Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis
Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature....
Saved in:
Published in | Journal of neuroengineering and rehabilitation Vol. 17; no. 1; pp. 62 - 21 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
11.05.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults.
Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed.
A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research.
The findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2-95) being the primary limitation. |
---|---|
AbstractList | Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults. Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed. A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research. The findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2-95) being the primary limitation. Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults. Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed. A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research. The findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2-95) being the primary limitation. Background Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults. Methods Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed. Results A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research. Conclusions The findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2–95) being the primary limitation. Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults.BACKGROUNDInertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults.Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed.METHODSFive electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed.A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research.RESULTSA total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research.The findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2-95) being the primary limitation.CONCLUSIONSThe findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2-95) being the primary limitation. Background Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults. Methods Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed. Results A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research. Conclusions The findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2-95) being the primary limitation. Keywords: Inertial sensors, Inertial measurement units, Gait, Biomechanics, Validity, Reliability, Review Abstract Background Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics, other). Although many studies have assessed their validity and reliability, there remains no quantitive summary of this vast body of literature. Therefore, we aimed to conduct a systematic review and meta-analysis to determine the i) concurrent validity and ii) test-retest reliability of IMUs for measuring biomechanical gait outcomes during level walking in healthy adults. Methods Five electronic databases were searched for journal articles assessing the validity or reliability of IMUs during healthy adult walking. Two reviewers screened titles, abstracts, and full texts for studies to be included, before two reviewers examined the methodological quality of all included studies. When sufficient data were present for a given biomechanical outcome, data were meta-analyzed on Pearson correlation coefficients (r) or intraclass correlation coefficients (ICC) for validity and reliability, respectively. Alternatively, qualitative summaries of outcomes were conducted on those that could not be meta-analyzed. Results A total of 82 articles, assessing the validity or reliability of over 100 outcomes, were included in this review. Seventeen biomechanical outcomes, primarily spatiotemporal parameters, were meta-analyzed. The validity and reliability of step and stride times were found to be excellent. Similarly, the validity and reliability of step and stride length, as well as swing and stance time, were found to be good to excellent. Alternatively, spatiotemporal parameter variability and symmetry displayed poor to moderate validity and reliability. IMUs were also found to display moderate reliability for the assessment of local dynamic stability during walking. The remaining biomechanical outcomes were qualitatively summarized to provide a variety of recommendations for future IMU research. Conclusions The findings of this review demonstrate the excellent validity and reliability of IMUs for mean spatiotemporal parameters during walking, but caution the use of spatiotemporal variability and symmetry metrics without strict protocol. Further, this work tentatively supports the use of IMUs for joint angle measurement and other biomechanical outcomes such as stability, regularity, and segmental accelerations. Unfortunately, the strength of these recommendations are limited based on the lack of high-quality studies for each outcome, with underpowered and/or unjustified sample sizes (sample size median 12; range: 2–95) being the primary limitation. |
ArticleNumber | 62 |
Audience | Academic |
Author | Krowchuk, Natasha M. Kobsar, Dylan Tse, Calvin T.F. Charlton, Jesse M. Esculier, Jean-Francois Graffos, Angelo Hunt, Michael A. Thatcher, Daniel |
Author_xml | – sequence: 1 givenname: Dylan surname: Kobsar fullname: Kobsar, Dylan – sequence: 2 givenname: Jesse M. surname: Charlton fullname: Charlton, Jesse M. – sequence: 3 givenname: Calvin T.F. surname: Tse fullname: Tse, Calvin T.F. – sequence: 4 givenname: Jean-Francois surname: Esculier fullname: Esculier, Jean-Francois – sequence: 5 givenname: Angelo surname: Graffos fullname: Graffos, Angelo – sequence: 6 givenname: Natasha M. surname: Krowchuk fullname: Krowchuk, Natasha M. – sequence: 7 givenname: Daniel surname: Thatcher fullname: Thatcher, Daniel – sequence: 8 givenname: Michael A. surname: Hunt fullname: Hunt, Michael A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32393301$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURNuBP8ACRWLTTYpfSRwWSFXFo1IlNsDWunauZzw4cbGTVvPv8cyU0qkQ8SL29bmfda7OaXE0hhGL4jUl55TK5l2irJOiIoxUhDSyrviz4oS2gucj4UeP9sfFaUrrvBGkFi-KY854xzmhJ8X8A7zr3bQpYezLiN6Bdn57Dra8Q4igPZZuxDg58GXCMYWYcqFcIfhplfv62U_lHfifbly-L6FMmzThAJMzmXfr8G6HHnCCCkbwm-TSy-K5BZ_w1f1_UXz_9PHb5Zfq-uvnq8uL68o0bTtVQvBaU5St1gZIz4jQNTArubatlYhdx7GTthUUWqEbZnuURqPtWq6ZZcAXxdWe2wdYq5voBogbFcCpXSHEpYJszHhUYGpGobE9o40QVmpD83h7yhAk0U2fWR_2rJtZD9gbHKcI_gB6eDO6lVqGW9VmYkOaDDi7B8Twa8Y0qcElg97DiGFOiglCJW15drUo3j6RrsMc8_B2KsG7umP0r2oJ2YAbbcjvmi1UXTSsFfmTMqvO_6HKq8fBmZwo63L9oOHNY6MPDv-EJgvYXmBiSCmifZBQorbJVPtkqpxMtUum4rlJPmkybsohCdthOf-_1t_N0Oih |
CitedBy_id | crossref_primary_10_1186_s12877_023_04255_9 crossref_primary_10_1371_journal_pone_0274817 crossref_primary_10_1002_jor_25421 crossref_primary_10_1038_s41598_024_67675_6 crossref_primary_10_3390_jfmk10010082 crossref_primary_10_3390_s20164385 crossref_primary_10_1016_j_gaitpost_2024_04_002 crossref_primary_10_3390_s23042342 crossref_primary_10_1186_s13102_023_00792_3 crossref_primary_10_1016_j_knee_2021_02_011 crossref_primary_10_3390_s20174866 crossref_primary_10_3389_fbioe_2025_1507162 crossref_primary_10_3390_s22031196 crossref_primary_10_1177_17543371221110424 crossref_primary_10_3390_s23135933 crossref_primary_10_1109_TMRB_2023_3310196 crossref_primary_10_15857_ksep_2024_00346 crossref_primary_10_3390_s22010376 crossref_primary_10_3390_s22239301 crossref_primary_10_1109_JSEN_2023_3268669 crossref_primary_10_3390_s20247143 crossref_primary_10_1186_s13036_023_00398_w crossref_primary_10_3390_jcm12134383 crossref_primary_10_1017_wtc_2024_6 crossref_primary_10_1080_10255842_2024_2427113 crossref_primary_10_3390_s23239599 crossref_primary_10_1186_s11556_021_00271_z crossref_primary_10_3389_fbioe_2022_1005496 crossref_primary_10_3390_jcm14061944 crossref_primary_10_3390_s20226453 crossref_primary_10_1109_JSEN_2024_3370301 crossref_primary_10_1016_j_clinbiomech_2023_105957 crossref_primary_10_1016_j_jbiomech_2023_111598 crossref_primary_10_1080_24748668_2023_2194604 crossref_primary_10_1007_s00402_024_05503_2 crossref_primary_10_1016_j_clinbiomech_2023_106009 crossref_primary_10_3389_fresc_2023_1189376 crossref_primary_10_1080_24735132_2023_2221993 crossref_primary_10_3390_ijerph19148375 crossref_primary_10_1109_ACCESS_2024_3459964 crossref_primary_10_3390_s21113748 crossref_primary_10_1080_00222895_2022_2146043 crossref_primary_10_1097_ALN_0000000000005180 crossref_primary_10_3390_geriatrics8050098 crossref_primary_10_1186_s42836_023_00204_4 crossref_primary_10_3390_s23010331 crossref_primary_10_3390_informatics9040097 crossref_primary_10_3390_technologies10030072 crossref_primary_10_2196_65342 crossref_primary_10_2196_57601 crossref_primary_10_3389_fnins_2022_976594 crossref_primary_10_3390_ijerph20043631 crossref_primary_10_1038_s41598_022_18845_x crossref_primary_10_3390_s21185990 crossref_primary_10_1007_s00167_021_06501_2 crossref_primary_10_3390_s23031547 crossref_primary_10_3390_electronics13071363 crossref_primary_10_1038_s41598_023_32550_3 crossref_primary_10_1016_j_knee_2023_04_006 crossref_primary_10_3390_s24113378 crossref_primary_10_1109_JSEN_2023_3336790 crossref_primary_10_3390_s22218387 crossref_primary_10_3390_s23208615 crossref_primary_10_4081_ejtm_2023_11607 crossref_primary_10_1038_s41467_021_23207_8 crossref_primary_10_3390_s21134535 crossref_primary_10_1519_SSC_0000000000000901 crossref_primary_10_1186_s13104_022_06196_9 crossref_primary_10_3390_app13116483 crossref_primary_10_1038_s41598_021_88794_4 crossref_primary_10_3390_s24237825 crossref_primary_10_1093_ptj_pzad184 crossref_primary_10_3390_ijerph20043107 crossref_primary_10_3390_s24237427 crossref_primary_10_3390_s22031050 crossref_primary_10_3390_s22031171 crossref_primary_10_1016_S1283_078X_24_49154_2 crossref_primary_10_3390_s24165213 crossref_primary_10_1016_j_medengphy_2024_104146 crossref_primary_10_1186_s12984_024_01375_0 crossref_primary_10_3390_s22218272 crossref_primary_10_1109_JSEN_2024_3410402 crossref_primary_10_3389_fnbot_2021_723206 crossref_primary_10_1007_s00132_023_04404_3 crossref_primary_10_38025_2078_1962_2024_23_4_38_46 crossref_primary_10_3390_jsan11010019 crossref_primary_10_1016_j_jbiomech_2023_111899 crossref_primary_10_1016_j_jbiomech_2023_111818 crossref_primary_10_3390_s22155657 crossref_primary_10_3390_s21217217 crossref_primary_10_23736_S2784_8469_21_04125_0 crossref_primary_10_1016_j_joca_2020_12_009 crossref_primary_10_1016_j_gaitpost_2023_11_002 crossref_primary_10_3390_s24092691 crossref_primary_10_1186_s12984_024_01469_9 crossref_primary_10_1016_j_jbiomech_2022_111263 crossref_primary_10_3233_BME_240031 crossref_primary_10_1080_10255842_2020_1864822 crossref_primary_10_1038_s41393_020_00559_4 crossref_primary_10_3390_s22030863 crossref_primary_10_3390_s24072163 crossref_primary_10_3390_s25061764 crossref_primary_10_3390_electronics13234739 crossref_primary_10_3390_s22176620 crossref_primary_10_1589_jpts_35_796 crossref_primary_10_23736_S2784_8469_21_04137_7 crossref_primary_10_1016_S1293_2965_24_48990_1 crossref_primary_10_1177_17543371241272789 crossref_primary_10_1109_OJEMB_2024_3408078 crossref_primary_10_3390_s24134172 crossref_primary_10_1002_acr_25096 crossref_primary_10_3390_app15031297 crossref_primary_10_7717_peerj_14054 crossref_primary_10_1109_TMRB_2023_3329585 crossref_primary_10_1109_TNSRE_2023_3250612 crossref_primary_10_1016_j_autcon_2024_105356 crossref_primary_10_3390_s21227497 crossref_primary_10_1016_j_jbiomech_2024_112225 crossref_primary_10_3390_s24217059 crossref_primary_10_1177_09544119211072971 crossref_primary_10_3390_s23135863 crossref_primary_10_1002_mds_28343 crossref_primary_10_1109_JSEN_2025_3526676 crossref_primary_10_3390_app14166907 crossref_primary_10_1177_20556683231182322 crossref_primary_10_1038_s41598_024_65662_5 crossref_primary_10_1186_s12877_024_05475_3 crossref_primary_10_3390_jfmk9040266 crossref_primary_10_1016_j_clinbiomech_2022_105658 crossref_primary_10_1088_2057_1976_ad9838 crossref_primary_10_1016_j_gaitpost_2022_09_002 crossref_primary_10_1016_j_gaitpost_2024_04_029 crossref_primary_10_1109_JSEN_2024_3436532 crossref_primary_10_1186_s40798_022_00477_0 crossref_primary_10_3390_s21144808 crossref_primary_10_1016_j_gaitpost_2024_10_013 crossref_primary_10_1016_j_compbiomed_2024_109338 crossref_primary_10_3390_jcm10235645 crossref_primary_10_1109_JSEN_2023_3294306 crossref_primary_10_2139_ssrn_4173272 crossref_primary_10_1016_j_gaitpost_2024_08_007 crossref_primary_10_3390_s25020315 crossref_primary_10_1007_s12311_023_01625_2 crossref_primary_10_2196_63928 crossref_primary_10_1016_j_gaitpost_2021_01_013 crossref_primary_10_3390_s22239322 crossref_primary_10_3390_s22083050 crossref_primary_10_1227_neu_0000000000002519 crossref_primary_10_1371_journal_pntd_0012537 crossref_primary_10_3389_fbioe_2024_1372757 crossref_primary_10_3390_s21238089 crossref_primary_10_3390_s22103842 crossref_primary_10_3390_healthcare9111444 crossref_primary_10_1016_j_gaitpost_2024_06_007 crossref_primary_10_1109_JTEHM_2022_3226153 crossref_primary_10_1080_17434440_2021_1988849 crossref_primary_10_1097_PHM_0000000000002329 crossref_primary_10_3758_s13428_024_02493_2 crossref_primary_10_3390_diagnostics13152593 crossref_primary_10_3390_app14156537 crossref_primary_10_3390_app15010461 crossref_primary_10_1016_j_gaitpost_2022_01_024 crossref_primary_10_1016_j_jbiomech_2022_111278 crossref_primary_10_3390_s24175736 crossref_primary_10_3390_s24196417 |
Cites_doi | 10.1016/j.gaitpost.2007.04.001 10.1016/S0021-9290(03)00233-1 10.1186/s12938-015-0103-8 10.1016/S0003-9993(98)90231-3 10.1177/1545968306287171 10.1016/j.clinbiomech.2013.02.009 10.3390/s140406891 10.1016/S0021-9290(01)00231-7 10.1016/j.jbiomech.2005.09.012 10.1136/bmj.327.7414.557 10.2196/mhealth.8815 10.1016/j.jbiomech.2004.02.047 10.1016/j.gaitpost.2010.12.003 10.1016/j.apmr.2008.06.010 10.1016/j.gaitpost.2009.04.008 10.1016/0021-9290(92)90036-Z 10.1016/j.gaitpost.2015.06.003 10.3390/s19071555 10.1016/j.gaitpost.2017.06.019 10.1016/j.gaitpost.2015.05.020 10.1016/j.medengphy.2015.11.009 10.1109/TNSRE.2004.843176 10.1016/j.jbiomech.2009.03.049 10.4236/health.2015.76084 10.1016/j.jbiomech.2017.11.010 10.1123/jab.28.3.349 10.3390/s19030596 10.1016/j.gaitpost.2017.04.013 10.1016/j.gaitpost.2017.10.005 10.3390/s18030719 10.1186/1743-0003-9-9 10.1016/j.jbiomech.2018.12.027 10.1080/17461391.2014.955131 10.1016/j.gaitpost.2013.04.021 10.1299/jsmec.44.1125 10.1016/j.jbiomech.2014.06.014 10.1016/j.medengphy.2015.02.003 10.1088/0967-3334/34/8/N63 10.1088/0967-3334/35/5/N29 10.1007/s10439-010-0018-2 10.1016/j.jbiomech.2017.07.012 10.1016/j.cmpb.2012.02.003 10.1016/S0966-6362(03)00093-6 10.3390/s19010038 10.1016/S0966-6362(02)00190-X 10.1016/0010-4825(90)90013-F 10.1016/j.gaitpost.2014.03.189 10.1016/j.gaitpost.2008.11.003 10.1016/j.gaitpost.2012.07.012 10.1016/j.medengphy.2018.12.021 10.1016/j.jbiomech.2012.10.032 10.1016/j.gaitpost.2016.01.014 10.1016/j.gaitpost.2017.06.011 10.1186/1743-0003-3-4 10.1016/j.jbiomech.2009.08.008 10.3390/s18071980 10.1007/s11517-010-0692-0 10.1093/ageing/afp159 10.1016/j.gaitpost.2016.05.014 10.1109/TBME.2016.2523512 10.1109/JBHI.2015.2419317 10.1109/TNSRE.2013.2282080 10.1016/j.jbiomech.2009.08.004 10.1186/s12938-018-0488-2 10.1016/j.apmr.2007.03.031 10.1016/j.gaitpost.2017.09.030 10.1016/j.jclinepi.2010.03.002 10.1109/JBHI.2016.2608720 10.1016/j.jbiomech.2013.10.011 10.1109/TBME.2014.2299772 10.1371/journal.pone.0098395 10.1016/j.gaitpost.2016.08.012 10.1093/bja/aew320 10.1515/bmt-2016-0067 10.3390/s17071522 10.1191/0962280204sm365ra 10.1016/j.medengphy.2015.09.007 10.1186/1743-0003-11-152 10.1016/j.gaitpost.2014.07.007 10.1016/j.gaitpost.2014.01.020 10.1016/j.gaitpost.2013.08.021 10.1016/j.gaitpost.2012.05.028 10.3390/s101211556 10.1111/j.1475-097X.2009.00864.x 10.1016/S0966-6362(03)00069-9 10.1016/j.jbiomech.2019.04.012 10.1109/TBME.2012.2216263 10.1016/j.gaitpost.2011.07.010 10.1055/s-2007-965336 10.3390/s120202255 10.1016/j.gaitpost.2007.01.003 10.1007/s12283-012-0093-8 10.1016/j.gaitpost.2009.06.008 10.1089/tmj.2011.0132 10.1016/j.gaitpost.2012.09.025 10.1016/j.jbi.2016.07.009 10.1016/j.jbiomech.2017.02.016 10.1109/JSEN.2016.2616227 10.1016/j.gaitpost.2015.06.008 10.3390/s18082638 10.1016/j.gaitpost.2010.03.019 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION NPM 3V. 7QO 7RV 7TB 7TK 7TS 7X7 7XB 88C 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 L6V LK8 M0S M0T M1P M7P M7S NAPCQ P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1186/s12984-020-00685-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Biological Science Database Engineering Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
EISSN | 1743-0003 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_ac521a6fd21644f8bc1129d12ea80b6d PMC7216606 A627444488 32393301 10_1186_s12984_020_00685_3 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 0R~ 29L 2QV 2WC 53G 5GY 5VS 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO IHR INH INR IPY ITC KQ8 L6V LK8 M0T M1P M48 M7P M7S ML0 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 NPM PMFND 7QO 7TB 7TK 7TS 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c677t-4435b1e87bbca0d204b5a2f83bf7f8ee993e98f741a74b62fde8cbef973b2f2a3 |
IEDL.DBID | M48 |
ISSN | 1743-0003 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Thu Aug 21 18:02:20 EDT 2025 Fri Jul 11 04:40:17 EDT 2025 Fri Jul 25 19:02:21 EDT 2025 Tue Jun 17 21:29:47 EDT 2025 Tue Jun 10 20:49:48 EDT 2025 Thu Jan 02 22:58:14 EST 2025 Tue Jul 01 02:19:58 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Biomechanics Validity Inertial sensors Gait Inertial measurement units Review Reliability |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c677t-4435b1e87bbca0d204b5a2f83bf7f8ee993e98f741a74b62fde8cbef973b2f2a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-020-00685-3 |
PMID | 32393301 |
PQID | 2404395921 |
PQPubID | 55356 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac521a6fd21644f8bc1129d12ea80b6d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216606 proquest_miscellaneous_2401817399 proquest_journals_2404395921 gale_infotracmisc_A627444488 gale_infotracacademiconefile_A627444488 pubmed_primary_32393301 crossref_primary_10_1186_s12984_020_00685_3 crossref_citationtrail_10_1186_s12984_020_00685_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-11 |
PublicationDateYYYYMMDD | 2020-05-11 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of neuroengineering and rehabilitation |
PublicationTitleAlternate | J Neuroeng Rehabil |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | T Schmitz-Hübsch (685_CR81) 2016; 48 W Teufl (685_CR89) 2019; 19 E Allseits (685_CR23) 2017; 55 D McGrath (685_CR72) 2012; 15 F Reynard (685_CR78) 2014; 47 R Moe-Nilssen (685_CR111) 2010; 32 F Kluge (685_CR60) 2017; 17 A Hartmann (685_CR51) 2009; 29 K Ben Mansour (685_CR28) 2015; 42 A Hartmann (685_CR52) 2009; 30 I Poitras (685_CR13) 2019; 19 M Furrer (685_CR43) 2015; 42 E Chalmers (685_CR35) 2014; 39 MM Shoukri (685_CR107) 2004; 13 MR Backhouse (685_CR26) 2013; 28 K Liu (685_CR65) 2009; 42 D Trojaniello (685_CR91) 2014; 40 W Zijlstra (685_CR101) 2003; 18 BR Greene (685_CR47) 2012; 28 JJ Kavanagh (685_CR58) 2006; 39 H Cooper (685_CR17) 2009 S Chen (685_CR10) 2016; 20 Y Ohtako (685_CR75) 2001; 44 I Bautmans (685_CR27) 2011; 33 P Silsupadol (685_CR86) 2017; 58 DT-P Fong (685_CR9) 2010; 10 T Liikavainio (685_CR64) 2007; 88 KS van Schooten (685_CR95) 2013; 46 M L’Hermette (685_CR63) 2008; 29 A Abu-Arafeh (685_CR110) 2016; 117 SR Hundza (685_CR55) 2014; 22 D Trojaniello (685_CR93) 2015; 42 N Abhayasinghe (685_CR20) 2019; 19 JM Bland (685_CR109) 1990; 20 JM Charlton (685_CR37) 2019; 89 B Sijobert (685_CR85) 2015; 07 R Moe-Nilssen (685_CR73) 1998; 79 685_CR25 KL Paterson (685_CR104) 2009; 38 R Fisher (685_CR18) 1954 SR Simon (685_CR3) 2004; 37 R Senden (685_CR84) 2009; 30 T Seel (685_CR6) 2014; 14 JS Brach (685_CR105) 2008; 89 Y Huang (685_CR54) 2016; 63 N Kitagawa (685_CR59) 2016; 45 A Karatsidis (685_CR57) 2019; 65 M Benoussaad (685_CR29) 2016; 16 R Caldas (685_CR11) 2017; 57 H Xia (685_CR98) 2017; 61 B Mariani (685_CR70) 2012; 59 685_CR94 RM Chapman (685_CR36) 2019; 84 E Sejdic (685_CR82) 2015; 4 S Del Din (685_CR41) 2016; 20 K Lebel (685_CR62) 2017; 16 D Jarchi (685_CR56) 2014; 61 685_CR90 W Tao (685_CR4) 2012; 12 M Henriksen (685_CR53) 2004; 19 A Kose (685_CR61) 2012; 9 RE Mayagoitia (685_CR7) 2002; 35 685_CR99 B Manor (685_CR69) 2018; 6 B Mariani (685_CR71) 2013; 37 DWT Wundersitz (685_CR97) 2015; 15 RW Selles (685_CR83) 2005; 13 D Hamacher (685_CR49) 2014; 39 M Law (685_CR14) 2008 D Steins (685_CR87) 2014; 47 RC Wagenaar (685_CR2) 1992; 25 R Moe-Nilssen (685_CR106) 2004; 37 K Aminian (685_CR24) 2004; 20 G Cooper (685_CR39) 2009; 42 L Pepa (685_CR77) 2017; 57 F Bugané (685_CR33) 2012; 108 K Saremi (685_CR80) 2006; 20 M Iosa (685_CR8) 2016; 4440 M van Tulder (685_CR15) 2003; 28 SM Bruijn (685_CR32) 2010; 38 S Lord (685_CR102) 2011; 34 FA Storm (685_CR88) 2016; 50 A Godfrey (685_CR44) 2015; 37 E Allseits (685_CR22) 2018; 66 T Lyytinen (685_CR67) 2016; 16 M Bertoli (685_CR30) 2018; 17 S Nishiguchi (685_CR74) 2012; 18 J Higgins (685_CR19) 2003; 327 G Schwarzer (685_CR16) 2007; 7 B Galna (685_CR103) 2013; 37 NA Maffiuletti (685_CR68) 2008; 27 AM Sabatini (685_CR79) 2015; 14 ML Gorelick (685_CR46) 2009; 29 P Esser (685_CR42) 2009; 42 R van der Straaten (685_CR12) 2018; 59 A Dalton (685_CR40) 2013; 37 EP Washabaugh (685_CR96) 2017; 55 S Lord (685_CR66) 2008; 27 D Hamacher (685_CR50) 2015; 37 S Byun (685_CR34) 2016; 11 I González (685_CR45) 2016; 62 BR Greene (685_CR48) 2010; 48 D Trojaniello (685_CR92) 2014; 11 K Orlowski (685_CR76) 2017; 62 MH Cole (685_CR38) 2014; 9 J Kottner (685_CR108) 2011; 64 R Baker (685_CR1) 2006; 3 SAAN Bolink (685_CR31) 2016; 38 PB Shull (685_CR5) 2014; 40 A Zijlstra (685_CR100) 2013; 38 M Al-Amri (685_CR21) 2018; 18 |
References_xml | – volume-title: Statistical methods for the research worker. 12th editi year: 1954 ident: 685_CR18 – volume: 27 start-page: 357 year: 2008 ident: 685_CR66 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2007.04.001 – volume: 37 start-page: 121 year: 2004 ident: 685_CR106 publication-title: J Biomech doi: 10.1016/S0021-9290(03)00233-1 – volume: 14 start-page: 1 year: 2015 ident: 685_CR79 publication-title: Biomed Eng Online doi: 10.1186/s12938-015-0103-8 – volume: 79 start-page: 1377 year: 1998 ident: 685_CR73 publication-title: Arch Phys Med Rehabil doi: 10.1016/S0003-9993(98)90231-3 – volume: 20 start-page: 297 year: 2006 ident: 685_CR80 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968306287171 – volume: 28 start-page: 473 year: 2013 ident: 685_CR26 publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2013.02.009 – volume: 14 start-page: 6891 year: 2014 ident: 685_CR6 publication-title: Sensors. doi: 10.3390/s140406891 – volume: 35 start-page: 537 year: 2002 ident: 685_CR7 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00231-7 – volume: 39 start-page: 2863 year: 2006 ident: 685_CR58 publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.09.012 – volume: 327 start-page: 557 year: 2003 ident: 685_CR19 publication-title: BMJ. doi: 10.1136/bmj.327.7414.557 – volume: 6 year: 2018 ident: 685_CR69 publication-title: JMIR mHealth uHealth doi: 10.2196/mhealth.8815 – volume: 37 start-page: 1869 year: 2004 ident: 685_CR3 publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.02.047 – volume: 33 start-page: 366 year: 2011 ident: 685_CR27 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2010.12.003 – volume: 89 start-page: 2293 issue: 12 year: 2008 ident: 685_CR105 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2008.06.010 – volume: 30 start-page: 192 year: 2009 ident: 685_CR84 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2009.04.008 – volume: 25 start-page: 1007 year: 1992 ident: 685_CR2 publication-title: J Biomech doi: 10.1016/0021-9290(92)90036-Z – volume: 42 start-page: 289 year: 2015 ident: 685_CR43 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2015.06.003 – volume: 19 start-page: 1555 year: 2019 ident: 685_CR13 publication-title: Sensors. doi: 10.3390/s19071555 – volume: 57 start-page: 204 year: 2017 ident: 685_CR11 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.06.019 – volume: 42 start-page: 409 year: 2015 ident: 685_CR28 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.05.020 – volume: 38 start-page: 225 year: 2016 ident: 685_CR31 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2015.11.009 – volume: 13 start-page: 81 year: 2005 ident: 685_CR83 publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2004.843176 – volume: 42 start-page: 1578 year: 2009 ident: 685_CR42 publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.03.049 – volume: 4440 start-page: 1 year: 2016 ident: 685_CR8 publication-title: Expert Rev Med Devices – volume: 07 start-page: 704 year: 2015 ident: 685_CR85 publication-title: Health. doi: 10.4236/health.2015.76084 – volume: 66 start-page: 137 year: 2018 ident: 685_CR22 publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.11.010 – volume: 28 start-page: 349 year: 2012 ident: 685_CR47 publication-title: J Appl Biomech doi: 10.1123/jab.28.3.349 – volume: 11 start-page: 1 year: 2016 ident: 685_CR34 publication-title: PLoS One – volume: 19 start-page: 596 year: 2019 ident: 685_CR20 publication-title: Sensors. doi: 10.3390/s19030596 – volume: 55 start-page: 87 year: 2017 ident: 685_CR96 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2017.04.013 – volume: 59 start-page: 229 year: 2018 ident: 685_CR12 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2017.10.005 – volume: 18 start-page: 1 year: 2018 ident: 685_CR21 publication-title: Sensors. doi: 10.3390/s18030719 – volume: 9 start-page: 9 year: 2012 ident: 685_CR61 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-9-9 – volume: 4 start-page: 1 year: 2015 ident: 685_CR82 publication-title: IEEE J Transl Eng Heal Med – volume: 84 start-page: 129 year: 2019 ident: 685_CR36 publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.12.027 – volume-title: The handbook of research synthesis and meta-analysis. 2nd editio year: 2009 ident: 685_CR17 – volume: 15 start-page: 382 year: 2015 ident: 685_CR97 publication-title: Eur J Sport Sci doi: 10.1080/17461391.2014.955131 – volume: 38 start-page: 940 year: 2013 ident: 685_CR100 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2013.04.021 – volume: 44 start-page: 1125 year: 2001 ident: 685_CR75 publication-title: JSME Int J Ser C doi: 10.1299/jsmec.44.1125 – volume: 28 start-page: 1290 year: 2003 ident: 685_CR15 publication-title: Spine. – volume: 47 start-page: 3780 year: 2014 ident: 685_CR87 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.06.014 – volume: 37 start-page: 400 year: 2015 ident: 685_CR44 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2015.02.003 – ident: 685_CR99 doi: 10.1088/0967-3334/34/8/N63 – ident: 685_CR25 doi: 10.1088/0967-3334/35/5/N29 – volume: 38 start-page: 2588 year: 2010 ident: 685_CR32 publication-title: Ann Biomed Eng doi: 10.1007/s10439-010-0018-2 – volume: 61 start-page: 193 year: 2017 ident: 685_CR98 publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.07.012 – volume: 108 start-page: 129 year: 2012 ident: 685_CR33 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2012.02.003 – volume: 20 start-page: 102 year: 2004 ident: 685_CR24 publication-title: Gait Posture. doi: 10.1016/S0966-6362(03)00093-6 – volume: 19 start-page: 38 year: 2019 ident: 685_CR89 publication-title: Sensors. doi: 10.3390/s19010038 – volume: 18 start-page: 1 year: 2003 ident: 685_CR101 publication-title: Gait Posture. doi: 10.1016/S0966-6362(02)00190-X – volume: 20 start-page: 337 year: 1990 ident: 685_CR109 publication-title: Comput Biol Med doi: 10.1016/0010-4825(90)90013-F – volume: 7 start-page: 40 year: 2007 ident: 685_CR16 publication-title: R News – volume: 40 start-page: 11 year: 2014 ident: 685_CR5 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2014.03.189 – volume: 29 start-page: 444 year: 2009 ident: 685_CR51 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2008.11.003 – volume: 37 start-page: 229 year: 2013 ident: 685_CR71 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2012.07.012 – volume: 65 start-page: 68 year: 2019 ident: 685_CR57 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2018.12.021 – volume: 46 start-page: 137 year: 2013 ident: 685_CR95 publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.10.032 – volume: 45 start-page: 110 year: 2016 ident: 685_CR59 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2016.01.014 – volume: 57 start-page: 217 year: 2017 ident: 685_CR77 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2017.06.011 – volume: 3 start-page: 1 year: 2006 ident: 685_CR1 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-3-4 – volume: 42 start-page: 2747 year: 2009 ident: 685_CR65 publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.08.008 – ident: 685_CR90 doi: 10.3390/s18071980 – volume: 48 start-page: 1251 year: 2010 ident: 685_CR48 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-010-0692-0 – volume: 38 start-page: 745 issue: 6 year: 2009 ident: 685_CR104 publication-title: Age Ageing doi: 10.1093/ageing/afp159 – volume: 48 start-page: 194 year: 2016 ident: 685_CR81 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2016.05.014 – volume: 63 start-page: 2278 year: 2016 ident: 685_CR54 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2523512 – volume: 20 start-page: 838 year: 2016 ident: 685_CR41 publication-title: IEEE J Biomed Heal Informatics. doi: 10.1109/JBHI.2015.2419317 – volume: 22 start-page: 127 year: 2014 ident: 685_CR55 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2013.2282080 – volume: 42 start-page: 2678 year: 2009 ident: 685_CR39 publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.08.004 – volume: 17 start-page: 1 year: 2018 ident: 685_CR30 publication-title: Biomed Eng Online doi: 10.1186/s12938-018-0488-2 – volume: 88 start-page: 907 year: 2007 ident: 685_CR64 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2007.03.031 – volume: 58 start-page: 516 year: 2017 ident: 685_CR86 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2017.09.030 – volume: 64 start-page: 96 year: 2011 ident: 685_CR108 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2010.03.002 – volume: 20 start-page: 1521 year: 2016 ident: 685_CR10 publication-title: IEEE J Biomed Heal Informatics doi: 10.1109/JBHI.2016.2608720 – volume: 47 start-page: 74 year: 2014 ident: 685_CR78 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.10.011 – volume: 61 start-page: 1261 year: 2014 ident: 685_CR56 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2299772 – volume: 9 year: 2014 ident: 685_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0098395 – volume: 50 start-page: 42 year: 2016 ident: 685_CR88 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2016.08.012 – volume: 117 start-page: 569 year: 2016 ident: 685_CR110 publication-title: Br J Anaesth doi: 10.1093/bja/aew320 – volume: 62 start-page: 615 year: 2017 ident: 685_CR76 publication-title: Biomed Eng / Biomed Tech doi: 10.1515/bmt-2016-0067 – volume: 17 start-page: 1522 year: 2017 ident: 685_CR60 publication-title: Sensors. doi: 10.3390/s17071522 – volume: 13 start-page: 251 year: 2004 ident: 685_CR107 publication-title: Stat Methods Med Res doi: 10.1191/0962280204sm365ra – volume: 37 start-page: 1152 year: 2015 ident: 685_CR50 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2015.09.007 – volume: 11 start-page: 152 year: 2014 ident: 685_CR92 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-11-152 – volume: 40 start-page: 487 year: 2014 ident: 685_CR91 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2014.07.007 – volume: 39 start-page: 1146 year: 2014 ident: 685_CR49 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2014.01.020 – volume: 39 start-page: 485 year: 2014 ident: 685_CR35 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2013.08.021 – volume: 37 start-page: 49 year: 2013 ident: 685_CR40 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2012.05.028 – volume: 10 start-page: 11556 year: 2010 ident: 685_CR9 publication-title: Sensors. doi: 10.3390/s101211556 – volume: 29 start-page: 271 year: 2009 ident: 685_CR46 publication-title: Clin Physiol Funct Imaging doi: 10.1111/j.1475-097X.2009.00864.x – volume: 19 start-page: 288 year: 2004 ident: 685_CR53 publication-title: Gait Posture. doi: 10.1016/S0966-6362(03)00069-9 – volume: 89 start-page: 123 year: 2019 ident: 685_CR37 publication-title: J Biomech doi: 10.1016/j.jbiomech.2019.04.012 – volume: 59 start-page: 3162 year: 2012 ident: 685_CR70 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2216263 – volume: 16 start-page: 1 year: 2017 ident: 685_CR62 publication-title: BioMed Central – volume: 34 start-page: 443 year: 2011 ident: 685_CR102 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2011.07.010 – volume: 29 start-page: 322 year: 2008 ident: 685_CR63 publication-title: Int J Sports Med doi: 10.1055/s-2007-965336 – volume: 12 start-page: 2255 year: 2012 ident: 685_CR4 publication-title: Sensors. doi: 10.3390/s120202255 – volume-title: Evidence-based rehabilitation: a guide to practice year: 2008 ident: 685_CR14 – volume: 27 start-page: 160 year: 2008 ident: 685_CR68 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2007.01.003 – volume: 15 start-page: 207 year: 2012 ident: 685_CR72 publication-title: Sport Eng doi: 10.1007/s12283-012-0093-8 – volume: 30 start-page: 351 year: 2009 ident: 685_CR52 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2009.06.008 – volume: 16 start-page: 63 year: 2016 ident: 685_CR67 publication-title: J Musculoskelet Neuronal Interact – volume: 18 start-page: 292 year: 2012 ident: 685_CR74 publication-title: Telemed e-Health doi: 10.1089/tmj.2011.0132 – volume: 37 start-page: 580 issue: 4 year: 2013 ident: 685_CR103 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2012.09.025 – volume: 62 start-page: 210 year: 2016 ident: 685_CR45 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2016.07.009 – volume: 55 start-page: 27 year: 2017 ident: 685_CR23 publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.02.016 – volume: 16 start-page: 1 year: 2016 ident: 685_CR29 publication-title: Sensors. doi: 10.1109/JSEN.2016.2616227 – volume: 42 start-page: 310 year: 2015 ident: 685_CR93 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2015.06.008 – ident: 685_CR94 doi: 10.3390/s18082638 – volume: 32 start-page: 98 year: 2010 ident: 685_CR111 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2010.03.019 |
SSID | ssj0034054 |
Score | 2.5998633 |
SecondaryResourceType | review_article |
Snippet | Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal, kinematics,... Background Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g., spatiotemporal,... Abstract Background Inertial measurement units (IMUs) offer the ability to measure walking gait through a variety of biomechanical outcomes (e.g.,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 62 |
SubjectTerms | Adults Analysis Biomechanics Correlation analysis Correlation coefficients Dynamic stability Gait Inertial measurement units Inertial platforms Inertial sensing devices Inertial sensors Kinematics Measuring instruments Meta-analysis Parameters Qualitative analysis Quality Quantitative psychology Reliability Reliability analysis Review Reviews Sensors Stability analysis Symmetry Systematic review Validity Walking |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yB9GDq8-vrqtE8OMgYV-TtE29reKyCCsiu7K3MEkTXHj2yftg8b93pmmfLYJe7LGZKU1mMvlNm_mFsRdO5l6CrMUcVCF0AUE48F6UDWbatcYFo6E_umefytML_fGyuBwd9UV7whI9cBq4I_AoD2VsJAJ7HY3zhBCaXAYwc1c2FH1xzRuSqRSDFcIQPZTImPJojSpGC0qVqCaiEGqyDHVs_X_G5NGiNN0wOVqBTu6yOz105Mfple-xG6GdsdsjQsEZu3nW_yqfsZdj_mB-nsgD-Cv-ZULNPWP7n3tLDTL32fYrgvMG4TmHtuGrsLhKGj_5MvJrnBpUbsWpahDDw4KvMRNertZ4g6eqStQjVg9-DQv6EP-WA_9NGM1TsUz36O9hAwJ6WpQH7OLkw_n7U9EfzyB8WVUboRFpuTyYyjkPc7StdgXIaJSLVTQhIPIJtYkIWaDSrpSxCca7EOtKORklqIdsr1224THjoSy1CSgBzuvKK6OhoPNUgyqUA6kylg_Wsr4fIDpCY2G7HMaUNlnYooVtZ2GLOm92Oj8Sc8dfpd-RE-wkiXW7u4G-aHtftP_yxYy9JheyFBvw9Tz0JQ7YSWLZssd00BFexmTscCKJc9pPmwcntH1MWVtJREh1Ucs8Y893zaRJ--TasNx2MgjZKkSdGXuUfHbXJUVsdxjPM1ZNvHnS52lLe_WtYxwnhifMdA_-xyA9YbdkNxELkeeHbG-z2oanCOw27lk3h38BhkVM3Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0BNEHP1ZPq6dE8ONBwm2TtE19kVNcD-FE5E7uLSRpqgdre-4Hh_-9M226t0W4fWwmS9P5TjK_AXjpROqFFSWfWplxldnAnfWe5xVm2qVCh1HRie7R1_zwRH05zU7jhtsyXqscbGJnqKvW0x75viAYmDIrRfr-_A-nrlF0uhpbaFyHGyl6GrrSpWefB0ssMRhRQ6GMzveX6Nu04pQwUWVExuXIGXWY_f9b5i3XNL42ueWHZvfgTgwg2UHP8ftwLTQTuL0FKziBm0fxwHwCr7ZRhNlxDyHAXrPvI4DuCdz9Fvk10DyA9Q8M0SsM0pltKrYI87N-xl_W1uwCFYSKrhjVDqKRmLMl5sPtYokPWF9bifMI24Nd2Dltx79jll3CRrO-ZKb7699hZbmN4CgP4WT26fjjIY9NGrjPi2LFFcZbLg26cM7bKXJYucyKWktXF7UOAeOfUOoaAxdbKJeLugrau1CXhXSiFlbuwk7TNuExsJDnSgeksM6rwkutbEZdVYPMpLNCJpAO3DI-fiBqpDE3XSajc9Nz2CCHTcdhg3Pebuac9_gdV1J_ICHYUBL2dvegXfw0UZWN9SjBNq8rgammqrXzFLNWqQhWT11eJfCGRMiQhcDX8zYWOuAiCWvLHFC7I_xpncDeiBI124-HByE00bIszaUeJPBiM0wz6bZcE9p1R4OBW4GxZwKPepndLEkS5h1a9QSKkTSP1jweac5-dbjjhPOE-e6Tq1_rKdwSnYplPE33YGe1WIdnGLit3PNOO_8BNf5EBQ priority: 102 providerName: ProQuest |
Title | Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32393301 https://www.proquest.com/docview/2404395921 https://www.proquest.com/docview/2401817399 https://pubmed.ncbi.nlm.nih.gov/PMC7216606 https://doaj.org/article/ac521a6fd21644f8bc1129d12ea80b6d |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwED_tIU3jA4_yCozKSDw-oIzGdmIHCaEOrUyVOk1jRf1m2Y4Dk0oKfWjsv-ecR2nEoB9aKT5Hde4u97s49zuAF4ZGlmqahj3N4pDH2oVGWxsmGWbaKceAkfkd3dFpcjLmw0k82YKm3VF9ARc3pna-n9R4Pj389fP6Azr8-9LhZfJ2gTFL8tAnQr7iIQ7ZNuxiZBK-o8GIr3cVGIIT3hTO3DhvH_aY5wRjdY-YJk6VdP5_37Q3olb7jcqNEDW4C7drbEn6lTHcgy1XdODWBuNgB_ZG9V56B15uEgyTi4pdgLwi5y3u7g7cOatV2cjch9UXRO8Z4neii4zM3fSymnFNZjm5Qt_x9VjElxXi_WNKFpgqz-YLPECqskuc52k_yJWe-if174gmfxilSVVNU576u1vqUNe8KQ9gPDi--HgS1v0bQpsIsQw5QjETOSmMsbqHyucm1jSXzOQil84hNHKpzBHTaMFNQvPMSWtcngpmaE41ewg7xaxwj4G4JOHSoYQ2lgvLJNexb7jqWMyMpiyAqNGWsvUF8j02pqpMcmSiKmUrVLYqla1wzpv1nB8Vtcd_pY-8EawlPS13eWA2_6pqL1faonHrJM8oZqE8l8Z6OJtF1GnZM0kWwGtvQsqbM_49q-saCFykp-FSfd8JCT9SBnDQkkSnt-3hxghV4zOKeqakNE5pFMDz9bCf6V-kK9xsVcogphMISwN4VNnsekmN6QcgWtbcWnN7pLj8VlKSewooTIWf_POcT2Gflo4Wh1F0ADvL-co9Qzi3NF3YFhOB33LwqQu7_f7w8xB_j45Pz8675SOSbunFvwGvGEzk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKkTgeOJYrUMBIFB6Q1Y3tJA4SQuVYtvQQqraob8Z2HKi0JGUPrfqn-I3M5NhuhNS35jEeR3ZmPIft-YaQl5aHjhuesr4REZOR8cwa51icQaSdSjAYGZ7o7h_EwyP59Tg6XiN_21wYvFbZ6sRKUWelwz3yLY4wMGmU8vD96R-GVaPwdLUtoVGLxa4_W0DINn238wn4u8n54PPo45A1VQWYi5NkxiQ4CDb0KrHWmT4MSdrI8FwJmye58h4Mtk9VDpbWJNLGPM-8ctbnaSIsz7kR8N0r5KoUYMkxM33wpdX8Apwf2SbmqHhrCrZUSYYBGmZiREx0jF9VI-B_S7BiCrvXNFfs3uAOudU4rHS7lrC7ZM0XPXJzBcawR67tNwf0PbK5ilpMRzVkAX1FDzuA4D1y-1sjHy3NPTL_DiFBBkEBNUVGJ358Uvc4o2VOF_DnMcmLYq4iKKUxnUL8XU6m8ILWuZzQD7FE6MKMcfv_LTX0HKaa1ik61ad_-5lhpgFjuU-OLoV9D8h6URb-EaE-jqXyQGGsk4kTSpoIq7h6EQlruAhI2HJLu-YHYeGOsa4iJxXrmsMaOKwrDmvo82bZ57TGC7mQ-gMKwZISsb6rF-Xkp25UhzYOVoyJ84xDaCtzZR36yFnIvVF9G2cBeY0ipFEjwfCcaRIrYJKI7aW3sbwSPEoFZKNDCZrEdZtbIdSNJpvq83UXkBfLZuyJt_MKX84rGnAUE_B1A_KwltnllARi7IEVCUjSkebOnLstxcmvCucccaUgvn588bCek-vD0f6e3ts52H1CbvBquUUsDDfI-mwy90_BaZzZZ9VKpeTHZauGf2JwgsE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validity+and+reliability+of+wearable+inertial+sensors+in+healthy+adult+walking%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Kobsar%2C+Dylan&rft.au=Charlton%2C+Jesse+M&rft.au=Tse%2C+Calvin+T+F&rft.au=Esculier%2C+Jean-Francois&rft.date=2020-05-11&rft.eissn=1743-0003&rft.volume=17&rft.issue=1&rft.spage=62&rft_id=info:doi/10.1186%2Fs12984-020-00685-3&rft_id=info%3Apmid%2F32393301&rft.externalDocID=32393301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |