Hippocampal–prefrontal input supports spatial encoding in working memory
Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal wi...
Saved in:
Published in | Nature (London) Vol. 522; no. 7556; pp. 309 - 314 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.06.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal–prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal–prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.
Spatial working memory is known to involve the prefrontal cortex and the hippocampus, but the specificities of the connection have been unclear; now, a direct path between these two areas is defined that is necessary for the encoding of spatial cues in mice, but is not required for the maintenance or retrieval of these cues.
The nature of spatial memory
Spatial working memory is maintained through a coordination of activity between prefrontal brain areas and the hippocampus, but it has been unclear what the precise anatomical connections between these areas are and on what time scales they operate. Here, Joshua Gordon and colleagues define a direct path between prefrontal cortex and hippocampus that is necessary for proper encoding of spatial cues, but is not required for maintenance and retrieval of these cues. Hippocampal information flows to neural units in the prefrontal cortex during the encoding phases of spatial working memory tasks, with successful encoding requiring synchrony between the two brain structures in the gamma-frequency band of network activity. These findings demonstrate the critical importance of hippocampal–prefrontal direct input in the continuous updating of spatial information. |
---|---|
AbstractList | Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal–prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal–prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. Spatial working memory is known to involve the prefrontal cortex and the hippocampus, but the specificities of the connection have been unclear; now, a direct path between these two areas is defined that is necessary for the encoding of spatial cues in mice, but is not required for the maintenance or retrieval of these cues. The nature of spatial memory Spatial working memory is maintained through a coordination of activity between prefrontal brain areas and the hippocampus, but it has been unclear what the precise anatomical connections between these areas are and on what time scales they operate. Here, Joshua Gordon and colleagues define a direct path between prefrontal cortex and hippocampus that is necessary for proper encoding of spatial cues, but is not required for maintenance and retrieval of these cues. Hippocampal information flows to neural units in the prefrontal cortex during the encoding phases of spatial working memory tasks, with successful encoding requiring synchrony between the two brain structures in the gamma-frequency band of network activity. These findings demonstrate the critical importance of hippocampal–prefrontal direct input in the continuous updating of spatial information. Spatial working memory, the caching of behaviorally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. While the prefrontal cortex and hippocampus are known to jointly contribute to successful spatial working memory, the anatomical pathway and temporal window for interaction of these structures critical to spatial working memory has not yet been established. Here, we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory. |
Audience | Academic |
Author | Fusi, Stefano Gordon, Joshua A. Spellman, Timothy Ahmari, Susanne E. Rigotti, Mattia Gogos, Joseph A. |
AuthorAffiliation | 7 Center for Neuroscience, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA 9 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA 1 Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032 USA 2 Department of Psychiatry, Columbia University 8 Kavli Institute for Brain Sciences, Columbia University 6 Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA 5 Italian Academy for Advanced Studies in America, Columbia University 3 Department of Neuroscience, Columbia University 4 Physical Sciences Department, T. J. Watson Research Center, IBM 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA |
AuthorAffiliation_xml | – name: 3 Department of Neuroscience, Columbia University – name: 8 Kavli Institute for Brain Sciences, Columbia University – name: 1 Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032 USA – name: 5 Italian Academy for Advanced Studies in America, Columbia University – name: 6 Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA – name: 9 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA – name: 4 Physical Sciences Department, T. J. Watson Research Center, IBM 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA – name: 7 Center for Neuroscience, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA – name: 2 Department of Psychiatry, Columbia University |
Author_xml | – sequence: 1 givenname: Timothy surname: Spellman fullname: Spellman, Timothy organization: Department of Physiology and Cellular Biophysics, Columbia University – sequence: 2 givenname: Mattia surname: Rigotti fullname: Rigotti, Mattia organization: Department of Neuroscience, Columbia University, IBM T. J. Watson Research Center, Italian Academy for Advanced Studies in America, Columbia University – sequence: 3 givenname: Susanne E. surname: Ahmari fullname: Ahmari, Susanne E. organization: Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Center for Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh – sequence: 4 givenname: Stefano surname: Fusi fullname: Fusi, Stefano organization: Department of Neuroscience, Columbia University, Kavli Institute for Brain Sciences, Columbia University – sequence: 5 givenname: Joseph A. surname: Gogos fullname: Gogos, Joseph A. organization: Department of Physiology and Cellular Biophysics, Columbia University, Department of Neuroscience, Columbia University – sequence: 6 givenname: Joshua A. surname: Gordon fullname: Gordon, Joshua A. email: jg343@columbia.edu organization: Department of Psychiatry, Columbia University, Division of Integrative Neuroscience, New York State Psychiatric Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26053122$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0stu1DAUBmALtaLTwoo9GtENqKTY8S3ZIFUVtEWVkLisLcd2gktip7YDdMc78IY8CZ5OKTMoipREPp__OPbZBzvOOwPAEwSPEcTVKyfTFAwihNAHYIEIZwVhFd8BCwjLqoAVZntgP8YrCCFFnDwEeyWDFKOyXIB353YcvZLDKPvfP3-NwbTBuyT7pXXjlJZxyuWQ4jKOMtk8bJzy2rou15ffffi6eh3M4MPNI7Dbyj6ax3fPA_D57ZtPp-fF5fuzi9OTy0IxXqXCtKiudd3WdcMUk2WjNSGcwhLJVmONDNKMNQi3DdYU0aap8r3kWjV1RTBi-AC8XueOUzMYrYxLQfZiDHaQ4UZ4acV2xdkvovPfBKGQcopywPO7gOCvJxOTGGxUpu-lM36KArE6r4ZTgjM9_I9e-Sm4_Hu3CnPEGfynOtkbYV3r83fVKlScEIYrxDirsypmVGecyYvMR9raPLzln814NdprsYmOZ1C-tBmsmk19sTUhm2R-pE5OMYqLjx-27dHaquBjzK1xv8kIilXviY3ey_rp5rnc27_NlsHLNYi55DoTNjZzJu8Phg_lPQ |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_nlm_2020_107215 crossref_primary_10_1016_j_nlm_2020_107216 crossref_primary_10_3233_JAD_201567 crossref_primary_10_1038_s41380_017_0015_z crossref_primary_10_1016_j_jad_2021_12_103 crossref_primary_10_1111_acel_14244 crossref_primary_10_1038_nrn_2015_30 crossref_primary_10_1002_glia_24513 crossref_primary_10_1523_JNEUROSCI_1919_19_2020 crossref_primary_10_1016_j_cub_2023_02_029 crossref_primary_10_1093_cercor_bhz186 crossref_primary_10_1523_JNEUROSCI_0261_20_2020 crossref_primary_10_1002_hipo_22652 crossref_primary_10_1038_s41467_022_32230_2 crossref_primary_10_1016_j_neuron_2023_03_017 crossref_primary_10_3390_molecules25235508 crossref_primary_10_1186_s12915_021_00950_4 crossref_primary_10_1016_j_conb_2017_04_005 crossref_primary_10_1093_braincomms_fcad194 crossref_primary_10_1016_j_bbr_2021_113547 crossref_primary_10_1016_j_bpsgos_2021_04_005 crossref_primary_10_1016_j_lfs_2016_02_070 crossref_primary_10_1016_j_nlm_2020_107355 crossref_primary_10_1016_j_neuron_2019_09_012 crossref_primary_10_1002_jnr_24833 crossref_primary_10_1016_j_clinph_2018_12_007 crossref_primary_10_1016_j_neuron_2017_06_050 crossref_primary_10_1016_j_neuron_2019_08_006 crossref_primary_10_1038_ncomms10188 crossref_primary_10_1109_JBHI_2019_2940695 crossref_primary_10_3389_fnbeh_2020_00151 crossref_primary_10_1523_JNEUROSCI_1022_21_2021 crossref_primary_10_1038_s41467_024_46350_4 crossref_primary_10_1146_annurev_genet_120215_035011 crossref_primary_10_3389_fnsys_2021_617388 crossref_primary_10_3389_fnmol_2019_00250 crossref_primary_10_1016_j_tins_2021_03_006 crossref_primary_10_1016_j_celrep_2015_06_036 crossref_primary_10_1523_JNEUROSCI_1439_21_2021 crossref_primary_10_1016_j_psyneuen_2019_104448 crossref_primary_10_1093_cercor_bhaa343 crossref_primary_10_1007_s12035_018_1224_4 crossref_primary_10_3389_fpsyt_2020_608154 crossref_primary_10_3389_fnbeh_2022_852235 crossref_primary_10_1016_j_bbrc_2022_03_067 crossref_primary_10_1002_hbm_25630 crossref_primary_10_1016_j_celrep_2021_109175 crossref_primary_10_1038_s41467_017_02108_9 crossref_primary_10_1016_j_cell_2019_02_014 crossref_primary_10_1162_jocn_a_01248 crossref_primary_10_1002_hipo_23306 crossref_primary_10_1038_ncomms14563 crossref_primary_10_1038_s41386_023_01769_z crossref_primary_10_7717_peerj_2976 crossref_primary_10_1016_j_neuron_2016_02_010 crossref_primary_10_1038_s41467_023_43142_0 crossref_primary_10_3389_fnana_2022_849937 crossref_primary_10_1016_j_nlm_2019_107091 crossref_primary_10_1038_nrn_2017_15 crossref_primary_10_1186_s13287_017_0756_2 crossref_primary_10_1093_cercor_bhaa405 crossref_primary_10_1371_journal_pone_0189287 crossref_primary_10_3389_fnbeh_2023_1228056 crossref_primary_10_1088_1741_2552_acb5c2 crossref_primary_10_3233_JAD_231078 crossref_primary_10_3390_foods11060856 crossref_primary_10_1016_j_nlm_2015_12_008 crossref_primary_10_1088_1741_2552_ac9d66 crossref_primary_10_7554_eLife_27621 crossref_primary_10_1371_journal_pone_0210053 crossref_primary_10_1016_j_brs_2021_06_013 crossref_primary_10_1073_pnas_2321614121 crossref_primary_10_1007_s12031_017_0909_x crossref_primary_10_4103_1673_5374_285005 crossref_primary_10_1111_acel_13456 crossref_primary_10_1021_acsptsci_9b00101 crossref_primary_10_1101_lm_048389_118 crossref_primary_10_1212_WNL_0000000000200268 crossref_primary_10_1016_j_crneur_2021_100016 crossref_primary_10_1146_annurev_neuro_111020_084824 crossref_primary_10_1177_2398212820975634 crossref_primary_10_1016_j_celrep_2023_112959 crossref_primary_10_1016_j_brainres_2021_147368 crossref_primary_10_1016_j_peptides_2021_170679 crossref_primary_10_1016_j_tics_2021_01_003 crossref_primary_10_3389_fpsyt_2019_00580 crossref_primary_10_1523_JNEUROSCI_0990_16_2016 crossref_primary_10_3389_fnagi_2021_704362 crossref_primary_10_1016_j_neuron_2017_03_011 crossref_primary_10_1007_s00429_022_02469_y crossref_primary_10_1016_j_celrep_2016_12_085 crossref_primary_10_1038_s41467_017_00766_3 crossref_primary_10_9758_cpn_2019_17_3_400 crossref_primary_10_1016_j_crmeth_2022_100208 crossref_primary_10_1186_s12993_021_00184_y crossref_primary_10_1016_j_neuron_2019_11_018 crossref_primary_10_1038_s41598_024_65747_1 crossref_primary_10_1016_j_bbr_2017_10_003 crossref_primary_10_1016_j_pneurobio_2021_102127 crossref_primary_10_1038_nrn_2017_74 crossref_primary_10_3389_fnbeh_2017_00206 crossref_primary_10_1016_j_bbr_2018_12_008 crossref_primary_10_3902_jnns_27_107 crossref_primary_10_1038_ncomms13282 crossref_primary_10_1038_s41380_018_0025_5 crossref_primary_10_1016_j_brainresbull_2024_110981 crossref_primary_10_1016_j_pnpbp_2020_110047 crossref_primary_10_1523_JNEUROSCI_1203_21_2021 crossref_primary_10_1371_journal_pbio_2003000 crossref_primary_10_3389_fnagi_2021_600484 crossref_primary_10_1038_s41583_018_0039_7 crossref_primary_10_1371_journal_pone_0165891 crossref_primary_10_3389_fnagi_2021_760270 crossref_primary_10_1016_j_neuron_2016_01_025 crossref_primary_10_1093_cercor_bhaa291 crossref_primary_10_1523_JNEUROSCI_1769_20_2020 crossref_primary_10_1016_j_schres_2021_03_007 crossref_primary_10_1002_hipo_23497 crossref_primary_10_1523_JNEUROSCI_3232_15_2016 crossref_primary_10_1016_j_cobeha_2017_05_023 crossref_primary_10_1523_ENEURO_0387_16_2017 crossref_primary_10_1051_bioconf_20170802006 crossref_primary_10_1093_cercor_bhad204 crossref_primary_10_1007_s10548_021_00835_3 crossref_primary_10_1093_schbul_sbaa116 crossref_primary_10_1016_j_bbr_2018_08_024 crossref_primary_10_1016_j_conb_2015_09_005 crossref_primary_10_1093_cercor_bhx184 crossref_primary_10_1016_j_neuron_2016_01_011 crossref_primary_10_3389_fncir_2017_00086 crossref_primary_10_1002_hipo_23127 crossref_primary_10_1002_hipo_23367 crossref_primary_10_1016_j_brainresbull_2024_110887 crossref_primary_10_1016_j_foodres_2022_112163 crossref_primary_10_1016_j_cell_2020_11_046 crossref_primary_10_1038_s41398_018_0239_y crossref_primary_10_1016_j_brainres_2016_01_019 crossref_primary_10_1016_j_neuron_2016_08_010 crossref_primary_10_7554_eLife_33158 crossref_primary_10_1038_s41598_020_67185_1 crossref_primary_10_1007_s13311_020_00913_7 crossref_primary_10_1152_jn_00087_2016 crossref_primary_10_3390_brainsci7010004 crossref_primary_10_1007_s12264_021_00782_w crossref_primary_10_1093_bjps_axz039 crossref_primary_10_1002_hipo_23271 crossref_primary_10_1177_00315125211041341 crossref_primary_10_1016_j_celrep_2020_107551 crossref_primary_10_1016_j_cub_2021_09_062 crossref_primary_10_1016_j_neuroscience_2021_11_021 crossref_primary_10_3389_fpsyt_2022_805851 crossref_primary_10_1016_j_cell_2018_02_012 crossref_primary_10_3389_fnhum_2021_614950 crossref_primary_10_1177_0269881119875976 crossref_primary_10_1016_j_brat_2018_01_002 crossref_primary_10_3389_fnbeh_2021_658686 crossref_primary_10_1109_ACCESS_2018_2845301 crossref_primary_10_3389_fnsys_2021_781527 crossref_primary_10_1038_s41593_019_0429_9 crossref_primary_10_1016_j_neuron_2019_12_008 crossref_primary_10_1177_0269881115616393 crossref_primary_10_1016_j_neuropharm_2018_08_008 crossref_primary_10_1038_mp_2016_104 crossref_primary_10_3389_fnagi_2015_00245 crossref_primary_10_7554_eLife_55267 crossref_primary_10_1111_ejn_13547 crossref_primary_10_3389_fnsys_2015_00190 crossref_primary_10_1080_23279095_2019_1566133 crossref_primary_10_1016_j_cub_2024_03_032 crossref_primary_10_1038_mp_2017_132 crossref_primary_10_1093_schbul_sbx116 crossref_primary_10_1016_j_neures_2018_08_017 crossref_primary_10_1162_jocn_a_01417 crossref_primary_10_1523_JNEUROSCI_0508_17_2018 crossref_primary_10_1080_13506285_2020_1825141 crossref_primary_10_7554_eLife_77364 crossref_primary_10_1152_jn_00659_2019 crossref_primary_10_1111_ejn_14640 crossref_primary_10_2217_epi_2020_0151 crossref_primary_10_1016_j_nlm_2023_107760 crossref_primary_10_1016_j_brainresbull_2015_10_010 crossref_primary_10_1016_j_bbr_2019_112207 crossref_primary_10_1016_j_biopsych_2017_11_008 crossref_primary_10_1038_s41467_018_04638_2 crossref_primary_10_1016_j_neubiorev_2018_09_025 crossref_primary_10_1016_j_brainres_2021_147766 crossref_primary_10_1016_j_toxlet_2021_07_009 crossref_primary_10_1038_nn_4266 crossref_primary_10_3389_fnsys_2015_00170 crossref_primary_10_1016_j_celrep_2015_10_005 crossref_primary_10_1186_s13041_022_00905_y crossref_primary_10_1021_acsptsci_0c00117 crossref_primary_10_3389_fnins_2022_1055986 crossref_primary_10_1016_j_neubiorev_2020_03_026 crossref_primary_10_1093_cercor_bhac205 crossref_primary_10_1523_JNEUROSCI_1939_22_2023 crossref_primary_10_1016_j_neubiorev_2021_05_033 crossref_primary_10_3389_fncel_2017_00239 crossref_primary_10_1038_s41593_022_01113_6 crossref_primary_10_3389_fnsys_2016_00043 crossref_primary_10_3724_SP_J_1329_2021_06006 crossref_primary_10_1016_j_jep_2022_115199 crossref_primary_10_1002_hipo_23198 crossref_primary_10_1016_j_celrep_2024_113756 crossref_primary_10_7554_eLife_30056 crossref_primary_10_1016_j_celrep_2019_04_085 crossref_primary_10_1109_ACCESS_2020_2978161 crossref_primary_10_1002_jnr_25265 crossref_primary_10_1016_j_neuropharm_2021_108614 crossref_primary_10_1016_j_brainres_2018_02_007 crossref_primary_10_1080_19490976_2022_2125747 crossref_primary_10_1248_bpb_b24_00236 crossref_primary_10_1016_j_neuroscience_2020_06_045 crossref_primary_10_3390_ani14030456 crossref_primary_10_1016_j_neuron_2018_11_015 crossref_primary_10_1038_ncomms11935 crossref_primary_10_1093_schbul_sbaa184 crossref_primary_10_1101_lm_053348_120 crossref_primary_10_2139_ssrn_4185368 crossref_primary_10_1016_j_neures_2019_10_003 crossref_primary_10_1021_acschemneuro_2c00270 crossref_primary_10_1038_s41593_018_0254_6 crossref_primary_10_3389_fpsyt_2016_00165 crossref_primary_10_1016_j_isci_2023_107532 crossref_primary_10_2139_ssrn_4174459 crossref_primary_10_1016_j_cell_2022_04_001 crossref_primary_10_1016_j_neuropharm_2020_108229 crossref_primary_10_1038_nn_4568 crossref_primary_10_1038_nn_4327 crossref_primary_10_1038_nn_4439 crossref_primary_10_3390_biomedicines11051341 crossref_primary_10_1016_j_neuron_2018_03_018 crossref_primary_10_1098_rstb_2017_0032 crossref_primary_10_3390_nu9070794 crossref_primary_10_1093_braincomms_fcab125 crossref_primary_10_1038_s41598_023_39946_1 crossref_primary_10_4103_1673_5374_343902 crossref_primary_10_1038_s41467_018_05131_6 crossref_primary_10_3389_fncel_2021_732360 crossref_primary_10_1038_npp_2017_142 crossref_primary_10_3389_fnbeh_2022_1091082 crossref_primary_10_1016_j_euroneuro_2019_03_009 crossref_primary_10_1038_s41467_023_42777_3 crossref_primary_10_1016_j_brs_2017_08_007 crossref_primary_10_3389_fnsys_2023_1158492 crossref_primary_10_1016_j_nlm_2022_107683 crossref_primary_10_1016_j_nlm_2018_06_010 crossref_primary_10_1038_s41386_023_01785_z crossref_primary_10_1038_s41598_022_23040_z crossref_primary_10_1093_aje_kwaa052 crossref_primary_10_1016_j_psyneuen_2017_09_013 crossref_primary_10_1016_j_chemosphere_2023_138153 crossref_primary_10_1016_j_brainresbull_2022_03_007 crossref_primary_10_1101_lm_047134_117 crossref_primary_10_1093_cercor_bhv280 crossref_primary_10_1016_j_biopsych_2018_01_018 crossref_primary_10_1016_j_ynstr_2017_02_004 crossref_primary_10_1007_s12035_021_02545_0 crossref_primary_10_1016_j_pnpbp_2020_110224 crossref_primary_10_1016_j_ynstr_2023_100518 crossref_primary_10_1523_JNEUROSCI_2101_22_2023 crossref_primary_10_1016_j_neuron_2021_03_035 crossref_primary_10_1002_alz_13491 crossref_primary_10_1016_j_neuron_2019_04_015 crossref_primary_10_1038_s41598_021_88200_z crossref_primary_10_1038_s42003_022_03906_8 crossref_primary_10_1038_s41467_023_37318_x crossref_primary_10_3389_fnbeh_2018_00182 crossref_primary_10_1093_cercor_bhy227 crossref_primary_10_1016_j_celrep_2021_108885 crossref_primary_10_1523_JNEUROSCI_1648_20_2020 crossref_primary_10_1016_j_nicl_2022_103159 crossref_primary_10_3389_fnagi_2022_1036428 crossref_primary_10_3389_fnins_2022_905736 crossref_primary_10_1038_s41593_021_00919_0 crossref_primary_10_1016_j_nlm_2021_107490 crossref_primary_10_1177_2398212818771821 crossref_primary_10_1126_science_aak9726 crossref_primary_10_1016_j_neuron_2021_12_027 crossref_primary_10_1016_j_neuroimage_2018_06_009 crossref_primary_10_1016_j_neuropharm_2017_01_019 crossref_primary_10_47853_FAS_2022_e41 crossref_primary_10_1016_j_brainresbull_2019_09_005 crossref_primary_10_1038_nn_4523 crossref_primary_10_1093_cercor_bhw274 crossref_primary_10_1016_j_bbr_2023_114410 crossref_primary_10_1038_s41467_018_07007_1 crossref_primary_10_1523_JNEUROSCI_2951_16_2016 crossref_primary_10_1126_science_aba3313 crossref_primary_10_1016_j_nlm_2016_10_005 crossref_primary_10_1523_JNEUROSCI_1453_19_2020 crossref_primary_10_3389_fncir_2018_00040 crossref_primary_10_1016_j_bspc_2021_102596 crossref_primary_10_1016_j_neuropharm_2020_108238 crossref_primary_10_7554_eLife_65456 crossref_primary_10_1016_j_neuropharm_2023_109452 crossref_primary_10_7554_eLife_63035 crossref_primary_10_1016_j_euroneuro_2016_12_007 crossref_primary_10_1016_j_neuron_2017_08_003 crossref_primary_10_3389_fgene_2020_565749 crossref_primary_10_3389_fnhum_2024_1356674 crossref_primary_10_1016_j_celrep_2023_113015 crossref_primary_10_1016_j_celrep_2019_10_002 crossref_primary_10_1016_j_nbd_2021_105603 crossref_primary_10_1111_pcn_13331 crossref_primary_10_3389_fnbeh_2018_00051 crossref_primary_10_1016_j_isci_2024_108824 crossref_primary_10_3758_s13420_016_0214_5 crossref_primary_10_1093_cercor_bhx145 crossref_primary_10_3389_fnut_2023_1248809 crossref_primary_10_1155_2016_7385314 crossref_primary_10_1016_j_biopsych_2017_07_017 crossref_primary_10_1016_j_neubiorev_2017_05_015 crossref_primary_10_7554_eLife_46816 crossref_primary_10_1038_nn_4419 crossref_primary_10_1016_j_bbr_2018_11_038 crossref_primary_10_1038_s41586_021_03272_1 crossref_primary_10_3389_fncir_2016_00058 crossref_primary_10_3389_fnagi_2021_748388 crossref_primary_10_3389_fpsyt_2020_00832 crossref_primary_10_1016_j_biopsych_2020_04_014 crossref_primary_10_3390_brainsci11030323 crossref_primary_10_1016_j_neuroscience_2017_04_011 crossref_primary_10_1002_hipo_22821 crossref_primary_10_1073_pnas_1720117115 crossref_primary_10_1016_j_nlm_2019_107044 crossref_primary_10_1038_s41583_018_0077_1 crossref_primary_10_1016_j_lmot_2017_01_007 crossref_primary_10_1016_j_tox_2023_153718 crossref_primary_10_1007_s12035_018_1060_6 crossref_primary_10_1093_texcom_tgab029 crossref_primary_10_1016_j_brainres_2017_10_005 crossref_primary_10_1016_j_neucom_2016_09_035 crossref_primary_10_1002_brb3_734 crossref_primary_10_1007_s12264_019_00370_z crossref_primary_10_3389_fphar_2021_647747 crossref_primary_10_1016_j_neuron_2018_09_029 crossref_primary_10_1016_j_schres_2016_01_023 crossref_primary_10_1111_cns_14013 crossref_primary_10_1073_pnas_1902284116 crossref_primary_10_1523_ENEURO_0365_19_2019 crossref_primary_10_1111_bph_14964 crossref_primary_10_1016_j_celrep_2022_110659 crossref_primary_10_1016_j_neures_2017_04_016 crossref_primary_10_3389_fncir_2021_716408 crossref_primary_10_3389_fneur_2019_01033 crossref_primary_10_3389_fnbeh_2018_00087 crossref_primary_10_3389_frdem_2023_1093223 crossref_primary_10_1111_jnc_15717 crossref_primary_10_1016_j_nlm_2016_04_008 crossref_primary_10_1038_s41386_020_0697_9 crossref_primary_10_1002_hipo_22960 crossref_primary_10_1016_j_heliyon_2024_e26674 crossref_primary_10_1038_nn_4628 crossref_primary_10_3389_fneur_2022_982223 crossref_primary_10_1002_hipo_22956 crossref_primary_10_1016_j_celrep_2023_113296 crossref_primary_10_1016_j_nlm_2018_08_023 crossref_primary_10_1016_j_lmot_2017_09_002 crossref_primary_10_1177_0963721420922185 crossref_primary_10_3389_fpsyt_2022_899344 crossref_primary_10_1186_s12576_022_00833_5 crossref_primary_10_3758_s13415_019_00733_z crossref_primary_10_1002_hipo_22831 crossref_primary_10_1016_j_nlm_2018_01_002 crossref_primary_10_1523_ENEURO_0395_19_2020 crossref_primary_10_1073_pnas_2117300119 crossref_primary_10_7554_eLife_38052 crossref_primary_10_1038_s41592_024_02285_8 crossref_primary_10_1152_japplphysiol_00571_2021 crossref_primary_10_1093_texcom_tgaa084 crossref_primary_10_1109_ACCESS_2019_2907040 crossref_primary_10_3390_ani12081019 crossref_primary_10_1186_s13024_023_00632_5 crossref_primary_10_1038_s41586_024_07309_z crossref_primary_10_3389_fncir_2020_00010 crossref_primary_10_1002_hbm_23290 crossref_primary_10_1038_s41598_018_31163_5 crossref_primary_10_1093_cercor_bhw316 crossref_primary_10_1016_j_biopsych_2024_03_008 crossref_primary_10_1016_j_celrep_2024_114124 crossref_primary_10_1038_s41467_019_12496_9 crossref_primary_10_7554_eLife_74758 crossref_primary_10_1038_s41380_021_01092_3 crossref_primary_10_1016_j_neulet_2018_06_032 crossref_primary_10_1016_j_jnutbio_2022_108959 crossref_primary_10_1016_j_bbr_2021_113679 crossref_primary_10_1016_j_neures_2019_06_002 crossref_primary_10_1371_journal_pone_0177036 crossref_primary_10_1016_j_bbr_2022_113979 crossref_primary_10_1177_2398212818783896 crossref_primary_10_3389_fpsyg_2021_685853 crossref_primary_10_1016_j_conb_2016_07_015 crossref_primary_10_1111_jne_12486 crossref_primary_10_1111_ejn_15168 crossref_primary_10_1523_JNEUROSCI_2170_18_2018 crossref_primary_10_2139_ssrn_3385138 crossref_primary_10_1038_s41591_018_0297_y crossref_primary_10_1038_s41467_020_16698_4 crossref_primary_10_1016_j_celrep_2022_111700 crossref_primary_10_1038_s41467_023_41715_7 crossref_primary_10_1016_j_exger_2022_112024 crossref_primary_10_1016_j_neubiorev_2019_12_022 crossref_primary_10_1523_JNEUROSCI_1412_21_2022 crossref_primary_10_1016_j_crneur_2023_100121 crossref_primary_10_1002_brb3_1093 crossref_primary_10_1186_s13293_023_00545_4 crossref_primary_10_1038_s41467_023_42293_4 crossref_primary_10_1523_JNEUROSCI_1140_20_2020 crossref_primary_10_1016_j_nlm_2019_107106 crossref_primary_10_1017_S1355617719000808 crossref_primary_10_1371_journal_pone_0231941 crossref_primary_10_1016_j_conb_2023_102803 crossref_primary_10_1523_JNEUROSCI_1583_16_2016 crossref_primary_10_1007_s11571_022_09792_4 crossref_primary_10_1016_j_cell_2017_11_002 crossref_primary_10_1002_kjm2_12832 crossref_primary_10_1016_j_conb_2023_102820 crossref_primary_10_1073_pnas_2203024119 crossref_primary_10_1016_j_psyneuen_2019_04_013 crossref_primary_10_2139_ssrn_4187259 crossref_primary_10_1038_nature21066 crossref_primary_10_1016_j_physbeh_2022_113912 crossref_primary_10_7554_eLife_19507 crossref_primary_10_3390_brainsci10020102 crossref_primary_10_5812_ans_131408 crossref_primary_10_7554_eLife_54835 |
Cites_doi | 10.1162/NECO_a_00152 10.1152/jn.01192.2011 10.1016/j.cell.2010.02.037 10.1002/cne.903130404 10.1016/j.cell.2014.04.009 10.1017/CBO9781139174909 10.1038/nature08652 10.1162/089976699300016827 10.1037/0096-3445.133.3.355 10.1093/cercor/8.5.437 10.1016/j.neuron.2005.02.028 10.1038/nature13186 10.1016/j.neuroimage.2010.01.073 10.1016/j.neuron.2009.11.031 10.1038/nn.3224 10.1523/JNEUROSCI.23-04-01517.2003 10.1007/s00429-007-0150-4 10.1016/0896-6273(95)90304-6 10.1016/j.neuron.2012.07.015 10.1016/S0896-6273(03)00597-X 10.1152/jn.1989.61.2.331 10.1016/j.bbr.2006.03.030 10.1038/nature08010 10.1126/science.1157086 10.1126/science.252.5009.1177 10.1038/nrn1201 10.1523/JNEUROSCI.2378-13.2013 10.1016/j.bbr.2008.11.045 10.1111/j.1460-9568.2008.06284.x 10.1007/BF03033814 10.1016/j.bbr.2006.09.002 10.1016/j.neuron.2012.06.014 10.1101/lm.40301 10.1371/journal.pbio.0030402 10.1038/nature08855 10.3758/CABN.4.4.528 10.1016/0166-4328(93)90051-Q 10.1016/S0166-4328(05)80169-X 10.1523/JNEUROSCI.4681-09.2010 10.1523/JNEUROSCI.5458-12.2013 10.1209/0295-5075/10/7/014 10.1088/0305-4470/20/11/013 10.1152/jn.90248.2008 10.1038/nature12160 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 COPYRIGHT 2015 Nature Publishing Group Copyright Nature Publishing Group Jun 18, 2015 |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: COPYRIGHT 2015 Nature Publishing Group – notice: Copyright Nature Publishing Group Jun 18, 2015 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature14445 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection PHMC-Proquest健康医学期刊库 ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic University of Michigan Technology Collection Technology Research Database SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 314 |
ExternalDocumentID | 3722901281 A463816769 10_1038_nature14445 26053122 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH081968 – fundername: NIMH NIH HHS grantid: MH096274 – fundername: NIMH NIH HHS grantid: MH081968 – fundername: NIMH NIH HHS grantid: R01 MH096274 – fundername: NIMH NIH HHS grantid: K08 MH087718 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAZLF ABAWZ ABDBF ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABVXF ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AFFNX AFKRA AFLOW AFRAH AFRQD AFSHS AGAYW AGEZK AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B-7 B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESTFP ESX EX3 EXGXG F20 F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YNT YOC YQT YR2 YXB YZZ ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AAYZH CGR CUY CVF ECM EIF NPM AAYXX CITATION AADEA AAEXX ABEEJ ADFPY ADZGE AETEA NXXTH AADWK AAGJQ AAJMP AAYJO ABGIJ ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX AEDAW AEFTE AFNRJ AGGBP AGPPL AHGBK AHPSJ AJDOV AMRJV I-U U1R XFK ZA5 AAPBV ABGFU ABPTK AEQTP 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PQEST PQUKI Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c678t-ef199d9f99b6c6a2bdd4475021afd3d1e1d66b13fb3d515bb851527dcb9843163 |
IEDL.DBID | 8C1 |
ISSN | 0028-0836 |
IngestDate | Tue Sep 17 21:08:03 EDT 2024 Fri Oct 25 03:56:48 EDT 2024 Thu Oct 10 21:06:05 EDT 2024 Thu Feb 22 23:41:21 EST 2024 Fri Feb 02 05:02:51 EST 2024 Tue Dec 12 21:18:42 EST 2023 Fri Feb 02 04:09:18 EST 2024 Thu Aug 01 19:37:10 EDT 2024 Thu Sep 26 17:50:40 EDT 2024 Tue Oct 15 23:53:35 EDT 2024 Fri Oct 11 20:36:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7556 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c678t-ef199d9f99b6c6a2bdd4475021afd3d1e1d66b13fb3d515bb851527dcb9843163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4505751 |
PMID | 26053122 |
PQID | 1690371760 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4505751 proquest_miscellaneous_1690217543 proquest_journals_1690371760 gale_infotracmisc_A463816769 gale_infotracgeneralonefile_A463816769 gale_infotraccpiq_463816769 gale_infotracacademiconefile_A463816769 gale_incontextgauss_ISR_A463816769 crossref_primary_10_1038_nature14445 pubmed_primary_26053122 springer_journals_10_1038_nature14445 |
PublicationCentury | 2000 |
PublicationDate | 2015-06-18 |
PublicationDateYYYYMMDD | 2015-06-18 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | JungMWQinYMcNaughtonBABarnesCLFiring characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasksCereb. Cortex199884374501:STN:280:DyaK1czoslGnsA%3D%3D972208710.1093/cercor/8.5.437 FanselowMADongHWAre the dorsal and ventral hippocampus functionally distinct structures?Neuron2010657191:CAS:528:DC%2BC3cXlt1Kms7k%3D20152109282272710.1016/j.neuron.2009.11.031 HooverWBVertesRPAnatomical analysis of afferent projections to the medial prefrontal cortex in the ratBrain Struct. Funct.20072121491791771769010.1007/s00429-007-0150-4 de ZubicarayGIMcMahonKWilsonSJMuthiahSBrain activity during the encoding, retention, and retrieval of stimulus representationsLearn. Mem.200182432511:STN:280:DC%2BD3Mrjs1Klsg%3D%3D1158407031138510.1101/lm.40301 RogersDCPhotothrombic lesions of the frontal cortex impair the performance of the delayed non-matching to position task by ratsBehav. Brain Res.1992492312351992lfa..book.....R1:STN:280:DyaK3s%2FgtVGrtw%3D%3D138881710.1016/S0166-4328(05)80169-X GradinaruVMolecular and cellular approaches for diversifying and extending optogeneticsCell20101411541651:CAS:528:DC%2BC3cXlsVSgtbY%3D20303157416053210.1016/j.cell.2010.02.037 ShawCAggletonJThe effects of fornix and medial prefrontal lesions on delayed non-matching-to-sample by ratsBehav. Brain Res.199354911021:STN:280:DyaK3s3nslOitg%3D%3D850401510.1016/0166-4328(93)90051-Q MeyersEMFreedmanDJKreimanGMillerEKPoggioTDynamic population coding of category information in inferior temporal and prefrontal cortexJ. Neurophysiol.20081001407141918562555254446610.1152/jn.90248.2008 BurtonBGHokVSaveEPoucetBLesion of the ventral and intermediate hippocampus abolishes anticipatory activity in the medial prefrontal cortex of the ratBehav. Brain Res.20091992222341910322710.1016/j.bbr.2008.11.045 SigurdssonTStarkKLKarayiorgouMGogosJAGordonJAImpaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophreniaNature20104647637672010Natur.464..763S1:CAS:528:DC%2BC3cXktVygtrY%3D20360742286458410.1038/nature08855 OhSWA mesoscale connectome of the mouse brainNature20145082072142014Natur.508..207O1:CAS:528:DC%2BC2cXmtlWjs70%3D24695228510206410.1038/nature13186 HorstNKLaubachMWorking with memory: evidence for a role for the medial prefrontal cortex in performance monitoring during spatial delayed alternationJ. Neurophysiol.20121083276328823019007354488310.1152/jn.01192.2011 RigottiMThe importance of mixed selectivity in complex cognitive tasksNature20134975855902013Natur.497..585R1:CAS:528:DC%2BC3sXotFSltbc%3D23685452441234710.1038/nature12160 HymanJMZilliEAPaleyAMHasselmoMEWorking memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing ratesFront. Integr Neurosci.201042204317262861479 MiyakeAShahPModels of Working Memory: Mechanisms of Active Maintenance and Executive Control199910.1017/CBO9781139174909 RoyerSSirotaAPatelJBuzsákiGDistinct representations and theta dynamics in dorsal and ventral hippocampusJ. Neurosci.201030177717871:CAS:528:DC%2BC3cXitV2jurk%3D20130187282515910.1523/JNEUROSCI.4681-09.2010 FunahashiSBruceCGoldman-RakicPMnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortexJ. Neurophysiol.1989613313491:STN:280:DyaL1M7ktV2rtQ%3D%3D291835810.1152/jn.1989.61.2.331 LeeIKesnerRPTime-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memoryJ. Neurosci.200323151715231:CAS:528:DC%2BD3sXit1anurs%3D12598640674224810.1523/JNEUROSCI.23-04-01517.2003 ChowBYHigh-performance genetically targetable optical neural silencing by light-driven proton pumpsNature2010463981022010Natur.463...98C1:CAS:528:DC%2BC3cXhvFCqtg%3D%3D20054397293949210.1038/nature08652 BaddeleyAWorking memory: looking back and looking forwardNature Rev. Neurosci.200348298391:CAS:528:DC%2BD3sXnslSitr8%3D10.1038/nrn1201 VinckMvan WingerdenMWomelsdorfTFriesPPennartzCThe pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronizationNeuroimage2010511121222011407610.1016/j.neuroimage.2010.01.073 LubenovEVSiapasAGHippocampal theta oscillations are travelling wavesNature20094595345392009Natur.459..534L1:CAS:528:DC%2BD1MXmtVOru7w%3D1948911710.1038/nature08010 RuedigerSSpirigDDonatoFCaroniPGoal-oriented searching mediated by ventral hippocampus early in trial-and-error learningNature Neurosci.201215156315711:CAS:528:DC%2BC38XhtlyltLjE2300106110.1038/nn.3224 CurtisCED’EspositoMThe effects of prefrontal lesions on working memory performance and theoryCogn. Affect. Behav. Neurosci.200445285391584989510.3758/CABN.4.4.528 IzakiYTakitaMAkemaTSpecific role of the posterior dorsal hippocampus-prefrontal cortex in short-term working memoryEur. J. Neurosci.200827302930341854087910.1111/j.1460-9568.2008.06284.x DietterichTGGhulumBError-correcting output codes: a general method for improving multiclass inductive learning programsProc. AAAI199191572577 AndradeJWorking Memory in Perspective2001 AnlaufJKBiehlMThe AdaTron: an adaptive perceptron algorithmEurophys. Lett.1989106876921989EL.....10..687A10.1209/0295-5075/10/7/014 SeamansJKLapishCCDurstewitzDComparing the prefrontal cortex of rats and primates: insights from electrophysiologyNeurotox. Res.2008142492621907343010.1007/BF03033814 BaddeleyAHitchGBowerGARecent Advances in Learning and Motivation19744790 BarakORigottiMA simple derivation of a bound on the perceptron margin using singular value decompositionNeural Comput.20112319351943283990410.1162/NECO_a_00152 RosenblattFPrinciples of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms19620143.43504 BaegEHDynamics of population code for working memory in the prefrontal cortexNeuron2003401771881:CAS:528:DC%2BD3sXnvVygtro%3D1452744210.1016/S0896-6273(03)00597-X KlauerKCZhaoZDouble dissociations in visual and spatial short-term memoryJ. Exp. Psychol. Gen.20041333553811535514410.1037/0096-3445.133.3.355 YamamotoJSuhJTakeuchiDTonegawaSSuccessful execution of working memory linked to synchronized high-frequency gamma oscillationsCell20141578458571:CAS:528:DC%2BC2cXntFCqsLs%3D2476869210.1016/j.cell.2014.04.009 SloanHLGoodMDunnettSBDouble dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory taskBehav. Brain Res.20061711161261667772310.1016/j.bbr.2006.03.030 JonesMWWilsonMATheta rhythms coordinate hippocampal-prefrontal interactions in a spatial working memory taskPLoS Biol.20053e40216279838128353610.1371/journal.pbio.00304021:CAS:528:DC%2BD2MXhtlWls7nP PatelJFujisawaSBerényiARoyerSBuzsákiGTraveling theta waves along the entire septotemporal axis of the hippocampusNeuron2012754104171:CAS:528:DC%2BC38XhtFKmt77F22884325342738710.1016/j.neuron.2012.07.015 CarrMFKarlssonMPFrankLMTransient slow gamma synchrony underlies hippocampal memory replayNeuron2012757007131:CAS:528:DC%2BC38Xht1KjurjI22920260342859910.1016/j.neuron.2012.06.014 WangGWCaiJXDisconnection of the hippocampal–prefrontal cortical circuits impairs spatial working memory performance in ratsBehav. Brain Res.20061753293362006smcp.book.....W1704534810.1016/j.bbr.2006.09.002 KomorowskiRWVentral hippocampal neurons are shaped by experience to represent behaviorally relevant contextsJ. Neurosci.201333807980871:CAS:528:DC%2BC3sXhtl2jsrfO23637197366735110.1523/JNEUROSCI.5458-12.2013 AbbottLFDayanPThe effect of correlated variability on the accuracy of a population codeNeural Comput.199911911011:STN:280:DyaK1M7js1Smug%3D%3D995072410.1162/089976699300016827 JayTMWitterMPDistribution of hippocampal CA1 and subicular afferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinineJ. Comp. Neurol.19913135745861:STN:280:DyaK387ksl2jtA%3D%3D178368210.1002/cne.903130404 EngelAKKonigPKreiterAKSingerWInterhemispheric synchronization of oscillatory neuronal responses in cat visual cortexScience1991252117711791991Sci...252.1177E1:STN:280:DyaK3M3jtleksw%3D%3D203118810.1126/science.252.5009.1177 O’NeillPKGordonJASigurdssonTTheta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregionJ. Neurosci.201333142111422423986255375676310.1523/JNEUROSCI.2378-13.20131:CAS:528:DC%2BC3sXhsVehurbL KrauthWMezardMLearning algorithms with optimal stability in neural networksJ. Phys. A Math. Gen.198720L745L7521987JPhA...20L.745K91403910.1088/0305-4470/20/11/013 Goldman-RakicPSCellular basis of working memoryNeuron1995144774851:CAS:528:DyaK2MXkvVegt7g%3D769589410.1016/0896-6273(95)90304-6 SiapasAGLubenovEVWilsonMAPrefrontal phase locking to hippocampal theta oscillationsNeuron2005461411511:CAS:528:DC%2BD2MXjslSgsb4%3D1582070010.1016/j.neuron.2005.02.028 KjelstrupKBFinite scale of spatial representation in the hippocampusScience20083211401432008Sci...321..140K1:CAS:528:DC%2BD1cXnvFektr0%3D1859979210.1126/science.1157086 11584070 - Learn Mem. 2001 Sep-Oct;8(5):243-51 16279838 - PLoS Biol. 2005 Dec;3(12):e402 16677723 - Behav Brain Res. 2006 Jul 15;171(1):116-26 22884325 - Neuron. 2012 Aug 9;75(3):410-7 20431726 - Front Integr Neurosci. 2010 Mar 10;4:2 8504015 - Behav Brain Res. 1993 Mar 31;54(1):91-102 23637197 - J Neurosci. 2013 May 1;33(18):8079-87 9722087 - Cereb Cortex. 1998 Jul-Aug;8(5):437-50 15355144 - J Exp Psychol Gen. 2004 Sep;133(3):355-81 24695228 - Nature. 2014 Apr 10;508(7495):207-14 7695894 - Neuron. 1995 Mar;14(3):477-85 1388817 - Behav Brain Res. 1992 Aug 10;49(2):231-5 20303157 - Cell. 2010 Apr 2;141(1):154-65 23001061 - Nat Neurosci. 2012 Nov;15(11):1563-71 19489117 - Nature. 2009 May 28;459(7246):534-9 14523382 - Nat Rev Neurosci. 2003 Oct;4(10):829-39 19103227 - Behav Brain Res. 2009 May 16;199(2):222-34 18562555 - J Neurophysiol. 2008 Sep;100(3):1407-19 20114076 - Neuroimage. 2010 May 15;51(1):112-22 12598640 - J Neurosci. 2003 Feb 15;23(4):1517-23 2031188 - Science. 1991 May 24;252(5009):1177-9 17717690 - Brain Struct Funct. 2007 Sep;212(2):149-79 23019007 - J Neurophysiol. 2012 Dec;108(12):3276-88 23685452 - Nature. 2013 May 30;497(7451):585-90 23986255 - J Neurosci. 2013 Aug 28;33(35):14211-24 17045348 - Behav Brain Res. 2006 Dec 15;175(2):329-36 15849895 - Cogn Affect Behav Neurosci. 2004 Dec;4(4):528-39 18599792 - Science. 2008 Jul 4;321(5885):140-3 1783682 - J Comp Neurol. 1991 Nov 22;313(4):574-86 18540879 - Eur J Neurosci. 2008 Jun;27(11):3029-34 15820700 - Neuron. 2005 Apr 7;46(1):141-51 9950724 - Neural Comput. 1999 Jan 1;11(1):91-101 20360742 - Nature. 2010 Apr 1;464(7289):763-7 20054397 - Nature. 2010 Jan 7;463(7277):98-102 14527442 - Neuron. 2003 Sep 25;40(1):177-88 20130187 - J Neurosci. 2010 Feb 3;30(5):1777-87 24768692 - Cell. 2014 May 8;157(4):845-57 19073430 - Neurotox Res. 2008 Oct;14(2-3):249-62 20152109 - Neuron. 2010 Jan 14;65(1):7-19 22920260 - Neuron. 2012 Aug 23;75(4):700-13 2918358 - J Neurophysiol. 1989 Feb;61(2):331-49 BY Chow (BFnature14445_CR20) 2010; 463 Y Izaki (BFnature14445_CR35) 2008; 27 KC Klauer (BFnature14445_CR2) 2004; 133 I Lee (BFnature14445_CR11) 2003; 23 JK Anlauf (BFnature14445_CR46) 1989; 10 A Miyake (BFnature14445_CR4) 1999 GI de Zubicaray (BFnature14445_CR6) 2001; 8 KB Kjelstrup (BFnature14445_CR18) 2008; 321 MA Fanselow (BFnature14445_CR41) 2010; 65 S Ruediger (BFnature14445_CR40) 2012; 15 BG Burton (BFnature14445_CR16) 2009; 199 JK Seamans (BFnature14445_CR31) 2008; 14 PK O’Neill (BFnature14445_CR39) 2013; 33 TM Jay (BFnature14445_CR14) 1991; 313 M Rigotti (BFnature14445_CR22) 2013; 497 F Rosenblatt (BFnature14445_CR47) 1962 NK Horst (BFnature14445_CR28) 2012; 108 MW Jung (BFnature14445_CR17) 1998; 8 A Baddeley (BFnature14445_CR1) 1974 TG Dietterich (BFnature14445_CR49) 1991; 91 S Royer (BFnature14445_CR19) 2010; 30 W Krauth (BFnature14445_CR48) 1987; 20 SW Oh (BFnature14445_CR15) 2014; 508 AK Engel (BFnature14445_CR23) 1991; 252 EH Baeg (BFnature14445_CR27) 2003; 40 GW Wang (BFnature14445_CR12) 2006; 175 C Shaw (BFnature14445_CR33) 1993; 54 EM Meyers (BFnature14445_CR43) 2008; 100 J Andrade (BFnature14445_CR3) 2001 JM Hyman (BFnature14445_CR8) 2010; 4 LF Abbott (BFnature14445_CR44) 1999; 11 PS Goldman-Rakic (BFnature14445_CR30) 1995; 14 T Sigurdsson (BFnature14445_CR10) 2010; 464 O Barak (BFnature14445_CR45) 2011; 23 MF Carr (BFnature14445_CR24) 2012; 75 J Patel (BFnature14445_CR38) 2012; 75 J Yamamoto (BFnature14445_CR25) 2014; 157 DC Rogers (BFnature14445_CR32) 1992; 49 CE Curtis (BFnature14445_CR7) 2004; 4 AG Siapas (BFnature14445_CR36) 2005; 46 S Funahashi (BFnature14445_CR29) 1989; 61 A Baddeley (BFnature14445_CR5) 2003; 4 RW Komorowski (BFnature14445_CR42) 2013; 33 M Vinck (BFnature14445_CR26) 2010; 51 HL Sloan (BFnature14445_CR34) 2006; 171 WB Hoover (BFnature14445_CR13) 2007; 212 EV Lubenov (BFnature14445_CR37) 2009; 459 MW Jones (BFnature14445_CR9) 2005; 3 V Gradinaru (BFnature14445_CR21) 2010; 141 |
References_xml | – volume: 23 start-page: 1935 year: 2011 ident: BFnature14445_CR45 publication-title: Neural Comput. doi: 10.1162/NECO_a_00152 contributor: fullname: O Barak – volume: 108 start-page: 3276 year: 2012 ident: BFnature14445_CR28 publication-title: J. Neurophysiol. doi: 10.1152/jn.01192.2011 contributor: fullname: NK Horst – volume: 141 start-page: 154 year: 2010 ident: BFnature14445_CR21 publication-title: Cell doi: 10.1016/j.cell.2010.02.037 contributor: fullname: V Gradinaru – volume: 313 start-page: 574 year: 1991 ident: BFnature14445_CR14 publication-title: J. Comp. Neurol. doi: 10.1002/cne.903130404 contributor: fullname: TM Jay – start-page: 47 volume-title: Recent Advances in Learning and Motivation year: 1974 ident: BFnature14445_CR1 contributor: fullname: A Baddeley – volume: 157 start-page: 845 year: 2014 ident: BFnature14445_CR25 publication-title: Cell doi: 10.1016/j.cell.2014.04.009 contributor: fullname: J Yamamoto – volume-title: Models of Working Memory: Mechanisms of Active Maintenance and Executive Control year: 1999 ident: BFnature14445_CR4 doi: 10.1017/CBO9781139174909 contributor: fullname: A Miyake – volume: 463 start-page: 98 year: 2010 ident: BFnature14445_CR20 publication-title: Nature doi: 10.1038/nature08652 contributor: fullname: BY Chow – volume: 11 start-page: 91 year: 1999 ident: BFnature14445_CR44 publication-title: Neural Comput. doi: 10.1162/089976699300016827 contributor: fullname: LF Abbott – volume-title: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms year: 1962 ident: BFnature14445_CR47 contributor: fullname: F Rosenblatt – volume: 133 start-page: 355 year: 2004 ident: BFnature14445_CR2 publication-title: J. Exp. Psychol. Gen. doi: 10.1037/0096-3445.133.3.355 contributor: fullname: KC Klauer – volume: 8 start-page: 437 year: 1998 ident: BFnature14445_CR17 publication-title: Cereb. Cortex doi: 10.1093/cercor/8.5.437 contributor: fullname: MW Jung – volume: 46 start-page: 141 year: 2005 ident: BFnature14445_CR36 publication-title: Neuron doi: 10.1016/j.neuron.2005.02.028 contributor: fullname: AG Siapas – volume: 508 start-page: 207 year: 2014 ident: BFnature14445_CR15 publication-title: Nature doi: 10.1038/nature13186 contributor: fullname: SW Oh – volume: 4 start-page: 2 year: 2010 ident: BFnature14445_CR8 publication-title: Front. Integr Neurosci. contributor: fullname: JM Hyman – volume: 51 start-page: 112 year: 2010 ident: BFnature14445_CR26 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.073 contributor: fullname: M Vinck – volume: 91 start-page: 572 year: 1991 ident: BFnature14445_CR49 publication-title: Proc. AAAI contributor: fullname: TG Dietterich – volume: 65 start-page: 7 year: 2010 ident: BFnature14445_CR41 publication-title: Neuron doi: 10.1016/j.neuron.2009.11.031 contributor: fullname: MA Fanselow – volume: 15 start-page: 1563 year: 2012 ident: BFnature14445_CR40 publication-title: Nature Neurosci. doi: 10.1038/nn.3224 contributor: fullname: S Ruediger – volume: 23 start-page: 1517 year: 2003 ident: BFnature14445_CR11 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-04-01517.2003 contributor: fullname: I Lee – volume: 212 start-page: 149 year: 2007 ident: BFnature14445_CR13 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-007-0150-4 contributor: fullname: WB Hoover – volume: 14 start-page: 477 year: 1995 ident: BFnature14445_CR30 publication-title: Neuron doi: 10.1016/0896-6273(95)90304-6 contributor: fullname: PS Goldman-Rakic – volume: 75 start-page: 410 year: 2012 ident: BFnature14445_CR38 publication-title: Neuron doi: 10.1016/j.neuron.2012.07.015 contributor: fullname: J Patel – volume: 40 start-page: 177 year: 2003 ident: BFnature14445_CR27 publication-title: Neuron doi: 10.1016/S0896-6273(03)00597-X contributor: fullname: EH Baeg – volume-title: Working Memory in Perspective year: 2001 ident: BFnature14445_CR3 contributor: fullname: J Andrade – volume: 61 start-page: 331 year: 1989 ident: BFnature14445_CR29 publication-title: J. Neurophysiol. doi: 10.1152/jn.1989.61.2.331 contributor: fullname: S Funahashi – volume: 171 start-page: 116 year: 2006 ident: BFnature14445_CR34 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2006.03.030 contributor: fullname: HL Sloan – volume: 459 start-page: 534 year: 2009 ident: BFnature14445_CR37 publication-title: Nature doi: 10.1038/nature08010 contributor: fullname: EV Lubenov – volume: 321 start-page: 140 year: 2008 ident: BFnature14445_CR18 publication-title: Science doi: 10.1126/science.1157086 contributor: fullname: KB Kjelstrup – volume: 252 start-page: 1177 year: 1991 ident: BFnature14445_CR23 publication-title: Science doi: 10.1126/science.252.5009.1177 contributor: fullname: AK Engel – volume: 4 start-page: 829 year: 2003 ident: BFnature14445_CR5 publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn1201 contributor: fullname: A Baddeley – volume: 33 start-page: 14211 year: 2013 ident: BFnature14445_CR39 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2378-13.2013 contributor: fullname: PK O’Neill – volume: 199 start-page: 222 year: 2009 ident: BFnature14445_CR16 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2008.11.045 contributor: fullname: BG Burton – volume: 27 start-page: 3029 year: 2008 ident: BFnature14445_CR35 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06284.x contributor: fullname: Y Izaki – volume: 14 start-page: 249 year: 2008 ident: BFnature14445_CR31 publication-title: Neurotox. Res. doi: 10.1007/BF03033814 contributor: fullname: JK Seamans – volume: 175 start-page: 329 year: 2006 ident: BFnature14445_CR12 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2006.09.002 contributor: fullname: GW Wang – volume: 75 start-page: 700 year: 2012 ident: BFnature14445_CR24 publication-title: Neuron doi: 10.1016/j.neuron.2012.06.014 contributor: fullname: MF Carr – volume: 8 start-page: 243 year: 2001 ident: BFnature14445_CR6 publication-title: Learn. Mem. doi: 10.1101/lm.40301 contributor: fullname: GI de Zubicaray – volume: 3 start-page: e402 year: 2005 ident: BFnature14445_CR9 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0030402 contributor: fullname: MW Jones – volume: 464 start-page: 763 year: 2010 ident: BFnature14445_CR10 publication-title: Nature doi: 10.1038/nature08855 contributor: fullname: T Sigurdsson – volume: 4 start-page: 528 year: 2004 ident: BFnature14445_CR7 publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/CABN.4.4.528 contributor: fullname: CE Curtis – volume: 54 start-page: 91 year: 1993 ident: BFnature14445_CR33 publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(93)90051-Q contributor: fullname: C Shaw – volume: 49 start-page: 231 year: 1992 ident: BFnature14445_CR32 publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(05)80169-X contributor: fullname: DC Rogers – volume: 30 start-page: 1777 year: 2010 ident: BFnature14445_CR19 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4681-09.2010 contributor: fullname: S Royer – volume: 33 start-page: 8079 year: 2013 ident: BFnature14445_CR42 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5458-12.2013 contributor: fullname: RW Komorowski – volume: 10 start-page: 687 year: 1989 ident: BFnature14445_CR46 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/10/7/014 contributor: fullname: JK Anlauf – volume: 20 start-page: L745 year: 1987 ident: BFnature14445_CR48 publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/20/11/013 contributor: fullname: W Krauth – volume: 100 start-page: 1407 year: 2008 ident: BFnature14445_CR43 publication-title: J. Neurophysiol. doi: 10.1152/jn.90248.2008 contributor: fullname: EM Meyers – volume: 497 start-page: 585 year: 2013 ident: BFnature14445_CR22 publication-title: Nature doi: 10.1038/nature12160 contributor: fullname: M Rigotti |
SSID | ssj0005174 |
Score | 2.6708496 |
Snippet | Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the... Spatial working memory, the caching of behaviorally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. While the... |
SourceID | pubmedcentral proquest gale crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 309 |
SubjectTerms | 631/378/1595/1554 631/378/1595/1637 631/378/1595/2618 64/60 9/10 9/26 9/30 Action Potentials Afferent Pathways - physiology Animals Brain Cognition & reasoning Cues Hippocampus (Brain) Hippocampus - cytology Hippocampus - physiology Humanities and Social Sciences Male Memory Memory, Short-Term - physiology Mice Models, Neurological multidisciplinary Optogenetics Physiological aspects Prefrontal cortex Prefrontal Cortex - cytology Prefrontal Cortex - physiology Science Short-term memory Space Perception - physiology Spatial Memory - physiology |
Title | Hippocampal–prefrontal input supports spatial encoding in working memory |
URI | https://link.springer.com/article/10.1038/nature14445 https://www.ncbi.nlm.nih.gov/pubmed/26053122 https://www.proquest.com/docview/1690371760 https://search.proquest.com/docview/1690217543 https://pubmed.ncbi.nlm.nih.gov/PMC4505751 |
Volume | 522 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9tADLagCImXabCNBboqm9jYHiKSXnJJnhAgum4SCDGQ-nbK3SWs0kjD0gjx72cn15J0017yELvRybXP9tn3GeBAKRUHKqIuce06PiYYjvSGykkw1qbxRRHL6ED_4pKPb_3vk2BiDtxK01a52BPrjVrPFJ2RH1E5h2Huwd3j4sGhqVFUXTUjNNZhw0PFpNEN0VmrxWMFhdncz3NZdNTAZmI2QfeYWh5pdV9uOabVpsmVymntkEYv4YWJJO2T5q_fhrU034HNuqNTlTuwbay2tD8baOkvr2A8nhYFei_cA345BS6F4AvwI9O8qOZ2WRV1AcEuqc0aXxPIJfk2pNuPzam6fU-tuU-v4XZ0fnM2dswsBUehO5o7aebFsY6zOJZc8WQotSaoP_TwSaaZ9lJPcy49lkmmMcSREiOxYBhqJeOIbsuzN9DLZ3n6FmyWEk4Wy9wwVJjuKCndDFmUy4dSonlbqAFGnqJoIDNEXepmkWiJ3YIPJGtBIBQ5dbncJVVZim8_rsWJz6meGfLYgkPDlM1Q6ioxlwZwJYRb1eHc73CqYvogWtRPHepdI_h_fabfYURjU13yQjOEMfZSPKumBe-XZPolNbDl6axqeDD7C3xmwW6jSEvhUErJUH8tCDsqtmQgCPAuJZ_-rKHA_Tq_9Cz4uFDG1rL-lvne_5e_D1sYDwbUCedFfejNf1fpO4y55nIA6-EkHNTmRc_R1wFsnJ5fXl3_AU6BLmE |
link.rule.ids | 230,315,786,790,891,12083,12250,12792,21416,27955,27956,31752,31753,33299,33300,33406,33407,33777,33778,43343,43612,43633,43838,74100,74369,74390,74657 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db5RAEJ_Ua4x9MbZ-FFsrNX7UB1JgYYEnU00b-nUxtU36tmF3oV6iHJUjxv_eGdi7wmn6ygxkM8zuzOz89rcAb5VSSahiQolr1wmwwHCk5ysnw1ybri-KWUEb-udjnl4FJ9fhtdlwqw2scr4mtgu1niraI9-ndg7D2oO7n6pbh26Nou6quULjAawS5WY8gtXPh-OvF3cgjyUeZnNCz2XxfkecifUEnWTqxaTllbkXmpZhk0u90zYkHT2BxyaXtA-6n78OK3m5AQ9bTKeqN2DdzNva3jPk0h-fQppOqgrjF64CP5wKh0IEBviRSVk1M7tuqraFYNcEtMbHRHNJ0Q3l9u9uX93-SeDcP8_g6ujw8kvqmNsUHIUBaebkhZckOimSRHLFM19qTWR_GOOzQjPt5Z7mXHqskExjkiMl5mKhH2klk5jOy7PnMCqnZb4JNsuJKYsVbhQpLHiUlG6BKsrlvpQ4wS30AWNPUXWkGaJtdrNY9MxuwRuytSAaipJwLjdZU9fi-NuFOAg4dTQjnljwwSgVU7S6ysyxARwJMVcNNLcGmqqa3Iqe9P1AetMZ_n-f2R4o4nRTQ_HcM4SZ7rW4c04LdhdiepMgbGU-bTodrP_CgFnwonOkhXGoqGSe71sQDVxsoUAk4ENJOfnekoEHbYXpWfBu7oy9Yf1r85f3D_81PEovz8_E2fH4dAvWMDsMCRfnxdswmv1q8leYgc3kjplmfwGTjC-O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgCMQL2sZX2QYd4mM8VNc2bdo-TdPY6bbBhIBJe4uapNlOGr2OXoX472e3uaM9EK9nXxW5dmzXv_wC8EYplcUqJZS49r0IGwxPBqHycqy16fqilBn6oP_5jE_Oo5OL-MLin2oLq1zsie1GrWeKvpGPaJzDsPfg_shYWMSXj-P96sajG6Ro0mqv07gL9zArcvLw9LAH91hhZLZn9XyWjjoKTews6ExTLzut7tG9JLUKoFyZorbJabwOj2xV6R50brABd4pyE-636E5Vb8KGjeDa3bM00x8ew2QyrSrMZLgfXHsVLoWoDPAh07Jq5m7dVO0wwa0Jco0_E-El5TmUu7-6L-zuD4Lp_n4C5-Oj74cTz96r4ClMTXOvMEGW6cxkmeSK56HUmmj_MNvnRjMdFIHmXAbMSKax3JESq7I4TLSSWUon59lTWCtnZfEcXFYQZxYzfpIobH2UlL5BFeXzUEoMdQe9wdpTVB19hmjH3iwVPbM78JpsLYiQoqRXe5k3dS2Ov30VBxGn2WbCMwfeWyUzQ6ur3B4gwJUQh9VAc2ugqarpjehJ3w2kl53h__WY7YEiBp4aiheeIWzg1-KPmzqwuxTTPwnMVhazptPBTjCOmAPPOkdaGofaSxaEoQPJwMWWCkQHPpSU06uWFjxqe83AgbcLZ-wt62-bv_j_8l_BA4wv8en47HQLHmKZGBNALki3YW3-syl2sBSby5dtjN0Cc60yKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampal-prefrontal+input+supports+spatial+encoding+in+working+memory&rft.jtitle=Nature+%28London%29&rft.au=Spellman%2C+Timothy&rft.au=Rigotti%2C+Mattia&rft.au=Ahmari%2C+Susanne+E&rft.au=Fusi%2C+Stefano&rft.date=2015-06-18&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=522&rft.issue=7556&rft.spage=309&rft_id=info:doi/10.1038%2Fnature14445&rft.externalDocID=A463816769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |