Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment

Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (S...

Full description

Saved in:
Bibliographic Details
Published inJournal of ginseng research Vol. 45; no. 1; pp. 163 - 175
Main Authors Zhang, Fengxiang, Tang, Shaojian, Zhao, Lei, Yang, Xiushi, Yao, Yang, Hou, Zhaohua, Xue, Peng
Format Journal Article
LanguageEnglish
Published Korea (South) Elsevier B.V 01.01.2021
고려인삼학회
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
AbstractList Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
Background: Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. Methods: This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. Results: The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Conclusion: Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
Background: Ginsenosides, which have strong biological activities, can be divided into polar or less-polarginsenosides. Methods: This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root,American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG)root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtainedfollowing heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng(TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG),transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panaxnotoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16major ginsenosides. Results: The content of ginsenosides in NG was found to be higher than those in AG and PG, and thecontent in SPG was greater than those in SNG and SAG. After transformation, the contents of polarginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG hadthe highest levels of ginsenosides, which is consistent with the transformation of ginseng root. Thecontents of saponins in the stem-leaves were higher than those in the roots. The transformation rate ofSNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%)and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature,time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins inPanax notoginseng allowed the highest conversion rate. Conclusion: Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient andcheaper. KCI Citation Count: 37
Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. This study evaluated the phytochemical diversity of the saponins in (PG) root, American ginseng (AG) root, and (NG) root; the stem-leaves from (SPG) root, American ginseng (SAG) root, and (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in allowed the highest conversion rate. Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides.BACKGROUNDGinsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides.This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides.METHODSThis study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides.The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate.RESULTSThe content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate.Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.CONCLUSIONThus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
Author Zhang, Fengxiang
Yang, Xiushi
Tang, Shaojian
Xue, Peng
Zhao, Lei
Hou, Zhaohua
Yao, Yang
Author_xml – sequence: 1
  givenname: Fengxiang
  surname: Zhang
  fullname: Zhang, Fengxiang
  organization: School of Public Health and Management, Weifang Medical University, Weifang, China
– sequence: 2
  givenname: Shaojian
  surname: Tang
  fullname: Tang, Shaojian
  organization: School of Pharmacy, Weifang Medical University, Weifang, China
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  organization: School of Public Health and Management, Weifang Medical University, Weifang, China
– sequence: 4
  givenname: Xiushi
  surname: Yang
  fullname: Yang, Xiushi
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 5
  givenname: Yang
  surname: Yao
  fullname: Yao, Yang
  organization: Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 6
  givenname: Zhaohua
  surname: Hou
  fullname: Hou, Zhaohua
  organization: College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
– sequence: 7
  givenname: Peng
  surname: Xue
  fullname: Xue, Peng
  email: jplxp26@126.com
  organization: School of Public Health and Management, Weifang Medical University, Weifang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33437168$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002685451$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkl1v0zAUhiM0xD7gB3CDfIMEEin-SOIYJKRqDKg0MQTj2nLsk85dYhc7rdif5DfhNu20cTGuHB0_73uOc97j7MB5B1n2nOAJwaR6u5gs5mFCMcUTTCYYs0fZEcWC5YUo-EF2RCit8roo2WF2HOMC44pTXjzJDhkrGCdVfZT9-TFAn3eg1hCRb9E35dRvpCJSKFh9hZQzKK7ioKxTTQco-lXQsCE7iDFf-k4FNLcugvPRGojvkPb9UgUbvdtgd-9QG3y_azHW52_QtIfUSbl9ZdtyZJwf_L66DJBcwaDmBl2BGuyOVNoaNIRU6cENT7PHreoiPNudJ9nPT2eXp1_y84vPs9Ppea6rGg85x7QSuhGNoI3BpDYAhWLY4JaVDRY1K5pKGUFLgYVSNdNtazDTXHFRYZ7Qk-z16OtCK6-1lV7Z7Tn38jrI6ffLmRQ8_XnCEjsbWePVQi6D7VW42Qq2BR_mUoXB6g5k2UJR1lBRXZOCUCL45sNUtTBAjTDJ68PotVw1PRidnhxUd8_0_o2zV2mmteRc4JrTZPBqZxD8rxXEQfY2aug65cCvoqQVq4qSUs7-jxaclxSXNU_oi7tj3c6zz1kC-Ajo4GMM0Epth7REv5nSdpJguUm0XMiUaLlJtMREpkQnJflHuTd_SPNyt51VYsFYdSv6evHxjOCyqDDBiXs_cpCisrYQZNQWnE6KAHpI-7EPdPkLS5MeBw
CitedBy_id crossref_primary_10_1016_j_chroma_2025_465716
crossref_primary_10_3390_molecules26061733
crossref_primary_10_1016_j_jgr_2022_06_001
crossref_primary_10_1007_s00203_024_03893_w
crossref_primary_10_1016_j_ecoenv_2023_115429
crossref_primary_10_1016_j_indcrop_2024_120345
crossref_primary_10_1080_10942912_2022_2071294
crossref_primary_10_1155_2022_6721937
crossref_primary_10_20964_2021_12_33
crossref_primary_10_1016_j_fbio_2023_102519
crossref_primary_10_1166_jbn_2022_3414
crossref_primary_10_1186_s13020_021_00511_5
crossref_primary_10_18632_aging_204298
crossref_primary_10_3390_molecules28176415
crossref_primary_10_3390_ijms242115968
crossref_primary_10_1039_D4AY01941E
crossref_primary_10_1021_acs_jafc_4c08400
crossref_primary_10_3390_molecules28052194
crossref_primary_10_21603_2308_4057_2020_2_369_376
crossref_primary_10_3390_foods13040607
crossref_primary_10_3390_pr11030692
crossref_primary_10_1016_j_ijbiomac_2024_138146
crossref_primary_10_1007_s43440_024_00586_5
crossref_primary_10_1080_09540105_2021_1972939
crossref_primary_10_20964_2021_11_12
crossref_primary_10_1016_j_indcrop_2024_118716
crossref_primary_10_1016_j_indcrop_2024_118953
crossref_primary_10_1016_j_jgr_2024_11_005
crossref_primary_10_1039_D0RA10170B
crossref_primary_10_1016_j_fochx_2024_101642
crossref_primary_10_1016_j_phytochem_2024_114099
crossref_primary_10_3390_antiox13050612
crossref_primary_10_1039_D3FO03434H
crossref_primary_10_3389_fmicb_2023_1060282
crossref_primary_10_1002_jssc_202400354
crossref_primary_10_1016_j_fsi_2022_07_027
crossref_primary_10_1016_j_jep_2024_118362
crossref_primary_10_1016_j_jgr_2024_01_007
crossref_primary_10_1002_jsfa_13440
crossref_primary_10_1007_s40626_021_00208_y
crossref_primary_10_1016_j_fbio_2023_102734
crossref_primary_10_1016_j_indcrop_2022_114845
crossref_primary_10_1016_j_jare_2024_01_003
crossref_primary_10_1016_j_heliyon_2024_e37898
crossref_primary_10_1007_s00253_023_12549_6
crossref_primary_10_3390_molecules28186734
crossref_primary_10_3389_fnut_2022_1058639
crossref_primary_10_1002_slct_202300383
crossref_primary_10_1016_j_chmed_2024_08_002
crossref_primary_10_1016_j_jff_2022_105290
crossref_primary_10_1080_10408398_2021_1952159
crossref_primary_10_1155_2021_8831080
crossref_primary_10_1016_j_fsi_2023_109243
crossref_primary_10_3390_molecules27154782
crossref_primary_10_1016_j_bej_2022_108677
crossref_primary_10_3389_fbioe_2023_1298501
crossref_primary_10_3389_fphar_2021_731288
crossref_primary_10_1007_s11626_024_00969_1
crossref_primary_10_1038_s41598_021_81079_w
Cites_doi 10.1016/j.jgr.2014.02.002
10.1021/acs.jafc.6b00963
10.3390/molecules22122147
10.1016/j.jgr.2014.09.003
10.1002/bab.1400
10.1016/j.jgr.2015.02.003
10.3390/molecules17055836
10.5142/jgr.2013.37.269
10.1039/C7FO00385D
10.1016/S0021-9673(01)00869-X
10.1016/j.jgr.2017.07.008
10.1039/C6RA27542G
10.1016/j.jgr.2016.07.001
10.1016/j.foodchem.2010.10.049
10.1016/j.jgr.2017.02.003
10.1007/s10068-010-0091-1
10.1002/elps.201600027
10.1016/j.jgr.2015.11.004
10.1016/j.apsb.2016.05.005
10.1016/j.jchromb.2015.09.024
10.1016/j.jbiotec.2012.06.021
10.1007/s00217-014-2370-1
10.1016/j.jgr.2015.01.006
10.1016/j.jgr.2016.03.002
10.1016/j.jgr.2016.12.002
10.1021/jf052993w
10.1016/j.phytochem.2003.11.020
10.3390/molecules21060757
10.1002/cbdv.201300005
10.1016/j.chroma.2013.02.053
10.1038/srep08598
10.1016/j.jgr.2016.08.009
10.1021/jf502214x
10.1016/S0889-1575(03)00004-8
10.5142/jgr.2012.36.1.93
10.1016/j.foodchem.2008.11.079
10.1016/j.jgr.2015.05.007
10.1002/jssc.201701228
10.5142/jgr.2013.37.1
10.1016/j.jgr.2015.05.006
ContentType Journal Article
Copyright 2020
2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V.
2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. 2020
Copyright_xml – notice: 2020
– notice: 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V.
– notice: 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. 2020
DBID 6I.
AAFTH
DBRKI
TDB
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
ACYCR
DOI 10.1016/j.jgr.2020.01.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
DBPIA - 디비피아
Nurimedia DBPIA Journals
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2093-4947
EndPage 175
ExternalDocumentID oai_kci_go_kr_ARTI_9745313
oai_doaj_org_article_5fe458e62c81412197c814d689de2d9d
PMC7790872
33437168
10_1016_j_jgr_2020_01_003
NODE10546010
S1226845318304093
Genre Journal Article
GroupedDBID .UV
0SF
4.4
457
5VS
6I.
9ZL
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYYP
ABMAC
ACGFS
ADEZE
ADRAZ
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
DBRKI
DIK
EBS
EJD
F5P
FDB
GROUPED_DOAJ
GX1
HYE
IPNFZ
IXB
JDI
KQ8
KVFHK
M48
M~E
NCXOZ
RIG
ROL
RPM
SSZ
TDB
0R~
AAHBH
ADVLN
AKRWK
GW5
PGMZT
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
NPM
7X8
7S9
L.6
5PM
ACYCR
ID FETCH-LOGICAL-c680t-70269cb9b92bd018dee4a30d0f35b09834b6ad925909aa83cffd03c7a796074a3
IEDL.DBID M48
ISSN 1226-8453
IngestDate Tue Jun 25 21:13:16 EDT 2024
Wed Aug 27 01:28:23 EDT 2025
Thu Aug 21 18:35:52 EDT 2025
Thu Jul 10 18:22:28 EDT 2025
Fri Jul 11 09:51:49 EDT 2025
Thu Apr 03 06:59:45 EDT 2025
Tue Jul 01 04:36:26 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Sun Mar 09 07:50:27 EDT 2025
Thu Jul 20 20:12:53 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords TSAG
AG
TPG
SPG
TNG
less-polar ginsenosides
SNG
stem-leaf ginsenosides
TSPG
root ginsenosides
PG
SAG
NG
TAG
acid transformation
TSNG
TSAG, transformed stem-leaves from American ginseng
TSPG, transformed stem-leaves from Panax ginseng
NG, Panax notoginseng
AG, American ginseng
SAG, the stem-leaves from American ginseng
TSNG, transformed stem-leaves from Panax notoginseng
SNG, the stem-leaves from Panax notoginseng
TPG, transformed Panax ginseng
SPG, the stem-leaves from Panax ginseng
TAG, transformed American ginseng
TNG, transformed Panax notoginseng
PG, Panax ginseng
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c680t-70269cb9b92bd018dee4a30d0f35b09834b6ad925909aa83cffd03c7a796074a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.jgr.2020.01.003
PMID 33437168
PQID 2477520587
PQPubID 23479
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9745313
doaj_primary_oai_doaj_org_article_5fe458e62c81412197c814d689de2d9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7790872
proquest_miscellaneous_2636452273
proquest_miscellaneous_2477520587
pubmed_primary_33437168
crossref_citationtrail_10_1016_j_jgr_2020_01_003
crossref_primary_10_1016_j_jgr_2020_01_003
nurimedia_primary_NODE10546010
elsevier_sciencedirect_doi_10_1016_j_jgr_2020_01_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Journal of ginseng research
PublicationTitleAlternate J Ginseng Res
PublicationYear 2021
Publisher Elsevier B.V
고려인삼학회
Elsevier
Publisher_xml – name: Elsevier B.V
– name: 고려인삼학회
– name: Elsevier
References Duan, Deng, Dong, Zhu, Li, Fan (bib13) 2017
Quan, Liu, Wan, Zhao, Guo, Alolga, Li, Qi (bib50) 2015; 5
Ryu, Lee, Yoon, Seo, Kwon, Shin, Lee (bib44) 2017; 41
Jang, Min, Lee (bib30) 2018
Kim, Cui, Yoon, Kim, Im (bib35) 2012; 161
Xue, Yang, Sun, Ren (bib22) 2017; 7
Liu, Wen, Wang, Li, Huang, Xia, Ruan, Yuan (bib38) 2019
Zhang, Bao, Li, Zheng (bib31) 2005; 25
Wan, Liu, Wang, Qi, Wang, Li, Yuan (bib18) 2013; 1286
Xu, Gao, Xu, Liu, Xue, Zhang, Zhang, Liu, Xiong, Lin (bib19) 2018; 42
Sun, Qi, Du, Mehendale, Wang, Yuan (bib25) 2011; 125
Huq, Siraj, Kim, Yang (bib17) 2015; 63
Wang, Wu, Mcentee, Yuan (bib3) 2006; 54
Cho, Kim, Lee, Kim (bib43) 2017; 41
Bai, Wang, Liu, Gao, Cai (bib27) 2015; 1026
Wan, Zhang, Hong, Li, Li, Wang (bib2) 2012; 17
Xiu, Li, Sun, Xiao, Miao, Zhao, Liu (bib26) 2017
Qu, Zhang, Zhang, Bai, Wen (bib48) 2008; 29
Liu, Xia, Li, Zhang, Sun, Ruan (bib52) 2017; 39
Lee, Yun, Sung (bib12) 2012; 36
Kim, Kim, Ko (bib14) 2013; 37
Quan, Liu, Wan, Zhao, Guo, Alolga, Li, Qi (bib21) 2015; 5
Luo, Dang, Li, Zou, Zhang, Li (bib15) 2013; 10
Upadhyaya, Kim, Kim, Ko, Park, Kim (bib47) 2016; 40
Chung, Lim, Ahn, Jeong, An, Kim (bib41) 2016; 40
Li, Li, Song, Liu, Lu (bib49) 2015; 46
Liu, Ma, Xia, Li, He, Wu (bib20) 2017
Wang, Bai, Cai, Gao, Liu (bib28) 2016; 37
Wang, Yau, Gao, Liu, Yick, Liu, Jiang (bib5) 2014; 62
Xi, Liu, Li, Zhou-Fang, Liu, Zhao (bib6) 2010; 31
Jo, Kim, Yoon, Yoon, Yoo (bib36) 2015; 240
Li (bib8) 2013; 41
Baeg, So (bib1) 2013; 37
Yi, Kim, Kim, Jeong, Bae, Hur, Jun (bib40) 2010; 19
Vo, Cho, Choi, Choi, Jeong (bib37) 2015; 39
Lee, Choi, Kim, Choi, Lee, Kim, Baek, Kim, Lee (bib4) 2017; 22
Ma, Zhou, Yang, Wang, Yang (bib34) 2016; 21
Kwon, Han, Park, Kim, Park, Park (bib9) 2001; 921
Popovich, Kitts (bib33) 2004; 65
Cui, Wu, Zhao, Yin (bib46) 2015; 40
Kamizake, Gonçalves, Zaia, Zaia (bib24) 2003; 16
Xue, Yao, Yang, Feng, Ren (bib23) 2017; 41
Wang, Li, Hu, Li, Yang, Yang, Wang (bib45) 2018; 42
Le, Lee, Lee, Nguyen, Nguyen (bib10) 2015; 35
Qu, Bai, Jin, Wang, Zhang, You (bib7) 2009; 115
Liu, Xia, Wang, Zhang, Ruan, Sun, Yuan (bib39) 2016; 64
Du, Cui, Park, Kim, Yu, Jin, Sun, Kim, Im (bib16) 2014; 9
Zhang, Zhou, Yang (bib42) 2018; 41
Xia, Zhang, Yuan, Sun, Liu (bib51) 2016; 19
Kim, Kim (bib11) 2015; 39
Yang, Qiao, Li, Fan, Bo, Guo, Ye (bib29) 2016; 6
Hwang, Lee, Jang, Hwang, Kim, Woo, Lee, Jeon (bib32) 2014; 38
Wang (10.1016/j.jgr.2020.01.003_bib3) 2006; 54
Kim (10.1016/j.jgr.2020.01.003_bib11) 2015; 39
Yang (10.1016/j.jgr.2020.01.003_bib29) 2016; 6
Jang (10.1016/j.jgr.2020.01.003_bib30) 2018
Kamizake (10.1016/j.jgr.2020.01.003_bib24) 2003; 16
Lee (10.1016/j.jgr.2020.01.003_bib4) 2017; 22
Duan (10.1016/j.jgr.2020.01.003_bib13) 2017
Hwang (10.1016/j.jgr.2020.01.003_bib32) 2014; 38
Liu (10.1016/j.jgr.2020.01.003_bib20) 2017
Kwon (10.1016/j.jgr.2020.01.003_bib9) 2001; 921
Le (10.1016/j.jgr.2020.01.003_bib10) 2015; 35
Qu (10.1016/j.jgr.2020.01.003_bib48) 2008; 29
Bai (10.1016/j.jgr.2020.01.003_bib27) 2015; 1026
Chung (10.1016/j.jgr.2020.01.003_bib41) 2016; 40
Liu (10.1016/j.jgr.2020.01.003_bib38) 2019
Li (10.1016/j.jgr.2020.01.003_bib8) 2013; 41
Popovich (10.1016/j.jgr.2020.01.003_bib33) 2004; 65
Wang (10.1016/j.jgr.2020.01.003_bib45) 2018; 42
Xi (10.1016/j.jgr.2020.01.003_bib6) 2010; 31
Luo (10.1016/j.jgr.2020.01.003_bib15) 2013; 10
Liu (10.1016/j.jgr.2020.01.003_bib52) 2017; 39
Qu (10.1016/j.jgr.2020.01.003_bib7) 2009; 115
Xu (10.1016/j.jgr.2020.01.003_bib19) 2018; 42
Cho (10.1016/j.jgr.2020.01.003_bib43) 2017; 41
Wan (10.1016/j.jgr.2020.01.003_bib2) 2012; 17
Xue (10.1016/j.jgr.2020.01.003_bib23) 2017; 41
Ryu (10.1016/j.jgr.2020.01.003_bib44) 2017; 41
Liu (10.1016/j.jgr.2020.01.003_bib39) 2016; 64
Ma (10.1016/j.jgr.2020.01.003_bib34) 2016; 21
Vo (10.1016/j.jgr.2020.01.003_bib37) 2015; 39
Li (10.1016/j.jgr.2020.01.003_bib49) 2015; 46
Wang (10.1016/j.jgr.2020.01.003_bib28) 2016; 37
Kim (10.1016/j.jgr.2020.01.003_bib35) 2012; 161
Upadhyaya (10.1016/j.jgr.2020.01.003_bib47) 2016; 40
Jo (10.1016/j.jgr.2020.01.003_bib36) 2015; 240
Baeg (10.1016/j.jgr.2020.01.003_bib1) 2013; 37
Wang (10.1016/j.jgr.2020.01.003_bib5) 2014; 62
Kim (10.1016/j.jgr.2020.01.003_bib14) 2013; 37
Sun (10.1016/j.jgr.2020.01.003_bib25) 2011; 125
Huq (10.1016/j.jgr.2020.01.003_bib17) 2015; 63
Wan (10.1016/j.jgr.2020.01.003_bib18) 2013; 1286
Cui (10.1016/j.jgr.2020.01.003_bib46) 2015; 40
Xiu (10.1016/j.jgr.2020.01.003_bib26) 2017
Zhang (10.1016/j.jgr.2020.01.003_bib42) 2018; 41
Yi (10.1016/j.jgr.2020.01.003_bib40) 2010; 19
Lee (10.1016/j.jgr.2020.01.003_bib12) 2012; 36
Zhang (10.1016/j.jgr.2020.01.003_bib31) 2005; 25
Quan (10.1016/j.jgr.2020.01.003_bib50) 2015; 5
Xue (10.1016/j.jgr.2020.01.003_bib22) 2017; 7
Du (10.1016/j.jgr.2020.01.003_bib16) 2014; 9
Quan (10.1016/j.jgr.2020.01.003_bib21) 2015; 5
Xia (10.1016/j.jgr.2020.01.003_bib51) 2016; 19
References_xml – volume: 17
  start-page: 5836
  year: 2012
  end-page: 5853
  ident: bib2
  article-title: Chemical investigation of saponins in different parts of
  publication-title: Molecules
– volume: 31
  start-page: 24
  year: 2010
  end-page: 27
  ident: bib6
  article-title: Determination of content of total saponins in
  publication-title: J. Jilin Med. Coll.
– volume: 125
  start-page: 1299
  year: 2011
  end-page: 1305
  ident: bib25
  article-title: Red notoginseng: higher ginsenoside content and stronger anticancer potential than Asian and American ginseng
  publication-title: Food Chem
– volume: 19
  start-page: 647
  year: 2010
  end-page: 653
  ident: bib40
  article-title: Change of ginsenoside composition in red ginseng processed with citric acid
  publication-title: Food. Sci. Biotech.
– volume: 42
  start-page: 270
  year: 2018
  end-page: 276
  ident: bib45
  article-title: Chemical transformation and target preparation of saponins in stems and leaves of
  publication-title: J. Ginseng Res.
– volume: 37
  start-page: 1956
  year: 2016
  end-page: 1966
  ident: bib28
  article-title: Maldi imaging for the localization of saponins in root tissues and rapid differentiation of three panax herbs
  publication-title: Electrophoresis
– volume: 40
  start-page: 68
  year: 2016
  end-page: 75
  ident: bib41
  article-title: Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (
  publication-title: J. Ginseng Res.
– volume: 42
  start-page: 277
  year: 2018
  end-page: 287
  ident: bib19
  article-title: Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng
  publication-title: J. Ginseng Res.
– volume: 5
  start-page: 8598
  year: 2015
  ident: bib50
  article-title: Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells
  publication-title: Sci. Rep.
– volume: 29
  start-page: 1721
  year: 2008
  end-page: 1726
  ident: bib48
  article-title: Studies on fragmentation pathways of amino acids and their interactions with ginsenoside Rb3 by mass spectrometry
  publication-title: Chem. J. Chin. U.
– volume: 22
  start-page: 2147
  year: 2017
  end-page: 2159
  ident: bib4
  article-title: Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of
  publication-title: Molecules
– volume: 41
  start-page: 54
  year: 2013
  end-page: 57
  ident: bib8
  article-title: Pharmacology effect of ginsenosides from stems and leaves of
  publication-title: Guizhou Agrl. Sci.
– volume: 921
  start-page: 335
  year: 2001
  end-page: 339
  ident: bib9
  article-title: Liquid chromatographic determination of less polar ginsenosides in processed ginseng
  publication-title: J. Chromatogr. A.
– volume: 115
  start-page: 340
  year: 2009
  end-page: 346
  ident: bib7
  article-title: Study on ginsenosides in different parts and ages of
  publication-title: Food Chem
– volume: 1286
  start-page: 83
  year: 2013
  end-page: 92
  ident: bib18
  article-title: Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry
  publication-title: J. Chromatogr. A.
– volume: 41
  start-page: 1039
  year: 2018
  end-page: 1049
  ident: bib42
  article-title: Determination of the transformation of ginsenosides in
  publication-title: J. Sep. Sci.
– year: 2017
  ident: bib20
  article-title: Preparative separation of minor saponins from
  publication-title: J. Ginseng Res.
– volume: 5
  start-page: 85
  year: 2015
  end-page: 98
  ident: bib21
  article-title: Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells
  publication-title: Sci. Rep.
– volume: 240
  start-page: 251
  year: 2015
  end-page: 256
  ident: bib36
  article-title: Preparation of ginsenosides Rg3, Rk1, and Rg5-selectively enriched ginsengs by a simple steaming process
  publication-title: Eur. Food Res. Technol.
– volume: 9
  year: 2014
  ident: bib16
  article-title: Identification and characterization of a ginsenoside-transforming β-glucosidase from
  publication-title: PLOS One
– volume: 35
  start-page: 274
  year: 2015
  end-page: 278
  ident: bib10
  article-title: Effects of steaming on saponin compositions and anti-proliferative activity of
  publication-title: J. Ginseng Res.
– volume: 40
  start-page: 105
  year: 2016
  end-page: 112
  ident: bib47
  article-title: Enzymatic formation of compound-k from ginsenoside rb1 by enzyme preparation from cultured mycelia of
  publication-title: J. Ginseng Res.
– volume: 21
  start-page: 757
  year: 2016
  end-page: 772
  ident: bib34
  article-title: Metabolism of 20(S)-Ginsenoside Rg2 by rat liver microsomes: bioactivation to SIRT1-activating metabolites
  publication-title: Molecules
– volume: 37
  start-page: 269
  year: 2013
  end-page: 272
  ident: bib14
  article-title: Changes in ginsenoside composition of ginseng berry extracts after a microwave and vinegar process
  publication-title: J. Ginseng Res.
– volume: 161
  start-page: 294
  year: 2012
  end-page: 301
  ident: bib35
  article-title: Bioconversion of major ginsenosides Rg1, to minor ginsenoside F1, using novel recombinant ginsenoside hydrolyzing glycosidase cloned from
  publication-title: J. Biotechnol.
– volume: 41
  start-page: 572
  year: 2017
  end-page: 577
  ident: bib44
  article-title: Effect of hydrothermal processing on ginseng extract
  publication-title: J. Ginseng Res.
– volume: 38
  start-page: 180
  year: 2014
  end-page: 186
  ident: bib32
  article-title: Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature
  publication-title: J. Ginseng Res.
– volume: 39
  start-page: 20
  year: 2017
  end-page: 26
  ident: bib52
  article-title: Degradation of protopanaxadiol-type ginsenosides with aspartic acid and antioxidant activity of Maillard reaction products
  publication-title: Food Chem
– volume: 41
  start-page: 347
  year: 2017
  end-page: 352
  ident: bib43
  article-title: Effects of
  publication-title: J. Ginseng Res.
– volume: 7
  start-page: 10939
  year: 2017
  end-page: 10946
  ident: bib22
  article-title: Antifungal activity and mechanism of heat-transformed ginsenosides from notoginseng against
  publication-title: Rsc. Adv.
– volume: 63
  start-page: 532
  year: 2015
  end-page: 538
  ident: bib17
  article-title: Enzymatic transformation of ginseng leaf saponin by recombinant β-glucosidase (bgp1) and its efficacy in an adipocyte cell line
  publication-title: Biotechnol. Appl. Bioc.
– volume: 19
  start-page: 3389
  year: 2016
  end-page: 3394
  ident: bib51
  article-title: Preparation of rare ginsenoside by trans -formation of ginsenoside Re catalyzed transformation of ginsenoside Re catalyzed with aspartic acid
  publication-title: Chin. Tradit. Herbal Drugs
– year: 2017
  ident: bib13
  article-title: Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells:
  publication-title: Food Funct
– volume: 36
  start-page: 93
  year: 2012
  end-page: 101
  ident: bib12
  article-title: Comparative study of white and steamed black
  publication-title: J. Ginseng Res.
– volume: 54
  start-page: 2261
  year: 2006
  end-page: 2266
  ident: bib3
  article-title: Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography
  publication-title: J. Agric. Food. Chem.
– volume: 39
  start-page: 125
  year: 2015
  end-page: 134
  ident: bib11
  article-title: Anti-breast cancer activity of fine black ginseng (
  publication-title: J. Ginseng Res.
– volume: 6
  start-page: 568
  year: 2016
  end-page: 575
  ident: bib29
  article-title: Identification and differentiation of panax ginseng, panax quinquefolium, and panax notoginseng by monitoring multiple diagnostic chemical markers
  publication-title: Acta Pharm. Sin. B.
– year: 2017
  ident: bib26
  article-title: Simultaneous determination and difference evaluation of 14 ginsenosides in
  publication-title: J. Ginseng Res
– volume: 37
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib1
  article-title: The world ginseng market and the ginseng (Korea)
  publication-title: J. Ginseng Res.
– volume: 46
  start-page: 2937
  year: 2015
  end-page: 2942
  ident: bib49
  article-title: Effect of different drying methods on ginsenosides in flower of panax ginseng and panax quinquefolius
  publication-title: Chin. Tradit. Herb. Drugs.
– volume: 62
  start-page: 9024
  year: 2014
  end-page: 9034
  ident: bib5
  article-title: Quantitative comparison and metabolite profiling of saponins in different parts of the root of
  publication-title: J. Agric. Food Chem.
– year: 2018
  ident: bib30
  article-title: Influence of organic acids and heat treatment on ginsenoside conversion
  publication-title: J. Ginseng Res.
– year: 2019
  ident: bib38
  article-title: Remarkable impact of amino acids on ginsenoside transformation from fresh ginseng to red ginseng
  publication-title: J. Ginseng Res.
– volume: 41
  start-page: 180
  year: 2017
  end-page: 186
  ident: bib23
  article-title: Improved antimicrobial effect of ginseng extract by heat transformation
  publication-title: J. Ginseng Res.
– volume: 25
  start-page: 1190
  year: 2005
  end-page: 1194
  ident: bib31
  article-title: HPLC determination of the amount of ginsenosides in different part of
  publication-title: Chin J Pharm Anal
– volume: 10
  start-page: 2021
  year: 2013
  end-page: 2031
  ident: bib15
  article-title: Biotransformation of saponins by endophytes isolated from
  publication-title: Chem. Biodivers.
– volume: 39
  start-page: 304
  year: 2015
  end-page: 313
  ident: bib37
  article-title: Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1
  publication-title: J. Ginseng Res.
– volume: 40
  start-page: 366
  year: 2015
  end-page: 374
  ident: bib46
  article-title: Microbial conversion of major ginsenosides in ginseng total saponins by
  publication-title: J. Ginseng Res
– volume: 1026
  start-page: 263
  year: 2015
  end-page: 271
  ident: bib27
  article-title: Localization of ginsenosides in panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging
  publication-title: J Chromatography. B.
– volume: 16
  start-page: 507
  year: 2003
  end-page: 516
  ident: bib24
  article-title: Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods
  publication-title: J. Food Compost. Anal.
– volume: 64
  start-page: 5389
  year: 2016
  end-page: 5399
  ident: bib39
  article-title: Remarkable impact of acidic ginsenosides and organic acids on ginsenoside transformation from fresh ginseng to red ginseng
  publication-title: J. Agric. Food Chem.
– volume: 65
  start-page: 337
  year: 2004
  end-page: 344
  ident: bib33
  article-title: Generation of ginsenosides Rg3 and Rh2 from North American ginseng
  publication-title: Phytochemistry
– volume: 38
  start-page: 180
  year: 2014
  ident: 10.1016/j.jgr.2020.01.003_bib32
  article-title: Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2014.02.002
– volume: 64
  start-page: 5389
  year: 2016
  ident: 10.1016/j.jgr.2020.01.003_bib39
  article-title: Remarkable impact of acidic ginsenosides and organic acids on ginsenoside transformation from fresh ginseng to red ginseng
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b00963
– volume: 22
  start-page: 2147
  year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib4
  article-title: Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of Panax ginseng by UPLC-QTOF/MS
  publication-title: Molecules
  doi: 10.3390/molecules22122147
– volume: 39
  start-page: 125
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib11
  article-title: Anti-breast cancer activity of fine black ginseng (Panax ginseng, Meyer) and ginsenoside Rg5
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2014.09.003
– volume: 63
  start-page: 532
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib17
  article-title: Enzymatic transformation of ginseng leaf saponin by recombinant β-glucosidase (bgp1) and its efficacy in an adipocyte cell line
  publication-title: Biotechnol. Appl. Bioc.
  doi: 10.1002/bab.1400
– volume: 25
  start-page: 1190
  year: 2005
  ident: 10.1016/j.jgr.2020.01.003_bib31
  article-title: HPLC determination of the amount of ginsenosides in different part of Panax ginseng C.A.Mey. and P. quinquefolius L. and P. notoginseng (burk) F.H.Che
  publication-title: Chin J Pharm Anal
– volume: 29
  start-page: 1721
  year: 2008
  ident: 10.1016/j.jgr.2020.01.003_bib48
  article-title: Studies on fragmentation pathways of amino acids and their interactions with ginsenoside Rb3 by mass spectrometry
  publication-title: Chem. J. Chin. U.
– volume: 39
  start-page: 304
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib37
  article-title: Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2015.02.003
– volume: 17
  start-page: 5836
  year: 2012
  ident: 10.1016/j.jgr.2020.01.003_bib2
  article-title: Chemical investigation of saponins in different parts of Panax notoginseng by pressurized liquid extraction and liquid chromatography-electrospray ionization-tandem mass spectrometry
  publication-title: Molecules
  doi: 10.3390/molecules17055836
– volume: 37
  start-page: 269
  year: 2013
  ident: 10.1016/j.jgr.2020.01.003_bib14
  article-title: Changes in ginsenoside composition of ginseng berry extracts after a microwave and vinegar process
  publication-title: J. Ginseng Res.
  doi: 10.5142/jgr.2013.37.269
– year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib13
  article-title: Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo
  publication-title: Food Funct
  doi: 10.1039/C7FO00385D
– volume: 19
  start-page: 3389
  year: 2016
  ident: 10.1016/j.jgr.2020.01.003_bib51
  article-title: Preparation of rare ginsenoside by trans -formation of ginsenoside Re catalyzed transformation of ginsenoside Re catalyzed with aspartic acid
  publication-title: Chin. Tradit. Herbal Drugs
– volume: 921
  start-page: 335
  year: 2001
  ident: 10.1016/j.jgr.2020.01.003_bib9
  article-title: Liquid chromatographic determination of less polar ginsenosides in processed ginseng
  publication-title: J. Chromatogr. A.
  doi: 10.1016/S0021-9673(01)00869-X
– year: 2018
  ident: 10.1016/j.jgr.2020.01.003_bib30
  article-title: Influence of organic acids and heat treatment on ginsenoside conversion
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2017.07.008
– volume: 46
  start-page: 2937
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib49
  article-title: Effect of different drying methods on ginsenosides in flower of panax ginseng and panax quinquefolius
  publication-title: Chin. Tradit. Herb. Drugs.
– volume: 7
  start-page: 10939
  year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib22
  article-title: Antifungal activity and mechanism of heat-transformed ginsenosides from notoginseng against Epidermophyton floccosum, Trichophyton rubrum, and Trichophyton mentagrophyte
  publication-title: Rsc. Adv.
  doi: 10.1039/C6RA27542G
– volume: 41
  start-page: 54
  year: 2013
  ident: 10.1016/j.jgr.2020.01.003_bib8
  article-title: Pharmacology effect of ginsenosides from stems and leaves of Panax ginseng were same like ginsenosides from roots
  publication-title: Guizhou Agrl. Sci.
– volume: 41
  start-page: 347
  year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib43
  article-title: Effects of Panax ginseng extracts prepared at different steaming times on thermogenesis in rats
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.07.001
– volume: 31
  start-page: 24
  year: 2010
  ident: 10.1016/j.jgr.2020.01.003_bib6
  article-title: Determination of content of total saponins in Panpax Notoginseng roots and leaves by aqueous two phase system
  publication-title: J. Jilin Med. Coll.
– volume: 125
  start-page: 1299
  year: 2011
  ident: 10.1016/j.jgr.2020.01.003_bib25
  article-title: Red notoginseng: higher ginsenoside content and stronger anticancer potential than Asian and American ginseng
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2010.10.049
– volume: 42
  start-page: 277
  year: 2018
  ident: 10.1016/j.jgr.2020.01.003_bib19
  article-title: Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2017.02.003
– volume: 19
  start-page: 647
  year: 2010
  ident: 10.1016/j.jgr.2020.01.003_bib40
  article-title: Change of ginsenoside composition in red ginseng processed with citric acid
  publication-title: Food. Sci. Biotech.
  doi: 10.1007/s10068-010-0091-1
– volume: 37
  start-page: 1956
  year: 2016
  ident: 10.1016/j.jgr.2020.01.003_bib28
  article-title: Maldi imaging for the localization of saponins in root tissues and rapid differentiation of three panax herbs
  publication-title: Electrophoresis
  doi: 10.1002/elps.201600027
– volume: 40
  start-page: 366
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib46
  article-title: Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes
  publication-title: J. Ginseng Res
  doi: 10.1016/j.jgr.2015.11.004
– volume: 6
  start-page: 568
  year: 2016
  ident: 10.1016/j.jgr.2020.01.003_bib29
  article-title: Identification and differentiation of panax ginseng, panax quinquefolium, and panax notoginseng by monitoring multiple diagnostic chemical markers
  publication-title: Acta Pharm. Sin. B.
  doi: 10.1016/j.apsb.2016.05.005
– volume: 1026
  start-page: 263
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib27
  article-title: Localization of ginsenosides in panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging
  publication-title: J Chromatography. B.
  doi: 10.1016/j.jchromb.2015.09.024
– volume: 161
  start-page: 294
  year: 2012
  ident: 10.1016/j.jgr.2020.01.003_bib35
  article-title: Bioconversion of major ginsenosides Rg1, to minor ginsenoside F1, using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii, and enzyme characterization
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2012.06.021
– volume: 240
  start-page: 251
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib36
  article-title: Preparation of ginsenosides Rg3, Rk1, and Rg5-selectively enriched ginsengs by a simple steaming process
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-014-2370-1
– volume: 35
  start-page: 274
  issue: 3
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib10
  article-title: Effects of steaming on saponin compositions and anti-proliferative activity of Vietnamese ginseng
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2015.01.006
– year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib20
  article-title: Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins and preparative high-performance liquid chromatography
  publication-title: J. Ginseng Res.
– volume: 39
  start-page: 20
  year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib52
  article-title: Degradation of protopanaxadiol-type ginsenosides with aspartic acid and antioxidant activity of Maillard reaction products
  publication-title: Food Chem
– volume: 41
  start-page: 180
  year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib23
  article-title: Improved antimicrobial effect of ginseng extract by heat transformation
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.03.002
– year: 2019
  ident: 10.1016/j.jgr.2020.01.003_bib38
  article-title: Remarkable impact of amino acids on ginsenoside transformation from fresh ginseng to red ginseng
  publication-title: J. Ginseng Res.
– volume: 41
  start-page: 572
  year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib44
  article-title: Effect of hydrothermal processing on ginseng extract
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.12.002
– volume: 54
  start-page: 2261
  year: 2006
  ident: 10.1016/j.jgr.2020.01.003_bib3
  article-title: Saponins composition in American ginseng leaf and berry assayed by high-performance liquid chromatography
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf052993w
– volume: 65
  start-page: 337
  year: 2004
  ident: 10.1016/j.jgr.2020.01.003_bib33
  article-title: Generation of ginsenosides Rg3 and Rh2 from North American ginseng
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2003.11.020
– volume: 21
  start-page: 757
  year: 2016
  ident: 10.1016/j.jgr.2020.01.003_bib34
  article-title: Metabolism of 20(S)-Ginsenoside Rg2 by rat liver microsomes: bioactivation to SIRT1-activating metabolites
  publication-title: Molecules
  doi: 10.3390/molecules21060757
– volume: 10
  start-page: 2021
  year: 2013
  ident: 10.1016/j.jgr.2020.01.003_bib15
  article-title: Biotransformation of saponins by endophytes isolated from Panax notoginseng
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201300005
– volume: 1286
  start-page: 83
  year: 2013
  ident: 10.1016/j.jgr.2020.01.003_bib18
  article-title: Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry
  publication-title: J. Chromatogr. A.
  doi: 10.1016/j.chroma.2013.02.053
– volume: 5
  start-page: 8598
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib50
  article-title: Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep08598
– volume: 42
  start-page: 270
  year: 2018
  ident: 10.1016/j.jgr.2020.01.003_bib45
  article-title: Chemical transformation and target preparation of saponins in stems and leaves of Panax Notoginseng
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.08.009
– volume: 62
  start-page: 9024
  year: 2014
  ident: 10.1016/j.jgr.2020.01.003_bib5
  article-title: Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf502214x
– volume: 16
  start-page: 507
  year: 2003
  ident: 10.1016/j.jgr.2020.01.003_bib24
  article-title: Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods
  publication-title: J. Food Compost. Anal.
  doi: 10.1016/S0889-1575(03)00004-8
– volume: 36
  start-page: 93
  year: 2012
  ident: 10.1016/j.jgr.2020.01.003_bib12
  article-title: Comparative study of white and steamed black Panax ginseng, P. quinquefolium, and P. notoginseng on cholinesterase inhibitory and antioxidative activity
  publication-title: J. Ginseng Res.
  doi: 10.5142/jgr.2012.36.1.93
– volume: 115
  start-page: 340
  year: 2009
  ident: 10.1016/j.jgr.2020.01.003_bib7
  article-title: Study on ginsenosides in different parts and ages of Panax quinquefolius L
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2008.11.079
– volume: 40
  start-page: 105
  year: 2016
  ident: 10.1016/j.jgr.2020.01.003_bib47
  article-title: Enzymatic formation of compound-k from ginsenoside rb1 by enzyme preparation from cultured mycelia of Armillaria mellea
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2015.05.007
– volume: 5
  start-page: 85
  year: 2015
  ident: 10.1016/j.jgr.2020.01.003_bib21
  article-title: Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep08598
– volume: 41
  start-page: 1039
  year: 2018
  ident: 10.1016/j.jgr.2020.01.003_bib42
  article-title: Determination of the transformation of ginsenosides in Ginseng Radix et Rhizoma during decoction with water using ultra-fast liquid chromatography coupled with tandem mass spectrometry
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201701228
– volume: 9
  year: 2014
  ident: 10.1016/j.jgr.2020.01.003_bib16
  article-title: Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside Rg2(S)
  publication-title: PLOS One
– year: 2017
  ident: 10.1016/j.jgr.2020.01.003_bib26
  article-title: Simultaneous determination and difference evaluation of 14 ginsenosides in Panax ginseng, roots cultivated in different areas and ages by HPLC-MRM/MS combined with multivariate statistical analysis
  publication-title: J. Ginseng Res
– volume: 37
  start-page: 1
  year: 2013
  ident: 10.1016/j.jgr.2020.01.003_bib1
  article-title: The world ginseng market and the ginseng (Korea)
  publication-title: J. Ginseng Res.
  doi: 10.5142/jgr.2013.37.1
– volume: 40
  start-page: 68
  year: 2016
  ident: 10.1016/j.jgr.2020.01.003_bib41
  article-title: Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2015.05.006
SSID ssj0067274
Score 2.4583619
Snippet Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. This study evaluated the phytochemical diversity...
Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides.BACKGROUNDGinsenosides, which have strong...
Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. This study evaluated the phytochemical diversity...
Background: Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. Methods: This study evaluated the...
Background: Ginsenosides, which have strong biological activities, can be divided into polar or less-polarginsenosides. Methods: This study evaluated the...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
nurimedia
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 163
SubjectTerms acid transformation
acid treatment
acidification
crude protein
ginsenosides
heat
less-polar ginsenosides
Panax ginseng
Panax notoginseng
Panax quinquefolius
phytochemicals
root ginsenosides
stem-leaf ginsenosides
temperature
기타의약학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgL8ABLe-wsDKIEyLCSZzY5rbArhYkFiRYaW-WEzvd7JakalIEf5LfxIzzoEWoXDi1cqZ163yZh2f8DSHPLJgNZ1IbYu-jkOO5HOlEGdqoyIUSYKA4nnf-cJIdn_L3Z-nZWqsvrAnr6YH7hXuZlo6n0mVxISMewfMl8I3NpLIutsqi9gWbNwZTvQ7G9KLPJ4NzEUqeJmM-01d2XcyQCDRmnq9z7JY1WCRP3L9hmK7WSxi_Vq-Qbh_u2d9c0T8rKtdM1NEuuTn4lvSg_0-3yBVX3yY3DmbLgV_D3SE_P3fuazh35ptraVPST6Y236lpqaEgdU5NbWn7-0wV7ff2UXIOKjFcYCBMcY8aOcYr69pXtJg6GaLY-jWKZ1eGKfrx2Qs6pojGET9lL1M3XTOOLpbO18bT_AdFe1ENkqaoLJ2q4--S06PDL2-Ow6GlQ1hkknWhgJBPFbnKVZxbFknrHDcJs6xM0pwpmfA8M1ZBTMaUMTIpytKypBBGQKQlQPQe2amb2j0gNDcWXD1AQFJKbiOmbO5SCd6LikGN8SggbLytuhj4zrHtxlyPhW0XGpCgEQmaRUiSGpDn00cWPdnHNuHXiJVJEHm6_QCgVw_o1f9Cb0D4iDQ9uDy9KwNfVW2b-ymgUl8WlZ8WX2eNvlxqCILeaQgRQbOC0P4E2ulXnnx8ewguNcc4PCBPRiRrUCqYKTK1a1atjrkQacxSKbbIZJjBjsH9Dcj9Hv3TLEnCEwjEZUDExnOxsVibV-rq3JObI_-lFPHD_7G6e-R6jCVIfsfsEdnpliv3GHzILt_36uIX-NhvoA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKL8AB8SY8KoM4IaJ1Eie2ubWlVUGiIJVKe7Oc2NmmXZJVdhfBn-Q3MeM86CK0B067msyuE2c8D8_MZ0JeWzAbzqQ2xLOPQo59OdKJMrRRkQslwEBx7Hf-dJqdnPOP03S6Qw6HXhgsq-x1f6fTvbbuKZN-NieLqpqcRTEilaQolCCJChE_Ey59E9_0YNDGmGj0mWVgDpF7yGz6Gq_LGUKCxswjdw7nZvW2yUP4b5ioG3UL9Jv1GoH34e39yyn9u7bymrE6vkvu9F4m3e8e5B7ZcfV9cnt_1vZIG-4B-XW2ct_CuTPf3ZI2Jf1iavODmiU1FLguqKktXf7prqLdLj9yzkE5hgsMiSnuViPaeGXd8h0txjMNke36NYpdLP0QHX32lg7JooHih-x46mbVDNRF63yVPM1_UrQcVc9pisrSsU7-ITk_Pvp6eBL2hzuERSbZKhQQ_KkiV7mKc8siaZ3jJmGWlUmaMyUTnmfGKojOmDJGJkVZWpYUwgiIuQSwPiK7dVO7J4TmxoLTZ5VNSsltxJTNXSrBj1ExKDQeBYQNr1UXPfI5HsAx10OJ26UGSdAoCZpFCJcakDfjTxYd7Mc25gOUlZEREbs9oWlnuhdZnZaOp9JlcSEjHoGdEPjFZlJZF8O9B4QPkqY3FgD8VbVt7FcglfqqqPyw-Dlr9FWrIRz6oCFYhPUBTHuj0I53efr5_RE41xwj8oC8HCRZg3rBnJGpXbNe6pgLkcYslWILT4a57Bgc4YA87qR_HCVJeAIhuQyI2FgXG5O1eaWuLjzMOSJhShE__b-JeUZuxVh-5HfLnpPdVbt2L8B_XOV7XkH8BuwEcA0
  priority: 102
  providerName: Elsevier
Title Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment
URI https://dx.doi.org/10.1016/j.jgr.2020.01.003
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10546010
https://www.ncbi.nlm.nih.gov/pubmed/33437168
https://www.proquest.com/docview/2477520587
https://www.proquest.com/docview/2636452273
https://pubmed.ncbi.nlm.nih.gov/PMC7790872
https://doaj.org/article/5fe458e62c81412197c814d689de2d9d
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002685451
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Ginseng Research, 2021, 45(1), , pp.163-175
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKK0F5QNyEY2UQT4igHE7sICG0hVYtVQsCVuyb5cTONu2SLMkuav8kv4mZXO2i1T7wkkTOJI6c8Rye8TeEvNSgNowKtI21j2yG-3KE4amt3STmEQcFxXC_89FxuD9in8bBeIN05a3aAaxWunZYT2pUTt-c_7p4DxP-3WWu1ukEoT09p0bgROzPLVBMHOfpEeuDChhzrIPMYHHYggV-F-Rc9Yptct33mQ_ehFjSWDWw_5LiupaX0H4jXyAcP_zTVabqvxmXV1TY3m1yq7U96bBhljtkw-R3yc3hpGzxN8w98ufb3Py0p0b9NhUtUvpF5eqcqooqClQnVOWaVpd7rmiz9o-UUxCZ9gxHk-IaNmKQZ9pUb2nSVzpEsqv3KO5tabto2ievaRdC6lrqLhuavJgXXeusNHXuPI0vKOqTrKVUSaZpnz1_n4z2dr9_2Lfbkg92EgpnbnNwCaMkjuLIi7XjCm0MU76jndQPYicSPotDpSPw2ZxIKeEnaaodP-GKgyfGgfQB2cyL3DwiNFYaTEEdaT8VTLtOpGMTCLBuIg_EHHMt4nS_VSYtHjqW5ZjKLvHtVAJTSGQK6bgIomqRV_0jswYMZB3xDvJKT4g43nVDUU5kKxZkkBoWCBN6iXCZC9qD44UORaSNB99uEdZxmmxNosbUgVdl6_p-AVwpz5Ks7hbPk0KelRKcpAMJLiRIXiAa9Ezbf-Xx54-7YHIz9NMt8rzjZAlCByNJKjfFopIe4zzwnEDwNTQhRrg9MI8t8rDh_r6XbmpZhC_Ni6XBWr6TZyc1-DniYwruPf7vJ5-QbQ_zkupltKdkc14uzDMwLOfxgGwND7_-OBzUCzNwPBjvDGoR8hcxPnwK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF615VA4IN6YR1kQJ4QVP9beNbe2tEqgDUhtpdxWa-86dRvsyEkQ_El-EzPrBw1COXBKNJ5k7fXsPHZmvyHkrQazYVSkXex95DI8lyMMz13tZylPOBgohuedT8fx8IJ9mkSTLXLYnYXBsspW9zc63WrrljJoZ3MwL4rBmR8gUkmEQgmSmITb5BZ4Axz7N4wmB506xkyjTS0Dt4vsXWrTFnldTRETNPAsdGfXOKs1ThbDf81GbZc10HfLFSLvw-v7l1f6d3HlDWt1fI_cbd1Mut88yX2yZcoH5M7-tG6hNsxD8utsab65M6O-mwWtcvpVleoHVQuqKHBdUlVquvhzvIo22_zIOQPt6M4xJqa4XY1w44U2iw8065saItvNaxSPsbRDNPTpe9plizqKHbLhKatl1VHntbFl8jT9SdF0FC2nygpN-0L5R-Ti-Oj8cOi23R3cLBbe0uUQ_SVZmqRJkGrPF9oYpkJPe3kYpV4iQpbGSicQnnmJUiLM8lx7YcYVh6CLA-tjslNWpXlKaKo0eH060WEumPa9RKcmEuDIJAFoNOY7xOteq8xa6HPswDGTXY3blQRJkCgJ0vMRL9Uh7_qfzBvcj03MBygrPSNCdltCVU9lK7Myyg2LhImDTPjMB0PB8YuORaJNAPfuENZJmlxbAfBXxaax34BUyuussMPi57SS17WEeGgkIVqEBQJMe73Q9nc5_vLxCLxrhiG5Q153kixBv2DSSJWmWi1kwDiPAi8SfANPjMnsADxhhzxppL8fJQxZCDG5cAhfWxdrk7V-pSwuLc45QmEKHjz7v4l5RXaH56cn8mQ0_vyc3A6wFslunb0gO8t6ZV6CM7lM96yy-A1QbHMs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stem-leaves+of+Panax+as+a+rich+and+sustainable+source+of+less-polar+ginsenosides%3A+comparison+of+ginsenosides+from+Panax+ginseng%2C+American+ginseng+and+Panax+notoginseng+prepared+by+heating+and+acid+treatment&rft.jtitle=Journal+of+ginseng+research&rft.au=Zhang%2C+Fengxiang&rft.au=Tang%2C+Shaojian&rft.au=Zhao%2C+Lei&rft.au=Yang%2C+Xiushi&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=1226-8453&rft.eissn=2093-4947&rft.volume=45&rft.issue=1&rft.spage=163&rft.epage=175&rft_id=info:doi/10.1016%2Fj.jgr.2020.01.003&rft_id=info%3Apmid%2F33437168&rft.externalDocID=PMC7790872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8453&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8453&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8453&client=summon