Mesoporous activated carbon yielded from pre-leached cassava peels
The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a pa...
Saved in:
Published in | Bioresources and bioprocessing Vol. 8; no. 1; pp. 53 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
24.06.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2197-4365 2197-4365 |
DOI | 10.1186/s40643-021-00407-0 |
Cover
Loading…
Abstract | The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm
3
g
−1
and BET surface area of 1684 m
2
g
−1
. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm
3
g
−1
) relative to the micropore volume (0.281 cm
3
g
−1
) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na
+
ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm
−1
wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively. |
---|---|
AbstractList | The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation-carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm
g
and BET surface area of 1684 m
g
. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm
g
) relative to the micropore volume (0.281 cm
g
) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C-H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na
ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm
wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively. The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm 3 g −1 and BET surface area of 1684 m 2 g −1 . The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm 3 g −1 ) relative to the micropore volume (0.281 cm 3 g −1 ) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na + ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm −1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively. The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation-carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g-1 and BET surface area of 1684 m2g-1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g-1) relative to the micropore volume (0.281 cm3g-1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C-H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm-1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation-carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g-1 and BET surface area of 1684 m2g-1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g-1) relative to the micropore volume (0.281 cm3g-1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C-H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm-1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively. Abstract The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g−1 and BET surface area of 1684 m2g−1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g−1) relative to the micropore volume (0.281 cm3g−1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm−1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively. The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g−1 and BET surface area of 1684 m2g−1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g−1) relative to the micropore volume (0.281 cm3g−1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm−1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively. |
ArticleNumber | 53 |
Author | Lubwama, M. Kayiwa, R. Kirabira, J. B. Kasedde, H. |
Author_xml | – sequence: 1 givenname: R. orcidid: 0000-0002-7181-6520 surname: Kayiwa fullname: Kayiwa, R. email: ronald.kayiwa@mak.ac.ug organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University – sequence: 2 givenname: H. surname: Kasedde fullname: Kasedde, H. organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University – sequence: 3 givenname: M. surname: Lubwama fullname: Lubwama, M. organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University – sequence: 4 givenname: J. B. surname: Kirabira fullname: Kirabira, J. B. organization: Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38650239$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARLaV_gAOKxIVLYMZfiU8IKmgrFXGBs-U4k21W2TjY2ZX67_FuSml76Mkf896b5_F7zY7GMBJjbxE-Itb6U5KgpSiBYwkgoSrhBTvhaKpSCq2OHuyP2VlKawBAIQVK9Yodi1or4MKcsK8_KIUpxLBNhfNzv3MztYV3sQljcdvT0OZjF8OmmCKVAzl_c6in5HaumIiG9Ia97NyQ6OxuPWW_v3_7dX5ZXv-8uDr_cl16XcNcGlOJWnS-8yg4oXNcGlE1vqZaaWyQt0rV0AIppzlH3fKm0VhJIx1HQi1O2dWi2wa3tlPsNy7e2uB6e7gIcWVdnHs_kK2wQqid74xB6SowXDVGcKkkETSgstbnRWvaNhtqPY1zdMMj0ceVsb-xq7CzCFnSaJMVPtwpxPBnS2m2mz55GgY3Uh6mFSAVopZYZej7J9B12MYxz8pyJaXWKPXe0ruHlu69_PurDOALwMeQUqTuHoJg95mwSyZszoQ9ZMJCJtVPSL6f3dyH_bP64XmqWKgp9xlXFP_bfob1F2l8yB8 |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_4c01935 crossref_primary_10_3390_w14213371 crossref_primary_10_1007_s11356_024_35621_8 crossref_primary_10_1016_j_biteb_2021_100772 crossref_primary_10_1016_j_jece_2024_114948 crossref_primary_10_1038_s41598_024_52112_5 crossref_primary_10_3390_c8010002 crossref_primary_10_1016_j_materresbull_2022_111800 crossref_primary_10_1016_j_vacuum_2024_113687 crossref_primary_10_1007_s13399_024_06030_1 crossref_primary_10_1007_s13399_023_04039_6 crossref_primary_10_1016_j_diamond_2021_108655 crossref_primary_10_1007_s42452_024_05946_7 crossref_primary_10_1038_s41598_024_76297_x crossref_primary_10_1016_j_jcou_2022_101996 crossref_primary_10_1016_j_est_2022_105876 |
Cites_doi | 10.1016/S0961-9534(01)00027-7 10.1016/j.cej.2015.01.135 10.1007/s00396-012-2674-2 10.1016/j.wasman.2018.09.050 10.15376/biores.15.2.2133-2146 10.1016/j.jtice.2019.02.019 10.2166/wpt.2013.023 10.1016/J.WATRES.2018.07.037 10.1002/jctb.280560114 10.2478/s11532-007-0017-9 10.1016/j.jaap.2009.12.003 10.1016/j.carbon.2015.05.029 10.2166/wst.2020.585 10.1016/j.colsurfa.2017.06.028 10.1016/S0165-2370(01)00167-X 10.1016/j.smallrumres.2015.09.010 10.1016/j.biortech.2017.06.023 10.1002/9783527618286.ch24a 10.1016/j.renene.2019.04.068 10.1016/j.carbon.2015.06.036 10.1016/j.biortech.2005.04.029 10.1016/j.biortech.2008.01.041 10.1016/j.carbon.2007.08.021 10.1016/j.biortech.2003.09.015 10.1016/j.crgsc.2021.100083 10.3390/en12122314 10.1016/j.jaap.2011.12.020 10.1016/j.rser.2014.07.142 10.17159/2411-9717/2015/v115n12a1 10.1016/j.biortech.2009.12.123 10.1016/j.colsurfa.2003.12.020 10.1155/2015/415961 10.1016/j.biortech.2007.09.042 10.1039/c2jm34066f 10.1016/j.renene.2006.02.017 10.1016/j.rser.2015.02.051 10.1002/adsu.201700115 10.1016/j.arabjc.2012.07.018 10.1016/j.jpowsour.2013.03.174 10.1016/j.rser.2017.04.117 10.1016/J.SERJ.2017.06.003 10.1016/j.colsurfa.2004.04.007 10.1520/jte20170160 10.1016/j.carbon.2017.08.044 10.1016/0008-6223(92)90178-Y 10.1016/j.rser.2016.06.064 10.1016/j.virusres.2020.198017 10.1016/j.indcrop.2008.02.012 10.1007/1-4020-5172-7_15 10.1016/j.cropro.2018.09.015 10.1515/hf-2015-0051 10.1016/S0960-8524(01)00212-7 10.1051/matecconf/201710306012 10.1063/5.0001464 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.1186/s40643-021-00407-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Engineering Collection Biological Sciences ProQuest Biological Science Database (NC LIVE) ProQuest Engineering Database (NC LIVE) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection (ProQuest) MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2197-4365 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_717108acf9914a70925b932454ee0b05 PMC10991969 38650239 10_1186_s40643_021_00407_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Government of Uganda through the Research and Innovation Fund - Makerere University. Grant No. RIF1/CEDAT/007 grantid: RIF/CEDAT/007 – fundername: African Centre of Excellence in Materials, Product Development & Nanotechnology (MAPRONANO ACE) |
GroupedDBID | 0R~ 5VS 8FE 8FG 8FH AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACIWK ACPRK ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ASPBG AVWKF BAPOH BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI C24 C6C CCPQU DIK EBLON EBS GROUPED_DOAJ HCIFZ IAO IHR ISR ITC KQ8 L6V LK8 M7P M7S M~E OK1 PGMZT PIMPY PROAC PTHSS RPM RSV RVI SOJ AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c680t-997383fcfc132e1aa24937bc8e8561b12d5580d0e5a62216d2bb617494a21e163 |
IEDL.DBID | DOA |
ISSN | 2197-4365 |
IngestDate | Wed Aug 27 01:23:21 EDT 2025 Thu Aug 21 18:34:29 EDT 2025 Fri Sep 05 05:36:37 EDT 2025 Fri Jul 25 10:59:19 EDT 2025 Wed Feb 19 02:08:57 EST 2025 Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 01:24:38 EDT 2025 Fri Feb 21 02:48:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Surface area and pore volume Pre-leaching Activated carbon FTIR Cassava peel |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c680t-997383fcfc132e1aa24937bc8e8561b12d5580d0e5a62216d2bb617494a21e163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7181-6520 |
OpenAccessLink | https://doaj.org/article/717108acf9914a70925b932454ee0b05 |
PMID | 38650239 |
PQID | 2544661465 |
PQPubID | 2034794 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_717108acf9914a70925b932454ee0b05 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10991969 proquest_miscellaneous_3045116417 proquest_journals_2544661465 pubmed_primary_38650239 crossref_primary_10_1186_s40643_021_00407_0 crossref_citationtrail_10_1186_s40643_021_00407_0 springer_journals_10_1186_s40643_021_00407_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-24 |
PublicationDateYYYYMMDD | 2021-06-24 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Bioresources and bioprocessing |
PublicationTitleAbbrev | Bioresour. Bioprocess |
PublicationTitleAlternate | Bioresour Bioprocess |
PublicationYear | 2021 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Daifullah, Girgis, Gad (CR9) 2004; 235 Ekebafe, Imanah, Okieimen (CR11) 2012; 10 Bhatnagar, Sillanpää, Witek-Krowiak (CR7) 2015; 270 Xu, Zhao, Sima, Zhao, Mašek, Cao (CR56) 2017; 241 Mopoung, Moonsri, Palas, Khumpai (CR33) 2015 Rodríguez-Reinoso, Loureiro, Kartel (CR44) 2006 Idress, Shahril, Zuraidin, Jasamai (CR19) 2019; 12 Beakou, El Hassani, Houssaini, Belbahloul, Oukani, Anouar (CR5) 2017; 27 Kalderis, Bethanis, Paraskeva, Diamadopoulos (CR21) 2008; 99 Savova, Apak, Ekinci, Yardim, Petrov, Budinova (CR48) 2001; 21 Lozano-Castelló, Calo, Cazorla-Amorós, Linares-Solano (CR28) 2007; 45 Mukiibi, Alicai, Kawuki, Okao-Okuja, Tairo, Sseruwagi (CR35) 2019; 115 Sun, Cheng (CR53) 2002; 83 CR31 Liu, Liu, Sun, Sun, Liu, Stevens (CR27) 2018; 2 Sharypov, Marin, Beregovtsova, Baryshnikov, Kuznetsov, Cebolla, Weber (CR49) 2002; 64 Uthumporn, Shariffa, Fazilah, Karim (CR54) 2012; 290 Simate, Ndlovu, Seepe (CR51) 2015; 115 Adekunle, Orsat, Raghavan (CR1) 2016; 64 Casco, Martínez-Escandell, Kaneko, Silvestre-Albero, Rodríguez-Reinoso (CR8) 2015; 93 CR3 Menya, Olupot, Storz, Lubwama, Kiros (CR30) 2018; 81 Gani, Naruse (CR12) 2007; 32 Rodriguez-Reinoso, Schuth, Sing, Weitkamp (CR43) 2002 Ismanto, Wang, Soetaredjo, Ismadji (CR20) 2010; 101 Gratuito, Panyathanmaporn, Chumnanklang, Sirinuntawittaya, Dutta (CR15) 2008; 99 Huang, Zhao (CR17) 2016; 70 Liu, Sun, Sun, Liu, Snape, Li (CR26) 2015; 94 Wang, Kaskel (CR55) 2012; 22 Parvathi, Shoba, Prakash, Sivamani (CR41) 2018; 46 Santos, Ferreira, Siqueira, Melo, Silva, Andrade (CR47) 2015; 133 Barskov, Zappi, Buchireddy, Dufreche, Guillory, Gang (CR4) 2019; 142 Rachman, Tri, Martia, Pambudi, Jovita, Kurniawan (CR42) 2017; 8 Okudoh, Trois, Workneh, Schmidt (CR38) 2014; 39 Yahya, Al-Qodah, Ngah (CR57) 2015; 46 Molina-Sabio, Rodríguez-Reinoso (CR32) 2004; 241 Li, Yang, Peng, Zhang, Guo, Xia (CR25) 2008; 28 Kayiwa, Kasedde, Lubwama, Kirabira (CR22) 2021 Salahudeen, Ajinomoh, Omaga, Akpaka (CR46) 2014; 3 González-García (CR14) 2018; 82 Belcaid, Beakou, El Hassani, Bouhsina, Anouar (CR6) 2020 Moreno-Piraján, Giraldo (CR34) 2010; 87 Sudaryanto, Hartono, Irawaty, Hindarso, Ismadji (CR52) 2006; 97 Lu, Zhang, Yin, Bai, Zhang, Li (CR29) 2017; 124 Gergova, Petrov, Minkova (CR13) 1993; 56 Saka (CR45) 2012; 95 He, Ling, Qiu, Yu, Zhang, Yu, Zheng (CR16) 2013; 240 Nwabanne, Igbokwe (CR37) 2008; 3 Alves, Cabrera-Codony, Barceló, Rodriguez-Mozaz, Pinheiro, Gonzalez-Olmos (CR2) 2018; 144 Omotosho, Sangodoyin (CR40) 2013; 8 Ndongo, Nsami, Mbadcam (CR36) 2020; 15 Zdravkov, Čermák, Šefara, Janků (CR58) 2007; 5 Kwiatkowski, Broniek (CR23) 2017; 529 Omotosho, Amori (CR39) 2016; 6 Laine, Yunes (CR24) 1992; 30 Ibeh, García-Mateos, Rosas, Rodríguez-Mirasol, Cordero (CR18) 2019; 97 Daud, Ali (CR10) 2004; 93 Shirima, Legg, Maeda, Tumwegamire, Mkamilo, Mtunda (CR50) 2020; 286 BD Zdravkov (407_CR58) 2007; 5 RA Rachman (407_CR42) 2017; 8 A Adekunle (407_CR1) 2016; 64 K Gergova (407_CR13) 1993; 56 VI Sharypov (407_CR49) 2002; 64 407_CR31 S Mopoung (407_CR33) 2015 M Kwiatkowski (407_CR23) 2017; 529 DR Mukiibi (407_CR35) 2019; 115 LO Ekebafe (407_CR11) 2012; 10 JT Nwabanne (407_CR37) 2008; 3 D Kalderis (407_CR21) 2008; 99 C Parvathi (407_CR41) 2018; 46 F Rodríguez-Reinoso (407_CR44) 2006 N Salahudeen (407_CR46) 2014; 3 VLF Santos (407_CR47) 2015; 133 D Savova (407_CR48) 2001; 21 PO Ibeh (407_CR18) 2019; 97 A Bhatnagar (407_CR7) 2015; 270 Y Huang (407_CR17) 2016; 70 U Uthumporn (407_CR54) 2012; 290 MA Yahya (407_CR57) 2015; 46 X Xu (407_CR56) 2017; 241 Y Lu (407_CR29) 2017; 124 J Liu (407_CR26) 2015; 94 ME Casco (407_CR8) 2015; 93 S Barskov (407_CR4) 2019; 142 AE Ismanto (407_CR20) 2010; 101 BH Beakou (407_CR5) 2017; 27 RR Shirima (407_CR50) 2020; 286 WMAW Daud (407_CR10) 2004; 93 A Gani (407_CR12) 2007; 32 F Rodriguez-Reinoso (407_CR43) 2002 Y Sun (407_CR53) 2002; 83 M Idress (407_CR19) 2019; 12 Y Sudaryanto (407_CR52) 2006; 97 P González-García (407_CR14) 2018; 82 W Li (407_CR25) 2008; 28 M Molina-Sabio (407_CR32) 2004; 241 O Omotosho (407_CR39) 2016; 6 J Wang (407_CR55) 2012; 22 V Okudoh (407_CR38) 2014; 39 GS Simate (407_CR51) 2015; 115 OA Omotosho (407_CR40) 2013; 8 D Lozano-Castelló (407_CR28) 2007; 45 C Saka (407_CR45) 2012; 95 A Belcaid (407_CR6) 2020 R Kayiwa (407_CR22) 2021 X He (407_CR16) 2013; 240 JC Moreno-Piraján (407_CR34) 2010; 87 AAM Daifullah (407_CR9) 2004; 235 MKB Gratuito (407_CR15) 2008; 99 J Liu (407_CR27) 2018; 2 GK Ndongo (407_CR36) 2020; 15 J Laine (407_CR24) 1992; 30 E Menya (407_CR30) 2018; 81 TC Alves (407_CR2) 2018; 144 407_CR3 |
References_xml | – volume: 21 start-page: 133 issue: 2 year: 2001 end-page: 142 ident: CR48 article-title: Biomass conversion to carbon adsorbents and gas publication-title: Biomass Bioenerg doi: 10.1016/S0961-9534(01)00027-7 – volume: 270 start-page: 244 year: 2015 end-page: 271 ident: CR7 article-title: Agricultural waste peels as versatile biomass for water purification—a review publication-title: Chem Eng J doi: 10.1016/j.cej.2015.01.135 – volume: 290 start-page: 1481 issue: 15 year: 2012 end-page: 1491 ident: CR54 article-title: Effects of NaOH treatment of cereal starch granules on the extent of granular starch hydrolysis publication-title: Colloid Polym Sci doi: 10.1007/s00396-012-2674-2 – volume: 81 start-page: 104 year: 2018 end-page: 116 ident: CR30 article-title: Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products publication-title: Waste Manage doi: 10.1016/j.wasman.2018.09.050 – volume: 15 start-page: 2133 issue: 2 year: 2020 end-page: 2146 ident: CR36 article-title: Ferromagnetic activated carbon from cassava (Manihot dulcis) peels activated by iron(lll) chloride: synthesis and characterization publication-title: BioResources doi: 10.15376/biores.15.2.2133-2146 – volume: 97 start-page: 480 year: 2019 end-page: 488 ident: CR18 article-title: Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2019.02.019 – volume: 8 start-page: 215 issue: 2 year: 2013 end-page: 224 ident: CR40 article-title: Production and utilization of cassava peel activated carbon in treatment of effluent from cassava processing industry publication-title: Water Pract Technol doi: 10.2166/wpt.2013.023 – volume: 144 start-page: 402 year: 2018 end-page: 412 ident: CR2 article-title: Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon publication-title: Water Res doi: 10.1016/J.WATRES.2018.07.037 – volume: 56 start-page: 77 issue: 1 year: 1993 end-page: 82 ident: CR13 article-title: A comparison of adsorption characteristics of various activated carbons publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.280560114 – volume: 5 start-page: 385 issue: 2 year: 2007 end-page: 395 ident: CR58 article-title: Pore classification in the characterization of porous materials: a perspective publication-title: Cent Eur J Chem doi: 10.2478/s11532-007-0017-9 – volume: 87 start-page: 288 issue: 2 year: 2010 end-page: 290 ident: CR34 article-title: Study of activated carbons by pyrolysis of cassava peel in the presence of chloride zinc publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2009.12.003 – volume: 93 start-page: 11 year: 2015 end-page: 21 ident: CR8 article-title: Very high methane uptake on activated carbons prepared from mesophase pitch: a compromise between microporosity and bulk density publication-title: Carbon doi: 10.1016/j.carbon.2015.05.029 – year: 2020 ident: CR6 article-title: Efficient removal of Cr (VI) and Co (II) from aqueous solution by activated carbon from Crantz agricultural bio-waste publication-title: Water Sci Technol doi: 10.2166/wst.2020.585 – volume: 529 start-page: 443 year: 2017 end-page: 453 ident: CR23 article-title: An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2017.06.028 – volume: 6 start-page: 815 year: 2016 end-page: 820 ident: CR39 article-title: Effect of zinc chloride activation on physicochemical characteristics of cassava peel and waste bamboo activated carbon publication-title: Int J Chem Mol Eng – volume: 64 start-page: 15 issue: 1 year: 2002 end-page: 28 ident: CR49 article-title: Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases publication-title: J Anal Appl Pyrol doi: 10.1016/S0165-2370(01)00167-X – volume: 133 start-page: 88 year: 2015 end-page: 92 ident: CR47 article-title: Rumen parameters of sheep fed cassava peel as a replacement for corn publication-title: Small Rumin Res doi: 10.1016/j.smallrumres.2015.09.010 – volume: 241 start-page: 887 year: 2017 end-page: 899 ident: CR56 article-title: Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review publication-title: Biores Technol doi: 10.1016/j.biortech.2017.06.023 – start-page: 1766 year: 2002 end-page: 1827 ident: CR43 article-title: Carbons publication-title: Handbbok of porous solids, 69469 doi: 10.1002/9783527618286.ch24a – volume: 142 start-page: 624 year: 2019 end-page: 642 ident: CR4 article-title: Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks publication-title: Renew Energy doi: 10.1016/j.renene.2019.04.068 – volume: 94 start-page: 243 year: 2015 end-page: 255 ident: CR26 article-title: Spherical potassium intercalated activated carbon beads for pulverised fuel CO2 post-combustion capture publication-title: Carbon doi: 10.1016/j.carbon.2015.06.036 – volume: 97 start-page: 734 issue: 5 year: 2006 end-page: 739 ident: CR52 article-title: High surface area activated carbon prepared from cassava peel by chemical activation publication-title: Biores Technol doi: 10.1016/j.biortech.2005.04.029 – volume: 99 start-page: 6809 issue: 15 year: 2008 end-page: 6816 ident: CR21 article-title: Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times publication-title: Biores Technol doi: 10.1016/j.biortech.2008.01.041 – volume: 45 start-page: 2529 issue: 13 year: 2007 end-page: 2536 ident: CR28 article-title: Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen publication-title: Carbon doi: 10.1016/j.carbon.2007.08.021 – volume: 93 start-page: 63 issue: 1 year: 2004 end-page: 69 ident: CR10 article-title: Comparison on pore development of activated carbon produced from palm shell and coconut shell publication-title: Biores Technol doi: 10.1016/j.biortech.2003.09.015 – year: 2021 ident: CR22 article-title: Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon publication-title: Curr Res Green Sustain Chem doi: 10.1016/j.crgsc.2021.100083 – volume: 12 start-page: 1 issue: 12 year: 2019 end-page: 11 ident: CR19 article-title: Experimental investigation of methane hydrate induction time in the presence of cassava peel as a hydrate inhibitor publication-title: Energies doi: 10.3390/en12122314 – volume: 95 start-page: 21 year: 2012 end-page: 24 ident: CR45 article-title: BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2 publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2011.12.020 – volume: 39 start-page: 1035 year: 2014 end-page: 1052 ident: CR38 article-title: The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.142 – volume: 115 start-page: 1137 issue: 12 year: 2015 end-page: 1141 ident: CR51 article-title: Removal of heavy metals using cassava peel waste biomass in a multi-stage countercurrent batch operation publication-title: J Southern Afr Inst Min Metal doi: 10.17159/2411-9717/2015/v115n12a1 – volume: 101 start-page: 3534 issue: 10 year: 2010 end-page: 3540 ident: CR20 article-title: Preparation of capacitor’s electrode from cassava peel waste publication-title: Biores Technol doi: 10.1016/j.biortech.2009.12.123 – volume: 235 start-page: 1 issue: 1–3 year: 2004 end-page: 10 ident: CR9 article-title: A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2003.12.020 – year: 2015 ident: CR33 article-title: Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution publication-title: Sci World J doi: 10.1155/2015/415961 – volume: 99 start-page: 4887 issue: 11 year: 2008 end-page: 4895 ident: CR15 article-title: Production of activated carbon from coconut shell: optimization using response surface methodology publication-title: Biores Technol doi: 10.1016/j.biortech.2007.09.042 – volume: 22 start-page: 23710 issue: 45 year: 2012 end-page: 23725 ident: CR55 article-title: KOH activation of carbon-based materials for energy storage publication-title: J Mater Chem doi: 10.1039/c2jm34066f – volume: 32 start-page: 649 issue: 4 year: 2007 end-page: 661 ident: CR12 article-title: Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass publication-title: Renew Energy doi: 10.1016/j.renene.2006.02.017 – volume: 46 start-page: 218 year: 2015 end-page: 235 ident: CR57 article-title: Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.02.051 – volume: 2 start-page: 1700115 issue: 2 year: 2018 ident: CR27 article-title: High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO capture publication-title: Adv Sustain Syst doi: 10.1002/adsu.201700115 – volume: 10 start-page: S174 year: 2012 end-page: S178 ident: CR11 article-title: Effect of carbonization on the processing characteristics of rubber seed shell publication-title: Arab J Chem doi: 10.1016/j.arabjc.2012.07.018 – volume: 240 start-page: 109 year: 2013 end-page: 113 ident: CR16 article-title: Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.174 – volume: 82 start-page: 1393 year: 2018 end-page: 1414 ident: CR14 article-title: Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.117 – volume: 27 start-page: 215 issue: 5 year: 2017 end-page: 222 ident: CR5 article-title: Novel activated carbon from Crantz for removal of methylene blue publication-title: Sustain Environ Res doi: 10.1016/J.SERJ.2017.06.003 – volume: 241 start-page: 15 issue: 1–3 year: 2004 end-page: 25 ident: CR32 article-title: Role of chemical activation in the development of carbon porosity publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2004.04.007 – volume: 46 start-page: 20170160 issue: 6 year: 2018 ident: CR41 article-title: Manihot esculenta peel powder: effective adsorbent for removal of various textile dyes from aqueous solutions publication-title: J Test Eval doi: 10.1520/jte20170160 – ident: CR3 – volume: 3 start-page: 75 issue: 2 year: 2014 end-page: 80 ident: CR46 article-title: Production of activated carbon from cassava publication-title: J Appl Phytotechnol Environ Sanit – volume: 124 start-page: 64 year: 2017 end-page: 71 ident: CR29 article-title: Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2017.08.044 – ident: CR31 – volume: 30 start-page: 601 issue: 4 year: 1992 end-page: 604 ident: CR24 article-title: Effect of the preparation method on the pore size distribution of activated carbon from coconut shell publication-title: Carbon doi: 10.1016/0008-6223(92)90178-Y – volume: 64 start-page: 518 year: 2016 end-page: 530 ident: CR1 article-title: Lignocellulosic bioethanol: a review and design conceptualization study of production from cassava peels publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.06.064 – volume: 286 start-page: 198017 year: 2020 ident: CR50 article-title: Genotype by environment cultivar evaluation for cassava brown streak disease resistance in Tanzania publication-title: Virus Res doi: 10.1016/j.virusres.2020.198017 – volume: 28 start-page: 190 issue: 2 year: 2008 end-page: 198 ident: CR25 article-title: Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2008.02.012 – start-page: 133 year: 2006 end-page: 144 ident: CR44 article-title: Porous carbons in gas separation and storage publication-title: Combined and hybrid adsorbents doi: 10.1007/1-4020-5172-7_15 – volume: 115 start-page: 104 year: 2019 end-page: 112 ident: CR35 article-title: Resistance of advanced cassava breeding clones to infection by major viruses in Uganda publication-title: Crop Prot doi: 10.1016/j.cropro.2018.09.015 – volume: 70 start-page: 195 issue: 3 year: 2016 end-page: 202 ident: CR17 article-title: Preparation and characterization of activated carbon fibers from liquefied wood by KOH activation publication-title: Holzforschung doi: 10.1515/hf-2015-0051 – volume: 3 start-page: 829 issue: 11 year: 2008 end-page: 834 ident: CR37 article-title: Kinetics and equilibrium modeling of nickel adsorption by cassava peel publication-title: J Eng Appl Sci – volume: 8 start-page: 235 issue: 1 year: 2017 end-page: 239 ident: CR42 article-title: Cassava peel biosorbent (manihot utilissima ) for removal chromium (Vi) with microbial fuel cell system of combination techniques publication-title: Proc Int Conf Green Technol – volume: 83 start-page: 1 issue: 1 year: 2002 end-page: 11 ident: CR53 article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review publication-title: Biores Technol doi: 10.1016/S0960-8524(01)00212-7 – volume: 290 start-page: 1481 issue: 15 year: 2012 ident: 407_CR54 publication-title: Colloid Polym Sci doi: 10.1007/s00396-012-2674-2 – volume: 56 start-page: 77 issue: 1 year: 1993 ident: 407_CR13 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.280560114 – year: 2020 ident: 407_CR6 publication-title: Water Sci Technol doi: 10.2166/wst.2020.585 – year: 2015 ident: 407_CR33 publication-title: Sci World J doi: 10.1155/2015/415961 – volume: 64 start-page: 15 issue: 1 year: 2002 ident: 407_CR49 publication-title: J Anal Appl Pyrol doi: 10.1016/S0165-2370(01)00167-X – volume: 21 start-page: 133 issue: 2 year: 2001 ident: 407_CR48 publication-title: Biomass Bioenerg doi: 10.1016/S0961-9534(01)00027-7 – volume: 241 start-page: 15 issue: 1–3 year: 2004 ident: 407_CR32 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2004.04.007 – volume: 87 start-page: 288 issue: 2 year: 2010 ident: 407_CR34 publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2009.12.003 – volume: 27 start-page: 215 issue: 5 year: 2017 ident: 407_CR5 publication-title: Sustain Environ Res doi: 10.1016/J.SERJ.2017.06.003 – volume: 93 start-page: 63 issue: 1 year: 2004 ident: 407_CR10 publication-title: Biores Technol doi: 10.1016/j.biortech.2003.09.015 – volume: 115 start-page: 104 year: 2019 ident: 407_CR35 publication-title: Crop Prot doi: 10.1016/j.cropro.2018.09.015 – volume: 115 start-page: 1137 issue: 12 year: 2015 ident: 407_CR51 publication-title: J Southern Afr Inst Min Metal doi: 10.17159/2411-9717/2015/v115n12a1 – volume: 235 start-page: 1 issue: 1–3 year: 2004 ident: 407_CR9 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2003.12.020 – volume: 97 start-page: 734 issue: 5 year: 2006 ident: 407_CR52 publication-title: Biores Technol doi: 10.1016/j.biortech.2005.04.029 – volume: 240 start-page: 109 year: 2013 ident: 407_CR16 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.174 – volume: 30 start-page: 601 issue: 4 year: 1992 ident: 407_CR24 publication-title: Carbon doi: 10.1016/0008-6223(92)90178-Y – volume: 5 start-page: 385 issue: 2 year: 2007 ident: 407_CR58 publication-title: Cent Eur J Chem doi: 10.2478/s11532-007-0017-9 – volume: 270 start-page: 244 year: 2015 ident: 407_CR7 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.01.135 – volume: 46 start-page: 20170160 issue: 6 year: 2018 ident: 407_CR41 publication-title: J Test Eval doi: 10.1520/jte20170160 – volume: 144 start-page: 402 year: 2018 ident: 407_CR2 publication-title: Water Res doi: 10.1016/J.WATRES.2018.07.037 – volume: 2 start-page: 1700115 issue: 2 year: 2018 ident: 407_CR27 publication-title: Adv Sustain Syst doi: 10.1002/adsu.201700115 – volume: 15 start-page: 2133 issue: 2 year: 2020 ident: 407_CR36 publication-title: BioResources doi: 10.15376/biores.15.2.2133-2146 – year: 2021 ident: 407_CR22 publication-title: Curr Res Green Sustain Chem doi: 10.1016/j.crgsc.2021.100083 – volume: 94 start-page: 243 year: 2015 ident: 407_CR26 publication-title: Carbon doi: 10.1016/j.carbon.2015.06.036 – volume: 81 start-page: 104 year: 2018 ident: 407_CR30 publication-title: Waste Manage doi: 10.1016/j.wasman.2018.09.050 – volume: 64 start-page: 518 year: 2016 ident: 407_CR1 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.06.064 – ident: 407_CR31 doi: 10.1051/matecconf/201710306012 – volume: 8 start-page: 215 issue: 2 year: 2013 ident: 407_CR40 publication-title: Water Pract Technol doi: 10.2166/wpt.2013.023 – volume: 133 start-page: 88 year: 2015 ident: 407_CR47 publication-title: Small Rumin Res doi: 10.1016/j.smallrumres.2015.09.010 – ident: 407_CR3 doi: 10.1063/5.0001464 – volume: 6 start-page: 815 year: 2016 ident: 407_CR39 publication-title: Int J Chem Mol Eng – volume: 99 start-page: 6809 issue: 15 year: 2008 ident: 407_CR21 publication-title: Biores Technol doi: 10.1016/j.biortech.2008.01.041 – volume: 142 start-page: 624 year: 2019 ident: 407_CR4 publication-title: Renew Energy doi: 10.1016/j.renene.2019.04.068 – volume: 82 start-page: 1393 year: 2018 ident: 407_CR14 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.117 – start-page: 133 volume-title: Combined and hybrid adsorbents year: 2006 ident: 407_CR44 doi: 10.1007/1-4020-5172-7_15 – volume: 241 start-page: 887 year: 2017 ident: 407_CR56 publication-title: Biores Technol doi: 10.1016/j.biortech.2017.06.023 – start-page: 1766 volume-title: Handbbok of porous solids, 69469 year: 2002 ident: 407_CR43 doi: 10.1002/9783527618286.ch24a – volume: 101 start-page: 3534 issue: 10 year: 2010 ident: 407_CR20 publication-title: Biores Technol doi: 10.1016/j.biortech.2009.12.123 – volume: 8 start-page: 235 issue: 1 year: 2017 ident: 407_CR42 publication-title: Proc Int Conf Green Technol – volume: 93 start-page: 11 year: 2015 ident: 407_CR8 publication-title: Carbon doi: 10.1016/j.carbon.2015.05.029 – volume: 83 start-page: 1 issue: 1 year: 2002 ident: 407_CR53 publication-title: Biores Technol doi: 10.1016/S0960-8524(01)00212-7 – volume: 39 start-page: 1035 year: 2014 ident: 407_CR38 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.142 – volume: 45 start-page: 2529 issue: 13 year: 2007 ident: 407_CR28 publication-title: Carbon doi: 10.1016/j.carbon.2007.08.021 – volume: 32 start-page: 649 issue: 4 year: 2007 ident: 407_CR12 publication-title: Renew Energy doi: 10.1016/j.renene.2006.02.017 – volume: 99 start-page: 4887 issue: 11 year: 2008 ident: 407_CR15 publication-title: Biores Technol doi: 10.1016/j.biortech.2007.09.042 – volume: 46 start-page: 218 year: 2015 ident: 407_CR57 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.02.051 – volume: 95 start-page: 21 year: 2012 ident: 407_CR45 publication-title: J Anal Appl Pyrol doi: 10.1016/j.jaap.2011.12.020 – volume: 97 start-page: 480 year: 2019 ident: 407_CR18 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2019.02.019 – volume: 12 start-page: 1 issue: 12 year: 2019 ident: 407_CR19 publication-title: Energies doi: 10.3390/en12122314 – volume: 3 start-page: 829 issue: 11 year: 2008 ident: 407_CR37 publication-title: J Eng Appl Sci – volume: 22 start-page: 23710 issue: 45 year: 2012 ident: 407_CR55 publication-title: J Mater Chem doi: 10.1039/c2jm34066f – volume: 286 start-page: 198017 year: 2020 ident: 407_CR50 publication-title: Virus Res doi: 10.1016/j.virusres.2020.198017 – volume: 10 start-page: S174 year: 2012 ident: 407_CR11 publication-title: Arab J Chem doi: 10.1016/j.arabjc.2012.07.018 – volume: 70 start-page: 195 issue: 3 year: 2016 ident: 407_CR17 publication-title: Holzforschung doi: 10.1515/hf-2015-0051 – volume: 124 start-page: 64 year: 2017 ident: 407_CR29 publication-title: Carbon doi: 10.1016/j.carbon.2017.08.044 – volume: 28 start-page: 190 issue: 2 year: 2008 ident: 407_CR25 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2008.02.012 – volume: 529 start-page: 443 year: 2017 ident: 407_CR23 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2017.06.028 – volume: 3 start-page: 75 issue: 2 year: 2014 ident: 407_CR46 publication-title: J Appl Phytotechnol Environ Sanit |
SSID | ssj0001343145 |
Score | 2.272062 |
Snippet | The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is... Abstract The search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 53 |
SubjectTerms | Absorption spectra Activated carbon Agricultural wastes Biochemical Engineering Boiling points Carbonization Carboxyl group Cassava Cassava peel Cellulose Chemistry Chemistry and Materials Science Environmental Engineering/Biotechnology Fourier transforms FTIR Genotypes Industrial and Production Engineering Infrared spectroscopy Leaching Melting points Potassium hydroxides Pre-leaching Scanning electron microscopy Sodium hydroxide Surface area Surface area and pore volume |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcoED4k1gQUHiBtbarh07J8QiygppObHS3iy_AkirtDRlJf49M27SUh57TO1Kzjwy33heAC-tTn6WZMtCJxVTRiZmW22YySoSPjEhU6Hw6afm5Ex9PNfn44XbMKZVTt_E8qFOi0h35EfUSotsSaPfLL8zmhpF0dVxhMZ1uCHQ0pCc2_mH3R3LDM2j0lOtjG2OBkUmmFFeAomvYXzPHpW2_f_Cmn-nTP4RNy3maH4Hbo84sn67YfxduJb7e3Drt-6C9-H4NA8LhNfo29dUvnCJsDLV0a_Coq9_UuYaPlJ5SU2pIBeltTOtD4O_9PUyo9V8AGfz95_fnbBxZAKLjeVr1rYGXc4udhG9zCy8R-9qZkK02SJQCkImrS1PPGvfSCmaJENADKNa5aXIiM0ewkG_6PNjqLNG3cedQaWoujYGYZNpdCc6rpCPXQViIpyLYz9xGmtx4YpfYRu3IbZDYrtCbMcreLX9z3LTTePK3cfEj-1O6oRdflisvrhRsRy6o4JbHzsEusob3kodEJMqrXLmgesKDiduulE9B7cTpgpebJdRsSha4vuMjHEUQhboTApTwaMN87cnoUGpVBVcgd0Ti72j7q_0376W5t0UiaSWRBW8niRod67_0-LJ1a_xFG7KItQNk-oQDtarH_kZoqV1eF5U4hcWeQ8n priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC4kHtSDmPiamMgI3rRxurdfczRLQhDiyUBuTb9GhTAbdtaA_z5VvTOrq1HIcaa7oanH1FdTL4C3ViU_S6JloROSSSMSs60yzGQZCZ-YkKlQ-OyzPj2Xny7UxVgUNkzZ7lNIsnypi1pb_WGQZD0ZpRSQ5BmGjvp9hb47DWyYjzUO5c_KDI2iVFOFzK1Ht6xQadZ_G8L8O1Hyj2hpMUInT-DxiB7rj2t278K93O_Bg_k0tG0PHv3WX_ApHJ3lYYEAG737mgoYrhFYpjr6ZVj09U_KXcNHKjCpKRnksjR3pvVh8Ne-vspoN5_B-cnxl_kpG4cmsKhts2Jta9Dp7GIX0c_M3Hv0r2YmRJstQqXARVLKNqnJymshuE4iBEQxspVe8Izo7Dns9Is-v4Q6K9R-3BlkirJrY-A2Ga063jUSOdlVwCciujh2FKfBFpeueBZWuzXhHRLeFcK7poJ3mzNX634a_919RLzZ7KRe2OXFYvnVjarl0CHljfWxQ6grvWlaoQKiUqlkzk1oVAUHE2fdqKCDo85sBE00Lr_ZLCOzKF7i-4yMcRRE5uhOclPBi7UgbG5Co1KpLrgCuyUiW1fdXum_fyvtuykWSU2JKng_SdOve_2bFvt32_4KHooi8JoJeQA7q-WPfIj4aRVeF3W5ARhCD5c priority: 102 providerName: Springer Nature |
Title | Mesoporous activated carbon yielded from pre-leached cassava peels |
URI | https://link.springer.com/article/10.1186/s40643-021-00407-0 https://www.ncbi.nlm.nih.gov/pubmed/38650239 https://www.proquest.com/docview/2544661465 https://www.proquest.com/docview/3045116417 https://pubmed.ncbi.nlm.nih.gov/PMC10991969 https://doaj.org/article/717108acf9914a70925b932454ee0b05 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aX_RB_HZrPVbwTUOTXL720Tt6FqFFxELfQr4WhbJXumfB_74z2b3zzs8XXxayyUKYmTC_2Zn5hZDXViU_TaKhoRWSSiMStY0y1GQZEZ-YkLFR-ORUH5_JD-fqfOuqL6wJG-iBB8EdQrjBmfWxBSAjvWGNUAEwh1QyZxYG9lLWsK1gqvxdmYJjlGrdJWP1YS_R-VKsSEDDNZTteKJC2P87lPlrseRPGdPiiBYPyP0RQdbvhp0_JLdy94jc2-IVfExmJ7lfArCGqL7GxoVrAJSpjv4qLLv6O9aswRAbS2osArkopM443_f-2teXGfzlE3K2OPo8P6bjZQk0astWtGkMBJttbCPEl5l7D3HV1IRoswWIFLhISlmWWFZeC8F1EiEAepGN9IJnQGVPyV637PJzUmcFpx5WBpmibJsYuE1Gq5a3TIIG24rwteBcHJnE8UKLC1ciCqvdIGwHwnZF2I5V5M3mm8uBR-Ovq2eoj81K5MAuL8Ay3GgZ7l-WUZGDtTbdeDB7h4xsCEk0TL_aTMORwjyJ7zIoxmHymEMYyU1Fng3K3-wEr0jFfuCK2B2z2Nnq7kz39Uuh7cYcJJIRVeTt2oJ-7OvPstj_H7J4Qe6KYvqaCnlA9lZX3_JLQFOrMCG37eL9hNyZHZ1-_ASjuZD41PNJOVKT8gPsBu1sG3I |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBYwEJ1jV3uza6wNCBFqltIkQaqXelt31GpAqO8RpUf8Uv5EZPxLCo7cek91E63nsfON5ATxXMjfDnGfMFlwwkfKcqUymLPXCET5JradC4ck0GR-JD8fyeAN-9rUwlFbZ34nNRZ1Xjt6Rb1MrLbIliXwz-85oahRFV_sRGq1Y7PvzH-iy1a_33iN_X3C-u3P4bsy6qQLMJSpasCxL0SsrXOHQEfOxMeiADFPrlFeIJWzMcylVlEdemoTzOMm5tWjmRSYMjz3CF_zfK7ApqKJ1AJujnenHT6u3OkM0yEL21Tkq2a4FGX1GmRCkMCmL1ixgMyjgX-j27yTNPyK1jQHcvQk3OuQavm1F7RZs-PI2XP-tn-EdGE18XSGgr07rkAomzhDI5qEzc1uV4TnlyuFHKmgJKfnkpGkmTet1bc5MOPNop-_C0aWQ8x4Myqr0DyD0Em8b3GlF7kSRORurPE1kEReRQMkpAoh7wmnXdTCnQRonuvFkVKJbYmsktm6IraMAXi5_M2v7d1y4e0T8WO6k3tvNF9X8i-5UWaMDHEfKuAKhtTBplHFpEQULKbyPbCQD2Oq5qbsLodYr8Q3g2XIZVZniM6b0yBhNQesY3dc4DeB-y_zlSWg0K9UhB6DWxGLtqOsr5bevTbtwin1SE6QAXvUStDrX_2nx8OLHeApXx4eTA32wN91_BNd4I-AJ42ILBov5qX-MWG1hn3QKEsLny9bJX1KrS64 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQJTmBt4rVj54AQpSwtpRUHKvXm2o4DSFWybLZF_Wv8Omby2GV59Nbjrr0rZx6ebzIvgGdaFnZc8Jy5kgsmFC-YzqViKghP-ES5QIXCe_vZ9oH4cCgP1-DnUAtDaZXDndhe1EXt6R35iFppkS3J5Kjs0yI-bU1eT78zmiBFkdZhnEYnIrvh7Ae6b82rnS3k9XPOJ-8-v91m_YQB5jOdzFmeK_TQSl96dMpCai06I2PlvA4acYVLeSGlTookSJtxnmYFdw5NvsiF5WlAKIP_ewkuq7HKyfHTk_fL9ztjNM1CDnU6Ohs1gsw_o5wIUh3FkhVb2I4M-BfO_Ttd84-YbWsKJzfgeo9h4zed0N2EtVDdgmu_dTa8DZt7oakR2tcnTUylE6cIaYvY25mrq_iMsubwI5W2xJSGcty2lab1prGnNp4GtNh34OBCiHkX1qu6CvchDhLvHdzpROFFmXuX6kJlskzLRKAMlRGkA-GM73uZ00iNY9P6NDozHbENEtu0xDZJBC8Wv5l2nTzO3b1J_FjspC7c7Rf17IvpldqgK5wm2voSQbawKsm5dIiHhRQhJC6REWwM3DT91dCYpSBH8HSxjEpNkRpbBWSMofB1io5sqiK41zF_cRIa0koVyRHoFbFYOerqSvXta9s4nKKg1A4pgpeDBC3P9X9aPDj_MZ7AFdRE83Fnf_chXOWtfGeMiw1Yn89OwiMEbXP3uNWOGI4uWh1_AVlYTn4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+activated+carbon+yielded+from+pre-leached+cassava+peels&rft.jtitle=Bioresources+and+bioprocessing&rft.au=Kayiwa%2C+R&rft.au=Kasedde%2C+H&rft.au=Lubwama%2C+M&rft.au=Kirabira%2C+J+B&rft.date=2021-06-24&rft.issn=2197-4365&rft.eissn=2197-4365&rft.volume=8&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1186%2Fs40643-021-00407-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4365&client=summon |