Using photoemission spectroscopy to probe a strongly interacting Fermi gas

Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' co...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 454; no. 7205; pp. 744 - 747
Main Authors Jin, D. S, Stewart, J. T, Gaebler, J. P
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.08.2008
Nature Publishing
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of 40K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials.
AbstractList Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of (40)K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials.
Fermionic superfluids: strong stuff Fermionic superfluidity requires the formation of particle pairs, the size of which varies depending on the system. Many properties of the superfluid depend on the pair size relative to the inter-particle spacing. For example, conventional superconductors comprise a superfluid of loosely bound, large Cooper pairs of electrons, while Bose-Einstein condensates contain tightly bound molecules. The microscopic properties of the fermion pairs can be probed with radio-frequency spectroscopy. However, previous results have been difficult to interpret due to strong final-state interactions that were not well understood. Schunck et al. realize a superfluid spin mixture in an ultracold gas of lithium atoms in which such interactions have negligible influence. They find that the spectroscopic pair size is smaller than the inter-particle spacing. These are the smallest pairs yet observed for fermionic superfluids. In a related experiment, Jin et al use a technique called photoemission spectroscopy to study the excitations in a strongly interacting gas of ultracold potassium atoms. Such studies are of interest because the physics is related to that of the high transition-temperature superconductors, which are not fully understood. Recent experiments using ultracold Fermi gases have demonstrated a phase transition to a superfluid state with strong inter-particle interactions, but these interactions make it difficult to study the behaviour of the atoms in the gas. A technique called photoemission spectroscopy is used to enable a study of the pairing between the atoms. This is of interest because the physics is related to that of the high transition-temperature superconductors. Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions 1 , 2 , 3 , 4 , 5 , 6 . This system provides a realization of the ‘BCS–BEC crossover’ 7 connecting the physics of Bardeen–Cooper–Schrieffer (BCS) superconductivity with that of Bose–Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of 40 K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS–BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials.
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of sup 40K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. [PUBLICATION ABSTRACT]
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of ^sup 40^K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials. [PUBLICATION ABSTRACT]
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of 40K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials.
Audience Academic
Author Jin, D. S
Stewart, J. T
Gaebler, J. P
Author_xml – sequence: 1
  givenname: D. S
  surname: Jin
  fullname: Jin, D. S
  organization: JILA, Quantum Physics Division, National Institute of Standards and Technology and Department of Physics, University of Colorado
– sequence: 2
  givenname: J. T
  surname: Stewart
  fullname: Stewart, J. T
  organization: JILA, Quantum Physics Division, National Institute of Standards and Technology and Department of Physics, University of Colorado
– sequence: 3
  givenname: J. P
  surname: Gaebler
  fullname: Gaebler, J. P
  organization: JILA, Quantum Physics Division, National Institute of Standards and Technology and Department of Physics, University of Colorado
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20566878$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18685703$$D View this record in MEDLINE/PubMed
BookMark eNp90v9r1DAUAPAgE3eb_uTvUgdORDuTNs2XH4_D6WQo6IY_hix9rR29pEtS8P77ZfTY3ckp-SHw-slL-t47QgfWWUDoJcFnBJfio9Vx9IA54cUTNCOUs5wywQ_QDONC5FiU7BAdhXCLMa4Ip8_QIRFMVByXM_T1OnS2zYbfLjpYdiF0zmZhABO9C8YNqyy6bPDuBjKdhRS0bb_KOhvBaxMfjp6DX3ZZq8Nz9LTRfYAX6_0YXZ9_ulp8yS-_f75YzC9zw7iMOTFSAiZ1pWUtuOQSCKmIpsAaKEhDKS1wY4gxVVGyRhgDFRaa89LUUhSlLo_R2ylvetbdCCGq9G4Dfa8tuDEoTktaCU5Ykqf_lUxSzEpGEzz5C9660dv0F6rAtKIMC5JQPqFW96A627iYatCCTaXoU0uaLoXnRAhJKSNyk3THm6G7U9vobA9Kq07dMHuzvts5kEyEP7HVYwjq4uePXfv-33Z-9Wvxba82qfXBQ6MG3y21XymC1cOkqa1JS_rVumTjzRLqjV2PVgJv1kAHo_vGa2u68OgKXLE0pSK5D5ML6ZNtwW9qv__e1xOfgo_5ts09hjj0xA
CODEN NATUAS
CitedBy_id crossref_primary_10_1103_PhysRevB_93_195145
crossref_primary_10_1103_PhysRevA_86_043622
crossref_primary_10_1103_PhysRevA_109_063311
crossref_primary_10_1038_s41586_023_06964_y
crossref_primary_10_1103_PhysRevB_107_224310
crossref_primary_10_1007_s00340_013_5552_9
crossref_primary_10_1103_PhysRevLett_123_213401
crossref_primary_10_1103_PhysRevB_90_195419
crossref_primary_10_1088_1367_2630_17_1_013018
crossref_primary_10_1103_PhysRevX_4_021012
crossref_primary_10_21468_SciPostPhys_14_3_048
crossref_primary_10_1103_PhysRevLett_123_123601
crossref_primary_10_1038_nphys1709
crossref_primary_10_1103_PhysRevA_82_043630
crossref_primary_10_1103_PhysRevX_4_021010
crossref_primary_10_1088_1367_2630_15_4_043046
crossref_primary_10_1103_PhysRevA_81_033404
crossref_primary_10_21468_SciPostPhys_5_6_061
crossref_primary_10_1103_PhysRevLett_101_120404
crossref_primary_10_1103_PhysRevLett_107_195303
crossref_primary_10_1103_PhysRevLett_107_195304
crossref_primary_10_1103_PhysRevLett_103_113202
crossref_primary_10_1103_PhysRevA_82_043626
crossref_primary_10_1103_PhysRevA_89_023612
crossref_primary_10_1103_PhysRevLett_110_195301
crossref_primary_10_1103_PhysRevLett_106_060402
crossref_primary_10_1140_epjst_e2013_01923_y
crossref_primary_10_1103_PhysRevA_81_011604
crossref_primary_10_1103_PhysRevA_88_013639
crossref_primary_10_1103_PhysRevA_88_013637
crossref_primary_10_1103_PhysRevB_98_174506
crossref_primary_10_1103_PhysRevA_83_063605
crossref_primary_10_1103_PhysRevLett_120_073201
crossref_primary_10_1103_PhysRevB_84_165128
crossref_primary_10_1007_s10909_016_1558_0
crossref_primary_10_1103_PhysRevA_94_063627
crossref_primary_10_1103_PhysRevLett_103_240401
crossref_primary_10_1103_PhysRevA_87_063605
crossref_primary_10_7566_JPSJ_87_094301
crossref_primary_10_1088_0034_4885_73_7_076501
crossref_primary_10_1088_0256_307X_30_11_110303
crossref_primary_10_1103_PhysRevA_87_063622
crossref_primary_10_1103_PhysRevLett_104_223004
crossref_primary_10_1209_0295_5075_88_20008
crossref_primary_10_1103_PhysRevA_88_013627
crossref_primary_10_1103_PhysRevA_84_013624
crossref_primary_10_1103_PhysRevLett_106_105301
crossref_primary_10_1103_PhysRevA_81_033630
crossref_primary_10_1038_nature11065
crossref_primary_10_1088_0953_4075_46_13_134005
crossref_primary_10_1103_PhysRevA_83_063611
crossref_primary_10_1088_0953_4075_43_1_015301
crossref_primary_10_1016_j_rinp_2024_107358
crossref_primary_10_7566_JPSJ_86_074302
crossref_primary_10_1103_PhysRevB_96_144517
crossref_primary_10_1088_1367_2630_acb80d
crossref_primary_10_1103_PhysRevA_87_041601
crossref_primary_10_1007_s40042_023_00777_y
crossref_primary_10_1103_PhysRevB_91_165131
crossref_primary_10_1103_PhysRevA_85_013606
crossref_primary_10_1103_PhysRevX_8_011024
crossref_primary_10_1103_PhysRevA_79_053614
crossref_primary_10_1103_PhysRevA_89_033617
crossref_primary_10_1103_PhysRevA_95_013627
crossref_primary_10_1038_srep25772
crossref_primary_10_1103_PhysRevLett_111_145301
crossref_primary_10_1103_PhysRevA_97_043613
crossref_primary_10_1103_PhysRevA_97_043616
crossref_primary_10_1103_PhysRevA_99_063606
crossref_primary_10_1103_PhysRevB_93_115143
crossref_primary_10_1103_PhysRevB_105_205143
crossref_primary_10_1103_PhysRevA_103_043330
crossref_primary_10_1103_PhysRevA_85_013625
crossref_primary_10_1103_PhysRevB_81_075436
crossref_primary_10_1038_nphys4187
crossref_primary_10_1103_PhysRevLett_109_235303
crossref_primary_10_1103_PhysRevResearch_2_033441
crossref_primary_10_1103_PhysRevA_79_053621
crossref_primary_10_1016_j_physleta_2012_01_015
crossref_primary_10_1103_PhysRevLett_109_235304
crossref_primary_10_1103_PhysRevA_90_043601
crossref_primary_10_1142_S0217979210056402
crossref_primary_10_1088_1361_6455_ab3c11
crossref_primary_10_1038_srep09539
crossref_primary_10_1103_PhysRevA_85_023637
crossref_primary_10_1103_PhysRevLett_121_093402
crossref_primary_10_1088_1367_2630_17_3_033013
crossref_primary_10_1103_PhysRevLett_114_045301
crossref_primary_10_1103_PhysRevA_81_021601
crossref_primary_10_1103_PhysRevA_81_021602
crossref_primary_10_1103_PhysRevLett_111_215304
crossref_primary_10_1103_PhysRevA_80_023627
crossref_primary_10_1103_PhysRevA_99_063601
crossref_primary_10_1103_PhysRevLett_108_080401
crossref_primary_10_1103_PhysRevA_87_053619
crossref_primary_10_1088_1742_6596_400_1_012082
crossref_primary_10_1088_1742_6596_400_1_012080
crossref_primary_10_1103_PhysRevLett_104_235301
crossref_primary_10_1103_PhysRevA_86_033613
crossref_primary_10_1103_PhysRevLett_126_065301
crossref_primary_10_1088_1742_6596_592_1_012151
crossref_primary_10_1103_PhysRevA_86_033607
crossref_primary_10_1103_PhysRevA_97_033606
crossref_primary_10_1007_s12043_014_0903_6
crossref_primary_10_3390_condmat5010015
crossref_primary_10_12693_APhysPolA_130_564
crossref_primary_10_1088_1367_2630_ab466f
crossref_primary_10_21468_SciPostPhysCore_3_2_010
crossref_primary_10_1103_PhysRevLett_108_080406
crossref_primary_10_1103_PhysRevA_81_043626
crossref_primary_10_1007_s12648_023_03057_4
crossref_primary_10_1088_1367_2630_13_11_113018
crossref_primary_10_1103_PhysRevE_109_044140
crossref_primary_10_1103_PhysRevLett_106_205303
crossref_primary_10_1103_PhysRevLett_106_205302
crossref_primary_10_1103_PhysRevLett_109_105302
crossref_primary_10_1103_PhysRevLett_122_207401
crossref_primary_10_1088_1742_6596_568_1_012019
crossref_primary_10_1103_PhysRevA_108_023304
crossref_primary_10_1103_PhysRevLett_114_050404
crossref_primary_10_1103_PhysRevLett_107_020403
crossref_primary_10_1209_0295_5075_97_33002
crossref_primary_10_1103_PhysRevB_85_195116
crossref_primary_10_1103_PhysRevLett_102_190402
crossref_primary_10_1103_PhysRevLett_110_090401
crossref_primary_10_1088_1361_6455_abc141
crossref_primary_10_7498_aps_71_20220862
crossref_primary_10_1103_PhysRevA_97_013601
crossref_primary_10_1088_1742_6596_568_1_012004
crossref_primary_10_1142_S0217979210064575
crossref_primary_10_1103_PhysRevA_84_063618
crossref_primary_10_1088_1361_6471_ab2f0b
crossref_primary_10_1088_1367_2630_aa9558
crossref_primary_10_1103_PhysRevA_97_023632
crossref_primary_10_1103_PhysRevLett_101_250403
crossref_primary_10_1103_PhysRevB_100_214517
crossref_primary_10_1088_1367_2630_12_3_033041
crossref_primary_10_1103_PhysRevLett_106_205301
crossref_primary_10_1016_j_scib_2022_12_005
crossref_primary_10_1103_PhysRevA_88_041601
crossref_primary_10_1146_annurev_conmatphys_031113_133829
crossref_primary_10_1103_PhysRevA_87_043605
crossref_primary_10_1103_PhysRevB_100_165144
crossref_primary_10_1103_PhysRevA_98_033821
crossref_primary_10_1103_PhysRevLett_120_060404
crossref_primary_10_1007_s11467_014_0448_7
crossref_primary_10_1038_s42254_020_0195_3
crossref_primary_10_1016_j_physrep_2012_10_004
crossref_primary_10_1103_PhysRevA_85_013634
crossref_primary_10_1038_s41567_021_01370_5
crossref_primary_10_1103_PhysRevX_8_011046
crossref_primary_10_1007_s10909_018_02114_1
crossref_primary_10_1103_PhysRevB_90_060406
crossref_primary_10_1103_PhysRevLett_112_135302
crossref_primary_10_1103_PhysRevA_104_023323
crossref_primary_10_1103_PhysRevA_91_013604
crossref_primary_10_1103_PhysRevA_91_013608
crossref_primary_10_1103_PhysRevB_106_195123
crossref_primary_10_1103_PhysRevB_89_134310
crossref_primary_10_1016_j_isci_2019_03_031
crossref_primary_10_1088_0953_4075_44_9_095302
crossref_primary_10_1103_PhysRevB_104_104511
crossref_primary_10_1103_PhysRevA_88_063643
crossref_primary_10_1088_0954_3899_40_5_053101
crossref_primary_10_1016_j_aop_2017_10_001
crossref_primary_10_1088_1742_6596_264_1_012013
crossref_primary_10_1103_PhysRevA_86_023608
crossref_primary_10_1103_PhysRevLett_107_145304
crossref_primary_10_1088_1367_2630_aae418
crossref_primary_10_1016_j_physleta_2016_06_045
crossref_primary_10_1103_PhysRevB_97_125117
crossref_primary_10_1103_PhysRevLett_126_103201
crossref_primary_10_1021_acs_analchem_1c03624
crossref_primary_10_1103_PhysRevResearch_4_023231
crossref_primary_10_1103_PhysRevB_92_174529
crossref_primary_10_1103_PhysRevA_83_053623
crossref_primary_10_1103_PhysRevLett_102_110406
crossref_primary_10_1103_PhysRevA_82_033617
crossref_primary_10_1103_PhysRevB_84_165115
crossref_primary_10_1088_1367_2630_11_7_073009
crossref_primary_10_1103_PhysRevA_88_053632
crossref_primary_10_1103_PhysRevA_98_023603
crossref_primary_10_1103_PhysRevLett_115_265304
crossref_primary_10_1103_PhysRevA_93_033637
crossref_primary_10_7566_JPSJ_83_014003
crossref_primary_10_1103_PhysRevB_109_L060501
crossref_primary_10_1103_PhysRevB_83_064523
crossref_primary_10_1103_PhysRevLett_111_147205
crossref_primary_10_2184_lsj_38_487
crossref_primary_10_1103_PhysRevA_100_023602
crossref_primary_10_1103_PhysRevA_82_033629
crossref_primary_10_1016_j_aop_2014_08_022
crossref_primary_10_1103_PhysRevA_83_053637
crossref_primary_10_1038_s41586_019_1463_1
crossref_primary_10_1088_0953_8984_27_11_113203
crossref_primary_10_1103_PhysRevB_107_035105
crossref_primary_10_1103_PhysRevA_106_053306
crossref_primary_10_1103_PhysRevA_88_053621
crossref_primary_10_1103_PhysRevA_93_033627
crossref_primary_10_1103_PhysRevLett_109_130403
crossref_primary_10_1016_j_aop_2021_168651
crossref_primary_10_1103_PhysRevB_93_104411
crossref_primary_10_1038_nature10627
crossref_primary_10_1103_PhysRevB_89_121118
crossref_primary_10_1103_PhysRevB_91_094502
crossref_primary_10_1103_PhysRevLett_104_255303
crossref_primary_10_1103_PhysRevA_92_023617
crossref_primary_10_1103_PhysRevLett_105_150605
crossref_primary_10_1103_PhysRevLett_102_165301
crossref_primary_10_1103_PhysRevB_87_075134
crossref_primary_10_1016_j_physb_2016_03_029
crossref_primary_10_1103_PhysRevB_81_115111
crossref_primary_10_1103_PhysRevA_84_063606
crossref_primary_10_1103_PhysRevA_109_023324
crossref_primary_10_1103_PhysRevLett_124_073404
crossref_primary_10_1103_PhysRevA_81_023622
crossref_primary_10_1103_PhysRevLett_110_045301
crossref_primary_10_1038_s41567_019_0696_0
crossref_primary_10_1103_PhysRevA_86_013626
crossref_primary_10_1088_0034_4885_72_12_122501
crossref_primary_10_1103_PhysRevApplied_13_014071
crossref_primary_10_1093_nsr_nww013
crossref_primary_10_1103_PhysRevA_83_031601
crossref_primary_10_1103_PhysRevB_107_115155
crossref_primary_10_1103_PhysRevLett_111_077401
crossref_primary_10_1103_PhysRevLett_114_075301
crossref_primary_10_1103_PhysRevLett_112_026805
crossref_primary_10_1103_PhysRevA_101_013609
crossref_primary_10_1103_PhysRevA_107_063310
crossref_primary_10_1088_1751_8121_ab2828
crossref_primary_10_7566_JPSJ_86_044301
crossref_primary_10_1103_PhysRevA_101_013610
crossref_primary_10_1088_1367_2630_17_6_063012
crossref_primary_10_1088_1367_2630_16_7_073041
crossref_primary_10_1088_0256_307X_31_11_110303
crossref_primary_10_1103_PhysRevB_102_035139
crossref_primary_10_1103_PhysRevB_86_134519
crossref_primary_10_1103_PhysRevLett_125_110404
crossref_primary_10_1016_j_physc_2009_10_037
crossref_primary_10_1088_1367_2630_ab2ee0
crossref_primary_10_1103_PhysRevA_92_063638
crossref_primary_10_1103_PhysRevA_92_063636
crossref_primary_10_1007_s11433_012_4936_x
crossref_primary_10_1103_PhysRevB_102_014447
crossref_primary_10_1103_PhysRevA_80_043624
crossref_primary_10_1103_PhysRevLett_112_195301
crossref_primary_10_1088_1674_1056_23_1_013402
crossref_primary_10_1103_PhysRevB_79_165113
crossref_primary_10_1088_1361_6455_aaa31b
crossref_primary_10_1103_PhysRevA_84_043642
crossref_primary_10_1103_PhysRevLett_107_073201
crossref_primary_10_1103_PhysRevA_89_053609
crossref_primary_10_1103_PhysRevLett_110_110401
crossref_primary_10_1016_j_physc_2009_11_043
crossref_primary_10_1146_annurev_conmatphys_070909_104059
crossref_primary_10_1103_PhysRevLett_104_116403
crossref_primary_10_1103_PhysRevA_100_063609
crossref_primary_10_1103_PhysRevA_80_033606
crossref_primary_10_1051_epjconf_20135701002
crossref_primary_10_1103_PhysRevA_84_033608
crossref_primary_10_1103_PhysRevA_95_033611
crossref_primary_10_1103_PhysRevA_89_053622
crossref_primary_10_1016_j_physb_2016_10_013
crossref_primary_10_1088_0034_4885_73_11_112401
crossref_primary_10_1103_PhysRevA_101_013602
crossref_primary_10_1103_PhysRevA_89_053617
crossref_primary_10_1103_PhysRevA_88_043644
crossref_primary_10_1103_PhysRevA_84_043647
crossref_primary_10_1038_s41567_021_01434_6
crossref_primary_10_1007_s10909_013_0928_0
crossref_primary_10_1103_PhysRevLett_115_165301
crossref_primary_10_1103_PhysRevA_83_033619
crossref_primary_10_1103_PhysRevB_85_024517
crossref_primary_10_1103_PhysRevA_96_063617
crossref_primary_10_1103_PhysRevA_106_033303
crossref_primary_10_1016_j_physb_2013_10_006
crossref_primary_10_1103_PhysRevA_106_033308
crossref_primary_10_1103_PhysRevA_83_033612
crossref_primary_10_1103_PhysRevA_85_051603
crossref_primary_10_1038_ncomms3710
crossref_primary_10_1103_PhysRevA_80_033613
crossref_primary_10_1007_s10909_015_1383_x
crossref_primary_10_1103_PhysRevLett_111_265301
crossref_primary_10_1142_S0217979211057773
crossref_primary_10_1103_PhysRevA_93_063606
crossref_primary_10_1016_j_ppnp_2019_103739
crossref_primary_10_1038_nphys1345
crossref_primary_10_1007_s10909_009_0040_7
crossref_primary_10_1007_s11467_013_0377_x
crossref_primary_10_1103_PhysRevLett_120_045302
crossref_primary_10_1016_j_nuclphysb_2019_03_013
crossref_primary_10_1103_PhysRevLett_128_100401
crossref_primary_10_1126_sciadv_1602372
crossref_primary_10_1103_PhysRevLett_109_055301
crossref_primary_10_1007_s10909_016_1694_6
crossref_primary_10_1103_RevModPhys_84_1253
crossref_primary_10_1103_PhysRevA_84_053612
crossref_primary_10_1103_PhysRevB_106_224514
crossref_primary_10_1038_srep02119
crossref_primary_10_1103_PhysRevA_80_033623
crossref_primary_10_1103_PhysRevA_105_023330
crossref_primary_10_1103_PhysRevA_90_013610
crossref_primary_10_1038_nphys1476
crossref_primary_10_1088_0034_4885_77_3_034401
crossref_primary_10_1103_PhysRevLett_109_220402
crossref_primary_10_1126_science_aat4134
crossref_primary_10_1103_PhysRevA_93_013610
crossref_primary_10_1103_PhysRevB_81_125435
crossref_primary_10_1103_PhysRevLett_126_153402
crossref_primary_10_1103_PhysRevLett_105_070402
crossref_primary_10_1103_PhysRevB_81_205117
crossref_primary_10_1103_PhysRevA_95_053623
crossref_primary_10_1103_PhysRevLett_108_255301
crossref_primary_10_1016_j_physrep_2018_02_004
crossref_primary_10_1103_PhysRevB_103_195129
crossref_primary_10_1088_1367_2630_12_6_063038
crossref_primary_10_1142_S0217984918502809
crossref_primary_10_21468_SciPostPhys_12_3_108
crossref_primary_10_1088_1361_648X_aad659
crossref_primary_10_1103_PhysRevLett_103_210403
crossref_primary_10_1103_PhysRevResearch_4_043014
crossref_primary_10_1016_j_aop_2019_04_018
crossref_primary_10_1103_PhysRevA_93_013621
crossref_primary_10_1038_nphys2216
crossref_primary_10_1103_PhysRevA_100_063632
crossref_primary_10_1103_PhysRevLett_118_170401
crossref_primary_10_1103_PhysRevA_95_053639
crossref_primary_10_1016_j_physc_2009_11_012
crossref_primary_10_1007_s11467_011_0216_x
crossref_primary_10_1103_Physics_3_48
crossref_primary_10_1088_0031_8949_91_4_043006
crossref_primary_10_1103_PhysRevResearch_2_023152
crossref_primary_10_1103_PhysRevA_96_033601
crossref_primary_10_1088_1674_1056_ad0623
crossref_primary_10_1103_PhysRevB_96_075134
crossref_primary_10_1088_1361_6633_aa7e53
crossref_primary_10_1103_PhysRevA_83_061601
crossref_primary_10_1103_PhysRevA_80_063622
crossref_primary_10_1080_09500340_2016_1163429
crossref_primary_10_1103_PhysRevApplied_5_034001
crossref_primary_10_1088_1367_2630_13_5_055010
crossref_primary_10_1038_s41567_018_0128_6
crossref_primary_10_1103_PhysRevA_79_023604
crossref_primary_10_1103_PhysRevLett_104_190403
crossref_primary_10_1103_PhysRevLett_102_126405
crossref_primary_10_1103_PhysRevA_85_043611
crossref_primary_10_21468_SciPostPhys_16_4_091
crossref_primary_10_7566_JPSJ_87_084302
crossref_primary_10_1088_1367_2630_12_8_083041
crossref_primary_10_1088_1751_8113_43_10_105306
crossref_primary_10_1103_PhysRevA_80_063612
crossref_primary_10_1103_PhysRevA_106_023313
crossref_primary_10_1103_PhysRevA_82_063619
crossref_primary_10_1103_PhysRevA_84_023634
crossref_primary_10_1103_PhysRevA_86_063610
crossref_primary_10_21468_SciPostPhys_16_3_081
crossref_primary_10_1142_S021798491350214X
crossref_primary_10_1103_PhysRevLett_104_240407
crossref_primary_10_1103_PhysRevLett_104_165301
crossref_primary_10_1103_PhysRevResearch_2_023136
crossref_primary_10_1103_PhysRevA_96_033618
crossref_primary_10_1103_PhysRevA_96_033614
crossref_primary_10_1088_0034_4885_79_9_096001
crossref_primary_10_1103_PhysRevA_84_011608
crossref_primary_10_1103_PhysRevLett_109_095302
crossref_primary_10_1103_PhysRevA_86_063603
crossref_primary_10_1103_PhysRevLett_109_095301
crossref_primary_10_1103_PhysRevB_85_155136
crossref_primary_10_1103_PhysRevB_104_235107
crossref_primary_10_1142_S0217984913300081
crossref_primary_10_1103_PhysRevA_102_023304
crossref_primary_10_1103_PhysRevB_81_235115
crossref_primary_10_1016_j_aop_2015_03_007
crossref_primary_10_1103_PhysRevResearch_3_023205
crossref_primary_10_1016_j_aop_2009_02_004
crossref_primary_10_1103_PhysRevB_99_245126
crossref_primary_10_1103_PhysRevLett_107_277202
crossref_primary_10_1103_PhysRevA_90_043622
crossref_primary_10_1103_PhysRevA_90_043624
crossref_primary_10_1007_s10909_012_0691_7
crossref_primary_10_1103_PhysRevA_80_053623
crossref_primary_10_1103_PhysRevA_89_013614
crossref_primary_10_1103_PhysRevA_87_051608
crossref_primary_10_1103_PhysRevA_89_013618
crossref_primary_10_1103_PhysRevA_85_053626
crossref_primary_10_1103_PhysRevA_85_053628
crossref_primary_10_1140_epjd_e2011_20084_5
crossref_primary_10_1103_PhysRevA_81_051604
crossref_primary_10_1088_1742_6596_467_1_012010
crossref_primary_10_1103_PhysRevA_83_013612
crossref_primary_10_1103_PhysRevB_81_165112
crossref_primary_10_1103_PhysRevA_92_063602
crossref_primary_10_1103_PhysRevB_91_054509
crossref_primary_10_1103_PhysRevB_88_115142
crossref_primary_10_1088_1742_6596_400_1_012021
crossref_primary_10_1103_PhysRevLett_113_116401
crossref_primary_10_1209_0295_5075_110_26002
crossref_primary_10_1007_s10909_008_9850_2
crossref_primary_10_1103_Physics_5_10
crossref_primary_10_1103_PhysRevB_99_094520
crossref_primary_10_1103_PhysRevA_86_031601
crossref_primary_10_1103_PhysRevA_85_053643
crossref_primary_10_1088_0953_4075_45_14_145303
crossref_primary_10_1103_PhysRevB_82_245104
crossref_primary_10_1007_s10909_009_9953_4
crossref_primary_10_1103_PhysRevB_92_180503
crossref_primary_10_1103_PhysRevA_79_033620
crossref_primary_10_1103_PhysRevB_92_134523
crossref_primary_10_1103_PhysRevA_106_013317
crossref_primary_10_1103_PhysRevLett_120_240401
crossref_primary_10_1088_1367_2630_ab306b
crossref_primary_10_1103_PhysRevA_92_063628
crossref_primary_10_1143_JPSJ_78_073001
crossref_primary_10_7566_JPSJ_87_014301
crossref_primary_10_1038_nature11151
crossref_primary_10_1103_PhysRevResearch_6_013047
crossref_primary_10_1103_PhysRevA_85_021602
crossref_primary_10_1088_1367_2630_aa6e31
crossref_primary_10_1103_PhysRevLett_114_170401
crossref_primary_10_1038_srep06655
crossref_primary_10_1103_PhysRevB_108_L201118
crossref_primary_10_1088_1367_2630_15_7_075010
crossref_primary_10_1103_PhysRevB_84_045408
crossref_primary_10_7566_JPSJ_86_084301
crossref_primary_10_1103_PhysRevA_81_064701
crossref_primary_10_1103_RevModPhys_96_025002
crossref_primary_10_1142_S0217984914500286
crossref_primary_10_1088_1742_6596_969_1_012012
crossref_primary_10_1038_s41598_021_91216_0
crossref_primary_10_1103_PhysRevA_81_063618
crossref_primary_10_1103_PhysRevB_89_174501
crossref_primary_10_1103_PhysRevA_85_043628
crossref_primary_10_1103_PhysRevA_81_063615
crossref_primary_10_1093_nsr_nwab226
crossref_primary_10_1103_PhysRevA_84_023611
crossref_primary_10_1103_PhysRevA_89_023632
Cites_doi 10.1103/PhysRevB.66.024510
10.1103/PhysRevA.74.033623
10.1103/PhysRevLett.92.040403
10.1103/PhysRevA.71.012713
10.1103/PhysRevLett.95.020404
10.1126/science.1085335
10.1103/PhysRevLett.98.080402
10.1103/PhysRevA.73.063601
10.1103/PhysRevLett.98.240402
10.1143/JPSJ.68.2999
10.1103/PhysRevLett.99.170404
10.1126/science.1140749
10.1103/PhysRevLett.98.200403
10.1103/PhysRevLett.100.010402
10.1103/PhysRevLett.90.230404
10.1126/science.1100818
10.1038/nature03858
10.1103/PhysRevB.56.R11407
10.1103/PhysRevLett.97.220406
10.1238/Physica.Topical.109a00061
10.1038/nature01738
10.1103/PhysRevA.78.053629
10.1103/PhysRevA.78.033614
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2008
2008 INIST-CNRS
COPYRIGHT 2008 Nature Publishing Group
Copyright Nature Publishing Group Aug 7, 2008
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2008
– notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2008 Nature Publishing Group
– notice: Copyright Nature Publishing Group Aug 7, 2008
DBID IQODW
NPM
AAYXX
CITATION
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
7SC
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1038/nature07172
DatabaseName Pascal-Francis
PubMed
CrossRef
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
https://resources.nclive.org/materials
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
ProQuest research library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
University of Michigan
Technology Collection
Technology Research Database
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Materials Research Database
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Agricultural Science Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 747
ExternalDocumentID 1545217211
A188944619
10_1038_nature07172
18685703
20566878
nature07172
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -
00M
02
07C
08R
0R
0WA
123
186
1VR
29M
2KS
2XV
39C
3O-
3V.
4
4.4
42X
4R4
53G
55
5RE
68V
69O
6XO
70F
7RV
7V
7X2
7X7
7XC
85S
88
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
9M8
A6W
A7Z
A8Z
AADWK
AAEEF
AAGJQ
AAIKC
AAJWC
AAPBV
AASDW
AAVBQ
AAYEP
AAYOK
AAZLF
ABAWZ
ABDBF
ABEFU
ABFLS
ABFSI
ABGIJ
ABIVO
ABJCF
ABOCM
ABPPZ
ABPTK
ABUWG
ABWJO
ABZEH
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADBIT
ADFPY
ADYSU
AEFTE
AENEX
AETEA
AFDAS
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFRAH
AGCDD
AGEZK
AGHTU
AGNAY
AGSOS
AHGBK
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVRDS
AVWKF
AXYYD
AZFZN
AZQEC
B-7
B0M
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CJ0
CO
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
DZ
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EPL
EPS
ESE
ESN
ESX
ET
EX3
EXGXG
F20
F5P
FEDTE
FQGFK
FSGXE
FYUFA
G0
GJ
GNUQQ
GUQSH
HCIFZ
HR
HVGLF
HZ
I-F
I-U
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KM
KOO
L-9
L6V
L7B
LK5
LK8
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
O9-
OBC
OES
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PM3
PQEST
PQQKQ
PQUKI
PROAC
PSQYO
PTHSS
PYCSY
Q2X
R05
RIG
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U1R
U5U
UKR
UMD
UQL
VQA
WH7
WOW
X
X7L
X7M
XFK
XHC
XKW
XZ
XZL
Y6R
YAE
YCJ
YNT
YXB
YZZ
Z
ZA5
ZGI
ZHY
ZKB
ZKG
ZR0
~88
---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
08P
0R~
354
41X
6TJ
97L
AAHBH
AAHTB
AAKAB
AAKAS
AAMNW
ABJNI
ABLJU
ABPEJ
ABVXF
ACBEA
ACBWK
ACGFO
ACKOT
ACMJI
ACWUS
ADFRT
ADUKH
ADZCM
AFRQD
AFSHS
AGAYW
AGHSJ
AIYXT
ALIPV
AMTXH
APEBS
BDKGC
CCPQU
EMOBN
ESTFP
HMCUK
HZ~
NEPJS
OHH
PSYQQ
UIG
UKHRP
VVN
XIH
YFH
YOC
YQT
YR2
YYP
ZCA
~02
~7V
~8M
~G0
~KM
0B8
1CY
1OL
1VW
3EH
41~
663
79B
AADEA
AAEXX
AAJMP
AAJYS
AAUGY
AAYJO
ABEEJ
ABGFU
ABTAH
ACBMV
ACBNA
ACBRV
ACBTR
ACBYP
ACIGE
ACTDY
ACTTH
ACVWB
ADMDM
ADQMX
ADRHT
ADZGE
AEDAW
AFMIJ
AFNRJ
AGGBP
AJDOV
AJUXI
AMRJV
FA8
FAC
G8K
HG6
IQODW
J5H
LSO
N4W
PV9
QS-
R4F
RHI
SKT
TUD
UAO
UBY
UHB
USG
VOH
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZE2
ZY4
AAYZH
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
Q9U
RC3
SOI
7X8
7SC
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c679t-1c99e01d5a9d87979e1151a4e6fe21f44420fc1cc5236f8cce508a773cd9823a3
IEDL.DBID 8FG
ISSN 0028-0836
IngestDate Wed Dec 04 15:29:45 EST 2024
Wed Dec 04 07:55:24 EST 2024
Thu Oct 10 21:03:15 EDT 2024
Thu Nov 14 22:08:05 EST 2024
Wed Nov 13 14:04:54 EST 2024
Wed Nov 13 00:22:14 EST 2024
Sat Sep 28 21:23:01 EDT 2024
Sat Sep 28 21:18:36 EDT 2024
Fri Dec 06 03:49:21 EST 2024
Tue Oct 15 23:34:52 EDT 2024
Sun Oct 29 17:10:57 EDT 2023
Fri Oct 11 20:46:25 EDT 2024
Thu Oct 07 19:30:17 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 7205
Keywords Optical lattices
Superconductors
Fermi gas
Quantum phase transition
Emission spectra
N-body problems
Excitation spectrum
High temperature
Superfluidity
Bose-Einstein condensation
BCS theory
Language English
License CC BY 4.0
http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c679t-1c99e01d5a9d87979e1151a4e6fe21f44420fc1cc5236f8cce508a773cd9823a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 18685703
PQID 204546081
PQPubID 40569
PageCount 4
ParticipantIDs proquest_miscellaneous_743458716
proquest_miscellaneous_69406364
proquest_journals_204546081
gale_infotracgeneralonefile_A188944619
gale_infotraccpiq_188944619
gale_infotracacademiconefile_A188944619
gale_incontextgauss_ISR_A188944619
gale_incontextgauss_ATWCN_A188944619
crossref_primary_10_1038_nature07172
pubmed_primary_18685703
pascalfrancis_primary_20566878
springer_journals_10_1038_nature07172
nature_primary_nature07172
ProviderPackageCode RNTTT
ABGIJ
AAZLF
DB5
L-9
RND
RNT
AADWK
AHGBK
70F
EE.
~88
PublicationCentury 2000
PublicationDate 2008-08-07
PublicationDateYYYYMMDD 2008-08-07
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-07
  day: 07
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2008
Publisher Nature Publishing Group UK
Nature Publishing
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing
– name: Nature Publishing Group
References Schunck, C. H., Shin, Y., Schirotzek, A., Zwierlein, M. W., Ketterle, W. (b12) 2007; 316
Regal, C. A., Greiner, M., Jin, D. S. (b1) 2004; 92
Punk, M., Zwerger, W. (b17) 2007; 99
Stewart, J. T., Gaebler, J. P., Regal, C. A., Jin, D. S. (b29) 2006; 97
Gupta, S. (b11) 2003; 300
Yanase, Y., Yamada, K. (b24) 1999; 68
Veillette, M. (b20) 2008
Bulgac, A., Drut, J. E., Magierski, P., Wlazlowski, G. (b27) 2008
Giorgini, S., Pitaevskii, L. P., Stringari, S. (b7)
Regal, C. A., Jin, D. S. (b9) 2003; 90
Bruun, G. M., Baym, G. (b26) 2006; 74
Schunck, C. H., Shin, Y., Schirotzek, A., Ketterle, W. (b13) 2008
Luo, L., Clancy, B., Joseph, J., Kinast, J., Thomas, J. E. (b5) 2007; 98
Perali, A., Strinati, G. C. (b18) 2008; 100
Perali, A., Pieri, A., Strinati, G. C., Castellani, C. (b25) 2002; 66
Barnea, N. (b28) 2008
Partridge, G. B., Strecker, K. E., Kamar, R. I., Jack, M. W., Hulet, R. G. (b3) 2005; 95
Regal, C. A., Ticknor, C., Bohn, J. L., Jin, D. S. (b10) 2003; 424
Yu, Z., Baym, G. (b16) 2006; 73
Chin, C. (b2) 2004; 305
He, Y., Chien, C.-C., Chen, Q., Levin, K. (b21) 2008
Damascelli, A. (b8) 2004; T109
Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H., Ketterle, W. (b4) 2005; 435
Dao, T.-L., Georges, A., Dalibard, J., Salomon, C., Carusotto, I. (b14) 2007; 98
Randeria, M. (b22) 1998
Tarruell, L. (b6) 2008
Janko, B., Maly, J., Levin, K. (b23) 1997; 56
Basu, S., Mueller, E. J. (b19) 2007
Gaebler, J. P., Stewart, J. T., Bohn, J. L., Jin, D. S. (b30) 2007; 98
Chin, C., Julienne, P. S. (b15) 2005; 71
Stewart, Gaebler, Regal, Jin (CR29) 2006; 97
Regal, Jin (CR9) 2003; 90
CR19
Regal, Greiner, Jin (CR1) 2004; 92
Punk, Zwerger (CR17) 2007; 99
CR13
Gupta (CR11) 2003; 300
Chin, Julienne (CR15) 2005; 71
Gaebler, Stewart, Bohn, Jin (CR30) 2007; 98
Dao, Georges, Dalibard, Salomon, Carusotto (CR14) 2007; 98
Janko, Maly, Levin (CR23) 1997; 56
Bruun, Baym (CR26) 2006; 74
Yu, Baym (CR16) 2006; 73
Perali, Pieri, Strinati, Castellani (CR25) 2002; 66
Partridge, Strecker, Kamar, Jack, Hulet (CR3) 2005; 95
Yanase, Yamada (CR24) 1999; 68
Schunck, Shin, Schirotzek, Zwierlein, Ketterle (CR12) 2007; 316
CR7
CR28
CR27
Zwierlein, Abo-Shaeer, Schirotzek, Schunck, Ketterle (CR4) 2005; 435
Perali, Strinati (CR18) 2008; 100
Damascelli (CR8) 2004; T109
CR21
Chin (CR2) 2004; 305
CR20
Randeria (CR22) 1998
Tarruell (CR6) 2008
Regal, Ticknor, Bohn, Jin (CR10) 2003; 424
Luo, Clancy, Joseph, Kinast, Thomas (CR5) 2007; 98
GB Partridge (BFnature07172_CR3) 2005; 95
Z Yu (BFnature07172_CR16) 2006; 73
A Perali (BFnature07172_CR25) 2002; 66
CA Regal (BFnature07172_CR10) 2003; 424
C Chin (BFnature07172_CR15) 2005; 71
CA Regal (BFnature07172_CR9) 2003; 90
BFnature07172_CR19
L Luo (BFnature07172_CR5) 2007; 98
Y Yanase (BFnature07172_CR24) 1999; 68
M Punk (BFnature07172_CR17) 2007; 99
CH Schunck (BFnature07172_CR12) 2007; 316
BFnature07172_CR13
C Chin (BFnature07172_CR2) 2004; 305
A Perali (BFnature07172_CR18) 2008; 100
A Damascelli (BFnature07172_CR8) 2004; T109
T-L Dao (BFnature07172_CR14) 2007; 98
GM Bruun (BFnature07172_CR26) 2006; 74
MW Zwierlein (BFnature07172_CR4) 2005; 435
CA Regal (BFnature07172_CR1) 2004; 92
B Janko (BFnature07172_CR23) 1997; 56
L Tarruell (BFnature07172_CR6) 2008
BFnature07172_CR7
JT Stewart (BFnature07172_CR29) 2006; 97
JP Gaebler (BFnature07172_CR30) 2007; 98
BFnature07172_CR27
BFnature07172_CR28
M Randeria (BFnature07172_CR22) 1998
BFnature07172_CR21
S Gupta (BFnature07172_CR11) 2003; 300
BFnature07172_CR20
References_xml – volume: 73
  start-page: 063601
  year: 2006
  ident: b16
  publication-title: Phys. Rev. A
  contributor:
    fullname: Baym, G.
– volume: 316
  start-page: 867
  year: 2007
  end-page: 870
  ident: b12
  publication-title: Science
  contributor:
    fullname: Ketterle, W.
– volume: 97
  start-page: 220406
  year: 2006
  ident: b29
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Jin, D. S.
– volume: 99
  start-page: 170404
  year: 2007
  ident: b17
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Zwerger, W.
– volume: 305
  start-page: 1128
  year: 2004
  end-page: 1130
  ident: b2
  publication-title: Science
  contributor:
    fullname: Chin, C.
– volume: 90
  start-page: 230404
  year: 2003
  ident: b9
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Jin, D. S.
– volume: 98
  start-page: 080402
  year: 2007
  ident: b5
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Thomas, J. E.
– volume: 98
  start-page: 240402
  year: 2007
  ident: b14
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Carusotto, I.
– volume: 100
  start-page: 010402
  year: 2008
  ident: b18
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Strinati, G. C.
– volume: 435
  start-page: 1047
  year: 2005
  end-page: 1051
  ident: b4
  publication-title: Nature
  contributor:
    fullname: Ketterle, W.
– volume: 424
  start-page: 47
  year: 2003
  end-page: 50
  ident: b10
  publication-title: Nature
  contributor:
    fullname: Jin, D. S.
– volume: 74
  start-page: 033623
  year: 2006
  ident: b26
  publication-title: Phys. Rev. A
  contributor:
    fullname: Baym, G.
– volume: 56
  start-page: R11407
  year: 1997
  end-page: R11410
  ident: b23
  publication-title: Phys. Rev. B
  contributor:
    fullname: Levin, K.
– volume: 71
  start-page: 012713
  year: 2005
  ident: b15
  publication-title: Phys. Rev. A
  contributor:
    fullname: Julienne, P. S.
– year: 2008
  ident: b20
  contributor:
    fullname: Veillette, M.
– start-page: 845
  year: 2008
  end-page: 855
  ident: b6
  article-title: Ultra-Cold Fermi Gases (Proc. Internat. School Phys. 'Enrico Fermi', Course 164)
  contributor:
    fullname: Tarruell, L.
– ident: b7
  publication-title: Rev. Mod. Phys.
  contributor:
    fullname: Stringari, S.
– year: 2008
  ident: b21
  contributor:
    fullname: Levin, K.
– volume: 300
  start-page: 1723
  year: 2003
  end-page: 1726
  ident: b11
  publication-title: Science
  contributor:
    fullname: Gupta, S.
– volume: 95
  start-page: 020404
  year: 2005
  ident: b3
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Hulet, R. G.
– volume: 92
  start-page: 040403
  year: 2004
  ident: b1
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Jin, D. S.
– volume: 98
  start-page: 200403
  year: 2007
  ident: b30
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Jin, D. S.
– volume: 66
  start-page: 024510
  year: 2002
  ident: b25
  publication-title: Phys. Rev. B
  contributor:
    fullname: Castellani, C.
– volume: T109
  start-page: 61
  year: 2004
  end-page: 74
  ident: b8
  publication-title: Phys. Scr.
  contributor:
    fullname: Damascelli, A.
– year: 2007
  ident: b19
  contributor:
    fullname: Mueller, E. J.
– start-page: 53
  year: 1998
  end-page: 57
  ident: b22
  article-title: Models and Phenomenology for Conventional and High-Temperature Superconductivity (Proc. Internat. School Phys. 'Enrico Fermi', Course 136)
  contributor:
    fullname: Randeria, M.
– year: 2008
  ident: b13
  contributor:
    fullname: Ketterle, W.
– year: 2008
  ident: b27
  contributor:
    fullname: Wlazlowski, G.
– year: 2008
  ident: b28
  contributor:
    fullname: Barnea, N.
– volume: 68
  start-page: 2999
  year: 1999
  end-page: 3015
  ident: b24
  publication-title: J. Phys. Soc. Jpn
  contributor:
    fullname: Yamada, K.
– volume: 66
  start-page: 024510
  year: 2002
  ident: CR25
  article-title: Pseudogap and spectral function from superconducting fluctuations to the bosonic limit
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.024510
  contributor:
    fullname: Castellani
– start-page: 845
  year: 2008
  end-page: 855
  ident: CR6
  publication-title: Ultra-Cold Fermi Gases (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 164)
  contributor:
    fullname: Tarruell
– volume: 74
  start-page: 033623
  year: 2006
  ident: CR26
  article-title: Bragg spectroscopy of cold atomic Fermi gases
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.033623
  contributor:
    fullname: Baym
– volume: 92
  start-page: 040403
  year: 2004
  ident: CR1
  article-title: Observation of resonance condensation of fermionic atom pairs
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.040403
  contributor:
    fullname: Jin
– volume: 71
  start-page: 012713
  year: 2005
  ident: CR15
  article-title: Radio-frequency transitions on weakly bound ultracold molecules
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.012713
  contributor:
    fullname: Julienne
– volume: 95
  start-page: 020404
  year: 2005
  ident: CR3
  article-title: Molecular probe of pairing in the BEC-BCS crossover
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.020404
  contributor:
    fullname: Hulet
– volume: 300
  start-page: 1723
  year: 2003
  end-page: 1726
  ident: CR11
  article-title: Radiofrequency spectroscopy of ultracold fermions
  publication-title: Science
  doi: 10.1126/science.1085335
  contributor:
    fullname: Gupta
– start-page: 53
  year: 1998
  end-page: 57
  ident: CR22
  publication-title: Models and Phenomenology for Conventional and High-Temperature Superconductivity (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 136)
  contributor:
    fullname: Randeria
– volume: 98
  start-page: 080402
  year: 2007
  ident: CR5
  article-title: Measurement of the entropy and critical temperature of a strongly interacting Fermi gas
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.080402
  contributor:
    fullname: Thomas
– volume: 73
  start-page: 063601
  year: 2006
  ident: CR16
  article-title: Spin-correlation functions in ultracold paired atomic-fermion systems: Sum rules, self-consistent approximations, and mean fields
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.73.063601
  contributor:
    fullname: Baym
– ident: CR27
– ident: CR21
– ident: CR19
– volume: 98
  start-page: 240402
  year: 2007
  ident: CR14
  article-title: Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.240402
  contributor:
    fullname: Carusotto
– volume: 68
  start-page: 2999
  year: 1999
  end-page: 3015
  ident: CR24
  article-title: Theory of pseudogap phenomena in high-T cuprates based on the strong coupling superconductivity
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.68.2999
  contributor:
    fullname: Yamada
– ident: CR13
– volume: 99
  start-page: 170404
  year: 2007
  ident: CR17
  article-title: Theory of rf-spectroscopy of strongly interacting fermions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.170404
  contributor:
    fullname: Zwerger
– volume: 316
  start-page: 867
  year: 2007
  end-page: 870
  ident: CR12
  article-title: Pairing without superfluidity: The ground state of an imbalanced Fermi mixture
  publication-title: Science
  doi: 10.1126/science.1140749
  contributor:
    fullname: Ketterle
– volume: 98
  start-page: 200403
  year: 2007
  ident: CR30
  article-title: -wave Feshbach molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.200403
  contributor:
    fullname: Jin
– volume: 100
  start-page: 010402
  year: 2008
  ident: CR18
  article-title: Competition between final-state and pairing gap effects in the radio-frequency spectra of ultracold Fermi atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.010402
  contributor:
    fullname: Strinati
– volume: 90
  start-page: 230404
  year: 2003
  ident: CR9
  article-title: Measurement of positive and negative scattering lengths in a Fermi gas of atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.230404
  contributor:
    fullname: Jin
– ident: CR7
– volume: 305
  start-page: 1128
  year: 2004
  end-page: 1130
  ident: CR2
  article-title: Observation of the pairing gap in a strongly interacting Fermi gas
  publication-title: Science
  doi: 10.1126/science.1100818
  contributor:
    fullname: Chin
– volume: 435
  start-page: 1047
  year: 2005
  end-page: 1051
  ident: CR4
  article-title: Vortices and superfluidity in a strongly interacting Fermi gas
  publication-title: Nature
  doi: 10.1038/nature03858
  contributor:
    fullname: Ketterle
– volume: 56
  start-page: R11407
  year: 1997
  end-page: R11410
  ident: CR23
  article-title: Pseudogap effects induced by resonant pair scattering
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.R11407
  contributor:
    fullname: Levin
– ident: CR28
– volume: 97
  start-page: 220406
  year: 2006
  ident: CR29
  article-title: Potential energy of a K Fermi gas in the BCS-BEC crossover
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.220406
  contributor:
    fullname: Jin
– volume: T109
  start-page: 61
  year: 2004
  end-page: 74
  ident: CR8
  article-title: Probing the electronic structure of complex systems by ARPES
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.109a00061
  contributor:
    fullname: Damascelli
– volume: 424
  start-page: 47
  year: 2003
  end-page: 50
  ident: CR10
  article-title: Creation of ultracold molecules from a Fermi gas of atoms
  publication-title: Nature
  doi: 10.1038/nature01738
  contributor:
    fullname: Jin
– ident: CR20
– volume: 435
  start-page: 1047
  year: 2005
  ident: BFnature07172_CR4
  publication-title: Nature
  doi: 10.1038/nature03858
  contributor:
    fullname: MW Zwierlein
– start-page: 53
  volume-title: Models and Phenomenology for Conventional and High-Temperature Superconductivity (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 136)
  year: 1998
  ident: BFnature07172_CR22
  contributor:
    fullname: M Randeria
– volume: 300
  start-page: 1723
  year: 2003
  ident: BFnature07172_CR11
  publication-title: Science
  doi: 10.1126/science.1085335
  contributor:
    fullname: S Gupta
– volume: 66
  start-page: 024510
  year: 2002
  ident: BFnature07172_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.024510
  contributor:
    fullname: A Perali
– volume: 98
  start-page: 080402
  year: 2007
  ident: BFnature07172_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.080402
  contributor:
    fullname: L Luo
– volume: 90
  start-page: 230404
  year: 2003
  ident: BFnature07172_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.230404
  contributor:
    fullname: CA Regal
– volume: 100
  start-page: 010402
  year: 2008
  ident: BFnature07172_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.010402
  contributor:
    fullname: A Perali
– volume: 95
  start-page: 020404
  year: 2005
  ident: BFnature07172_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.020404
  contributor:
    fullname: GB Partridge
– volume: 71
  start-page: 012713
  year: 2005
  ident: BFnature07172_CR15
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.012713
  contributor:
    fullname: C Chin
– ident: BFnature07172_CR27
– ident: BFnature07172_CR7
– volume: 92
  start-page: 040403
  year: 2004
  ident: BFnature07172_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.040403
  contributor:
    fullname: CA Regal
– volume: 68
  start-page: 2999
  year: 1999
  ident: BFnature07172_CR24
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.68.2999
  contributor:
    fullname: Y Yanase
– volume: 424
  start-page: 47
  year: 2003
  ident: BFnature07172_CR10
  publication-title: Nature
  doi: 10.1038/nature01738
  contributor:
    fullname: CA Regal
– start-page: 845
  volume-title: Ultra-Cold Fermi Gases (Proc. Internat. School Phys. ‘Enrico Fermi’, Course 164)
  year: 2008
  ident: BFnature07172_CR6
  contributor:
    fullname: L Tarruell
– volume: T109
  start-page: 61
  year: 2004
  ident: BFnature07172_CR8
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.109a00061
  contributor:
    fullname: A Damascelli
– ident: BFnature07172_CR21
– ident: BFnature07172_CR19
– ident: BFnature07172_CR13
– volume: 73
  start-page: 063601
  year: 2006
  ident: BFnature07172_CR16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.73.063601
  contributor:
    fullname: Z Yu
– ident: BFnature07172_CR28
  doi: 10.1103/PhysRevA.78.053629
– volume: 98
  start-page: 240402
  year: 2007
  ident: BFnature07172_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.240402
  contributor:
    fullname: T-L Dao
– volume: 99
  start-page: 170404
  year: 2007
  ident: BFnature07172_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.170404
  contributor:
    fullname: M Punk
– volume: 305
  start-page: 1128
  year: 2004
  ident: BFnature07172_CR2
  publication-title: Science
  doi: 10.1126/science.1100818
  contributor:
    fullname: C Chin
– volume: 56
  start-page: R11407
  year: 1997
  ident: BFnature07172_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.R11407
  contributor:
    fullname: B Janko
– volume: 97
  start-page: 220406
  year: 2006
  ident: BFnature07172_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.220406
  contributor:
    fullname: JT Stewart
– volume: 74
  start-page: 033623
  year: 2006
  ident: BFnature07172_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.033623
  contributor:
    fullname: GM Bruun
– volume: 316
  start-page: 867
  year: 2007
  ident: BFnature07172_CR12
  publication-title: Science
  doi: 10.1126/science.1140749
  contributor:
    fullname: CH Schunck
– ident: BFnature07172_CR20
  doi: 10.1103/PhysRevA.78.033614
– volume: 98
  start-page: 200403
  year: 2007
  ident: BFnature07172_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.200403
  contributor:
    fullname: JP Gaebler
SSID ssj0005174
Score 2.5365293
Snippet Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase...
Fermionic superfluids: strong stuff Fermionic superfluidity requires the formation of particle pairs, the size of which varies depending on the system. Many...
SourceID proquest
gale
crossref
pubmed
pascalfrancis
springer
nature
SourceType Aggregation Database
Index Database
Publisher
StartPage 744
SubjectTerms Atoms & subatomic particles
Classical and quantum physics: mechanics and fields
Emissions
Exact sciences and technology
Fermions
Gases
Humanities and Social Sciences
letter
Magnetic fields
Matter waves
Methods
multidisciplinary
Phase transitions
Photoemission
Physics
Radio frequency
Science
Spectroscopy
Spectrum analysis
Title Using photoemission spectroscopy to probe a strongly interacting Fermi gas
URI http://dx.doi.org/10.1038/nature07172
https://link.springer.com/article/10.1038/nature07172
https://www.ncbi.nlm.nih.gov/pubmed/18685703
https://www.proquest.com/docview/204546081
https://search.proquest.com/docview/69406364
https://search.proquest.com/docview/743458716
Volume 454
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiQkhNj4ygbFQuNjD9GaxHXsJ1SqlTGJCo1N9M1yHKdMmpKMpA_777lL3HSBwkv64Gti-872z_bd7wg5zKTIRBJJX3BmfBbbxE-Y5X6aJIFNRSwSiYHCX2f89JKdzUdz55tTObfK1ZzYTNRpYfCM_Bhp0xmHBexjeeNj0ii8XHUZNLbIThDGHD36xPTz2sPjDxJmF543jMRxy5qJe5mwtyC5ablj1XxY6gr6KmuTXGxCoX_doDYL0_QxeeQQJR23JrBL7tl8j9xvPDtNtUd23eit6AdHMX30hJw1ngK0_FnUBSZ8wyMz2gRdIrllUd7SuqCYa8ZSTSs8LV9c31KklmiCquCvU3SioQtdPSWX05OLyanvsir4hsey9gMjpR0G6UhL0IWMpQVQGGhQUGbDIGOMhcPMBMbAFpVnwhgLGE7HcWRSKcJIR8_Idl7k9gWhVmR6FAECgx-WAhbUGrQES54NQ6m59MjhqmtV2ZJnqObSOxLqjgZADLtdIR1Fjv4uC72sKjW--DGZqXEghIQ9awBve7NJ7Mv3857QeyeUFTV0iXZRBlBhJLrqSR70JE15daPulL7rlS5aDW16zX7blK6FvZYNegbUyYSAOzmMBKjEyqKUmzwq1Zm6R153pWALeJWjc1ssK8UlALGIM4_Qf0gAMmQj3A175HlrqWsVCI5pDSKPvF2Z7vrjG_Sz_99KHpAHrQ8NzLjiJdmufy3tKwBqdTIgW_E8hqeYBINmaA7IzqeT2bfz30vSP0g
link.rule.ids 314,780,784,12056,12223,12765,21388,27924,27925,31719,31720,33266,33267,33373,33374,33744,33745,43310,43579,43600,43805,73745,74014,74035,74302
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCIGEEBu_ssFmoQHjIVqTuI79hKqKqhtbH6ATe7Mcx-kmoSQj6cP-e-4SN2ugIEXqg6-J7Tvbn-277wg5zKTIRBJJX3BmfBbbxE-Y5X6aJIFNRSwSiYHC5zM-vWCnl8NL55tTObfK1ZzYTNRpYfCM_Bhp0xmHBexzeeNj0ii8XHUZNO6TB7Dqx2jUYrzm4fEHCbMLzxtE4rhlzcS9TNhbkNy03LFqPil1BX2VtUkuNqHQv25Qm4Vp8ow8dYiSjloT2Cb3bL5DHjaenabaIdtu9Fb0yFFMf3pOThtPAVpeFXWBCd_wyIw2QZdIblmUt7QuKOaasVTTCk_LFz9vKVJLNEFV8NcJOtHQha5ekIvJl_l46rusCr7hsaz9wEhpB0E61BJ0IWNpARQGGhSU2TDIGGPhIDOBMbBF5ZkwxgKG03EcmVSKMNLRS7KVF7l9TagVmR5GgMDgh6WABbUGLcGSZ8NQai49crjqWlW25BmqufSOhFrTAIhhtyuko8jR32Whl1WlRvMf45kaBUJI2LMG8LZ3m8ROvn_rCX10QllRQ5doF2UAFUaiq57kXk_SlNc3aq30Q6900Wpo02t226Z0Ley1bL9nQJ1MCLiTw0iASqwsSrnJo1KdqXvkoCsFW8CrHJ3bYlkpLgGIRZx5hP5DApAhG-Ju2COvWku9U4HgmNYg8sj7lenefXyDfnb_W8kD8mg6Pz9TZyezr3vkcetPA0_8hmzVv5b2LYC2OtlvhuZvL-4-tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCISEEBtf2WCz0Ph6iNokrmM_oapQbQMqBJu2N8tx7IKEkoykD_vvuUvcroGCFKkPvia272z_bN_9jpBDJ4UTWSJDwZkJWWqzMGOWh3mWRTYXqcgkBgp_nvGjM3ZyMbrwlEK1d6tczontRJ2XBs_IB0ibzjgsYAPnvSK-vJ--qy5DTCCFF60-m8ZNcguTzCGNvpiseXv8QcjsQ_WGiRh0DJq4r4l7i5OfolcMm_cqXUO_uS7hxSZE-tdtartITR-Q-x5d0nFnDtvkhi12yO3Wy9PUO2Tbj-SavvF0028fkpPWa4BW38umxORveHxG2wBMJLosqyvalBTzzliqaY0n5_OfVxRpJtoAK_jrFB1q6FzXj8jZ9MPp5Cj0GRZCw1PZhJGR0g6jfKQl6EWm0gJAjDQoy9k4coyxeOhMZAxsV7kTxljAczpNE5NLESc6eUy2irKwTwm1wulRAmgMflgOuFBr0BgsfzaOpeYyIIfLrlVVR6Sh2gvwRKg1DYAYdrtCaooCtTzXi7pW49PzyUyNIyEk7F8jeNuLTWLH3772hF57IVc20CXaRxxAhZH0qie515M01Y9LtVb6qlc67zS06TW7XVNWLey1bL9nQCuZGDAoh1EBlVhalPITSa1WZh-Qg1Up2AJe6-jClotacQmgLOEsIPQfEoAS2Qh3xgF50lnqtQoExxQHSUBeLk33-uMb9LP730oekDswKtWn49nHPXK3c62BJ31GtppfC_sc8FuT7bcj8zcpUkLb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+photoemission+spectroscopy+to+probe+a+strongly+interacting+Fermi+gas&rft.jtitle=Nature+%28London%29&rft.au=Stewart%2C+J+T&rft.au=Gaebler%2C+J+P&rft.au=Jin%2C+D+S&rft.date=2008-08-07&rft.issn=0028-0836&rft.volume=454&rft.issue=7205&rft.spage=744&rft.epage=747&rft_id=info:doi/10.1038%2Fnature07172&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon