Validity and repeatability of inertial measurement units for measuring gait parameters
•We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait parameters.•The system is more accurate with sensors placed at the foot rather than the ankle.•The foot configuration was accurate and repeatable whe...
Saved in:
Published in | Gait & posture Vol. 55; no. NA; pp. 87 - 93 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait parameters.•The system is more accurate with sensors placed at the foot rather than the ankle.•The foot configuration was accurate and repeatable when measuring asymmetric gait.
Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. |
---|---|
AbstractList | Highlights ⢠We tested the accuracy and repeatability of APDM's Mobility Lab gait system. ⢠The system is accurate and repeatable when measuring spatiotemporal gait parameters. ⢠The system is more accurate with sensors placed at the foot rather than the ankle. ⢠The foot configuration was accurate and repeatable when measuring asymmetric gait. Abstract: Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Highlights • We tested the accuracy and repeatability of APDM’s Mobility Lab gait system. • The system is accurate and repeatable when measuring spatiotemporal gait parameters. • The system is more accurate with sensors placed at the foot rather than the ankle. • The foot configuration was accurate and repeatable when measuring asymmetric gait •We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait parameters.•The system is more accurate with sensors placed at the foot rather than the ankle.•The foot configuration was accurate and repeatable when measuring asymmetric gait. Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. |
Author | Claflin, Edward S. Kalyanaraman, Tarun Krishnan, Chandramouli Washabaugh, Edward P. Adamczyk, Peter G. |
AuthorAffiliation | 1 Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA 2 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA |
AuthorAffiliation_xml | – name: 3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA – name: 1 Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA – name: 2 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA |
Author_xml | – sequence: 1 givenname: Edward P. surname: Washabaugh fullname: Washabaugh, Edward P. organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA – sequence: 2 givenname: Tarun surname: Kalyanaraman fullname: Kalyanaraman, Tarun organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA – sequence: 3 givenname: Peter G. surname: Adamczyk fullname: Adamczyk, Peter G. organization: Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA – sequence: 4 givenname: Edward S. surname: Claflin fullname: Claflin, Edward S. organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA – sequence: 5 givenname: Chandramouli surname: Krishnan fullname: Krishnan, Chandramouli email: mouli@umich.edu organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28433867$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFv1DlyGXD2EkcW0IVqCpQqRIHoFfLcSaLl8QOtlNp_z2JdlvRHlhOlsbvPT37mzNy4rxDQi4o5BQof7fNN9qm0ceUM6B1DmUOtHhBVlTUcs0YlSdkBZLzNS84OyVnMW4BoCwEe0VOmSiLQvB6Re7udG9bm3aZdm0WcESddGP7ZeK7zDoMyeo-G1DHKeCALmWTsylmnQ-HqXWbbGmTjTroAROG-Jq87HQf8c3hPCc_Pl1_v_qyvv36-ebq4-3acAFpzaCqmRRcsILxrjNCVqChZk3TdLygHXSC1rpuRdUiLWkrBEpWlg2TjWiopMU5udznjlMzYGvmekH3agx20GGnvLbq6Y2zP9XG36uqgpqDnAPeHgKC_z1hTGqw0WDfa4d-ioqBoLKUvGRHpVRIWla1LGCWXvxd67HPw7_PAr4XmOBjDNg9SiioBbDaqgfAagGsoFQz4Nn4_pnR2KST9cvzbH_c_mFvxxnKvcWgorHoDLY2oEmq9fZ4xOWzCNNbZ43uf-EO49ZPwc3IFVWRKVDfliVcdpDWBVDG6b8D_qfBH7Xt8c8 |
CitedBy_id | crossref_primary_10_1007_s00702_020_02190_2 crossref_primary_10_3390_s20051343 crossref_primary_10_3390_std13010004 crossref_primary_10_1109_JSEN_2020_3021501 crossref_primary_10_1002_pamm_201800014 crossref_primary_10_3389_fneur_2021_667340 crossref_primary_10_3390_s22093163 crossref_primary_10_1016_j_gaitpost_2018_05_030 crossref_primary_10_1097_JSM_0000000000000923 crossref_primary_10_1016_j_knee_2021_02_011 crossref_primary_10_3390_s20174866 crossref_primary_10_5535_arm_2020_44_1_48 crossref_primary_10_3389_fbioe_2021_627481 crossref_primary_10_1038_s41598_021_81009_w crossref_primary_10_1186_s13047_022_00521_y crossref_primary_10_1155_2023_1746536 crossref_primary_10_47836_mjmhs_18_s6_9 crossref_primary_10_1080_02640414_2022_2107816 crossref_primary_10_3390_s21051786 crossref_primary_10_1016_j_jbiomech_2023_111907 crossref_primary_10_1016_j_clinbiomech_2024_106393 crossref_primary_10_1016_j_gaitpost_2020_11_024 crossref_primary_10_3390_s20236770 crossref_primary_10_1097_JAT_0000000000000179 crossref_primary_10_1186_s11556_021_00271_z crossref_primary_10_1016_j_parkreldis_2023_105345 crossref_primary_10_1177_09544062241242655 crossref_primary_10_1088_1361_6579_ab4023 crossref_primary_10_3390_s22124433 crossref_primary_10_1080_10749357_2018_1436384 crossref_primary_10_3390_s18020394 crossref_primary_10_1002_lary_29796 crossref_primary_10_1001_jamaoto_2021_1276 crossref_primary_10_3390_s22249683 crossref_primary_10_1155_2021_6628320 crossref_primary_10_1038_s41598_022_17017_1 crossref_primary_10_3389_fnhum_2019_00420 crossref_primary_10_3390_s23042209 crossref_primary_10_3390_s21041086 crossref_primary_10_3390_s22218387 crossref_primary_10_3390_s24020662 crossref_primary_10_1038_s41598_022_09372_w crossref_primary_10_3390_s21186179 crossref_primary_10_1108_SR_10_2021_0357 crossref_primary_10_1007_s10439_023_03290_2 crossref_primary_10_1371_journal_pone_0212319 crossref_primary_10_1109_JSEN_2018_2815700 crossref_primary_10_3389_fnagi_2022_809281 crossref_primary_10_1016_j_medengphy_2022_103925 crossref_primary_10_3389_fnbot_2021_723206 crossref_primary_10_3390_s18061737 crossref_primary_10_1016_j_clinbiomech_2019_08_013 crossref_primary_10_1016_j_jbiomech_2021_110800 crossref_primary_10_1038_s41582_022_00674_1 crossref_primary_10_3233_JPD_201914 crossref_primary_10_1016_j_compbiomed_2020_103687 crossref_primary_10_1186_s12984_024_01363_4 crossref_primary_10_1200_PO_23_00312 crossref_primary_10_1177_15266028231160661 crossref_primary_10_1371_journal_pone_0285469 crossref_primary_10_3389_fneur_2017_00412 crossref_primary_10_1007_s42979_022_01013_3 crossref_primary_10_3390_bioengineering11080793 crossref_primary_10_1007_s00415_023_11773_4 crossref_primary_10_1212_WNL_0000000000209887 crossref_primary_10_3390_brainsci11081049 crossref_primary_10_3390_s24175839 crossref_primary_10_1186_s13102_022_00461_x crossref_primary_10_1016_j_injury_2019_11_011 crossref_primary_10_1016_j_clinbiomech_2024_106196 crossref_primary_10_3390_s23146624 crossref_primary_10_1016_j_jbiomech_2024_112063 crossref_primary_10_3390_s20154090 crossref_primary_10_1016_j_apmr_2024_01_020 crossref_primary_10_1371_journal_pone_0276989 crossref_primary_10_1007_s13670_020_00349_z crossref_primary_10_1016_j_gaitpost_2022_05_021 crossref_primary_10_3390_healthcare9020149 crossref_primary_10_3390_s21227497 crossref_primary_10_1016_j_gaitpost_2022_11_015 crossref_primary_10_1016_j_clinbiomech_2022_105818 crossref_primary_10_1016_j_apmr_2024_01_019 crossref_primary_10_1007_s11357_022_00675_4 crossref_primary_10_1016_j_jbiomech_2023_111436 crossref_primary_10_1002_mds_28740 crossref_primary_10_1177_19417381251313775 crossref_primary_10_1186_s12883_020_01920_z crossref_primary_10_1016_j_clinbiomech_2020_105019 crossref_primary_10_1016_j_gaitpost_2019_12_014 crossref_primary_10_3390_s21134441 crossref_primary_10_1109_TIM_2022_3165257 crossref_primary_10_1088_1361_6579_ad04b4 crossref_primary_10_1093_ptj_pzad134 crossref_primary_10_1177_0309364620911314 crossref_primary_10_3390_jcm8122177 crossref_primary_10_3390_s20123338 crossref_primary_10_1002_mds_29742 crossref_primary_10_3390_s22083050 crossref_primary_10_3390_jcm10091804 crossref_primary_10_3390_bioengineering11040358 crossref_primary_10_1159_000537720 crossref_primary_10_3390_biomechanics4040052 crossref_primary_10_1016_j_measurement_2022_111442 crossref_primary_10_1002_jor_25117 crossref_primary_10_1123_jmpb_2021_0035 crossref_primary_10_1177_1545968319847962 crossref_primary_10_1186_s12984_022_01030_6 crossref_primary_10_3389_fmed_2024_1324375 crossref_primary_10_3390_ijerph18073644 crossref_primary_10_1016_j_gaitpost_2024_01_030 crossref_primary_10_1016_j_gaitpost_2019_08_006 crossref_primary_10_1016_j_gaitpost_2019_08_007 crossref_primary_10_2139_ssrn_4087658 crossref_primary_10_1186_s13102_023_00792_3 crossref_primary_10_1186_s12938_020_00802_2 crossref_primary_10_3390_s22031077 crossref_primary_10_1123_mc_2020_0060 crossref_primary_10_1016_j_expneurol_2022_114135 crossref_primary_10_3390_app12063083 crossref_primary_10_3233_JAD_210684 crossref_primary_10_3389_fnhum_2023_1040930 crossref_primary_10_1038_s41598_020_73734_5 crossref_primary_10_3390_s22010376 crossref_primary_10_3390_s20102858 crossref_primary_10_1016_j_gaitpost_2023_10_006 crossref_primary_10_1016_j_gaitpost_2023_10_008 crossref_primary_10_1016_j_gaitpost_2023_06_001 crossref_primary_10_2196_27087 crossref_primary_10_1080_10255842_2024_2427113 crossref_primary_10_1080_1091367X_2024_2370533 crossref_primary_10_3390_computers10040049 crossref_primary_10_3390_s20226691 crossref_primary_10_1002_mds_29757 crossref_primary_10_23736_S1973_9087_18_05306_6 crossref_primary_10_1007_s00221_021_06145_1 crossref_primary_10_1038_s41598_020_69667_8 crossref_primary_10_3390_s25020581 crossref_primary_10_3390_s23010331 crossref_primary_10_14193_jkfas_2024_28_1_21 crossref_primary_10_1007_s00415_020_09696_5 crossref_primary_10_1016_j_arth_2024_01_036 crossref_primary_10_3233_RNN_170782 crossref_primary_10_3389_fnins_2020_582046 crossref_primary_10_2196_17986 crossref_primary_10_3390_s24030831 crossref_primary_10_1080_10749357_2023_2240584 crossref_primary_10_1186_s13075_022_02808_8 crossref_primary_10_1007_s00115_019_00817_8 crossref_primary_10_1088_1361_6579_aceecf crossref_primary_10_1016_j_parkreldis_2022_105235 crossref_primary_10_23736_S1973_9087_23_07812_7 crossref_primary_10_1002_mds_28214 crossref_primary_10_3389_frobt_2023_1265543 crossref_primary_10_1097_NPT_0000000000000317 crossref_primary_10_1519_SSC_0000000000000901 crossref_primary_10_1038_s41598_021_88794_4 crossref_primary_10_3390_s24237825 crossref_primary_10_1177_0954411920904597 crossref_primary_10_1016_j_jbiomech_2019_109567 crossref_primary_10_1016_j_apmr_2023_04_005 crossref_primary_10_3390_brainsci11111519 crossref_primary_10_1016_j_gaitpost_2019_02_022 crossref_primary_10_1016_j_msard_2020_102445 crossref_primary_10_23736_S0022_4707_24_16120_8 crossref_primary_10_1109_JSEN_2024_3410402 crossref_primary_10_4081_gimle_458 crossref_primary_10_1016_j_humov_2021_102884 crossref_primary_10_1002_mds_29777 crossref_primary_10_1002_mus_26681 crossref_primary_10_1007_s00221_021_06161_1 crossref_primary_10_1016_j_gaitpost_2018_12_028 crossref_primary_10_1016_j_jbiomech_2023_111818 crossref_primary_10_3389_fspor_2022_918402 crossref_primary_10_3390_s20185046 crossref_primary_10_7717_peerj_16641 crossref_primary_10_3233_JPD_202289 crossref_primary_10_1016_j_gaitpost_2020_05_010 crossref_primary_10_3390_s24113476 crossref_primary_10_1016_j_gaitpost_2023_11_008 crossref_primary_10_3390_s22030863 crossref_primary_10_1097_NPT_0000000000000379 crossref_primary_10_2139_ssrn_4110449 crossref_primary_10_3390_s22186954 crossref_primary_10_1097_JPO_0000000000000332 crossref_primary_10_1212_WNL_0000000000010176 crossref_primary_10_1002_acr_25096 crossref_primary_10_3390_s20205769 crossref_primary_10_1088_1361_6579_ab42d3 crossref_primary_10_1371_journal_pone_0278646 crossref_primary_10_3390_s22020493 crossref_primary_10_3389_fncom_2018_00072 crossref_primary_10_3390_brainsci11111507 crossref_primary_10_1007_s00415_020_10240_8 crossref_primary_10_1016_j_amjoto_2022_103682 crossref_primary_10_1016_j_jbiomech_2022_111098 crossref_primary_10_1016_j_neurom_2022_04_035 crossref_primary_10_1002_mdc3_13601 crossref_primary_10_1016_j_clinbiomech_2022_105658 crossref_primary_10_1177_0013916517749256 crossref_primary_10_3389_fdgth_2021_736418 crossref_primary_10_3390_s23104651 crossref_primary_10_1007_s40520_019_01236_0 crossref_primary_10_3233_JPD_230063 crossref_primary_10_1186_s12984_020_00685_3 crossref_primary_10_1038_s41598_021_92353_2 crossref_primary_10_3389_fnagi_2023_1117802 crossref_primary_10_1093_cercor_bhab107 crossref_primary_10_1016_j_jbiomech_2023_111726 crossref_primary_10_1016_j_gaitpost_2021_01_013 crossref_primary_10_3389_fneur_2025_1544453 crossref_primary_10_1016_j_gaitpost_2021_01_012 crossref_primary_10_15212_bioi_2020_0006 crossref_primary_10_1016_j_gaitpost_2023_09_012 crossref_primary_10_1097_JPO_0000000000000316 crossref_primary_10_1371_journal_pone_0198178 crossref_primary_10_3390_sports13010010 crossref_primary_10_1002_hsr2_772 crossref_primary_10_1145_3351231 crossref_primary_10_1016_j_msard_2019_07_014 crossref_primary_10_1080_21641846_2021_1950405 crossref_primary_10_1016_j_rcim_2020_102035 crossref_primary_10_1016_j_measurement_2020_108642 crossref_primary_10_1016_j_ijnurstu_2018_03_015 crossref_primary_10_3233_JAD_231453 crossref_primary_10_3390_s19153320 crossref_primary_10_3390_s22239278 crossref_primary_10_3390_s24113343 |
Cites_doi | 10.1109/7333.928571 10.1371/journal.pone.0171346 10.1191/026921598666182531 10.1016/j.gaitpost.2013.05.012 10.1016/j.gaitpost.2008.01.008 10.1152/japplphysiol.01380.2006 10.2340/16501977-0230 10.1097/NPT.0b013e318227fe70 10.1016/j.gaitpost.2011.11.026 10.1037/1040-3590.6.4.284 10.1519/JPT.0b013e318248e20d 10.1109/TBME.2005.851475 10.1109/TBME.2004.840727 10.1002/mds.26269 10.1007/s11517-011-0736-0 10.1016/j.rehab.2010.09.002 10.1016/j.gaitpost.2015.03.009 10.1016/S0966-6362(02)00190-X 10.1016/j.gaitpost.2006.09.011 10.1016/j.gaitpost.2009.11.014 10.1016/j.gaitpost.2010.11.024 10.1016/j.gaitpost.2015.09.024 10.1016/S0021-9290(02)00008-8 10.1109/TBME.2004.827933 10.1017/S0266462301107038 10.3390/s140100356 10.1016/j.gaitpost.2006.08.010 10.1023/A:1013138911638 10.1016/j.gaitpost.2006.07.003 10.1016/j.jbiomech.2014.11.048 10.1093/brain/awm035 10.1115/1.1336798 10.1093/ptj/71.6.465 10.1016/j.gaitpost.2007.07.007 10.1016/j.gaitpost.2016.01.014 10.1016/S0140-6736(95)91748-9 10.1097/NPT0b013e31816593c0 10.1016/j.gaitpost.2015.08.015 10.1586/17434440.2016.1153421 10.1016/S0966-6362(03)00069-9 10.1016/j.gaitpost.2009.03.011 10.1016/j.gaitpost.2015.05.002 10.1053/j.jfas.2016.04.004 10.1016/j.gaitpost.2016.02.009 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.gaitpost.2017.04.013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1879-2219 |
EndPage | 93 |
ExternalDocumentID | PMC5507609 28433867 10_1016_j_gaitpost_2017_04_013 S0966636217301261 1_s2_0_S0966636217301261 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB019834 – fundername: NIA NIH HHS grantid: R44 AG030815 – fundername: NICHD NIH HHS grantid: R43 HD074424 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UPT UV1 WH7 WUQ YRY Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c680t-2057298682326ffc8950a072bbbf631f0f817a7d85de141d88e9244b29b8b1913 |
IEDL.DBID | .~1 |
ISSN | 0966-6362 1879-2219 |
IngestDate | Thu Aug 21 18:31:29 EDT 2025 Mon Jul 21 10:51:01 EDT 2025 Sun Aug 24 03:54:37 EDT 2025 Thu Apr 03 07:06:58 EDT 2025 Tue Jul 01 03:47:36 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Fri Feb 23 02:47:54 EST 2024 Tue Feb 25 19:56:22 EST 2025 Tue Aug 26 16:33:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | NA |
Keywords | Biomechanics Accuracy Inertial sensors Wearable Wearable devices Gait detection |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c680t-2057298682326ffc8950a072bbbf631f0f817a7d85de141d88e9244b29b8b1913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5507609 |
PMID | 28433867 |
PQID | 1891457930 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5507609 proquest_miscellaneous_2081949642 proquest_miscellaneous_1891457930 pubmed_primary_28433867 crossref_primary_10_1016_j_gaitpost_2017_04_013 crossref_citationtrail_10_1016_j_gaitpost_2017_04_013 elsevier_sciencedirect_doi_10_1016_j_gaitpost_2017_04_013 elsevier_clinicalkeyesjournals_1_s2_0_S0966636217301261 elsevier_clinicalkey_doi_10_1016_j_gaitpost_2017_04_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Gait & posture |
PublicationTitleAlternate | Gait Posture |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Riley, Paolini, Della Croce, Paylo, Kerrigan (bib0115) 2007; 26 Lee, Park (bib0165) 2011; 49 Lord, Halligan, Wade (bib0025) 1998; 12 Reisman, Wityk, Silver, Bastian (bib0060) 2007; 130 Brunnekreef, van Uden, van Moorsel, Kooloos (bib0015) 2005; 6 Iosa, Picerno, Paolucci, Morone (bib0145) 2016; 4440 Baston, Mancini, Rocchi, Horak (bib0235) 2016; 46 Beckerman, Roebroeck, Lankhorst, Becher, Bezemer, Verbeek (bib0105) 2001; 10 Viehweger, Zürcher Pfund, Hélix, Rohon, Jacquemier, Scavarda, Jouve, Bollini, Loundou, Simeoni (bib0020) 2010; 53 Xu, McGorry, Chou, hua Lin, chi Chang (bib0030) 2015; 42 Jordan, Challis, Newell (bib0075) 2007; 26 Mancini, Horak (bib0040) 2016; 13 Curtze, Nutt, Carlson-Kuhta, Mancini, Horak (bib0240) 2015; 30 Salarian, Russmann, Vingerhoets, Dehollain, Blanc, Burkhard, Aminian (bib0045) 2004; 51 Rebula, Ojeda, Adamczyk, Kuo (bib0050) 2013; 38 Pappas, Popovic, Keller, Dietz, Morari (bib0175) 2001; 9 Zeni, Richards, Higginson (bib0070) 2008; 27 Dejnabadi, Jolles, Aminian (bib0150) 2005; 52 Lu, Wang, Lin, Sheu, Hsieh (bib0195) 2008; 40 Aminian, Najafi, Büla, Leyvraz, Robert (bib0160) 2002; 35 Fulk, Echternach (bib0180) 2008; 32 Mancini, El-Gohary, Pearson, Mcnames, Schlueter, Nutt, King, Horak (bib0220) 2015; 37 Lee, Hidler (bib0080) 2008; 104 González, López, Rodriguez-Uría, Álvarez, Alvarez (bib0130) 2010; 31 Kirtley (bib0085) 2005 de Vet, Bouter, Bezemer, Beurskens (bib0190) 2001; 17 El-Gohary, Pearson, McNames, Mancini, Horak, Mellone, Chiari (bib0245) 2013; 14 Krishnan, Washabaugh, Seetharaman (bib0035) 2015; 48 Hollman, Watkins, Imhoff, Braun, Akervik, Ness (bib0055) 2016; 43 Elbaz, Mor, Segal, Bar, Monda, Kish, Nyska, Palmanovich (bib0200) 2016; 55 Moon, McGinnis, Seagers, Motl, Sheth, Wright, Ghaffari, Sosnoff (bib0135) 2017; 12 Eastlack, Arvidson, Snyder-Mackler, Danoff, McGarvey (bib0005) 1991; 71 Kitagawa, Ogihara (bib0210) 2016; 45 Spain, St. George, Salarian, Mancini, Wagner, Horak, Bourdette (bib0225) 2012; 35 Lewek, Randall (bib0185) 2011; 35 Kim, Lee (bib0205) 2016 Kesar, Binder-Macleod, Hicks, Reisman (bib0100) 2011; 33 Henriksen, Lund, Moe-Nilssen, Bliddal, Danneskiod-Samsøe (bib0155) 2004; 19 Cicchetti (bib0110) 1994; 6 Sabatini, Martelloni, Scapellato, Cavallo (bib0170) 2005; 52 Mancini, Chiari, Holmstrom, Salarian, Horak (bib0230) 2016; 43 Coulthard, Treen, Oates, Lanovaz (bib0215) 2015; 41 Peters, Fritz, Krotish (bib0065) 2013; 36 Campanini, Merlo (bib0095) 2009; 30 Dingwell, Cusumano, Cavanagh, Sternad (bib0120) 2001; 123 Zijlstra, Hof (bib0125) 2003; 18 Bland, Altman (bib0090) 1995; 346 Ong, Hillman, Robb (bib0010) 2008; 28 Moore, MacDougall, Gracies, Cohen, Ondo (bib0140) 2007; 26 Kitagawa (10.1016/j.gaitpost.2017.04.013_bib0210) 2016; 45 Cicchetti (10.1016/j.gaitpost.2017.04.013_bib0110) 1994; 6 Iosa (10.1016/j.gaitpost.2017.04.013_bib0145) 2016; 4440 Ong (10.1016/j.gaitpost.2017.04.013_bib0010) 2008; 28 Salarian (10.1016/j.gaitpost.2017.04.013_bib0045) 2004; 51 Campanini (10.1016/j.gaitpost.2017.04.013_bib0095) 2009; 30 Sabatini (10.1016/j.gaitpost.2017.04.013_bib0170) 2005; 52 Mancini (10.1016/j.gaitpost.2017.04.013_bib0230) 2016; 43 Fulk (10.1016/j.gaitpost.2017.04.013_bib0180) 2008; 32 Spain (10.1016/j.gaitpost.2017.04.013_bib0225) 2012; 35 Zijlstra (10.1016/j.gaitpost.2017.04.013_bib0125) 2003; 18 Kirtley (10.1016/j.gaitpost.2017.04.013_bib0085) 2005 Xu (10.1016/j.gaitpost.2017.04.013_bib0030) 2015; 42 Curtze (10.1016/j.gaitpost.2017.04.013_bib0240) 2015; 30 Henriksen (10.1016/j.gaitpost.2017.04.013_bib0155) 2004; 19 Viehweger (10.1016/j.gaitpost.2017.04.013_bib0020) 2010; 53 de Vet (10.1016/j.gaitpost.2017.04.013_bib0190) 2001; 17 Lord (10.1016/j.gaitpost.2017.04.013_bib0025) 1998; 12 Eastlack (10.1016/j.gaitpost.2017.04.013_bib0005) 1991; 71 Bland (10.1016/j.gaitpost.2017.04.013_bib0090) 1995; 346 Moore (10.1016/j.gaitpost.2017.04.013_bib0140) 2007; 26 Kim (10.1016/j.gaitpost.2017.04.013_bib0205) 2016 Dingwell (10.1016/j.gaitpost.2017.04.013_bib0120) 2001; 123 El-Gohary (10.1016/j.gaitpost.2017.04.013_bib0245) 2013; 14 Hollman (10.1016/j.gaitpost.2017.04.013_bib0055) 2016; 43 Krishnan (10.1016/j.gaitpost.2017.04.013_bib0035) 2015; 48 Mancini (10.1016/j.gaitpost.2017.04.013_bib0040) 2016; 13 Lee (10.1016/j.gaitpost.2017.04.013_bib0165) 2011; 49 Lewek (10.1016/j.gaitpost.2017.04.013_bib0185) 2011; 35 Baston (10.1016/j.gaitpost.2017.04.013_bib0235) 2016; 46 Kesar (10.1016/j.gaitpost.2017.04.013_bib0100) 2011; 33 Pappas (10.1016/j.gaitpost.2017.04.013_bib0175) 2001; 9 Aminian (10.1016/j.gaitpost.2017.04.013_bib0160) 2002; 35 Mancini (10.1016/j.gaitpost.2017.04.013_bib0220) 2015; 37 Coulthard (10.1016/j.gaitpost.2017.04.013_bib0215) 2015; 41 Riley (10.1016/j.gaitpost.2017.04.013_bib0115) 2007; 26 Zeni (10.1016/j.gaitpost.2017.04.013_bib0070) 2008; 27 Jordan (10.1016/j.gaitpost.2017.04.013_bib0075) 2007; 26 Beckerman (10.1016/j.gaitpost.2017.04.013_bib0105) 2001; 10 Brunnekreef (10.1016/j.gaitpost.2017.04.013_bib0015) 2005; 6 Rebula (10.1016/j.gaitpost.2017.04.013_bib0050) 2013; 38 Elbaz (10.1016/j.gaitpost.2017.04.013_bib0200) 2016; 55 Lu (10.1016/j.gaitpost.2017.04.013_bib0195) 2008; 40 Dejnabadi (10.1016/j.gaitpost.2017.04.013_bib0150) 2005; 52 Peters (10.1016/j.gaitpost.2017.04.013_bib0065) 2013; 36 Moon (10.1016/j.gaitpost.2017.04.013_bib0135) 2017; 12 Reisman (10.1016/j.gaitpost.2017.04.013_bib0060) 2007; 130 González (10.1016/j.gaitpost.2017.04.013_bib0130) 2010; 31 Lee (10.1016/j.gaitpost.2017.04.013_bib0080) 2008; 104 |
References_xml | – volume: 52 start-page: 486 year: 2005 end-page: 494 ident: bib0170 article-title: Assessment of walking features from foot inertial sensing publication-title: IEEE Trans. Biomed. Eng. – volume: 40 start-page: 615 year: 2008 end-page: 619 ident: bib0195 article-title: The minimal detectable change of the simplified stroke rehabilitation assessment of movement measure publication-title: J. Rehabil. Med. – volume: 12 start-page: e0171346 year: 2017 ident: bib0135 article-title: Monitoring gait in multiple sclerosis with novel wearable motion sensors publication-title: PLoS One – volume: 31 start-page: 322 year: 2010 end-page: 325 ident: bib0130 article-title: Real-time gait event detection for normal subjects from lower trunk accelerations publication-title: Gait Posture – volume: 346 start-page: 1085 year: 1995 end-page: 1087 ident: bib0090 article-title: Comparing methods of measurement: why plotting difference against standard method is misleading publication-title: Lancet – volume: 41 start-page: 882 year: 2015 end-page: 887 ident: bib0215 article-title: Evaluation of an inertial sensor system for analysis of timed-up-and-go under dual-task demands publication-title: Gait Posture – volume: 104 start-page: 747 year: 2008 end-page: 755 ident: bib0080 article-title: Biomechanics of overground vs. treadmill walking in healthy individuals publication-title: J. Appl. Physiol. – volume: 46 start-page: 26 year: 2016 end-page: 29 ident: bib0235 article-title: Effects of levodopa on postural strategies in parkinson’s disease publication-title: Gait Posture – volume: 10 start-page: 571 year: 2001 end-page: 578 ident: bib0105 article-title: Smallest real difference, a link between reproducibility and responsiveness publication-title: Qual. Life Res. – volume: 19 start-page: 288 year: 2004 end-page: 297 ident: bib0155 article-title: Test-retest reliability of trunk accelerometric gait analysis publication-title: Gait Posture – volume: 49 start-page: 707 year: 2011 end-page: 712 ident: bib0165 article-title: Quasi real-time gait event detection using shank-attached gyroscopes publication-title: Med. Biol. Eng. Comput. – volume: 45 start-page: 110 year: 2016 end-page: 114 ident: bib0210 article-title: Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot publication-title: Gait Posture – volume: 48 start-page: 544 year: 2015 end-page: 548 ident: bib0035 article-title: A low cost real-time motion tracking approach using webcam technology publication-title: J. Biomech. – volume: 35 start-page: 573 year: 2012 end-page: 578 ident: bib0225 article-title: Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed publication-title: Gait Posture – volume: 9 start-page: 113 year: 2001 end-page: 125 ident: bib0175 article-title: A reliable gait phase detection system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 55 start-page: 918 year: 2016 end-page: 921 ident: bib0200 article-title: Lower extremity kinematic profile of gait of patients after ankle fracture: a case-control study publication-title: J. Foot Ankle Surg. – volume: 30 start-page: 127 year: 2009 end-page: 131 ident: bib0095 article-title: Reliabilty, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients publication-title: Gait Posture – volume: 4440 start-page: 1 year: 2016 end-page: 19 ident: bib0145 article-title: Wearable inertial sensors for human movement analysis publication-title: Expert Rev. Med. Devices – volume: 26 start-page: 128 year: 2007 end-page: 134 ident: bib0075 article-title: Walking speed influences on gait cycle variability publication-title: Gait Posture – volume: 6 year: 2005 ident: bib0015 article-title: Reliability of videotaped observational gait analysis in patients with orthopedic impairments publication-title: BMC Musculoskelet. Disord. – volume: 13 start-page: 455 year: 2016 end-page: 462 ident: bib0040 article-title: Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease publication-title: Expert Rev. Med. Devices – volume: 18 start-page: 1 year: 2003 end-page: 10 ident: bib0125 article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking publication-title: Gait Posture – volume: 33 start-page: 314 year: 2011 end-page: 317 ident: bib0100 article-title: Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke publication-title: Gait Posture – volume: 71 start-page: 465 year: 1991 end-page: 472 ident: bib0005 article-title: Interrater reliability of videotaped observational gait-analysis assessments publication-title: Phys. Ther. – volume: 43 start-page: 125 year: 2016 end-page: 131 ident: bib0230 article-title: Validity and reliability of an IMU-based method to detect APAs prior to gait initiation publication-title: Gait Posture – volume: 38 start-page: 974 year: 2013 end-page: 980 ident: bib0050 article-title: Measurement of foot placement and its variability with inertial sensors publication-title: Gait Posture – volume: 26 start-page: 17 year: 2007 end-page: 24 ident: bib0115 article-title: A, kinematic and kinetic comparison of overground and treadmill walking in healthy subjects publication-title: Gait Posture – volume: 37 start-page: 3 year: 2015 end-page: 10 ident: bib0220 article-title: Continuous monitoring of turning in Parkinson’s disease: rehabilitation potential publication-title: Neuro Rehabil. – volume: 130 start-page: 1861 year: 2007 end-page: 1872 ident: bib0060 article-title: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke publication-title: Brain – year: 2005 ident: bib0085 article-title: Clinical Gait Analysis: Theory and Practice – volume: 28 start-page: 323 year: 2008 end-page: 326 ident: bib0010 article-title: Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers publication-title: Gait Posture – volume: 12 start-page: 107 year: 1998 end-page: 119 ident: bib0025 article-title: Visual gait analysis: the development of a clinical assessment and scale publication-title: Clin. Rehabil. – start-page: 1 year: 2016 end-page: 23 ident: bib0205 article-title: Development of an IMU based foot-ground contact detection (FGCD) algorithm publication-title: Ergonomics – volume: 43 start-page: 204 year: 2016 end-page: 209 ident: bib0055 article-title: A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions publication-title: Gait Posture – volume: 6 start-page: 284 year: 1994 end-page: 290 ident: bib0110 article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology publication-title: Psychol. Assess. – volume: 14 start-page: 356 year: 2013 end-page: 369 ident: bib0245 article-title: Continuous monitoring of turning in patients with movement disability publication-title: Sensors (Basel) – volume: 36 start-page: 24 year: 2013 end-page: 30 ident: bib0065 article-title: Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults publication-title: J. Geriatr. Phys. Ther. – volume: 123 start-page: 27 year: 2001 ident: bib0120 article-title: Local dynamic stability versus kinematic variability of continuous overground and treadmill walking publication-title: J. Biomech. Eng. – volume: 52 start-page: 1478 year: 2005 end-page: 1484 ident: bib0150 article-title: A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes publication-title: IEEE Trans. Biomed. Eng. – volume: 53 start-page: 535 year: 2010 end-page: 546 ident: bib0020 article-title: Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability) publication-title: Ann. Phys. Rehabil. Med. – volume: 35 start-page: 689 year: 2002 end-page: 699 ident: bib0160 article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes publication-title: J. Biomech. – volume: 30 start-page: 1361 year: 2015 end-page: 1370 ident: bib0240 article-title: Levodopa is a double-edged sword for balance and gait in people with parkinson’s disease publication-title: Mov. Disord. – volume: 42 start-page: 145 year: 2015 end-page: 151 ident: bib0030 article-title: Accuracy of the Microsoft Kinect™ for measuring gait parameters during treadmill walking publication-title: Gait Posture. – volume: 32 start-page: 8 year: 2008 end-page: 13 ident: bib0180 article-title: Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke publication-title: J. Neurol. Phys. Ther. – volume: 27 start-page: 710 year: 2008 end-page: 714 ident: bib0070 article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data publication-title: Gait Posture – volume: 26 start-page: 200 year: 2007 end-page: 207 ident: bib0140 article-title: Long-term monitoring of gait in Parkinson’s disease publication-title: Gait Posture – volume: 51 start-page: 1434 year: 2004 end-page: 1443 ident: bib0045 article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 479 year: 2001 end-page: 487 ident: bib0190 article-title: Reproducibility and responsiveness of evaluative outcome measures. Theoretical considerations illustrated by an empirical example publication-title: Int. J. Technol. Assess. Health Care – volume: 35 start-page: 116 year: 2011 end-page: 121 ident: bib0185 article-title: Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke publication-title: J. Neurol. Phys. Ther. – volume: 9 start-page: 113 year: 2001 ident: 10.1016/j.gaitpost.2017.04.013_bib0175 article-title: A reliable gait phase detection system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.928571 – volume: 4440 start-page: 1 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0145 article-title: Wearable inertial sensors for human movement analysis publication-title: Expert Rev. Med. Devices – volume: 12 start-page: e0171346 year: 2017 ident: 10.1016/j.gaitpost.2017.04.013_bib0135 article-title: Monitoring gait in multiple sclerosis with novel wearable motion sensors publication-title: PLoS One doi: 10.1371/journal.pone.0171346 – volume: 12 start-page: 107 year: 1998 ident: 10.1016/j.gaitpost.2017.04.013_bib0025 article-title: Visual gait analysis: the development of a clinical assessment and scale publication-title: Clin. Rehabil. doi: 10.1191/026921598666182531 – volume: 38 start-page: 974 year: 2013 ident: 10.1016/j.gaitpost.2017.04.013_bib0050 article-title: Measurement of foot placement and its variability with inertial sensors publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.05.012 – volume: 28 start-page: 323 year: 2008 ident: 10.1016/j.gaitpost.2017.04.013_bib0010 article-title: Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.01.008 – volume: 104 start-page: 747 year: 2008 ident: 10.1016/j.gaitpost.2017.04.013_bib0080 article-title: Biomechanics of overground vs. treadmill walking in healthy individuals publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01380.2006 – volume: 40 start-page: 615 year: 2008 ident: 10.1016/j.gaitpost.2017.04.013_bib0195 article-title: The minimal detectable change of the simplified stroke rehabilitation assessment of movement measure publication-title: J. Rehabil. Med. doi: 10.2340/16501977-0230 – volume: 35 start-page: 116 year: 2011 ident: 10.1016/j.gaitpost.2017.04.013_bib0185 article-title: Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke publication-title: J. Neurol. Phys. Ther. doi: 10.1097/NPT.0b013e318227fe70 – volume: 35 start-page: 573 year: 2012 ident: 10.1016/j.gaitpost.2017.04.013_bib0225 article-title: Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.11.026 – volume: 6 start-page: 284 year: 1994 ident: 10.1016/j.gaitpost.2017.04.013_bib0110 article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology publication-title: Psychol. Assess. doi: 10.1037/1040-3590.6.4.284 – volume: 36 start-page: 24 year: 2013 ident: 10.1016/j.gaitpost.2017.04.013_bib0065 article-title: Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults publication-title: J. Geriatr. Phys. Ther. doi: 10.1519/JPT.0b013e318248e20d – volume: 52 start-page: 1478 year: 2005 ident: 10.1016/j.gaitpost.2017.04.013_bib0150 article-title: A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.851475 – volume: 52 start-page: 486 year: 2005 ident: 10.1016/j.gaitpost.2017.04.013_bib0170 article-title: Assessment of walking features from foot inertial sensing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.840727 – volume: 30 start-page: 1361 year: 2015 ident: 10.1016/j.gaitpost.2017.04.013_bib0240 article-title: Levodopa is a double-edged sword for balance and gait in people with parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.26269 – volume: 49 start-page: 707 year: 2011 ident: 10.1016/j.gaitpost.2017.04.013_bib0165 article-title: Quasi real-time gait event detection using shank-attached gyroscopes publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-011-0736-0 – volume: 53 start-page: 535 year: 2010 ident: 10.1016/j.gaitpost.2017.04.013_bib0020 article-title: Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability) publication-title: Ann. Phys. Rehabil. Med. doi: 10.1016/j.rehab.2010.09.002 – volume: 41 start-page: 882 year: 2015 ident: 10.1016/j.gaitpost.2017.04.013_bib0215 article-title: Evaluation of an inertial sensor system for analysis of timed-up-and-go under dual-task demands publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.03.009 – volume: 18 start-page: 1 year: 2003 ident: 10.1016/j.gaitpost.2017.04.013_bib0125 article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00190-X – volume: 26 start-page: 200 year: 2007 ident: 10.1016/j.gaitpost.2017.04.013_bib0140 article-title: Long-term monitoring of gait in Parkinson’s disease publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.09.011 – volume: 31 start-page: 322 year: 2010 ident: 10.1016/j.gaitpost.2017.04.013_bib0130 article-title: Real-time gait event detection for normal subjects from lower trunk accelerations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.11.014 – volume: 33 start-page: 314 year: 2011 ident: 10.1016/j.gaitpost.2017.04.013_bib0100 article-title: Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.11.024 – volume: 43 start-page: 204 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0055 article-title: A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.09.024 – volume: 35 start-page: 689 year: 2002 ident: 10.1016/j.gaitpost.2017.04.013_bib0160 article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00008-8 – volume: 51 start-page: 1434 year: 2004 ident: 10.1016/j.gaitpost.2017.04.013_bib0045 article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827933 – volume: 17 start-page: 479 year: 2001 ident: 10.1016/j.gaitpost.2017.04.013_bib0190 article-title: Reproducibility and responsiveness of evaluative outcome measures. Theoretical considerations illustrated by an empirical example publication-title: Int. J. Technol. Assess. Health Care doi: 10.1017/S0266462301107038 – volume: 14 start-page: 356 year: 2013 ident: 10.1016/j.gaitpost.2017.04.013_bib0245 article-title: Continuous monitoring of turning in patients with movement disability publication-title: Sensors (Basel) doi: 10.3390/s140100356 – start-page: 1 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0205 article-title: Development of an IMU based foot-ground contact detection (FGCD) algorithm publication-title: Ergonomics – volume: 26 start-page: 128 year: 2007 ident: 10.1016/j.gaitpost.2017.04.013_bib0075 article-title: Walking speed influences on gait cycle variability publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.08.010 – volume: 10 start-page: 571 year: 2001 ident: 10.1016/j.gaitpost.2017.04.013_bib0105 article-title: Smallest real difference, a link between reproducibility and responsiveness publication-title: Qual. Life Res. doi: 10.1023/A:1013138911638 – volume: 26 start-page: 17 year: 2007 ident: 10.1016/j.gaitpost.2017.04.013_bib0115 article-title: A, kinematic and kinetic comparison of overground and treadmill walking in healthy subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.07.003 – volume: 48 start-page: 544 year: 2015 ident: 10.1016/j.gaitpost.2017.04.013_bib0035 article-title: A low cost real-time motion tracking approach using webcam technology publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.11.048 – volume: 130 start-page: 1861 year: 2007 ident: 10.1016/j.gaitpost.2017.04.013_bib0060 article-title: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke publication-title: Brain doi: 10.1093/brain/awm035 – volume: 37 start-page: 3 year: 2015 ident: 10.1016/j.gaitpost.2017.04.013_bib0220 article-title: Continuous monitoring of turning in Parkinson’s disease: rehabilitation potential publication-title: Neuro Rehabil. – volume: 6 issue: 17 year: 2005 ident: 10.1016/j.gaitpost.2017.04.013_bib0015 article-title: Reliability of videotaped observational gait analysis in patients with orthopedic impairments publication-title: BMC Musculoskelet. Disord. – volume: 123 start-page: 27 year: 2001 ident: 10.1016/j.gaitpost.2017.04.013_bib0120 article-title: Local dynamic stability versus kinematic variability of continuous overground and treadmill walking publication-title: J. Biomech. Eng. doi: 10.1115/1.1336798 – volume: 71 start-page: 465 year: 1991 ident: 10.1016/j.gaitpost.2017.04.013_bib0005 article-title: Interrater reliability of videotaped observational gait-analysis assessments publication-title: Phys. Ther. doi: 10.1093/ptj/71.6.465 – volume: 27 start-page: 710 year: 2008 ident: 10.1016/j.gaitpost.2017.04.013_bib0070 article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.07.007 – volume: 45 start-page: 110 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0210 article-title: Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.01.014 – volume: 346 start-page: 1085 year: 1995 ident: 10.1016/j.gaitpost.2017.04.013_bib0090 article-title: Comparing methods of measurement: why plotting difference against standard method is misleading publication-title: Lancet doi: 10.1016/S0140-6736(95)91748-9 – volume: 32 start-page: 8 year: 2008 ident: 10.1016/j.gaitpost.2017.04.013_bib0180 article-title: Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke publication-title: J. Neurol. Phys. Ther. doi: 10.1097/NPT0b013e31816593c0 – volume: 43 start-page: 125 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0230 article-title: Validity and reliability of an IMU-based method to detect APAs prior to gait initiation publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.08.015 – volume: 13 start-page: 455 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0040 article-title: Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.2016.1153421 – volume: 19 start-page: 288 year: 2004 ident: 10.1016/j.gaitpost.2017.04.013_bib0155 article-title: Test-retest reliability of trunk accelerometric gait analysis publication-title: Gait Posture doi: 10.1016/S0966-6362(03)00069-9 – volume: 30 start-page: 127 year: 2009 ident: 10.1016/j.gaitpost.2017.04.013_bib0095 article-title: Reliabilty, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.03.011 – volume: 42 start-page: 145 year: 2015 ident: 10.1016/j.gaitpost.2017.04.013_bib0030 article-title: Accuracy of the Microsoft Kinect™ for measuring gait parameters during treadmill walking publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2015.05.002 – year: 2005 ident: 10.1016/j.gaitpost.2017.04.013_bib0085 – volume: 55 start-page: 918 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0200 article-title: Lower extremity kinematic profile of gait of patients after ankle fracture: a case-control study publication-title: J. Foot Ankle Surg. doi: 10.1053/j.jfas.2016.04.004 – volume: 46 start-page: 26 year: 2016 ident: 10.1016/j.gaitpost.2017.04.013_bib0235 article-title: Effects of levodopa on postural strategies in parkinson’s disease publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.02.009 |
SSID | ssj0004382 |
Score | 2.6088102 |
Snippet | •We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait... Highlights • We tested the accuracy and repeatability of APDM’s Mobility Lab gait system. • The system is accurate and repeatable when measuring spatiotemporal... Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective... Highlights ⢠We tested the accuracy and repeatability of APDM's Mobility Lab gait system. ⢠The system is accurate and repeatable when measuring... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | Accelerometry - methods Accuracy Adult Ankle Joint - physiology Biomechanics Exercise Test - methods Female Foot - physiology Gait - physiology Gait detection Humans Inertial sensors Male Orthopedics Reproducibility of Results Walking - physiology Walking Speed - physiology Wearable Wearable devices Young Adult |
Title | Validity and repeatability of inertial measurement units for measuring gait parameters |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966636217301261 https://www.clinicalkey.es/playcontent/1-s2.0-S0966636217301261 https://dx.doi.org/10.1016/j.gaitpost.2017.04.013 https://www.ncbi.nlm.nih.gov/pubmed/28433867 https://www.proquest.com/docview/1891457930 https://www.proquest.com/docview/2081949642 https://pubmed.ncbi.nlm.nih.gov/PMC5507609 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamISFeEGxcymUyEuItaxw7vjxWFVO5bELApr1ZdmyPTmtaLe3DXvjtHCdOtzJNIHiKkthKbJ_Ld-JzviD0NhjmfKjKLBBrMmZsAJ2rRGYK5SAeElZVsRr58IhPjtnH0_J0C437WpiYVplsf2fTW2udrgzTbA4X0-nwG4BvcJccMDUIadGGQIyJKOX7P6_TPOJGV8u3x3kWW9-oEj7fPzPT5WLexJxKIlrKU0LvclC3AejveZQ3HNPBI_QwIUo86l76Mdry9Q7aHdUQTc-u8Dvc5ni2H8930P3DtJW-i05OAIE7wODY1A5f-gUY5Y6z-wrPA441gaD8F3h2_RERr0D_GwwwN10Ft4fj4HAkEJ_FxJrmCTo-eP99PMnSTxayist8CVpSAr6WXAK04iFUUpW5yUVhrQ2ckpAHSYQRTpbOE0aclB5CNmYLZaWFYI8-Rdv1vPbPERbE5UQCpDFUMkByhlKqvLPMVEYoSQeo7GdWV4mBPP4I40L3qWbnul8RHVdE50zDigzQcN1v0XFw_LGH6BdO9xWmYBM1uIl_6-mbpNqNJropdK5vid8AqXXPDQn-q6e-6aVLg3rHPRtT-_kKniYVYSUY0fzuNkWEdUxBJDlAzzqJXM8ToA9KJRcwrg1ZXTeI9OKbd-rpj5ZmPDLd8Vy9-I9xvUQP4lmXWvcKbS8vV_41gLil3Wu1dA_dG42_fv4Sjx8-TY5-AQqfS6w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLdQkbZdpg320bEPT5p2yxrHTmwfKzRUBu1lgLhZdmyzIppWpD3w3_OcOIUOoU3bNfFTYvt9_F7y3s8IffGaWefLPPHE6IRp48HmSp7oTFrIh7iRZehGHk-K0Sn7cZ6fb6H9rhcmlFVG39_69MZbxyuDuJqDxXQ6-AngG8JlAZgalDQLKdB2YKfKe2h7eHg0mty1R9LmzKgwPgkC9xqFL79d6OlyMa9DWSXhDespoY_FqIcY9PdSynux6eAFeh5BJR627_0SbblqB-0OK0ioZzf4K27KPJvv5zvoyTj-Td9FZ2cAwi3AcKwri6_dAvxyS9t9g-ceh7ZAsP8rPLv7johX4AJqDEg3XoXIh8PkcOAQn4XamvoVOj34frI_SuI5C0lZiHQJhpIDxBaFAHRVeF8Kmac65ZkxxheU-NQLwjW3IreOMGKFcJC1MZNJIwzke_Q16lXzyr1FmBObEgGoRlPBAMxpSql01jBdai4F7aO8W1lVRhLycBbGleqqzS5VtyMq7IhKmYId6aPBWm7R0nD8UYJ3G6e6JlNwiwoixb9Jujpad62IqjOVqgca2EdyLbmhxH_11M-ddimw8PDbRlduvoKnCUlYDn40fXxMFpAdk5BM9tGbViPX6wQAhFJRcJjXhq6uBwSG8c071fRXwzQeyO6KVL77j3l9Qk9HJ-NjdXw4OdpDz8KdttLuPeotr1fuA2C6pfkYbfYW11FMyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validity+and+repeatability+of+inertial+measurement+units+for+measuring+gait+parameters&rft.jtitle=Gait+%26+posture&rft.au=Washabaugh%2C+Edward+P.&rft.au=Kalyanaraman%2C+Tarun&rft.au=Adamczyk%2C+Peter+G.&rft.au=Claflin%2C+Edward+S.&rft.date=2017-06-01&rft.issn=0966-6362&rft.volume=55&rft.spage=87&rft.epage=93&rft_id=info:doi/10.1016%2Fj.gaitpost.2017.04.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gaitpost_2017_04_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-6362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-6362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-6362&client=summon |