Interspecies transmission and emergence of novel viruses: lessons from bats and birds
•Bats and birds are reservoirs of zoonotic viruses.•Their unique immune systems allow them to harbor a large variety of viruses.•Coronaviruses and influenza viruses are examples of interspecies transmission of viruses. As exemplified by coronaviruses and influenza viruses, bats and birds are natural...
Saved in:
Published in | Trends in microbiology (Regular ed.) Vol. 21; no. 10; pp. 544 - 555 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Bats and birds are reservoirs of zoonotic viruses.•Their unique immune systems allow them to harbor a large variety of viruses.•Coronaviruses and influenza viruses are examples of interspecies transmission of viruses.
As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species. |
---|---|
AbstractList | •Bats and birds are reservoirs of zoonotic viruses.•Their unique immune systems allow them to harbor a large variety of viruses.•Coronaviruses and influenza viruses are examples of interspecies transmission of viruses.
As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species. • Bats and birds are reservoirs of zoonotic viruses. • Their unique immune systems allow them to harbor a large variety of viruses. • Coronaviruses and influenza viruses are examples of interspecies transmission of viruses. As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species. As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species.As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species. Highlights • Bats and birds are reservoirs of zoonotic viruses. • Their unique immune systems allow them to harbor a large variety of viruses. • Coronaviruses and influenza viruses are examples of interspecies transmission of viruses. As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species and viruses for interspecies transmission. These warm-blooded vertebrates display high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system, which are favorable characteristics for asymptomatic shedding, dissemination, and mixing of different viruses for the generation of novel mutant, recombinant, or reassortant RNA viruses. The increased intrusion of humans into wildlife habitats and overcrowding of different wildlife species in wet markets and farms have also facilitated the interspecies transmission between different animal species. |
Author | Jin, Dong-Yan To, Kelvin Kai-Wang Tse, Herman Chan, Jasper Fuk-Woo Yuen, Kwok-Yung |
AuthorAffiliation | 3 Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong Special Administrative Region, China 2 Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China 1 State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong Special Administrative Region, China 4 Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China 5 Department of Biochemistry, University of Hong Kong, Hong Kong Special Administrative Region, China |
AuthorAffiliation_xml | – name: 2 Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China – name: 3 Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong Special Administrative Region, China – name: 5 Department of Biochemistry, University of Hong Kong, Hong Kong Special Administrative Region, China – name: 4 Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China – name: 1 State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong Special Administrative Region, China |
Author_xml | – sequence: 1 givenname: Jasper Fuk-Woo surname: Chan fullname: Chan, Jasper Fuk-Woo organization: State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong Special Administrative Region, China – sequence: 2 givenname: Kelvin Kai-Wang surname: To fullname: To, Kelvin Kai-Wang organization: State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong Special Administrative Region, China – sequence: 3 givenname: Herman surname: Tse fullname: Tse, Herman organization: State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong Special Administrative Region, China – sequence: 4 givenname: Dong-Yan surname: Jin fullname: Jin, Dong-Yan organization: Department of Biochemistry, University of Hong Kong, Hong Kong Special Administrative Region, China – sequence: 5 givenname: Kwok-Yung surname: Yuen fullname: Yuen, Kwok-Yung email: kyyuen@hkucc.hku.hk organization: State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong Special Administrative Region, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23770275$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEUtFARTQs_gAvskUuCn70fNkiVqoqPSpU4lEjcLMf7Njjs2sFvE6n_Hi8pFVSiPfngmXlv3swJOwoxIGMvgS-AQ_12sxj9sBAc5IJXC86rJ2wGqlHzUip-xGZc1_VcleLbMTsh2vCMqET1jB0L2TRcNNWMLS_DiIm26DxSMSYbaPBEPobChrbAAdMag8MidkWIe-yLvU87QnpX9EgUAxVdikOxsiP9Zqx8auk5e9rZnvDF7XvKlh8_fL34PL_68uny4vxq7upGj_POTjY617WyrFagJK5KwVHzEpQW0DgBNYLUFlRbSyld1SJ3mjurAHRl5Sk7O-hud6sBW4chO-jNNvnBphsTrTf__gT_3azj3jQg6lJDFnhzK5Dizx3SaLJ7h31vA8YdGVBc5h2lrh-HlqUsOahSZ-irv9e62-fP2TMADgCXIlHC7g4C3Ew3MRuTozVTtIZXJgeXOc09jvOjHXNS2ZnvH2S-PjA7G41dJ09meZ0BNecg8iGmhd8fEJjD2ntMhnIfcuytT-hG00b_oP7ZPbbrffDO9j_wBmkTdynkFhgwJAw311Mtp1aCzI1Uehqv_y_wyPBf_8nvoQ |
CitedBy_id | crossref_primary_10_1007_s10311_021_01229_4 crossref_primary_10_1097_MCP_0000000000000055 crossref_primary_10_1016_j_ebiom_2021_103643 crossref_primary_10_1016_j_ijantimicag_2020_105948 crossref_primary_10_1016_j_cell_2021_06_008 crossref_primary_10_1016_j_tvjl_2018_07_005 crossref_primary_10_3389_fmicb_2021_675419 crossref_primary_10_1017_sus_2022_18 crossref_primary_10_3390_molecules25184086 crossref_primary_10_1128_JVI_00692_18 crossref_primary_10_1177_11786302221107786 crossref_primary_10_1016_j_scitotenv_2020_139278 crossref_primary_10_1080_22221751_2024_2400559 crossref_primary_10_1097_MD_0000000000025832 crossref_primary_10_1093_conphys_coad102 crossref_primary_10_1016_j_comtox_2021_100161 crossref_primary_10_24018_ejbiomed_2023_2_4_80 crossref_primary_10_1097_MCP_0000000000000047 crossref_primary_10_1186_s12929_019_0567_0 crossref_primary_10_1093_molbev_msu329 crossref_primary_10_1038_s41586_021_03431_4 crossref_primary_10_3389_fmicb_2018_00702 crossref_primary_10_3389_fphar_2020_592169 crossref_primary_10_1038_ncomms4067 crossref_primary_10_47102_annals_acadmed_sg_202046 crossref_primary_10_1016_j_rvsc_2021_02_009 crossref_primary_10_1016_j_ejmech_2023_115113 crossref_primary_10_3390_ijms25042428 crossref_primary_10_1016_j_coviro_2015_02_001 crossref_primary_10_1111_1744_9987_13723 crossref_primary_10_3389_fvets_2021_719834 crossref_primary_10_1097_COH_0000000000000650 crossref_primary_10_1111_tbed_13916 crossref_primary_10_36990_hijp_vi_191 crossref_primary_10_1183_09031936_00006414 crossref_primary_10_1007_s00265_020_02932_y crossref_primary_10_1016_j_meegid_2021_104883 crossref_primary_10_1186_s40779_021_00342_3 crossref_primary_10_1080_13543776_2021_1880568 crossref_primary_10_2174_0929866529666220316145149 crossref_primary_10_1097_MRM_0000000000000335 crossref_primary_10_1016_j_csbj_2022_09_028 crossref_primary_10_1016_j_virusres_2014_11_019 crossref_primary_10_2174_1573398X16999201203162129 crossref_primary_10_1016_j_coviro_2018_07_017 crossref_primary_10_12688_f1000research_54738_1 crossref_primary_10_1016_j_scib_2018_08_002 crossref_primary_10_1088_1755_1315_584_1_012004 crossref_primary_10_1089_vbz_2017_2138 crossref_primary_10_12688_f1000research_54738_2 crossref_primary_10_12688_f1000research_54738_3 crossref_primary_10_1016_j_scitotenv_2020_141483 crossref_primary_10_3390_molecules26216455 crossref_primary_10_1007_s40142_020_00197_5 crossref_primary_10_1016_j_glt_2020_09_003 crossref_primary_10_5937_afmnai38_30190 crossref_primary_10_1038_s41598_018_24620_8 crossref_primary_10_3390_pathogens12040610 crossref_primary_10_4103_jmms_jmms_114_20 crossref_primary_10_1016_j_prevetmed_2015_08_006 crossref_primary_10_2217_fvl_2017_0151 crossref_primary_10_3390_v13050792 crossref_primary_10_1128_JVI_01133_16 crossref_primary_10_52711_0974_360X_2022_00849 crossref_primary_10_1038_s41598_020_69557_z crossref_primary_10_1155_2021_9495126 crossref_primary_10_1007_s42247_020_00136_8 crossref_primary_10_1007_s00431_020_03866_3 crossref_primary_10_1038_s41467_022_30698_6 crossref_primary_10_1128_JVI_03649_13 crossref_primary_10_1016_j_jtcvs_2020_05_083 crossref_primary_10_1128_JCM_00517_16 crossref_primary_10_1016_j_arabjc_2021_103315 crossref_primary_10_1016_j_genrep_2020_100765 crossref_primary_10_1111_apt_15779 crossref_primary_10_3201_eid2602_190346 crossref_primary_10_2174_1389557520666201117111259 crossref_primary_10_1093_infdis_jit504 crossref_primary_10_3390_jcm14051555 crossref_primary_10_5005_japi_11001_0140 crossref_primary_10_1016_j_intimp_2020_107245 crossref_primary_10_1128_microbiolspec_PFS_0007_2014 crossref_primary_10_1038_s41598_025_93477_5 crossref_primary_10_1186_s12967_024_05587_9 crossref_primary_10_20965_jdr_2022_p0065 crossref_primary_10_1002_mco2_26 crossref_primary_10_1016_j_bios_2020_112777 crossref_primary_10_1016_j_bj_2020_04_007 crossref_primary_10_53879_id_60_05_13515 crossref_primary_10_1016_S2666_5247_21_00219_6 crossref_primary_10_2147_IJGM_S419789 crossref_primary_10_1007_s12038_020_00131_5 crossref_primary_10_1073_pnas_2113628119 crossref_primary_10_36377_1683_2981_2020_18_2_4_9 crossref_primary_10_1371_journal_pone_0150198 crossref_primary_10_24125_sanamed_v16i1_481 crossref_primary_10_1038_srep17155 crossref_primary_10_2174_1566524021666210803154250 crossref_primary_10_1111_zph_12290 crossref_primary_10_1099_acmi_0_000544_v5 crossref_primary_10_3390_nano11040900 crossref_primary_10_1016_j_bioorg_2024_107894 crossref_primary_10_1186_s43168_021_00053_2 crossref_primary_10_1590_1519_6984_247604 crossref_primary_10_1128_genomeA_00795_17 crossref_primary_10_3390_jcm9082442 crossref_primary_10_54393_pbmj_v5i1_202 crossref_primary_10_4103_jisppd_jisppd_478_20 crossref_primary_10_1142_S1682648515500171 crossref_primary_10_1093_cid_ciac171 crossref_primary_10_1080_07391102_2021_1921032 crossref_primary_10_3390_ijms21072574 crossref_primary_10_1051_bioconf_202412402007 crossref_primary_10_1007_s10668_021_01719_z crossref_primary_10_1186_s12873_021_00463_x crossref_primary_10_3389_fmicb_2022_884034 crossref_primary_10_1016_j_prevetmed_2019_02_017 crossref_primary_10_3390_zoonoticdis4020014 crossref_primary_10_1007_s00705_022_05459_x crossref_primary_10_22207_JPAM_17_3_43 crossref_primary_10_1007_s10344_019_1252_z crossref_primary_10_3389_fpubh_2014_00153 crossref_primary_10_1007_s12250_015_3711_3 crossref_primary_10_1016_j_bioorg_2023_106882 crossref_primary_10_1002_jmv_28116 crossref_primary_10_1007_s10557_020_07073_y crossref_primary_10_1111_mec_13310 crossref_primary_10_1016_j_ympev_2019_106618 crossref_primary_10_1002_bab_2597 crossref_primary_10_1039_C5AN00407A crossref_primary_10_14202_vetworld_2019_1797_1805 crossref_primary_10_1007_s10875_021_01061_z crossref_primary_10_1016_j_sjbs_2020_11_077 crossref_primary_10_31829_2641_7456_ahs2020_4_1__126 crossref_primary_10_1128_JCM_01224_15 crossref_primary_10_1099_vir_0_000158 crossref_primary_10_1007_s11239_020_02210_8 crossref_primary_10_1016_j_vetmic_2024_110136 crossref_primary_10_3390_vaccines10050755 crossref_primary_10_2174_2666796701999200921094439 crossref_primary_10_2174_2666796703666220302143102 crossref_primary_10_1007_s11684_016_0430_6 crossref_primary_10_1016_j_envres_2020_110405 crossref_primary_10_3390_microbiolres12010016 crossref_primary_10_1080_17460441_2022_2153828 crossref_primary_10_1128_spectrum_02449_22 crossref_primary_10_3389_fvets_2020_539925 crossref_primary_10_3748_wjg_v26_i46_7272 crossref_primary_10_3389_fmicb_2022_845546 crossref_primary_10_1093_mtomcs_mfad001 crossref_primary_10_3390_microorganisms9051035 crossref_primary_10_54393_pbmj_v5i2_202 crossref_primary_10_1590_1519_6984_247237 crossref_primary_10_37881_1_616 crossref_primary_10_1111_tbed_14029 crossref_primary_10_1016_j_sjbs_2021_12_020 crossref_primary_10_22517_25395203_24928 crossref_primary_10_1186_s40249_017_0304_4 crossref_primary_10_3390_ijms21249775 crossref_primary_10_1093_cid_cit541 crossref_primary_10_1097_HM9_0000000000000068 crossref_primary_10_1007_s43393_022_00091_x crossref_primary_10_36953_ECJ_2020_211215 crossref_primary_10_3389_fphar_2020_01258 crossref_primary_10_1016_j_ejps_2020_105522 crossref_primary_10_1007_s10530_023_03213_1 crossref_primary_10_3390_insects13090776 crossref_primary_10_3390_v11010073 crossref_primary_10_1177_0300060520943802 crossref_primary_10_3390_microorganisms8101468 crossref_primary_10_1016_j_tifs_2020_08_020 crossref_primary_10_1016_S1473_3099_13_70167_1 crossref_primary_10_1016_j_jinf_2013_12_014 crossref_primary_10_1002_jmv_28048 crossref_primary_10_1080_22221751_2022_2040922 crossref_primary_10_1016_j_mehy_2020_110121 crossref_primary_10_3389_fviro_2022_875213 crossref_primary_10_33204_mucosa_706906 crossref_primary_10_1038_s41467_021_21968_w crossref_primary_10_1016_j_cej_2020_127522 crossref_primary_10_12688_f1000research_24927_1 crossref_primary_10_1007_s12275_017_7026_y crossref_primary_10_1166_jbn_2021_3059 crossref_primary_10_2147_PHMT_S266063 crossref_primary_10_1002_pan3_10625 crossref_primary_10_1016_S2542_5196_21_00258_8 crossref_primary_10_1038_s41588_021_00805_2 crossref_primary_10_1097_MRM_0000000000000248 crossref_primary_10_1016_j_jinf_2016_02_011 crossref_primary_10_1002_adma_202310306 crossref_primary_10_1016_j_dsx_2020_04_011 crossref_primary_10_1016_j_phrs_2020_104960 crossref_primary_10_1016_j_envres_2020_109460 crossref_primary_10_2174_2666796701999201014160857 crossref_primary_10_1016_j_hermed_2021_100501 crossref_primary_10_1016_j_bpj_2021_03_024 crossref_primary_10_1038_s41467_024_50316_x crossref_primary_10_1016_j_virol_2014_02_018 crossref_primary_10_1016_j_ijpharm_2020_119689 crossref_primary_10_3390_ijms231710067 crossref_primary_10_1007_s10096_020_03978_6 crossref_primary_10_4081_jphr_2021_2941 crossref_primary_10_1139_cjas_2018_0252 crossref_primary_10_1002_vms3_360 crossref_primary_10_1007_s12041_021_01262_w crossref_primary_10_1111_tbed_14478 crossref_primary_10_1002_jobm_201700398 crossref_primary_10_1186_s12985_021_01633_w crossref_primary_10_3390_microorganisms9040793 crossref_primary_10_22207_JPAM_14_4_03 crossref_primary_10_4103_jacr_jacr_89_20 crossref_primary_10_1016_j_tvjl_2014_04_017 crossref_primary_10_35366_94636 crossref_primary_10_52547_jccs_2_3_129 crossref_primary_10_1186_s40168_024_01950_6 crossref_primary_10_1007_s00705_021_05091_1 crossref_primary_10_4103_jfmpc_jfmpc_902_20 crossref_primary_10_1016_j_medj_2024_11_006 crossref_primary_10_26634_jls_2_1_19757 crossref_primary_10_1002_jmv_26598 crossref_primary_10_5155_eurjchem_12_2_222_234_2084 crossref_primary_10_2174_2666796701999201209144207 crossref_primary_10_1016_j_jinf_2014_02_012 crossref_primary_10_1002_masy_202000336 crossref_primary_10_1080_13102818_2020_1843539 crossref_primary_10_1097_MD_0000000000020956 crossref_primary_10_3389_fmicb_2017_01510 crossref_primary_10_15547_tjs_2020_s_01_042 crossref_primary_10_3390_v11060573 crossref_primary_10_22182_pr_6642020_1 crossref_primary_10_1007_s12250_021_00364_0 crossref_primary_10_1080_23311916_2021_2017580 crossref_primary_10_1016_j_tim_2016_09_001 crossref_primary_10_1007_s13337_022_00800_z crossref_primary_10_3390_ijms222111483 crossref_primary_10_1098_rsos_211573 crossref_primary_10_3390_v5112679 crossref_primary_10_3138_anth_2018_0039_r1 crossref_primary_10_1016_j_chempr_2022_03_012 crossref_primary_10_1016_j_sintl_2020_100079 crossref_primary_10_1016_j_scitotenv_2019_134612 crossref_primary_10_1093_ve_vex007 crossref_primary_10_1016_j_scitotenv_2020_143283 crossref_primary_10_17116_klinderma20212003177 crossref_primary_10_3389_fimmu_2021_582556 crossref_primary_10_1093_infdis_jiv380 crossref_primary_10_1007_s11625_020_00866_y crossref_primary_10_1177_24723444241237302 crossref_primary_10_1186_s12985_015_0446_6 crossref_primary_10_1007_s12559_022_10076_6 crossref_primary_10_1007_s11356_021_17481_8 crossref_primary_10_1515_dx_2020_0057 crossref_primary_10_1515_ntrev_2022_0093 crossref_primary_10_1016_j_tim_2015_06_003 crossref_primary_10_1038_emi_2016_48 crossref_primary_10_3390_vaccines9111279 crossref_primary_10_1086_725081 crossref_primary_10_61186_rbmb_13_1_124 crossref_primary_10_1016_j_foodcont_2021_108108 crossref_primary_10_1111_his_14138 crossref_primary_10_1093_gigascience_giad001 crossref_primary_10_3389_fmicb_2020_580137 crossref_primary_10_1371_journal_pone_0243524 crossref_primary_10_1186_s42269_021_00540_y crossref_primary_10_1128_mbio_01426_23 crossref_primary_10_1016_j_epidem_2020_100410 crossref_primary_10_52711_0974_360X_2021_00408 crossref_primary_10_24072_pcjournal_206 crossref_primary_10_1038_s41392_023_01631_0 crossref_primary_10_3390_v14071551 crossref_primary_10_3390_v13020348 crossref_primary_10_1093_infdis_jiv392 crossref_primary_10_3389_fmolb_2021_671923 crossref_primary_10_1016_j_dci_2025_105363 crossref_primary_10_1371_journal_pone_0276773 crossref_primary_10_1007_s00253_020_10645_5 crossref_primary_10_47853_FAS_2022_e29 crossref_primary_10_1080_07391102_2021_1886991 crossref_primary_10_1007_s41324_022_00443_8 crossref_primary_10_1016_j_ejphar_2020_173659 crossref_primary_10_1016_j_scib_2023_02_001 crossref_primary_10_1002_jmv_25864 crossref_primary_10_36106_ijar_0701623 crossref_primary_10_5812_zjrms_109853 crossref_primary_10_1080_14712598_2022_2078160 crossref_primary_10_1016_S1473_3099_14_70828_X crossref_primary_10_1016_j_meegid_2018_03_030 crossref_primary_10_1016_j_imu_2020_100451 crossref_primary_10_18231_j_achr_2022_020 crossref_primary_10_4102_ojvr_v87i1_1895 crossref_primary_10_1111_tbed_12327 crossref_primary_10_1016_j_virol_2016_04_025 crossref_primary_10_1002_ptr_6887 crossref_primary_10_1016_j_xcrm_2022_100524 crossref_primary_10_3390_pathogens10060636 crossref_primary_10_1016_j_meegid_2014_11_014 crossref_primary_10_1016_j_marpolbul_2023_114746 crossref_primary_10_1055_s_0040_1718415 crossref_primary_10_17533_udea_rccp_v38n3a8 crossref_primary_10_22141_ogh_2_4_2021_251145 crossref_primary_10_1016_j_jinf_2013_09_029 crossref_primary_10_1016_S1473_3099_14_70827_8 crossref_primary_10_1002_wnan_1707 crossref_primary_10_1016_j_antiviral_2018_10_007 crossref_primary_10_3390_immuno3030020 crossref_primary_10_1016_j_micinf_2014_11_007 crossref_primary_10_1111_ijd_15154 crossref_primary_10_3390_v13101993 crossref_primary_10_1007_s00604_020_04615_x crossref_primary_10_4103_1995_7645_359785 crossref_primary_10_3382_ps_pew332 crossref_primary_10_4103_ijmm_IJMM_20_279 crossref_primary_10_1136_bmjophth_2020_000630 crossref_primary_10_1038_s41598_022_23925_z crossref_primary_10_3201_eid2007_140296 crossref_primary_10_1128_genomeA_01191_14 crossref_primary_10_1002_bies_202100261 crossref_primary_10_1038_emi_2015_28 crossref_primary_10_2147_RMHP_S284557 crossref_primary_10_3389_fphar_2021_758159 crossref_primary_10_1093_cid_ciaa644 crossref_primary_10_1074_jbc_RA118_001897 crossref_primary_10_1146_annurev_virology_110615_042203 crossref_primary_10_1016_j_biopha_2021_111956 crossref_primary_10_3233_WOR_203395 crossref_primary_10_1016_j_heliyon_2020_e04897 crossref_primary_10_25259_JGOH_19_2020 crossref_primary_10_1007_s13149_015_0448_z crossref_primary_10_1007_s12603_020_1385_5 crossref_primary_10_1098_rsos_230578 crossref_primary_10_1002_bies_202200080 crossref_primary_10_1016_j_trsl_2021_10_007 crossref_primary_10_1016_j_jpba_2017_06_071 crossref_primary_10_1016_j_xcrm_2022_100774 crossref_primary_10_3389_fmicb_2022_789882 crossref_primary_10_52679_tabcj_2021_0012 crossref_primary_10_1128_genomeA_00369_18 crossref_primary_10_1016_j_meegid_2021_104709 crossref_primary_10_3390_v12121465 crossref_primary_10_3390_ijms22115672 crossref_primary_10_1080_22221751_2020_1719902 crossref_primary_10_1038_nrd_2015_37 crossref_primary_10_2174_012772574X269376231107095831 crossref_primary_10_1007_s42770_019_00065_7 crossref_primary_10_21673_anadoluklin_708151 crossref_primary_10_1128_CMR_00102_14 crossref_primary_10_1128_CMR_00102_15 crossref_primary_10_1111_ibi_12434 crossref_primary_10_3892_etm_2022_11343 crossref_primary_10_1016_j_coviro_2015_01_006 crossref_primary_10_1128_jvi_00065_22 crossref_primary_10_3390_jcm9051473 crossref_primary_10_1007_s41062_020_00325_8 crossref_primary_10_2139_ssrn_3588991 crossref_primary_10_3390_antiox12061305 crossref_primary_10_1016_j_mib_2024_102474 crossref_primary_10_3390_ani12111413 crossref_primary_10_1186_s13287_021_02683_1 crossref_primary_10_3390_jcm9113630 crossref_primary_10_1093_molbev_msae202 crossref_primary_10_3390_ani11051216 crossref_primary_10_3390_antibiotics10111294 crossref_primary_10_3390_molecules25245905 crossref_primary_10_1186_s12985_019_1182_0 crossref_primary_10_3390_microorganisms8111704 crossref_primary_10_1007_s12250_015_3683_3 crossref_primary_10_3390_jcm9113518 crossref_primary_10_1063_5_0021554 crossref_primary_10_1016_j_coviro_2018_12_001 crossref_primary_10_1371_journal_pntd_0003318 crossref_primary_10_1016_j_heliyon_2021_e08166 crossref_primary_10_1016_j_talanta_2021_122609 crossref_primary_10_1016_j_scitotenv_2020_143352 crossref_primary_10_18231_j_ijmr_2020_062 crossref_primary_10_1016_j_virol_2016_04_008 crossref_primary_10_1039_D0BM02077J crossref_primary_10_3390_v13061022 crossref_primary_10_36106_gjra_8013840 crossref_primary_10_33889_IJMEMS_2020_5_4_052 crossref_primary_10_3390_v16071133 crossref_primary_10_3201_eid2806_211718 crossref_primary_10_1126_scitranslmed_3008140 crossref_primary_10_1186_s13567_024_01445_0 crossref_primary_10_1128_jvi_01719_22 crossref_primary_10_3389_fendo_2020_00622 crossref_primary_10_4103_CRST_CRST_174_20 crossref_primary_10_1016_j_prevetmed_2021_105281 crossref_primary_10_3390_biomedicines9081018 crossref_primary_10_2139_ssrn_3759263 crossref_primary_10_1128_mbio_02324_24 crossref_primary_10_1016_j_scitotenv_2020_142372 crossref_primary_10_1186_s12985_015_0378_1 crossref_primary_10_2478_jvetres_2018_0035 crossref_primary_10_2174_1574885515999200813193747 |
Cites_doi | 10.1371/journal.pone.0013757 10.4049/jimmunol.175.10.6702 10.3201/eid1503.081410 10.1128/JVI.06203-11 10.1525/aa.1992.94.1.02a00070 10.1016/S0140-6736(13)60903-4 10.1292/jvms.09-0050 10.1128/CMR.00023-07 10.1128/JVI.00592-10 10.1016/j.dci.2011.02.011 10.1038/nature12005 10.1016/S0140-6736(09)62126-7 10.4049/jimmunol.1003115 10.1016/j.dci.2011.11.008 10.1128/JVI.00742-11 10.1016/j.dci.2010.06.004 10.3181/0903-MR-94 10.1038/emi.2012.45 10.1016/j.virol.2006.02.041 10.1128/JVI.06100-11 10.1111/j.1865-1682.2012.01357.x 10.1128/JVI.02656-12 10.1073/pnas.1218509110 10.1073/pnas.1212579109 10.1038/emi.2012.24 10.1007/s00251-010-0425-4 10.1016/j.jfma.2013.05.010 10.1128/MMBR.56.1.152-179.1992 10.1016/j.molimm.2007.10.018 10.1002/rmv.520 10.1111/j.1751-0813.2011.00734.x 10.1128/JVI.64.7.3297-3303.1990 10.1073/pnas.1116200109 10.1099/vir.0.026443-0 10.1073/pnas.0504662102 10.1038/ncomms1158 10.1016/j.dci.2010.08.011 10.1371/journal.ppat.1002730 10.4172/1747-0862.1000026 10.1128/JVI.02182-06 10.1128/JVI.71.8.6128-6135.1997 10.1128/CMR.00017-06 10.1099/vir.0.80478-0 10.1128/JVI.00712-11 10.1089/jir.2007.0135 10.1128/mBio.00166-12 10.1128/JVI.72.9.7367-7373.1998 10.1126/science.1230835 10.1128/JVI.02219-09 10.1186/1471-2164-11-444 10.1128/CMR.05012-11 10.1371/journal.pone.0038665 10.1016/j.molimm.2010.12.011 10.1073/pnas.91.16.7782 10.1111/j.1863-2378.2012.01528.x 10.1086/524991 10.1128/JVI.01977-08 10.1099/vir.0.82378-0 10.1016/j.virol.2005.08.032 10.1128/JVI.02683-07 10.1111/j.1750-2659.2012.00397.x 10.1089/jir.2005.25.467 10.1186/1471-2334-7-132 10.4049/jimmunol.1003712 10.1073/pnas.0506735102 10.1128/JVI.02688-12 10.1128/JVI.05474-11 10.1073/pnas.0409465102 10.1186/1471-2164-13-261 10.1128/JVI.01677-12 10.1016/j.vetmic.2012.11.040 10.1371/journal.pone.0025385 10.1038/nbt1375 10.1371/journal.ppat.1001034 10.1016/j.coviro.2011.10.012 10.1038/ncomms1804 10.1128/JVI.01305-12 10.4142/jvs.2011.12.1.7 10.1128/JVI.06540-11 10.1016/j.jinf.2012.10.002 10.1126/science.1122438 10.1016/j.molimm.2011.05.025 10.3201/eid1805.111922 10.1093/infdis/jit123 10.3201/eid1903.121503 10.3382/ps.2012-02394 10.1016/j.molimm.2012.03.034 10.1128/JVI.05369-11 10.1099/vir.0.79878-0 10.1016/j.dci.2005.06.018 10.1258/ebm.2010.010071 10.4049/jimmunol.0903092 10.1056/NEJMoa0903812 10.1073/pnas.1001755107 10.1128/JVI.06927-11 10.1371/journal.ppat.1003059 10.1080/03079457.2012.732691 10.1073/pnas.0909696106 10.1128/JVI.00281-12 10.1073/pnas.1200039109 10.1159/000103180 10.3201/eid1509.090224 10.1099/vir.0.049759-0 10.1128/mBio.00515-12 10.1016/j.jinf.2012.12.003 10.1128/JCM.01142-12 10.1128/JVI.01394-09 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. Copyright © 2013 Elsevier Ltd. All rights reserved. 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. 2013 Elsevier Ltd |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.tim.2013.05.005 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-4380 |
EndPage | 555 |
ExternalDocumentID | PMC7126491 23770275 10_1016_j_tim_2013_05_005 US201600121269 S0966842X13000899 1_s2_0_S0966842X13000899 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HMG HMK HMO HVGLF HZ~ H~9 IHE J1W KOM LUGTX M29 M41 MO0 N9A O-L O9- OAUVE OD- OO. OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WUQ XPP Y6R Z5R ZCA ZY4 ~G- AACTN ABTAH AFCTW AFKWA AJOXV AMFUW RCE RIG AAIAV ZA5 FBQ AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c679t-fa1016fcfd345b183eb420e904189217c216e139a18d6333c5de0c90ca81195a3 |
IEDL.DBID | .~1 |
ISSN | 0966-842X 1878-4380 |
IngestDate | Thu Aug 21 18:01:03 EDT 2025 Tue Aug 05 11:16:10 EDT 2025 Fri Jul 11 10:17:20 EDT 2025 Thu Apr 03 07:07:06 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Tue Jul 01 03:03:06 EDT 2025 Thu Apr 03 09:45:24 EDT 2025 Thu Jun 13 11:13:39 EDT 2024 Sun Feb 23 10:19:30 EST 2025 Tue Aug 26 17:00:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | influenza emerging infectious disease coronavirus RNA virus virus evolution |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c679t-fa1016fcfd345b183eb420e904189217c216e139a18d6333c5de0c90ca81195a3 |
Notes | http://dx.doi.org/10.1016/j.tim.2013.05.005 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to the manuscript. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7126491 |
PMID | 23770275 |
PQID | 1443401849 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7126491 proquest_miscellaneous_1803101396 proquest_miscellaneous_1443401849 pubmed_primary_23770275 crossref_primary_10_1016_j_tim_2013_05_005 crossref_citationtrail_10_1016_j_tim_2013_05_005 fao_agris_US201600121269 elsevier_sciencedirect_doi_10_1016_j_tim_2013_05_005 elsevier_clinicalkeyesjournals_1_s2_0_S0966842X13000899 elsevier_clinicalkey_doi_10_1016_j_tim_2013_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in microbiology (Regular ed.) |
PublicationTitleAlternate | Trends Microbiol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Desvaux (bib0315) 2009; 15 Hofmann (bib0270) 2005; 102 Zimmermann (bib0525) 2011; 85 Zell (bib0510) 2007; 88 Chan (bib0370) 2010; 5 Magor (bib0185) 2011; 35 Shi (bib0515) 2012; 86 Baker (bib0100) 2010; 62 Muller (bib0265) 2012; 3 Boni (bib0345) 2008; 82 Hoffmann (bib0415) 2012; 86 Crispe (bib0320) 2011; 89 Moon (bib0195) 2005; 175 Li (bib0405) 1990; 64 Chan (bib0040) 2013; 112 Fleming-Canepa (bib0150) 2011; 48 Zheng (bib0365) 2010; 235 Chen (bib0060) 2013; 381 Calisher (bib0065) 2006; 19 Pica (bib0330) 2012; 109 Iha (bib0075) 2010; 72 Woo (bib0035) 2012; 1 Manz (bib0535) 2012; 3 Kaiser (bib0455) 2005; 25 Bratsch (bib0465) 2011; 35 Lau (bib0230) 2012; 86 Barber (bib0165) 2010; 107 Sun (bib0420) 2013; 87 Ratcliffe (bib0475) 2006; 30 Edens (bib0005) 1992; 94 Jiao (bib0445) 2012; 91 Pfefferle (bib0240) 2009; 15 Kuchipudi (bib0360) 2009; 3 Lau (bib0105) 2010; 84 Chandrasekaran (bib0375) 2008; 26 Chan (bib0025) 2012; 65 Vanderven (bib0145) 2012; 51 Zhu (bib0110) 2013; 110 Gabriel (bib0485) 2011; 2 Cornelissen (bib0155) 2012; 41 Karpala (bib0430) 2011; 186 Baker (bib0070) 2013; 60 Yamada (bib0490) 2010; 6 Kepler (bib0085) 2010; 11 Anthony (bib0250) 2013; 94 Mehle (bib0500) 2012; 86 Jiang (bib0260) 2013; 66 Wang (bib0395) 2009; 106 Graham, Baric (bib0235) 2010; 84 Zhou (bib0095) 2011; 6 Pasick (bib0340) 2005; 86 Zhou (bib0090) 2011; 186 Woo (bib0205) 2009; 234 Woo (bib0030) 2007; 81 Jonges (bib0495) 2011; 85 Zhu (bib0115) 2012; 109 Cheng (bib0015) 2007; 20 Liang (bib0160) 2011; 48 Hatchette (bib0140) 2004; 85 Chen (bib0505) 2010; 84 Croville (bib0410) 2012; 50 Yamada (bib0355) 2012; 86 Wong (bib0045) 2007; 17 Globig (bib0180) 2013; 60 Murcia (bib0350) 2012; 8 Anthony (bib0325) 2012; 3 Yang (bib0400) 2012; 86 Cheng (bib0295) 2012; 25 Liniger (bib0170) 2012; 86 Han (bib0460) 2008; 28 Sharp (bib0130) 1997; 71 Webster (bib0125) 1992; 56 Volmer (bib0440) 2011; 92 Klein (bib0275) 1994; 91 Woo (bib0220) 2009; 83 Muramoto (bib0520) 2013; 87 Guan (bib0135) 2007; 7 Chan (bib0280) 2013; 207 Shinde (bib0305) 2009; 360 Olsen (bib0120) 2006; 312 Downing (bib0435) 2010; 184 To (bib0055) 2012; 1 Butler (bib0480) 2011; 35 Woo (bib0225) 2012; 86 Lau (bib0020) 2005; 102 Raj (bib0285) 2013; 495 Xu (bib0010) 2012; 7 Zhang (bib0425) 2013; 339 Hulse-Post (bib0200) 2005; 102 Woo (bib0215) 2006; 351 MacDonald (bib0175) 2008; 45 Tong (bib0050) 2012; 109 Rajsbaum (bib0530) 2012; 8 Cowled (bib0080) 2012; 36 Bolles (bib0210) 2011; 1 Annan (bib0255) 2013; 19 Amonsin (bib0310) 2006; 344 Londt (bib0290) 2013; 162 Lau (bib0245) 2012; 86 Miller (bib0335) 2010; 375 Causey, Edwards (bib0190) 2008; 197 Papenfuss (bib0470) 2012; 13 Ito (bib0380) 1998; 72 Londt (bib0385) 2013; 7 Lindstrom (bib0300) 2012; 18 MacDonald (bib0450) 2007; 117 Yu (bib0390) 2011; 12 Liniger (10.1016/j.tim.2013.05.005_bib0170) 2012; 86 Woo (10.1016/j.tim.2013.05.005_bib0035) 2012; 1 MacDonald (10.1016/j.tim.2013.05.005_bib0450) 2007; 117 Graham (10.1016/j.tim.2013.05.005_bib0235) 2010; 84 Guan (10.1016/j.tim.2013.05.005_bib0135) 2007; 7 Wang (10.1016/j.tim.2013.05.005_bib0395) 2009; 106 Chan (10.1016/j.tim.2013.05.005_bib0370) 2010; 5 Chen (10.1016/j.tim.2013.05.005_bib0505) 2010; 84 Chan (10.1016/j.tim.2013.05.005_bib0025) 2012; 65 Moon (10.1016/j.tim.2013.05.005_bib0195) 2005; 175 Lau (10.1016/j.tim.2013.05.005_bib0230) 2012; 86 Annan (10.1016/j.tim.2013.05.005_bib0255) 2013; 19 Jiang (10.1016/j.tim.2013.05.005_bib0260) 2013; 66 Anthony (10.1016/j.tim.2013.05.005_bib0325) 2012; 3 Wong (10.1016/j.tim.2013.05.005_bib0045) 2007; 17 Cheng (10.1016/j.tim.2013.05.005_bib0295) 2012; 25 Downing (10.1016/j.tim.2013.05.005_bib0435) 2010; 184 Zhou (10.1016/j.tim.2013.05.005_bib0090) 2011; 186 Chan (10.1016/j.tim.2013.05.005_bib0280) 2013; 207 Cheng (10.1016/j.tim.2013.05.005_bib0015) 2007; 20 Desvaux (10.1016/j.tim.2013.05.005_bib0315) 2009; 15 Edens (10.1016/j.tim.2013.05.005_bib0005) 1992; 94 Hulse-Post (10.1016/j.tim.2013.05.005_bib0200) 2005; 102 Bratsch (10.1016/j.tim.2013.05.005_bib0465) 2011; 35 Pfefferle (10.1016/j.tim.2013.05.005_bib0240) 2009; 15 Manz (10.1016/j.tim.2013.05.005_bib0535) 2012; 3 Iha (10.1016/j.tim.2013.05.005_bib0075) 2010; 72 Xu (10.1016/j.tim.2013.05.005_bib0010) 2012; 7 Globig (10.1016/j.tim.2013.05.005_bib0180) 2013; 60 Calisher (10.1016/j.tim.2013.05.005_bib0065) 2006; 19 Zell (10.1016/j.tim.2013.05.005_bib0510) 2007; 88 Chan (10.1016/j.tim.2013.05.005_bib0040) 2013; 112 Shi (10.1016/j.tim.2013.05.005_bib0515) 2012; 86 Kuchipudi (10.1016/j.tim.2013.05.005_bib0360) 2009; 3 Chandrasekaran (10.1016/j.tim.2013.05.005_bib0375) 2008; 26 Shinde (10.1016/j.tim.2013.05.005_bib0305) 2009; 360 Lau (10.1016/j.tim.2013.05.005_bib0020) 2005; 102 Zhu (10.1016/j.tim.2013.05.005_bib0115) 2012; 109 Olsen (10.1016/j.tim.2013.05.005_bib0120) 2006; 312 Gabriel (10.1016/j.tim.2013.05.005_bib0485) 2011; 2 Yu (10.1016/j.tim.2013.05.005_bib0390) 2011; 12 Kaiser (10.1016/j.tim.2013.05.005_bib0455) 2005; 25 Boni (10.1016/j.tim.2013.05.005_bib0345) 2008; 82 Miller (10.1016/j.tim.2013.05.005_bib0335) 2010; 375 Papenfuss (10.1016/j.tim.2013.05.005_bib0470) 2012; 13 Bolles (10.1016/j.tim.2013.05.005_bib0210) 2011; 1 Rajsbaum (10.1016/j.tim.2013.05.005_bib0530) 2012; 8 Liang (10.1016/j.tim.2013.05.005_bib0160) 2011; 48 Karpala (10.1016/j.tim.2013.05.005_bib0430) 2011; 186 Lau (10.1016/j.tim.2013.05.005_bib0105) 2010; 84 Anthony (10.1016/j.tim.2013.05.005_bib0250) 2013; 94 Londt (10.1016/j.tim.2013.05.005_bib0385) 2013; 7 Yamada (10.1016/j.tim.2013.05.005_bib0490) 2010; 6 Pasick (10.1016/j.tim.2013.05.005_bib0340) 2005; 86 Tong (10.1016/j.tim.2013.05.005_bib0050) 2012; 109 Li (10.1016/j.tim.2013.05.005_bib0405) 1990; 64 Pica (10.1016/j.tim.2013.05.005_bib0330) 2012; 109 Cowled (10.1016/j.tim.2013.05.005_bib0080) 2012; 36 Woo (10.1016/j.tim.2013.05.005_bib0225) 2012; 86 Sharp (10.1016/j.tim.2013.05.005_bib0130) 1997; 71 Chen (10.1016/j.tim.2013.05.005_bib0060) 2013; 381 Cornelissen (10.1016/j.tim.2013.05.005_bib0155) 2012; 41 Lindstrom (10.1016/j.tim.2013.05.005_bib0300) 2012; 18 Baker (10.1016/j.tim.2013.05.005_bib0100) 2010; 62 Crispe (10.1016/j.tim.2013.05.005_bib0320) 2011; 89 Baker (10.1016/j.tim.2013.05.005_bib0070) 2013; 60 Muramoto (10.1016/j.tim.2013.05.005_bib0520) 2013; 87 Murcia (10.1016/j.tim.2013.05.005_bib0350) 2012; 8 Croville (10.1016/j.tim.2013.05.005_bib0410) 2012; 50 Zhu (10.1016/j.tim.2013.05.005_bib0110) 2013; 110 Zimmermann (10.1016/j.tim.2013.05.005_bib0525) 2011; 85 Kepler (10.1016/j.tim.2013.05.005_bib0085) 2010; 11 Barber (10.1016/j.tim.2013.05.005_bib0165) 2010; 107 MacDonald (10.1016/j.tim.2013.05.005_bib0175) 2008; 45 Fleming-Canepa (10.1016/j.tim.2013.05.005_bib0150) 2011; 48 Klein (10.1016/j.tim.2013.05.005_bib0275) 1994; 91 Woo (10.1016/j.tim.2013.05.005_bib0220) 2009; 83 Webster (10.1016/j.tim.2013.05.005_bib0125) 1992; 56 Zhang (10.1016/j.tim.2013.05.005_bib0425) 2013; 339 Londt (10.1016/j.tim.2013.05.005_bib0290) 2013; 162 Woo (10.1016/j.tim.2013.05.005_bib0030) 2007; 81 Jonges (10.1016/j.tim.2013.05.005_bib0495) 2011; 85 Mehle (10.1016/j.tim.2013.05.005_bib0500) 2012; 86 Butler (10.1016/j.tim.2013.05.005_bib0480) 2011; 35 Vanderven (10.1016/j.tim.2013.05.005_bib0145) 2012; 51 Zheng (10.1016/j.tim.2013.05.005_bib0365) 2010; 235 Muller (10.1016/j.tim.2013.05.005_bib0265) 2012; 3 Raj (10.1016/j.tim.2013.05.005_bib0285) 2013; 495 Magor (10.1016/j.tim.2013.05.005_bib0185) 2011; 35 Causey (10.1016/j.tim.2013.05.005_bib0190) 2008; 197 Hoffmann (10.1016/j.tim.2013.05.005_bib0415) 2012; 86 Woo (10.1016/j.tim.2013.05.005_bib0205) 2009; 234 Woo (10.1016/j.tim.2013.05.005_bib0215) 2006; 351 Sun (10.1016/j.tim.2013.05.005_bib0420) 2013; 87 Lau (10.1016/j.tim.2013.05.005_bib0245) 2012; 86 Jiao (10.1016/j.tim.2013.05.005_bib0445) 2012; 91 Zhou (10.1016/j.tim.2013.05.005_bib0095) 2011; 6 Ito (10.1016/j.tim.2013.05.005_bib0380) 1998; 72 Hofmann (10.1016/j.tim.2013.05.005_bib0270) 2005; 102 Han (10.1016/j.tim.2013.05.005_bib0460) 2008; 28 Yang (10.1016/j.tim.2013.05.005_bib0400) 2012; 86 Volmer (10.1016/j.tim.2013.05.005_bib0440) 2011; 92 Hatchette (10.1016/j.tim.2013.05.005_bib0140) 2004; 85 Amonsin (10.1016/j.tim.2013.05.005_bib0310) 2006; 344 Yamada (10.1016/j.tim.2013.05.005_bib0355) 2012; 86 Ratcliffe (10.1016/j.tim.2013.05.005_bib0475) 2006; 30 To (10.1016/j.tim.2013.05.005_bib0055) 2012; 1 |
References_xml | – volume: 48 start-page: 924 year: 2011 end-page: 930 ident: bib0160 article-title: Immune-related gene expression in response to H5N1 avian influenza virus infection in chicken and duck embryonic fibroblasts publication-title: Mol. Immunol. – volume: 84 start-page: 3134 year: 2010 end-page: 3146 ident: bib0235 article-title: Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission publication-title: J. Virol. – volume: 3 start-page: 143 year: 2009 end-page: 151 ident: bib0360 article-title: Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission publication-title: J. Mol. Genet. Med. – volume: 85 start-page: 8133 year: 2011 end-page: 8140 ident: bib0525 article-title: The viral nucleoprotein determines Mx sensitivity of influenza A viruses publication-title: J. Virol. – volume: 41 start-page: 519 year: 2012 end-page: 529 ident: bib0155 article-title: Differential innate responses of chickens and ducks to low-pathogenic avian influenza publication-title: Avian Pathol. – volume: 15 start-page: 1377 year: 2009 end-page: 1384 ident: bib0240 article-title: Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana publication-title: Emerg. Infect. Dis. – volume: 87 start-page: 2963 year: 2013 end-page: 2968 ident: bib0420 article-title: Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice publication-title: J. Virol. – volume: 20 start-page: 660 year: 2007 end-page: 694 ident: bib0015 article-title: Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection publication-title: Clin. Microbiol. Rev. – volume: 3 year: 2012 ident: bib0325 article-title: Emergence of fatal avian influenza in New England harbor seals publication-title: mBio – volume: 186 start-page: 5397 year: 2011 end-page: 5405 ident: bib0430 article-title: Characterization of chicken Mda5 activity: regulation of IFN-beta in the absence of RIG-I functionality publication-title: J. Immunol. – volume: 72 start-page: 7367 year: 1998 end-page: 7373 ident: bib0380 article-title: Molecular basis for the generation in pigs of influenza A viruses with pandemic potential publication-title: J. Virol. – volume: 8 start-page: e1002730 year: 2012 ident: bib0350 article-title: Evolution of an Eurasian avian-like influenza virus in naive and vaccinated pigs publication-title: PLoS Pathog. – volume: 51 start-page: 316 year: 2012 end-page: 324 ident: bib0145 article-title: Avian influenza rapidly induces antiviral genes in duck lung and intestine publication-title: Mol. Immunol. – volume: 1 start-page: 624 year: 2011 end-page: 634 ident: bib0210 article-title: SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission publication-title: Curr. Opin. Virol. – volume: 109 start-page: 2573 year: 2012 end-page: 2578 ident: bib0330 article-title: Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 66 start-page: 464 year: 2013 end-page: 466 ident: bib0260 article-title: A predicted receptor-binding and critical neutralizing domain in S protein of the novel human coronavirus HCoV-EMC publication-title: J. Infect. – volume: 109 start-page: 18903 year: 2012 end-page: 18908 ident: bib0115 article-title: Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 19 start-page: 456 year: 2013 end-page: 459 ident: bib0255 article-title: Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe publication-title: Emerg. Infect. Dis. – volume: 109 start-page: 4269 year: 2012 end-page: 4274 ident: bib0050 article-title: A distinct lineage of influenza A virus from bats publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 50 start-page: 2881 year: 2012 end-page: 2887 ident: bib0410 article-title: Field monitoring of avian influenza viruses: whole-genome sequencing and tracking of neuraminidase evolution using 454 pyrosequencing publication-title: J. Clin. Microbiol. – volume: 184 start-page: 6993 year: 2010 end-page: 7000 ident: bib0435 article-title: The differential evolutionary dynamics of avian cytokine and TLR gene classes publication-title: J. Immunol. – volume: 94 start-page: 118 year: 1992 end-page: 139 ident: bib0005 article-title: Dynamics of trade in the ancient mesopotamian “World System” publication-title: Am. Anthropol. New Ser. – volume: 36 start-page: 657 year: 2012 end-page: 664 ident: bib0080 article-title: Molecular characterisation of RIG-I-like helicases in the black flying fox, publication-title: Dev. Comp. Immunol. – volume: 495 start-page: 251 year: 2013 end-page: 254 ident: bib0285 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature – volume: 6 start-page: e25385 year: 2011 ident: bib0095 article-title: Type III IFN receptor expression and functional characterisation in the pteropid bat, publication-title: PLoS ONE – volume: 7 start-page: 393 year: 2013 end-page: 402 ident: bib0385 article-title: The infectivity of pandemic 2009 H1N1 and avian influenza viruses for pigs: an assessment by ex vivo respiratory tract organ culture publication-title: Influenza Other Respir. Viruses – volume: 89 start-page: 27 year: 2011 end-page: 28 ident: bib0320 article-title: Infection of dogs with equine influenza virus: evidence for transmission from horses during the Australian outbreak publication-title: Aust. Vet. J. – volume: 86 start-page: 11906 year: 2012 end-page: 11918 ident: bib0245 article-title: Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders publication-title: J. Virol. – volume: 25 start-page: 223 year: 2012 end-page: 263 ident: bib0295 article-title: Two years after pandemic influenza A/2009/H1N1: what have we learned? publication-title: Clin. Microbiol. Rev. – volume: 11 start-page: 444 year: 2010 ident: bib0085 article-title: Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler publication-title: BMC Genomics – volume: 85 start-page: 2327 year: 2004 end-page: 2337 ident: bib0140 article-title: Influenza A viruses in feral Canadian ducks: extensive reassortment in nature publication-title: J. Gen. Virol. – volume: 1 start-page: e25 year: 2012 ident: bib0055 article-title: Avian influenza A H5N1 virus: a continuous threat to humans publication-title: Emerg. Microbes Infect. – volume: 162 start-page: 944 year: 2013 end-page: 948 ident: bib0290 article-title: Failure to infect pigs co-housed with ducks or chickens infected experimentally with A/turkey/Turkey/1/2005 (H5N1) highly pathogenic avian influenza virus publication-title: Vet. Microbiol. – volume: 175 start-page: 6702 year: 2005 end-page: 6712 ident: bib0195 article-title: The MHC of the duck ( publication-title: J. Immunol. – volume: 344 start-page: 480 year: 2006 end-page: 491 ident: bib0310 article-title: Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand publication-title: Virology – volume: 8 start-page: e1003059 year: 2012 ident: bib0530 article-title: Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein publication-title: PLoS Pathog. – volume: 82 start-page: 4807 year: 2008 end-page: 4811 ident: bib0345 article-title: Homologous recombination is very rare or absent in human influenza A virus publication-title: J. Virol. – volume: 71 start-page: 6128 year: 1997 end-page: 6135 ident: bib0130 article-title: Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance publication-title: J. Virol. – volume: 15 start-page: 475 year: 2009 end-page: 478 ident: bib0315 article-title: Highly pathogenic avian influenza virus (H5N1) outbreak in captive wild birds and cats, Cambodia publication-title: Emerg. Infect. Dis. – volume: 207 start-page: 1743 year: 2013 end-page: 1752 ident: bib0280 article-title: Differential cell line susceptibility to the emerging novel human betacoronavirus 2C EMC/2012: implications on disease pathogenesis and clinical manifestation publication-title: J. Infect. Dis. – volume: 65 start-page: 477 year: 2012 end-page: 489 ident: bib0025 article-title: Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? publication-title: J. Infect. – volume: 351 start-page: 180 year: 2006 end-page: 187 ident: bib0215 article-title: Molecular diversity of coronaviruses in bats publication-title: Virology – volume: 91 start-page: 2475 year: 2012 end-page: 2481 ident: bib0445 article-title: Molecular cloning, characterization, and expression analysis of the Muscovy duck Toll-like receptor 3 (MdTLR3) gene publication-title: Poult. Sci. – volume: 102 start-page: 7988 year: 2005 end-page: 7993 ident: bib0270 article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 84 start-page: 2808 year: 2010 end-page: 2819 ident: bib0105 article-title: Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related publication-title: J. Virol. – volume: 30 start-page: 101 year: 2006 end-page: 118 ident: bib0475 article-title: Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development publication-title: Dev. Comp. Immunol. – volume: 87 start-page: 2455 year: 2013 end-page: 2462 ident: bib0520 article-title: Identification of novel influenza A virus proteins translated from PA mRNA publication-title: J. Virol. – volume: 235 start-page: 981 year: 2010 end-page: 988 ident: bib0365 article-title: D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice publication-title: Exp. Biol. Med. (Maywood) – volume: 106 start-page: 18137 year: 2009 end-page: 18142 ident: bib0395 article-title: Glycans on influenza hemagglutinin affect receptor binding and immune response publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 35 start-page: 421 year: 2011 end-page: 430 ident: bib0465 article-title: The little brown bat, publication-title: Dev. Comp. Immunol. – volume: 5 start-page: e13757 year: 2010 ident: bib0370 article-title: Wild type and mutant 2009 pandemic influenza A (H1N1) viruses cause more severe disease and higher mortality in pregnant BALB/c mice publication-title: PLoS ONE – volume: 25 start-page: 467 year: 2005 end-page: 484 ident: bib0455 article-title: A genomic analysis of chicken cytokines and chemokines publication-title: J. Interferon Cytokine Res. – volume: 186 start-page: 3138 year: 2011 end-page: 3147 ident: bib0090 article-title: Type III IFNs in pteropid bats: differential expression patterns provide evidence for distinct roles in antiviral immunity publication-title: J. Immunol. – volume: 86 start-page: 705 year: 2012 end-page: 717 ident: bib0170 article-title: Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2 publication-title: J. Virol. – volume: 6 start-page: e1001034 year: 2010 ident: bib0490 article-title: Biological and structural characterization of a host-adapting amino acid in influenza virus publication-title: PLoS Pathog. – volume: 26 start-page: 107 year: 2008 end-page: 113 ident: bib0375 article-title: Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin publication-title: Nat. Biotechnol. – volume: 85 start-page: 10598 year: 2011 end-page: 10604 ident: bib0495 article-title: Comparative analysis of avian influenza virus diversity in poultry and humans during a highly pathogenic avian influenza A (H7N7) virus outbreak publication-title: J. Virol. – volume: 91 start-page: 7782 year: 1994 end-page: 7786 ident: bib0275 article-title: 9-O-acetylated sialic acids have widespread but selective expression: analysis using a chimeric dual-function probe derived from influenza C hemagglutinin-esterase publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 1 start-page: e35 year: 2012 ident: bib0035 article-title: Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 publication-title: Emerg. Microbes Infect. – volume: 72 start-page: 217 year: 2010 end-page: 220 ident: bib0075 article-title: Molecular cloning and expression analysis of bat toll-like receptors 3, 7 and 9 publication-title: J. Vet. Med. Sci. – volume: 375 start-page: 1100 year: 2010 end-page: 1108 ident: bib0335 article-title: Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study publication-title: Lancet – volume: 19 start-page: 531 year: 2006 end-page: 545 ident: bib0065 article-title: Bats: important reservoir hosts of emerging viruses publication-title: Clin. Microbiol. Rev. – volume: 83 start-page: 908 year: 2009 end-page: 917 ident: bib0220 article-title: Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus publication-title: J. Virol. – volume: 86 start-page: 3995 year: 2012 end-page: 4008 ident: bib0225 article-title: Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus publication-title: J. Virol. – volume: 7 start-page: e38665 year: 2012 ident: bib0010 article-title: Evolutionary history and phylodynamics of influenza A and B neuraminidase (NA) genes inferred from large-scale sequence analyses publication-title: PLoS ONE – volume: 2 start-page: 156 year: 2011 ident: bib0485 article-title: Differential use of importin-alpha isoforms governs cell tropism and host adaptation of influenza virus publication-title: Nat. Commun. – volume: 112 start-page: 372 year: 2013 end-page: 381 ident: bib0040 article-title: The emerging novel Middle East Respiratory Syndrome Coronavirus: the “knowns” and “unknowns” publication-title: J. Formos. Med. Assoc. – volume: 35 start-page: 273 year: 2011 end-page: 284 ident: bib0480 article-title: The two suborders of chiropterans have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals publication-title: Dev. Comp. Immunol. – volume: 86 start-page: 5481 year: 2012 end-page: 5496 ident: bib0230 article-title: Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits publication-title: J. Virol. – volume: 3 start-page: 802 year: 2012 ident: bib0535 article-title: Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells publication-title: Nat. Commun. – volume: 381 start-page: 1916 year: 2013 end-page: 1925 ident: bib0060 article-title: Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome publication-title: Lancet – volume: 13 start-page: 261 year: 2012 ident: bib0470 article-title: The immune gene repertoire of an important viral reservoir, the Australian black flying fox publication-title: BMC Genomics – volume: 197 start-page: S29 year: 2008 end-page: S33 ident: bib0190 article-title: Ecology of avian influenza virus in birds publication-title: J. Infect. Dis. – volume: 117 start-page: 195 year: 2007 end-page: 206 ident: bib0450 article-title: Genomics of antiviral defenses in the cuk, a natural host of influenza and hepatitis B viruses publication-title: Cytogenet. Genome Res. – volume: 86 start-page: 8645 year: 2012 end-page: 8652 ident: bib0400 article-title: Structure and receptor complexes of the hemagglutinin from a highly pathogenic H7N7 influenza virus publication-title: J. Virol. – volume: 107 start-page: 5913 year: 2010 end-page: 5918 ident: bib0165 article-title: Association of RIG-I with innate immunity of ducks to influenza publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 45 start-page: 2055 year: 2008 end-page: 2061 ident: bib0175 article-title: The duck toll like receptor 7: genomic organization, expression and function publication-title: Mol. Immunol. – volume: 81 start-page: 1574 year: 2007 end-page: 1585 ident: bib0030 article-title: Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features publication-title: J. Virol. – volume: 102 start-page: 14040 year: 2005 end-page: 14045 ident: bib0020 article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 86 start-page: 727 year: 2005 end-page: 731 ident: bib0340 article-title: Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia publication-title: J. Gen. Virol. – volume: 86 start-page: 584 year: 2012 end-page: 588 ident: bib0415 article-title: Length variations in the NA Stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks publication-title: J. Virol. – volume: 60 start-page: 395 year: 2013 end-page: 402 ident: bib0180 article-title: Consecutive natural influenza A virus infections in sentinel mallards in the evident absence of subtype-specific hemagglutination inhibiting antibodies publication-title: Transbound. Emerg. Dis. – volume: 86 start-page: 1411 year: 2012 end-page: 1420 ident: bib0355 article-title: Adaptation of a duck influenza A virus in quail publication-title: J. Virol. – volume: 12 start-page: 7 year: 2011 end-page: 13 ident: bib0390 article-title: Expression patterns of influenza virus receptors in the respiratory tracts of four species of poultry publication-title: J. Vet. Sci. – volume: 64 start-page: 3297 year: 1990 end-page: 3303 ident: bib0405 article-title: Generation of seal influenza-virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes publication-title: J. Virol. – volume: 7 start-page: 132 year: 2007 ident: bib0135 article-title: A model to control the epidemic of H5N1 influenza at the source publication-title: BMC Infect. Dis. – volume: 94 start-page: 1028 year: 2013 end-page: 1038 ident: bib0250 article-title: Coronaviruses in bats from Mexico publication-title: J. Gen. Virol. – volume: 35 start-page: 1008 year: 2011 end-page: 1016 ident: bib0185 article-title: Immunoglobulin genetics and antibody responses to influenza in ducks publication-title: Dev. Comp. Immunol. – volume: 92 start-page: 534 year: 2011 end-page: 543 ident: bib0440 article-title: Immune response in the duck intestine following infection with low-pathogenic avian influenza viruses or stimulation with a Toll-like receptor 7 agonist administered orally publication-title: J. Gen. Virol. – volume: 60 start-page: 104 year: 2013 end-page: 116 ident: bib0070 article-title: Antiviral immune responses of bats: a review publication-title: Zoonoses Public Health – volume: 62 start-page: 173 year: 2010 end-page: 184 ident: bib0100 article-title: Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding repertoire publication-title: Immunogenetics – volume: 17 start-page: 67 year: 2007 end-page: 91 ident: bib0045 article-title: Bats as a continuing source of emerging infections in humans publication-title: Rev. Med. Virol. – volume: 312 start-page: 384 year: 2006 end-page: 388 ident: bib0120 article-title: Global patterns of influenza a virus in wild birds publication-title: Science – volume: 3 year: 2012 ident: bib0265 article-title: Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines publication-title: mBio – volume: 84 start-page: 10051 year: 2010 end-page: 10062 ident: bib0505 article-title: Differential localization and function of PB1-F2 derived from different strains of influenza A virus publication-title: J. Virol. – volume: 28 start-page: 445 year: 2008 end-page: 454 ident: bib0460 article-title: Molecular cloning and characterization of chicken interferon-gamma receptor alpha-chain publication-title: J. Interferon Cytokine Res. – volume: 18 start-page: 834 year: 2012 end-page: 837 ident: bib0300 article-title: Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011 publication-title: Emerg. Infect. Dis. – volume: 339 start-page: 456 year: 2013 end-page: 460 ident: bib0425 article-title: Comparative analysis of bat genomes provides insight into the evolution of flight and immunity publication-title: Science – volume: 86 start-page: 12411 year: 2012 end-page: 12413 ident: bib0515 article-title: Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus publication-title: J. Virol. – volume: 48 start-page: 1950 year: 2011 end-page: 1957 ident: bib0150 article-title: Expression of duck CCL19 and CCL21 and CCR7 receptor in lymphoid and influenza-infected tissues publication-title: Mol. Immunol. – volume: 102 start-page: 10682 year: 2005 end-page: 10687 ident: bib0200 article-title: Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 88 start-page: 536 year: 2007 end-page: 546 ident: bib0510 article-title: Prevalence of PB1-F2 of influenza A viruses publication-title: J. Gen. Virol. – volume: 110 start-page: 1458 year: 2013 end-page: 1463 ident: bib0110 article-title: Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 360 start-page: 2616 year: 2009 end-page: 2625 ident: bib0305 article-title: Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009 publication-title: N. Engl. J. Med. – volume: 234 start-page: 1117 year: 2009 end-page: 1127 ident: bib0205 article-title: Coronavirus diversity, phylogeny and interspecies jumping publication-title: Exp. Biol. Med. (Maywood) – volume: 56 start-page: 152 year: 1992 end-page: 179 ident: bib0125 article-title: Evolution and ecology of influenza A viruses publication-title: Microbiol. Rev. – volume: 86 start-page: 1750 year: 2012 end-page: 1757 ident: bib0500 article-title: Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers publication-title: J. Virol. – volume: 5 start-page: e13757 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0370 article-title: Wild type and mutant 2009 pandemic influenza A (H1N1) viruses cause more severe disease and higher mortality in pregnant BALB/c mice publication-title: PLoS ONE doi: 10.1371/journal.pone.0013757 – volume: 175 start-page: 6702 year: 2005 ident: 10.1016/j.tim.2013.05.005_bib0195 article-title: The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes publication-title: J. Immunol. doi: 10.4049/jimmunol.175.10.6702 – volume: 15 start-page: 475 year: 2009 ident: 10.1016/j.tim.2013.05.005_bib0315 article-title: Highly pathogenic avian influenza virus (H5N1) outbreak in captive wild birds and cats, Cambodia publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1503.081410 – volume: 86 start-page: 1750 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0500 article-title: Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers publication-title: J. Virol. doi: 10.1128/JVI.06203-11 – volume: 94 start-page: 118 year: 1992 ident: 10.1016/j.tim.2013.05.005_bib0005 article-title: Dynamics of trade in the ancient mesopotamian “World System” publication-title: Am. Anthropol. New Ser. doi: 10.1525/aa.1992.94.1.02a00070 – volume: 381 start-page: 1916 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0060 article-title: Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome publication-title: Lancet doi: 10.1016/S0140-6736(13)60903-4 – volume: 72 start-page: 217 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0075 article-title: Molecular cloning and expression analysis of bat toll-like receptors 3, 7 and 9 publication-title: J. Vet. Med. Sci. doi: 10.1292/jvms.09-0050 – volume: 20 start-page: 660 year: 2007 ident: 10.1016/j.tim.2013.05.005_bib0015 article-title: Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00023-07 – volume: 84 start-page: 10051 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0505 article-title: Differential localization and function of PB1-F2 derived from different strains of influenza A virus publication-title: J. Virol. doi: 10.1128/JVI.00592-10 – volume: 35 start-page: 1008 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0185 article-title: Immunoglobulin genetics and antibody responses to influenza in ducks publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2011.02.011 – volume: 495 start-page: 251 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0285 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature doi: 10.1038/nature12005 – volume: 375 start-page: 1100 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0335 article-title: Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study publication-title: Lancet doi: 10.1016/S0140-6736(09)62126-7 – volume: 186 start-page: 3138 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0090 article-title: Type III IFNs in pteropid bats: differential expression patterns provide evidence for distinct roles in antiviral immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1003115 – volume: 36 start-page: 657 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0080 article-title: Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2011.11.008 – volume: 86 start-page: 705 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0170 article-title: Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2 publication-title: J. Virol. doi: 10.1128/JVI.00742-11 – volume: 35 start-page: 421 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0465 article-title: The little brown bat, M. lucifugus, displays a highly diverse V H, D H and J H repertoire but little evidence of somatic hypermutation publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2010.06.004 – volume: 234 start-page: 1117 year: 2009 ident: 10.1016/j.tim.2013.05.005_bib0205 article-title: Coronavirus diversity, phylogeny and interspecies jumping publication-title: Exp. Biol. Med. (Maywood) doi: 10.3181/0903-MR-94 – volume: 1 start-page: e35 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0035 article-title: Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2012.45 – volume: 351 start-page: 180 year: 2006 ident: 10.1016/j.tim.2013.05.005_bib0215 article-title: Molecular diversity of coronaviruses in bats publication-title: Virology doi: 10.1016/j.virol.2006.02.041 – volume: 86 start-page: 1411 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0355 article-title: Adaptation of a duck influenza A virus in quail publication-title: J. Virol. doi: 10.1128/JVI.06100-11 – volume: 60 start-page: 395 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0180 article-title: Consecutive natural influenza A virus infections in sentinel mallards in the evident absence of subtype-specific hemagglutination inhibiting antibodies publication-title: Transbound. Emerg. Dis. doi: 10.1111/j.1865-1682.2012.01357.x – volume: 87 start-page: 2455 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0520 article-title: Identification of novel influenza A virus proteins translated from PA mRNA publication-title: J. Virol. doi: 10.1128/JVI.02656-12 – volume: 110 start-page: 1458 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0110 article-title: Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1218509110 – volume: 109 start-page: 18903 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0115 article-title: Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1212579109 – volume: 1 start-page: e25 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0055 article-title: Avian influenza A H5N1 virus: a continuous threat to humans publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2012.24 – volume: 62 start-page: 173 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0100 article-title: Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding repertoire publication-title: Immunogenetics doi: 10.1007/s00251-010-0425-4 – volume: 112 start-page: 372 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0040 article-title: The emerging novel Middle East Respiratory Syndrome Coronavirus: the “knowns” and “unknowns” publication-title: J. Formos. Med. Assoc. doi: 10.1016/j.jfma.2013.05.010 – volume: 56 start-page: 152 year: 1992 ident: 10.1016/j.tim.2013.05.005_bib0125 article-title: Evolution and ecology of influenza A viruses publication-title: Microbiol. Rev. doi: 10.1128/MMBR.56.1.152-179.1992 – volume: 45 start-page: 2055 year: 2008 ident: 10.1016/j.tim.2013.05.005_bib0175 article-title: The duck toll like receptor 7: genomic organization, expression and function publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2007.10.018 – volume: 17 start-page: 67 year: 2007 ident: 10.1016/j.tim.2013.05.005_bib0045 article-title: Bats as a continuing source of emerging infections in humans publication-title: Rev. Med. Virol. doi: 10.1002/rmv.520 – volume: 89 start-page: 27 issue: Suppl. 1 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0320 article-title: Infection of dogs with equine influenza virus: evidence for transmission from horses during the Australian outbreak publication-title: Aust. Vet. J. doi: 10.1111/j.1751-0813.2011.00734.x – volume: 64 start-page: 3297 year: 1990 ident: 10.1016/j.tim.2013.05.005_bib0405 article-title: Generation of seal influenza-virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes publication-title: J. Virol. doi: 10.1128/JVI.64.7.3297-3303.1990 – volume: 109 start-page: 4269 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0050 article-title: A distinct lineage of influenza A virus from bats publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1116200109 – volume: 92 start-page: 534 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0440 article-title: Immune response in the duck intestine following infection with low-pathogenic avian influenza viruses or stimulation with a Toll-like receptor 7 agonist administered orally publication-title: J. Gen. Virol. doi: 10.1099/vir.0.026443-0 – volume: 102 start-page: 10682 year: 2005 ident: 10.1016/j.tim.2013.05.005_bib0200 article-title: Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0504662102 – volume: 2 start-page: 156 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0485 article-title: Differential use of importin-alpha isoforms governs cell tropism and host adaptation of influenza virus publication-title: Nat. Commun. doi: 10.1038/ncomms1158 – volume: 35 start-page: 273 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0480 article-title: The two suborders of chiropterans have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2010.08.011 – volume: 8 start-page: e1002730 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0350 article-title: Evolution of an Eurasian avian-like influenza virus in naive and vaccinated pigs publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002730 – volume: 3 start-page: 143 year: 2009 ident: 10.1016/j.tim.2013.05.005_bib0360 article-title: Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission publication-title: J. Mol. Genet. Med. doi: 10.4172/1747-0862.1000026 – volume: 81 start-page: 1574 year: 2007 ident: 10.1016/j.tim.2013.05.005_bib0030 article-title: Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features publication-title: J. Virol. doi: 10.1128/JVI.02182-06 – volume: 71 start-page: 6128 year: 1997 ident: 10.1016/j.tim.2013.05.005_bib0130 article-title: Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance publication-title: J. Virol. doi: 10.1128/JVI.71.8.6128-6135.1997 – volume: 19 start-page: 531 year: 2006 ident: 10.1016/j.tim.2013.05.005_bib0065 article-title: Bats: important reservoir hosts of emerging viruses publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00017-06 – volume: 86 start-page: 727 year: 2005 ident: 10.1016/j.tim.2013.05.005_bib0340 article-title: Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia publication-title: J. Gen. Virol. doi: 10.1099/vir.0.80478-0 – volume: 85 start-page: 8133 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0525 article-title: The viral nucleoprotein determines Mx sensitivity of influenza A viruses publication-title: J. Virol. doi: 10.1128/JVI.00712-11 – volume: 28 start-page: 445 year: 2008 ident: 10.1016/j.tim.2013.05.005_bib0460 article-title: Molecular cloning and characterization of chicken interferon-gamma receptor alpha-chain publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2007.0135 – volume: 3 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0325 article-title: Emergence of fatal avian influenza in New England harbor seals publication-title: mBio doi: 10.1128/mBio.00166-12 – volume: 72 start-page: 7367 year: 1998 ident: 10.1016/j.tim.2013.05.005_bib0380 article-title: Molecular basis for the generation in pigs of influenza A viruses with pandemic potential publication-title: J. Virol. doi: 10.1128/JVI.72.9.7367-7373.1998 – volume: 339 start-page: 456 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0425 article-title: Comparative analysis of bat genomes provides insight into the evolution of flight and immunity publication-title: Science doi: 10.1126/science.1230835 – volume: 84 start-page: 2808 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0105 article-title: Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events publication-title: J. Virol. doi: 10.1128/JVI.02219-09 – volume: 11 start-page: 444 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0085 article-title: Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler publication-title: BMC Genomics doi: 10.1186/1471-2164-11-444 – volume: 25 start-page: 223 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0295 article-title: Two years after pandemic influenza A/2009/H1N1: what have we learned? publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.05012-11 – volume: 7 start-page: e38665 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0010 article-title: Evolutionary history and phylodynamics of influenza A and B neuraminidase (NA) genes inferred from large-scale sequence analyses publication-title: PLoS ONE doi: 10.1371/journal.pone.0038665 – volume: 48 start-page: 924 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0160 article-title: Immune-related gene expression in response to H5N1 avian influenza virus infection in chicken and duck embryonic fibroblasts publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2010.12.011 – volume: 91 start-page: 7782 year: 1994 ident: 10.1016/j.tim.2013.05.005_bib0275 article-title: 9-O-acetylated sialic acids have widespread but selective expression: analysis using a chimeric dual-function probe derived from influenza C hemagglutinin-esterase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.91.16.7782 – volume: 60 start-page: 104 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0070 article-title: Antiviral immune responses of bats: a review publication-title: Zoonoses Public Health doi: 10.1111/j.1863-2378.2012.01528.x – volume: 197 start-page: S29 issue: Suppl. 1 year: 2008 ident: 10.1016/j.tim.2013.05.005_bib0190 article-title: Ecology of avian influenza virus in birds publication-title: J. Infect. Dis. doi: 10.1086/524991 – volume: 83 start-page: 908 year: 2009 ident: 10.1016/j.tim.2013.05.005_bib0220 article-title: Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus publication-title: J. Virol. doi: 10.1128/JVI.01977-08 – volume: 88 start-page: 536 year: 2007 ident: 10.1016/j.tim.2013.05.005_bib0510 article-title: Prevalence of PB1-F2 of influenza A viruses publication-title: J. Gen. Virol. doi: 10.1099/vir.0.82378-0 – volume: 344 start-page: 480 year: 2006 ident: 10.1016/j.tim.2013.05.005_bib0310 article-title: Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand publication-title: Virology doi: 10.1016/j.virol.2005.08.032 – volume: 82 start-page: 4807 year: 2008 ident: 10.1016/j.tim.2013.05.005_bib0345 article-title: Homologous recombination is very rare or absent in human influenza A virus publication-title: J. Virol. doi: 10.1128/JVI.02683-07 – volume: 7 start-page: 393 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0385 article-title: The infectivity of pandemic 2009 H1N1 and avian influenza viruses for pigs: an assessment by ex vivo respiratory tract organ culture publication-title: Influenza Other Respir. Viruses doi: 10.1111/j.1750-2659.2012.00397.x – volume: 25 start-page: 467 year: 2005 ident: 10.1016/j.tim.2013.05.005_bib0455 article-title: A genomic analysis of chicken cytokines and chemokines publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2005.25.467 – volume: 7 start-page: 132 year: 2007 ident: 10.1016/j.tim.2013.05.005_bib0135 article-title: A model to control the epidemic of H5N1 influenza at the source publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-7-132 – volume: 186 start-page: 5397 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0430 article-title: Characterization of chicken Mda5 activity: regulation of IFN-beta in the absence of RIG-I functionality publication-title: J. Immunol. doi: 10.4049/jimmunol.1003712 – volume: 102 start-page: 14040 year: 2005 ident: 10.1016/j.tim.2013.05.005_bib0020 article-title: Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506735102 – volume: 87 start-page: 2963 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0420 article-title: Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice publication-title: J. Virol. doi: 10.1128/JVI.02688-12 – volume: 86 start-page: 584 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0415 article-title: Length variations in the NA Stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks publication-title: J. Virol. doi: 10.1128/JVI.05474-11 – volume: 102 start-page: 7988 year: 2005 ident: 10.1016/j.tim.2013.05.005_bib0270 article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0409465102 – volume: 13 start-page: 261 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0470 article-title: The immune gene repertoire of an important viral reservoir, the Australian black flying fox publication-title: BMC Genomics doi: 10.1186/1471-2164-13-261 – volume: 86 start-page: 12411 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0515 article-title: Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus publication-title: J. Virol. doi: 10.1128/JVI.01677-12 – volume: 162 start-page: 944 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0290 article-title: Failure to infect pigs co-housed with ducks or chickens infected experimentally with A/turkey/Turkey/1/2005 (H5N1) highly pathogenic avian influenza virus publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2012.11.040 – volume: 6 start-page: e25385 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0095 article-title: Type III IFN receptor expression and functional characterisation in the pteropid bat, Pteropus alecto publication-title: PLoS ONE doi: 10.1371/journal.pone.0025385 – volume: 26 start-page: 107 year: 2008 ident: 10.1016/j.tim.2013.05.005_bib0375 article-title: Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin publication-title: Nat. Biotechnol. doi: 10.1038/nbt1375 – volume: 6 start-page: e1001034 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0490 article-title: Biological and structural characterization of a host-adapting amino acid in influenza virus publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001034 – volume: 1 start-page: 624 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0210 article-title: SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2011.10.012 – volume: 3 start-page: 802 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0535 article-title: Adaptive mutations in NEP compensate for defective H5N1 RNA replication in cultured human cells publication-title: Nat. Commun. doi: 10.1038/ncomms1804 – volume: 86 start-page: 11906 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0245 article-title: Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders publication-title: J. Virol. doi: 10.1128/JVI.01305-12 – volume: 12 start-page: 7 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0390 article-title: Expression patterns of influenza virus receptors in the respiratory tracts of four species of poultry publication-title: J. Vet. Sci. doi: 10.4142/jvs.2011.12.1.7 – volume: 86 start-page: 3995 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0225 publication-title: J. Virol. doi: 10.1128/JVI.06540-11 – volume: 65 start-page: 477 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0025 article-title: Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? publication-title: J. Infect. doi: 10.1016/j.jinf.2012.10.002 – volume: 312 start-page: 384 year: 2006 ident: 10.1016/j.tim.2013.05.005_bib0120 article-title: Global patterns of influenza a virus in wild birds publication-title: Science doi: 10.1126/science.1122438 – volume: 48 start-page: 1950 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0150 article-title: Expression of duck CCL19 and CCL21 and CCR7 receptor in lymphoid and influenza-infected tissues publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2011.05.025 – volume: 18 start-page: 834 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0300 article-title: Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1805.111922 – volume: 207 start-page: 1743 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0280 article-title: Differential cell line susceptibility to the emerging novel human betacoronavirus 2C EMC/2012: implications on disease pathogenesis and clinical manifestation publication-title: J. Infect. Dis. doi: 10.1093/infdis/jit123 – volume: 19 start-page: 456 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0255 article-title: Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1903.121503 – volume: 91 start-page: 2475 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0445 article-title: Molecular cloning, characterization, and expression analysis of the Muscovy duck Toll-like receptor 3 (MdTLR3) gene publication-title: Poult. Sci. doi: 10.3382/ps.2012-02394 – volume: 51 start-page: 316 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0145 article-title: Avian influenza rapidly induces antiviral genes in duck lung and intestine publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2012.03.034 – volume: 85 start-page: 10598 year: 2011 ident: 10.1016/j.tim.2013.05.005_bib0495 article-title: Comparative analysis of avian influenza virus diversity in poultry and humans during a highly pathogenic avian influenza A (H7N7) virus outbreak publication-title: J. Virol. doi: 10.1128/JVI.05369-11 – volume: 85 start-page: 2327 year: 2004 ident: 10.1016/j.tim.2013.05.005_bib0140 article-title: Influenza A viruses in feral Canadian ducks: extensive reassortment in nature publication-title: J. Gen. Virol. doi: 10.1099/vir.0.79878-0 – volume: 30 start-page: 101 year: 2006 ident: 10.1016/j.tim.2013.05.005_bib0475 article-title: Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2005.06.018 – volume: 235 start-page: 981 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0365 article-title: D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice publication-title: Exp. Biol. Med. (Maywood) doi: 10.1258/ebm.2010.010071 – volume: 184 start-page: 6993 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0435 article-title: The differential evolutionary dynamics of avian cytokine and TLR gene classes publication-title: J. Immunol. doi: 10.4049/jimmunol.0903092 – volume: 360 start-page: 2616 year: 2009 ident: 10.1016/j.tim.2013.05.005_bib0305 article-title: Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0903812 – volume: 107 start-page: 5913 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0165 article-title: Association of RIG-I with innate immunity of ducks to influenza publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1001755107 – volume: 86 start-page: 5481 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0230 article-title: Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits publication-title: J. Virol. doi: 10.1128/JVI.06927-11 – volume: 8 start-page: e1003059 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0530 article-title: Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003059 – volume: 41 start-page: 519 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0155 article-title: Differential innate responses of chickens and ducks to low-pathogenic avian influenza publication-title: Avian Pathol. doi: 10.1080/03079457.2012.732691 – volume: 106 start-page: 18137 year: 2009 ident: 10.1016/j.tim.2013.05.005_bib0395 article-title: Glycans on influenza hemagglutinin affect receptor binding and immune response publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0909696106 – volume: 86 start-page: 8645 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0400 article-title: Structure and receptor complexes of the hemagglutinin from a highly pathogenic H7N7 influenza virus publication-title: J. Virol. doi: 10.1128/JVI.00281-12 – volume: 109 start-page: 2573 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0330 article-title: Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1200039109 – volume: 117 start-page: 195 year: 2007 ident: 10.1016/j.tim.2013.05.005_bib0450 article-title: Genomics of antiviral defenses in the cuk, a natural host of influenza and hepatitis B viruses publication-title: Cytogenet. Genome Res. doi: 10.1159/000103180 – volume: 15 start-page: 1377 year: 2009 ident: 10.1016/j.tim.2013.05.005_bib0240 article-title: Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1509.090224 – volume: 94 start-page: 1028 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0250 article-title: Coronaviruses in bats from Mexico publication-title: J. Gen. Virol. doi: 10.1099/vir.0.049759-0 – volume: 3 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0265 article-title: Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines publication-title: mBio doi: 10.1128/mBio.00515-12 – volume: 66 start-page: 464 year: 2013 ident: 10.1016/j.tim.2013.05.005_bib0260 article-title: A predicted receptor-binding and critical neutralizing domain in S protein of the novel human coronavirus HCoV-EMC publication-title: J. Infect. doi: 10.1016/j.jinf.2012.12.003 – volume: 50 start-page: 2881 year: 2012 ident: 10.1016/j.tim.2013.05.005_bib0410 article-title: Field monitoring of avian influenza viruses: whole-genome sequencing and tracking of neuraminidase evolution using 454 pyrosequencing publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01142-12 – volume: 84 start-page: 3134 year: 2010 ident: 10.1016/j.tim.2013.05.005_bib0235 article-title: Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission publication-title: J. Virol. doi: 10.1128/JVI.01394-09 |
SSID | ssj0005525 |
Score | 2.5843885 |
SecondaryResourceType | review_article |
Snippet | •Bats and birds are reservoirs of zoonotic viruses.•Their unique immune systems allow them to harbor a large variety of viruses.•Coronaviruses and influenza... Highlights • Bats and birds are reservoirs of zoonotic viruses. • Their unique immune systems allow them to harbor a large variety of viruses. • Coronaviruses... As exemplified by coronaviruses and influenza viruses, bats and birds are natural reservoirs for providing viral genes during evolution of new virus species... • Bats and birds are reservoirs of zoonotic viruses. • Their unique immune systems allow them to harbor a large variety of viruses. • Coronaviruses and... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 544 |
SubjectTerms | adaptive immunity Animals biodiversity birds Birds - virology Chiroptera Chiroptera - virology coronavirus Coronavirus - growth & development Coronavirus Infections - transmission Coronavirus Infections - virology Disease Reservoirs - virology disease transmission Disease Vectors emerging infectious disease evolution farms genes Humans influenza Influenza A virus Influenza in Birds - transmission Influenza in Birds - virology Influenza, Human - transmission Influenza, Human - virology Internal Medicine markets migratory behavior mixing mutants Orthomyxoviridae - growth & development RNA RNA virus roosting behavior virus evolution viruses wildlife wildlife habitats Zoonoses - transmission Zoonoses - virology |
Title | Interspecies transmission and emergence of novel viruses: lessons from bats and birds |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966842X13000899 https://www.clinicalkey.es/playcontent/1-s2.0-S0966842X13000899 https://dx.doi.org/10.1016/j.tim.2013.05.005 https://www.ncbi.nlm.nih.gov/pubmed/23770275 https://www.proquest.com/docview/1443401849 https://www.proquest.com/docview/1803101396 https://pubmed.ncbi.nlm.nih.gov/PMC7126491 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9swUHQdg72UfTdbVzTY08CLbMuW3bdSVrKF9WFdWN6ErI_NJdgldgp76W_vnWyHZgsZ7MnEuZOl0-nupPsQIe8zHeWuSFgQaiYC7jisOadMwI11eeFMxvzRxdeLdDLjX-bJfI-cDbkwGFbZy_5Opntp3b8Z99QcX5fl-BJaQSfSHB0y6LzCDHYukMs_3t4L80j8xasIHCD04Nn0MV5ticnoYeyLd-INdtt10wOn6m0W6J-BlPc00_kTctCblPS06_VTsmerZ-RRd8nk7-dk5g_9MKMSNsW0Rd0Ec4uHZFRVhto-_9LS2tGqvrELelMuV41tTugCxCBwJcUcFFqotvEYRbk0zQsyO__0_WwS9JcpBDoVeRs4hWN22pmYJwUsZFvwiNmc8TDLYV-iozC1YA6qMDNpHMc6MZbpnGmVYVU4Fb8k-1Vd2UNCs8QIzjLOtYA2hFAG9kWg55LCpgVYCCPCBjJK3VcaxwsvFnIIKbuSQHmJlJcskUD5EfmwRrnuymzsAo6GuZFD_ihIPAlKYBeS2IZkm37NNjKUTSSZ_IuvRoSvMTdY818fPAS2keonCGs5u4ywlB8W0ItSaPHdwEsSZhxdNKqy9Qr6wHkMO96M74LJsJwrTFU6Iq86_lvTLIqFQEc0jHaDM9cAWE1885-q_OWrigvoGc_D1_832jfkMf7qwhyPyH67XNm3YK61xbFfj8fk4enn6eQCn9NvP6Z37hQ-PA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbaFMN2GfZu9tSAnQYYkW3JsncrihXp2ubSBshNkPXYPAR2ETsF9u9H-pEtW5ABu8aiIlEUKYnkR0I-pCbKfC5YEBomA-457DmvbcCt81nubcrap4urWTKd8y8LsTggp0MuDIZV9rq_0-mttu5_mfTcnNwWxeQaekEn0gIdMui8OiRHiE4lRuTo5PxiOvsV6SHa2qvYPkCCwbnZhnk1Beajh3GL34lF7Habp0Ovq12H0D9jKX8zTmePyMP-VElPuoE_JgeufELudXUmfzwl8_bdD5Mq4V5MGzRPsLz4TkZ1aanrUzAdrTwtqzu3pHfFal27-hNdgiYEwaSYhkJz3dQtRV6sbP2MzM8-35xOg76eQmASmTWB1zhnb7yNuchhL7ucR8xljIdpBlcTE4WJgxOhDlObxHFshHXMZMzoFIHhdPycjMqqdMeEpsJKzlLOjYQ-pNQWrkZg6kTukhwOCWPCBjYq04ONY82LpRqiyr4r4LxCzismFHB-TD5uSG47pI19jaNhbdSQQgpKT4Ed2EckdxG5ut-2tQpVHSmm_hKtMeEbyi3p_NcfHoPYKP0V9LWaX0eI5ocYelECPb4fZEnBiqOXRpeuWsMYOI_h0pvyfW1SRHSFpUrG5EUnfxueRbGU6IuG2W5J5qYBAopvfymLby2wuISR8Sx8-X-zfUfuT2-uLtXl-eziFXmAX7qox9dk1KzW7g2c3pr8bb87fwLDrz9K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interspecies+transmission+and+emergence+of+novel+viruses%3A+lessons+from+bats+and+birds&rft.jtitle=Trends+in+microbiology+%28Regular+ed.%29&rft.au=Chan%2C+Jasper+Fuk-Woo&rft.au=To%2C+Kelvin+Kai-Wang&rft.au=Tse%2C+Herman&rft.au=Jin%2C+Dong-Yan&rft.date=2013-10-01&rft.pub=Elsevier+Ltd&rft.issn=0966-842X&rft.volume=21&rft.issue=10&rft.spage=544&rft.epage=555&rft_id=info:doi/10.1016%2Fj.tim.2013.05.005&rft.externalDocID=US201600121269 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0966842X%2FS0966842X13X00095%2Fcov150h.gif |