcty2lab1prGnNp4GtNh34OBCiHkX1qu6CvchDhLvHdzpROFFmXuX6kJlskzLRKAMlRGkA-GM73uZ00iNY9P6NDozHbENEtu0xDZJBC8Wv5l2nTzO3b1J_FjspC7c7Rf17IvpldqgK5wm2voSQbawKsm5dIiHhRQhJC6REWwM3DT91dCYpSBH8HSxjEpNkRpbBWSMofB1io5sqiK41zF_cRIa0koVyRHoFbFYOerqSvXta9s4nKKg1A4pgpeDBC3P9X9aPDj_MZ7AFdRE83Fnf_chXOWtfGeMiw1Yn89OwiMEbXP3uNWOGI4uWh1_AVlYTn4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+activated+carbon+yielded+from+pre-leached+cassava+peels&rft.jtitle=Bioresources+and+bioprocessing&rft.au=Kayiwa%2C+R&rft.au=Kasedde%2C+H&rft.au=Lubwama%2C+M&rft.au=Kirabira%2C+J+B&rft.date=2021-06-24&rft.issn=2197-4365&rft.eissn=2197-4365&rft.volume=8&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1186%2Fs40643-021-00407-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4365&client=summon