Validity and repeatability of inertial measurement units for measuring gait parameters

•We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait parameters.•The system is more accurate with sensors placed at the foot rather than the ankle.•The foot configuration was accurate and repeatable whe...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 55; no. NA; pp. 87 - 93
Main Authors Washabaugh, Edward P., Kalyanaraman, Tarun, Adamczyk, Peter G., Claflin, Edward S., Krishnan, Chandramouli
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait parameters.•The system is more accurate with sensors placed at the foot rather than the ankle.•The foot configuration was accurate and repeatable when measuring asymmetric gait. Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.
AbstractList Highlights • We tested the accuracy and repeatability of APDM's Mobility Lab gait system. • The system is accurate and repeatable when measuring spatiotemporal gait parameters. • The system is more accurate with sensors placed at the foot rather than the ankle. • The foot configuration was accurate and repeatable when measuring asymmetric gait. Abstract: Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.
Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.
Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.
Highlights • We tested the accuracy and repeatability of APDM’s Mobility Lab gait system. • The system is accurate and repeatable when measuring spatiotemporal gait parameters. • The system is more accurate with sensors placed at the foot rather than the ankle. • The foot configuration was accurate and repeatable when measuring asymmetric gait
•We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait parameters.•The system is more accurate with sensors placed at the foot rather than the ankle.•The foot configuration was accurate and repeatable when measuring asymmetric gait. Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.
Author Claflin, Edward S.
Kalyanaraman, Tarun
Krishnan, Chandramouli
Washabaugh, Edward P.
Adamczyk, Peter G.
AuthorAffiliation 1 Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
2 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
AuthorAffiliation_xml – name: 3 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
– name: 1 Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
– name: 2 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
Author_xml – sequence: 1
  givenname: Edward P.
  surname: Washabaugh
  fullname: Washabaugh, Edward P.
  organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
– sequence: 2
  givenname: Tarun
  surname: Kalyanaraman
  fullname: Kalyanaraman, Tarun
  organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
– sequence: 3
  givenname: Peter G.
  surname: Adamczyk
  fullname: Adamczyk, Peter G.
  organization: Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 4
  givenname: Edward S.
  surname: Claflin
  fullname: Claflin, Edward S.
  organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
– sequence: 5
  givenname: Chandramouli
  surname: Krishnan
  fullname: Krishnan, Chandramouli
  email: mouli@umich.edu
  organization: Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28433867$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFv1DlyGXD2EkcW0IVqCpQqRIHoFfLcSaLl8QOtlNp_z2JdlvRHlhOlsbvPT37mzNy4rxDQi4o5BQof7fNN9qm0ceUM6B1DmUOtHhBVlTUcs0YlSdkBZLzNS84OyVnMW4BoCwEe0VOmSiLQvB6Re7udG9bm3aZdm0WcESddGP7ZeK7zDoMyeo-G1DHKeCALmWTsylmnQ-HqXWbbGmTjTroAROG-Jq87HQf8c3hPCc_Pl1_v_qyvv36-ebq4-3acAFpzaCqmRRcsILxrjNCVqChZk3TdLygHXSC1rpuRdUiLWkrBEpWlg2TjWiopMU5udznjlMzYGvmekH3agx20GGnvLbq6Y2zP9XG36uqgpqDnAPeHgKC_z1hTGqw0WDfa4d-ioqBoLKUvGRHpVRIWla1LGCWXvxd67HPw7_PAr4XmOBjDNg9SiioBbDaqgfAagGsoFQz4Nn4_pnR2KST9cvzbH_c_mFvxxnKvcWgorHoDLY2oEmq9fZ4xOWzCNNbZ43uf-EO49ZPwc3IFVWRKVDfliVcdpDWBVDG6b8D_qfBH7Xt8c8
CitedBy_id crossref_primary_10_1007_s00702_020_02190_2
crossref_primary_10_3390_s20051343
crossref_primary_10_3390_std13010004
crossref_primary_10_1109_JSEN_2020_3021501
crossref_primary_10_1002_pamm_201800014
crossref_primary_10_3389_fneur_2021_667340
crossref_primary_10_3390_s22093163
crossref_primary_10_1016_j_gaitpost_2018_05_030
crossref_primary_10_1097_JSM_0000000000000923
crossref_primary_10_1016_j_knee_2021_02_011
crossref_primary_10_3390_s20174866
crossref_primary_10_5535_arm_2020_44_1_48
crossref_primary_10_3389_fbioe_2021_627481
crossref_primary_10_1038_s41598_021_81009_w
crossref_primary_10_1186_s13047_022_00521_y
crossref_primary_10_1155_2023_1746536
crossref_primary_10_47836_mjmhs_18_s6_9
crossref_primary_10_1080_02640414_2022_2107816
crossref_primary_10_3390_s21051786
crossref_primary_10_1016_j_jbiomech_2023_111907
crossref_primary_10_1016_j_clinbiomech_2024_106393
crossref_primary_10_1016_j_gaitpost_2020_11_024
crossref_primary_10_3390_s20236770
crossref_primary_10_1097_JAT_0000000000000179
crossref_primary_10_1186_s11556_021_00271_z
crossref_primary_10_1016_j_parkreldis_2023_105345
crossref_primary_10_1177_09544062241242655
crossref_primary_10_1088_1361_6579_ab4023
crossref_primary_10_3390_s22124433
crossref_primary_10_1080_10749357_2018_1436384
crossref_primary_10_3390_s18020394
crossref_primary_10_1002_lary_29796
crossref_primary_10_1001_jamaoto_2021_1276
crossref_primary_10_3390_s22249683
crossref_primary_10_1155_2021_6628320
crossref_primary_10_1038_s41598_022_17017_1
crossref_primary_10_3389_fnhum_2019_00420
crossref_primary_10_3390_s23042209
crossref_primary_10_3390_s21041086
crossref_primary_10_3390_s22218387
crossref_primary_10_3390_s24020662
crossref_primary_10_1038_s41598_022_09372_w
crossref_primary_10_3390_s21186179
crossref_primary_10_1108_SR_10_2021_0357
crossref_primary_10_1007_s10439_023_03290_2
crossref_primary_10_1371_journal_pone_0212319
crossref_primary_10_1109_JSEN_2018_2815700
crossref_primary_10_3389_fnagi_2022_809281
crossref_primary_10_1016_j_medengphy_2022_103925
crossref_primary_10_3389_fnbot_2021_723206
crossref_primary_10_3390_s18061737
crossref_primary_10_1016_j_clinbiomech_2019_08_013
crossref_primary_10_1016_j_jbiomech_2021_110800
crossref_primary_10_1038_s41582_022_00674_1
crossref_primary_10_3233_JPD_201914
crossref_primary_10_1016_j_compbiomed_2020_103687
crossref_primary_10_1186_s12984_024_01363_4
crossref_primary_10_1200_PO_23_00312
crossref_primary_10_1177_15266028231160661
crossref_primary_10_1371_journal_pone_0285469
crossref_primary_10_3389_fneur_2017_00412
crossref_primary_10_1007_s42979_022_01013_3
crossref_primary_10_3390_bioengineering11080793
crossref_primary_10_1007_s00415_023_11773_4
crossref_primary_10_1212_WNL_0000000000209887
crossref_primary_10_3390_brainsci11081049
crossref_primary_10_3390_s24175839
crossref_primary_10_1186_s13102_022_00461_x
crossref_primary_10_1016_j_injury_2019_11_011
crossref_primary_10_1016_j_clinbiomech_2024_106196
crossref_primary_10_3390_s23146624
crossref_primary_10_1016_j_jbiomech_2024_112063
crossref_primary_10_3390_s20154090
crossref_primary_10_1016_j_apmr_2024_01_020
crossref_primary_10_1371_journal_pone_0276989
crossref_primary_10_1007_s13670_020_00349_z
crossref_primary_10_1016_j_gaitpost_2022_05_021
crossref_primary_10_3390_healthcare9020149
crossref_primary_10_3390_s21227497
crossref_primary_10_1016_j_gaitpost_2022_11_015
crossref_primary_10_1016_j_clinbiomech_2022_105818
crossref_primary_10_1016_j_apmr_2024_01_019
crossref_primary_10_1007_s11357_022_00675_4
crossref_primary_10_1016_j_jbiomech_2023_111436
crossref_primary_10_1002_mds_28740
crossref_primary_10_1177_19417381251313775
crossref_primary_10_1186_s12883_020_01920_z
crossref_primary_10_1016_j_clinbiomech_2020_105019
crossref_primary_10_1016_j_gaitpost_2019_12_014
crossref_primary_10_3390_s21134441
crossref_primary_10_1109_TIM_2022_3165257
crossref_primary_10_1088_1361_6579_ad04b4
crossref_primary_10_1093_ptj_pzad134
crossref_primary_10_1177_0309364620911314
crossref_primary_10_3390_jcm8122177
crossref_primary_10_3390_s20123338
crossref_primary_10_1002_mds_29742
crossref_primary_10_3390_s22083050
crossref_primary_10_3390_jcm10091804
crossref_primary_10_3390_bioengineering11040358
crossref_primary_10_1159_000537720
crossref_primary_10_3390_biomechanics4040052
crossref_primary_10_1016_j_measurement_2022_111442
crossref_primary_10_1002_jor_25117
crossref_primary_10_1123_jmpb_2021_0035
crossref_primary_10_1177_1545968319847962
crossref_primary_10_1186_s12984_022_01030_6
crossref_primary_10_3389_fmed_2024_1324375
crossref_primary_10_3390_ijerph18073644
crossref_primary_10_1016_j_gaitpost_2024_01_030
crossref_primary_10_1016_j_gaitpost_2019_08_006
crossref_primary_10_1016_j_gaitpost_2019_08_007
crossref_primary_10_2139_ssrn_4087658
crossref_primary_10_1186_s13102_023_00792_3
crossref_primary_10_1186_s12938_020_00802_2
crossref_primary_10_3390_s22031077
crossref_primary_10_1123_mc_2020_0060
crossref_primary_10_1016_j_expneurol_2022_114135
crossref_primary_10_3390_app12063083
crossref_primary_10_3233_JAD_210684
crossref_primary_10_3389_fnhum_2023_1040930
crossref_primary_10_1038_s41598_020_73734_5
crossref_primary_10_3390_s22010376
crossref_primary_10_3390_s20102858
crossref_primary_10_1016_j_gaitpost_2023_10_006
crossref_primary_10_1016_j_gaitpost_2023_10_008
crossref_primary_10_1016_j_gaitpost_2023_06_001
crossref_primary_10_2196_27087
crossref_primary_10_1080_10255842_2024_2427113
crossref_primary_10_1080_1091367X_2024_2370533
crossref_primary_10_3390_computers10040049
crossref_primary_10_3390_s20226691
crossref_primary_10_1002_mds_29757
crossref_primary_10_23736_S1973_9087_18_05306_6
crossref_primary_10_1007_s00221_021_06145_1
crossref_primary_10_1038_s41598_020_69667_8
crossref_primary_10_3390_s25020581
crossref_primary_10_3390_s23010331
crossref_primary_10_14193_jkfas_2024_28_1_21
crossref_primary_10_1007_s00415_020_09696_5
crossref_primary_10_1016_j_arth_2024_01_036
crossref_primary_10_3233_RNN_170782
crossref_primary_10_3389_fnins_2020_582046
crossref_primary_10_2196_17986
crossref_primary_10_3390_s24030831
crossref_primary_10_1080_10749357_2023_2240584
crossref_primary_10_1186_s13075_022_02808_8
crossref_primary_10_1007_s00115_019_00817_8
crossref_primary_10_1088_1361_6579_aceecf
crossref_primary_10_1016_j_parkreldis_2022_105235
crossref_primary_10_23736_S1973_9087_23_07812_7
crossref_primary_10_1002_mds_28214
crossref_primary_10_3389_frobt_2023_1265543
crossref_primary_10_1097_NPT_0000000000000317
crossref_primary_10_1519_SSC_0000000000000901
crossref_primary_10_1038_s41598_021_88794_4
crossref_primary_10_3390_s24237825
crossref_primary_10_1177_0954411920904597
crossref_primary_10_1016_j_jbiomech_2019_109567
crossref_primary_10_1016_j_apmr_2023_04_005
crossref_primary_10_3390_brainsci11111519
crossref_primary_10_1016_j_gaitpost_2019_02_022
crossref_primary_10_1016_j_msard_2020_102445
crossref_primary_10_23736_S0022_4707_24_16120_8
crossref_primary_10_1109_JSEN_2024_3410402
crossref_primary_10_4081_gimle_458
crossref_primary_10_1016_j_humov_2021_102884
crossref_primary_10_1002_mds_29777
crossref_primary_10_1002_mus_26681
crossref_primary_10_1007_s00221_021_06161_1
crossref_primary_10_1016_j_gaitpost_2018_12_028
crossref_primary_10_1016_j_jbiomech_2023_111818
crossref_primary_10_3389_fspor_2022_918402
crossref_primary_10_3390_s20185046
crossref_primary_10_7717_peerj_16641
crossref_primary_10_3233_JPD_202289
crossref_primary_10_1016_j_gaitpost_2020_05_010
crossref_primary_10_3390_s24113476
crossref_primary_10_1016_j_gaitpost_2023_11_008
crossref_primary_10_3390_s22030863
crossref_primary_10_1097_NPT_0000000000000379
crossref_primary_10_2139_ssrn_4110449
crossref_primary_10_3390_s22186954
crossref_primary_10_1097_JPO_0000000000000332
crossref_primary_10_1212_WNL_0000000000010176
crossref_primary_10_1002_acr_25096
crossref_primary_10_3390_s20205769
crossref_primary_10_1088_1361_6579_ab42d3
crossref_primary_10_1371_journal_pone_0278646
crossref_primary_10_3390_s22020493
crossref_primary_10_3389_fncom_2018_00072
crossref_primary_10_3390_brainsci11111507
crossref_primary_10_1007_s00415_020_10240_8
crossref_primary_10_1016_j_amjoto_2022_103682
crossref_primary_10_1016_j_jbiomech_2022_111098
crossref_primary_10_1016_j_neurom_2022_04_035
crossref_primary_10_1002_mdc3_13601
crossref_primary_10_1016_j_clinbiomech_2022_105658
crossref_primary_10_1177_0013916517749256
crossref_primary_10_3389_fdgth_2021_736418
crossref_primary_10_3390_s23104651
crossref_primary_10_1007_s40520_019_01236_0
crossref_primary_10_3233_JPD_230063
crossref_primary_10_1186_s12984_020_00685_3
crossref_primary_10_1038_s41598_021_92353_2
crossref_primary_10_3389_fnagi_2023_1117802
crossref_primary_10_1093_cercor_bhab107
crossref_primary_10_1016_j_jbiomech_2023_111726
crossref_primary_10_1016_j_gaitpost_2021_01_013
crossref_primary_10_3389_fneur_2025_1544453
crossref_primary_10_1016_j_gaitpost_2021_01_012
crossref_primary_10_15212_bioi_2020_0006
crossref_primary_10_1016_j_gaitpost_2023_09_012
crossref_primary_10_1097_JPO_0000000000000316
crossref_primary_10_1371_journal_pone_0198178
crossref_primary_10_3390_sports13010010
crossref_primary_10_1002_hsr2_772
crossref_primary_10_1145_3351231
crossref_primary_10_1016_j_msard_2019_07_014
crossref_primary_10_1080_21641846_2021_1950405
crossref_primary_10_1016_j_rcim_2020_102035
crossref_primary_10_1016_j_measurement_2020_108642
crossref_primary_10_1016_j_ijnurstu_2018_03_015
crossref_primary_10_3233_JAD_231453
crossref_primary_10_3390_s19153320
crossref_primary_10_3390_s22239278
crossref_primary_10_3390_s24113343
Cites_doi 10.1109/7333.928571
10.1371/journal.pone.0171346
10.1191/026921598666182531
10.1016/j.gaitpost.2013.05.012
10.1016/j.gaitpost.2008.01.008
10.1152/japplphysiol.01380.2006
10.2340/16501977-0230
10.1097/NPT.0b013e318227fe70
10.1016/j.gaitpost.2011.11.026
10.1037/1040-3590.6.4.284
10.1519/JPT.0b013e318248e20d
10.1109/TBME.2005.851475
10.1109/TBME.2004.840727
10.1002/mds.26269
10.1007/s11517-011-0736-0
10.1016/j.rehab.2010.09.002
10.1016/j.gaitpost.2015.03.009
10.1016/S0966-6362(02)00190-X
10.1016/j.gaitpost.2006.09.011
10.1016/j.gaitpost.2009.11.014
10.1016/j.gaitpost.2010.11.024
10.1016/j.gaitpost.2015.09.024
10.1016/S0021-9290(02)00008-8
10.1109/TBME.2004.827933
10.1017/S0266462301107038
10.3390/s140100356
10.1016/j.gaitpost.2006.08.010
10.1023/A:1013138911638
10.1016/j.gaitpost.2006.07.003
10.1016/j.jbiomech.2014.11.048
10.1093/brain/awm035
10.1115/1.1336798
10.1093/ptj/71.6.465
10.1016/j.gaitpost.2007.07.007
10.1016/j.gaitpost.2016.01.014
10.1016/S0140-6736(95)91748-9
10.1097/NPT0b013e31816593c0
10.1016/j.gaitpost.2015.08.015
10.1586/17434440.2016.1153421
10.1016/S0966-6362(03)00069-9
10.1016/j.gaitpost.2009.03.011
10.1016/j.gaitpost.2015.05.002
10.1053/j.jfas.2016.04.004
10.1016/j.gaitpost.2016.02.009
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.gaitpost.2017.04.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 93
ExternalDocumentID PMC5507609
28433867
10_1016_j_gaitpost_2017_04_013
S0966636217301261
1_s2_0_S0966636217301261
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB019834
– fundername: NIA NIH HHS
  grantid: R44 AG030815
– fundername: NICHD NIH HHS
  grantid: R43 HD074424
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c680t-2057298682326ffc8950a072bbbf631f0f817a7d85de141d88e9244b29b8b1913
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Thu Aug 21 18:31:29 EDT 2025
Mon Jul 21 10:51:01 EDT 2025
Sun Aug 24 03:54:37 EDT 2025
Thu Apr 03 07:06:58 EDT 2025
Tue Jul 01 03:47:36 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Fri Feb 23 02:47:54 EST 2024
Tue Feb 25 19:56:22 EST 2025
Tue Aug 26 16:33:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue NA
Keywords Biomechanics
Accuracy
Inertial sensors
Wearable
Wearable devices
Gait detection
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c680t-2057298682326ffc8950a072bbbf631f0f817a7d85de141d88e9244b29b8b1913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5507609
PMID 28433867
PQID 1891457930
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5507609
proquest_miscellaneous_2081949642
proquest_miscellaneous_1891457930
pubmed_primary_28433867
crossref_primary_10_1016_j_gaitpost_2017_04_013
crossref_citationtrail_10_1016_j_gaitpost_2017_04_013
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2017_04_013
elsevier_clinicalkeyesjournals_1_s2_0_S0966636217301261
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2017_04_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Riley, Paolini, Della Croce, Paylo, Kerrigan (bib0115) 2007; 26
Lee, Park (bib0165) 2011; 49
Lord, Halligan, Wade (bib0025) 1998; 12
Reisman, Wityk, Silver, Bastian (bib0060) 2007; 130
Brunnekreef, van Uden, van Moorsel, Kooloos (bib0015) 2005; 6
Iosa, Picerno, Paolucci, Morone (bib0145) 2016; 4440
Baston, Mancini, Rocchi, Horak (bib0235) 2016; 46
Beckerman, Roebroeck, Lankhorst, Becher, Bezemer, Verbeek (bib0105) 2001; 10
Viehweger, Zürcher Pfund, Hélix, Rohon, Jacquemier, Scavarda, Jouve, Bollini, Loundou, Simeoni (bib0020) 2010; 53
Xu, McGorry, Chou, hua Lin, chi Chang (bib0030) 2015; 42
Jordan, Challis, Newell (bib0075) 2007; 26
Mancini, Horak (bib0040) 2016; 13
Curtze, Nutt, Carlson-Kuhta, Mancini, Horak (bib0240) 2015; 30
Salarian, Russmann, Vingerhoets, Dehollain, Blanc, Burkhard, Aminian (bib0045) 2004; 51
Rebula, Ojeda, Adamczyk, Kuo (bib0050) 2013; 38
Pappas, Popovic, Keller, Dietz, Morari (bib0175) 2001; 9
Zeni, Richards, Higginson (bib0070) 2008; 27
Dejnabadi, Jolles, Aminian (bib0150) 2005; 52
Lu, Wang, Lin, Sheu, Hsieh (bib0195) 2008; 40
Aminian, Najafi, Büla, Leyvraz, Robert (bib0160) 2002; 35
Fulk, Echternach (bib0180) 2008; 32
Mancini, El-Gohary, Pearson, Mcnames, Schlueter, Nutt, King, Horak (bib0220) 2015; 37
Lee, Hidler (bib0080) 2008; 104
González, López, Rodriguez-Uría, Álvarez, Alvarez (bib0130) 2010; 31
Kirtley (bib0085) 2005
de Vet, Bouter, Bezemer, Beurskens (bib0190) 2001; 17
El-Gohary, Pearson, McNames, Mancini, Horak, Mellone, Chiari (bib0245) 2013; 14
Krishnan, Washabaugh, Seetharaman (bib0035) 2015; 48
Hollman, Watkins, Imhoff, Braun, Akervik, Ness (bib0055) 2016; 43
Elbaz, Mor, Segal, Bar, Monda, Kish, Nyska, Palmanovich (bib0200) 2016; 55
Moon, McGinnis, Seagers, Motl, Sheth, Wright, Ghaffari, Sosnoff (bib0135) 2017; 12
Eastlack, Arvidson, Snyder-Mackler, Danoff, McGarvey (bib0005) 1991; 71
Kitagawa, Ogihara (bib0210) 2016; 45
Spain, St. George, Salarian, Mancini, Wagner, Horak, Bourdette (bib0225) 2012; 35
Lewek, Randall (bib0185) 2011; 35
Kim, Lee (bib0205) 2016
Kesar, Binder-Macleod, Hicks, Reisman (bib0100) 2011; 33
Henriksen, Lund, Moe-Nilssen, Bliddal, Danneskiod-Samsøe (bib0155) 2004; 19
Cicchetti (bib0110) 1994; 6
Sabatini, Martelloni, Scapellato, Cavallo (bib0170) 2005; 52
Mancini, Chiari, Holmstrom, Salarian, Horak (bib0230) 2016; 43
Coulthard, Treen, Oates, Lanovaz (bib0215) 2015; 41
Peters, Fritz, Krotish (bib0065) 2013; 36
Campanini, Merlo (bib0095) 2009; 30
Dingwell, Cusumano, Cavanagh, Sternad (bib0120) 2001; 123
Zijlstra, Hof (bib0125) 2003; 18
Bland, Altman (bib0090) 1995; 346
Ong, Hillman, Robb (bib0010) 2008; 28
Moore, MacDougall, Gracies, Cohen, Ondo (bib0140) 2007; 26
Kitagawa (10.1016/j.gaitpost.2017.04.013_bib0210) 2016; 45
Cicchetti (10.1016/j.gaitpost.2017.04.013_bib0110) 1994; 6
Iosa (10.1016/j.gaitpost.2017.04.013_bib0145) 2016; 4440
Ong (10.1016/j.gaitpost.2017.04.013_bib0010) 2008; 28
Salarian (10.1016/j.gaitpost.2017.04.013_bib0045) 2004; 51
Campanini (10.1016/j.gaitpost.2017.04.013_bib0095) 2009; 30
Sabatini (10.1016/j.gaitpost.2017.04.013_bib0170) 2005; 52
Mancini (10.1016/j.gaitpost.2017.04.013_bib0230) 2016; 43
Fulk (10.1016/j.gaitpost.2017.04.013_bib0180) 2008; 32
Spain (10.1016/j.gaitpost.2017.04.013_bib0225) 2012; 35
Zijlstra (10.1016/j.gaitpost.2017.04.013_bib0125) 2003; 18
Kirtley (10.1016/j.gaitpost.2017.04.013_bib0085) 2005
Xu (10.1016/j.gaitpost.2017.04.013_bib0030) 2015; 42
Curtze (10.1016/j.gaitpost.2017.04.013_bib0240) 2015; 30
Henriksen (10.1016/j.gaitpost.2017.04.013_bib0155) 2004; 19
Viehweger (10.1016/j.gaitpost.2017.04.013_bib0020) 2010; 53
de Vet (10.1016/j.gaitpost.2017.04.013_bib0190) 2001; 17
Lord (10.1016/j.gaitpost.2017.04.013_bib0025) 1998; 12
Eastlack (10.1016/j.gaitpost.2017.04.013_bib0005) 1991; 71
Bland (10.1016/j.gaitpost.2017.04.013_bib0090) 1995; 346
Moore (10.1016/j.gaitpost.2017.04.013_bib0140) 2007; 26
Kim (10.1016/j.gaitpost.2017.04.013_bib0205) 2016
Dingwell (10.1016/j.gaitpost.2017.04.013_bib0120) 2001; 123
El-Gohary (10.1016/j.gaitpost.2017.04.013_bib0245) 2013; 14
Hollman (10.1016/j.gaitpost.2017.04.013_bib0055) 2016; 43
Krishnan (10.1016/j.gaitpost.2017.04.013_bib0035) 2015; 48
Mancini (10.1016/j.gaitpost.2017.04.013_bib0040) 2016; 13
Lee (10.1016/j.gaitpost.2017.04.013_bib0165) 2011; 49
Lewek (10.1016/j.gaitpost.2017.04.013_bib0185) 2011; 35
Baston (10.1016/j.gaitpost.2017.04.013_bib0235) 2016; 46
Kesar (10.1016/j.gaitpost.2017.04.013_bib0100) 2011; 33
Pappas (10.1016/j.gaitpost.2017.04.013_bib0175) 2001; 9
Aminian (10.1016/j.gaitpost.2017.04.013_bib0160) 2002; 35
Mancini (10.1016/j.gaitpost.2017.04.013_bib0220) 2015; 37
Coulthard (10.1016/j.gaitpost.2017.04.013_bib0215) 2015; 41
Riley (10.1016/j.gaitpost.2017.04.013_bib0115) 2007; 26
Zeni (10.1016/j.gaitpost.2017.04.013_bib0070) 2008; 27
Jordan (10.1016/j.gaitpost.2017.04.013_bib0075) 2007; 26
Beckerman (10.1016/j.gaitpost.2017.04.013_bib0105) 2001; 10
Brunnekreef (10.1016/j.gaitpost.2017.04.013_bib0015) 2005; 6
Rebula (10.1016/j.gaitpost.2017.04.013_bib0050) 2013; 38
Elbaz (10.1016/j.gaitpost.2017.04.013_bib0200) 2016; 55
Lu (10.1016/j.gaitpost.2017.04.013_bib0195) 2008; 40
Dejnabadi (10.1016/j.gaitpost.2017.04.013_bib0150) 2005; 52
Peters (10.1016/j.gaitpost.2017.04.013_bib0065) 2013; 36
Moon (10.1016/j.gaitpost.2017.04.013_bib0135) 2017; 12
Reisman (10.1016/j.gaitpost.2017.04.013_bib0060) 2007; 130
González (10.1016/j.gaitpost.2017.04.013_bib0130) 2010; 31
Lee (10.1016/j.gaitpost.2017.04.013_bib0080) 2008; 104
References_xml – volume: 52
  start-page: 486
  year: 2005
  end-page: 494
  ident: bib0170
  article-title: Assessment of walking features from foot inertial sensing
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 615
  year: 2008
  end-page: 619
  ident: bib0195
  article-title: The minimal detectable change of the simplified stroke rehabilitation assessment of movement measure
  publication-title: J. Rehabil. Med.
– volume: 12
  start-page: e0171346
  year: 2017
  ident: bib0135
  article-title: Monitoring gait in multiple sclerosis with novel wearable motion sensors
  publication-title: PLoS One
– volume: 31
  start-page: 322
  year: 2010
  end-page: 325
  ident: bib0130
  article-title: Real-time gait event detection for normal subjects from lower trunk accelerations
  publication-title: Gait Posture
– volume: 346
  start-page: 1085
  year: 1995
  end-page: 1087
  ident: bib0090
  article-title: Comparing methods of measurement: why plotting difference against standard method is misleading
  publication-title: Lancet
– volume: 41
  start-page: 882
  year: 2015
  end-page: 887
  ident: bib0215
  article-title: Evaluation of an inertial sensor system for analysis of timed-up-and-go under dual-task demands
  publication-title: Gait Posture
– volume: 104
  start-page: 747
  year: 2008
  end-page: 755
  ident: bib0080
  article-title: Biomechanics of overground vs. treadmill walking in healthy individuals
  publication-title: J. Appl. Physiol.
– volume: 46
  start-page: 26
  year: 2016
  end-page: 29
  ident: bib0235
  article-title: Effects of levodopa on postural strategies in parkinson’s disease
  publication-title: Gait Posture
– volume: 10
  start-page: 571
  year: 2001
  end-page: 578
  ident: bib0105
  article-title: Smallest real difference, a link between reproducibility and responsiveness
  publication-title: Qual. Life Res.
– volume: 19
  start-page: 288
  year: 2004
  end-page: 297
  ident: bib0155
  article-title: Test-retest reliability of trunk accelerometric gait analysis
  publication-title: Gait Posture
– volume: 49
  start-page: 707
  year: 2011
  end-page: 712
  ident: bib0165
  article-title: Quasi real-time gait event detection using shank-attached gyroscopes
  publication-title: Med. Biol. Eng. Comput.
– volume: 45
  start-page: 110
  year: 2016
  end-page: 114
  ident: bib0210
  article-title: Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot
  publication-title: Gait Posture
– volume: 48
  start-page: 544
  year: 2015
  end-page: 548
  ident: bib0035
  article-title: A low cost real-time motion tracking approach using webcam technology
  publication-title: J. Biomech.
– volume: 35
  start-page: 573
  year: 2012
  end-page: 578
  ident: bib0225
  article-title: Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed
  publication-title: Gait Posture
– volume: 9
  start-page: 113
  year: 2001
  end-page: 125
  ident: bib0175
  article-title: A reliable gait phase detection system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 55
  start-page: 918
  year: 2016
  end-page: 921
  ident: bib0200
  article-title: Lower extremity kinematic profile of gait of patients after ankle fracture: a case-control study
  publication-title: J. Foot Ankle Surg.
– volume: 30
  start-page: 127
  year: 2009
  end-page: 131
  ident: bib0095
  article-title: Reliabilty, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients
  publication-title: Gait Posture
– volume: 4440
  start-page: 1
  year: 2016
  end-page: 19
  ident: bib0145
  article-title: Wearable inertial sensors for human movement analysis
  publication-title: Expert Rev. Med. Devices
– volume: 26
  start-page: 128
  year: 2007
  end-page: 134
  ident: bib0075
  article-title: Walking speed influences on gait cycle variability
  publication-title: Gait Posture
– volume: 6
  year: 2005
  ident: bib0015
  article-title: Reliability of videotaped observational gait analysis in patients with orthopedic impairments
  publication-title: BMC Musculoskelet. Disord.
– volume: 13
  start-page: 455
  year: 2016
  end-page: 462
  ident: bib0040
  article-title: Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease
  publication-title: Expert Rev. Med. Devices
– volume: 18
  start-page: 1
  year: 2003
  end-page: 10
  ident: bib0125
  article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking
  publication-title: Gait Posture
– volume: 33
  start-page: 314
  year: 2011
  end-page: 317
  ident: bib0100
  article-title: Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke
  publication-title: Gait Posture
– volume: 71
  start-page: 465
  year: 1991
  end-page: 472
  ident: bib0005
  article-title: Interrater reliability of videotaped observational gait-analysis assessments
  publication-title: Phys. Ther.
– volume: 43
  start-page: 125
  year: 2016
  end-page: 131
  ident: bib0230
  article-title: Validity and reliability of an IMU-based method to detect APAs prior to gait initiation
  publication-title: Gait Posture
– volume: 38
  start-page: 974
  year: 2013
  end-page: 980
  ident: bib0050
  article-title: Measurement of foot placement and its variability with inertial sensors
  publication-title: Gait Posture
– volume: 26
  start-page: 17
  year: 2007
  end-page: 24
  ident: bib0115
  article-title: A, kinematic and kinetic comparison of overground and treadmill walking in healthy subjects
  publication-title: Gait Posture
– volume: 37
  start-page: 3
  year: 2015
  end-page: 10
  ident: bib0220
  article-title: Continuous monitoring of turning in Parkinson’s disease: rehabilitation potential
  publication-title: Neuro Rehabil.
– volume: 130
  start-page: 1861
  year: 2007
  end-page: 1872
  ident: bib0060
  article-title: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke
  publication-title: Brain
– year: 2005
  ident: bib0085
  article-title: Clinical Gait Analysis: Theory and Practice
– volume: 28
  start-page: 323
  year: 2008
  end-page: 326
  ident: bib0010
  article-title: Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers
  publication-title: Gait Posture
– volume: 12
  start-page: 107
  year: 1998
  end-page: 119
  ident: bib0025
  article-title: Visual gait analysis: the development of a clinical assessment and scale
  publication-title: Clin. Rehabil.
– start-page: 1
  year: 2016
  end-page: 23
  ident: bib0205
  article-title: Development of an IMU based foot-ground contact detection (FGCD) algorithm
  publication-title: Ergonomics
– volume: 43
  start-page: 204
  year: 2016
  end-page: 209
  ident: bib0055
  article-title: A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions
  publication-title: Gait Posture
– volume: 6
  start-page: 284
  year: 1994
  end-page: 290
  ident: bib0110
  article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology
  publication-title: Psychol. Assess.
– volume: 14
  start-page: 356
  year: 2013
  end-page: 369
  ident: bib0245
  article-title: Continuous monitoring of turning in patients with movement disability
  publication-title: Sensors (Basel)
– volume: 36
  start-page: 24
  year: 2013
  end-page: 30
  ident: bib0065
  article-title: Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults
  publication-title: J. Geriatr. Phys. Ther.
– volume: 123
  start-page: 27
  year: 2001
  ident: bib0120
  article-title: Local dynamic stability versus kinematic variability of continuous overground and treadmill walking
  publication-title: J. Biomech. Eng.
– volume: 52
  start-page: 1478
  year: 2005
  end-page: 1484
  ident: bib0150
  article-title: A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 53
  start-page: 535
  year: 2010
  end-page: 546
  ident: bib0020
  article-title: Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability)
  publication-title: Ann. Phys. Rehabil. Med.
– volume: 35
  start-page: 689
  year: 2002
  end-page: 699
  ident: bib0160
  article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes
  publication-title: J. Biomech.
– volume: 30
  start-page: 1361
  year: 2015
  end-page: 1370
  ident: bib0240
  article-title: Levodopa is a double-edged sword for balance and gait in people with parkinson’s disease
  publication-title: Mov. Disord.
– volume: 42
  start-page: 145
  year: 2015
  end-page: 151
  ident: bib0030
  article-title: Accuracy of the Microsoft Kinect™ for measuring gait parameters during treadmill walking
  publication-title: Gait Posture.
– volume: 32
  start-page: 8
  year: 2008
  end-page: 13
  ident: bib0180
  article-title: Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke
  publication-title: J. Neurol. Phys. Ther.
– volume: 27
  start-page: 710
  year: 2008
  end-page: 714
  ident: bib0070
  article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data
  publication-title: Gait Posture
– volume: 26
  start-page: 200
  year: 2007
  end-page: 207
  ident: bib0140
  article-title: Long-term monitoring of gait in Parkinson’s disease
  publication-title: Gait Posture
– volume: 51
  start-page: 1434
  year: 2004
  end-page: 1443
  ident: bib0045
  article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 479
  year: 2001
  end-page: 487
  ident: bib0190
  article-title: Reproducibility and responsiveness of evaluative outcome measures. Theoretical considerations illustrated by an empirical example
  publication-title: Int. J. Technol. Assess. Health Care
– volume: 35
  start-page: 116
  year: 2011
  end-page: 121
  ident: bib0185
  article-title: Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke
  publication-title: J. Neurol. Phys. Ther.
– volume: 9
  start-page: 113
  year: 2001
  ident: 10.1016/j.gaitpost.2017.04.013_bib0175
  article-title: A reliable gait phase detection system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/7333.928571
– volume: 4440
  start-page: 1
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0145
  article-title: Wearable inertial sensors for human movement analysis
  publication-title: Expert Rev. Med. Devices
– volume: 12
  start-page: e0171346
  year: 2017
  ident: 10.1016/j.gaitpost.2017.04.013_bib0135
  article-title: Monitoring gait in multiple sclerosis with novel wearable motion sensors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171346
– volume: 12
  start-page: 107
  year: 1998
  ident: 10.1016/j.gaitpost.2017.04.013_bib0025
  article-title: Visual gait analysis: the development of a clinical assessment and scale
  publication-title: Clin. Rehabil.
  doi: 10.1191/026921598666182531
– volume: 38
  start-page: 974
  year: 2013
  ident: 10.1016/j.gaitpost.2017.04.013_bib0050
  article-title: Measurement of foot placement and its variability with inertial sensors
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.05.012
– volume: 28
  start-page: 323
  year: 2008
  ident: 10.1016/j.gaitpost.2017.04.013_bib0010
  article-title: Reliability and validity of the Edinburgh Visual Gait Score for cerebral palsy when used by inexperienced observers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.008
– volume: 104
  start-page: 747
  year: 2008
  ident: 10.1016/j.gaitpost.2017.04.013_bib0080
  article-title: Biomechanics of overground vs. treadmill walking in healthy individuals
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01380.2006
– volume: 40
  start-page: 615
  year: 2008
  ident: 10.1016/j.gaitpost.2017.04.013_bib0195
  article-title: The minimal detectable change of the simplified stroke rehabilitation assessment of movement measure
  publication-title: J. Rehabil. Med.
  doi: 10.2340/16501977-0230
– volume: 35
  start-page: 116
  year: 2011
  ident: 10.1016/j.gaitpost.2017.04.013_bib0185
  article-title: Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke
  publication-title: J. Neurol. Phys. Ther.
  doi: 10.1097/NPT.0b013e318227fe70
– volume: 35
  start-page: 573
  year: 2012
  ident: 10.1016/j.gaitpost.2017.04.013_bib0225
  article-title: Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.11.026
– volume: 6
  start-page: 284
  year: 1994
  ident: 10.1016/j.gaitpost.2017.04.013_bib0110
  article-title: Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology
  publication-title: Psychol. Assess.
  doi: 10.1037/1040-3590.6.4.284
– volume: 36
  start-page: 24
  year: 2013
  ident: 10.1016/j.gaitpost.2017.04.013_bib0065
  article-title: Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults
  publication-title: J. Geriatr. Phys. Ther.
  doi: 10.1519/JPT.0b013e318248e20d
– volume: 52
  start-page: 1478
  year: 2005
  ident: 10.1016/j.gaitpost.2017.04.013_bib0150
  article-title: A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851475
– volume: 52
  start-page: 486
  year: 2005
  ident: 10.1016/j.gaitpost.2017.04.013_bib0170
  article-title: Assessment of walking features from foot inertial sensing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.840727
– volume: 30
  start-page: 1361
  year: 2015
  ident: 10.1016/j.gaitpost.2017.04.013_bib0240
  article-title: Levodopa is a double-edged sword for balance and gait in people with parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26269
– volume: 49
  start-page: 707
  year: 2011
  ident: 10.1016/j.gaitpost.2017.04.013_bib0165
  article-title: Quasi real-time gait event detection using shank-attached gyroscopes
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-011-0736-0
– volume: 53
  start-page: 535
  year: 2010
  ident: 10.1016/j.gaitpost.2017.04.013_bib0020
  article-title: Influence of clinical and gait analysis experience on reliability of observational gait analysis (Edinburgh Gait Score Reliability)
  publication-title: Ann. Phys. Rehabil. Med.
  doi: 10.1016/j.rehab.2010.09.002
– volume: 41
  start-page: 882
  year: 2015
  ident: 10.1016/j.gaitpost.2017.04.013_bib0215
  article-title: Evaluation of an inertial sensor system for analysis of timed-up-and-go under dual-task demands
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.03.009
– volume: 18
  start-page: 1
  year: 2003
  ident: 10.1016/j.gaitpost.2017.04.013_bib0125
  article-title: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00190-X
– volume: 26
  start-page: 200
  year: 2007
  ident: 10.1016/j.gaitpost.2017.04.013_bib0140
  article-title: Long-term monitoring of gait in Parkinson’s disease
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.09.011
– volume: 31
  start-page: 322
  year: 2010
  ident: 10.1016/j.gaitpost.2017.04.013_bib0130
  article-title: Real-time gait event detection for normal subjects from lower trunk accelerations
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.11.014
– volume: 33
  start-page: 314
  year: 2011
  ident: 10.1016/j.gaitpost.2017.04.013_bib0100
  article-title: Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.11.024
– volume: 43
  start-page: 204
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0055
  article-title: A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.09.024
– volume: 35
  start-page: 689
  year: 2002
  ident: 10.1016/j.gaitpost.2017.04.013_bib0160
  article-title: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00008-8
– volume: 51
  start-page: 1434
  year: 2004
  ident: 10.1016/j.gaitpost.2017.04.013_bib0045
  article-title: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827933
– volume: 17
  start-page: 479
  year: 2001
  ident: 10.1016/j.gaitpost.2017.04.013_bib0190
  article-title: Reproducibility and responsiveness of evaluative outcome measures. Theoretical considerations illustrated by an empirical example
  publication-title: Int. J. Technol. Assess. Health Care
  doi: 10.1017/S0266462301107038
– volume: 14
  start-page: 356
  year: 2013
  ident: 10.1016/j.gaitpost.2017.04.013_bib0245
  article-title: Continuous monitoring of turning in patients with movement disability
  publication-title: Sensors (Basel)
  doi: 10.3390/s140100356
– start-page: 1
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0205
  article-title: Development of an IMU based foot-ground contact detection (FGCD) algorithm
  publication-title: Ergonomics
– volume: 26
  start-page: 128
  year: 2007
  ident: 10.1016/j.gaitpost.2017.04.013_bib0075
  article-title: Walking speed influences on gait cycle variability
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.08.010
– volume: 10
  start-page: 571
  year: 2001
  ident: 10.1016/j.gaitpost.2017.04.013_bib0105
  article-title: Smallest real difference, a link between reproducibility and responsiveness
  publication-title: Qual. Life Res.
  doi: 10.1023/A:1013138911638
– volume: 26
  start-page: 17
  year: 2007
  ident: 10.1016/j.gaitpost.2017.04.013_bib0115
  article-title: A, kinematic and kinetic comparison of overground and treadmill walking in healthy subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.07.003
– volume: 48
  start-page: 544
  year: 2015
  ident: 10.1016/j.gaitpost.2017.04.013_bib0035
  article-title: A low cost real-time motion tracking approach using webcam technology
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.11.048
– volume: 130
  start-page: 1861
  year: 2007
  ident: 10.1016/j.gaitpost.2017.04.013_bib0060
  article-title: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke
  publication-title: Brain
  doi: 10.1093/brain/awm035
– volume: 37
  start-page: 3
  year: 2015
  ident: 10.1016/j.gaitpost.2017.04.013_bib0220
  article-title: Continuous monitoring of turning in Parkinson’s disease: rehabilitation potential
  publication-title: Neuro Rehabil.
– volume: 6
  issue: 17
  year: 2005
  ident: 10.1016/j.gaitpost.2017.04.013_bib0015
  article-title: Reliability of videotaped observational gait analysis in patients with orthopedic impairments
  publication-title: BMC Musculoskelet. Disord.
– volume: 123
  start-page: 27
  year: 2001
  ident: 10.1016/j.gaitpost.2017.04.013_bib0120
  article-title: Local dynamic stability versus kinematic variability of continuous overground and treadmill walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1336798
– volume: 71
  start-page: 465
  year: 1991
  ident: 10.1016/j.gaitpost.2017.04.013_bib0005
  article-title: Interrater reliability of videotaped observational gait-analysis assessments
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/71.6.465
– volume: 27
  start-page: 710
  year: 2008
  ident: 10.1016/j.gaitpost.2017.04.013_bib0070
  article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.07.007
– volume: 45
  start-page: 110
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0210
  article-title: Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.01.014
– volume: 346
  start-page: 1085
  year: 1995
  ident: 10.1016/j.gaitpost.2017.04.013_bib0090
  article-title: Comparing methods of measurement: why plotting difference against standard method is misleading
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91748-9
– volume: 32
  start-page: 8
  year: 2008
  ident: 10.1016/j.gaitpost.2017.04.013_bib0180
  article-title: Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke
  publication-title: J. Neurol. Phys. Ther.
  doi: 10.1097/NPT0b013e31816593c0
– volume: 43
  start-page: 125
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0230
  article-title: Validity and reliability of an IMU-based method to detect APAs prior to gait initiation
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.08.015
– volume: 13
  start-page: 455
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0040
  article-title: Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.2016.1153421
– volume: 19
  start-page: 288
  year: 2004
  ident: 10.1016/j.gaitpost.2017.04.013_bib0155
  article-title: Test-retest reliability of trunk accelerometric gait analysis
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(03)00069-9
– volume: 30
  start-page: 127
  year: 2009
  ident: 10.1016/j.gaitpost.2017.04.013_bib0095
  article-title: Reliabilty, smallest real difference and concurrent validity of indices computed from GRF components in gait of stroke patients
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.03.011
– volume: 42
  start-page: 145
  year: 2015
  ident: 10.1016/j.gaitpost.2017.04.013_bib0030
  article-title: Accuracy of the Microsoft Kinect™ for measuring gait parameters during treadmill walking
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2015.05.002
– year: 2005
  ident: 10.1016/j.gaitpost.2017.04.013_bib0085
– volume: 55
  start-page: 918
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0200
  article-title: Lower extremity kinematic profile of gait of patients after ankle fracture: a case-control study
  publication-title: J. Foot Ankle Surg.
  doi: 10.1053/j.jfas.2016.04.004
– volume: 46
  start-page: 26
  year: 2016
  ident: 10.1016/j.gaitpost.2017.04.013_bib0235
  article-title: Effects of levodopa on postural strategies in parkinson’s disease
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.02.009
SSID ssj0004382
Score 2.6088102
Snippet •We tested the accuracy and repeatability of APDM’s Mobility Lab gait system.•The system is accurate and repeatable when measuring spatiotemporal gait...
Highlights • We tested the accuracy and repeatability of APDM’s Mobility Lab gait system. • The system is accurate and repeatable when measuring spatiotemporal...
Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective...
Highlights • We tested the accuracy and repeatability of APDM's Mobility Lab gait system. • The system is accurate and repeatable when measuring...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Accelerometry - methods
Accuracy
Adult
Ankle Joint - physiology
Biomechanics
Exercise Test - methods
Female
Foot - physiology
Gait - physiology
Gait detection
Humans
Inertial sensors
Male
Orthopedics
Reproducibility of Results
Walking - physiology
Walking Speed - physiology
Wearable
Wearable devices
Young Adult
Title Validity and repeatability of inertial measurement units for measuring gait parameters
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636217301261
https://www.clinicalkey.es/playcontent/1-s2.0-S0966636217301261
https://dx.doi.org/10.1016/j.gaitpost.2017.04.013
https://www.ncbi.nlm.nih.gov/pubmed/28433867
https://www.proquest.com/docview/1891457930
https://www.proquest.com/docview/2081949642
https://pubmed.ncbi.nlm.nih.gov/PMC5507609
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamISFeEGxcymUyEuItaxw7vjxWFVO5bELApr1ZdmyPTmtaLe3DXvjtHCdOtzJNIHiKkthKbJ_Ld-JzviD0NhjmfKjKLBBrMmZsAJ2rRGYK5SAeElZVsRr58IhPjtnH0_J0C437WpiYVplsf2fTW2udrgzTbA4X0-nwG4BvcJccMDUIadGGQIyJKOX7P6_TPOJGV8u3x3kWW9-oEj7fPzPT5WLexJxKIlrKU0LvclC3AejveZQ3HNPBI_QwIUo86l76Mdry9Q7aHdUQTc-u8Dvc5ni2H8930P3DtJW-i05OAIE7wODY1A5f-gUY5Y6z-wrPA441gaD8F3h2_RERr0D_GwwwN10Ft4fj4HAkEJ_FxJrmCTo-eP99PMnSTxayist8CVpSAr6WXAK04iFUUpW5yUVhrQ2ckpAHSYQRTpbOE0aclB5CNmYLZaWFYI8-Rdv1vPbPERbE5UQCpDFUMkByhlKqvLPMVEYoSQeo7GdWV4mBPP4I40L3qWbnul8RHVdE50zDigzQcN1v0XFw_LGH6BdO9xWmYBM1uIl_6-mbpNqNJropdK5vid8AqXXPDQn-q6e-6aVLg3rHPRtT-_kKniYVYSUY0fzuNkWEdUxBJDlAzzqJXM8ToA9KJRcwrg1ZXTeI9OKbd-rpj5ZmPDLd8Vy9-I9xvUQP4lmXWvcKbS8vV_41gLil3Wu1dA_dG42_fv4Sjx8-TY5-AQqfS6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLdQkbZdpg320bEPT5p2yxrHTmwfKzRUBu1lgLhZdmyzIppWpD3w3_OcOIUOoU3bNfFTYvt9_F7y3s8IffGaWefLPPHE6IRp48HmSp7oTFrIh7iRZehGHk-K0Sn7cZ6fb6H9rhcmlFVG39_69MZbxyuDuJqDxXQ6-AngG8JlAZgalDQLKdB2YKfKe2h7eHg0mty1R9LmzKgwPgkC9xqFL79d6OlyMa9DWSXhDespoY_FqIcY9PdSynux6eAFeh5BJR627_0SbblqB-0OK0ioZzf4K27KPJvv5zvoyTj-Td9FZ2cAwi3AcKwri6_dAvxyS9t9g-ceh7ZAsP8rPLv7johX4AJqDEg3XoXIh8PkcOAQn4XamvoVOj34frI_SuI5C0lZiHQJhpIDxBaFAHRVeF8Kmac65ZkxxheU-NQLwjW3IreOMGKFcJC1MZNJIwzke_Q16lXzyr1FmBObEgGoRlPBAMxpSql01jBdai4F7aO8W1lVRhLycBbGleqqzS5VtyMq7IhKmYId6aPBWm7R0nD8UYJ3G6e6JlNwiwoixb9Jujpad62IqjOVqgca2EdyLbmhxH_11M-ddimw8PDbRlduvoKnCUlYDn40fXxMFpAdk5BM9tGbViPX6wQAhFJRcJjXhq6uBwSG8c071fRXwzQeyO6KVL77j3l9Qk9HJ-NjdXw4OdpDz8KdttLuPeotr1fuA2C6pfkYbfYW11FMyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validity+and+repeatability+of+inertial+measurement+units+for+measuring+gait+parameters&rft.jtitle=Gait+%26+posture&rft.au=Washabaugh%2C+Edward+P.&rft.au=Kalyanaraman%2C+Tarun&rft.au=Adamczyk%2C+Peter+G.&rft.au=Claflin%2C+Edward+S.&rft.date=2017-06-01&rft.issn=0966-6362&rft.volume=55&rft.spage=87&rft.epage=93&rft_id=info:doi/10.1016%2Fj.gaitpost.2017.04.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gaitpost_2017_04_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-6362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-6362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-6362&client=summon