Short-term cold exposure supports human Treg induction in vivo

Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonic...

Full description

Saved in:
Bibliographic Details
Published inMolecular Metabolism Vol. 28; pp. 73 - 82
Main Authors Becker, Maike, Serr, Isabelle, Salb, Victoria K., Ott, Verena B., Mengel, Laura, Blüher, Matthias, Weigmann, Benno, Hauner, Hans, Tschöp, Matthias H., Daniel, Carolin
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.10.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN2212-8778
2212-8778
DOI10.1016/j.molmet.2019.08.002

Cover

Loading…
Abstract Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis. Towards understanding the molecular underpinnings of metabolic disease, we focus on how environmental-metabolic stimuli impinge on the functional interplay between Tregs and adipose tissue. Here, cold exposure or beta3-adrenergic signaling are a promising tool to increase energy expenditure by activating brown adipose tissue, as well as by reducing local inflammation within fat depots by supporting immunosuppressive Tregs. However, in humans, the underlying mechanisms that enable the environmental-immune crosstalk in the periphery and in the respective tissue remain currently unknown. We used combinatorial approaches of next generation humanized mouse models and in vitro and in vivo experiments together with beta3-adrenergic stimulation to dissect the underlying mechanisms of human Treg induction exposed to environmental stimuli such as cold. To test the translational relevance of our findings, we analyzed samples from the FREECE study in which human subjects were exposed to individualized cooling protocols. Samples were analyzed ex vivo and after in vitro Treg induction using qRT-PCR, immunofluorescence, as well as with multicolor flow cytometry and cell sorting. In vivo application of the beta3-adrenergic receptor agonist mirabegron in humanized mice induced thermogenesis and improved the Treg induction capacity of naïve T cells isolated from these animals. Using samples from the human FREECE study, we demonstrate that a short-term cold stimulus supports human Treg induction in vitro and in vivo. Mechanistically, we identify BORCS6 encoding the Ragulator-interacting protein C17orf59 to be significantly induced in human CD4+ T cells upon short-term cold exposure. Strong mTOR signaling is known to limit successful Treg induction and thus likely by interfering with mTOR activation at lysosomal surfaces, C17orf59 improves the Treg induction capacity of human naïve T cells upon cold exposure. These novel insights into the molecular underpinnings of human Treg induction suggest an important role of Tregs in linking environmental stimuli with adipose tissue function and metabolic diseases. Moreover, these discoveries shed new light on potential approaches towards tailored anti-inflammatory concepts that support human adipose tissue homeostasis by enabling Tregs. •Beta3-adrenergic stimulation enhances human Tregs in humanized mice.•Short-term cold stimulation increases human Treg induction in vitro and in vivo.•Short-term cold exposure elevates human Treg signatures genes.•Short-term cold induces BORCS6 encoding C17orf59 in human CD4+T cells.•C17orf59 limits mTOR signaling and thereby supports human Treg induction.
AbstractList Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis. Towards understanding the molecular underpinnings of metabolic disease, we focus on how environmental-metabolic stimuli impinge on the functional interplay between Tregs and adipose tissue. Here, cold exposure or beta3-adrenergic signaling are a promising tool to increase energy expenditure by activating brown adipose tissue, as well as by reducing local inflammation within fat depots by supporting immunosuppressive Tregs. However, in humans, the underlying mechanisms that enable the environmental-immune crosstalk in the periphery and in the respective tissue remain currently unknown.OBJECTIVEObesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis. Towards understanding the molecular underpinnings of metabolic disease, we focus on how environmental-metabolic stimuli impinge on the functional interplay between Tregs and adipose tissue. Here, cold exposure or beta3-adrenergic signaling are a promising tool to increase energy expenditure by activating brown adipose tissue, as well as by reducing local inflammation within fat depots by supporting immunosuppressive Tregs. However, in humans, the underlying mechanisms that enable the environmental-immune crosstalk in the periphery and in the respective tissue remain currently unknown.We used combinatorial approaches of next generation humanized mouse models and in vitro and in vivo experiments together with beta3-adrenergic stimulation to dissect the underlying mechanisms of human Treg induction exposed to environmental stimuli such as cold. To test the translational relevance of our findings, we analyzed samples from the FREECE study in which human subjects were exposed to individualized cooling protocols. Samples were analyzed ex vivo and after in vitro Treg induction using qRT-PCR, immunofluorescence, as well as with multicolor flow cytometry and cell sorting.METHODSWe used combinatorial approaches of next generation humanized mouse models and in vitro and in vivo experiments together with beta3-adrenergic stimulation to dissect the underlying mechanisms of human Treg induction exposed to environmental stimuli such as cold. To test the translational relevance of our findings, we analyzed samples from the FREECE study in which human subjects were exposed to individualized cooling protocols. Samples were analyzed ex vivo and after in vitro Treg induction using qRT-PCR, immunofluorescence, as well as with multicolor flow cytometry and cell sorting.In vivo application of the beta3-adrenergic receptor agonist mirabegron in humanized mice induced thermogenesis and improved the Treg induction capacity of naïve T cells isolated from these animals. Using samples from the human FREECE study, we demonstrate that a short-term cold stimulus supports human Treg induction in vitro and in vivo. Mechanistically, we identify BORCS6 encoding the Ragulator-interacting protein C17orf59 to be significantly induced in human CD4+ T cells upon short-term cold exposure. Strong mTOR signaling is known to limit successful Treg induction and thus likely by interfering with mTOR activation at lysosomal surfaces, C17orf59 improves the Treg induction capacity of human naïve T cells upon cold exposure.RESULTSIn vivo application of the beta3-adrenergic receptor agonist mirabegron in humanized mice induced thermogenesis and improved the Treg induction capacity of naïve T cells isolated from these animals. Using samples from the human FREECE study, we demonstrate that a short-term cold stimulus supports human Treg induction in vitro and in vivo. Mechanistically, we identify BORCS6 encoding the Ragulator-interacting protein C17orf59 to be significantly induced in human CD4+ T cells upon short-term cold exposure. Strong mTOR signaling is known to limit successful Treg induction and thus likely by interfering with mTOR activation at lysosomal surfaces, C17orf59 improves the Treg induction capacity of human naïve T cells upon cold exposure.These novel insights into the molecular underpinnings of human Treg induction suggest an important role of Tregs in linking environmental stimuli with adipose tissue function and metabolic diseases. Moreover, these discoveries shed new light on potential approaches towards tailored anti-inflammatory concepts that support human adipose tissue homeostasis by enabling Tregs.CONCLUSIONSThese novel insights into the molecular underpinnings of human Treg induction suggest an important role of Tregs in linking environmental stimuli with adipose tissue function and metabolic diseases. Moreover, these discoveries shed new light on potential approaches towards tailored anti-inflammatory concepts that support human adipose tissue homeostasis by enabling Tregs.
Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis. Towards understanding the molecular underpinnings of metabolic disease, we focus on how environmental-metabolic stimuli impinge on the functional interplay between Tregs and adipose tissue. Here, cold exposure or beta3-adrenergic signaling are a promising tool to increase energy expenditure by activating brown adipose tissue, as well as by reducing local inflammation within fat depots by supporting immunosuppressive Tregs. However, in humans, the underlying mechanisms that enable the environmental-immune crosstalk in the periphery and in the respective tissue remain currently unknown. We used combinatorial approaches of next generation humanized mouse models and in vitro and in vivo experiments together with beta3-adrenergic stimulation to dissect the underlying mechanisms of human Treg induction exposed to environmental stimuli such as cold. To test the translational relevance of our findings, we analyzed samples from the FREECE study in which human subjects were exposed to individualized cooling protocols. Samples were analyzed ex vivo and after in vitro Treg induction using qRT-PCR, immunofluorescence, as well as with multicolor flow cytometry and cell sorting. In vivo application of the beta3-adrenergic receptor agonist mirabegron in humanized mice induced thermogenesis and improved the Treg induction capacity of naïve T cells isolated from these animals. Using samples from the human FREECE study, we demonstrate that a short-term cold stimulus supports human Treg induction in vitro and in vivo. Mechanistically, we identify BORCS6 encoding the Ragulator-interacting protein C17orf59 to be significantly induced in human CD4+ T cells upon short-term cold exposure. Strong mTOR signaling is known to limit successful Treg induction and thus likely by interfering with mTOR activation at lysosomal surfaces, C17orf59 improves the Treg induction capacity of human naïve T cells upon cold exposure. These novel insights into the molecular underpinnings of human Treg induction suggest an important role of Tregs in linking environmental stimuli with adipose tissue function and metabolic diseases. Moreover, these discoveries shed new light on potential approaches towards tailored anti-inflammatory concepts that support human adipose tissue homeostasis by enabling Tregs. •Beta3-adrenergic stimulation enhances human Tregs in humanized mice.•Short-term cold stimulation increases human Treg induction in vitro and in vivo.•Short-term cold exposure elevates human Treg signatures genes.•Short-term cold induces BORCS6 encoding C17orf59 in human CD4+T cells.•C17orf59 limits mTOR signaling and thereby supports human Treg induction.
• Beta3-adrenergic stimulation enhances human Tregs in humanized mice. • Short-term cold stimulation increases human Treg induction in vitro and in vivo . • Short-term cold exposure elevates human Treg signatures genes. • Short-term cold induces BORCS6 encoding C17orf59 in human CD4 + T cells. • C17orf59 limits mTOR signaling and thereby supports human Treg induction.
Objective: Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis. Towards understanding the molecular underpinnings of metabolic disease, we focus on how environmental-metabolic stimuli impinge on the functional interplay between Tregs and adipose tissue. Here, cold exposure or beta3-adrenergic signaling are a promising tool to increase energy expenditure by activating brown adipose tissue, as well as by reducing local inflammation within fat depots by supporting immunosuppressive Tregs. However, in humans, the underlying mechanisms that enable the environmental-immune crosstalk in the periphery and in the respective tissue remain currently unknown. Methods: We used combinatorial approaches of next generation humanized mouse models and in vitro and in vivo experiments together with beta3-adrenergic stimulation to dissect the underlying mechanisms of human Treg induction exposed to environmental stimuli such as cold. To test the translational relevance of our findings, we analyzed samples from the FREECE study in which human subjects were exposed to individualized cooling protocols. Samples were analyzed ex vivo and after in vitro Treg induction using qRT-PCR, immunofluorescence, as well as with multicolor flow cytometry and cell sorting. Results: In vivo application of the beta3-adrenergic receptor agonist mirabegron in humanized mice induced thermogenesis and improved the Treg induction capacity of naïve T cells isolated from these animals. Using samples from the human FREECE study, we demonstrate that a short-term cold stimulus supports human Treg induction in vitro and in vivo. Mechanistically, we identify BORCS6 encoding the Ragulator-interacting protein C17orf59 to be significantly induced in human CD4+ T cells upon short-term cold exposure. Strong mTOR signaling is known to limit successful Treg induction and thus likely by interfering with mTOR activation at lysosomal surfaces, C17orf59 improves the Treg induction capacity of human naïve T cells upon cold exposure. Conclusions: These novel insights into the molecular underpinnings of human Treg induction suggest an important role of Tregs in linking environmental stimuli with adipose tissue function and metabolic diseases. Moreover, these discoveries shed new light on potential approaches towards tailored anti-inflammatory concepts that support human adipose tissue homeostasis by enabling Tregs. Keywords: Regulatory T cell, Human adipose tissue, Beta3-adrenergic stimulation, Mirabegron, Immunometabolism, Humanized mice
Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis. Towards understanding the molecular underpinnings of metabolic disease, we focus on how environmental-metabolic stimuli impinge on the functional interplay between Tregs and adipose tissue. Here, cold exposure or beta3-adrenergic signaling are a promising tool to increase energy expenditure by activating brown adipose tissue, as well as by reducing local inflammation within fat depots by supporting immunosuppressive Tregs. However, in humans, the underlying mechanisms that enable the environmental-immune crosstalk in the periphery and in the respective tissue remain currently unknown. We used combinatorial approaches of next generation humanized mouse models and in vitro and in vivo experiments together with beta3-adrenergic stimulation to dissect the underlying mechanisms of human Treg induction exposed to environmental stimuli such as cold. To test the translational relevance of our findings, we analyzed samples from the FREECE study in which human subjects were exposed to individualized cooling protocols. Samples were analyzed ex vivo and after in vitro Treg induction using qRT-PCR, immunofluorescence, as well as with multicolor flow cytometry and cell sorting. In vivo application of the beta3-adrenergic receptor agonist mirabegron in humanized mice induced thermogenesis and improved the Treg induction capacity of naïve T cells isolated from these animals. Using samples from the human FREECE study, we demonstrate that a short-term cold stimulus supports human Treg induction in vitro and in vivo. Mechanistically, we identify BORCS6 encoding the Ragulator-interacting protein C17orf59 to be significantly induced in human CD4 T cells upon short-term cold exposure. Strong mTOR signaling is known to limit successful Treg induction and thus likely by interfering with mTOR activation at lysosomal surfaces, C17orf59 improves the Treg induction capacity of human naïve T cells upon cold exposure. These novel insights into the molecular underpinnings of human Treg induction suggest an important role of Tregs in linking environmental stimuli with adipose tissue function and metabolic diseases. Moreover, these discoveries shed new light on potential approaches towards tailored anti-inflammatory concepts that support human adipose tissue homeostasis by enabling Tregs.
Author Salb, Victoria K.
Serr, Isabelle
Mengel, Laura
Tschöp, Matthias H.
Becker, Maike
Weigmann, Benno
Ott, Verena B.
Blüher, Matthias
Hauner, Hans
Daniel, Carolin
AuthorAffiliation 5 Department of Medicine, University of Leipzig, Leipzig, Germany
7 Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
9 Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
4 ZIEL-Institute for Food & Health, Else Kröner-Fresenius Zentrum für Ernährungsmedizin, Technische Universität München, Freising-Weihenstephan, Germany
8 Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
2 German Center for Diabetes Research (DZD), Munich, Germany
6 Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
3 Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich-Neuherberg, Germany
1 Institute for Diabetes Research, Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center f
AuthorAffiliation_xml – name: 2 German Center for Diabetes Research (DZD), Munich, Germany
– name: 6 Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
– name: 7 Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
– name: 8 Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
– name: 3 Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich-Neuherberg, Germany
– name: 5 Department of Medicine, University of Leipzig, Leipzig, Germany
– name: 9 Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
– name: 1 Institute for Diabetes Research, Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
– name: 4 ZIEL-Institute for Food & Health, Else Kröner-Fresenius Zentrum für Ernährungsmedizin, Technische Universität München, Freising-Weihenstephan, Germany
Author_xml – sequence: 1
  givenname: Maike
  surname: Becker
  fullname: Becker, Maike
  organization: Institute for Diabetes Research, Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
– sequence: 2
  givenname: Isabelle
  surname: Serr
  fullname: Serr, Isabelle
  organization: Institute for Diabetes Research, Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
– sequence: 3
  givenname: Victoria K.
  surname: Salb
  fullname: Salb, Victoria K.
  organization: Institute for Diabetes Research, Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
– sequence: 4
  givenname: Verena B.
  surname: Ott
  fullname: Ott, Verena B.
  organization: Institute for Diabetes Research, Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
– sequence: 5
  givenname: Laura
  surname: Mengel
  fullname: Mengel, Laura
  organization: ZIEL-Institute for Food & Health, Else Kröner-Fresenius Zentrum für Ernährungsmedizin, Technische Universität München, Freising-Weihenstephan, Germany
– sequence: 6
  givenname: Matthias
  surname: Blüher
  fullname: Blüher, Matthias
  organization: Department of Medicine, University of Leipzig, Leipzig, Germany
– sequence: 7
  givenname: Benno
  surname: Weigmann
  fullname: Weigmann, Benno
  organization: Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
– sequence: 8
  givenname: Hans
  surname: Hauner
  fullname: Hauner, Hans
  organization: German Center for Diabetes Research (DZD), Munich, Germany
– sequence: 9
  givenname: Matthias H.
  surname: Tschöp
  fullname: Tschöp, Matthias H.
  organization: German Center for Diabetes Research (DZD), Munich, Germany
– sequence: 10
  givenname: Carolin
  surname: Daniel
  fullname: Daniel, Carolin
  email: carolin.daniel@helmholtz-muenchen.de
  organization: Institute for Diabetes Research, Group Immune Tolerance in Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
BackLink https://cir.nii.ac.jp/crid/1871709542444273152$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/31427184$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu1TAQjVArWkr_AKEsWLBJajuOHwiBUMWjUiUWlLXl2JN7fUnii51c0b_hW_gynKaUtps7I9kj-5wzoznPsoPBD5BlLzAqMcLsbFP2vuthLAnCskSiRIg8yY4JwaQQnIuDe_VRdhrjBqUQjLEaP82OKkwJx4IeZ--_rX0YixFCnxvf2Rx-bX2cAuRx2m7TV8zXU6-H_CrAKneDnczo_JCqP793buefZ4et7iKc3t4n2fdPH6_OvxSXXz9fnH-4LAzjfCy0bimqrG0sZ5QwTmrJhdGGIlFZ02IrLW2NbCwIaxFnAlK2JKVopMW8OskuFl3r9UZtg-t1uFZeO3Xz4MNK6TA604HirRSVqWuGZE1JixtcSdtISmvAtaUsab1btLZT04M1MIxBdw9EH_4Mbq1WfqeYICmqJPD6ViD4nxPEUfUuGug6PYCfoiJEyrRhXM3Ql_d73TX550AC0AVggo8xQHsHwUjNXquNWrxWs9cKCZW8TrQ3j2jGjXq2Jk3sun3kVwt5cC7x5hMLjvnNwihNk1W4Jv_3BMnYnYOgonEwGLAugBnT5t2-Pm8fCZgudTO6-wHX--l_ASe95z4
CitedBy_id crossref_primary_10_1016_j_it_2025_01_007
crossref_primary_10_1038_s41467_025_57918_z
crossref_primary_10_1002_eji_202350897
crossref_primary_10_3389_fimmu_2021_643544
crossref_primary_10_1002_cph4_70001
crossref_primary_10_1016_j_it_2022_07_006
crossref_primary_10_1210_clinem_dgaa799
crossref_primary_10_3389_fimmu_2022_865593
crossref_primary_10_3390_obesities2040032
crossref_primary_10_1016_j_cmet_2023_12_019
crossref_primary_10_1016_j_arr_2020_101143
crossref_primary_10_1111_febs_16632
crossref_primary_10_1111_jcmm_17121
crossref_primary_10_1016_j_cmet_2023_08_010
crossref_primary_10_1111_1440_1681_13304
crossref_primary_10_2478_fzm_2023_0028
crossref_primary_10_1152_ajpendo_00024_2024
crossref_primary_10_3389_fendo_2022_839360
Cites_doi 10.1084/jem.20091999
10.1016/j.humimm.2004.05.016
10.2152/jmi.57.168
10.1016/j.celrep.2015.07.052
10.1038/nm.3891
10.1016/j.cmet.2014.12.009
10.1038/83784
10.1152/ajpendo.00586.2009
10.1113/jphysiol.1949.sp004363
10.1126/science.1073160
10.1038/ni904
10.1038/sj.clpt.6100154
10.1111/ane.12557
10.1016/j.cmet.2017.08.008
10.1038/nm.2002
10.1038/ncomms10991
10.2337/db09-0530
10.1038/nrd3683
10.1084/jem.20050085
10.1084/jem.20110574
10.1084/jem.20071477
10.1126/scitranslmed.aag1782
10.1186/2042-6410-3-13
10.1038/clpt.2012.181
10.1371/journal.pone.0178668
10.1038/nature11132
10.1038/387094a0
10.4049/jimmunol.1402996
10.1016/j.cmet.2016.05.012
10.1073/pnas.0800928105
10.1172/JCI19441
10.1124/jpet.106.115840
10.1038/s41467-017-01567-4
10.1083/jcb.201703061
10.1016/j.cell.2013.12.012
10.1038/29795
10.1084/jem.20061852
10.1016/j.cell.2012.05.016
10.1371/journal.pone.0118534
10.1016/j.immuni.2019.01.020
10.1126/science.1079490
10.1016/j.immuni.2007.01.011
10.1038/nm.3112
10.1586/1744666X.2014.870036
10.1016/j.molmed.2010.04.002
10.1084/jem.20060772
10.1007/s00063-008-1056-5
10.1073/pnas.1007422107
10.1007/s002510100358
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier GmbH.. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier GmbH.. All rights reserved.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.molmet.2019.08.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2212-8778
EndPage 82
ExternalDocumentID oai_doaj_org_article_7f983c55609542f1b139db9445e15d46
PMC6822223
31427184
10_1016_j_molmet_2019_08_002
S221287781930554X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -IN
.1-
.FO
0R~
1P~
457
4G.
53G
5VS
7-5
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OB0
OK1
ON-
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
RYH
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c677t-aaf403ddbd76426725978cac4083dcf1d9d4fc9bde8dd0768e8e8f2f2f8b9d173
IEDL.DBID DOA
ISSN 2212-8778
IngestDate Wed Aug 27 01:24:10 EDT 2025
Thu Aug 21 13:43:50 EDT 2025
Fri Jul 11 11:43:44 EDT 2025
Thu Jan 02 23:00:46 EST 2025
Thu Apr 24 22:59:56 EDT 2025
Tue Jul 01 04:29:47 EDT 2025
Thu Jun 26 22:59:29 EDT 2025
Wed May 17 00:09:23 EDT 2023
Tue Aug 26 16:41:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Immunometabolism
Humanized mice
Beta3-adrenergic stimulation
Mirabegron
Regulatory T cell
Human adipose tissue
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier GmbH.. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c677t-aaf403ddbd76426725978cac4083dcf1d9d4fc9bde8dd0768e8e8f2f2f8b9d173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4698-7069
0000-0001-9277-9055
0000-0001-6416-4213
0000-0002-0510-0663
OpenAccessLink https://doaj.org/article/7f983c55609542f1b139db9445e15d46
PMID 31427184
PQID 2299142133
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7f983c55609542f1b139db9445e15d46
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822223
proquest_miscellaneous_2299142133
pubmed_primary_31427184
crossref_primary_10_1016_j_molmet_2019_08_002
crossref_citationtrail_10_1016_j_molmet_2019_08_002
nii_cinii_1871709542444273152
elsevier_sciencedirect_doi_10_1016_j_molmet_2019_08_002
elsevier_clinicalkey_doi_10_1016_j_molmet_2019_08_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular Metabolism
PublicationTitleAlternate Mol Metab
PublicationYear 2019
Publisher Elsevier GmbH
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier GmbH
– name: Elsevier BV
– name: Elsevier
References Rosen, Spiegelman (bib1) 2014; 156
Reis, Lee, Fanok, Mascaraque, Amoury, Cohn (bib35) 2015; 194
Hanssen, Hoeks, Brans, van der Lans, Schaart, van den Driessche (bib30) 2015; 21
Miller, Kostka, Wlodarczyk, Dugue (bib45) 2016; 134
Brunkow, Jeffery, Hjerrild, Paeper, Clark, Yasayko (bib5) 2001; 27
Lahl, Loddenkemper, Drouin, Freyer, Arnason, Eberl (bib6) 2007; 204
Hori, Nomura, Sakaguchi (bib3) 2003; 299
Gottschalk, Corse, Allison (bib16) 2010; 207
Saito, Okamatsu-Ogura, Matsushita, Watanabe, Yoneshiro, Nio-Kobayashi (bib25) 2009; 58
Lord, Matarese, Howard, Baker, Bloom, Lechler (bib37) 1998; 394
Cypess, White, Vernochet, Schulz, Xue, Sass (bib26) 2013; 19
Bachman, Dhillon, Zhang, Cinti, Bianco, Kobilka (bib40) 2002; 297
Lange, Uhlemann, Muller-Ladner (bib43) 2008; 103
Feuerer, Herrero, Cipolletta, Naaz, Wong, Nayer (bib21) 2009; 15
Medrikova, Sijmonsma, Sowodniok, Richards, Delacher, Sticht (bib23) 2015; 10
Yu, Lin, Wang, Liu, Zhang, Lin (bib27) 2007; 81
Matarese, Procaccini, De Rosa, Horvath, La Cava (bib36) 2010; 16
Haxhinasto, Mathis, Benoist (bib18) 2008; 205
Takasu, Ukai, Sato, Matsui, Nagase, Maruyama (bib29) 2007; 321
Morgan, van Bilsen, Bakker, Heemskerk, Schilham, Hartgers (bib8) 2005; 66
Walker, Kasprowicz, Gersuk, Benard, Van Landeghen, Buckner (bib7) 2003; 112
Daniel, Weigmann, Bronson, Boehmer (bib13) 2011; 208
Weir (bib34) 1949; 109
Fontenot, Gavin, Rudensky (bib2) 2003; 4
Liu, Putnam, Xu-Yu, Szot, Lee, Zhu (bib9) 2006; 203
Karastergiou, Smith, Greenberg, Fried (bib46) 2012; 3
Kloting, Fasshauer, Dietrich, Kovacs, Schon, Kern (bib33) 2010; 299
Guillot, Martin, Seguin-Py, Maguin-Gate, Moretto, Totoson (bib41) 2017; 12
Zhang, Wang, Wang, Wang, Wang, Ding (bib48) 2017; 8
von Boehmer, Daniel (bib12) 2013; 12
Filipek, de Araujo, Vogel, De Smet, Eberharter, Rebsamen (bib49) 2017; 216
Schweitzer, Comb, Bar-Peled, Sabatini (bib32) 2015; 12
Wing, Tanaka, Sakaguchi (bib11) 2019; 50
Cipolletta, Feuerer, Li, Kamei, Lee, Shoelson (bib20) 2012; 486
Serr, Furst, Achenbach, Scherm, Gokmen, Haupt (bib17) 2016; 7
De Rosa, Procaccini, Cali, Pirozzi, Fontana, Zappacosta (bib38) 2007; 26
Kalin, Becker, Ott, Serr, Hosp, Mollah (bib22) 2017; 26
Ruprecht, Gattorno, Ferlito, Gregorio, Martini, Lanzavecchia (bib10) 2005; 201
Guillot, Tordi, Mourot, Demougeot, Dugue, Prati (bib42) 2014; 10
Jeffery, Wing, Holtrup, Sebo, Kaplan, Saavedra-Pena (bib47) 2016; 24
Malik, van Gelderen, Lee, Kowalski, Yen, Goldwater (bib28) 2012; 92
Wu, Bostrom, Sparks, Ye, Choi, Giang (bib24) 2012; 150
Miller, Mrowicka, Malinowska, Zolynski, Kedziora (bib44) 2010; 57
Daniel, Wennhold, Kim, von Boehmer (bib14) 2010; 107
Thomas, Palmiter (bib39) 1997; 387
Bennett, Brunkow, Ramsdell, O'Briant, Zhu, Fuleihan (bib4) 2001; 53
Cypess, Weiner, Roberts-Toler, Franquet Elia, Kessler, Kahn (bib31) 2015; 21
Serr, Scherm, Zahm, Schug, Flynn, Hippich (bib19) 2018; 10
Sauer, Bruno, Hertweck, Finlay, Leleu, Spivakov (bib15) 2008; 105
von Boehmer (10.1016/j.molmet.2019.08.002_bib12) 2013; 12
Gottschalk (10.1016/j.molmet.2019.08.002_bib16) 2010; 207
Takasu (10.1016/j.molmet.2019.08.002_bib29) 2007; 321
Serr (10.1016/j.molmet.2019.08.002_bib17) 2016; 7
Lahl (10.1016/j.molmet.2019.08.002_bib6) 2007; 204
Karastergiou (10.1016/j.molmet.2019.08.002_bib46) 2012; 3
Guillot (10.1016/j.molmet.2019.08.002_bib41) 2017; 12
Rosen (10.1016/j.molmet.2019.08.002_bib1) 2014; 156
Hori (10.1016/j.molmet.2019.08.002_bib3) 2003; 299
Guillot (10.1016/j.molmet.2019.08.002_bib42) 2014; 10
Weir (10.1016/j.molmet.2019.08.002_bib34) 1949; 109
Cypess (10.1016/j.molmet.2019.08.002_bib26) 2013; 19
Liu (10.1016/j.molmet.2019.08.002_bib9) 2006; 203
Miller (10.1016/j.molmet.2019.08.002_bib45) 2016; 134
Schweitzer (10.1016/j.molmet.2019.08.002_bib32) 2015; 12
Lord (10.1016/j.molmet.2019.08.002_bib37) 1998; 394
Thomas (10.1016/j.molmet.2019.08.002_bib39) 1997; 387
Bachman (10.1016/j.molmet.2019.08.002_bib40) 2002; 297
Hanssen (10.1016/j.molmet.2019.08.002_bib30) 2015; 21
De Rosa (10.1016/j.molmet.2019.08.002_bib38) 2007; 26
Cipolletta (10.1016/j.molmet.2019.08.002_bib20) 2012; 486
Daniel (10.1016/j.molmet.2019.08.002_bib14) 2010; 107
Ruprecht (10.1016/j.molmet.2019.08.002_bib10) 2005; 201
Daniel (10.1016/j.molmet.2019.08.002_bib13) 2011; 208
Lange (10.1016/j.molmet.2019.08.002_bib43) 2008; 103
Kalin (10.1016/j.molmet.2019.08.002_bib22) 2017; 26
Walker (10.1016/j.molmet.2019.08.002_bib7) 2003; 112
Wu (10.1016/j.molmet.2019.08.002_bib24) 2012; 150
Bennett (10.1016/j.molmet.2019.08.002_bib4) 2001; 53
Matarese (10.1016/j.molmet.2019.08.002_bib36) 2010; 16
Jeffery (10.1016/j.molmet.2019.08.002_bib47) 2016; 24
Wing (10.1016/j.molmet.2019.08.002_bib11) 2019; 50
Brunkow (10.1016/j.molmet.2019.08.002_bib5) 2001; 27
Feuerer (10.1016/j.molmet.2019.08.002_bib21) 2009; 15
Zhang (10.1016/j.molmet.2019.08.002_bib48) 2017; 8
Medrikova (10.1016/j.molmet.2019.08.002_bib23) 2015; 10
Miller (10.1016/j.molmet.2019.08.002_bib44) 2010; 57
Serr (10.1016/j.molmet.2019.08.002_bib19) 2018; 10
Filipek (10.1016/j.molmet.2019.08.002_bib49) 2017; 216
Sauer (10.1016/j.molmet.2019.08.002_bib15) 2008; 105
Malik (10.1016/j.molmet.2019.08.002_bib28) 2012; 92
Kloting (10.1016/j.molmet.2019.08.002_bib33) 2010; 299
Saito (10.1016/j.molmet.2019.08.002_bib25) 2009; 58
Fontenot (10.1016/j.molmet.2019.08.002_bib2) 2003; 4
Cypess (10.1016/j.molmet.2019.08.002_bib31) 2015; 21
Reis (10.1016/j.molmet.2019.08.002_bib35) 2015; 194
Morgan (10.1016/j.molmet.2019.08.002_bib8) 2005; 66
Yu (10.1016/j.molmet.2019.08.002_bib27) 2007; 81
Haxhinasto (10.1016/j.molmet.2019.08.002_bib18) 2008; 205
References_xml – volume: 387
  start-page: 94
  year: 1997
  end-page: 97
  ident: bib39
  article-title: Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline
  publication-title: Nature
– volume: 12
  start-page: 51
  year: 2013
  end-page: 63
  ident: bib12
  article-title: Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer
  publication-title: Nature Reviews Drug Discovery
– volume: 105
  start-page: 7797
  year: 2008
  end-page: 7802
  ident: bib15
  article-title: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 321
  start-page: 642
  year: 2007
  end-page: 647
  ident: bib29
  article-title: Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function
  publication-title: Journal of Pharmacology and Experimental Therapeutics
– volume: 10
  start-page: 281
  year: 2014
  end-page: 294
  ident: bib42
  article-title: Cryotherapy in inflammatory rheumatic diseases: a systematic review
  publication-title: Expert Review of Clinical Immunology
– volume: 150
  start-page: 366
  year: 2012
  end-page: 376
  ident: bib24
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell
– volume: 201
  start-page: 1793
  year: 2005
  end-page: 1803
  ident: bib10
  article-title: Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia
  publication-title: Journal of Experimental Medicine
– volume: 15
  start-page: 930
  year: 2009
  end-page: 939
  ident: bib21
  article-title: Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
  publication-title: Nature Medicine
– volume: 19
  start-page: 635
  year: 2013
  end-page: 639
  ident: bib26
  article-title: Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
  publication-title: Nature Medicine
– volume: 12
  start-page: e0178668
  year: 2017
  ident: bib41
  article-title: Local cryotherapy improves adjuvant-induced arthritis through down-regulation of IL-6/IL-17 pathway but independently of TNFalpha
  publication-title: PLoS One
– volume: 216
  start-page: 4199
  year: 2017
  end-page: 4215
  ident: bib49
  article-title: LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning
  publication-title: The Journal of Cell Biology
– volume: 26
  start-page: 241
  year: 2007
  end-page: 255
  ident: bib38
  article-title: A key role of leptin in the control of regulatory T cell proliferation
  publication-title: Immunity
– volume: 107
  start-page: 16246
  year: 2010
  end-page: 16251
  ident: bib14
  article-title: Enhancement of antigen-specific Treg vaccination in vivo
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 194
  start-page: 5253
  year: 2015
  end-page: 5260
  ident: bib35
  article-title: Leptin receptor signaling in T cells is required for Th17 differentiation
  publication-title: The Journal of Immunology
– volume: 156
  start-page: 20
  year: 2014
  end-page: 44
  ident: bib1
  article-title: What we talk about when we talk about fat
  publication-title: Cell
– volume: 16
  start-page: 247
  year: 2010
  end-page: 256
  ident: bib36
  article-title: Regulatory T cells in obesity: the leptin connection
  publication-title: Trends in Molecular Medicine
– volume: 486
  start-page: 549
  year: 2012
  end-page: 553
  ident: bib20
  article-title: PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells
  publication-title: Nature
– volume: 203
  start-page: 1701
  year: 2006
  end-page: 1711
  ident: bib9
  article-title: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells
  publication-title: Journal of Experimental Medicine
– volume: 4
  start-page: 330
  year: 2003
  end-page: 336
  ident: bib2
  article-title: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells
  publication-title: Nature Immunology
– volume: 3
  start-page: 13
  year: 2012
  ident: bib46
  article-title: Sex differences in human adipose tissues - the biology of pear shape
  publication-title: Biology of Sex Differences
– volume: 24
  start-page: 142
  year: 2016
  end-page: 150
  ident: bib47
  article-title: The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity
  publication-title: Cell Metabolism
– volume: 204
  start-page: 57
  year: 2007
  end-page: 63
  ident: bib6
  article-title: Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease
  publication-title: Journal of Experimental Medicine
– volume: 21
  start-page: 863
  year: 2015
  end-page: 865
  ident: bib30
  article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
  publication-title: Nature Medicine
– volume: 109
  start-page: 1
  year: 1949
  end-page: 9
  ident: bib34
  article-title: New methods for calculating metabolic rate with special reference to protein metabolism
  publication-title: Journal of Physiology
– volume: 53
  start-page: 435
  year: 2001
  end-page: 439
  ident: bib4
  article-title: A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) leads to the IPEX syndrome
  publication-title: Immunogenetics
– volume: 208
  start-page: 1501
  year: 2011
  end-page: 1510
  ident: bib13
  article-title: Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope
  publication-title: Journal of Experimental Medicine
– volume: 58
  start-page: 1526
  year: 2009
  end-page: 1531
  ident: bib25
  article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity
  publication-title: Diabetes
– volume: 57
  start-page: 168
  year: 2010
  end-page: 173
  ident: bib44
  article-title: Effects of the whole-body cryotherapy on a total antioxidative status and activities of some antioxidative enzymes in blood of patients with multiple sclerosis-preliminary study
  publication-title: The Journal of Medical Investigation
– volume: 299
  start-page: 1057
  year: 2003
  end-page: 1061
  ident: bib3
  article-title: Control of regulatory T cell development by the transcription factor Foxp3
  publication-title: Science
– volume: 26
  start-page: 475
  year: 2017
  end-page: 492
  ident: bib22
  article-title: A stat6/pten Axis links regulatory T cells with adipose tissue function
  publication-title: Cell Metabolism
– volume: 92
  start-page: 696
  year: 2012
  end-page: 706
  ident: bib28
  article-title: Proarrhythmic safety of repeat doses of mirabegron in healthy subjects: a randomized, double-blind, placebo-, and active-controlled thorough QT study
  publication-title: Clinical Pharmacology and Therapeutics
– volume: 8
  start-page: 1394
  year: 2017
  ident: bib48
  article-title: Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1
  publication-title: Nature Communications
– volume: 112
  start-page: 1437
  year: 2003
  end-page: 1443
  ident: bib7
  article-title: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells
  publication-title: Journal of Clinical Investigation
– volume: 207
  start-page: 1701
  year: 2010
  end-page: 1711
  ident: bib16
  article-title: TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo
  publication-title: Journal of Experimental Medicine
– volume: 103
  start-page: 383
  year: 2008
  end-page: 388
  ident: bib43
  article-title: Serial whole-body cryotherapy in the criostream for inflammatory rheumatic diseases. A pilot study
  publication-title: Medizinische Klinik (Munich)
– volume: 21
  start-page: 33
  year: 2015
  end-page: 38
  ident: bib31
  article-title: Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist
  publication-title: Cell Metabolism
– volume: 50
  start-page: 302
  year: 2019
  end-page: 316
  ident: bib11
  article-title: Human FOXP3(+) regulatory T cell heterogeneity and function in autoimmunity and cancer
  publication-title: Immunity
– volume: 27
  start-page: 68
  year: 2001
  end-page: 73
  ident: bib5
  article-title: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse
  publication-title: Nature Genetics
– volume: 297
  start-page: 843
  year: 2002
  end-page: 845
  ident: bib40
  article-title: βAR signaling required for diet-induced thermogenesis and obesity resistance
  publication-title: Science
– volume: 299
  start-page: E506
  year: 2010
  end-page: E515
  ident: bib33
  article-title: Insulin-sensitive obesity
  publication-title: American Journal of Physiology Endocrinology and Metabolism
– volume: 394
  start-page: 897
  year: 1998
  end-page: 901
  ident: bib37
  article-title: Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression
  publication-title: Nature
– volume: 10
  start-page: e0118534
  year: 2015
  ident: bib23
  article-title: Brown adipose tissue harbors a distinct sub-population of regulatory T cells
  publication-title: PLoS One
– volume: 81
  start-page: 654
  year: 2007
  end-page: 658
  ident: bib27
  article-title: Evidence for coexistence of three beta-adrenoceptor subtypes in human peripheral lymphocytes
  publication-title: Clinical Pharmacology and Therapeutics
– volume: 134
  start-page: 420
  year: 2016
  end-page: 426
  ident: bib45
  article-title: Whole-body cryostimulation (cryotherapy) provides benefits for fatigue and functional status in multiple sclerosis patients. A case-control study
  publication-title: Acta Neurologica Scandinavica
– volume: 10
  year: 2018
  ident: bib19
  article-title: A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes
  publication-title: Science Translational Medicine
– volume: 12
  start-page: 1445
  year: 2015
  end-page: 1455
  ident: bib32
  article-title: Disruption of the rag-ragulator complex by c17orf59 inhibits mTORC1
  publication-title: Cell Reports
– volume: 66
  start-page: 13
  year: 2005
  end-page: 20
  ident: bib8
  article-title: Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans
  publication-title: Human Immunology
– volume: 7
  start-page: 10991
  year: 2016
  ident: bib17
  article-title: Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice
  publication-title: Nature Communications
– volume: 205
  start-page: 565
  year: 2008
  end-page: 574
  ident: bib18
  article-title: The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
  publication-title: Journal of Experimental Medicine
– volume: 207
  start-page: 1701
  issue: 8
  year: 2010
  ident: 10.1016/j.molmet.2019.08.002_bib16
  article-title: TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo
  publication-title: Journal of Experimental Medicine
  doi: 10.1084/jem.20091999
– volume: 66
  start-page: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.molmet.2019.08.002_bib8
  article-title: Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans
  publication-title: Human Immunology
  doi: 10.1016/j.humimm.2004.05.016
– volume: 57
  start-page: 168
  issue: 1,2
  year: 2010
  ident: 10.1016/j.molmet.2019.08.002_bib44
  article-title: Effects of the whole-body cryotherapy on a total antioxidative status and activities of some antioxidative enzymes in blood of patients with multiple sclerosis-preliminary study
  publication-title: The Journal of Medical Investigation
  doi: 10.2152/jmi.57.168
– volume: 12
  start-page: 1445
  issue: 9
  year: 2015
  ident: 10.1016/j.molmet.2019.08.002_bib32
  article-title: Disruption of the rag-ragulator complex by c17orf59 inhibits mTORC1
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2015.07.052
– volume: 21
  start-page: 863
  issue: 8
  year: 2015
  ident: 10.1016/j.molmet.2019.08.002_bib30
  article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
  publication-title: Nature Medicine
  doi: 10.1038/nm.3891
– volume: 21
  start-page: 33
  issue: 1
  year: 2015
  ident: 10.1016/j.molmet.2019.08.002_bib31
  article-title: Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2014.12.009
– volume: 27
  start-page: 68
  issue: 1
  year: 2001
  ident: 10.1016/j.molmet.2019.08.002_bib5
  article-title: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse
  publication-title: Nature Genetics
  doi: 10.1038/83784
– volume: 299
  start-page: E506
  issue: 3
  year: 2010
  ident: 10.1016/j.molmet.2019.08.002_bib33
  article-title: Insulin-sensitive obesity
  publication-title: American Journal of Physiology Endocrinology and Metabolism
  doi: 10.1152/ajpendo.00586.2009
– volume: 109
  start-page: 1
  issue: 1–2
  year: 1949
  ident: 10.1016/j.molmet.2019.08.002_bib34
  article-title: New methods for calculating metabolic rate with special reference to protein metabolism
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.1949.sp004363
– volume: 297
  start-page: 843
  issue: 5582
  year: 2002
  ident: 10.1016/j.molmet.2019.08.002_bib40
  article-title: βAR signaling required for diet-induced thermogenesis and obesity resistance
  publication-title: Science
  doi: 10.1126/science.1073160
– volume: 4
  start-page: 330
  issue: 4
  year: 2003
  ident: 10.1016/j.molmet.2019.08.002_bib2
  article-title: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells
  publication-title: Nature Immunology
  doi: 10.1038/ni904
– volume: 81
  start-page: 654
  issue: 5
  year: 2007
  ident: 10.1016/j.molmet.2019.08.002_bib27
  article-title: Evidence for coexistence of three beta-adrenoceptor subtypes in human peripheral lymphocytes
  publication-title: Clinical Pharmacology and Therapeutics
  doi: 10.1038/sj.clpt.6100154
– volume: 134
  start-page: 420
  issue: 6
  year: 2016
  ident: 10.1016/j.molmet.2019.08.002_bib45
  article-title: Whole-body cryostimulation (cryotherapy) provides benefits for fatigue and functional status in multiple sclerosis patients. A case-control study
  publication-title: Acta Neurologica Scandinavica
  doi: 10.1111/ane.12557
– volume: 26
  start-page: 475
  issue: 3
  year: 2017
  ident: 10.1016/j.molmet.2019.08.002_bib22
  article-title: A stat6/pten Axis links regulatory T cells with adipose tissue function
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2017.08.008
– volume: 15
  start-page: 930
  issue: 8
  year: 2009
  ident: 10.1016/j.molmet.2019.08.002_bib21
  article-title: Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
  publication-title: Nature Medicine
  doi: 10.1038/nm.2002
– volume: 7
  start-page: 10991
  year: 2016
  ident: 10.1016/j.molmet.2019.08.002_bib17
  article-title: Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice
  publication-title: Nature Communications
  doi: 10.1038/ncomms10991
– volume: 58
  start-page: 1526
  issue: 7
  year: 2009
  ident: 10.1016/j.molmet.2019.08.002_bib25
  article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity
  publication-title: Diabetes
  doi: 10.2337/db09-0530
– volume: 12
  start-page: 51
  issue: 1
  year: 2013
  ident: 10.1016/j.molmet.2019.08.002_bib12
  article-title: Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer
  publication-title: Nature Reviews Drug Discovery
  doi: 10.1038/nrd3683
– volume: 201
  start-page: 1793
  issue: 11
  year: 2005
  ident: 10.1016/j.molmet.2019.08.002_bib10
  article-title: Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia
  publication-title: Journal of Experimental Medicine
  doi: 10.1084/jem.20050085
– volume: 208
  start-page: 1501
  issue: 7
  year: 2011
  ident: 10.1016/j.molmet.2019.08.002_bib13
  article-title: Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope
  publication-title: Journal of Experimental Medicine
  doi: 10.1084/jem.20110574
– volume: 205
  start-page: 565
  issue: 3
  year: 2008
  ident: 10.1016/j.molmet.2019.08.002_bib18
  article-title: The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
  publication-title: Journal of Experimental Medicine
  doi: 10.1084/jem.20071477
– volume: 10
  issue: 422
  year: 2018
  ident: 10.1016/j.molmet.2019.08.002_bib19
  article-title: A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.aag1782
– volume: 3
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.molmet.2019.08.002_bib46
  article-title: Sex differences in human adipose tissues - the biology of pear shape
  publication-title: Biology of Sex Differences
  doi: 10.1186/2042-6410-3-13
– volume: 92
  start-page: 696
  issue: 6
  year: 2012
  ident: 10.1016/j.molmet.2019.08.002_bib28
  article-title: Proarrhythmic safety of repeat doses of mirabegron in healthy subjects: a randomized, double-blind, placebo-, and active-controlled thorough QT study
  publication-title: Clinical Pharmacology and Therapeutics
  doi: 10.1038/clpt.2012.181
– volume: 12
  start-page: e0178668
  issue: 7
  year: 2017
  ident: 10.1016/j.molmet.2019.08.002_bib41
  article-title: Local cryotherapy improves adjuvant-induced arthritis through down-regulation of IL-6/IL-17 pathway but independently of TNFalpha
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178668
– volume: 486
  start-page: 549
  issue: 7404
  year: 2012
  ident: 10.1016/j.molmet.2019.08.002_bib20
  article-title: PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells
  publication-title: Nature
  doi: 10.1038/nature11132
– volume: 387
  start-page: 94
  issue: 6628
  year: 1997
  ident: 10.1016/j.molmet.2019.08.002_bib39
  article-title: Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline
  publication-title: Nature
  doi: 10.1038/387094a0
– volume: 194
  start-page: 5253
  issue: 11
  year: 2015
  ident: 10.1016/j.molmet.2019.08.002_bib35
  article-title: Leptin receptor signaling in T cells is required for Th17 differentiation
  publication-title: The Journal of Immunology
  doi: 10.4049/jimmunol.1402996
– volume: 24
  start-page: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.molmet.2019.08.002_bib47
  article-title: The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2016.05.012
– volume: 105
  start-page: 7797
  issue: 22
  year: 2008
  ident: 10.1016/j.molmet.2019.08.002_bib15
  article-title: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0800928105
– volume: 112
  start-page: 1437
  issue: 9
  year: 2003
  ident: 10.1016/j.molmet.2019.08.002_bib7
  article-title: Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells
  publication-title: Journal of Clinical Investigation
  doi: 10.1172/JCI19441
– volume: 321
  start-page: 642
  issue: 2
  year: 2007
  ident: 10.1016/j.molmet.2019.08.002_bib29
  article-title: Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function
  publication-title: Journal of Pharmacology and Experimental Therapeutics
  doi: 10.1124/jpet.106.115840
– volume: 8
  start-page: 1394
  issue: 1
  year: 2017
  ident: 10.1016/j.molmet.2019.08.002_bib48
  article-title: Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-01567-4
– volume: 216
  start-page: 4199
  issue: 12
  year: 2017
  ident: 10.1016/j.molmet.2019.08.002_bib49
  article-title: LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201703061
– volume: 156
  start-page: 20
  issue: 1–2
  year: 2014
  ident: 10.1016/j.molmet.2019.08.002_bib1
  article-title: What we talk about when we talk about fat
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.012
– volume: 394
  start-page: 897
  issue: 6696
  year: 1998
  ident: 10.1016/j.molmet.2019.08.002_bib37
  article-title: Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression
  publication-title: Nature
  doi: 10.1038/29795
– volume: 204
  start-page: 57
  issue: 1
  year: 2007
  ident: 10.1016/j.molmet.2019.08.002_bib6
  article-title: Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease
  publication-title: Journal of Experimental Medicine
  doi: 10.1084/jem.20061852
– volume: 150
  start-page: 366
  issue: 2
  year: 2012
  ident: 10.1016/j.molmet.2019.08.002_bib24
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.016
– volume: 10
  start-page: e0118534
  issue: 2
  year: 2015
  ident: 10.1016/j.molmet.2019.08.002_bib23
  article-title: Brown adipose tissue harbors a distinct sub-population of regulatory T cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118534
– volume: 50
  start-page: 302
  issue: 2
  year: 2019
  ident: 10.1016/j.molmet.2019.08.002_bib11
  article-title: Human FOXP3(+) regulatory T cell heterogeneity and function in autoimmunity and cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.01.020
– volume: 299
  start-page: 1057
  issue: 5609
  year: 2003
  ident: 10.1016/j.molmet.2019.08.002_bib3
  article-title: Control of regulatory T cell development by the transcription factor Foxp3
  publication-title: Science
  doi: 10.1126/science.1079490
– volume: 26
  start-page: 241
  issue: 2
  year: 2007
  ident: 10.1016/j.molmet.2019.08.002_bib38
  article-title: A key role of leptin in the control of regulatory T cell proliferation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.01.011
– volume: 19
  start-page: 635
  issue: 5
  year: 2013
  ident: 10.1016/j.molmet.2019.08.002_bib26
  article-title: Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
  publication-title: Nature Medicine
  doi: 10.1038/nm.3112
– volume: 10
  start-page: 281
  issue: 2
  year: 2014
  ident: 10.1016/j.molmet.2019.08.002_bib42
  article-title: Cryotherapy in inflammatory rheumatic diseases: a systematic review
  publication-title: Expert Review of Clinical Immunology
  doi: 10.1586/1744666X.2014.870036
– volume: 16
  start-page: 247
  issue: 6
  year: 2010
  ident: 10.1016/j.molmet.2019.08.002_bib36
  article-title: Regulatory T cells in obesity: the leptin connection
  publication-title: Trends in Molecular Medicine
  doi: 10.1016/j.molmed.2010.04.002
– volume: 203
  start-page: 1701
  issue: 7
  year: 2006
  ident: 10.1016/j.molmet.2019.08.002_bib9
  article-title: CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells
  publication-title: Journal of Experimental Medicine
  doi: 10.1084/jem.20060772
– volume: 103
  start-page: 383
  issue: 6
  year: 2008
  ident: 10.1016/j.molmet.2019.08.002_bib43
  article-title: Serial whole-body cryotherapy in the criostream for inflammatory rheumatic diseases. A pilot study
  publication-title: Medizinische Klinik (Munich)
  doi: 10.1007/s00063-008-1056-5
– volume: 107
  start-page: 16246
  issue: 37
  year: 2010
  ident: 10.1016/j.molmet.2019.08.002_bib14
  article-title: Enhancement of antigen-specific Treg vaccination in vivo
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1007422107
– volume: 53
  start-page: 435
  issue: 6
  year: 2001
  ident: 10.1016/j.molmet.2019.08.002_bib4
  article-title: A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) leads to the IPEX syndrome
  publication-title: Immunogenetics
  doi: 10.1007/s002510100358
SSID ssj0000866651
Score 2.2693467
Snippet Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated...
• Beta3-adrenergic stimulation enhances human Tregs in humanized mice. • Short-term cold stimulation increases human Treg induction in vitro and in vivo . •...
Objective: Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
nii
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 73
SubjectTerms Acetanilides
Adipose Tissue, Brown
Adrenergic beta-Agonists
Adult
Animals
Beta3-adrenergic stimulation
Cold Temperature
Female
Human adipose tissue
Humanized mice
Humans
Immunometabolism
Internal medicine
Male
Mice
Middle Aged
Mirabegron
Original
Original Article
RC31-1245
Receptors, Adrenergic, beta
Regulatory T cell
Regulatory T Cell ; Human Adipose Tissue ; Beta3-adrenergic Stimulation ; Mirabegron ; Immunometabolism ; Humanized Mice
T-Lymphocytes, Regulatory
Thiazoles
Young Adult
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9zIPgiflt1UsHXem-S06R9dMMxBH1xg_tW0nxsFW0vd_cO_W_2t-wv85z0AyvCRAqlbZI2OTk5-aU5H4y9lYSRneGZLVSeAWG4GozLAudWCQ9lsGSN_OmzOjmDj6t8tceORlsYUqscZH8v06O0Hp4sBmou1k2z-CJQ6hZa45RGXqtghXJYQhGN-FaH038WhOxKxSiMlD-jAqMFXVTz-k6a_6RUyct3vV7lbIaKjvxnE9Wdtmn-Bkf_1Kr8bZo6fsDuD_gyfd834SHb8-0jdrePOPnzMWLzC8TbGcnjFFnApf7HuqOfhOnlbh13D9IYtS893fjzFNfrvXNZvLq5vmquuifs7PjD6dFJNsRQyKzSepsZE2ApnaudxpWG0rja0YU1FhB6ORu4Kx0EW9bOF87RrpzHIwg8irp0XMunbL_tWv-cpSIYCdqUeREMBCNqx4Osw1JhV5VG2YTJkW6VHRyMU5yLb9WoSfa16qldEbUrCn-5FAnLplLr3sHGLfkPqUumvOQeOz7oNufVwB-VDmUhbZ6TNz0QgdeIc11dAuSe5w5UwvKxQ6vRAhVlJr6oueXjeio349J_KHmAfIN0oTPHVaqOVQMAxI-IoRL2ZuSoCgc47dqY1ne7y0ogYOAguJQJe9Zz2NR4iQkILgDrNeO9GXXmKW1zEZ2IK0KGQr747xa9ZPforldsfMX2t5udP0CAtq1fxxH4Cy0gOLo
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lat0wEBVJSqGb0HedNsWFbh2uHpbsRShtaQiFdJUL2QlZj8QltW_uIyR_k2_Jl3XGsm_rkpIuisEY25Kt8Wh0xhrNIeQ9R4zsDM1sIfNMIIarhHFZoNRK5kUZLK5GPvomD6fi60l-skEGztZegIs7XTvkk5rOz_euLq4_QIff_xWr9QPD9zEykpZ7MThykzyAsUkhmcNRD_g721wAXO84GRnYbDAFqhjW0_2lotF41aX1Hw1bm01d3wVO_4yx_G3QOnhMtnu0mX6M6vGEbPjmKXkY-SevnwFSP4OGZ2idU1AIl_qrWYu_DNPFatbNJaQdh196PPenKXjvMdUsHN3eXNaX7XMyPfhy_Pkw6xkVMiuVWmbGBDHhzlVOgd8hFfg-qrDGCgBizgbqSieCLSvnC-dwjs7DFhhsRVU6qvgLstW0jX9FUhYMF8qUeRGMCIZVjgZehYm03pVG2oTwQW7a9unGkfXiXA9xZd91lLZGaWskw5ywhGTrUrOYbuOe-z_hJ1nfi8myuxPt_FT3fU-rUBbc5jnm1hMs0ApQr6tKIXJPcydkQvLhg-phPSpYUKiovufhal2uxysRh_xDyV3QG5AL7in4rKp7NSEEoElAVAl5N2iUhu6Oczim8e1qoRnAByoY5TwhL6OGrRvP4QJADQHvNdK9kXTGV5r6rEspLhEnMr7zP8T5mjzCpsaIxzdkazlf-V1AbsvqbdcZfwJ2rD_v
  priority: 102
  providerName: Scholars Portal
Title Short-term cold exposure supports human Treg induction in vivo
URI https://www.clinicalkey.com/#!/content/1-s2.0-S221287781930554X
https://dx.doi.org/10.1016/j.molmet.2019.08.002
https://cir.nii.ac.jp/crid/1871709542444273152
https://www.ncbi.nlm.nih.gov/pubmed/31427184
https://www.proquest.com/docview/2299142133
https://pubmed.ncbi.nlm.nih.gov/PMC6822223
https://doaj.org/article/7f983c55609542f1b139db9445e15d46
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagCIkL4p8ArYLENbC2J3FybBFVoSoH1Iq9WY5_aCrIrtrdCt6GZ-HJmLGT1S5CWg4okhUlcWKPx_Y38fgbxl5JwsjO8MLWVVkAYbgWjCsC57YSHppgaTfyycfq6Aw-TMvpWqgv8glL9MBJcG9UaGppy5KI0UAE3iJkcW0DUHpeOohk2zjnrRlTcQyuEZbH2IsCx2bs8qoe981F565v5O9PrpS8eZ28KTfmpUjfvzE93ey77m8g9E9fyrXJ6fAeuzugynw_1eY-u-H7B-x2ijP54yEi8nNE2QWNwjk2vMv99_mMfg3mV8t5XDPIY6y-_PTSf8nRSk-Usnj26-d1dz17xM4O352-PSqGyAmFrZRaFMYEmEjnWqfQvqgU2jiqtsYCAi5nA3eNg2Cb1vnaOVqL83gEgUfdNo4r-Zjt9LPeP2W5CEaCMk1ZBwPBiNbxINswqax3jalsxuQoN20HWnGKbvFVj_5jFzpJW5O0NQW9nIiMFatc80SrseX5A2qS1bNEih0voKroQVX0NlXJWDk2qB73neJIiS_qtnxcrfINuCThjX_IuYt6g3KhlKNtqmLRAABRIyKnjL0cNUpjt6a1GtP72fJKC4QJHASXMmNPkoatKi_xBkIKwHJt6N6GdDbv9N15pA6vCA8K-ex_iPM5u0NVTZ6NL9jO4nLpdxGhLdo9dmv_-NPn473YKTF9Pz3A9ATq36k7OXk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIgQXxLsBCkHiGnb9iJ0caUW1hbYXttLeLMeO21Q0WW13K_g3_BZ-GTPOQwQhFaFIUWR7Ens8GX-2xzOEvOOIkZ2hic1kmgjEcIUwLvGUWslKkXuLp5FPTuXsTHxapIstctCfhUGzyk73tzo9aOsuZdJxc7KsqskXBlo3UwqGNPRaJRbb5A6gAYmifbTYHxZaALNLGcIwIkGCFP0RumDndYWm_2hVSfP3rWHlaIgKnvxHI9V2XVV_w6N_mlX-Nk4dPiQPOoAZf2jb8IhslfVjcrcNOfn9CYDzCwDcCSrkGGTAxeW3ZYOrhPH1Zhm2D-IQti-er8rzGCbsrXdZePr546a6aZ6Ss8OP84NZ0gVRSKxUap0Y48WUO1c4BVMNqWC6ozJrrADs5aynLnfC27xwZeYcbsuVcHkGV1bkjir-jOzUTV3ukph5w4UyeZp5I7xhhaOeF34qoa9yI21EeM83bTsP4xjo4qvuTckudcttjdzWGP9yyiKSDFTL1sPGLeX3sUuGsugfOyQ0q3PdCYhWPs-4TVN0pyeYpwUAXVfkQqQlTZ2QEUn7DtX9EVRQmvCi6paPq4FuJKb_QLkHcgN8wTuFaaoKVRNCAIAEEBWRt71EafjDcdvG1GWzudYMEAMVjHIekeethA2N55AB6EJAvUayN-LOOKeuLoIXcYnQkPEX_92iN-TebH5yrI-PTj-_JPcxp7VyfEV21qtNuQdobV28Dn_jL_VOO-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+cold+exposure+supports+human+Treg+induction+in%C2%A0vivo&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Maike+Becker&rft.au=Isabelle+Serr&rft.au=Victoria+K.+Salb&rft.au=Verena+B.+Ott&rft.date=2019-10-01&rft.pub=Elsevier&rft.issn=2212-8778&rft.eissn=2212-8778&rft.volume=28&rft.spage=73&rft.epage=82&rft_id=info:doi/10.1016%2Fj.molmet.2019.08.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f983c55609542f1b139db9445e15d46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon