Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis

A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upp...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 17; no. 1; pp. 57 - 20
Main Authors Bai, Zhongfei, Fong, Kenneth N. K., Zhang, Jack Jiaqi, Chan, Josephine, Ting, K. H.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 25.04.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery. The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke. A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18-0.66; I  = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = - 0.28 - 0.52; I  = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = - 0.30; 95% CI = - 0.96 - 0.36; I  = 0%; P = 0.370; fixed-effects model). The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.
AbstractList A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery. The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke. A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18-0.66; I  = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = - 0.28 - 0.52; I  = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = - 0.30; 95% CI = - 0.96 - 0.36; I  = 0%; P = 0.370; fixed-effects model). The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.
Abstract Background A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery. Methods The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke. Results A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18–0.66; I 2  = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = − 0.28 – 0.52; I 2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = − 0.30; 95% CI = − 0.96 – 0.36; I 2 = 0%; P = 0.370; fixed-effects model). Conclusion The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.
A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery.BACKGROUNDA substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery.The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke.METHODSThe databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke.A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18-0.66; I2 = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = - 0.28 - 0.52; I2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = - 0.30; 95% CI = - 0.96 - 0.36; I2 = 0%; P = 0.370; fixed-effects model).RESULTSA total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18-0.66; I2 = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = - 0.28 - 0.52; I2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = - 0.30; 95% CI = - 0.96 - 0.36; I2 = 0%; P = 0.370; fixed-effects model).The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.CONCLUSIONThe use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.
Background A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery. Methods The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke. Results A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18-0.66; I.sup.2 = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = - 0.28 - 0.52; I.sup.2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = - 0.30; 95% CI = - 0.96 - 0.36; I.sup.2 = 0%; P = 0.370; fixed-effects model). Conclusion The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network. Keywords: Brain-computer interface, Stroke, Hemiparetic upper extremity function, Motor imagery, Movement attempt, Neural mechanism
A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery. The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke. A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18-0.66; I.sup.2 = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = - 0.28 - 0.52; I.sup.2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = - 0.30; 95% CI = - 0.96 - 0.36; I.sup.2 = 0%; P = 0.370; fixed-effects model). The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.
Background A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery. Methods The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke. Results A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18–0.66; I2 = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = − 0.28 – 0.52; I2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = − 0.30; 95% CI = − 0.96 – 0.36; I2 = 0%; P = 0.370; fixed-effects model). Conclusion The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.
ArticleNumber 57
Audience Academic
Author Fong, Kenneth N. K.
Bai, Zhongfei
Chan, Josephine
Zhang, Jack Jiaqi
Ting, K. H.
Author_xml – sequence: 1
  givenname: Zhongfei
  surname: Bai
  fullname: Bai, Zhongfei
– sequence: 2
  givenname: Kenneth N. K.
  surname: Fong
  fullname: Fong, Kenneth N. K.
– sequence: 3
  givenname: Jack Jiaqi
  surname: Zhang
  fullname: Zhang, Jack Jiaqi
– sequence: 4
  givenname: Josephine
  surname: Chan
  fullname: Chan, Josephine
– sequence: 5
  givenname: K. H.
  surname: Ting
  fullname: Ting, K. H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32334608$$D View this record in MEDLINE/PubMed
BookMark eNp9ksuO0zAUhiM0iJkpvAALZIkNmwy-xUlZIA0Vl0ojsYG1deIcty5JXGx3oC_Ac-NeGKYjhLKIY3_n9_lP_svibPQjFsVzRq8Ya9TryPi0kSXltKRUNarkj4oLVkuRP6k4u7c-Ly5jXOWFpJV8UpwLLoRUtLkofs2HATsHCQmMHen9uCgThoGgtWhSJN6Sd7N52ULEjgRcQut6lyA5P-7O0hLJZr3GQPBnCji4tCVgswKJKfhv-IYAiduYcMglJgvcOvyxv2rABCWM0G-ji0-Lxxb6iM-O70nx9cP7L7NP5c3nj_PZ9U1pVF2n0jSKQ-5cMCupFFh3RvLaCASoG2CWGYN1U1UMRWONtZ2iqgPVUl5RMwUrJsX8oNt5WOl1cAOErfbg9H7Dh4WGkBvtUcsKJUdsG6OUBAMNtoj1tJIAnFMps9bbg9Z60-YZGhxTgP5E9PRkdEu98Le6Zo1QrM4Cr44CwX_fYEx6cNFg38OIfhM1F9OKZwfTHfryAbrym5CHl6ndJKaK8-ovtYBswI3W53vNTlRfK16LmilJM3X1Dyo_Xf59JkfMurx_UvDivtE7h39SlAF-AEzwMQa0dwijehdVfYiqzlHV-6hmb5OieVBkjrnK7bj-f6W_AXR17gU
CitedBy_id crossref_primary_10_3389_fneur_2022_1041978
crossref_primary_10_3389_fneur_2024_1376782
crossref_primary_10_1007_s11055_023_01552_z
crossref_primary_10_3390_diagnostics12112607
crossref_primary_10_3390_mti5030012
crossref_primary_10_1109_ACCESS_2025_3529357
crossref_primary_10_3389_fnins_2021_699428
crossref_primary_10_3389_fpsyg_2023_1241081
crossref_primary_10_3390_s20133754
crossref_primary_10_1088_1741_2552_ac1177
crossref_primary_10_1016_j_neuroimage_2023_120000
crossref_primary_10_1186_s12984_023_01129_4
crossref_primary_10_1016_j_nicl_2020_102417
crossref_primary_10_3390_bioengineering10101162
crossref_primary_10_1089_cyber_2020_0231
crossref_primary_10_1109_TNSRE_2022_3185262
crossref_primary_10_1136_svn_2022_001506
crossref_primary_10_1007_s42600_023_00329_0
crossref_primary_10_3390_brainsci13010056
crossref_primary_10_1016_j_bspc_2023_105745
crossref_primary_10_3389_fnhum_2021_725645
crossref_primary_10_1038_s41597_024_04012_6
crossref_primary_10_1155_2021_9967348
crossref_primary_10_12786_bn_2022_15_e12
crossref_primary_10_2302_kjm_2022_0002_OA
crossref_primary_10_1109_ACCESS_2022_3188103
crossref_primary_10_31857_S0044467723040032
crossref_primary_10_3389_fnbot_2022_873239
crossref_primary_10_1088_1741_2552_ac5757
crossref_primary_10_1371_journal_pone_0264354
crossref_primary_10_1177_15459683221138751
crossref_primary_10_3389_fnbot_2022_971547
crossref_primary_10_1016_j_bspc_2022_104454
crossref_primary_10_3389_fnhum_2022_917909
crossref_primary_10_1080_2326263X_2024_2409463
crossref_primary_10_3389_fnhum_2022_725715
crossref_primary_10_1088_1741_2552_abee51
crossref_primary_10_3389_fnins_2022_949575
crossref_primary_10_1177_20406223211063059
crossref_primary_10_3389_fnins_2023_1086472
crossref_primary_10_31083_j_jin2307125
crossref_primary_10_3390_s21062065
crossref_primary_10_7759_cureus_59314
crossref_primary_10_3389_fnhum_2024_1346050
crossref_primary_10_1186_s12984_022_01081_9
crossref_primary_10_3389_fnins_2022_809657
crossref_primary_10_1080_10400435_2020_1836067
crossref_primary_10_3390_healthcare11192653
crossref_primary_10_1016_j_clinph_2022_03_002
crossref_primary_10_2340_jrm_cc_v8_42941
crossref_primary_10_1109_TIM_2024_3384559
crossref_primary_10_3389_fnhum_2024_1438095
crossref_primary_10_2490_jjrmc_57_956
crossref_primary_10_1177_02692155231200086
crossref_primary_10_1152_jn_00452_2024
crossref_primary_10_3389_fnhum_2021_764281
crossref_primary_10_3389_frobt_2020_00088
crossref_primary_10_1080_10255842_2024_2401918
crossref_primary_10_3389_fnhum_2022_975410
crossref_primary_10_3389_fnins_2021_766879
crossref_primary_10_1109_TETCI_2022_3147225
crossref_primary_10_1113_JP281314
crossref_primary_10_1097_JS9_0000000000001267
crossref_primary_10_1186_s12984_025_01597_w
crossref_primary_10_1088_1741_2552_acd0d6
crossref_primary_10_3389_fneur_2023_1221160
crossref_primary_10_1155_2021_6631835
crossref_primary_10_1177_15500594211009065
crossref_primary_10_1038_s41598_022_20345_x
crossref_primary_10_1109_TNSRE_2022_3198434
crossref_primary_10_1016_j_concog_2023_103531
crossref_primary_10_3390_ijerph19159112
crossref_primary_10_3389_fncel_2021_653487
crossref_primary_10_1007_s11055_023_01436_2
crossref_primary_10_3724_SP_J_1329_2023_06013
crossref_primary_10_3389_fncom_2024_1431815
crossref_primary_10_3390_brainsci14070643
crossref_primary_10_3389_fnrgo_2022_1082901
crossref_primary_10_3389_fnins_2022_1009878
crossref_primary_10_1038_s41597_023_02260_6
crossref_primary_10_3390_life13020303
crossref_primary_10_1016_j_apmr_2024_04_001
crossref_primary_10_12677_acm_2024_14123104
crossref_primary_10_1109_ACCESS_2024_3383847
crossref_primary_10_1088_1741_2552_ac7004
crossref_primary_10_1016_j_chb_2023_107789
crossref_primary_10_1016_j_neurom_2023_10_006
crossref_primary_10_1186_s12984_024_01535_2
crossref_primary_10_1177_15459683211062895
crossref_primary_10_3389_fnhum_2024_1486167
crossref_primary_10_3389_fneur_2023_1135466
crossref_primary_10_1016_j_medj_2024_02_014
crossref_primary_10_14412_2074_2711_2024_5_17_23
crossref_primary_10_3389_fneur_2022_964196
crossref_primary_10_1186_s12984_023_01301_w
crossref_primary_10_1016_j_cobme_2021_100354
crossref_primary_10_3389_fneur_2020_554089
crossref_primary_10_1186_s12938_023_01091_1
crossref_primary_10_4103_ATN_ATN_D_24_00018
crossref_primary_10_3389_fnbot_2021_706630
crossref_primary_10_1016_j_bios_2025_117321
crossref_primary_10_1088_1741_2552_ac49a6
crossref_primary_10_3389_fnins_2023_1146146
crossref_primary_10_1016_j_jnrt_2023_100071
crossref_primary_10_1109_JETCAS_2023_3265928
crossref_primary_10_3389_fnins_2024_1346607
crossref_primary_10_1186_s12967_023_04319_9
crossref_primary_10_1007_s11370_022_00435_5
crossref_primary_10_3389_fnhum_2023_1117670
crossref_primary_10_1007_s11055_022_01333_0
crossref_primary_10_1007_s42600_023_00284_w
crossref_primary_10_1080_17483107_2022_2060354
crossref_primary_10_1088_1741_2552_ad19ea
crossref_primary_10_3389_fnhum_2025_1525293
crossref_primary_10_3389_fstro_2025_1547280
crossref_primary_10_3389_fnhum_2023_1121481
crossref_primary_10_3390_jcm12216734
crossref_primary_10_3389_fnhum_2022_798883
Cites_doi 10.1016/S1474-4422(08)70223-0
10.3109/02699052.2013.804202
10.7326/0003-4819-151-4-200908180-00135
10.1007/s11055-016-0270-5
10.1109/TNSRE.2019.2908125
10.1177/1545968319827573
10.1155/2019/7084618
10.1159/000363763
10.1098/rstb.2016.0260
10.1016/S0004-9514(14)60281-6
10.1016/j.clinph.2005.06.027
10.1016/j.neuroscience.2016.11.023
10.1038/nature13276
10.1109/TBME.2019.2921198
10.1038/nrn.2016.164
10.1016/j.brs.2017.03.008
10.1016/j.apmr.2014.08.008
10.1007/s00221-014-4183-7
10.1038/s41467-018-04673-z
10.1113/jphysiol.2006.125633
10.1097/NPT.0b013e3181c1fc0b
10.1155/2018/2321045
10.1016/j.apmr.2015.01.013
10.1016/S0140-6736(19)31055-4
10.1177/2055668318789280
10.1152/jn.00918.2015
10.1179/1074935714Z.0000000035
10.3389/fnins.2018.00752
10.1088/1741-2560/8/2/025020
10.1177/1545968314565510
10.1073/pnas.0913697107
10.1016/j.apmr.2014.05.026
10.2340/16501977-2275
10.1016/j.neuroimage.2011.01.021
10.1002/ana.25452
10.1016/j.ergon.2011.03.005
10.1371/journal.pone.0044558
10.1310/tsr2102-137
10.1097/NPT.0000000000000200
10.1088/1741-2552/aad724
10.1177/1550059414522229
10.1109/ICORR.2017.8009233
10.3389/fnins.2017.00400
10.1088/1741-2522/aa5d5f
10.1016/j.jelekin.2014.09.008
10.1002/acn3.544
10.1016/j.neuroimage.2005.05.055
10.1002/ana.23879
10.1016/j.neuroimage.2005.12.003
10.1016/S1388-2457(02)00057-3
10.1016/S1388-2457(99)00141-8
10.1016/j.brs.2015.09.002
10.1161/STROKEAHA.107.505313
10.3109/00207454.2013.850082
10.1016/j.conb.2006.05.011
10.3389/fnins.2011.00039
10.1002/ana.24390
10.1109/TNSRE.2013.2249111
10.1258/0007142001903120
10.1016/j.neubiorev.2013.03.017
10.1186/1743-0003-7-27
10.1186/1743-0003-7-60
10.1161/01.STR.0000226902.43357.fc
10.1146/annurev.neuro.24.1.139
10.1073/pnas.1221127110
10.1002/oti.1403
10.1152/jn.00949.2014
10.1002/oti.1422
10.24075/brsmu.2016-02-02
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1177/1545968312445910
10.1016/j.rehab.2014.09.016
10.1161/STROKEAHA.112.654228
10.1002/ana.21393
10.1161/STROKEAHA.116.016304
10.3389/fneng.2014.00030
10.1177/1545968306294729
10.3389/fneng.2014.00019
10.1161/STROKEAHA.111.674507
10.1109/JBHI.2018.2863212
10.1016/j.concog.2015.11.002
10.1038/35101651
10.1007/s10548-013-0299-5
10.1016/S1474-4422(14)70160-7
10.2340/16501977-1925
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12984-020-00686-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 20
ExternalDocumentID oai_doaj_org_article_45e42eeb8c664aca8ebee7954aa22044
PMC7183617
A627371640
32334608
10_1186_s12984_020_00686_2
Genre Journal Article
Review
GeographicLocations Morocco
GeographicLocations_xml – name: Morocco
GrantInformation_xml – fundername: Fundamental Research Fund for the Central Universities
  grantid: 22120180401
– fundername: Departmental Research Grant, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University
  grantid: ZVNX
– fundername: ;
  grantid: 22120180401
– fundername: ;
  grantid: ZVNX
GroupedDBID ---
0R~
29L
2QV
2WC
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c677t-c862a34631f4043e7dc427c3eaa78a1f1cce78551e38fcffd606da6b0250c9af3
IEDL.DBID M48
ISSN 1743-0003
IngestDate Wed Aug 27 00:57:23 EDT 2025
Thu Aug 21 14:10:45 EDT 2025
Fri Jul 11 15:20:31 EDT 2025
Fri Jul 25 19:12:01 EDT 2025
Tue Jun 17 21:35:07 EDT 2025
Tue Jun 10 20:33:16 EDT 2025
Thu Jan 02 22:59:09 EST 2025
Tue Jul 01 02:19:58 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brain-computer interface
Movement attempt
Stroke
Motor imagery
Hemiparetic upper extremity function
Neural mechanism
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c677t-c862a34631f4043e7dc427c3eaa78a1f1cce78551e38fcffd606da6b0250c9af3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-020-00686-2
PMID 32334608
PQID 2404396225
PQPubID 55356
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_45e42eeb8c664aca8ebee7954aa22044
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183617
proquest_miscellaneous_2395260697
proquest_journals_2404396225
gale_infotracmisc_A627371640
gale_infotracacademiconefile_A627371640
pubmed_primary_32334608
crossref_primary_10_1186_s12984_020_00686_2
crossref_citationtrail_10_1186_s12984_020_00686_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-25
PublicationDateYYYYMMDD 2020-04-25
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References C Ruffino (686_CR25) 2017; 341
E Buch (686_CR56) 2008; 39
SV Kotov (686_CR60) 2016; 46
B Varkuti (686_CR49) 2013; 27
AA Frolov (686_CR74) 2016; 2
A Thibaut (686_CR84) 2013; 27
S Halder (686_CR89) 2011; 55
KJ Miller (686_CR8) 2010; 107
SC Cramer (686_CR2) 2008; 63
J Matsumoto (686_CR39) 2010; 7
M Acciarresi (686_CR72) 2014; 72
P Wei (686_CR40) 2013; 21
N Birbaumer (686_CR9) 2007; 579
S Bestmann (686_CR93) 2015; 233
CW Wu (686_CR78) 2005; 27
J Xu (686_CR98) 2019; 85
686_CR13
H Thieme (686_CR19) 2018; 7
SM Rayegani (686_CR47) 2014; 21
LEH van Dokkum (686_CR36) 2015; 58
KK Ang (686_CR54) 2015; 96
A Chowdhury (686_CR65) 2018; 22
686_CR12
Y Jeon (686_CR24) 2011; 41
PY Chhatbar (686_CR44) 2016; 9
MA Cervera (686_CR20) 2018; 5
XL Hu (686_CR33) 2015; 29
KE Laver (686_CR18) 2017; 11
MN McDonnell (686_CR92) 2017; 10
A Nishimoto (686_CR64) 2018; 50
686_CR68
M Mihara (686_CR35) 2013; 44
686_CR69
A Ramos-Murguialday (686_CR53) 2019; 33
686_CR66
686_CR63
OA Howlett (686_CR77) 2015; 96
H Rodgers (686_CR34) 2019; 394
NC Foley (686_CR43) 2003; 10
N Sharma (686_CR21) 2006; 37
G Pfurtscheller (686_CR23) 2006; 31
S Shoham (686_CR27) 2001; 413
D Moher (686_CR41) 2009; 151
YW Hsieh (686_CR85) 2007; 21
I Petrof (686_CR79) 2015; 113
G Kwakkel (686_CR4) 2015; 14
T Asai (686_CR81) 2015; 38
AB Remsik (686_CR67) 2018; 12
686_CR70
PJ Dean (686_CR91) 2012; 7
EW Sellers (686_CR5) 2006; 117
F Pichiorri (686_CR96) 2011; 8
S Hétu (686_CR22) 2013; 37
ZF Guerra (686_CR75) 2017; 41
M Li (686_CR6) 2014; 124
G Pfurtscheller (686_CR11) 1999; 110
T Ono (686_CR37) 2014; 7
YY Jang (686_CR46) 2016; 23
D Rathee (686_CR71) 2019; 27
Y Kasashima-Shindo (686_CR55) 2015; 47
AJ Fink (686_CR80) 2014; 509
JJ Daly (686_CR14) 2009; 33
BJ Jeon (686_CR3) 2015; 22
JJ Daly (686_CR83) 2008; 7
K Sugawara (686_CR90) 2013; 26
KK Ang (686_CR50) 2014; 7
G Bi (686_CR28) 2001; 24
MA Nitsche (686_CR38) 2000; 527
G Morone (686_CR58) 2015; 96
A Ramos-Murguialday (686_CR15) 2013; 74
686_CR57
M Kawakami (686_CR59) 2016; 34
R Sitaram (686_CR82) 2016; 18
CD Wolfe (686_CR1) 2000; 56
J Cohen (686_CR73) 1988
BM Young (686_CR97) 2014; 7
N Mrachacz-Kersting (686_CR95) 2016; 115
AM Moseley (686_CR42) 2002; 48
DT Bundy (686_CR61) 2017; 48
Review Manager (RevMan) [Computer Program] (686_CR48) 2014
G Prasad (686_CR26) 2010; 7
A Muralidharan (686_CR30) 2011; 5
T Wieloch (686_CR86) 2006; 16
J Mehrholz (686_CR76) 2018; 9
DB Popović (686_CR32) 2014; 24
T Kim (686_CR51) 2016; 23
J Ibáñez (686_CR62) 2017; 11
M Pekna (686_CR87) 2012; 43
AA Frolov (686_CR52) 2017; 11
KK Ang (686_CR7) 2015; 46
J Higgins (686_CR45) 2011
JP Bembenek (686_CR94) 2012; 27
Y Blokland (686_CR31) 2012; 2012
A Biasiucci (686_CR16) 2018; 9
JD Wander (686_CR88) 2013; 110
F Pichiorri (686_CR17) 2015; 77
JR Wolpaw (686_CR10) 2002; 113
686_CR29
References_xml – volume: 7
  start-page: 1032
  year: 2008
  ident: 686_CR83
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(08)70223-0
– volume: 27
  start-page: 1093
  year: 2013
  ident: 686_CR84
  publication-title: Brain Inj
  doi: 10.3109/02699052.2013.804202
– volume: 151
  start-page: 264
  year: 2009
  ident: 686_CR41
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-151-4-200908180-00135
– volume: 46
  start-page: 518
  year: 2016
  ident: 686_CR60
  publication-title: Neurosci Behav Physiol
  doi: 10.1007/s11055-016-0270-5
– volume: 27
  start-page: 1020
  year: 2019
  ident: 686_CR71
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2908125
– volume: 33
  start-page: 188
  year: 2019
  ident: 686_CR53
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968319827573
– ident: 686_CR69
  doi: 10.1155/2019/7084618
– volume: 72
  start-page: 255
  year: 2014
  ident: 686_CR72
  publication-title: Eur Neurol
  doi: 10.1159/000363763
– volume: 2012
  start-page: 3967
  year: 2012
  ident: 686_CR31
  publication-title: Conf Proc IEEE Eng Med Biol Soc.
– ident: 686_CR29
  doi: 10.1098/rstb.2016.0260
– volume: 48
  start-page: 43
  year: 2002
  ident: 686_CR42
  publication-title: Aust J Physiother
  doi: 10.1016/S0004-9514(14)60281-6
– volume: 11
  start-page: 126
  year: 2017
  ident: 686_CR62
  publication-title: Front Neurosci
– volume: 117
  start-page: 538
  year: 2006
  ident: 686_CR5
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.06.027
– volume: 341
  start-page: 61
  year: 2017
  ident: 686_CR25
  publication-title: Neuroscience.
  doi: 10.1016/j.neuroscience.2016.11.023
– volume: 7
  year: 2018
  ident: 686_CR19
  publication-title: Cochrane Database Syst Rev
– volume: 509
  start-page: 43
  year: 2014
  ident: 686_CR80
  publication-title: Nature.
  doi: 10.1038/nature13276
– volume: 34
  start-page: 789
  year: 2016
  ident: 686_CR59
  publication-title: Restor Neurol Neurosci
– ident: 686_CR70
  doi: 10.1109/TBME.2019.2921198
– volume-title: Cochrane handbook for systematic reviews of interventions version 5.1. 0 (updated March 2011)
  year: 2011
  ident: 686_CR45
– volume: 18
  start-page: 86
  year: 2016
  ident: 686_CR82
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn.2016.164
– volume: 10
  start-page: 721
  year: 2017
  ident: 686_CR92
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.03.008
– volume: 96
  start-page: S79
  year: 2015
  ident: 686_CR54
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2014.08.008
– volume: 233
  start-page: 679
  year: 2015
  ident: 686_CR93
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-014-4183-7
– volume: 9
  start-page: 2421
  year: 2018
  ident: 686_CR16
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04673-z
– volume: 579
  start-page: 621
  year: 2007
  ident: 686_CR9
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2006.125633
– volume: 33
  start-page: 203
  year: 2009
  ident: 686_CR14
  publication-title: J Neurol Phys Ther
  doi: 10.1097/NPT.0b013e3181c1fc0b
– ident: 686_CR12
  doi: 10.1155/2018/2321045
– volume: 96
  start-page: 934
  year: 2015
  ident: 686_CR77
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2015.01.013
– volume: 394
  start-page: 51
  year: 2019
  ident: 686_CR34
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(19)31055-4
– ident: 686_CR68
  doi: 10.1177/2055668318789280
– volume: 115
  start-page: 1410
  year: 2016
  ident: 686_CR95
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00918.2015
– volume: 22
  start-page: 34
  year: 2015
  ident: 686_CR3
  publication-title: Top Stroke Rehabil
  doi: 10.1179/1074935714Z.0000000035
– volume: 12
  start-page: 752
  year: 2018
  ident: 686_CR67
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00752
– volume: 8
  start-page: 025020
  year: 2011
  ident: 686_CR96
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/2/025020
– volume: 29
  start-page: 767
  year: 2015
  ident: 686_CR33
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968314565510
– volume: 107
  start-page: 4430
  year: 2010
  ident: 686_CR8
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0913697107
– volume: 96
  start-page: S71
  year: 2015
  ident: 686_CR58
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2014.05.026
– volume: 27
  start-page: 79
  year: 2012
  ident: 686_CR94
  publication-title: Funct Neurol
– volume: 50
  start-page: 52
  year: 2018
  ident: 686_CR64
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-2275
– volume: 55
  start-page: 1779
  year: 2011
  ident: 686_CR89
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2011.01.021
– volume: 85
  start-page: 502
  year: 2019
  ident: 686_CR98
  publication-title: Ann Neurol
  doi: 10.1002/ana.25452
– volume: 9
  year: 2018
  ident: 686_CR76
  publication-title: Cochrane Database Syst Rev
– volume: 41
  start-page: 428
  year: 2011
  ident: 686_CR24
  publication-title: Int J Ind Ergonom
  doi: 10.1016/j.ergon.2011.03.005
– volume: 7
  year: 2012
  ident: 686_CR91
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044558
– volume: 11
  year: 2017
  ident: 686_CR18
  publication-title: Cochrane Database Syst Rev
– volume: 21
  start-page: 137
  year: 2014
  ident: 686_CR47
  publication-title: Top Stroke Rehabil
  doi: 10.1310/tsr2102-137
– volume: 41
  start-page: 205
  year: 2017
  ident: 686_CR75
  publication-title: J Neurol Phys
  doi: 10.1097/NPT.0000000000000200
– volume: 7
  start-page: 26
  year: 2014
  ident: 686_CR97
  publication-title: Front Neuroeng.
– ident: 686_CR66
  doi: 10.1088/1741-2552/aad724
– volume: 46
  start-page: 310
  year: 2015
  ident: 686_CR7
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059414522229
– ident: 686_CR63
  doi: 10.1109/ICORR.2017.8009233
– volume: 11
  start-page: 400
  year: 2017
  ident: 686_CR52
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00400
– ident: 686_CR13
  doi: 10.1088/1741-2522/aa5d5f
– volume: 24
  start-page: 795
  year: 2014
  ident: 686_CR32
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2014.09.008
– volume: 5
  start-page: 651
  year: 2018
  ident: 686_CR20
  publication-title: Ann of Clin Transl Neurol
  doi: 10.1002/acn3.544
– volume: 27
  start-page: 872
  year: 2005
  ident: 686_CR78
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.055
– volume: 74
  start-page: 100
  year: 2013
  ident: 686_CR15
  publication-title: Ann Neurol
  doi: 10.1002/ana.23879
– volume-title: Version 5.3 Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration
  year: 2014
  ident: 686_CR48
– volume: 31
  start-page: 153
  year: 2006
  ident: 686_CR23
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 113
  start-page: 767
  year: 2002
  ident: 686_CR10
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 110
  start-page: 1842
  year: 1999
  ident: 686_CR11
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 9
  start-page: 16
  year: 2016
  ident: 686_CR44
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.09.002
– volume: 39
  start-page: 910
  year: 2008
  ident: 686_CR56
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.107.505313
– volume: 124
  start-page: 403
  year: 2014
  ident: 686_CR6
  publication-title: Int J Neurosci
  doi: 10.3109/00207454.2013.850082
– volume: 16
  start-page: 258
  year: 2006
  ident: 686_CR86
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2006.05.011
– volume: 5
  start-page: 39
  year: 2011
  ident: 686_CR30
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2011.00039
– volume: 77
  start-page: 851
  year: 2015
  ident: 686_CR17
  publication-title: Ann Neurol
  doi: 10.1002/ana.24390
– volume: 21
  start-page: 404
  year: 2013
  ident: 686_CR40
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2013.2249111
– volume: 56
  start-page: 275
  year: 2000
  ident: 686_CR1
  publication-title: Br Med Bull
  doi: 10.1258/0007142001903120
– volume: 37
  start-page: 930
  year: 2013
  ident: 686_CR22
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2013.03.017
– volume: 7
  start-page: 27
  year: 2010
  ident: 686_CR39
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-7-27
– volume: 7
  start-page: 60
  year: 2010
  ident: 686_CR26
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-7-60
– volume: 37
  start-page: 1941
  year: 2006
  ident: 686_CR21
  publication-title: Stroke.
  doi: 10.1161/01.STR.0000226902.43357.fc
– volume: 24
  start-page: 139
  year: 2001
  ident: 686_CR28
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.24.1.139
– volume: 110
  start-page: 10818
  year: 2013
  ident: 686_CR88
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1221127110
– volume: 23
  start-page: 39
  year: 2016
  ident: 686_CR51
  publication-title: Occup Ther Int
  doi: 10.1002/oti.1403
– volume: 113
  start-page: 2400
  year: 2015
  ident: 686_CR79
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00949.2014
– volume: 23
  start-page: 175
  year: 2016
  ident: 686_CR46
  publication-title: Occup Ther Int
  doi: 10.1002/oti.1422
– volume: 2
  start-page: 16
  year: 2016
  ident: 686_CR74
  publication-title: Bulletin Of RSMU
  doi: 10.24075/brsmu.2016-02-02
– volume: 527
  start-page: 633
  year: 2000
  ident: 686_CR38
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 27
  start-page: 53
  year: 2013
  ident: 686_CR49
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968312445910
– volume: 58
  start-page: 3
  year: 2015
  ident: 686_CR36
  publication-title: Ann Phys Rehabil Med
  doi: 10.1016/j.rehab.2014.09.016
– volume: 43
  start-page: 2819
  year: 2012
  ident: 686_CR87
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.112.654228
– volume: 63
  start-page: 272
  year: 2008
  ident: 686_CR2
  publication-title: Ann Neurol
  doi: 10.1002/ana.21393
– volume: 48
  start-page: 1908
  year: 2017
  ident: 686_CR61
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.116.016304
– volume: 7
  start-page: 30
  year: 2014
  ident: 686_CR50
  publication-title: Front Neuroeng.
  doi: 10.3389/fneng.2014.00030
– volume: 21
  start-page: 233
  year: 2007
  ident: 686_CR85
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968306294729
– volume: 7
  start-page: 19
  year: 2014
  ident: 686_CR37
  publication-title: Front Neuroeng
  doi: 10.3389/fneng.2014.00019
– volume: 44
  start-page: 1091
  year: 2013
  ident: 686_CR35
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.111.674507
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: 686_CR73
– volume: 22
  start-page: 1786
  year: 2018
  ident: 686_CR65
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2863212
– volume: 38
  start-page: 118
  year: 2015
  ident: 686_CR81
  publication-title: Conscious Cogn
  doi: 10.1016/j.concog.2015.11.002
– volume: 413
  start-page: 793
  year: 2001
  ident: 686_CR27
  publication-title: Nature.
  doi: 10.1038/35101651
– volume: 10
  start-page: 1
  year: 2003
  ident: 686_CR43
  publication-title: Top Stroke Rehabil
– volume: 26
  start-page: 581
  year: 2013
  ident: 686_CR90
  publication-title: Brain Topogr
  doi: 10.1007/s10548-013-0299-5
– ident: 686_CR57
– volume: 14
  start-page: 224
  year: 2015
  ident: 686_CR4
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70160-7
– volume: 47
  start-page: 318
  year: 2015
  ident: 686_CR55
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-1925
SSID ssj0034054
Score 2.586761
SecondaryResourceType review_article
Snippet A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients...
Background A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology...
Abstract Background A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI)...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 57
SubjectTerms Activities of daily living
Analysis
Brain
Brain-computer interface
Clinical outcomes
Computer applications
Direct current
Electrical stimulation of the brain
Electrical stimuli
Electroencephalography
ESB
Feedback
Hemiparetic upper extremity function
Human-computer interface
Imagery
Implants
Long-term effects
Medical imaging
Medical research
Mental task performance
Meta-analysis
Motor imagery
Movement attempt
Muscle contraction
Neural mechanism
Patients
Quality assessment
Recovery
Recovery of function
Rehabilitation
Review
Sensorimotor system
Spasticity
Stimulation
Stroke
Subgroups
Systematic review
Training
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHhAceCyvQEFG4nFAVrO24zjc2oqqRSpCqJV6s2zHAUQ3WWWzf4HfzdhJlkRIcOEaTx72jGe-UWY-A7wSDv2hN6EuTCoqMMRQm7mCclmmpbVCiEhgev5Jnl6Kj1fZ1eSor1AT1tMD9wt3IDIvmPdWOSmFcUbhW31eZMIYxlIRmUAx5o3JVO-DOcIQMbbIKHmwwaimBA2pUuyJoGwWhiJb_58-eRKU5gWTkwh0cg_uDNCRHPaffB9u-HoBtyeEggu4eT78Kl_A6yl_MLnoyQPIG_JlRs29gLufB02NMg_g59kqNpR0npi6JNdN_ZUGD06G4g_SVOTo-IyGCFiSdvbAMIaYkmzXa98S9PytXyHQJ_EscrLp2uaHf08M-c0gTfrumfiqle8MNQNPykO4PPlwcXxKh_MaqJN53lGH2ZHhQvJlFTh7fF46wXLHvTG5Mstq6ZzPFUI0z1XlqqrE5Kk00gYY5gpT8UewVze1fwLEpTa1WcZloYwQqbXMioI5lwtXoocpEliO6tNumGA4U-Nax6RGSd2rXKPKdVS5Zgm8292z7qk8_ip9FKxiJxlouOMFNE49GKf-l3Em8DbYlA7OAj_PmaHnAScZaLf0oUT0GDLWNIH9mSRucjcfHq1SD05mo1lY5UKiR07g5W443BkK52rfbFGGFxmmrLLIE3jcG_FuSpxx1FaqEshn5j2b83yk_v4tUpAjouGIfZ_-j0V6BrdY3JmCsmwf9rp2658j0uvsi7ipfwEjWFGe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSAgOPJZXoCAj8Tggq4ntOA4X1FYsLVIRQq3Um2U7TkF0kyWb_Qv8bsaOs90Iqde1k401r2-SmW8QesMt-EOnfV2YkIRDiCEmtyVhokorYzjngcD05Js4OuNfz_Pz-MJtFcsqR58YHHXVWv-OfI96GphSgPp9Wv4hfmqU_7oaR2jcRLcyiDS-pEvOv4yemAEY4WOjjBR7K4htkhOfMIXOCEInwShw9v_vmbdC07RscisOzR-gexFA4v1B4g_RDdfM0N0tWsEZun0SP5jP0NttFmF8OlAI4Hf4x4Sge4buf4_yGvc8Qn-PF6GtpHdYNxW-bJsL4v04jiUguK3xweEx8XGwwt3khn4NkCVeL5euw-D_O7cAuI_DRHK86rv2t_uINb7ikcZDD034q4XrNdGRLeUxOpt_Pj08InFqA7GiKHpiIUfSjAuW1V5krqgsp4VlTutC6qzOrHWFBKDmmKxtXVeQQlVaGA_GbKlr9gTtNG3jniFsU5OaPGeilJrz1BhqeEmtLbitwM-UCcpG8SkbD-gna1yqkNpIoQaRKxC5CiJXNEEfNtcsB0KPa3cfeK3Y7PRk3OGHtrtQ0bYVzx2nzhlpheDaagmG4Yoy51pTmnKeoPdep5R3GfB4VsfOBzikJ99S-wIwpM9b0wTtTnaCqdvp8qiVKrqalboyjAS93iz7K335XOPaNexhZQ6JqyiLBD0dlHhzJEYZSCuVCSom6j0583Sl-fUzEJEDrmGAgJ9f_1gv0B0abI4Tmu-inb5bu5eA5HrzKpjrP1uWSEA
  priority: 102
  providerName: ProQuest
Title Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/32334608
https://www.proquest.com/docview/2404396225
https://www.proquest.com/docview/2395260697
https://pubmed.ncbi.nlm.nih.gov/PMC7183617
https://doaj.org/article/45e42eeb8c664aca8ebee7954aa22044
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJiF44FJugVEZicsD8khjx3aQEFqnlQ2p0zStUt8sx3EGok1KmkrwB_jdHDtpacSEeMlDfXI5OffG5zsIvWQG_KHVbl8Yl4RBiCFpbBJCeRZmacoY8wCm4zN-MmGfp_F0B63HHbUvcHltaefmSU2q2cGP7z8_gsF_8AYv-bslxCzJiCuEfMcDAZe8B5FJuIkGY7b5qkAhOWFNgyR13dR03URz7TU6gcrj-f_ttbfCVndL5VaMGt1Dd9rkEh822nAf7diih25vQQ720M1x-zG9h15tIwzjywZeAL_GFx3w7h66e97Kck3zAP06nfuWk9piXWR4VhZXxPl43G4PwWWOh0enxMXIDFedC7o1yDrxarGwFYbYUNk5lALYTyvHy7oqv9n3WOM_GNO46a_xt5rbWhPdIqk8RJPR8eXRCWknOhDDhaiJgfpJU8bpIHeoPlZkhkXCUKu1kHqQD4yxQkISZ6nMTZ5nUF5lmqcuUTOJzukjtFuUhX2CsAnTMI1jyhOpGQvTNEpZEhkjmMnAByUBGqzFp0zLoJu6MVO-7JFcNSJXIHLlRa6iAL3dnLNowD7-ST10WrGhdEDd_oeyulKt3SsWWxZZm0rDOdNGSzAaK5KYaR1FIWMBeuN0SjkFh8czuu2KACYdMJc65JBfupo2DNB-hxLcgOkur7VSra1IRe4tJxx8doBebJbdmW5rXWHLFdDQJIailiciQI8bJd6wRCMK0gplgERHvTs8d1eKr188SDnkPBSy46f_zd8zdCvy5sdIFO-j3bpa2eeQ8NVpH90QUwFHOfrUR3vD47Pzi77_86Tv7fs3tvZVvw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VInF54LLcAgWMROEBWc3ajpMgIdQWll16Eaq2Ut-M4zgF0SbL7laIH-Bz-EbGTrLdCKlvfY0dJ9aMZ84kM2cAXgqD9tBqlxcmEyrQxdAsMinlMg_zLBNCeALTvX05PBSfj6KjFfjb1sK4tMrWJnpDnVfGfSPfYI4GJpWofu8nP6nrGuX-rrYtNGq12LG_f2HINns3-oDyXWds8HG8PaRNVwFqZBzPqUEMr7mQvF-4JW2cG8Fiw63WcaL7Rd8YGycIJCxPClMUOUL8XMvMgQWT6oLjulfgquDoyV1l-uBTa_k5gh_RFuYkcmOGvjQR1AVovhKDso7z8z0C_vcES66wm6a55PcGd-BWA1jJZq1hd2HFlj24uURj2INre80P-h6sL7MWk3FNWUBekYMOIXgPbn9p9KOdcw_-jE59GcvcEl3m5KQqj6nzG6RJOSFVQba2R9T53ZxMOwu6MUSy5GwysVOC_mZqTzG8IL4DOpnNp9UP-5Zocs5bTeqaHf-oUzvXVDfsLPfh8FLk-QBWy6q0j4CYMAuzKOIyTbQQYZaxTKTMmFiYHO1aGkC_FZ8yzQZdJ48T5UOpRKpa5ApFrrzIFQvgzeKeSU0gcuHsLacVi5mO_NtfqKbHqrElSkRWMGuzxEgptNEJHkQbp5HQmrFQiABeO51SzkTh6xndVFrgJh3Zl9qUiFldnBwGsNaZiabFdIdbrVSNaZup84MYwIvFsLvTpeuVtjrDOTyNMFCWaRzAw1qJF1vijKO0wiSAuKPenT13R8rv3zzxOeIojoj78cWv9RyuD8d7u2p3tL_zBG4wf_4EZdEarM6nZ_Yposh59swfXQJfL9tW_AMsToYK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immediate+and+long-term+effects+of+BCI-based+rehabilitation+of+the+upper+extremity+after+stroke%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Bai%2C+Zhongfei&rft.au=Fong%2C+Kenneth+N.+K&rft.au=Zhang%2C+Jack+Jiaqi&rft.au=Chan%2C+Josephine&rft.date=2020-04-25&rft.pub=BioMed+Central+Ltd&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12984-020-00686-2&rft.externalDocID=A627371640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon