Delayed production of neutralizing antibodies correlates with fatal COVID-19
Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asym...
Saved in:
Published in | Nature medicine Vol. 27; no. 7; pp. 1178 - 1186 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.07.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.
A longitudinal analysis of humoral immune responses in patients with COVID-19 with varying disease severities reveals that mortality does not correlate with antiviral antibody levels but, instead, with slower seroconversion. |
---|---|
AbstractList | Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production. Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production. A longitudinal analysis of humoral immune responses in patients with COVID-19 with varying disease severities reveals that mortality does not correlate with antiviral antibody levels but, instead, with slower seroconversion. Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production. Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production. A longitudinal analysis of humoral immune responses in patients with COVID-19 with varying disease severities reveals that mortality does not correlate with antiviral antibody levels but, instead, with slower seroconversion. |
Audience | Academic |
Author | Mohanty, Subhasis Yildirim, Inci Lucas, Carolina Grubaugh, Nathan D. Wong, Patrick Oh, Ji Eun Wisnewski, Adam V. Omer, Saad B. Moore, Adam J. Israelow, Benjamin Vogels, Chantal B. F. Casanovas-Massana, Arnau Park, Annsea Farhadian, Shelli Shaw, Albert C. Sundaram, Maria E. Wyllie, Anne L. Lu, Peiwen Muenker, M. Catherine Campbell, Melissa Mao, Tianyang Venkataraman, Arvind Iwasaki, Akiko Ko, Albert I. Silva, Julio Liu, Feimei Chun, Hyung J. Chang, C-Hong Zell, Joseph Lee, Alfred I. Schulz, Wade L. Klein, Jon Tokuyama, Maria Dela Cruz, Charles Ring, Aaron M. Huang, Jiefang Fournier, John B. |
AuthorAffiliation | 1 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA 5 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA 11 Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA 4 Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA 3 Centre for Vaccine Preventable Diseases, University of Toronto Dalla Lana School of Public Health, Toronto, ON, Canada 8 Department of Hematology, Yale University School of Medicine, New Haven, CT, USA 13 Yale Institute for Global Health, Yale University, New Haven, CT, USA 2 ICES, Toronto, ON, Canada 12 Department of Pediatric, Section of Infectious Diseases and Global Health, Yale University School of Medicine, New Haven, CT, USA 9 Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA 14 Howard Hughes Medical Institute, Chevy Chase, |
AuthorAffiliation_xml | – name: 11 Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA – name: 1 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA – name: 6 Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA – name: 8 Department of Hematology, Yale University School of Medicine, New Haven, CT, USA – name: 10 Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA – name: 13 Yale Institute for Global Health, Yale University, New Haven, CT, USA – name: 14 Howard Hughes Medical Institute, Chevy Chase, MD, USA – name: 5 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA – name: 9 Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA – name: 2 ICES, Toronto, ON, Canada – name: 3 Centre for Vaccine Preventable Diseases, University of Toronto Dalla Lana School of Public Health, Toronto, ON, Canada – name: 12 Department of Pediatric, Section of Infectious Diseases and Global Health, Yale University School of Medicine, New Haven, CT, USA – name: 4 Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA – name: 7 Department of Internal Medicine/Section General Medicine, Yale University School of Medicine, New Haven, CT, USA |
Author_xml | – sequence: 1 givenname: Carolina orcidid: 0000-0003-4590-2756 surname: Lucas fullname: Lucas, Carolina organization: Department of Immunobiology, Yale University School of Medicine – sequence: 2 givenname: Jon orcidid: 0000-0002-3552-7684 surname: Klein fullname: Klein, Jon organization: Department of Immunobiology, Yale University School of Medicine – sequence: 3 givenname: Maria E. surname: Sundaram fullname: Sundaram, Maria E. organization: ICES, Centre for Vaccine Preventable Diseases, University of Toronto Dalla Lana School of Public Health – sequence: 4 givenname: Feimei orcidid: 0000-0003-2663-6544 surname: Liu fullname: Liu, Feimei organization: Department of Immunobiology, Yale University School of Medicine – sequence: 5 givenname: Patrick surname: Wong fullname: Wong, Patrick organization: Department of Immunobiology, Yale University School of Medicine – sequence: 6 givenname: Julio orcidid: 0000-0001-8212-7440 surname: Silva fullname: Silva, Julio organization: Department of Immunobiology, Yale University School of Medicine – sequence: 7 givenname: Tianyang orcidid: 0000-0001-9251-8592 surname: Mao fullname: Mao, Tianyang organization: Department of Immunobiology, Yale University School of Medicine – sequence: 8 givenname: Ji Eun orcidid: 0000-0003-2511-7064 surname: Oh fullname: Oh, Ji Eun organization: Department of Immunobiology, Yale University School of Medicine – sequence: 9 givenname: Subhasis surname: Mohanty fullname: Mohanty, Subhasis organization: Department of Immunobiology, Yale University School of Medicine, Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 10 givenname: Jiefang surname: Huang fullname: Huang, Jiefang organization: Department of Immunobiology, Yale University School of Medicine, Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 11 givenname: Maria surname: Tokuyama fullname: Tokuyama, Maria organization: Department of Immunobiology, Yale University School of Medicine – sequence: 12 givenname: Peiwen orcidid: 0000-0001-6118-872X surname: Lu fullname: Lu, Peiwen organization: Department of Immunobiology, Yale University School of Medicine – sequence: 13 givenname: Arvind surname: Venkataraman fullname: Venkataraman, Arvind organization: Department of Immunobiology, Yale University School of Medicine – sequence: 14 givenname: Annsea surname: Park fullname: Park, Annsea organization: Department of Immunobiology, Yale University School of Medicine – sequence: 15 givenname: Benjamin orcidid: 0000-0002-1308-8246 surname: Israelow fullname: Israelow, Benjamin organization: Department of Immunobiology, Yale University School of Medicine, Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 16 givenname: Chantal B. F. orcidid: 0000-0003-0027-6480 surname: Vogels fullname: Vogels, Chantal B. F. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 17 givenname: M. Catherine orcidid: 0000-0002-0450-0868 surname: Muenker fullname: Muenker, M. Catherine organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 18 givenname: C-Hong surname: Chang fullname: Chang, C-Hong organization: Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine – sequence: 19 givenname: Arnau surname: Casanovas-Massana fullname: Casanovas-Massana, Arnau organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 20 givenname: Adam J. surname: Moore fullname: Moore, Adam J. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 21 givenname: Joseph surname: Zell fullname: Zell, Joseph organization: Department of Internal Medicine/Section General Medicine, Yale University School of Medicine – sequence: 22 givenname: John B. surname: Fournier fullname: Fournier, John B. organization: Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 24 givenname: Anne L. orcidid: 0000-0001-6015-0279 surname: Wyllie fullname: Wyllie, Anne L. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 25 givenname: Melissa surname: Campbell fullname: Campbell, Melissa organization: Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 26 givenname: Alfred I. surname: Lee fullname: Lee, Alfred I. organization: Department of Hematology, Yale University School of Medicine – sequence: 27 givenname: Hyung J. orcidid: 0000-0003-3508-2678 surname: Chun fullname: Chun, Hyung J. organization: Department of Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine – sequence: 28 givenname: Nathan D. orcidid: 0000-0003-2031-1933 surname: Grubaugh fullname: Grubaugh, Nathan D. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 29 givenname: Wade L. orcidid: 0000-0002-2048-4028 surname: Schulz fullname: Schulz, Wade L. organization: Department of Laboratory Medicine, Yale University School of Medicine, Center for Outcomes Research and Evaluation, Yale-New Haven Hospital – sequence: 30 givenname: Shelli orcidid: 0000-0001-7230-1409 surname: Farhadian fullname: Farhadian, Shelli organization: Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 31 givenname: Charles orcidid: 0000-0002-5258-1797 surname: Dela Cruz fullname: Dela Cruz, Charles organization: Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine – sequence: 32 givenname: Aaron M. orcidid: 0000-0003-3699-2446 surname: Ring fullname: Ring, Aaron M. organization: Department of Immunobiology, Yale University School of Medicine – sequence: 33 givenname: Albert C. surname: Shaw fullname: Shaw, Albert C. organization: Department of Immunobiology, Yale University School of Medicine, Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 34 givenname: Adam V. surname: Wisnewski fullname: Wisnewski, Adam V. organization: Department of Internal Medicine/Section General Medicine, Yale University School of Medicine – sequence: 35 givenname: Inci surname: Yildirim fullname: Yildirim, Inci organization: Department of Pediatric, Section of Infectious Diseases and Global Health, Yale University School of Medicine, Yale Institute for Global Health, Yale University – sequence: 36 givenname: Albert I. orcidid: 0000-0001-9023-2339 surname: Ko fullname: Ko, Albert I. organization: Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 37 givenname: Saad B. orcidid: 0000-0002-5383-3474 surname: Omer fullname: Omer, Saad B. organization: Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale Institute for Global Health, Yale University – sequence: 38 givenname: Akiko orcidid: 0000-0002-7824-9856 surname: Iwasaki fullname: Iwasaki, Akiko email: akiko.iwasaki@yale.edu organization: Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33953384$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFDEYhgep2IP-AS9kQBC9mJrDZCZzI5Sth8LCgofiXchkvsymzCbbJKPWX2_GbW23LEVCSEie983hew-zPessZNlzjI4xovxtKDFrcIFI6pgyVqBH2QFmZVXgGn3fS3NU84I3rNrPDkO4QAhRxJon2T6lDaOUlwfZ_BQGeQVdvvauG1U0zuZO5xbG6OVgfhvb59JG07rOQMiV8z4JYpr-NHGZaxnlkM8W52enBW6eZo-1HAI8ux6Psm8f3n-dfSrmi49ns5N5oaqax6KkFSeMaaQx1gCdbNuaaVZTUnYd14qqVsmaI0laBCVrpOoUR6qteaVRA5QeZe82vuuxXUGnwE6XFWtvVtJfCSeN2N6xZil690PwmjNalcng9bWBd5cjhChWJigYBmnBjUEQRkiF6_TLCX15D71wo7fpeYliuG6ahpW3VC8HEMZql85Vk6k4qSpeEUL45FXsoHqwkC6ZaqtNWt7ij3fwqXWwMmqn4M2WIDERfsVejiGIsy-f_59dnG-zr-6wS5BDXAY3jFNcwjb44m5l_pXkJnAJ4BtAeReCBy2UiXLySU8zg8BITNkWm2yLlG3xN9sCJSm5J71xf1BEN6KQYNuDvy3fA6o_6i8Hiw |
CitedBy_id | crossref_primary_10_1038_s41586_023_06651_y crossref_primary_10_1016_j_isci_2023_107120 crossref_primary_10_1093_ckj_sfac174 crossref_primary_10_3389_fimmu_2023_1197588 crossref_primary_10_3390_vaccines11050958 crossref_primary_10_1016_j_jaip_2023_05_029 crossref_primary_10_3390_vaccines12101126 crossref_primary_10_1126_scitranslmed_adh4529 crossref_primary_10_3390_nu14071388 crossref_primary_10_3389_fimmu_2022_864278 crossref_primary_10_1126_scitranslmed_abi7826 crossref_primary_10_1016_j_cca_2023_117390 crossref_primary_10_1016_j_jiac_2022_05_009 crossref_primary_10_1155_2024_8182887 crossref_primary_10_3390_idr14060099 crossref_primary_10_1183_23120541_00216_2022 crossref_primary_10_3389_fimmu_2022_933774 crossref_primary_10_1016_j_virol_2022_05_003 crossref_primary_10_1016_j_heliyon_2024_e31737 crossref_primary_10_1016_j_ijregi_2022_08_016 crossref_primary_10_1038_s41598_022_22146_8 crossref_primary_10_3390_biomedicines12030564 crossref_primary_10_1016_j_immuni_2022_06_004 crossref_primary_10_1186_s12985_023_02050_x crossref_primary_10_3389_fimmu_2023_1287388 crossref_primary_10_1016_j_pccm_2023_11_001 crossref_primary_10_1038_s41541_024_00870_8 crossref_primary_10_1126_scitranslmed_abm7853 crossref_primary_10_1016_j_ijid_2022_09_016 crossref_primary_10_3390_biomedicines10020351 crossref_primary_10_1038_s43587_022_00343_4 crossref_primary_10_1093_jpids_piab124 crossref_primary_10_1016_j_ejca_2021_12_011 crossref_primary_10_1016_j_jacig_2022_05_002 crossref_primary_10_1097_INF_0000000000003413 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1360_SSV_2023_0084 crossref_primary_10_1007_s10875_021_01193_2 crossref_primary_10_3390_molecules26195803 crossref_primary_10_1136_jitc_2022_004953 crossref_primary_10_3389_fimmu_2021_816745 crossref_primary_10_1016_j_msard_2021_103418 crossref_primary_10_1681_ASN_2021070908 crossref_primary_10_3390_v13071346 crossref_primary_10_1093_discim_kyac004 crossref_primary_10_1038_s41418_022_01015_x crossref_primary_10_1001_jamanetworkopen_2022_1313 crossref_primary_10_1016_j_jhepr_2021_100398 crossref_primary_10_1183_23120541_00789_2023 crossref_primary_10_1056_NEJMoa2209502 crossref_primary_10_1007_s10157_021_02130_8 crossref_primary_10_3389_fimmu_2021_693085 crossref_primary_10_1182_blood_2022016175 crossref_primary_10_3389_fmicb_2021_791489 crossref_primary_10_4049_jimmunol_2100727 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_1371_journal_pone_0288557 crossref_primary_10_1007_s00005_023_00673_0 crossref_primary_10_1371_journal_pdig_0000497 crossref_primary_10_1097_QCO_0000000000000841 crossref_primary_10_1097_RHU_0000000000001855 crossref_primary_10_17816_clinpract106239 crossref_primary_10_1016_j_isci_2024_109330 crossref_primary_10_1128_mbio_01577_22 crossref_primary_10_3389_fmed_2021_793102 crossref_primary_10_1016_j_kint_2021_12_029 crossref_primary_10_1038_s41541_023_00665_3 crossref_primary_10_3390_jcm11216272 crossref_primary_10_1016_j_cmi_2022_10_030 crossref_primary_10_1073_pnas_2119893119 crossref_primary_10_1016_j_ebiom_2021_103615 crossref_primary_10_1016_j_idc_2025_02_001 crossref_primary_10_1038_s41590_021_01122_w crossref_primary_10_3390_vaccines10111952 crossref_primary_10_1016_j_cmi_2022_10_033 crossref_primary_10_1016_j_heliyon_2022_e12746 crossref_primary_10_3390_microorganisms11081985 crossref_primary_10_1186_s12879_024_09652_y crossref_primary_10_1038_s41392_021_00759_1 crossref_primary_10_1038_s41392_023_01684_1 crossref_primary_10_3389_fimmu_2022_902837 crossref_primary_10_1186_s12985_022_01783_5 crossref_primary_10_3389_fimmu_2022_1035151 crossref_primary_10_3390_vaccines10020334 crossref_primary_10_1080_14787210_2022_2134117 crossref_primary_10_3389_fimmu_2021_793191 crossref_primary_10_1016_j_trac_2022_116759 crossref_primary_10_1016_j_msard_2021_103203 crossref_primary_10_1186_s12902_023_01263_z crossref_primary_10_7554_eLife_85009 crossref_primary_10_1111_joim_13386 crossref_primary_10_1016_j_jim_2022_113410 crossref_primary_10_1038_s41423_021_00743_3 crossref_primary_10_1007_s12275_022_2037_8 crossref_primary_10_1111_imr_13115 crossref_primary_10_3390_diagnostics12081813 crossref_primary_10_1002_cyto_a_24516 crossref_primary_10_3389_fimmu_2023_1206979 crossref_primary_10_1371_journal_pone_0317033 crossref_primary_10_3390_vaccines11010101 crossref_primary_10_1038_s41577_022_00716_1 crossref_primary_10_3390_ijms241210181 crossref_primary_10_1002_jmv_27290 crossref_primary_10_1111_imr_13112 crossref_primary_10_1371_journal_pone_0261656 crossref_primary_10_1016_j_celrep_2022_111895 crossref_primary_10_1002_emp2_13110 crossref_primary_10_3389_fimmu_2023_1116131 crossref_primary_10_1038_s41598_023_39681_7 crossref_primary_10_3389_fimmu_2022_811952 crossref_primary_10_1093_ofid_ofab557 crossref_primary_10_1111_cts_13511 crossref_primary_10_1016_j_jcvp_2022_100121 crossref_primary_10_17816_MAJ624886 crossref_primary_10_1111_jth_15648 crossref_primary_10_1038_s41467_022_29909_x crossref_primary_10_1038_s41598_024_54922_z crossref_primary_10_2139_ssrn_4000586 crossref_primary_10_1093_infdis_jiae061 crossref_primary_10_1016_j_celrep_2022_111544 crossref_primary_10_3389_fimmu_2022_898078 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_3390_diseases11030112 crossref_primary_10_1038_s41392_024_02043_4 crossref_primary_10_1021_acs_jproteome_4c00791 crossref_primary_10_2217_fmb_2022_0006 crossref_primary_10_3390_v15061404 crossref_primary_10_1038_s41423_023_01095_w crossref_primary_10_1038_s41392_024_01867_4 crossref_primary_10_1038_s41746_022_00561_5 crossref_primary_10_1002_cti2_1391 crossref_primary_10_1001_jama_2021_19994 crossref_primary_10_1016_j_coviro_2021_08_004 crossref_primary_10_3389_fimmu_2023_974343 crossref_primary_10_3390_life12122064 crossref_primary_10_1016_j_ebiom_2022_104230 crossref_primary_10_1093_infdis_jiac090 crossref_primary_10_7554_eLife_70458 crossref_primary_10_1016_j_it_2023_04_001 crossref_primary_10_2139_ssrn_4052012 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1038_s41586_021_04085_y crossref_primary_10_3389_fimmu_2022_926318 crossref_primary_10_3389_fimmu_2023_1152522 crossref_primary_10_1515_cclm_2023_1487 crossref_primary_10_3389_fimmu_2022_839367 crossref_primary_10_1038_s41467_024_54458_w crossref_primary_10_1128_jvi_01685_24 crossref_primary_10_1038_s41419_022_05190_0 crossref_primary_10_1038_s41598_024_64414_9 crossref_primary_10_1093_infdis_jiae447 crossref_primary_10_1002_cyto_a_24563 crossref_primary_10_1016_j_jcvp_2021_100044 crossref_primary_10_3389_fimmu_2022_830715 crossref_primary_10_1038_s41586_021_04017_w crossref_primary_10_1093_imammb_dqac008 crossref_primary_10_3389_fimmu_2022_853265 crossref_primary_10_1172_jci_insight_156372 crossref_primary_10_1136_gutjnl_2021_326312 crossref_primary_10_3389_fimmu_2024_1377014 |
Cites_doi | 10.1136/bmj.m3939 10.3201/eid2612.203334 10.1016/S0140-6736(20)31604-4 10.1016/j.chom.2020.04.017 10.1038/s41591-020-1051-9 10.1016/j.cell.2020.08.025 10.1126/sciimmunol.abe0240 10.1038/s41586-020-2588-y 10.1016/j.cell.2020.12.015 10.1016/S2213-2600(20)30076-X 10.1126/scitranslmed.abf1555 10.1038/s41392-020-00301-9 10.1016/S0140-6736(20)30183-5 10.1016/j.immuni.2020.10.004 10.1371/journal.pone.0237901 10.1016/j.immuni.2020.07.020 10.1016/j.xcrm.2020.100078 10.1172/jci.insight.146242 10.1016/j.cell.2020.02.052 10.1111/j.1464-410X.1987.tb05006.x 10.1128/mBio.02940-20 10.1016/j.cell.2020.10.052 10.1038/s41564-020-0761-6 10.1016/j.cell.2020.06.025 10.1016/j.chom.2020.04.009 10.1136/bmj.m4072 10.1126/science.abc8511 10.1371/journal.ppat.1008796 10.1101/2020.06.08.140871 10.1126/science.abc6284 10.1038/s41591-020-0897-1 10.1016/j.apsb.2020.10.025 10.1056/NEJMoa2029849 10.1038/s41591-020-0913-5 10.1126/science.abb2762 10.1172/JCI137244 10.1038/s41586-020-2456-9 10.1056/NEJMc2016359 |
ContentType | Journal Article |
Contributor | Martin, Anjelica Linehan, Melissa McDonald, David Smolgovsky, Mikhail Robertson, Alexander James Naushad, Nida Courchaine, Edward Harden, Christina A Batsu, Maria Nouws, Jessica Chun, Caitlin J Geng, Bertie Sewanan, Lorenzo Dorgay, Coriann E Brower, Kristina Rahming, Harold Valdez, Jordan Lim, Joseph White, Elizabeth B Simonov, Michael Balkcom, Natasha C Kim, Daniel Zhao, Alice Watkins, Anne E Park, Hong-Jai Glick, Laura Anastasio, Kelly Sonnert, Nicole Sharma, Lokesh Ott, Isabel Matos, Irene Prophet, Sarah Knaggs, Lynda Song, Eric Martinello, Rick Nelson, Allison Khoury-Hanold, William Peng, Xiaohua DeIuliis, Giuseppe Lin, Zitong Shepard, Denise Cao, Yiyun Rose, Kadi-Ann Handoko, Ryan Obaid, Abeer Bermejo, Santos Lu-Culligan, Alice Todeasa, Codruta Jensen, Cole Bickerton, Sean Kalinich, Chaney C Fauver, Joseph Kuang, Maxine Alpert, Tara Silva, Erin Strong, Yvette Askenase, Michael H Datta, Rupak Yang, Yexin Velazquez, Sofia Kudo, Eriko Nunez, Angela Nakahata, Maura Rice, Tyler Vijayakumar, Pavithra Brito, Anderson Minasyan, Maksym Petrone, Mary |
Contributor_xml | – sequence: 1 givenname: Abeer surname: Obaid fullname: Obaid, Abeer – sequence: 2 givenname: Alexander James surname: Robertson fullname: Robertson, Alexander James – sequence: 3 givenname: Alice surname: Lu-Culligan fullname: Lu-Culligan, Alice – sequence: 4 givenname: Alice surname: Zhao fullname: Zhao, Alice – sequence: 5 givenname: Allison surname: Nelson fullname: Nelson, Allison – sequence: 6 givenname: Anderson surname: Brito fullname: Brito, Anderson – sequence: 7 givenname: Angela surname: Nunez fullname: Nunez, Angela – sequence: 8 givenname: Anjelica surname: Martin fullname: Martin, Anjelica – sequence: 9 givenname: Anne E surname: Watkins fullname: Watkins, Anne E – sequence: 10 givenname: Bertie surname: Geng fullname: Geng, Bertie – sequence: 11 givenname: Caitlin J surname: Chun fullname: Chun, Caitlin J – sequence: 12 givenname: Chaney C surname: Kalinich fullname: Kalinich, Chaney C – sequence: 13 givenname: Christina A surname: Harden fullname: Harden, Christina A – sequence: 14 givenname: Codruta surname: Todeasa fullname: Todeasa, Codruta – sequence: 15 givenname: Cole surname: Jensen fullname: Jensen, Cole – sequence: 16 givenname: Coriann E surname: Dorgay fullname: Dorgay, Coriann E – sequence: 17 givenname: Daniel surname: Kim fullname: Kim, Daniel – sequence: 18 givenname: David surname: McDonald fullname: McDonald, David – sequence: 19 givenname: Denise surname: Shepard fullname: Shepard, Denise – sequence: 20 givenname: Edward surname: Courchaine fullname: Courchaine, Edward – sequence: 21 givenname: Elizabeth B surname: White fullname: White, Elizabeth B – sequence: 22 givenname: Eric surname: Song fullname: Song, Eric – sequence: 23 givenname: Erin surname: Silva fullname: Silva, Erin – sequence: 24 givenname: Eriko surname: Kudo fullname: Kudo, Eriko – sequence: 25 givenname: Giuseppe surname: DeIuliis fullname: DeIuliis, Giuseppe – sequence: 26 givenname: Harold surname: Rahming fullname: Rahming, Harold – sequence: 27 givenname: Hong-Jai surname: Park fullname: Park, Hong-Jai – sequence: 28 givenname: Irene surname: Matos fullname: Matos, Irene – sequence: 29 givenname: Isabel surname: Ott fullname: Ott, Isabel – sequence: 30 givenname: Jessica surname: Nouws fullname: Nouws, Jessica – sequence: 31 givenname: Jordan surname: Valdez fullname: Valdez, Jordan – sequence: 32 givenname: Joseph surname: Fauver fullname: Fauver, Joseph – sequence: 33 givenname: Joseph surname: Lim fullname: Lim, Joseph – sequence: 34 givenname: Kadi-Ann surname: Rose fullname: Rose, Kadi-Ann – sequence: 35 givenname: Kelly surname: Anastasio fullname: Anastasio, Kelly – sequence: 36 givenname: Kristina surname: Brower fullname: Brower, Kristina – sequence: 37 givenname: Laura surname: Glick fullname: Glick, Laura – sequence: 38 givenname: Lokesh surname: Sharma fullname: Sharma, Lokesh – sequence: 39 givenname: Lorenzo surname: Sewanan fullname: Sewanan, Lorenzo – sequence: 40 givenname: Lynda surname: Knaggs fullname: Knaggs, Lynda – sequence: 41 givenname: Maksym surname: Minasyan fullname: Minasyan, Maksym – sequence: 42 givenname: Maria surname: Batsu fullname: Batsu, Maria – sequence: 43 givenname: Mary surname: Petrone fullname: Petrone, Mary – sequence: 44 givenname: Maxine surname: Kuang fullname: Kuang, Maxine – sequence: 45 givenname: Maura surname: Nakahata fullname: Nakahata, Maura – sequence: 46 givenname: Melissa surname: Linehan fullname: Linehan, Melissa – sequence: 47 givenname: Michael H surname: Askenase fullname: Askenase, Michael H – sequence: 48 givenname: Michael surname: Simonov fullname: Simonov, Michael – sequence: 49 givenname: Mikhail surname: Smolgovsky fullname: Smolgovsky, Mikhail – sequence: 50 givenname: Natasha C surname: Balkcom fullname: Balkcom, Natasha C – sequence: 51 givenname: Nicole surname: Sonnert fullname: Sonnert, Nicole – sequence: 52 givenname: Nida surname: Naushad fullname: Naushad, Nida – sequence: 53 givenname: Pavithra surname: Vijayakumar fullname: Vijayakumar, Pavithra – sequence: 54 givenname: Rick surname: Martinello fullname: Martinello, Rick – sequence: 55 givenname: Rupak surname: Datta fullname: Datta, Rupak – sequence: 56 givenname: Ryan surname: Handoko fullname: Handoko, Ryan – sequence: 57 givenname: Santos surname: Bermejo fullname: Bermejo, Santos – sequence: 58 givenname: Sarah surname: Prophet fullname: Prophet, Sarah – sequence: 59 givenname: Sean surname: Bickerton fullname: Bickerton, Sean – sequence: 60 givenname: Sofia surname: Velazquez fullname: Velazquez, Sofia – sequence: 61 givenname: Tara surname: Alpert fullname: Alpert, Tara – sequence: 62 givenname: Tyler surname: Rice fullname: Rice, Tyler – sequence: 63 givenname: William surname: Khoury-Hanold fullname: Khoury-Hanold, William – sequence: 64 givenname: Xiaohua surname: Peng fullname: Peng, Xiaohua – sequence: 65 givenname: Yexin surname: Yang fullname: Yang, Yexin – sequence: 66 givenname: Yiyun surname: Cao fullname: Cao, Yiyun – sequence: 67 givenname: Yvette surname: Strong fullname: Strong, Yvette – sequence: 68 givenname: Zitong surname: Lin fullname: Lin, Zitong |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2021. |
CorporateAuthor | Yale IMPACT Research Team |
CorporateAuthor_xml | – name: Yale IMPACT Research Team |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/s41591-021-01355-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints (Gale In Context) Science (Gale In Context) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1546-170X |
EndPage | 1186 |
ExternalDocumentID | PMC8785364 A668622283 33953384 10_1038_s41591_021_01355_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute (HHMI) funderid: https://doi.org/10.13039/100000011 – fundername: Pew Charitable Trusts funderid: https://doi.org/10.13039/100000875 – fundername: Ludwig Family Foundation, Womens Health Research at Yale – fundername: G. Harold and Leila Y. Mathers Foundation (G. Harold & Leila Y. Mathers Foundation) funderid: https://doi.org/10.13039/100011671 – fundername: Ludwig Family Foundation – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: NIAID 2T32AI007517 funderid: https://doi.org/10.13039/100000060 – fundername: NIAID NIH HHS grantid: T32 AI007517 – fundername: NIA NIH HHS grantid: K24 AG042489 – fundername: BLRD VA grantid: I01 BX004661 – fundername: NIOSH CDC HHS grantid: T03 OH008607 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: NIAID 2T32AI007517 |
GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AETEA CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c678t-4368255f0f11feedabb75f57324dd8fc3cbca780a2b0e459acdc80cb786f09e33 |
IEDL.DBID | 7X7 |
ISSN | 1078-8956 1546-170X |
IngestDate | Thu Aug 21 13:13:36 EDT 2025 Fri Jul 11 13:33:41 EDT 2025 Sat Aug 23 12:52:22 EDT 2025 Tue Jun 17 21:05:37 EDT 2025 Thu Jun 12 23:34:56 EDT 2025 Tue Jun 10 20:46:31 EDT 2025 Fri Jun 27 04:41:01 EDT 2025 Fri Jun 27 04:34:22 EDT 2025 Thu May 22 21:25:52 EDT 2025 Mon Jul 21 05:55:54 EDT 2025 Thu Apr 24 22:53:04 EDT 2025 Tue Jul 01 03:53:44 EDT 2025 Fri Feb 21 02:37:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c678t-4368255f0f11feedabb75f57324dd8fc3cbca780a2b0e459acdc80cb786f09e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally: Carolina Lucas, Jon Klein. A list of authors and their affiliations appears at the end of the paper. A.I.K. and A.I. conceived the study. C.L., J.K., J.S., J.E.O. and T.M collected and processed patient PBMC and plasma samples. C.L. and J.K. performed the neutralization assays. C.L, did the data analyses. P.W, performed the flow cytometry, and C.L. did the flow data analyses. J.S. and B.I. collected epidemiological and clinical data. F.L. and C.L. performed the SARS-CoV-2 specific antibody ELISAs. A.R. supervised the ELISAs. A.L.W., C.B.F., P.L., A.V., A.P. and M.T. performed sample processing, extractions and RT-qPCR assays, under the supervision of N.D.G. A.C.-M. and M.C.M. processed and stored patient specimens. J.Z. and A.V.W. assisted in mild disease volunteer recruitment. M.C., J.B.F., C.D.C. and S.F. assisted with the identification and enrolment of hospitalized patients. W.L.S. supervised clinical data management. C.L. and A.I. drafted the manuscript. All authors helped to edit the manuscript. A.I. secured funds and supervised the project. Author contributions |
ORCID | 0000-0002-7824-9856 0000-0003-2031-1933 0000-0001-9023-2339 0000-0002-5258-1797 0000-0003-2511-7064 0000-0003-2663-6544 0000-0002-5383-3474 0000-0001-6118-872X 0000-0002-2048-4028 0000-0003-3699-2446 0000-0003-3508-2678 0000-0002-0450-0868 0000-0001-8212-7440 0000-0001-6015-0279 0000-0003-0027-6480 0000-0003-4590-2756 0000-0001-9251-8592 0000-0002-1308-8246 0000-0002-3552-7684 0000-0001-7230-1409 |
OpenAccessLink | https://www.nature.com/articles/s41591-021-01355-0.pdf |
PMID | 33953384 |
PQID | 2551799954 |
PQPubID | 33975 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8785364 proquest_miscellaneous_2522617103 proquest_journals_2551799954 gale_infotracmisc_A668622283 gale_infotracgeneralonefile_A668622283 gale_infotracacademiconefile_A668622283 gale_incontextgauss_ISR_A668622283 gale_incontextgauss_IOV_A668622283 gale_healthsolutions_A668622283 pubmed_primary_33953384 crossref_citationtrail_10_1038_s41591_021_01355_0 crossref_primary_10_1038_s41591_021_01355_0 springer_journals_10_1038_s41591_021_01355_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature medicine |
PublicationTitleAbbrev | Nat Med |
PublicationTitleAlternate | Nat Med |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Röltgen, K. et al. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci. Immunol.5, eabe0240 (2020). ChenYA comprehensive, longitudinal analysis of humoral responses specific to four recombinant antigens of SARS-CoV-2 in severe and non-severe COVID-19 patientsPLoS Pathog.202016e10087961:CAS:528:DC%2BB3cXhvVeitr3E10.1371/journal.ppat.1008796 MathewDDeep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implicationsScience2020369eabc85111:CAS:528:DC%2BB3cXhslCltrnF10.1126/science.abc8511 ChenXDisease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19Signal Transduct. Target Ther.202051801:CAS:528:DC%2BB3cXhslGqtbvI10.1038/s41392-020-00301-9 Del ValleDMAn inflammatory cytokine signature predicts COVID-19 severity and survivalNat. Med.2020261636164310.1038/s41591-020-1051-9 Yu, K. K. Q. et al. Comorbid illnesses are associated with altered adaptive immune responses to SARS-CoV-2. JCI Insighthttps://doi.org/10.1172/jci.insight.146242 (2021). LongQXAntibody responses to SARS-CoV-2 in patients with COVID-19Nat. Med.2020268458481:CAS:528:DC%2BB3cXot1aktLk%3D10.1038/s41591-020-0897-1 LucasCLongitudinal analyses reveal immunological misfiring in severe COVID-19Nature20205844634691:CAS:528:DC%2BB3cXhsF2ntL3K10.1038/s41586-020-2588-y YanRStructural basis for the recognition of SARS-CoV-2 by full-length human ACE2Science2020367144414481:CAS:528:DC%2BB3cXlslymsLo%3D10.1126/science.abb2762 KanekoNLoss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19Cell20201831431571:CAS:528:DC%2BB3cXhslygsLvO10.1016/j.cell.2020.08.025 Hu, W. T. et al. Antibody profiles according to mild or severe SARS-CoV-2 infection, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis.26, 2974–2978 (2020). AtyeoCDistinct early serological signatures track with SARS-CoV-2 survivalImmunity20205352453210.1016/j.immuni.2020.07.020 Eli Lilly and Company. Lilly statement regarding NIH’s ACTIV-3 clinical trial. https://www.lilly.com/news/stories/statement-activ3-clinical-trial-nih-covid19 (October 26, 2020). May, B. Regeneron halts enrollment of critically ill patients in a COVID-19 antibody trial. https://www.biospace.com/article/regeneron-halts-enrollment-in-covid-19-trial-following-safety-signal-in-critically-ill-patients (BioSpace, 2020). Guthmiller, J. J. et al. SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike. mBiohttps://doi.org/10.1128/mBio.02940-20 (2021). FolegattiPMSafety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trialLancet20203964674781:CAS:528:DC%2BB3cXhsVaku7fE10.1016/S0140-6736(20)31604-4 RodriguezLSystems-level immunomonitoring from acute to recovery phase of severe COVID-19Cell Rep. Med.2020110007810.1016/j.xcrm.2020.100078 AmanatFA serological assay to detect SARS-CoV-2 seroconversion in humansNat. Med.202026103310361:CAS:528:DC%2BB3cXptFyqsbY%3D10.1038/s41591-020-0913-5 Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe27, 883–890 (2020). AgarwalAConvalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial)Brit. Med. J.2020371m393910.1136/bmj.m3939 HollimanRSealDVArcherHDomanSControlled trial of chemical disinfection of urinary drainage bags. Reduction in hospital-acquired catheter-associated infectionBr. J. Urol.1987604194221:STN:280:DyaL1c7gvVClsw%3D%3D10.1111/j.1464-410X.1987.tb05006.x XuZPathological findings of COVID-19 associated with acute respiratory distress syndromeLancet Respir. Med.202084204221:CAS:528:DC%2BB3cXjsValtbk%3D10.1016/S2213-2600(20)30076-X Zohar, T. et al. Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell183, 1508–1519 (2020). Wyllie, A. L. et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. N. Engl. J. Med.https://doi.org/10.1056/NEJMc2016359 (2020). Garcia-BeltranWFCOVID-19-neutralizing antibodies predict disease severity and survivalCell20211844764881:CAS:528:DC%2BB3MXnsFCgsw%3D%3D10.1016/j.cell.2020.12.015 WangZEnhanced SARS-CoV-2 neutralization by dimeric IgASci. Transl. Med.202113eabf15551:CAS:528:DC%2BB3MXit1yks70%3D10.1126/scitranslmed.abf1555 AbryPSpatial and temporal regularization to estimate COVID-19 reproduction number R(t): promoting piecewise smoothness via convex optimizationPLoS ONE202015e02379011:CAS:528:DC%2BB3cXhs1OntrnF10.1371/journal.pone.0237901 Giamarellos-BourboulisEJComplex immune dysregulation in COVID-19 patients with severe respiratory failureCell Host Microbe20202799210001:CAS:528:DC%2BB3cXnvFehsb4%3D10.1016/j.chom.2020.04.009 Zhou, Z., Wang, X., Fu, Y., Zhang, X. & Liu, C. Neutralizing antibodies for the treatment of COVID-19. Acta Pharm. Sin. B11, 304–307 (2020). Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell181, 271–280 (2020). YuJDNA vaccine protection against SARS-CoV-2 in rhesus macaquesScience20203698068111:CAS:528:DC%2BB3cXhsF2qsrrN10.1126/science.abc6284 Chen, G. et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J. Clin. Invest.130, 2620–2629 (2020). Chen, P. et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med.384, 229–237 (2020). RobbianiDFConvergent antibody responses to SARS-CoV-2 in convalescent individualsNature20205844374421:CAS:528:DC%2BB3cXhsFegtb3P10.1038/s41586-020-2456-9 FDA authorizes monoclonal antibodies for treatment of COVID-19. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19 (U.S. Food and Drug Administration, 2020). PathakEBConvalescent plasma is ineffective for covid-19Brit. Med. J.2020371m407210.1136/bmj.m4072 ValkSJConvalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid reviewCochrane Database Syst. Rev.20205CD01360032406927 HuangCClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet20203954975061:CAS:528:DC%2BB3cXhs1Kqu7c%3D10.1016/S0140-6736(20)30183-5 VogelsCBFAnalytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe setsNat. Microbiol.20205129913051:CAS:528:DC%2BB3cXhtlOjtbzF10.1038/s41564-020-0761-6 RippergerTJOrthogonal SARS-CoV-2 serological assays enable surveillance of low-prevalence communities and reveal durable humoral immunityImmunity2020539259331:CAS:528:DC%2BB3cXit1aktb3K10.1016/j.immuni.2020.10.004 BarnesCOStructures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodiesCell20201828288421:CAS:528:DC%2BB3cXhtlGmsb3P10.1016/j.cell.2020.06.025 Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med.217, e20201181 (2020). F Amanat (1355_CR40) 2020; 26 DM Del Valle (1355_CR10) 2020; 26 PM Folegatti (1355_CR21) 2020; 396 1355_CR35 1355_CR14 1355_CR36 C Atyeo (1355_CR26) 2020; 53 Z Wang (1355_CR15) 2021; 13 A Agarwal (1355_CR31) 2020; 371 R Holliman (1355_CR33) 1987; 60 Z Xu (1355_CR3) 2020; 8 L Rodriguez (1355_CR9) 2020; 1 X Chen (1355_CR17) 2020; 5 EB Pathak (1355_CR32) 2020; 371 EJ Giamarellos-Bourboulis (1355_CR6) 2020; 27 SJ Valk (1355_CR34) 2020; 5 1355_CR7 N Kaneko (1355_CR30) 2020; 183 1355_CR5 WF Garcia-Beltran (1355_CR22) 2021; 184 1355_CR39 DF Robbiani (1355_CR13) 2020; 584 1355_CR18 1355_CR1 1355_CR37 1355_CR38 C Huang (1355_CR4) 2020; 395 CO Barnes (1355_CR12) 2020; 182 1355_CR19 P Abry (1355_CR29) 2020; 15 Y Chen (1355_CR16) 2020; 16 J Yu (1355_CR20) 2020; 369 1355_CR41 CBF Vogels (1355_CR42) 2020; 5 1355_CR25 C Lucas (1355_CR8) 2020; 584 R Yan (1355_CR2) 2020; 367 D Mathew (1355_CR11) 2020; 369 TJ Ripperger (1355_CR24) 2020; 53 QX Long (1355_CR23) 2020; 26 1355_CR28 1355_CR27 34145437 - Nat Med. 2021 Jun 18 |
References_xml | – reference: Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell181, 271–280 (2020). – reference: Röltgen, K. et al. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci. Immunol.5, eabe0240 (2020). – reference: Chen, G. et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J. Clin. Invest.130, 2620–2629 (2020). – reference: Guthmiller, J. J. et al. SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike. mBiohttps://doi.org/10.1128/mBio.02940-20 (2021). – reference: HollimanRSealDVArcherHDomanSControlled trial of chemical disinfection of urinary drainage bags. Reduction in hospital-acquired catheter-associated infectionBr. J. Urol.1987604194221:STN:280:DyaL1c7gvVClsw%3D%3D10.1111/j.1464-410X.1987.tb05006.x – reference: Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med.217, e20201181 (2020). – reference: Garcia-BeltranWFCOVID-19-neutralizing antibodies predict disease severity and survivalCell20211844764881:CAS:528:DC%2BB3MXnsFCgsw%3D%3D10.1016/j.cell.2020.12.015 – reference: May, B. Regeneron halts enrollment of critically ill patients in a COVID-19 antibody trial. https://www.biospace.com/article/regeneron-halts-enrollment-in-covid-19-trial-following-safety-signal-in-critically-ill-patients (BioSpace, 2020). – reference: Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe27, 883–890 (2020). – reference: Zhou, Z., Wang, X., Fu, Y., Zhang, X. & Liu, C. Neutralizing antibodies for the treatment of COVID-19. Acta Pharm. Sin. B11, 304–307 (2020). – reference: MathewDDeep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implicationsScience2020369eabc85111:CAS:528:DC%2BB3cXhslCltrnF10.1126/science.abc8511 – reference: RippergerTJOrthogonal SARS-CoV-2 serological assays enable surveillance of low-prevalence communities and reveal durable humoral immunityImmunity2020539259331:CAS:528:DC%2BB3cXit1aktb3K10.1016/j.immuni.2020.10.004 – reference: AmanatFA serological assay to detect SARS-CoV-2 seroconversion in humansNat. Med.202026103310361:CAS:528:DC%2BB3cXptFyqsbY%3D10.1038/s41591-020-0913-5 – reference: AgarwalAConvalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial)Brit. Med. J.2020371m393910.1136/bmj.m3939 – reference: KanekoNLoss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19Cell20201831431571:CAS:528:DC%2BB3cXhslygsLvO10.1016/j.cell.2020.08.025 – reference: FDA authorizes monoclonal antibodies for treatment of COVID-19. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19 (U.S. Food and Drug Administration, 2020). – reference: RodriguezLSystems-level immunomonitoring from acute to recovery phase of severe COVID-19Cell Rep. Med.2020110007810.1016/j.xcrm.2020.100078 – reference: FolegattiPMSafety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trialLancet20203964674781:CAS:528:DC%2BB3cXhsVaku7fE10.1016/S0140-6736(20)31604-4 – reference: AbryPSpatial and temporal regularization to estimate COVID-19 reproduction number R(t): promoting piecewise smoothness via convex optimizationPLoS ONE202015e02379011:CAS:528:DC%2BB3cXhs1OntrnF10.1371/journal.pone.0237901 – reference: PathakEBConvalescent plasma is ineffective for covid-19Brit. Med. J.2020371m407210.1136/bmj.m4072 – reference: Del ValleDMAn inflammatory cytokine signature predicts COVID-19 severity and survivalNat. Med.2020261636164310.1038/s41591-020-1051-9 – reference: XuZPathological findings of COVID-19 associated with acute respiratory distress syndromeLancet Respir. Med.202084204221:CAS:528:DC%2BB3cXjsValtbk%3D10.1016/S2213-2600(20)30076-X – reference: YuJDNA vaccine protection against SARS-CoV-2 in rhesus macaquesScience20203698068111:CAS:528:DC%2BB3cXhsF2qsrrN10.1126/science.abc6284 – reference: Zohar, T. et al. Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell183, 1508–1519 (2020). – reference: LongQXAntibody responses to SARS-CoV-2 in patients with COVID-19Nat. Med.2020268458481:CAS:528:DC%2BB3cXot1aktLk%3D10.1038/s41591-020-0897-1 – reference: Chen, P. et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med.384, 229–237 (2020). – reference: ValkSJConvalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid reviewCochrane Database Syst. Rev.20205CD01360032406927 – reference: Giamarellos-BourboulisEJComplex immune dysregulation in COVID-19 patients with severe respiratory failureCell Host Microbe20202799210001:CAS:528:DC%2BB3cXnvFehsb4%3D10.1016/j.chom.2020.04.009 – reference: WangZEnhanced SARS-CoV-2 neutralization by dimeric IgASci. Transl. Med.202113eabf15551:CAS:528:DC%2BB3MXit1yks70%3D10.1126/scitranslmed.abf1555 – reference: Hu, W. T. et al. Antibody profiles according to mild or severe SARS-CoV-2 infection, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis.26, 2974–2978 (2020). – reference: Wyllie, A. L. et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. N. Engl. J. Med.https://doi.org/10.1056/NEJMc2016359 (2020). – reference: BarnesCOStructures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodiesCell20201828288421:CAS:528:DC%2BB3cXhtlGmsb3P10.1016/j.cell.2020.06.025 – reference: Eli Lilly and Company. Lilly statement regarding NIH’s ACTIV-3 clinical trial. https://www.lilly.com/news/stories/statement-activ3-clinical-trial-nih-covid19 (October 26, 2020). – reference: AtyeoCDistinct early serological signatures track with SARS-CoV-2 survivalImmunity20205352453210.1016/j.immuni.2020.07.020 – reference: LucasCLongitudinal analyses reveal immunological misfiring in severe COVID-19Nature20205844634691:CAS:528:DC%2BB3cXhsF2ntL3K10.1038/s41586-020-2588-y – reference: ChenXDisease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19Signal Transduct. Target Ther.202051801:CAS:528:DC%2BB3cXhslGqtbvI10.1038/s41392-020-00301-9 – reference: VogelsCBFAnalytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe setsNat. Microbiol.20205129913051:CAS:528:DC%2BB3cXhtlOjtbzF10.1038/s41564-020-0761-6 – reference: RobbianiDFConvergent antibody responses to SARS-CoV-2 in convalescent individualsNature20205844374421:CAS:528:DC%2BB3cXhsFegtb3P10.1038/s41586-020-2456-9 – reference: Yu, K. K. Q. et al. Comorbid illnesses are associated with altered adaptive immune responses to SARS-CoV-2. JCI Insighthttps://doi.org/10.1172/jci.insight.146242 (2021). – reference: HuangCClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet20203954975061:CAS:528:DC%2BB3cXhs1Kqu7c%3D10.1016/S0140-6736(20)30183-5 – reference: ChenYA comprehensive, longitudinal analysis of humoral responses specific to four recombinant antigens of SARS-CoV-2 in severe and non-severe COVID-19 patientsPLoS Pathog.202016e10087961:CAS:528:DC%2BB3cXhvVeitr3E10.1371/journal.ppat.1008796 – reference: YanRStructural basis for the recognition of SARS-CoV-2 by full-length human ACE2Science2020367144414481:CAS:528:DC%2BB3cXlslymsLo%3D10.1126/science.abb2762 – volume: 371 start-page: m3939 year: 2020 ident: 1355_CR31 publication-title: Brit. Med. J. doi: 10.1136/bmj.m3939 – ident: 1355_CR18 doi: 10.3201/eid2612.203334 – volume: 396 start-page: 467 year: 2020 ident: 1355_CR21 publication-title: Lancet doi: 10.1016/S0140-6736(20)31604-4 – ident: 1355_CR7 doi: 10.1016/j.chom.2020.04.017 – volume: 26 start-page: 1636 year: 2020 ident: 1355_CR10 publication-title: Nat. Med. doi: 10.1038/s41591-020-1051-9 – volume: 183 start-page: 143 year: 2020 ident: 1355_CR30 publication-title: Cell doi: 10.1016/j.cell.2020.08.025 – volume: 5 start-page: CD013600 year: 2020 ident: 1355_CR34 publication-title: Cochrane Database Syst. Rev. – ident: 1355_CR27 doi: 10.1126/sciimmunol.abe0240 – volume: 584 start-page: 463 year: 2020 ident: 1355_CR8 publication-title: Nature doi: 10.1038/s41586-020-2588-y – volume: 184 start-page: 476 year: 2021 ident: 1355_CR22 publication-title: Cell doi: 10.1016/j.cell.2020.12.015 – volume: 8 start-page: 420 year: 2020 ident: 1355_CR3 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30076-X – volume: 13 start-page: eabf1555 year: 2021 ident: 1355_CR15 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abf1555 – volume: 5 start-page: 180 year: 2020 ident: 1355_CR17 publication-title: Signal Transduct. Target Ther. doi: 10.1038/s41392-020-00301-9 – volume: 395 start-page: 497 year: 2020 ident: 1355_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 53 start-page: 925 year: 2020 ident: 1355_CR24 publication-title: Immunity doi: 10.1016/j.immuni.2020.10.004 – volume: 15 start-page: e0237901 year: 2020 ident: 1355_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0237901 – volume: 53 start-page: 524 year: 2020 ident: 1355_CR26 publication-title: Immunity doi: 10.1016/j.immuni.2020.07.020 – ident: 1355_CR37 – volume: 1 start-page: 100078 year: 2020 ident: 1355_CR9 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2020.100078 – ident: 1355_CR19 doi: 10.1172/jci.insight.146242 – ident: 1355_CR1 doi: 10.1016/j.cell.2020.02.052 – volume: 60 start-page: 419 year: 1987 ident: 1355_CR33 publication-title: Br. J. Urol. doi: 10.1111/j.1464-410X.1987.tb05006.x – ident: 1355_CR25 doi: 10.1128/mBio.02940-20 – ident: 1355_CR28 doi: 10.1016/j.cell.2020.10.052 – volume: 5 start-page: 1299 year: 2020 ident: 1355_CR42 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0761-6 – volume: 182 start-page: 828 year: 2020 ident: 1355_CR12 publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 27 start-page: 992 year: 2020 ident: 1355_CR6 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.009 – volume: 371 start-page: m4072 year: 2020 ident: 1355_CR32 publication-title: Brit. Med. J. doi: 10.1136/bmj.m4072 – volume: 369 start-page: eabc8511 year: 2020 ident: 1355_CR11 publication-title: Science doi: 10.1126/science.abc8511 – volume: 16 start-page: e1008796 year: 2020 ident: 1355_CR16 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008796 – ident: 1355_CR14 doi: 10.1101/2020.06.08.140871 – volume: 369 start-page: 806 year: 2020 ident: 1355_CR20 publication-title: Science doi: 10.1126/science.abc6284 – volume: 26 start-page: 845 year: 2020 ident: 1355_CR23 publication-title: Nat. Med. doi: 10.1038/s41591-020-0897-1 – ident: 1355_CR35 doi: 10.1016/j.apsb.2020.10.025 – ident: 1355_CR39 doi: 10.1056/NEJMoa2029849 – volume: 26 start-page: 1033 year: 2020 ident: 1355_CR40 publication-title: Nat. Med. doi: 10.1038/s41591-020-0913-5 – volume: 367 start-page: 1444 year: 2020 ident: 1355_CR2 publication-title: Science doi: 10.1126/science.abb2762 – ident: 1355_CR5 doi: 10.1172/JCI137244 – ident: 1355_CR36 – volume: 584 start-page: 437 year: 2020 ident: 1355_CR13 publication-title: Nature doi: 10.1038/s41586-020-2456-9 – ident: 1355_CR41 doi: 10.1056/NEJMc2016359 – ident: 1355_CR38 – reference: 34145437 - Nat Med. 2021 Jun 18;: |
SSID | ssj0003059 |
Score | 2.6748304 |
Snippet | Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1178 |
SubjectTerms | 631/250/2152/2153/1291 631/250/255/2514 Aged Aged, 80 and over Antibodies Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Antiviral drugs Biomedical and Life Sciences Biomedicine Cancer Research Carrier State - immunology Coronaviruses COVID-19 COVID-19 - immunology COVID-19 - mortality COVID-19 - prevention & control COVID-19 Vaccines - therapeutic use Data recovery Female Humans IgG antibody Immune response Immune response (humoral) Immunity, Humoral Immunoglobulin G Immunoglobulin G - immunology Infectious Diseases Kinetics Length of Stay - statistics & numerical data Male Medical research Medicine, Experimental Metabolic Diseases Middle Aged Molecular Medicine Mortality Neurosciences Neutralization Neutralizing Patients Physiological aspects SARS-CoV-2 - immunology Seroconversion Severity of Illness Index Spike Glycoprotein, Coronavirus - immunology Time dependence Time Factors Viral antibodies Viral diseases |
Title | Delayed production of neutralizing antibodies correlates with fatal COVID-19 |
URI | https://link.springer.com/article/10.1038/s41591-021-01355-0 https://www.ncbi.nlm.nih.gov/pubmed/33953384 https://www.proquest.com/docview/2551799954 https://www.proquest.com/docview/2522617103 https://pubmed.ncbi.nlm.nih.gov/PMC8785364 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagFYhLBeW1pZSAEByo1TycxDmh3barFtEtKrTam-VnqbRKFnb3UH49M4k3JSuoOOXgz1EyHnvG4_E3hLzNDNcyZ4xmWW4oYzanUltHYVmIlbFZYQxeTj4ZZUfn7NM4HfuA28ynVS7XxHqhNpXGGPkeuL5IXlak7OP0B8WqUXi66kto3CXrSF2GKV35uN1woS4XTc4hpxw2Av7STJjwvRkYLsz5iXEzDTaXhh3DtLo8_2GfVnMnVw5Qa7s0fEg2vEMZ9BsNeETu2HKT3GtKTF5vkvsn_vD8Mfl8YCfy2ppg2rC8wogElQtKu6ijHb_g9QHI-UpVmFkYaKzbMUFXNMBgbeAw0BPsn14cH9CoeELOh4ff9o-oL6ZANdijOUWmeZChC10UOTCMUqk8dWkODpUx3OlEKxg0HspYhZalhdRG81CrnGcuLGySPCVrZVXa5ySwNuWK5SDvzDCtikKGsWKSWeWiWBaqR6KlJIX2TONY8GIi6hPvhItG-gKkL2rpi7BHPrR9pg3Pxq3oVzhAorkr2k5S0c_wwgsy-vTImxqBFBcl5tBcysVsJo5PL_4D9PWsA3rvQa6Cv9DS31sAWSB1Vgf5roO8bIjD_wbc7gBhRutu81LvhF9RZuJG_3vkdduMPTFLrrTVAjExEuyD0HrkWaOmrTCTBBOJOfTOOwrcApBnvNtSXn2v-cZ5Dj5dBj13l6p-81n_HqOt2__iBXkQ17MPM5-3ydr858K-BP9urnbqSbxD1vvDwWAEz8Hh6MvZb_A6TW0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrXhcEJRXoNAF8TiAVcdZ2-sDQqVpldAkRaWtelv2WSpFdiCJUPhR_EZm_CqOoOLS886u7NnZmdnZmW8IeREZrmXMmBdFsfEYs7EntXUeqIVAGRslxmBx8nAU9Y7Zx9PwdIX8qmphMK2y0om5ojaZxhj5Fri-CF6WhOz95JuHXaPwdbVqoVGIxb5d_IAr2_Rdvwv7-zII9naPdnpe2VXA06CYZx5CrsNiznfttgMLIZWKQxfG4FkYw53uaAVfz30ZKN-yMJHaaO5rFfPI-YnFACio_DVYxgdFsPZhd_TpsNb9cHqSIsuRexyuHmWZjt_hW1MwlZhlFOD1Hay85zdM4bJB-MMiLmdrLj3Z5pZw7za5VbqwdLuQuTtkxabr5FrR1HKxTq4Py-f6u2TQtWO5sIZOClxZkAGaOZraeR5f-QnLU9jZc5VhLiPV2ClkjM4vxfAwdRhaojsHJ_2u107ukeMrYfR9sppmqX1IqLUhVyxOQh4ZplWSSD9QTDKrXDuQiWqRdsVJoUtsc2yxMRb5G3uHi4L7Argvcu4Lv0Xe1HMmBbLHpdSbuEGiqE6t1YLYjrDEBjGEWuR5ToGgGilm7ZzJ-XQq-gcn_0H0-bBB9Lokchn8hZZlpQTwAsG6GpSvGpRnBVT53wg3GoSgQ3RzuJI7Ueqwqbg4cS3yrB7GmZiXl9psjjQBQvoD01rkQSGmNTM7HUxd5jA7bghwTYDI5s2R9PxrjnDOY_AiI5j5thL1i8_69x49uvwvNsmN3tFwIAb90f5jcjPITyLmXW-Q1dn3uX0C3uVMPS2PNCVfrlqL_AbQXYpK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELaqIipeEJQrUKhBHA_Uyt72PiBUNVQNvRDQKm_G9tqlUrQbSCIUfhq_jpm9ykZQ8dJnj1fr8Vy2Z74h5HmSCaN4FLEk4RmLIsuZMtYxMAuBzmySZhkWJx8eJXsn0ftRPFohv5paGEyrbGxiaaizwuAdeR9CXwQvS-Oo7-q0iA-D3beTbww7SOFLa9NOoxKRfbv4Ace36ZvhAPb6RRDsvvu8s8fqDgPMgJGeMYRfhw87z_m-A2-htOaxizlEGVkmnAmNhpUITwXas1GcKpMZ4RnNReK81OJlKJj_azyMfdQxPmoPe6hHaZXvKJiAQ0hdsOOFoj8Fp4n5RgEe5MHfM6_jFJddwx--cTlvc-nxtvSJu7fIzTqYpduV9N0mKzZfJ9er9paLdbJ2WD_c3yEHAztWC5vRSYUwC9JAC0dzOy9vWn7C5yns8bkuMKuRGuwZMsYwmOJFMXV4yUR3jk-HA-and8nJlbD5HlnNi9w-INTaWOiIp7FIssjoNFVeoCMVWe38QKW6R_yGk9LUKOfYbGMsy9f2UMiK-xK4L0vuS69HXrdzJhXGx6XUm7hBsqpTbQ2E3E6w2AbRhHrkWUmB8Bo5CuqZmk-ncnh8-h9Enz52iF7VRK6AVRhV10wALxC2q0P5skN5VoGW_41wo0MI1sR0hxu5k7U1m8oL3euRp-0wzsQMvdwWc6QJENwfmNYj9ysxbZkZhpjELGA27whwS4AY592R_PxriXUuOMSTCczcakT94rf-vUcPL1_FJlkD2yEPhkf7j8iNoFRETMDeIKuz73P7GMLMmX5S6jMlX67agPwG1tWNGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delayed+production+of+neutralizing+antibodies+correlates+with+fatal+COVID-19&rft.jtitle=Nature+medicine&rft.au=Lucas%2C+Carolina&rft.au=Klein%2C+Jon&rft.au=Sundaram%2C+Maria+E.&rft.au=Liu%2C+Feimei&rft.date=2021-07-01&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=27&rft.issue=7&rft.spage=1178&rft.epage=1186&rft_id=info:doi/10.1038%2Fs41591-021-01355-0&rft_id=info%3Apmid%2F33953384&rft.externalDocID=PMC8785364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |