Automatic detection of alien plant species in action camera images using the chopped picture method and the potential of citizen science

Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility...

Full description

Saved in:
Bibliographic Details
Published inBreeding Science Vol. 72; no. 1; pp. 96 - 106
Main Authors Takaya, Kosuke, Sasaki, Yu, Ise, Takeshi
Format Journal Article
LanguageEnglish
Published Tokyo Japanese Society of Breeding 01.01.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native plants using deep learning on images captured by two action cameras. We created a model for each camera using the chopped picture method. The models were able to detect the alien plant Solidago altissima (tall goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that, in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area at a low cost.
AbstractList Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native plants using deep learning on images captured by two action cameras. We created a model for each camera using the chopped picture method. The models were able to detect the alien plant Solidago altissima (tall goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that, in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area at a low cost.Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native plants using deep learning on images captured by two action cameras. We created a model for each camera using the chopped picture method. The models were able to detect the alien plant Solidago altissima (tall goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that, in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area at a low cost.
Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native plants using deep learning on images captured by two action cameras. We created a model for each camera using the chopped picture method. The models were able to detect the alien plant Solidago altissima (tall goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that, in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area at a low cost.
Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native plants using deep learning on images captured by two action cameras. We created a model for each camera using the chopped picture method. The models were able to detect the alien plant Solidago altissima (tall goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that, in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area at a low cost.
ArticleNumber 21062
Author Ise, Takeshi
Sasaki, Yu
Takaya, Kosuke
Author_xml – sequence: 1
  fullname: Takaya, Kosuke
  organization: Graduate School of Agriculture, Kyoto University
– sequence: 2
  fullname: Sasaki, Yu
  organization: Center for the Promotion of Interdisciplinary Education and Research, Kyoto University
– sequence: 3
  fullname: Ise, Takeshi
  organization: Field Science Education and Research Center, Kyoto University
BookMark eNp1kU2LFDEQhoOsuB968g8EvAhLr_nunoswLK4KC170HNLp6ukM3UmbpIX1F_izzfQMAy54SYXUU29V6r1GFz54QOgtJXeU1eTDPrVtumOUKPYCXVEu6orXXF6sd1HVipJLdJ3SnhAmiZCv0CVXJTYbcYX-bJccJpOdxR1ksNkFj0OPzejA43k0PuM0g3WQsPPYHAFrJogGu8nsyvuSnN_hPAC2Q5hn6PDsbF4i4AnyEDpsfLem55DBZ2fGQwfrsvtdeqSi7S28Ri97MyZ4c4o36MfDp-_3X6rHb5-_3m8fK6sakispDDHA2g0IyXshqSSs4VapnnNFuWVt21ImWSPqtmE1iLKi3pC2V0ra3vT8Bn086s5LO0Fny0DRjHqO5TPxSQfj9L8Z7wa9C790s2nqRogi8P4kEMPPBVLWk0sWxrIqCEvSxZINoRtSq4K-e4buwxJ9-Z5mSigqJResULdHysaQUoT-PAwl-uCwXh3Wq8OFps_oskhzcKVM68b_1GyPNfuUi2NnfROL7yOc2JppejjWmnPODiZq8Pwv0SfFGw
CitedBy_id crossref_primary_10_1002_ece3_10698
crossref_primary_10_1007_s10530_023_03150_z
crossref_primary_10_1155_2024_8854675
crossref_primary_10_1016_j_sciaf_2024_e02462
crossref_primary_10_3390_agriculture14122201
crossref_primary_10_1080_15481603_2024_2327146
Cites_doi 10.1111/j.1366-9516.2006.00278.x
10.3390/rs10040641
10.1093/aobpla/plab050
10.1016/S0034-4257(03)00096-8
10.1007/s10530-016-1217-z
10.3389/fpls.2017.00887
10.3390/rs1030318
10.1007/s11284-006-0035-7
10.1073/pnas.1908253116
10.1016/j.tree.2010.12.007
10.1177/001316446002000104
10.1186/s12859-018-2474-x
10.2307/25065637
10.1093/aobpla/plaa052
10.1016/j.compag.2020.105519
10.1098/rspb.2003.2327
10.1016/j.ecolind.2019.106020
10.1007/s00442-004-1679-z
10.1007/s10530-005-6419-8
10.1111/2041-210X.13473
10.1111/2041-210X.13296
10.1016/j.jag.2017.12.008
10.1098/rspb.2002.2179
10.1186/s12898-020-00331-5
10.1109/CVPR.2016.90
10.4236/oje.2018.83011
10.1016/j.compag.2020.105796
10.1111/een.12394
10.1002/fee.1826
10.1016/j.marpolbul.2016.06.072
10.1890/110278
10.1007/s10530-015-0885-4
10.1111/cobi.13223
10.1146/annurev-ecolsys-102209-144636
10.1016/j.actao.2012.10.011
10.1186/s13007-019-0462-4
10.1111/jzo.12509
10.1016/j.gecco.2019.e00812
10.1016/j.tree.2009.03.017
10.1111/j.1365-2664.2006.01227.x
10.1111/j.1755-263X.2011.00196.x
10.1016/j.tplants.2018.07.004
ContentType Journal Article
Copyright 2022 by JAPANESE SOCIETY OF BREEDING
Copyright Japan Science and Technology Agency 2022
Copyright © 2022 by JAPANESE SOCIETY OF BREEDING.
Copyright © 2022 by JAPANESE SOCIETY OF BREEDING 2022
Copyright_xml – notice: 2022 by JAPANESE SOCIETY OF BREEDING
– notice: Copyright Japan Science and Technology Agency 2022
– notice: Copyright © 2022 by JAPANESE SOCIETY OF BREEDING.
– notice: Copyright © 2022 by JAPANESE SOCIETY OF BREEDING 2022
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1270/jsbbs.21062
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Automatic detection of alien plant species
EISSN 1347-3735
EndPage 106
ExternalDocumentID PMC8987844
10_1270_jsbbs_21062
article_jsbbs_72_1_72_21062_article_char_en
GroupedDBID 23N
2WC
5GY
A8Z
ABDBF
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
ECGQY
EJD
ESTFP
ESX
EYRJQ
GX1
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
QF4
QN7
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
XSB
AAYXX
ACUHS
CITATION
OVT
7QO
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c680t-54a0ae2b9e453f45150283c66f33613c2bbb1252847b827e4127fa0bf665cfaf3
IEDL.DBID M48
ISSN 1344-7610
IngestDate Thu Aug 21 18:28:05 EDT 2025
Thu Jul 10 16:26:38 EDT 2025
Mon Jun 30 04:44:57 EDT 2025
Tue Jul 01 01:03:16 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Sun Jul 28 05:37:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution (BY) License (CC-BY 4.0: https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c680t-54a0ae2b9e453f45150283c66f33613c2bbb1252847b827e4127fa0bf665cfaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by Sachiko Isobe
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1270/jsbbs.21062
PMID 36045894
PQID 2646155342
PQPubID 1966357
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8987844
proquest_miscellaneous_2709019076
proquest_journals_2646155342
crossref_primary_10_1270_jsbbs_21062
crossref_citationtrail_10_1270_jsbbs_21062
jstage_primary_article_jsbbs_72_1_72_21062_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Breeding Science
PublicationTitleAlternate Breeding Science
PublicationYear 2022
Publisher Japanese Society of Breeding
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Breeding
– name: Japan Science and Technology Agency
References Kim, K.C. and L.B. Byrne (2006) Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol Res 21: 794–810.
Leung, B., D.M. Lodge, D. Finnoff, J.F. Shogren, M.A. Lewis and G. Lamberti (2002) An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc Biol Sci 269: 2407–2413.
Levine, J.M., M. Vila, C.M.D. Antonio, J.S. Dukes, K. Grigulis and S. Lavorel (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Biol Sci 270: 775–781.
Rai, P.K. and J.S. Singh (2020) Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol Indic 111: 106020.
Dickinson, J.L., B. Zuckerberg and D.N. Bonter (2010) Citizen science as an ecological research tool: Challenges and benefits. Annu Rev Ecol Evol Syst 41: 149–172.
James, K. and K. Bradshaw (2020) Detecting plant species in the field with deep learning and drone technology. Methods Ecol Evol 11: 1509–1519.
Claassens, L. and A.N. Hodgson (2018) Gaining insights into in situ behaviour of an endangered seahorse using action cameras. J Zool 304: 98–108.
Prach, K. and L.R. Walker (2011) Four opportunities for studies of ecological succession. Trends Ecol Evol 26: 119–123.
Seeland, M., M. Rzanny, D. Boho, J. Wäldchen and P. Mäder (2019) Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20: 1–13.
Watanabe, S., K. Sumi and T. Ise (2020) Identifying the vegetation type in Google Earth images using a convolutional neural network: A case study for Japanese bamboo forests. BMC Ecol 20: 1–14.
Silvertown, J. (2009) A new dawn for citizen science. Trends Ecol Evol 24: 467–471.
Schuttler, S.G., A.E. Sorensen, R.C. Jordan, C. Cooper and A. Shwartz (2018) Bridging the nature gap: can citizen science reverse the extinction of experience? Front Ecol Environ 16: 405–411.
Crall, A.W., C.S. Jarnevich, N.E. Young, B.J. Panke, M. Renz and T.J. Stohlgren (2015) Citizen science contributes to our knowledge of invasive plant species distributions. Biol Invasions 17: 2415–2427.
Qian, W., Y. Huang, Q. Liu, W. Fan, Z. Sun, H. Dong, F. Wan and X. Qiao (2020) UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild. Comput Electron Agric 174: 105519.
Agarwal, G., P. Belhumeur, S. Feiner, D. Jacobs, W.J. Kress, R. Ramamoorthi and S. White (2006) First steps toward an electronic field guide for plants. Taxon 55: 597–610.
Hulme, P.E. (2006) Beyond control: Wider implications for the management of biological invasions. J Appl Ecol 43: 835–847.
Pauchard, A. and K. Shea (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8: 399–413.
Tan, M. and Q. Le (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. Proc Int Conf Mach Learn 97: 6105–6114.
Brown, E.D. and B.K. Williams (2019) The potential for citizen science to produce reliable and useful information in ecology. Conserv Biol 33: 561–569.
Miralles, L., E. Dopico, F. Devlo-Delva and E. Garcia-Vazquez (2016) Controlling populations of invasive pygmy mussel (Xenostrobus securis) through citizen science and environmental DNA. Mar Pollut Bull 110: 127–132.
Jones, H.G. (2020) What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 12: plaa052.
Allison, S.D. and P.M. Vitousek (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141: 612–619.
Miller-Rushing, A., R. Primack and R. Bonney (2012) The history of public participation in ecological research. Front Ecol Environ 10: 285–290.
Ruckli, R., H.P. Rusterholz and B. Baur (2013) Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate. Acta Oecol (Montrouge) 47: 16–23.
Kganyago, M., J. Odindi, C. Adjorlolo and P. Mhangara (2018) Evaluating the capability of Landsat 8 OLI and SPOT 6 for discriminating invasive alien species in the African Savanna landscape. Int J Appl Earth Obs Geoinf 67: 10–19.
Cohen, J. (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20: 37–46.
Singh, A.K., B. Ganapathysubramanian, S. Sarkar and A. Singh (2018) Deep learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci 23: 883–898.
Manfreda, S., M.F. McCabe, P.E. Miller, R. Lucas, V. Pajuelo Madrigal, G. Mallinis, E.B. Dor, D. Helman, L. Estes, G. Ciraolo et al. (2018) On the use of unmanned aerial systems for environmental monitoring. Remote Sens (Basel) 10: 641.
Carter, G.A., K.L. Lucas, G.A. Blossom, C.L. Lassitter, D.M. Holiday, D.S Mooneyhan and D.R. Fastring, T.R. Holcombe and J.A. Griffith (2009) Remote sensing and mapping of tamarisk along the Colorado river, USA: A comparative use of summer-acquired Hyperion, Thematic Mapper and QuickBird data. Remote Sens (Basel) 1: 318–329.
Crall, A.W., G.J. Newman, T.J. Stohlgren, K.A. Holfelder, J. Graham and D.M. Waller (2011) Assessing citizen science data quality: An invasive species case study. Conserv Lett 4: 433–442.
Ise, T., M. Minagawa and M. Onishi (2018) Classifying 3 moss species by deep learning, using the “Chopped Picture” method. Open J Ecol 8: 166–173.
Rzanny, M., P. Mäder, A. Deggelmann, M. Chen and J. Wäldchen (2019) Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods 15: 1–11.
Fusco, E.J., J.T. Finn, J.K. Balch, R.C. Nagy and B.A. Bradley (2019) Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc Natl Acad Sci USA 116: 23594–23599.
Palacios, F., G. Bueno, J. Salido, M.P. Diago, I. Hernández and J. Tardaguila (2020) Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions. Comput Electron Agric 178: 105796.
Maistrello, L., P. Dioli, M. Bariselli, G.L. Mazzoli and I. Giacalone-Forini (2016) Citizen science and early detection of invasive species: Phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol Invasions 18: 3109–3116.
Underwood, E., S. Ustin and D. DiPietro (2003) Mapping non-native plants using hyperspectral imagery. Remote Sens Environ 86: 150–161.
Johnson, B.A., A.D. Mader, R. Dasgupta and P. Kumar (2020) Citizen science and invasive alien species: An analysis of citizen science initiatives using information and communications technology (ICT) to collect invasive alien species observations. Glob Ecol Conserv 21: e00812.
Müllerová, J., J. Brůna, T. Bartaloš, P. Dvořák, M. Vítková and P. Pyšek (2017) Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring. Front Plant Sci 8: 887.
He, K., X. Zhang, S. Ren and J. Sun (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
Dash, J.P., M.S. Watt, T.S.H. Paul, J. Morgenroth and R. Hartley (2019) Taking a closer look at invasive alien plant research: A review of the current state, opportunities, and future directions for UAVs. Methods Ecol Evol 10: 2020–2033.
Gilpin, A.M., A.J. Denham and D.J. Ayre (2017) The use of digital video recorders in pollination biology. Ecol Entomol 42: 383–388.
Jarnevich, C.S., T.J. Stohlgren, D. Barnett and J. Kartesz (2006) Filling in the gaps: Modelling native species richness and invasions using spatially incomplete data. Divers Distrib 12: 511–520.
Pärtel, J., M. Pärtel and J. Wäldchen (2021) Plant image identification application demonstrates high accuracy in Northern Europe. AoB Plants 13: plab050.
22
23
24
25
26
27
28
29
M. Seeland (38) 2019; 20
M. Rzanny (36) 2019; 15
31
10
32
11
33
12
34
13
35
14
15
37
16
17
39
18
H.G. Jones (19) 2020; 12
J. Pärtel (30) 2021; 13
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: Brown, E.D. and B.K. Williams (2019) The potential for citizen science to produce reliable and useful information in ecology. Conserv Biol 33: 561–569.
– reference: Ruckli, R., H.P. Rusterholz and B. Baur (2013) Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate. Acta Oecol (Montrouge) 47: 16–23.
– reference: Singh, A.K., B. Ganapathysubramanian, S. Sarkar and A. Singh (2018) Deep learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci 23: 883–898.
– reference: Tan, M. and Q. Le (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. Proc Int Conf Mach Learn 97: 6105–6114.
– reference: Prach, K. and L.R. Walker (2011) Four opportunities for studies of ecological succession. Trends Ecol Evol 26: 119–123.
– reference: Watanabe, S., K. Sumi and T. Ise (2020) Identifying the vegetation type in Google Earth images using a convolutional neural network: A case study for Japanese bamboo forests. BMC Ecol 20: 1–14.
– reference: Crall, A.W., G.J. Newman, T.J. Stohlgren, K.A. Holfelder, J. Graham and D.M. Waller (2011) Assessing citizen science data quality: An invasive species case study. Conserv Lett 4: 433–442.
– reference: Agarwal, G., P. Belhumeur, S. Feiner, D. Jacobs, W.J. Kress, R. Ramamoorthi and S. White (2006) First steps toward an electronic field guide for plants. Taxon 55: 597–610.
– reference: Pärtel, J., M. Pärtel and J. Wäldchen (2021) Plant image identification application demonstrates high accuracy in Northern Europe. AoB Plants 13: plab050.
– reference: Palacios, F., G. Bueno, J. Salido, M.P. Diago, I. Hernández and J. Tardaguila (2020) Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions. Comput Electron Agric 178: 105796.
– reference: Carter, G.A., K.L. Lucas, G.A. Blossom, C.L. Lassitter, D.M. Holiday, D.S Mooneyhan and D.R. Fastring, T.R. Holcombe and J.A. Griffith (2009) Remote sensing and mapping of tamarisk along the Colorado river, USA: A comparative use of summer-acquired Hyperion, Thematic Mapper and QuickBird data. Remote Sens (Basel) 1: 318–329.
– reference: Rai, P.K. and J.S. Singh (2020) Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol Indic 111: 106020.
– reference: Dash, J.P., M.S. Watt, T.S.H. Paul, J. Morgenroth and R. Hartley (2019) Taking a closer look at invasive alien plant research: A review of the current state, opportunities, and future directions for UAVs. Methods Ecol Evol 10: 2020–2033.
– reference: Gilpin, A.M., A.J. Denham and D.J. Ayre (2017) The use of digital video recorders in pollination biology. Ecol Entomol 42: 383–388.
– reference: Jarnevich, C.S., T.J. Stohlgren, D. Barnett and J. Kartesz (2006) Filling in the gaps: Modelling native species richness and invasions using spatially incomplete data. Divers Distrib 12: 511–520.
– reference: Allison, S.D. and P.M. Vitousek (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141: 612–619.
– reference: Schuttler, S.G., A.E. Sorensen, R.C. Jordan, C. Cooper and A. Shwartz (2018) Bridging the nature gap: can citizen science reverse the extinction of experience? Front Ecol Environ 16: 405–411.
– reference: James, K. and K. Bradshaw (2020) Detecting plant species in the field with deep learning and drone technology. Methods Ecol Evol 11: 1509–1519.
– reference: Kganyago, M., J. Odindi, C. Adjorlolo and P. Mhangara (2018) Evaluating the capability of Landsat 8 OLI and SPOT 6 for discriminating invasive alien species in the African Savanna landscape. Int J Appl Earth Obs Geoinf 67: 10–19.
– reference: Miller-Rushing, A., R. Primack and R. Bonney (2012) The history of public participation in ecological research. Front Ecol Environ 10: 285–290.
– reference: Leung, B., D.M. Lodge, D. Finnoff, J.F. Shogren, M.A. Lewis and G. Lamberti (2002) An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc Biol Sci 269: 2407–2413.
– reference: Ise, T., M. Minagawa and M. Onishi (2018) Classifying 3 moss species by deep learning, using the “Chopped Picture” method. Open J Ecol 8: 166–173.
– reference: Jones, H.G. (2020) What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 12: plaa052.
– reference: Pauchard, A. and K. Shea (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8: 399–413.
– reference: Maistrello, L., P. Dioli, M. Bariselli, G.L. Mazzoli and I. Giacalone-Forini (2016) Citizen science and early detection of invasive species: Phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol Invasions 18: 3109–3116.
– reference: Miralles, L., E. Dopico, F. Devlo-Delva and E. Garcia-Vazquez (2016) Controlling populations of invasive pygmy mussel (Xenostrobus securis) through citizen science and environmental DNA. Mar Pollut Bull 110: 127–132.
– reference: Qian, W., Y. Huang, Q. Liu, W. Fan, Z. Sun, H. Dong, F. Wan and X. Qiao (2020) UAV and a deep convolutional neural network for monitoring invasive alien plants in the wild. Comput Electron Agric 174: 105519.
– reference: Fusco, E.J., J.T. Finn, J.K. Balch, R.C. Nagy and B.A. Bradley (2019) Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc Natl Acad Sci USA 116: 23594–23599.
– reference: Müllerová, J., J. Brůna, T. Bartaloš, P. Dvořák, M. Vítková and P. Pyšek (2017) Timing is important: Unmanned aircraft vs. satellite imagery in plant invasion monitoring. Front Plant Sci 8: 887.
– reference: Johnson, B.A., A.D. Mader, R. Dasgupta and P. Kumar (2020) Citizen science and invasive alien species: An analysis of citizen science initiatives using information and communications technology (ICT) to collect invasive alien species observations. Glob Ecol Conserv 21: e00812.
– reference: Kim, K.C. and L.B. Byrne (2006) Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol Res 21: 794–810.
– reference: Seeland, M., M. Rzanny, D. Boho, J. Wäldchen and P. Mäder (2019) Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20: 1–13.
– reference: Silvertown, J. (2009) A new dawn for citizen science. Trends Ecol Evol 24: 467–471.
– reference: Dickinson, J.L., B. Zuckerberg and D.N. Bonter (2010) Citizen science as an ecological research tool: Challenges and benefits. Annu Rev Ecol Evol Syst 41: 149–172.
– reference: Cohen, J. (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20: 37–46.
– reference: Manfreda, S., M.F. McCabe, P.E. Miller, R. Lucas, V. Pajuelo Madrigal, G. Mallinis, E.B. Dor, D. Helman, L. Estes, G. Ciraolo et al. (2018) On the use of unmanned aerial systems for environmental monitoring. Remote Sens (Basel) 10: 641.
– reference: Rzanny, M., P. Mäder, A. Deggelmann, M. Chen and J. Wäldchen (2019) Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods 15: 1–11.
– reference: Claassens, L. and A.N. Hodgson (2018) Gaining insights into in situ behaviour of an endangered seahorse using action cameras. J Zool 304: 98–108.
– reference: Crall, A.W., C.S. Jarnevich, N.E. Young, B.J. Panke, M. Renz and T.J. Stohlgren (2015) Citizen science contributes to our knowledge of invasive plant species distributions. Biol Invasions 17: 2415–2427.
– reference: He, K., X. Zhang, S. Ren and J. Sun (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
– reference: Underwood, E., S. Ustin and D. DiPietro (2003) Mapping non-native plants using hyperspectral imagery. Remote Sens Environ 86: 150–161.
– reference: Hulme, P.E. (2006) Beyond control: Wider implications for the management of biological invasions. J Appl Ecol 43: 835–847.
– reference: Levine, J.M., M. Vila, C.M.D. Antonio, J.S. Dukes, K. Grigulis and S. Lavorel (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Biol Sci 270: 775–781.
– ident: 17
  doi: 10.1111/j.1366-9516.2006.00278.x
– ident: 25
  doi: 10.3390/rs10040641
– volume: 13
  start-page: plab050
  issn: 2041-2851
  year: 2021
  ident: 30
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plab050
– ident: 42
  doi: 10.1016/S0034-4257(03)00096-8
– ident: 24
  doi: 10.1007/s10530-016-1217-z
– ident: 28
  doi: 10.3389/fpls.2017.00887
– ident: 4
  doi: 10.3390/rs1030318
– ident: 21
  doi: 10.1007/s11284-006-0035-7
– ident: 11
  doi: 10.1073/pnas.1908253116
– ident: 32
  doi: 10.1016/j.tree.2010.12.007
– ident: 6
  doi: 10.1177/001316446002000104
– volume: 20
  start-page: 1
  issn: 1471-2105
  year: 2019
  ident: 38
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2474-x
– ident: 1
  doi: 10.2307/25065637
– volume: 12
  start-page: plaa052
  issn: 2041-2851
  year: 2020
  ident: 19
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plaa052
– ident: 33
  doi: 10.1016/j.compag.2020.105519
– ident: 23
  doi: 10.1098/rspb.2003.2327
– ident: 34
  doi: 10.1016/j.ecolind.2019.106020
– ident: 2
  doi: 10.1007/s00442-004-1679-z
– ident: 31
  doi: 10.1007/s10530-005-6419-8
– ident: 16
  doi: 10.1111/2041-210X.13473
– ident: 9
  doi: 10.1111/2041-210X.13296
– ident: 20
  doi: 10.1016/j.jag.2017.12.008
– ident: 22
  doi: 10.1098/rspb.2002.2179
– ident: 43
  doi: 10.1186/s12898-020-00331-5
– ident: 13
  doi: 10.1109/CVPR.2016.90
– ident: 41
– ident: 15
  doi: 10.4236/oje.2018.83011
– ident: 29
  doi: 10.1016/j.compag.2020.105796
– ident: 12
  doi: 10.1111/een.12394
– ident: 37
  doi: 10.1002/fee.1826
– ident: 27
  doi: 10.1016/j.marpolbul.2016.06.072
– ident: 26
  doi: 10.1890/110278
– ident: 8
  doi: 10.1007/s10530-015-0885-4
– ident: 3
  doi: 10.1111/cobi.13223
– ident: 10
  doi: 10.1146/annurev-ecolsys-102209-144636
– ident: 35
  doi: 10.1016/j.actao.2012.10.011
– volume: 15
  start-page: 1
  issn: 1746-4811
  year: 2019
  ident: 36
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0462-4
– ident: 5
  doi: 10.1111/jzo.12509
– ident: 18
  doi: 10.1016/j.gecco.2019.e00812
– ident: 39
  doi: 10.1016/j.tree.2009.03.017
– ident: 14
  doi: 10.1111/j.1365-2664.2006.01227.x
– ident: 7
  doi: 10.1111/j.1755-263X.2011.00196.x
– ident: 40
  doi: 10.1016/j.tplants.2018.07.004
SSID ssj0025045
Score 2.31404
Snippet Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect...
SourceID pubmedcentral
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96
SubjectTerms action camera
alien plant
Cameras
chopped picture method
citizen science
computer vision
Deep learning
Flowers & plants
Indigenous plants
Introduced plants
Invasive plants
Invasive species
Plant species
Research Paper
Satellite imagery
Solidago altissima
Title Automatic detection of alien plant species in action camera images using the chopped picture method and the potential of citizen science
URI https://www.jstage.jst.go.jp/article/jsbbs/72/1/72_21062/_article/-char/en
https://www.proquest.com/docview/2646155342
https://www.proquest.com/docview/2709019076
https://pubmed.ncbi.nlm.nih.gov/PMC8987844
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Breeding Science, 2022, Vol.72(1), pp.96-106
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9QwEB7OU-R8EH_i6nlEuCehZ7dNk1YQWcTzEM4nF_atJN1kr8ea1t0uqH-Bf7YzabZYuSdf9iXTbZjpdL7pZL4BOM2EEugINDQj5xGXJo9UvCwiI2xFEZELT6R9-UVczPnnRbY4gP0wzqDA7Y2pHc2Tmm_WZz--_3yPDv_OcyPI-M31VuvtGeYu9C6-jSFJ0iiDSz6UE4imK_OZF-cR5u1xaNT75-IjuJsKKhwWfBSl7lwjUFuZEQYdn6D8KySdP4D7AUuyWW_8h3Bg3CO4N1ttAp-GeQy_Z7uu8aysbGk6f-zKscYyRN_GsXaNemXUbIn5Mqsd67scWKXoUxWrv-F-toyOxq8YAkWG2mpbs2Rt7QsPrB8_zZRb-uW26ejsEW4J71DVXf0L7xFC7BOYn3_8-uEiCsMXokrkcRdlXMXKJLowPEstR9hDSKQSwqYpQoAq0VojOKLopvNEGo7atCrWVoisssqmT-HQNc48A6aKKdpEWonZCxcmVxXCCpUi8LSZ1FZP4PVe2WUVmMlpQMa6pAwFjVR6I5XeSBM4HYTbnpDjZrG3vdUGoeCJQUgm5ZR-vPCwRp1u-LqYwPHe0uX-iSwROVINN-X436-GZXRGqrAoZ5odysi4oOZ8KSYgR0_IsA2i8x6vuPrK03rnRS5zzp__95Uv4Cih5gz_gegYDrvNzrxEyNTpE7j1aTE98U7xBy8KG_s
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+alien+plant+species+in+action+camera+images+using+the+chopped+picture+method+and+the+potential+of+citizen+science&rft.jtitle=Breeding+science&rft.au=Takaya%2C+Kosuke&rft.au=Sasaki%2C+Yu&rft.au=Ise%2C+Takeshi&rft.date=2022-01-01&rft.pub=Japanese+Society+of+Breeding&rft.issn=1344-7610&rft.eissn=1347-3735&rft.volume=72&rft.issue=1&rft.spage=96&rft.epage=106&rft_id=info:doi/10.1270%2Fjsbbs.21062&rft_id=info%3Apmid%2F36045894&rft.externalDocID=PMC8987844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7610&client=summon