Using photoemission spectroscopy to probe a strongly interacting Fermi gas
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' co...
Saved in:
Published in | Nature (London) Vol. 454; no. 7205; pp. 744 - 747 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.08.2008
Nature Publishing Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of 40K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. |
---|---|
AbstractList | Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of (40)K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. Fermionic superfluids: strong stuff Fermionic superfluidity requires the formation of particle pairs, the size of which varies depending on the system. Many properties of the superfluid depend on the pair size relative to the inter-particle spacing. For example, conventional superconductors comprise a superfluid of loosely bound, large Cooper pairs of electrons, while Bose-Einstein condensates contain tightly bound molecules. The microscopic properties of the fermion pairs can be probed with radio-frequency spectroscopy. However, previous results have been difficult to interpret due to strong final-state interactions that were not well understood. Schunck et al. realize a superfluid spin mixture in an ultracold gas of lithium atoms in which such interactions have negligible influence. They find that the spectroscopic pair size is smaller than the inter-particle spacing. These are the smallest pairs yet observed for fermionic superfluids. In a related experiment, Jin et al use a technique called photoemission spectroscopy to study the excitations in a strongly interacting gas of ultracold potassium atoms. Such studies are of interest because the physics is related to that of the high transition-temperature superconductors, which are not fully understood. Recent experiments using ultracold Fermi gases have demonstrated a phase transition to a superfluid state with strong inter-particle interactions, but these interactions make it difficult to study the behaviour of the atoms in the gas. A technique called photoemission spectroscopy is used to enable a study of the pairing between the atoms. This is of interest because the physics is related to that of the high transition-temperature superconductors. Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions 1 , 2 , 3 , 4 , 5 , 6 . This system provides a realization of the ‘BCS–BEC crossover’ 7 connecting the physics of Bardeen–Cooper–Schrieffer (BCS) superconductivity with that of Bose–Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of 40 K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS–BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of sup 40K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. [PUBLICATION ABSTRACT] Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of ^sup 40^K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. [PUBLICATION ABSTRACT] Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of 40K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. |
Audience | Academic |
Author | Jin, D. S Stewart, J. T Gaebler, J. P |
Author_xml | – sequence: 1 givenname: D. S surname: Jin fullname: Jin, D. S organization: JILA, Quantum Physics Division, National Institute of Standards and Technology and Department of Physics, University of Colorado – sequence: 2 givenname: J. T surname: Stewart fullname: Stewart, J. T organization: JILA, Quantum Physics Division, National Institute of Standards and Technology and Department of Physics, University of Colorado – sequence: 3 givenname: J. P surname: Gaebler fullname: Gaebler, J. P organization: JILA, Quantum Physics Division, National Institute of Standards and Technology and Department of Physics, University of Colorado |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20566878$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18685703$$D View this record in MEDLINE/PubMed |
BookMark | eNp90v9r1DAUAPAgE3eb_uTvUgdORDuTNs2XH4_D6WQo6IY_hix9rR29pEtS8P77ZfTY3ckp-SHw-slL-t47QgfWWUDoJcFnBJfio9Vx9IA54cUTNCOUs5wywQ_QDONC5FiU7BAdhXCLMa4Ip8_QIRFMVByXM_T1OnS2zYbfLjpYdiF0zmZhABO9C8YNqyy6bPDuBjKdhRS0bb_KOhvBaxMfjp6DX3ZZq8Nz9LTRfYAX6_0YXZ9_ulp8yS-_f75YzC9zw7iMOTFSAiZ1pWUtuOQSCKmIpsAaKEhDKS1wY4gxVVGyRhgDFRaa89LUUhSlLo_R2ylvetbdCCGq9G4Dfa8tuDEoTktaCU5Ykqf_lUxSzEpGEzz5C9660dv0F6rAtKIMC5JQPqFW96A627iYatCCTaXoU0uaLoXnRAhJKSNyk3THm6G7U9vobA9Kq07dMHuzvts5kEyEP7HVYwjq4uePXfv-33Z-9Wvxba82qfXBQ6MG3y21XymC1cOkqa1JS_rVumTjzRLqjV2PVgJv1kAHo_vGa2u68OgKXLE0pSK5D5ML6ZNtwW9qv__e1xOfgo_5ts09hjj0xA |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1103_PhysRevB_93_195145 crossref_primary_10_1103_PhysRevA_86_043622 crossref_primary_10_1103_PhysRevA_109_063311 crossref_primary_10_1038_s41586_023_06964_y crossref_primary_10_1103_PhysRevB_107_224310 crossref_primary_10_1007_s00340_013_5552_9 crossref_primary_10_1103_PhysRevLett_123_213401 crossref_primary_10_1103_PhysRevB_90_195419 crossref_primary_10_1088_1367_2630_17_1_013018 crossref_primary_10_1103_PhysRevX_4_021012 crossref_primary_10_21468_SciPostPhys_14_3_048 crossref_primary_10_1103_PhysRevLett_123_123601 crossref_primary_10_1038_nphys1709 crossref_primary_10_1103_PhysRevA_82_043630 crossref_primary_10_1103_PhysRevX_4_021010 crossref_primary_10_1088_1367_2630_15_4_043046 crossref_primary_10_1103_PhysRevA_81_033404 crossref_primary_10_21468_SciPostPhys_5_6_061 crossref_primary_10_1103_PhysRevLett_101_120404 crossref_primary_10_1103_PhysRevLett_107_195303 crossref_primary_10_1103_PhysRevLett_107_195304 crossref_primary_10_1103_PhysRevLett_103_113202 crossref_primary_10_1103_PhysRevA_82_043626 crossref_primary_10_1103_PhysRevA_89_023612 crossref_primary_10_1103_PhysRevLett_110_195301 crossref_primary_10_1103_PhysRevLett_106_060402 crossref_primary_10_1140_epjst_e2013_01923_y crossref_primary_10_1103_PhysRevA_81_011604 crossref_primary_10_1103_PhysRevA_88_013639 crossref_primary_10_1103_PhysRevA_88_013637 crossref_primary_10_1103_PhysRevB_98_174506 crossref_primary_10_1103_PhysRevA_83_063605 crossref_primary_10_1103_PhysRevLett_120_073201 crossref_primary_10_1103_PhysRevB_84_165128 crossref_primary_10_1007_s10909_016_1558_0 crossref_primary_10_1103_PhysRevA_94_063627 crossref_primary_10_1103_PhysRevLett_103_240401 crossref_primary_10_1103_PhysRevA_87_063605 crossref_primary_10_7566_JPSJ_87_094301 crossref_primary_10_1088_0034_4885_73_7_076501 crossref_primary_10_1088_0256_307X_30_11_110303 crossref_primary_10_1103_PhysRevA_87_063622 crossref_primary_10_1103_PhysRevLett_104_223004 crossref_primary_10_1209_0295_5075_88_20008 crossref_primary_10_1103_PhysRevA_88_013627 crossref_primary_10_1103_PhysRevA_84_013624 crossref_primary_10_1103_PhysRevLett_106_105301 crossref_primary_10_1103_PhysRevA_81_033630 crossref_primary_10_1038_nature11065 crossref_primary_10_1088_0953_4075_46_13_134005 crossref_primary_10_1103_PhysRevA_83_063611 crossref_primary_10_1088_0953_4075_43_1_015301 crossref_primary_10_1016_j_rinp_2024_107358 crossref_primary_10_7566_JPSJ_86_074302 crossref_primary_10_1103_PhysRevB_96_144517 crossref_primary_10_1088_1367_2630_acb80d crossref_primary_10_1103_PhysRevA_87_041601 crossref_primary_10_1007_s40042_023_00777_y crossref_primary_10_1103_PhysRevB_91_165131 crossref_primary_10_1103_PhysRevA_85_013606 crossref_primary_10_1103_PhysRevX_8_011024 crossref_primary_10_1103_PhysRevA_79_053614 crossref_primary_10_1103_PhysRevA_89_033617 crossref_primary_10_1103_PhysRevA_95_013627 crossref_primary_10_1038_srep25772 crossref_primary_10_1103_PhysRevLett_111_145301 crossref_primary_10_1103_PhysRevA_97_043613 crossref_primary_10_1103_PhysRevA_97_043616 crossref_primary_10_1103_PhysRevA_99_063606 crossref_primary_10_1103_PhysRevB_93_115143 crossref_primary_10_1103_PhysRevB_105_205143 crossref_primary_10_1103_PhysRevA_103_043330 crossref_primary_10_1103_PhysRevA_85_013625 crossref_primary_10_1103_PhysRevB_81_075436 crossref_primary_10_1038_nphys4187 crossref_primary_10_1103_PhysRevLett_109_235303 crossref_primary_10_1103_PhysRevResearch_2_033441 crossref_primary_10_1103_PhysRevA_79_053621 crossref_primary_10_1016_j_physleta_2012_01_015 crossref_primary_10_1103_PhysRevLett_109_235304 crossref_primary_10_1103_PhysRevA_90_043601 crossref_primary_10_1142_S0217979210056402 crossref_primary_10_1088_1361_6455_ab3c11 crossref_primary_10_1038_srep09539 crossref_primary_10_1103_PhysRevA_85_023637 crossref_primary_10_1103_PhysRevLett_121_093402 crossref_primary_10_1088_1367_2630_17_3_033013 crossref_primary_10_1103_PhysRevLett_114_045301 crossref_primary_10_1103_PhysRevA_81_021601 crossref_primary_10_1103_PhysRevA_81_021602 crossref_primary_10_1103_PhysRevLett_111_215304 crossref_primary_10_1103_PhysRevA_80_023627 crossref_primary_10_1103_PhysRevA_99_063601 crossref_primary_10_1103_PhysRevLett_108_080401 crossref_primary_10_1103_PhysRevA_87_053619 crossref_primary_10_1088_1742_6596_400_1_012082 crossref_primary_10_1088_1742_6596_400_1_012080 crossref_primary_10_1103_PhysRevLett_104_235301 crossref_primary_10_1103_PhysRevA_86_033613 crossref_primary_10_1103_PhysRevLett_126_065301 crossref_primary_10_1088_1742_6596_592_1_012151 crossref_primary_10_1103_PhysRevA_86_033607 crossref_primary_10_1103_PhysRevA_97_033606 crossref_primary_10_1007_s12043_014_0903_6 crossref_primary_10_3390_condmat5010015 crossref_primary_10_12693_APhysPolA_130_564 crossref_primary_10_1088_1367_2630_ab466f crossref_primary_10_21468_SciPostPhysCore_3_2_010 crossref_primary_10_1103_PhysRevLett_108_080406 crossref_primary_10_1103_PhysRevA_81_043626 crossref_primary_10_1007_s12648_023_03057_4 crossref_primary_10_1088_1367_2630_13_11_113018 crossref_primary_10_1103_PhysRevE_109_044140 crossref_primary_10_1103_PhysRevLett_106_205303 crossref_primary_10_1103_PhysRevLett_106_205302 crossref_primary_10_1103_PhysRevLett_109_105302 crossref_primary_10_1103_PhysRevLett_122_207401 crossref_primary_10_1088_1742_6596_568_1_012019 crossref_primary_10_1103_PhysRevA_108_023304 crossref_primary_10_1103_PhysRevLett_114_050404 crossref_primary_10_1103_PhysRevLett_107_020403 crossref_primary_10_1209_0295_5075_97_33002 crossref_primary_10_1103_PhysRevB_85_195116 crossref_primary_10_1103_PhysRevLett_102_190402 crossref_primary_10_1103_PhysRevLett_110_090401 crossref_primary_10_1088_1361_6455_abc141 crossref_primary_10_7498_aps_71_20220862 crossref_primary_10_1103_PhysRevA_97_013601 crossref_primary_10_1088_1742_6596_568_1_012004 crossref_primary_10_1142_S0217979210064575 crossref_primary_10_1103_PhysRevA_84_063618 crossref_primary_10_1088_1361_6471_ab2f0b crossref_primary_10_1088_1367_2630_aa9558 crossref_primary_10_1103_PhysRevA_97_023632 crossref_primary_10_1103_PhysRevLett_101_250403 crossref_primary_10_1103_PhysRevB_100_214517 crossref_primary_10_1088_1367_2630_12_3_033041 crossref_primary_10_1103_PhysRevLett_106_205301 crossref_primary_10_1016_j_scib_2022_12_005 crossref_primary_10_1103_PhysRevA_88_041601 crossref_primary_10_1146_annurev_conmatphys_031113_133829 crossref_primary_10_1103_PhysRevA_87_043605 crossref_primary_10_1103_PhysRevB_100_165144 crossref_primary_10_1103_PhysRevA_98_033821 crossref_primary_10_1103_PhysRevLett_120_060404 crossref_primary_10_1007_s11467_014_0448_7 crossref_primary_10_1038_s42254_020_0195_3 crossref_primary_10_1016_j_physrep_2012_10_004 crossref_primary_10_1103_PhysRevA_85_013634 crossref_primary_10_1038_s41567_021_01370_5 crossref_primary_10_1103_PhysRevX_8_011046 crossref_primary_10_1007_s10909_018_02114_1 crossref_primary_10_1103_PhysRevB_90_060406 crossref_primary_10_1103_PhysRevLett_112_135302 crossref_primary_10_1103_PhysRevA_104_023323 crossref_primary_10_1103_PhysRevA_91_013604 crossref_primary_10_1103_PhysRevA_91_013608 crossref_primary_10_1103_PhysRevB_106_195123 crossref_primary_10_1103_PhysRevB_89_134310 crossref_primary_10_1016_j_isci_2019_03_031 crossref_primary_10_1088_0953_4075_44_9_095302 crossref_primary_10_1103_PhysRevB_104_104511 crossref_primary_10_1103_PhysRevA_88_063643 crossref_primary_10_1088_0954_3899_40_5_053101 crossref_primary_10_1016_j_aop_2017_10_001 crossref_primary_10_1088_1742_6596_264_1_012013 crossref_primary_10_1103_PhysRevA_86_023608 crossref_primary_10_1103_PhysRevLett_107_145304 crossref_primary_10_1088_1367_2630_aae418 crossref_primary_10_1016_j_physleta_2016_06_045 crossref_primary_10_1103_PhysRevB_97_125117 crossref_primary_10_1103_PhysRevLett_126_103201 crossref_primary_10_1021_acs_analchem_1c03624 crossref_primary_10_1103_PhysRevResearch_4_023231 crossref_primary_10_1103_PhysRevB_92_174529 crossref_primary_10_1103_PhysRevA_83_053623 crossref_primary_10_1103_PhysRevLett_102_110406 crossref_primary_10_1103_PhysRevA_82_033617 crossref_primary_10_1103_PhysRevB_84_165115 crossref_primary_10_1088_1367_2630_11_7_073009 crossref_primary_10_1103_PhysRevA_88_053632 crossref_primary_10_1103_PhysRevA_98_023603 crossref_primary_10_1103_PhysRevLett_115_265304 crossref_primary_10_1103_PhysRevA_93_033637 crossref_primary_10_7566_JPSJ_83_014003 crossref_primary_10_1103_PhysRevB_109_L060501 crossref_primary_10_1103_PhysRevB_83_064523 crossref_primary_10_1103_PhysRevLett_111_147205 crossref_primary_10_2184_lsj_38_487 crossref_primary_10_1103_PhysRevA_100_023602 crossref_primary_10_1103_PhysRevA_82_033629 crossref_primary_10_1016_j_aop_2014_08_022 crossref_primary_10_1103_PhysRevA_83_053637 crossref_primary_10_1038_s41586_019_1463_1 crossref_primary_10_1088_0953_8984_27_11_113203 crossref_primary_10_1103_PhysRevB_107_035105 crossref_primary_10_1103_PhysRevA_106_053306 crossref_primary_10_1103_PhysRevA_88_053621 crossref_primary_10_1103_PhysRevA_93_033627 crossref_primary_10_1103_PhysRevLett_109_130403 crossref_primary_10_1016_j_aop_2021_168651 crossref_primary_10_1103_PhysRevB_93_104411 crossref_primary_10_1038_nature10627 crossref_primary_10_1103_PhysRevB_89_121118 crossref_primary_10_1103_PhysRevB_91_094502 crossref_primary_10_1103_PhysRevLett_104_255303 crossref_primary_10_1103_PhysRevA_92_023617 crossref_primary_10_1103_PhysRevLett_105_150605 crossref_primary_10_1103_PhysRevLett_102_165301 crossref_primary_10_1103_PhysRevB_87_075134 crossref_primary_10_1016_j_physb_2016_03_029 crossref_primary_10_1103_PhysRevB_81_115111 crossref_primary_10_1103_PhysRevA_84_063606 crossref_primary_10_1103_PhysRevA_109_023324 crossref_primary_10_1103_PhysRevLett_124_073404 crossref_primary_10_1103_PhysRevA_81_023622 crossref_primary_10_1103_PhysRevLett_110_045301 crossref_primary_10_1038_s41567_019_0696_0 crossref_primary_10_1103_PhysRevA_86_013626 crossref_primary_10_1088_0034_4885_72_12_122501 crossref_primary_10_1103_PhysRevApplied_13_014071 crossref_primary_10_1093_nsr_nww013 crossref_primary_10_1103_PhysRevA_83_031601 crossref_primary_10_1103_PhysRevB_107_115155 crossref_primary_10_1103_PhysRevLett_111_077401 crossref_primary_10_1103_PhysRevLett_114_075301 crossref_primary_10_1103_PhysRevLett_112_026805 crossref_primary_10_1103_PhysRevA_101_013609 crossref_primary_10_1103_PhysRevA_107_063310 crossref_primary_10_1088_1751_8121_ab2828 crossref_primary_10_7566_JPSJ_86_044301 crossref_primary_10_1103_PhysRevA_101_013610 crossref_primary_10_1088_1367_2630_17_6_063012 crossref_primary_10_1088_1367_2630_16_7_073041 crossref_primary_10_1088_0256_307X_31_11_110303 crossref_primary_10_1103_PhysRevB_102_035139 crossref_primary_10_1103_PhysRevB_86_134519 crossref_primary_10_1103_PhysRevLett_125_110404 crossref_primary_10_1016_j_physc_2009_10_037 crossref_primary_10_1088_1367_2630_ab2ee0 crossref_primary_10_1103_PhysRevA_92_063638 crossref_primary_10_1103_PhysRevA_92_063636 crossref_primary_10_1007_s11433_012_4936_x crossref_primary_10_1103_PhysRevB_102_014447 crossref_primary_10_1103_PhysRevA_80_043624 crossref_primary_10_1103_PhysRevLett_112_195301 crossref_primary_10_1088_1674_1056_23_1_013402 crossref_primary_10_1103_PhysRevB_79_165113 crossref_primary_10_1088_1361_6455_aaa31b crossref_primary_10_1103_PhysRevA_84_043642 crossref_primary_10_1103_PhysRevLett_107_073201 crossref_primary_10_1103_PhysRevA_89_053609 crossref_primary_10_1103_PhysRevLett_110_110401 crossref_primary_10_1016_j_physc_2009_11_043 crossref_primary_10_1146_annurev_conmatphys_070909_104059 crossref_primary_10_1103_PhysRevLett_104_116403 crossref_primary_10_1103_PhysRevA_100_063609 crossref_primary_10_1103_PhysRevA_80_033606 crossref_primary_10_1051_epjconf_20135701002 crossref_primary_10_1103_PhysRevA_84_033608 crossref_primary_10_1103_PhysRevA_95_033611 crossref_primary_10_1103_PhysRevA_89_053622 crossref_primary_10_1016_j_physb_2016_10_013 crossref_primary_10_1088_0034_4885_73_11_112401 crossref_primary_10_1103_PhysRevA_101_013602 crossref_primary_10_1103_PhysRevA_89_053617 crossref_primary_10_1103_PhysRevA_88_043644 crossref_primary_10_1103_PhysRevA_84_043647 crossref_primary_10_1038_s41567_021_01434_6 crossref_primary_10_1007_s10909_013_0928_0 crossref_primary_10_1103_PhysRevLett_115_165301 crossref_primary_10_1103_PhysRevA_83_033619 crossref_primary_10_1103_PhysRevB_85_024517 crossref_primary_10_1103_PhysRevA_96_063617 crossref_primary_10_1103_PhysRevA_106_033303 crossref_primary_10_1016_j_physb_2013_10_006 crossref_primary_10_1103_PhysRevA_106_033308 crossref_primary_10_1103_PhysRevA_83_033612 crossref_primary_10_1103_PhysRevA_85_051603 crossref_primary_10_1038_ncomms3710 crossref_primary_10_1103_PhysRevA_80_033613 crossref_primary_10_1007_s10909_015_1383_x crossref_primary_10_1103_PhysRevLett_111_265301 crossref_primary_10_1142_S0217979211057773 crossref_primary_10_1103_PhysRevA_93_063606 crossref_primary_10_1016_j_ppnp_2019_103739 crossref_primary_10_1038_nphys1345 crossref_primary_10_1007_s10909_009_0040_7 crossref_primary_10_1007_s11467_013_0377_x crossref_primary_10_1103_PhysRevLett_120_045302 crossref_primary_10_1016_j_nuclphysb_2019_03_013 crossref_primary_10_1103_PhysRevLett_128_100401 crossref_primary_10_1126_sciadv_1602372 crossref_primary_10_1103_PhysRevLett_109_055301 crossref_primary_10_1007_s10909_016_1694_6 crossref_primary_10_1103_RevModPhys_84_1253 crossref_primary_10_1103_PhysRevA_84_053612 crossref_primary_10_1103_PhysRevB_106_224514 crossref_primary_10_1038_srep02119 crossref_primary_10_1103_PhysRevA_80_033623 crossref_primary_10_1103_PhysRevA_105_023330 crossref_primary_10_1103_PhysRevA_90_013610 crossref_primary_10_1038_nphys1476 crossref_primary_10_1088_0034_4885_77_3_034401 crossref_primary_10_1103_PhysRevLett_109_220402 crossref_primary_10_1126_science_aat4134 crossref_primary_10_1103_PhysRevA_93_013610 crossref_primary_10_1103_PhysRevB_81_125435 crossref_primary_10_1103_PhysRevLett_126_153402 crossref_primary_10_1103_PhysRevLett_105_070402 crossref_primary_10_1103_PhysRevB_81_205117 crossref_primary_10_1103_PhysRevA_95_053623 crossref_primary_10_1103_PhysRevLett_108_255301 crossref_primary_10_1016_j_physrep_2018_02_004 crossref_primary_10_1103_PhysRevB_103_195129 crossref_primary_10_1088_1367_2630_12_6_063038 crossref_primary_10_1142_S0217984918502809 crossref_primary_10_21468_SciPostPhys_12_3_108 crossref_primary_10_1088_1361_648X_aad659 crossref_primary_10_1103_PhysRevLett_103_210403 crossref_primary_10_1103_PhysRevResearch_4_043014 crossref_primary_10_1016_j_aop_2019_04_018 crossref_primary_10_1103_PhysRevA_93_013621 crossref_primary_10_1038_nphys2216 crossref_primary_10_1103_PhysRevA_100_063632 crossref_primary_10_1103_PhysRevLett_118_170401 crossref_primary_10_1103_PhysRevA_95_053639 crossref_primary_10_1016_j_physc_2009_11_012 crossref_primary_10_1007_s11467_011_0216_x crossref_primary_10_1103_Physics_3_48 crossref_primary_10_1088_0031_8949_91_4_043006 crossref_primary_10_1103_PhysRevResearch_2_023152 crossref_primary_10_1103_PhysRevA_96_033601 crossref_primary_10_1088_1674_1056_ad0623 crossref_primary_10_1103_PhysRevB_96_075134 crossref_primary_10_1088_1361_6633_aa7e53 crossref_primary_10_1103_PhysRevA_83_061601 crossref_primary_10_1103_PhysRevA_80_063622 crossref_primary_10_1080_09500340_2016_1163429 crossref_primary_10_1103_PhysRevApplied_5_034001 crossref_primary_10_1088_1367_2630_13_5_055010 crossref_primary_10_1038_s41567_018_0128_6 crossref_primary_10_1103_PhysRevA_79_023604 crossref_primary_10_1103_PhysRevLett_104_190403 crossref_primary_10_1103_PhysRevLett_102_126405 crossref_primary_10_1103_PhysRevA_85_043611 crossref_primary_10_21468_SciPostPhys_16_4_091 crossref_primary_10_7566_JPSJ_87_084302 crossref_primary_10_1088_1367_2630_12_8_083041 crossref_primary_10_1088_1751_8113_43_10_105306 crossref_primary_10_1103_PhysRevA_80_063612 crossref_primary_10_1103_PhysRevA_106_023313 crossref_primary_10_1103_PhysRevA_82_063619 crossref_primary_10_1103_PhysRevA_84_023634 crossref_primary_10_1103_PhysRevA_86_063610 crossref_primary_10_21468_SciPostPhys_16_3_081 crossref_primary_10_1142_S021798491350214X crossref_primary_10_1103_PhysRevLett_104_240407 crossref_primary_10_1103_PhysRevLett_104_165301 crossref_primary_10_1103_PhysRevResearch_2_023136 crossref_primary_10_1103_PhysRevA_96_033618 crossref_primary_10_1103_PhysRevA_96_033614 crossref_primary_10_1088_0034_4885_79_9_096001 crossref_primary_10_1103_PhysRevA_84_011608 crossref_primary_10_1103_PhysRevLett_109_095302 crossref_primary_10_1103_PhysRevA_86_063603 crossref_primary_10_1103_PhysRevLett_109_095301 crossref_primary_10_1103_PhysRevB_85_155136 crossref_primary_10_1103_PhysRevB_104_235107 crossref_primary_10_1142_S0217984913300081 crossref_primary_10_1103_PhysRevA_102_023304 crossref_primary_10_1103_PhysRevB_81_235115 crossref_primary_10_1016_j_aop_2015_03_007 crossref_primary_10_1103_PhysRevResearch_3_023205 crossref_primary_10_1016_j_aop_2009_02_004 crossref_primary_10_1103_PhysRevB_99_245126 crossref_primary_10_1103_PhysRevLett_107_277202 crossref_primary_10_1103_PhysRevA_90_043622 crossref_primary_10_1103_PhysRevA_90_043624 crossref_primary_10_1007_s10909_012_0691_7 crossref_primary_10_1103_PhysRevA_80_053623 crossref_primary_10_1103_PhysRevA_89_013614 crossref_primary_10_1103_PhysRevA_87_051608 crossref_primary_10_1103_PhysRevA_89_013618 crossref_primary_10_1103_PhysRevA_85_053626 crossref_primary_10_1103_PhysRevA_85_053628 crossref_primary_10_1140_epjd_e2011_20084_5 crossref_primary_10_1103_PhysRevA_81_051604 crossref_primary_10_1088_1742_6596_467_1_012010 crossref_primary_10_1103_PhysRevA_83_013612 crossref_primary_10_1103_PhysRevB_81_165112 crossref_primary_10_1103_PhysRevA_92_063602 crossref_primary_10_1103_PhysRevB_91_054509 crossref_primary_10_1103_PhysRevB_88_115142 crossref_primary_10_1088_1742_6596_400_1_012021 crossref_primary_10_1103_PhysRevLett_113_116401 crossref_primary_10_1209_0295_5075_110_26002 crossref_primary_10_1007_s10909_008_9850_2 crossref_primary_10_1103_Physics_5_10 crossref_primary_10_1103_PhysRevB_99_094520 crossref_primary_10_1103_PhysRevA_86_031601 crossref_primary_10_1103_PhysRevA_85_053643 crossref_primary_10_1088_0953_4075_45_14_145303 crossref_primary_10_1103_PhysRevB_82_245104 crossref_primary_10_1007_s10909_009_9953_4 crossref_primary_10_1103_PhysRevB_92_180503 crossref_primary_10_1103_PhysRevA_79_033620 crossref_primary_10_1103_PhysRevB_92_134523 crossref_primary_10_1103_PhysRevA_106_013317 crossref_primary_10_1103_PhysRevLett_120_240401 crossref_primary_10_1088_1367_2630_ab306b crossref_primary_10_1103_PhysRevA_92_063628 crossref_primary_10_1143_JPSJ_78_073001 crossref_primary_10_7566_JPSJ_87_014301 crossref_primary_10_1038_nature11151 crossref_primary_10_1103_PhysRevResearch_6_013047 crossref_primary_10_1103_PhysRevA_85_021602 crossref_primary_10_1088_1367_2630_aa6e31 crossref_primary_10_1103_PhysRevLett_114_170401 crossref_primary_10_1038_srep06655 crossref_primary_10_1103_PhysRevB_108_L201118 crossref_primary_10_1088_1367_2630_15_7_075010 crossref_primary_10_1103_PhysRevB_84_045408 crossref_primary_10_7566_JPSJ_86_084301 crossref_primary_10_1103_PhysRevA_81_064701 crossref_primary_10_1103_RevModPhys_96_025002 crossref_primary_10_1142_S0217984914500286 crossref_primary_10_1088_1742_6596_969_1_012012 crossref_primary_10_1038_s41598_021_91216_0 crossref_primary_10_1103_PhysRevA_81_063618 crossref_primary_10_1103_PhysRevB_89_174501 crossref_primary_10_1103_PhysRevA_85_043628 crossref_primary_10_1103_PhysRevA_81_063615 crossref_primary_10_1093_nsr_nwab226 crossref_primary_10_1103_PhysRevA_84_023611 crossref_primary_10_1103_PhysRevA_89_023632 |
Cites_doi | 10.1103/PhysRevB.66.024510 10.1103/PhysRevA.74.033623 10.1103/PhysRevLett.92.040403 10.1103/PhysRevA.71.012713 10.1103/PhysRevLett.95.020404 10.1126/science.1085335 10.1103/PhysRevLett.98.080402 10.1103/PhysRevA.73.063601 10.1103/PhysRevLett.98.240402 10.1143/JPSJ.68.2999 10.1103/PhysRevLett.99.170404 10.1126/science.1140749 10.1103/PhysRevLett.98.200403 10.1103/PhysRevLett.100.010402 10.1103/PhysRevLett.90.230404 10.1126/science.1100818 10.1038/nature03858 10.1103/PhysRevB.56.R11407 10.1103/PhysRevLett.97.220406 10.1238/Physica.Topical.109a00061 10.1038/nature01738 10.1103/PhysRevA.78.053629 10.1103/PhysRevA.78.033614 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited. All rights reserved 2008 2008 INIST-CNRS COPYRIGHT 2008 Nature Publishing Group Copyright Nature Publishing Group Aug 7, 2008 |
Copyright_xml | – notice: Macmillan Publishers Limited. All rights reserved 2008 – notice: 2008 INIST-CNRS – notice: COPYRIGHT 2008 Nature Publishing Group – notice: Copyright Nature Publishing Group Aug 7, 2008 |
DBID | IQODW NPM AAYXX CITATION ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1038/nature07172 |
DatabaseName | Pascal-Francis PubMed CrossRef Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) https://resources.nclive.org/materials Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database ProQuest research library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | PubMed CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic University of Michigan Technology Collection Technology Research Database SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic Materials Research Database Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Agricultural Science Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 747 |
ExternalDocumentID | 1545217211 A188944619 10_1038_nature07172 18685703 20566878 nature07172 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | - 00M 02 07C 08R 0R 0WA 123 186 1VR 29M 2KS 2XV 39C 3O- 3V. 4 4.4 42X 4R4 53G 55 5RE 68V 69O 6XO 70F 7RV 7V 7X2 7X7 7XC 85S 88 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 9M8 A6W A7Z A8Z AADWK AAEEF AAGJQ AAIKC AAJWC AAPBV AASDW AAVBQ AAYEP AAYOK AAZLF ABAWZ ABDBF ABEFU ABFLS ABFSI ABGIJ ABIVO ABJCF ABOCM ABPPZ ABPTK ABUWG ABWJO ABZEH ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADBIT ADFPY ADYSU AEFTE AENEX AETEA AFDAS AFFDN AFFNX AFHKK AFKRA AFLOW AFRAH AGCDD AGEZK AGHTU AGNAY AGSOS AHGBK AHMBA AHSBF AIDAL AIDUJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVRDS AVWKF AXYYD AZFZN AZQEC B-7 B0M BBAFP BBNVY BCR BCU BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BLC BPHCQ BVXVI CJ0 CO CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO DZ E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EPL EPS ESE ESN ESX ET EX3 EXGXG F20 F5P FEDTE FQGFK FSGXE FYUFA G0 GJ GNUQQ GUQSH HCIFZ HR HVGLF HZ I-F I-U IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KM KOO L-9 L6V L7B LK5 LK8 M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N9A NAPCQ NEJ O9- OBC OES OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PM3 PQEST PQQKQ PQUKI PROAC PSQYO PTHSS PYCSY Q2X R05 RIG RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U1R U5U UKR UMD UQL VQA WH7 WOW X X7L X7M XFK XHC XKW XZ XZL Y6R YAE YCJ YNT YXB YZZ Z ZA5 ZGI ZHY ZKB ZKG ZR0 ~88 --- --Z -DZ -ET -~X .-4 .55 .CO .GJ .HR .XZ 08P 0R~ 354 41X 6TJ 97L AAHBH AAHTB AAKAB AAKAS AAMNW ABJNI ABLJU ABPEJ ABVXF ACBEA ACBWK ACGFO ACKOT ACMJI ACWUS ADFRT ADUKH ADZCM AFRQD AFSHS AGAYW AGHSJ AIYXT ALIPV AMTXH APEBS BDKGC CCPQU EMOBN ESTFP HMCUK HZ~ NEPJS OHH PSYQQ UIG UKHRP VVN XIH YFH YOC YQT YR2 YYP ZCA ~02 ~7V ~8M ~G0 ~KM 0B8 1CY 1OL 1VW 3EH 41~ 663 79B AADEA AAEXX AAJMP AAJYS AAUGY AAYJO ABEEJ ABGFU ABTAH ACBMV ACBNA ACBRV ACBTR ACBYP ACIGE ACTDY ACTTH ACVWB ADMDM ADQMX ADRHT ADZGE AEDAW AFMIJ AFNRJ AGGBP AJDOV AJUXI AMRJV FA8 FAC G8K HG6 IQODW J5H LSO N4W PV9 QS- R4F RHI SKT TUD UAO UBY UHB USG VOH XOL YJ6 YQI YQJ YV5 YXA YYQ ZCG ZE2 ZY4 AAYZH NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 Q9U RC3 SOI 7X8 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c679t-1c99e01d5a9d87979e1151a4e6fe21f44420fc1cc5236f8cce508a773cd9823a3 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 |
IngestDate | Wed Dec 04 15:29:45 EST 2024 Wed Dec 04 07:55:24 EST 2024 Thu Oct 10 21:03:15 EDT 2024 Thu Nov 14 22:08:05 EST 2024 Wed Nov 13 14:04:54 EST 2024 Wed Nov 13 00:22:14 EST 2024 Sat Sep 28 21:23:01 EDT 2024 Sat Sep 28 21:18:36 EDT 2024 Fri Dec 06 03:49:21 EST 2024 Tue Oct 15 23:34:52 EDT 2024 Sun Oct 29 17:10:57 EDT 2023 Fri Oct 11 20:46:25 EDT 2024 Thu Oct 07 19:30:17 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7205 |
Keywords | Optical lattices Superconductors Fermi gas Quantum phase transition Emission spectra N-body problems Excitation spectrum High temperature Superfluidity Bose-Einstein condensation BCS theory |
Language | English |
License | CC BY 4.0 http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c679t-1c99e01d5a9d87979e1151a4e6fe21f44420fc1cc5236f8cce508a773cd9823a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 18685703 |
PQID | 204546081 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_743458716 proquest_miscellaneous_69406364 proquest_journals_204546081 gale_infotracgeneralonefile_A188944619 gale_infotraccpiq_188944619 gale_infotracacademiconefile_A188944619 gale_incontextgauss_ISR_A188944619 gale_incontextgauss_ATWCN_A188944619 crossref_primary_10_1038_nature07172 pubmed_primary_18685703 pascalfrancis_primary_20566878 springer_journals_10_1038_nature07172 nature_primary_nature07172 |
ProviderPackageCode | RNTTT ABGIJ AAZLF DB5 L-9 RND RNT AADWK AHGBK 70F EE. ~88 |
PublicationCentury | 2000 |
PublicationDate | 2008-08-07 |
PublicationDateYYYYMMDD | 2008-08-07 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-07 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2008 |
Publisher | Nature Publishing Group UK Nature Publishing Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing – name: Nature Publishing Group |
References | Schunck, C. H., Shin, Y., Schirotzek, A., Zwierlein, M. W., Ketterle, W. (b12) 2007; 316 Regal, C. A., Greiner, M., Jin, D. S. (b1) 2004; 92 Punk, M., Zwerger, W. (b17) 2007; 99 Stewart, J. T., Gaebler, J. P., Regal, C. A., Jin, D. S. (b29) 2006; 97 Gupta, S. (b11) 2003; 300 Yanase, Y., Yamada, K. (b24) 1999; 68 Veillette, M. (b20) 2008 Bulgac, A., Drut, J. E., Magierski, P., Wlazlowski, G. (b27) 2008 Giorgini, S., Pitaevskii, L. P., Stringari, S. (b7) Regal, C. A., Jin, D. S. (b9) 2003; 90 Bruun, G. M., Baym, G. (b26) 2006; 74 Schunck, C. H., Shin, Y., Schirotzek, A., Ketterle, W. (b13) 2008 Luo, L., Clancy, B., Joseph, J., Kinast, J., Thomas, J. E. (b5) 2007; 98 Perali, A., Strinati, G. C. (b18) 2008; 100 Perali, A., Pieri, A., Strinati, G. C., Castellani, C. (b25) 2002; 66 Barnea, N. (b28) 2008 Partridge, G. B., Strecker, K. E., Kamar, R. I., Jack, M. W., Hulet, R. G. (b3) 2005; 95 Regal, C. A., Ticknor, C., Bohn, J. L., Jin, D. S. (b10) 2003; 424 Yu, Z., Baym, G. (b16) 2006; 73 Chin, C. (b2) 2004; 305 He, Y., Chien, C.-C., Chen, Q., Levin, K. (b21) 2008 Damascelli, A. (b8) 2004; T109 Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H., Ketterle, W. (b4) 2005; 435 Dao, T.-L., Georges, A., Dalibard, J., Salomon, C., Carusotto, I. (b14) 2007; 98 Randeria, M. (b22) 1998 Tarruell, L. (b6) 2008 Janko, B., Maly, J., Levin, K. (b23) 1997; 56 Basu, S., Mueller, E. J. (b19) 2007 Gaebler, J. P., Stewart, J. T., Bohn, J. L., Jin, D. S. (b30) 2007; 98 Chin, C., Julienne, P. S. (b15) 2005; 71 Stewart, Gaebler, Regal, Jin (CR29) 2006; 97 Regal, Jin (CR9) 2003; 90 CR19 Regal, Greiner, Jin (CR1) 2004; 92 Punk, Zwerger (CR17) 2007; 99 CR13 Gupta (CR11) 2003; 300 Chin, Julienne (CR15) 2005; 71 Gaebler, Stewart, Bohn, Jin (CR30) 2007; 98 Dao, Georges, Dalibard, Salomon, Carusotto (CR14) 2007; 98 Janko, Maly, Levin (CR23) 1997; 56 Bruun, Baym (CR26) 2006; 74 Yu, Baym (CR16) 2006; 73 Perali, Pieri, Strinati, Castellani (CR25) 2002; 66 Partridge, Strecker, Kamar, Jack, Hulet (CR3) 2005; 95 Yanase, Yamada (CR24) 1999; 68 Schunck, Shin, Schirotzek, Zwierlein, Ketterle (CR12) 2007; 316 CR7 CR28 CR27 Zwierlein, Abo-Shaeer, Schirotzek, Schunck, Ketterle (CR4) 2005; 435 Perali, Strinati (CR18) 2008; 100 Damascelli (CR8) 2004; T109 CR21 Chin (CR2) 2004; 305 CR20 Randeria (CR22) 1998 Tarruell (CR6) 2008 Regal, Ticknor, Bohn, Jin (CR10) 2003; 424 Luo, Clancy, Joseph, Kinast, Thomas (CR5) 2007; 98 GB Partridge (BFnature07172_CR3) 2005; 95 Z Yu (BFnature07172_CR16) 2006; 73 A Perali (BFnature07172_CR25) 2002; 66 CA Regal (BFnature07172_CR10) 2003; 424 C Chin (BFnature07172_CR15) 2005; 71 CA Regal (BFnature07172_CR9) 2003; 90 BFnature07172_CR19 L Luo (BFnature07172_CR5) 2007; 98 Y Yanase (BFnature07172_CR24) 1999; 68 M Punk (BFnature07172_CR17) 2007; 99 CH Schunck (BFnature07172_CR12) 2007; 316 BFnature07172_CR13 C Chin (BFnature07172_CR2) 2004; 305 A Perali (BFnature07172_CR18) 2008; 100 A Damascelli (BFnature07172_CR8) 2004; T109 T-L Dao (BFnature07172_CR14) 2007; 98 GM Bruun (BFnature07172_CR26) 2006; 74 MW Zwierlein (BFnature07172_CR4) 2005; 435 CA Regal (BFnature07172_CR1) 2004; 92 B Janko (BFnature07172_CR23) 1997; 56 L Tarruell (BFnature07172_CR6) 2008 BFnature07172_CR7 JT Stewart (BFnature07172_CR29) 2006; 97 JP Gaebler (BFnature07172_CR30) 2007; 98 BFnature07172_CR27 BFnature07172_CR28 M Randeria (BFnature07172_CR22) 1998 BFnature07172_CR21 S Gupta (BFnature07172_CR11) 2003; 300 BFnature07172_CR20 |
References_xml | – volume: 73 start-page: 063601 year: 2006 ident: b16 publication-title: Phys. Rev. A contributor: fullname: Baym, G. – volume: 316 start-page: 867 year: 2007 end-page: 870 ident: b12 publication-title: Science contributor: fullname: Ketterle, W. – volume: 97 start-page: 220406 year: 2006 ident: b29 publication-title: Phys. Rev. Lett. contributor: fullname: Jin, D. S. – volume: 99 start-page: 170404 year: 2007 ident: b17 publication-title: Phys. Rev. Lett. contributor: fullname: Zwerger, W. – volume: 305 start-page: 1128 year: 2004 end-page: 1130 ident: b2 publication-title: Science contributor: fullname: Chin, C. – volume: 90 start-page: 230404 year: 2003 ident: b9 publication-title: Phys. Rev. Lett. contributor: fullname: Jin, D. S. – volume: 98 start-page: 080402 year: 2007 ident: b5 publication-title: Phys. Rev. Lett. contributor: fullname: Thomas, J. E. – volume: 98 start-page: 240402 year: 2007 ident: b14 publication-title: Phys. Rev. Lett. contributor: fullname: Carusotto, I. – volume: 100 start-page: 010402 year: 2008 ident: b18 publication-title: Phys. Rev. Lett. contributor: fullname: Strinati, G. C. – volume: 435 start-page: 1047 year: 2005 end-page: 1051 ident: b4 publication-title: Nature contributor: fullname: Ketterle, W. – volume: 424 start-page: 47 year: 2003 end-page: 50 ident: b10 publication-title: Nature contributor: fullname: Jin, D. S. – volume: 74 start-page: 033623 year: 2006 ident: b26 publication-title: Phys. Rev. A contributor: fullname: Baym, G. – volume: 56 start-page: R11407 year: 1997 end-page: R11410 ident: b23 publication-title: Phys. Rev. B contributor: fullname: Levin, K. – volume: 71 start-page: 012713 year: 2005 ident: b15 publication-title: Phys. Rev. A contributor: fullname: Julienne, P. S. – year: 2008 ident: b20 contributor: fullname: Veillette, M. – start-page: 845 year: 2008 end-page: 855 ident: b6 article-title: Ultra-Cold Fermi Gases (Proc. Internat. School Phys. 'Enrico Fermi', Course 164) contributor: fullname: Tarruell, L. – ident: b7 publication-title: Rev. Mod. Phys. contributor: fullname: Stringari, S. – year: 2008 ident: b21 contributor: fullname: Levin, K. – volume: 300 start-page: 1723 year: 2003 end-page: 1726 ident: b11 publication-title: Science contributor: fullname: Gupta, S. – volume: 95 start-page: 020404 year: 2005 ident: b3 publication-title: Phys. Rev. Lett. contributor: fullname: Hulet, R. G. – volume: 92 start-page: 040403 year: 2004 ident: b1 publication-title: Phys. Rev. Lett. contributor: fullname: Jin, D. S. – volume: 98 start-page: 200403 year: 2007 ident: b30 publication-title: Phys. Rev. Lett. contributor: fullname: Jin, D. S. – volume: 66 start-page: 024510 year: 2002 ident: b25 publication-title: Phys. Rev. B contributor: fullname: Castellani, C. – volume: T109 start-page: 61 year: 2004 end-page: 74 ident: b8 publication-title: Phys. Scr. contributor: fullname: Damascelli, A. – year: 2007 ident: b19 contributor: fullname: Mueller, E. J. – start-page: 53 year: 1998 end-page: 57 ident: b22 article-title: Models and Phenomenology for Conventional and High-Temperature Superconductivity (Proc. Internat. School Phys. 'Enrico Fermi', Course 136) contributor: fullname: Randeria, M. – year: 2008 ident: b13 contributor: fullname: Ketterle, W. – year: 2008 ident: b27 contributor: fullname: Wlazlowski, G. – year: 2008 ident: b28 contributor: fullname: Barnea, N. – volume: 68 start-page: 2999 year: 1999 end-page: 3015 ident: b24 publication-title: J. Phys. Soc. Jpn contributor: fullname: Yamada, K. – volume: 66 start-page: 024510 year: 2002 ident: CR25 article-title: Pseudogap and spectral function from superconducting fluctuations to the bosonic limit publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.024510 contributor: fullname: Castellani – start-page: 845 year: 2008 end-page: 855 ident: CR6 publication-title: Ultra-Cold Fermi Gases (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 164) contributor: fullname: Tarruell – volume: 74 start-page: 033623 year: 2006 ident: CR26 article-title: Bragg spectroscopy of cold atomic Fermi gases publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.033623 contributor: fullname: Baym – volume: 92 start-page: 040403 year: 2004 ident: CR1 article-title: Observation of resonance condensation of fermionic atom pairs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.040403 contributor: fullname: Jin – volume: 71 start-page: 012713 year: 2005 ident: CR15 article-title: Radio-frequency transitions on weakly bound ultracold molecules publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.012713 contributor: fullname: Julienne – volume: 95 start-page: 020404 year: 2005 ident: CR3 article-title: Molecular probe of pairing in the BEC-BCS crossover publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.020404 contributor: fullname: Hulet – volume: 300 start-page: 1723 year: 2003 end-page: 1726 ident: CR11 article-title: Radiofrequency spectroscopy of ultracold fermions publication-title: Science doi: 10.1126/science.1085335 contributor: fullname: Gupta – start-page: 53 year: 1998 end-page: 57 ident: CR22 publication-title: Models and Phenomenology for Conventional and High-Temperature Superconductivity (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 136) contributor: fullname: Randeria – volume: 98 start-page: 080402 year: 2007 ident: CR5 article-title: Measurement of the entropy and critical temperature of a strongly interacting Fermi gas publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.080402 contributor: fullname: Thomas – volume: 73 start-page: 063601 year: 2006 ident: CR16 article-title: Spin-correlation functions in ultracold paired atomic-fermion systems: Sum rules, self-consistent approximations, and mean fields publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.73.063601 contributor: fullname: Baym – ident: CR27 – ident: CR21 – ident: CR19 – volume: 98 start-page: 240402 year: 2007 ident: CR14 article-title: Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.240402 contributor: fullname: Carusotto – volume: 68 start-page: 2999 year: 1999 end-page: 3015 ident: CR24 article-title: Theory of pseudogap phenomena in high-T cuprates based on the strong coupling superconductivity publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.68.2999 contributor: fullname: Yamada – ident: CR13 – volume: 99 start-page: 170404 year: 2007 ident: CR17 article-title: Theory of rf-spectroscopy of strongly interacting fermions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.170404 contributor: fullname: Zwerger – volume: 316 start-page: 867 year: 2007 end-page: 870 ident: CR12 article-title: Pairing without superfluidity: The ground state of an imbalanced Fermi mixture publication-title: Science doi: 10.1126/science.1140749 contributor: fullname: Ketterle – volume: 98 start-page: 200403 year: 2007 ident: CR30 article-title: -wave Feshbach molecules publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.200403 contributor: fullname: Jin – volume: 100 start-page: 010402 year: 2008 ident: CR18 article-title: Competition between final-state and pairing gap effects in the radio-frequency spectra of ultracold Fermi atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.010402 contributor: fullname: Strinati – volume: 90 start-page: 230404 year: 2003 ident: CR9 article-title: Measurement of positive and negative scattering lengths in a Fermi gas of atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.230404 contributor: fullname: Jin – ident: CR7 – volume: 305 start-page: 1128 year: 2004 end-page: 1130 ident: CR2 article-title: Observation of the pairing gap in a strongly interacting Fermi gas publication-title: Science doi: 10.1126/science.1100818 contributor: fullname: Chin – volume: 435 start-page: 1047 year: 2005 end-page: 1051 ident: CR4 article-title: Vortices and superfluidity in a strongly interacting Fermi gas publication-title: Nature doi: 10.1038/nature03858 contributor: fullname: Ketterle – volume: 56 start-page: R11407 year: 1997 end-page: R11410 ident: CR23 article-title: Pseudogap effects induced by resonant pair scattering publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.R11407 contributor: fullname: Levin – ident: CR28 – volume: 97 start-page: 220406 year: 2006 ident: CR29 article-title: Potential energy of a K Fermi gas in the BCS-BEC crossover publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.220406 contributor: fullname: Jin – volume: T109 start-page: 61 year: 2004 end-page: 74 ident: CR8 article-title: Probing the electronic structure of complex systems by ARPES publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.109a00061 contributor: fullname: Damascelli – volume: 424 start-page: 47 year: 2003 end-page: 50 ident: CR10 article-title: Creation of ultracold molecules from a Fermi gas of atoms publication-title: Nature doi: 10.1038/nature01738 contributor: fullname: Jin – ident: CR20 – volume: 435 start-page: 1047 year: 2005 ident: BFnature07172_CR4 publication-title: Nature doi: 10.1038/nature03858 contributor: fullname: MW Zwierlein – start-page: 53 volume-title: Models and Phenomenology for Conventional and High-Temperature Superconductivity (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 136) year: 1998 ident: BFnature07172_CR22 contributor: fullname: M Randeria – volume: 300 start-page: 1723 year: 2003 ident: BFnature07172_CR11 publication-title: Science doi: 10.1126/science.1085335 contributor: fullname: S Gupta – volume: 66 start-page: 024510 year: 2002 ident: BFnature07172_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.024510 contributor: fullname: A Perali – volume: 98 start-page: 080402 year: 2007 ident: BFnature07172_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.080402 contributor: fullname: L Luo – volume: 90 start-page: 230404 year: 2003 ident: BFnature07172_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.230404 contributor: fullname: CA Regal – volume: 100 start-page: 010402 year: 2008 ident: BFnature07172_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.010402 contributor: fullname: A Perali – volume: 95 start-page: 020404 year: 2005 ident: BFnature07172_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.020404 contributor: fullname: GB Partridge – volume: 71 start-page: 012713 year: 2005 ident: BFnature07172_CR15 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.012713 contributor: fullname: C Chin – ident: BFnature07172_CR27 – ident: BFnature07172_CR7 – volume: 92 start-page: 040403 year: 2004 ident: BFnature07172_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.040403 contributor: fullname: CA Regal – volume: 68 start-page: 2999 year: 1999 ident: BFnature07172_CR24 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.68.2999 contributor: fullname: Y Yanase – volume: 424 start-page: 47 year: 2003 ident: BFnature07172_CR10 publication-title: Nature doi: 10.1038/nature01738 contributor: fullname: CA Regal – start-page: 845 volume-title: Ultra-Cold Fermi Gases (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 164) year: 2008 ident: BFnature07172_CR6 contributor: fullname: L Tarruell – volume: T109 start-page: 61 year: 2004 ident: BFnature07172_CR8 publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.109a00061 contributor: fullname: A Damascelli – ident: BFnature07172_CR21 – ident: BFnature07172_CR19 – ident: BFnature07172_CR13 – volume: 73 start-page: 063601 year: 2006 ident: BFnature07172_CR16 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.73.063601 contributor: fullname: Z Yu – ident: BFnature07172_CR28 doi: 10.1103/PhysRevA.78.053629 – volume: 98 start-page: 240402 year: 2007 ident: BFnature07172_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.240402 contributor: fullname: T-L Dao – volume: 99 start-page: 170404 year: 2007 ident: BFnature07172_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.170404 contributor: fullname: M Punk – volume: 305 start-page: 1128 year: 2004 ident: BFnature07172_CR2 publication-title: Science doi: 10.1126/science.1100818 contributor: fullname: C Chin – volume: 56 start-page: R11407 year: 1997 ident: BFnature07172_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.R11407 contributor: fullname: B Janko – volume: 97 start-page: 220406 year: 2006 ident: BFnature07172_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.220406 contributor: fullname: JT Stewart – volume: 74 start-page: 033623 year: 2006 ident: BFnature07172_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.033623 contributor: fullname: GM Bruun – volume: 316 start-page: 867 year: 2007 ident: BFnature07172_CR12 publication-title: Science doi: 10.1126/science.1140749 contributor: fullname: CH Schunck – ident: BFnature07172_CR20 doi: 10.1103/PhysRevA.78.033614 – volume: 98 start-page: 200403 year: 2007 ident: BFnature07172_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.200403 contributor: fullname: JP Gaebler |
SSID | ssj0005174 |
Score | 2.5365293 |
Snippet | Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase... Fermionic superfluids: strong stuff Fermionic superfluidity requires the formation of particle pairs, the size of which varies depending on the system. Many... |
SourceID | proquest gale crossref pubmed pascalfrancis springer nature |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 744 |
SubjectTerms | Atoms & subatomic particles Classical and quantum physics: mechanics and fields Emissions Exact sciences and technology Fermions Gases Humanities and Social Sciences letter Magnetic fields Matter waves Methods multidisciplinary Phase transitions Photoemission Physics Radio frequency Science Spectroscopy Spectrum analysis |
Title | Using photoemission spectroscopy to probe a strongly interacting Fermi gas |
URI | http://dx.doi.org/10.1038/nature07172 https://link.springer.com/article/10.1038/nature07172 https://www.ncbi.nlm.nih.gov/pubmed/18685703 https://www.proquest.com/docview/204546081 https://search.proquest.com/docview/69406364 https://search.proquest.com/docview/743458716 |
Volume | 454 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiQkhNj4ygbFQuNjD9GaxHXsJ1SqlTGJCo1N9M1yHKdMmpKMpA_777lL3HSBwkv64Gti-872z_bd7wg5zKTIRBJJX3BmfBbbxE-Y5X6aJIFNRSwSiYHCX2f89JKdzUdz55tTObfK1ZzYTNRpYfCM_Bhp0xmHBexjeeNj0ii8XHUZNLbIThDGHD36xPTz2sPjDxJmF543jMRxy5qJe5mwtyC5ablj1XxY6gr6KmuTXGxCoX_doDYL0_QxeeQQJR23JrBL7tl8j9xvPDtNtUd23eit6AdHMX30hJw1ngK0_FnUBSZ8wyMz2gRdIrllUd7SuqCYa8ZSTSs8LV9c31KklmiCquCvU3SioQtdPSWX05OLyanvsir4hsey9gMjpR0G6UhL0IWMpQVQGGhQUGbDIGOMhcPMBMbAFpVnwhgLGE7HcWRSKcJIR8_Idl7k9gWhVmR6FAECgx-WAhbUGrQES54NQ6m59MjhqmtV2ZJnqObSOxLqjgZADLtdIR1Fjv4uC72sKjW--DGZqXEghIQ9awBve7NJ7Mv3857QeyeUFTV0iXZRBlBhJLrqSR70JE15daPulL7rlS5aDW16zX7blK6FvZYNegbUyYSAOzmMBKjEyqKUmzwq1Zm6R153pWALeJWjc1ssK8UlALGIM4_Qf0gAMmQj3A175HlrqWsVCI5pDSKPvF2Z7vrjG_Sz_99KHpAHrQ8NzLjiJdmufy3tKwBqdTIgW_E8hqeYBINmaA7IzqeT2bfz30vSP0g |
link.rule.ids | 314,780,784,12056,12223,12765,21388,27924,27925,31719,31720,33266,33267,33373,33374,33744,33745,43310,43579,43600,43805,73745,74014,74035,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCIGEEBu_ssFmoQHjIVqTuI79hKqKqhtbH6ATe7Mcx-kmoSQj6cP-e-4SN2ugIEXqg6-J7Tvbn-277wg5zKTIRBJJX3BmfBbbxE-Y5X6aJIFNRSwSiYHC5zM-vWCnl8NL55tTObfK1ZzYTNRpYfCM_Bhp0xmHBexzeeNj0ii8XHUZNO6TB7Dqx2jUYrzm4fEHCbMLzxtE4rhlzcS9TNhbkNy03LFqPil1BX2VtUkuNqHQv25Qm4Vp8ow8dYiSjloT2Cb3bL5DHjaenabaIdtu9Fb0yFFMf3pOThtPAVpeFXWBCd_wyIw2QZdIblmUt7QuKOaasVTTCk_LFz9vKVJLNEFV8NcJOtHQha5ekIvJl_l46rusCr7hsaz9wEhpB0E61BJ0IWNpARQGGhSU2TDIGGPhIDOBMbBF5ZkwxgKG03EcmVSKMNLRS7KVF7l9TagVmR5GgMDgh6WABbUGLcGSZ8NQai49crjqWlW25BmqufSOhFrTAIhhtyuko8jR32Whl1WlRvMf45kaBUJI2LMG8LZ3m8ROvn_rCX10QllRQ5doF2UAFUaiq57kXk_SlNc3aq30Q6900Wpo02t226Z0Ley1bL9nQJ1MCLiTw0iASqwsSrnJo1KdqXvkoCsFW8CrHJ3bYlkpLgGIRZx5hP5DApAhG-Ju2COvWku9U4HgmNYg8sj7lenefXyDfnb_W8kD8mg6Pz9TZyezr3vkcetPA0_8hmzVv5b2LYC2OtlvhuZvL-4-tg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCISEEBtf2WCz0Ph6iNokrmM_oapQbQMqBJu2N8tx7IKEkoykD_vvuUvcroGCFKkPvia272z_bN_9jpBDJ4UTWSJDwZkJWWqzMGOWh3mWRTYXqcgkBgp_nvGjM3ZyMbrwlEK1d6tczontRJ2XBs_IB0ibzjgsYAPnvSK-vJ--qy5DTCCFF60-m8ZNcguTzCGNvpiseXv8QcjsQ_WGiRh0DJq4r4l7i5OfolcMm_cqXUO_uS7hxSZE-tdtartITR-Q-x5d0nFnDtvkhi12yO3Wy9PUO2Tbj-SavvF0028fkpPWa4BW38umxORveHxG2wBMJLosqyvalBTzzliqaY0n5_OfVxRpJtoAK_jrFB1q6FzXj8jZ9MPp5Cj0GRZCw1PZhJGR0g6jfKQl6EWm0gJAjDQoy9k4coyxeOhMZAxsV7kTxljAczpNE5NLESc6eUy2irKwTwm1wulRAmgMflgOuFBr0BgsfzaOpeYyIIfLrlVVR6Sh2gvwRKg1DYAYdrtCaooCtTzXi7pW49PzyUyNIyEk7F8jeNuLTWLH3772hF57IVc20CXaRxxAhZH0qie515M01Y9LtVb6qlc67zS06TW7XVNWLey1bL9nQCuZGDAoh1EBlVhalPITSa1WZh-Qg1Up2AJe6-jClotacQmgLOEsIPQfEoAS2Qh3xgF50lnqtQoExxQHSUBeLk33-uMb9LP730oekDswKtWn49nHPXK3c62BJ31GtppfC_sc8FuT7bcj8zcpUkLb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+photoemission+spectroscopy+to+probe+a+strongly+interacting+Fermi+gas&rft.jtitle=Nature+%28London%29&rft.au=Stewart%2C+J+T&rft.au=Gaebler%2C+J+P&rft.au=Jin%2C+D+S&rft.date=2008-08-07&rft.issn=0028-0836&rft.volume=454&rft.issue=7205&rft.spage=744&rft.epage=747&rft_id=info:doi/10.1038%2Fnature07172&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |