Humoral signatures of protective and pathological SARS-CoV-2 infection in children
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS...
Saved in:
Published in | Nature medicine Vol. 27; no. 3; pp. 454 - 462 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.03.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2.
A study of multisystem inflammatory syndrome in children (MIS-C) shows maintenance of elevated levels of monocyte-activating pathogen-specific IgG not seen in children infected with SARS-CoV-2 who do not develop MIS-C. |
---|---|
AbstractList | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2. A study of multisystem inflammatory syndrome in children (MIS-C) shows maintenance of elevated levels of monocyte-activating pathogen-specific IgG not seen in children infected with SARS-CoV-2 who do not develop MIS-C. The SARS-CoV-2 pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of a Multisystem Inflammatory Syndrome in Children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into COVID-19 pathogenesis. Using Systems Serology, here we observed in 25 children with acute mild COVID a functional phagocyte and complement activating IgG response to SARS-CoV-2, comparable to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte activating SARS-CoV-2 IgG antibodies distinguishable from acute disease in children but with antibody levels comparable to convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that may underlie differential disease severity as well as unexpected complications in SARS-CoV-2 infected children. A study of Multisystem Inflammatory Syndrome in Children (MIS-C) shows maintenance of elevated levels of monocyte-activating pathogen-specific IgG, not seen in SARS-CoV-2-infected children who don’t develop MIS-C. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2. A study of multisystem inflammatory syndrome in children (MIS-C) shows maintenance of elevated levels of monocyte-activating pathogen-specific IgG not seen in children infected with SARS-CoV-2 who do not develop MIS-C. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2. |
Audience | Academic |
Author | Atyeo, Caroline Fischer, Eric S. Burke, John S. Yonker, Lael M. Irimia, Daniel Wang, Chuangqi Edlow, Andrea G. Ryan, Edward T. Zohar, Tomer Baden, Lindsey R. Hopke, Alex R. Charles, Richelle C. Julg, Boris D. Alter, Galit Woolley, Ann E. Karlson, Elizabeth W. Fischinger, Stephanie Nilles, Eric J. Kang, Jaewon Bartsch, Yannic C. Fasano, Alessio Lauffenburger, Douglas A. |
AuthorAffiliation | 8 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 7 Department of Cancer Biology, Dana Farber Cancer Institute, Boston MA 1 Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA 3 Massachusetts General Hospital Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Boston, MA 6 Massachusetts General Hospital, BioMEMS Resource Center, Boston, MA 2 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 4 Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA Massachusetts General Hospital, Department of Pediatrics, Boston, MA 5 Brigham and Women’s Hospital, Boston, MA |
AuthorAffiliation_xml | – name: 1 Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA – name: 5 Brigham and Women’s Hospital, Boston, MA – name: 6 Massachusetts General Hospital, BioMEMS Resource Center, Boston, MA – name: 3 Massachusetts General Hospital Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Boston, MA – name: 2 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 7 Department of Cancer Biology, Dana Farber Cancer Institute, Boston MA – name: 8 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA – name: 4 Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA Massachusetts General Hospital, Department of Pediatrics, Boston, MA |
Author_xml | – sequence: 1 givenname: Yannic C. orcidid: 0000-0002-3844-3056 surname: Bartsch fullname: Bartsch, Yannic C. organization: Ragon Institute of MGH, MIT and Harvard – sequence: 2 givenname: Chuangqi surname: Wang fullname: Wang, Chuangqi organization: Department of Biological Engineering, Massachusetts Institute of Technology – sequence: 3 givenname: Tomer surname: Zohar fullname: Zohar, Tomer organization: Ragon Institute of MGH, MIT and Harvard, Department of Biological Engineering, Massachusetts Institute of Technology – sequence: 4 givenname: Stephanie orcidid: 0000-0003-2307-3379 surname: Fischinger fullname: Fischinger, Stephanie organization: Ragon Institute of MGH, MIT and Harvard – sequence: 5 givenname: Caroline orcidid: 0000-0002-7489-0232 surname: Atyeo fullname: Atyeo, Caroline organization: Ragon Institute of MGH, MIT and Harvard – sequence: 6 givenname: John S. orcidid: 0000-0003-1282-8211 surname: Burke fullname: Burke, John S. organization: Ragon Institute of MGH, MIT and Harvard – sequence: 7 givenname: Jaewon orcidid: 0000-0003-0846-4611 surname: Kang fullname: Kang, Jaewon organization: Ragon Institute of MGH, MIT and Harvard – sequence: 8 givenname: Andrea G. surname: Edlow fullname: Edlow, Andrea G. organization: Massachusetts General Hospital Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine – sequence: 9 givenname: Alessio orcidid: 0000-0002-2134-0261 surname: Fasano fullname: Fasano, Alessio organization: Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Department of Pediatrics – sequence: 10 givenname: Lindsey R. surname: Baden fullname: Baden, Lindsey R. organization: Brigham and Women’s Hospital – sequence: 11 givenname: Eric J. orcidid: 0000-0001-7044-5257 surname: Nilles fullname: Nilles, Eric J. organization: Brigham and Women’s Hospital – sequence: 12 givenname: Ann E. surname: Woolley fullname: Woolley, Ann E. organization: Brigham and Women’s Hospital – sequence: 13 givenname: Elizabeth W. surname: Karlson fullname: Karlson, Elizabeth W. organization: Brigham and Women’s Hospital – sequence: 14 givenname: Alex R. orcidid: 0000-0003-4860-4121 surname: Hopke fullname: Hopke, Alex R. organization: Massachusetts General Hospital, BioMEMS Resource Center – sequence: 15 givenname: Daniel orcidid: 0000-0001-7347-2082 surname: Irimia fullname: Irimia, Daniel organization: Massachusetts General Hospital, BioMEMS Resource Center – sequence: 16 givenname: Eric S. orcidid: 0000-0001-7337-6306 surname: Fischer fullname: Fischer, Eric S. organization: Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School – sequence: 17 givenname: Edward T. surname: Ryan fullname: Ryan, Edward T. organization: Massachusetts General Hospital, BioMEMS Resource Center – sequence: 18 givenname: Richelle C. orcidid: 0000-0002-8881-1849 surname: Charles fullname: Charles, Richelle C. organization: Massachusetts General Hospital, BioMEMS Resource Center – sequence: 19 givenname: Boris D. surname: Julg fullname: Julg, Boris D. organization: Ragon Institute of MGH, MIT and Harvard – sequence: 20 givenname: Douglas A. orcidid: 0000-0002-0050-989X surname: Lauffenburger fullname: Lauffenburger, Douglas A. organization: Department of Biological Engineering, Massachusetts Institute of Technology – sequence: 21 givenname: Lael M. surname: Yonker fullname: Yonker, Lael M. email: lyonker@mgh.harvard.edu organization: Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Department of Pediatrics – sequence: 22 givenname: Galit orcidid: 0000-0002-7680-9215 surname: Alter fullname: Alter, Galit email: galter@mgh.harvard.edu organization: Ragon Institute of MGH, MIT and Harvard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33589825$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktFqFDEUhoNUbLv6Al7IgCB6MTWZTCaZG2FZ1BYKha0W70Imc2Y2ZTZZk0zRtzfj1rZbliIhJCTff05yzn-MDqyzgNBrgk8IpuJjKAmrSY6LNElR0Zw-Q0eElVVOOP5xkPaYi1zUrDpExyFcY4wpZvULdEgpE7Uo2BFano5r59WQBdNbFUcPIXNdtvEugo7mBjJl22yj4soNrjc6kZfz5WW-cFd5kRnbTZSzaZfplRlaD_Ylet6pIcCr23WGvn_5_G1xmp9ffD1bzM9zXXERc615o0mpm0a0olRUtaTQrFO0LkteU9ExaJlq2rYGrlpddwKqBkRXNjVghRmdoU_buJuxWUOrwcb0EbnxZq38b-mUkbs31qxk726koISJgqcA728DePdzhBDl2gQNw6AsuDHIoqxTXUtOp1xvH6HXbvQ2fU8WDBPKOKbknurVADIVx6W8egoq5xVjnPAK14nK91A9WEiPTB3uTDre4U_28Gm0sDZ6r-DDjiAxEX7FXo0hyLPL5f-zF1e77LsH7ArUEFfBDeNkgLALvnnYmbuW_LNdAootoL0LwUN3hxAsJ2_Lrbdl8rb86-2knSHxSKRNVFPyVA8zPC2lW2lIeWwP_r59T6j-AKbbCns |
CitedBy_id | crossref_primary_10_7189_jogh_11_01010 crossref_primary_10_3390_ijms23147719 crossref_primary_10_1016_j_chom_2023_05_006 crossref_primary_10_1007_s12098_023_04928_8 crossref_primary_10_4049_jimmunol_2200272 crossref_primary_10_1016_j_celrep_2021_109773 crossref_primary_10_1038_s41586_025_08697_6 crossref_primary_10_1093_infdis_jiac119 crossref_primary_10_1172_JCI158190 crossref_primary_10_1172_JCI149633 crossref_primary_10_1016_j_ccm_2024_02_019 crossref_primary_10_3390_biomedicines11051455 crossref_primary_10_2147_JAA_S303309 crossref_primary_10_1038_s41467_023_43330_y crossref_primary_10_1186_s12879_022_07526_9 crossref_primary_10_1038_s41421_022_00480_5 crossref_primary_10_1016_j_medj_2021_08_001 crossref_primary_10_3390_vaccines10040492 crossref_primary_10_1186_s13052_024_01587_z crossref_primary_10_1542_peds_2021_051297 crossref_primary_10_1097_INF_0000000000003413 crossref_primary_10_3390_vaccines9091002 crossref_primary_10_4049_immunohorizons_2200029 crossref_primary_10_1093_ofid_ofae626 crossref_primary_10_1097_MOP_0000000000001013 crossref_primary_10_1016_j_diagmicrobio_2021_115539 crossref_primary_10_1016_j_xcrm_2022_100913 crossref_primary_10_1038_s41467_021_27595_9 crossref_primary_10_3233_NPM_220990 crossref_primary_10_1093_cei_uxac009 crossref_primary_10_1038_s41590_021_01089_8 crossref_primary_10_1001_jamanetworkopen_2022_1313 crossref_primary_10_1128_mbio_00902_23 crossref_primary_10_1128_mbio_03036_23 crossref_primary_10_2196_52713 crossref_primary_10_1093_lifemedi_lnae034 crossref_primary_10_1161_CIRCULATIONAHA_122_061025 crossref_primary_10_3389_fimmu_2023_1200456 crossref_primary_10_3390_cancers14174291 crossref_primary_10_4049_jimmunol_2100727 crossref_primary_10_3390_jcm11154363 crossref_primary_10_1038_s41577_022_00813_1 crossref_primary_10_1093_jpids_piad107 crossref_primary_10_3390_vaccines10020270 crossref_primary_10_1016_j_clim_2022_109209 crossref_primary_10_1055_a_1715_5027 crossref_primary_10_3389_fimmu_2023_1255003 crossref_primary_10_1128_msphere_00998_24 crossref_primary_10_1038_s41541_022_00575_w crossref_primary_10_37881_jmahs_221 crossref_primary_10_1016_j_jdcr_2022_02_015 crossref_primary_10_1038_s41584_021_00709_9 crossref_primary_10_1212_NXI_0000000000200331 crossref_primary_10_1016_j_xcrm_2022_100811 crossref_primary_10_1126_sciimmunol_abh1516 crossref_primary_10_1016_j_xcrm_2022_100653 crossref_primary_10_3346_jkms_2023_38_e181 crossref_primary_10_1097_JCMA_0000000000001137 crossref_primary_10_3390_pathogens12020329 crossref_primary_10_1038_s41590_023_01513_1 crossref_primary_10_3390_children9010041 crossref_primary_10_1007_s11886_024_02173_9 crossref_primary_10_1126_science_abq3773 crossref_primary_10_1016_j_jaci_2024_11_012 crossref_primary_10_1038_s41541_023_00791_y crossref_primary_10_1016_j_diagmicrobio_2021_115586 crossref_primary_10_1016_j_xcrm_2022_100848 crossref_primary_10_1089_vim_2021_0191 crossref_primary_10_1002_mco2_426 crossref_primary_10_1186_s43054_024_00316_9 crossref_primary_10_1126_scitranslmed_abq3059 crossref_primary_10_1097_JCMA_0000000000000969 crossref_primary_10_1016_j_jim_2023_113536 crossref_primary_10_1093_jpids_piac012 crossref_primary_10_1161_JAHA_123_032143 crossref_primary_10_1111_1751_7915_14018 crossref_primary_10_1172_JCI151520 crossref_primary_10_3389_fped_2022_790273 crossref_primary_10_1016_j_cell_2021_10_011 crossref_primary_10_1038_s41586_021_03792_w crossref_primary_10_4236_crcm_2021_109029 crossref_primary_10_1111_jpc_16033 crossref_primary_10_1126_scitranslmed_adf6598 crossref_primary_10_1080_08998280_2022_2084684 crossref_primary_10_3390_immuno4030015 crossref_primary_10_1016_j_celrep_2022_111544 crossref_primary_10_1016_j_cll_2021_10_004 crossref_primary_10_1016_j_celrep_2023_112326 crossref_primary_10_1038_s41390_023_02627_w crossref_primary_10_3390_cells11162526 crossref_primary_10_1016_S2666_5247_22_00391_3 crossref_primary_10_1016_j_chom_2022_10_010 crossref_primary_10_1136_bmjpo_2021_001063 crossref_primary_10_1177_2050313X211050891 crossref_primary_10_2139_ssrn_4088889 crossref_primary_10_3390_covid4090096 crossref_primary_10_54005_geneltip_1104257 crossref_primary_10_2174_011573398X267876231017072820 crossref_primary_10_1038_s41590_021_01051_8 crossref_primary_10_1097_ACI_0000000000000888 crossref_primary_10_1172_JCI183978 crossref_primary_10_1172_JCI155615 crossref_primary_10_1016_j_celrep_2022_111799 crossref_primary_10_1371_journal_ppat_1011569 crossref_primary_10_3389_fimmu_2023_1157702 crossref_primary_10_1016_j_celrep_2022_110345 crossref_primary_10_1097_ANA_0000000000000811 crossref_primary_10_1016_j_jacig_2024_100236 crossref_primary_10_1007_s40124_021_00257_6 crossref_primary_10_3389_fimmu_2023_1125960 crossref_primary_10_3390_vaccines10040591 crossref_primary_10_3390_life14030353 crossref_primary_10_3390_vaccines11010030 crossref_primary_10_3390_children11111278 crossref_primary_10_1038_s41590_021_01123_9 crossref_primary_10_1093_infdis_jiad115 crossref_primary_10_1038_s41467_024_45181_7 crossref_primary_10_1016_j_immuni_2022_01_014 crossref_primary_10_1038_s41598_021_00807_4 crossref_primary_10_1186_s12879_023_08412_8 crossref_primary_10_3390_ijms24065711 crossref_primary_10_1016_j_xcrm_2021_100431 crossref_primary_10_1093_jalm_jfab114 crossref_primary_10_1016_j_clinpr_2022_100139 crossref_primary_10_1016_j_cll_2021_10_002 |
Cites_doi | 10.3400/avd.sasvp01003 10.1016/j.jim.2014.12.004 10.1016/j.immuni.2020.07.020 10.1016/0169-7439(87)80084-9 10.1016/j.xcrm.2020.100189 10.1056/NEJMoa2021680 10.1111/j.1467-9868.2011.00771.x 10.1016/j.cell.2020.09.034 10.4049/jimmunol.174.9.5837 10.1038/s41577-020-0359-5 10.1016/j.jim.2019.07.002 10.1016/j.jim.2019.05.006 10.1172/jci.insight.138999 10.1038/ng.981 10.1038/s41591-020-0965-6 10.21105/joss.00861 10.1111/j.1365-2567.2004.01958.x 10.1016/B978-032304048-8.50035-9 10.1016/j.jim.2020.112832 10.1016/S0140-6736(20)31094-1 10.3389/fimmu.2019.01156 10.1016/S0140-6736(20)31103-X 10.1097/00006454-198501000-00012 10.1016/j.cell.2020.09.016 10.1016/j.jim.2010.12.016 10.1158/1535-7163.MCT-08-0201 10.15585/mmwr.mm6914e4 10.1161/CIRCULATIONAHA.120.048360 10.1038/labinvest.3780067 10.1046/j.1365-3083.2003.01220.x 10.1038/s41586-020-2598-9 10.4049/jimmunol.1300261 10.15585/mmwr.mm6932e2 10.1111/j.1365-3083.2003.01344.x 10.1038/nri982 10.1038/s41577-020-0407-1 10.1182/blood-2014-05-576835 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/s41591-021-01263-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints In Context Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1546-170X |
EndPage | 462 |
ExternalDocumentID | PMC8315827 A655717609 33589825 10_1038_s41591_021_01263_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Massachusetts Consortium on Pathogen Readiness Funding Award (no award number) – fundername: U.S. Department of Health & Human Services | Centers for Disease Control and Prevention (CDC) grantid: U01CK0009490 funderid: https://doi.org/10.13039/100000030 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: 3R37AI080289-11S1; U01CA260476; R01 AI146779 funderid: https://doi.org/10.13039/100000002 – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) grantid: Global Health Vaccine Accelerator Platform funderid: https://doi.org/10.13039/100000865 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: U19 AI135995 funderid: https://doi.org/10.13039/100000060 – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: 5K08HL143183 funderid: https://doi.org/10.13039/100000050 – fundername: Cystic Fibrosis Foundation (CF Foundation) grantid: YONKER18Q0 funderid: https://doi.org/10.13039/100000897 – fundername: Cystic Fibrosis Foundation (CF Foundation) grantid: YONKER18Q0 – fundername: NIAID NIH HHS grantid: U19 AI142790 – fundername: NHLBI NIH HHS grantid: K08 HL143183 – fundername: NIAID NIH HHS grantid: R01 AI146779 – fundername: NCEZID CDC HHS grantid: U01 CK000490 – fundername: NIAID NIH HHS grantid: U19 AI135995 – fundername: NICHD NIH HHS grantid: R01 HD100022 – fundername: NIGMS NIH HHS grantid: R01 GM092804 – fundername: ACL HHS grantid: U01CK000490 – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: 5K08HL143183 |
GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AETEA CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c678t-cc7bc14cbb8d84a3ad12c5fa39447938f5ed5abdd9e7adc9f8e6be8f4b9e0a053 |
IEDL.DBID | 7X7 |
ISSN | 1078-8956 1546-170X |
IngestDate | Thu Aug 21 17:17:16 EDT 2025 Fri Jul 11 09:17:43 EDT 2025 Fri Jul 25 09:02:07 EDT 2025 Tue Jun 17 21:42:55 EDT 2025 Thu Jun 12 23:29:28 EDT 2025 Tue Jun 10 20:40:31 EDT 2025 Fri Jun 27 04:00:24 EDT 2025 Fri Jun 27 04:25:58 EDT 2025 Thu May 22 21:12:16 EDT 2025 Mon Jul 21 05:35:41 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Tue Jul 01 03:53:43 EDT 2025 Fri Feb 21 02:37:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c678t-cc7bc14cbb8d84a3ad12c5fa39447938f5ed5abdd9e7adc9f8e6be8f4b9e0a053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contribution YCB, LMY and GA analyzed and interpreted the data. YCB, TZ, SF CA, JB, JK, ARH and DI performed experiments. CW and DAL performed the computational analysis. AGE, AF, LRB, EJN, LRB, AEW, EWB, ETR, RC, BDJ and LMY collected the samples and supervised and managed the clinical data. ESF produced SARS-CoV-2 and human coronavirus antigens. LMY and GA supervised the project. YCB and GA drafted the manuscript. All authors critically reviewed the manuscript. |
ORCID | 0000-0002-7489-0232 0000-0002-8881-1849 0000-0001-7044-5257 0000-0002-3844-3056 0000-0003-2307-3379 0000-0003-0846-4611 0000-0002-7680-9215 0000-0003-4860-4121 0000-0002-0050-989X 0000-0001-7337-6306 0000-0002-2134-0261 0000-0001-7347-2082 0000-0003-1282-8211 |
OpenAccessLink | https://www.nature.com/articles/s41591-021-01263-3.pdf |
PMID | 33589825 |
PQID | 2501357031 |
PQPubID | 33975 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8315827 proquest_miscellaneous_2490124735 proquest_journals_2501357031 gale_infotracmisc_A655717609 gale_infotracgeneralonefile_A655717609 gale_infotracacademiconefile_A655717609 gale_incontextgauss_ISR_A655717609 gale_incontextgauss_IOV_A655717609 gale_healthsolutions_A655717609 pubmed_primary_33589825 crossref_primary_10_1038_s41591_021_01263_3 crossref_citationtrail_10_1038_s41591_021_01263_3 springer_journals_10_1038_s41591_021_01263_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature medicine |
PublicationTitleAbbrev | Nat Med |
PublicationTitleAlternate | Nat Med |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Godfred-CatoSCOVID-19-associated multisystem inflammatory syndrome in children—United States, March-July 2020MMWR Morb. Mortal. Wkly. Rep.202069107410801:CAS:528:DC%2BB3cXhs12gur3E10.15585/mmwr.mm6932e2 NagelkerkeSQInhibition of FcγR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcγRIIb in human macrophagesBlood2014124370937181:CAS:528:DC%2BC2MXlvFek10.1182/blood-2014-05-576835 HamreRFarstadINBrandtzaegPMortonHCExpression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR γ chain on myeloid cells in blood and tissueScand. J. Immunol.2003575065161:CAS:528:DC%2BD3sXlsVKku7w%3D10.1046/j.1365-3083.2003.01220.x Weisberg, S. P. et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat. Immunol. 22, 25–31 (2020). Lima, R. et al. Establishment of a pediatric COVID-19 biorepository: unique considerations and opportunities for studying the impact of the COVID-19 pandemic on children. BMC Med. Res. Methodol.20, 228 (2020). WoofJMKerrMAIgA function—variations on a themeImmunology20041131751771:CAS:528:DC%2BD2cXot1Khsr8%3D10.1111/j.1365-2567.2004.01958.x ZoharTAlterGDissecting antibody-mediated protection against SARS-CoV-2Nat. Rev. Immunol.2020203923941:CAS:528:DC%2BB3cXhtFWltLvP10.1038/s41577-020-0359-5 TibshiraniRRegression shrinkage and selection via the lasso: a retrospectiveJ. R. Stat. Soc. B20117327328210.1111/j.1467-9868.2011.00771.x AleydEIgA enhances NETosis and release of neutrophil extracellular traps by polymorphonuclear cells via Fcα receptor IJ. Immunol.2014192237423831:CAS:528:DC%2BC2cXivFOrtbg%3D10.4049/jimmunol.1300261 Pattemore, P. K. & Jennings, L. C. in Pediatric Respiratory Medicine 2nd ed. (eds Taussig L. & Landau, L.) 435–452 (Mosby, 2008). Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature587, 220–224 (2020). FeldsteinLRMultisystem inflammatory syndrome in U.S. children and adolescentsN. Engl. J. Med.20203833343461:CAS:528:DC%2BB3cXhsFWrs7jI10.1056/NEJMoa2021680 Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect. Dis.20, 911–919 (2020). Yonker, L. M. et al. Pediatric SARS-CoV-2: clinical presentation, infectivity, and immune responses. J. Pediatr.227, 45–52 (2020). Veras, F. P. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med.217, e20201129 (2020). WeemaesCDevelopment of immunoglobulin A in infancy and childhoodScand. J. Immunol.2003586426481:CAS:528:DC%2BD2cXht1ekuw%3D%3D10.1111/j.1365-3083.2003.01344.x Gruber, C. N. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell183, 982–995 (2020). AckermanMEA robust, high-throughput assay to determine the phagocytic activity of clinical antibody samplesJ. Immunol. Methods20113668191:CAS:528:DC%2BC3MXjsFCksLc%3D10.1016/j.jim.2010.12.016 LadnerJTEpitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronavirusesCell Rep. Med.2021210018910.1016/j.xcrm.2020.100189 LaforgeMTissue damage from neutrophil-induced oxidative stress in COVID-19Nat. Rev. Immunol.2020205155161:CAS:528:DC%2BB3cXhsVygtLvO10.1038/s41577-020-0407-1 KhorCCGenome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki diseaseNat. Genet.201143124112461:CAS:528:DC%2BC3MXhsVKjsbrK10.1038/ng.981 Witko-SarsatVRieuPDescamps-LatschaBLesavrePHalbwachs-MecarelliLNeutrophils: molecules, functions and pathophysiological aspectsLab. Invest.2000806176531:CAS:528:DC%2BD3cXktFGjt7Y%3D10.1038/labinvest.3780067 MasonWHJordanSCSakaiRTakahashiMBernsteinBCirculating immune complexes in Kawasaki syndromePediatr. Infect. Dis.1985448511:STN:280:DyaL2M7ht1yktA%3D%3D10.1097/00006454-198501000-00012 Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 26, 1701–1707 (2020). FischingerSA high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies to induce complement activationJ. Immunol. Methods20194731126301:CAS:528:DC%2BC1MXhsFWmtbjJ10.1016/j.jim.2019.07.002 WoldSEsbensenKGeladiPPrincipal component analysisChemom. Intell. Lab. Syst.1987237521:CAS:528:DyaL1cXjtVyjsw%3D%3D10.1016/0169-7439(87)80084-9 TakahashiKOharasekiTYokouchiYHirutaNNaoeSKawasaki disease as a systemic vasculitis in childhoodAnn. Vasc. Dis.2010317318110.3400/avd.sasvp01003 RichardsJOOptimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cellsMol. Cancer Ther.20087251725271:CAS:528:DC%2BD1cXhtVWksLzJ10.1158/1535-7163.MCT-08-0201 Yu, H. Q. et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J.56, 2001526 (2020). AbeJGene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki diseaseJ. Immunol.2005174583758451:CAS:528:DC%2BD2MXjsVeqs7k%3D10.4049/jimmunol.174.9.5837 Belhadjer, Z. et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation142, 429–436 (2020). KarstenCBA versatile high-throughput assay to characterize antibody-mediated neutrophil phagocytosisJ. Immunol. Methods201947146561:CAS:528:DC%2BC1MXhtFOku77E10.1016/j.jim.2019.05.006 LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med.202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM10.1038/s41591-020-0965-6 McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018). Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI Insight5, e138999 (2020). FagarasanSHonjoTIntestinal IgA synthesis: regulation of front-line body defencesNat. Rev. Immunol.2003363721:CAS:528:DC%2BD3sXovFY%3D10.1038/nri982 CDC COVID-19 Response Team. Coronavirus disease 2019 in children—United States, February 12–April 2, 2020. MMWR Morb. Mortal. Wkly. Rep.69, 422–426 (2020). RiphagenSGomezXGonzalez-MartinezCWilkinsonNTheocharisPHyperinflammatory shock in children during COVID-19 pandemicLancet2020395160716081:CAS:528:DC%2BB3cXovFKmsLY%3D10.1016/S0140-6736(20)31094-1 Diorio, C. et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J. Clin. Invest. 130, 5967–5975 (2020). MenikouSLangfordPRLevinMKawasaki disease: the role of immune complexes revisitedFront. Immunol.20191011561:CAS:528:DC%2BB3cXhs1ahur4%3D10.3389/fimmu.2019.01156 Barnes, B. J. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med.217, e20200652 (2020). Consiglio, C. R. et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell183, 968–981 (2020). RoyVSARS-CoV-2-specific ELISA developmentJ. Immunol. Methods2020484-4851128321:CAS:528:DC%2BB3cXhslygsLnM10.1016/j.jim.2020.112832 LiuYNeutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19J. Infect.202081e6e12326634857832264 VerdoniLAn outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort studyLancet2020395177117781:CAS:528:DC%2BB3cXptlKmsL8%3D10.1016/S0140-6736(20)31103-X Atyeo, C. et al. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity53, 524–532 (2020). MahanAEA method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresisJ. Immunol. Methods201541734441:CAS:528:DC%2BC2cXitFygt73E10.1016/j.jim.2014.12.004 Ibarrondo, F. J. et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19. N. Engl. J. Med.383, 1085–1087 (2020). K Takahashi (1263_CR28) 2010; 3 L Verdoni (1263_CR6) 2020; 395 T Zohar (1263_CR10) 2020; 20 AE Mahan (1263_CR45) 2015; 417 V Roy (1263_CR41) 2020; 484-485 CC Khor (1263_CR31) 2011; 43 1263_CR17 1263_CR39 S Fagarasan (1263_CR20) 2003; 3 1263_CR37 1263_CR16 1263_CR38 1263_CR13 1263_CR35 1263_CR11 E Aleyd (1263_CR22) 2014; 192 CB Karsten (1263_CR44) 2019; 471 M Laforge (1263_CR14) 2020; 20 J Abe (1263_CR33) 2005; 174 R Hamre (1263_CR12) 2003; 57 C Weemaes (1263_CR26) 2003; 58 QX Long (1263_CR36) 2020; 26 S Wold (1263_CR47) 1987; 2 1263_CR19 Y Liu (1263_CR24) 2020; 81 S Menikou (1263_CR18) 2019; 10 JM Woof (1263_CR21) 2004; 113 1263_CR40 LR Feldstein (1263_CR8) 2020; 383 JO Richards (1263_CR30) 2008; 7 S Fischinger (1263_CR42) 2019; 473 1263_CR1 S Riphagen (1263_CR7) 2020; 395 1263_CR3 1263_CR2 1263_CR27 SQ Nagelkerke (1263_CR32) 2014; 124 1263_CR46 1263_CR4 1263_CR25 S Godfred-Cato (1263_CR34) 2020; 69 ME Ackerman (1263_CR43) 2011; 366 1263_CR23 1263_CR9 V Witko-Sarsat (1263_CR15) 2000; 80 WH Mason (1263_CR29) 1985; 4 R Tibshirani (1263_CR48) 2011; 73 JT Ladner (1263_CR5) 2021; 2 |
References_xml | – reference: Gruber, C. N. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell183, 982–995 (2020). – reference: KarstenCBA versatile high-throughput assay to characterize antibody-mediated neutrophil phagocytosisJ. Immunol. Methods201947146561:CAS:528:DC%2BC1MXhtFOku77E10.1016/j.jim.2019.05.006 – reference: VerdoniLAn outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort studyLancet2020395177117781:CAS:528:DC%2BB3cXptlKmsL8%3D10.1016/S0140-6736(20)31103-X – reference: Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI Insight5, e138999 (2020). – reference: MasonWHJordanSCSakaiRTakahashiMBernsteinBCirculating immune complexes in Kawasaki syndromePediatr. Infect. Dis.1985448511:STN:280:DyaL2M7ht1yktA%3D%3D10.1097/00006454-198501000-00012 – reference: ZoharTAlterGDissecting antibody-mediated protection against SARS-CoV-2Nat. Rev. Immunol.2020203923941:CAS:528:DC%2BB3cXhtFWltLvP10.1038/s41577-020-0359-5 – reference: Veras, F. P. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med.217, e20201129 (2020). – reference: WeemaesCDevelopment of immunoglobulin A in infancy and childhoodScand. J. Immunol.2003586426481:CAS:528:DC%2BD2cXht1ekuw%3D%3D10.1111/j.1365-3083.2003.01344.x – reference: RichardsJOOptimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cellsMol. Cancer Ther.20087251725271:CAS:528:DC%2BD1cXhtVWksLzJ10.1158/1535-7163.MCT-08-0201 – reference: FeldsteinLRMultisystem inflammatory syndrome in U.S. children and adolescentsN. Engl. J. Med.20203833343461:CAS:528:DC%2BB3cXhsFWrs7jI10.1056/NEJMoa2021680 – reference: MahanAEA method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresisJ. Immunol. Methods201541734441:CAS:528:DC%2BC2cXitFygt73E10.1016/j.jim.2014.12.004 – reference: Weisberg, S. P. et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat. Immunol. 22, 25–31 (2020). – reference: Belhadjer, Z. et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation142, 429–436 (2020). – reference: Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect. Dis.20, 911–919 (2020). – reference: WoofJMKerrMAIgA function—variations on a themeImmunology20041131751771:CAS:528:DC%2BD2cXot1Khsr8%3D10.1111/j.1365-2567.2004.01958.x – reference: Godfred-CatoSCOVID-19-associated multisystem inflammatory syndrome in children—United States, March-July 2020MMWR Morb. Mortal. Wkly. Rep.202069107410801:CAS:528:DC%2BB3cXhs12gur3E10.15585/mmwr.mm6932e2 – reference: Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 26, 1701–1707 (2020). – reference: LaforgeMTissue damage from neutrophil-induced oxidative stress in COVID-19Nat. Rev. Immunol.2020205155161:CAS:528:DC%2BB3cXhsVygtLvO10.1038/s41577-020-0407-1 – reference: Yonker, L. M. et al. Pediatric SARS-CoV-2: clinical presentation, infectivity, and immune responses. J. Pediatr.227, 45–52 (2020). – reference: Pattemore, P. K. & Jennings, L. C. in Pediatric Respiratory Medicine 2nd ed. (eds Taussig L. & Landau, L.) 435–452 (Mosby, 2008). – reference: WoldSEsbensenKGeladiPPrincipal component analysisChemom. Intell. Lab. Syst.1987237521:CAS:528:DyaL1cXjtVyjsw%3D%3D10.1016/0169-7439(87)80084-9 – reference: Barnes, B. J. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med.217, e20200652 (2020). – reference: AbeJGene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki diseaseJ. Immunol.2005174583758451:CAS:528:DC%2BD2MXjsVeqs7k%3D10.4049/jimmunol.174.9.5837 – reference: FagarasanSHonjoTIntestinal IgA synthesis: regulation of front-line body defencesNat. Rev. Immunol.2003363721:CAS:528:DC%2BD3sXovFY%3D10.1038/nri982 – reference: Yu, H. Q. et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J.56, 2001526 (2020). – reference: LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med.202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM10.1038/s41591-020-0965-6 – reference: Diorio, C. et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J. Clin. Invest. 130, 5967–5975 (2020). – reference: Consiglio, C. R. et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell183, 968–981 (2020). – reference: RoyVSARS-CoV-2-specific ELISA developmentJ. Immunol. Methods2020484-4851128321:CAS:528:DC%2BB3cXhslygsLnM10.1016/j.jim.2020.112832 – reference: NagelkerkeSQInhibition of FcγR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcγRIIb in human macrophagesBlood2014124370937181:CAS:528:DC%2BC2MXlvFek10.1182/blood-2014-05-576835 – reference: Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature587, 220–224 (2020). – reference: TakahashiKOharasekiTYokouchiYHirutaNNaoeSKawasaki disease as a systemic vasculitis in childhoodAnn. Vasc. Dis.2010317318110.3400/avd.sasvp01003 – reference: KhorCCGenome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki diseaseNat. Genet.201143124112461:CAS:528:DC%2BC3MXhsVKjsbrK10.1038/ng.981 – reference: AckermanMEA robust, high-throughput assay to determine the phagocytic activity of clinical antibody samplesJ. Immunol. Methods20113668191:CAS:528:DC%2BC3MXjsFCksLc%3D10.1016/j.jim.2010.12.016 – reference: LiuYNeutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19J. Infect.202081e6e12326634857832264 – reference: McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018). – reference: Ibarrondo, F. J. et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19. N. Engl. J. Med.383, 1085–1087 (2020). – reference: CDC COVID-19 Response Team. Coronavirus disease 2019 in children—United States, February 12–April 2, 2020. MMWR Morb. Mortal. Wkly. Rep.69, 422–426 (2020). – reference: RiphagenSGomezXGonzalez-MartinezCWilkinsonNTheocharisPHyperinflammatory shock in children during COVID-19 pandemicLancet2020395160716081:CAS:528:DC%2BB3cXovFKmsLY%3D10.1016/S0140-6736(20)31094-1 – reference: TibshiraniRRegression shrinkage and selection via the lasso: a retrospectiveJ. R. Stat. Soc. B20117327328210.1111/j.1467-9868.2011.00771.x – reference: Atyeo, C. et al. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity53, 524–532 (2020). – reference: Lima, R. et al. Establishment of a pediatric COVID-19 biorepository: unique considerations and opportunities for studying the impact of the COVID-19 pandemic on children. BMC Med. Res. Methodol.20, 228 (2020). – reference: MenikouSLangfordPRLevinMKawasaki disease: the role of immune complexes revisitedFront. Immunol.20191011561:CAS:528:DC%2BB3cXhs1ahur4%3D10.3389/fimmu.2019.01156 – reference: Witko-SarsatVRieuPDescamps-LatschaBLesavrePHalbwachs-MecarelliLNeutrophils: molecules, functions and pathophysiological aspectsLab. Invest.2000806176531:CAS:528:DC%2BD3cXktFGjt7Y%3D10.1038/labinvest.3780067 – reference: FischingerSA high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies to induce complement activationJ. Immunol. Methods20194731126301:CAS:528:DC%2BC1MXhsFWmtbjJ10.1016/j.jim.2019.07.002 – reference: AleydEIgA enhances NETosis and release of neutrophil extracellular traps by polymorphonuclear cells via Fcα receptor IJ. Immunol.2014192237423831:CAS:528:DC%2BC2cXivFOrtbg%3D10.4049/jimmunol.1300261 – reference: HamreRFarstadINBrandtzaegPMortonHCExpression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR γ chain on myeloid cells in blood and tissueScand. J. Immunol.2003575065161:CAS:528:DC%2BD3sXlsVKku7w%3D10.1046/j.1365-3083.2003.01220.x – reference: LadnerJTEpitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronavirusesCell Rep. Med.2021210018910.1016/j.xcrm.2020.100189 – volume: 3 start-page: 173 year: 2010 ident: 1263_CR28 publication-title: Ann. Vasc. Dis. doi: 10.3400/avd.sasvp01003 – ident: 1263_CR23 – ident: 1263_CR17 – volume: 417 start-page: 34 year: 2015 ident: 1263_CR45 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2014.12.004 – ident: 1263_CR11 doi: 10.1016/j.immuni.2020.07.020 – volume: 2 start-page: 37 year: 1987 ident: 1263_CR47 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 – ident: 1263_CR25 – ident: 1263_CR40 – volume: 2 start-page: 100189 year: 2021 ident: 1263_CR5 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2020.100189 – volume: 383 start-page: 334 year: 2020 ident: 1263_CR8 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2021680 – ident: 1263_CR35 – volume: 73 start-page: 273 year: 2011 ident: 1263_CR48 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2011.00771.x – volume: 81 start-page: e6 year: 2020 ident: 1263_CR24 publication-title: J. Infect. – ident: 1263_CR37 doi: 10.1016/j.cell.2020.09.034 – volume: 174 start-page: 5837 year: 2005 ident: 1263_CR33 publication-title: J. Immunol. doi: 10.4049/jimmunol.174.9.5837 – volume: 20 start-page: 392 year: 2020 ident: 1263_CR10 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0359-5 – volume: 473 start-page: 112630 year: 2019 ident: 1263_CR42 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2019.07.002 – volume: 471 start-page: 46 year: 2019 ident: 1263_CR44 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2019.05.006 – ident: 1263_CR3 – ident: 1263_CR16 doi: 10.1172/jci.insight.138999 – volume: 43 start-page: 1241 year: 2011 ident: 1263_CR31 publication-title: Nat. Genet. doi: 10.1038/ng.981 – volume: 26 start-page: 1200 year: 2020 ident: 1263_CR36 publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – ident: 1263_CR46 doi: 10.21105/joss.00861 – volume: 113 start-page: 175 year: 2004 ident: 1263_CR21 publication-title: Immunology doi: 10.1111/j.1365-2567.2004.01958.x – ident: 1263_CR27 doi: 10.1016/B978-032304048-8.50035-9 – volume: 484-485 start-page: 112832 year: 2020 ident: 1263_CR41 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2020.112832 – volume: 395 start-page: 1607 year: 2020 ident: 1263_CR7 publication-title: Lancet doi: 10.1016/S0140-6736(20)31094-1 – ident: 1263_CR39 – volume: 10 start-page: 1156 year: 2019 ident: 1263_CR18 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01156 – volume: 395 start-page: 1771 year: 2020 ident: 1263_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(20)31103-X – volume: 4 start-page: 48 year: 1985 ident: 1263_CR29 publication-title: Pediatr. Infect. Dis. doi: 10.1097/00006454-198501000-00012 – ident: 1263_CR19 doi: 10.1016/j.cell.2020.09.016 – volume: 366 start-page: 8 year: 2011 ident: 1263_CR43 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2010.12.016 – volume: 7 start-page: 2517 year: 2008 ident: 1263_CR30 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-08-0201 – ident: 1263_CR1 doi: 10.15585/mmwr.mm6914e4 – ident: 1263_CR9 doi: 10.1161/CIRCULATIONAHA.120.048360 – volume: 80 start-page: 617 year: 2000 ident: 1263_CR15 publication-title: Lab. Invest. doi: 10.1038/labinvest.3780067 – volume: 57 start-page: 506 year: 2003 ident: 1263_CR12 publication-title: Scand. J. Immunol. doi: 10.1046/j.1365-3083.2003.01220.x – ident: 1263_CR4 doi: 10.1038/s41586-020-2598-9 – volume: 192 start-page: 2374 year: 2014 ident: 1263_CR22 publication-title: J. Immunol. doi: 10.4049/jimmunol.1300261 – volume: 69 start-page: 1074 year: 2020 ident: 1263_CR34 publication-title: MMWR Morb. Mortal. Wkly. Rep. doi: 10.15585/mmwr.mm6932e2 – volume: 58 start-page: 642 year: 2003 ident: 1263_CR26 publication-title: Scand. J. Immunol. doi: 10.1111/j.1365-3083.2003.01344.x – ident: 1263_CR38 – ident: 1263_CR2 – volume: 3 start-page: 63 year: 2003 ident: 1263_CR20 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri982 – volume: 20 start-page: 515 year: 2020 ident: 1263_CR14 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0407-1 – volume: 124 start-page: 3709 year: 2014 ident: 1263_CR32 publication-title: Blood doi: 10.1182/blood-2014-05-576835 – ident: 1263_CR13 |
SSID | ssj0003059 |
Score | 2.6410694 |
Snippet | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory... The SARS-CoV-2 pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 454 |
SubjectTerms | 631/250/2152/2153 631/250/2152/2153/1291 631/250/255 631/250/255/2514 692/420 Adolescent Adult Adults Age of Onset Aged Antibodies Antibodies, Neutralizing - analysis Antibodies, Neutralizing - blood Antibodies, Viral - analysis Antibodies, Viral - blood Asymptomatic Infections Biomedical and Life Sciences Biomedicine Cancer Research Carrier State - blood Carrier State - epidemiology Child Child, Preschool Children Cohort Studies Complications and side effects Coronaviridae Coronaviruses COVID-19 COVID-19 - blood COVID-19 - epidemiology COVID-19 - pathology Demographic aspects Epidemics Female Genetic aspects Humans Immune response Immunity - physiology Immunoglobulin A Immunoglobulin A - blood Immunoglobulin G Immunoglobulin G - blood Infant Infant, Newborn Infectious Diseases Inflammation Leukocytes (neutrophilic) Male Metabolic Diseases Middle Aged Molecular Medicine Monocytes Multisystem inflammatory syndrome in children Neurosciences Pandemics Pathogenesis Phenotypes Respiratory diseases Respiratory failure SARS-CoV-2 - immunology Serology Severe acute respiratory syndrome coronavirus 2 Severity of Illness Index Systemic Inflammatory Response Syndrome - blood Systemic Inflammatory Response Syndrome - epidemiology Viral diseases Young Adult |
Title | Humoral signatures of protective and pathological SARS-CoV-2 infection in children |
URI | https://link.springer.com/article/10.1038/s41591-021-01263-3 https://www.ncbi.nlm.nih.gov/pubmed/33589825 https://www.proquest.com/docview/2501357031 https://www.proquest.com/docview/2490124735 https://pubmed.ncbi.nlm.nih.gov/PMC8315827 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgE4gLgvEVGCMgBAewlsRx4pxQO60aSBTUsqk3y3acgYSSQdoD_z3vOU5GKpg4NZJ_kZq8T8fv_R4hL9PYQJpvc1oWGjYoJmFUQVyhRmid2cjwVLtqi3l2cpp-WPGV_-DW-rLK3ic6R102Br-RH0KojhnSRcXvLn5QnBqFp6t-hMZ1sovUZajV-WrYcKEuF13NoaACNgK-aSZi4rCFwIU1PwluppOMUTYKTNvu-Y_4tF07uXWA6uLS7A657RPKcNJpwF1yzdZ75EY3YvLXHrn50R-e3yMLEB3244dYs-H4PNuwqULP1ABeL1R1GeKI4t4hhsvJYkmPmjOahH3VVg1XYd8Cfp-czo6_HJ1QP1KBGohKa2pMrk2cGq1FKVLFVBknhlcK22PBUkXFbcmVLsvC5qo0RSVspq2oUl3YSIHBPiA7dVPbRyQ0kWFFxXisIIOETEMryLSyskozk0aa2YDE_fuUxvON49iL79KdezMhOxlIkIF0MpAsIG-Gey46to0r0c9QTLLrGB1MVU4yzmGXmkVFQF44BBJd1FhJc642bSvffzr7D9ByMQK99qCqgacwyncvwLtAAq0R8tUIed7Rh_8NuD8Cgl2b8XKvfdL7lVZeWkFAng_LeCfWytW22QAmhRwvwZHSAXnYKevwMhnjohAJrOQjNR4AyDY-Xqm_fXWs44LFXCR5QN72Cn_5t_4to8dXP8UTcitxNohFfftkZ_1zY59ClrfWB86UD8juZDadzuF3ejz_vPgNHrlOaQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIo4XBOUKFGoQxwNYTewczgNCq0K1Sw-k7aF9M7bjFCSUFLIr1D_Fb2QmV8kKKl76tpK_SIln_M3Meg5CnoeBBTffJSxLDQQolgumwa4wK42JnW-j0NTZFvvx-Cj8OItmK-RXVwuDaZUdJ9ZEnZUW_yPfBFMdCGwXFbw7_c5wahTernYjNBq12HFnPyFkq95O3oN8X3C-_eFwa8zaqQLMAjHPmbWJsUFojZGZDLXQWcBtlGusEAVllXnkskibLEtdojOb5tLFxsk8NKnztY9TIoDyr4Dh9THYS2Z9gIdnJ21yHCWTEHi0RTq-kJsVGErMMeIYvPNYMDEwhMvm4A97uJyruXRhW9vB7VvkZuvA0lGjcbfJiivWyNVmpOXZGrm2117W3yFTUBWs_6eYI1L3D61omdO2MwSwLNVFRnEkckfA9GA0PWBb5THjtMsSK-AX7UrO75KjS9nse2S1KAv3gFDrW5HmIgo0eKzg2RgNnl2c5WFsQ98I55Gg209l2_7mOGbjm6rv2YVUjQwUyEDVMlDCI6_7Z06b7h4XojdQTKqpUO2pQY3iKIKoOPZTjzyrEdhYo8DMnRO9qCo1-XT8H6CD6QD0qgXlJXyF1W21BOwFNuwaIF8OkCdNu_K_AdcHQOARO1zutE-1PFap81Pnkaf9Mj6JuXmFKxeACcGn5DjC2iP3G2XtN1OISKaSw0oyUOMegN3NhyvF1y91l3MpgkjyxCNvOoU_f61_y-jhxV-xQa6PD_d21e5kf-cRucHr84gJhetkdf5j4R6Dhzk3T-pjTcnny-aR37sAi34 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVlRcEJRXoNCAeBzA2sTOwzkgtLRddSks1W5b9WZsxylIKClkV6h_jV_HTF4lK6i49LaSv0iJZzyP9cw3hDwLfANhvo1pmmhIUAzjVIFfoUZoHVnPhIGuqi0m0d5R8P4kPFkhv9peGCyrbG1iZajTwuB_5ANw1T5Huih_kDVlEQc7o7dn3ylOkMKb1nacRq0i-_b8J6Rv5ZvxDsj6OWOj3cPtPdpMGKAGjPScGhNr4wdGa5GKQHGV-syEmcJuUVBckYU2DZVO08TGKjVJJmykrcgCnVhPeTgxAsz_WoxZ0SpZe7c7OZh2fgBOUlJXPAoqIA1pWnY8LgYluE2sOGKYyrOIU95zi8vO4Q_vuFy5uXR9W3nF0U1yowln3WGtf7fIis03yLV6wOX5Bln_2Fzd3yZTUBxkA3CxYqRiEy3dInMbngiwua7KUxcHJLfm2J0NpzO6XRxT5rY1Yzn8ctsG9Dvk6Eq2-y5ZzYvc3ieu8QxPMh76CuJXiHO0gjgvSrMgMoGnuXWI3-6nNA3bOQ7d-CarW3cuZC0DCTKQlQwkd8ir7pmzmuvjUvQWiknW_aqdoZDDKAwhR468xCFPKwTSbOSosKdqUZZy_On4P0CzaQ_0sgFlBXyFUU3vBOwF0nf1kC96yNOavPxvwM0eEKyK6S-32icbq1bKizPokCfdMj6JlXq5LRaACSDCZDjQ2iH3amXtNpPzUCSCwUrcU-MOgFzn_ZX865eK81xwPxQsdsjrVuEvXuvfMnpw-VdskXWwIfLDeLL_kFxn1XHE6sJNsjr_sbCPINyc68fNuXbJ56s2Jb8BJtWRGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Humoral+signatures+of+protective+and+pathological+SARS-CoV-2+infection+in+children&rft.jtitle=Nature+medicine&rft.au=Bartsch%2C+Yannic+C&rft.au=Wang%2C+Chuangqi&rft.au=Zohar%2C+Tomer&rft.au=Fischinger%2C+Stephanie&rft.date=2021-03-01&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=27&rft.issue=3&rft.spage=454&rft.epage=462&rft_id=info:doi/10.1038%2Fs41591-021-01263-3&rft_id=info%3Apmid%2F33589825&rft.externalDocID=PMC8315827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |