Comparative anatomy of respiratory bronchioles and lobular structures in mammals

Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly transferable to humans. The health of workers exposed to various chemicals and particulates at high doses or for long periods is at risk. Re...

Full description

Saved in:
Bibliographic Details
Published inJournal of Toxicologic Pathology Vol. 38; no. 2; pp. 113 - 129
Main Authors Umeda, Yumi, Izawa, Takeshi, Kazama, Kei, Arai, Sachiko, Kamiie, Junichi, Nakamura, Shinichiro, Hano, Kazuki, Takasu, Masaki, Hirata, Akihiro, Rittinghausen, Susanne, Yamano, Shotaro
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF TOXICOLOGIC PATHOLOGY 01.01.2025
The Japanese Society of Toxicologic Pathology
日本毒性病理学会
Japan Science and Technology Agency
Japanese Society of Toxicologic Pathology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly transferable to humans. The health of workers exposed to various chemicals and particulates at high doses or for long periods is at risk. Respiratory bronchioles and lobular structures, which are demarcated by interlobular septa, are key sites for occupational lung diseases such as pneumoconiosis; however, these structures vary among animal species. Understanding these differences is crucial for studying the pathology of human occupational lung diseases. However, there is a lack of reviews focusing on these structures in different species. This review explores the lung anatomy of various mammals and its functional importance in disease to connect animal studies with human occupational lung diseases. Our results indicate that artiodactyls, especially small pig breeds and goats, are ideal for research because their respiratory bronchioles and lobular structures are similar to those of humans. This review aims to enhance the use of experimental animal data and improve our understanding of human occupational lung diseases, thereby facilitating early disease detection, treatment, and prevention.
AbstractList Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly transferable to humans. The health of workers exposed to various chemicals and particulates at high doses or for long periods is at risk. Respiratory bronchioles and lobular structures, which are demarcated by interlobular septa, are key sites for occupational lung diseases such as pneumoconiosis; however, these structures vary among animal species. Understanding these differences is crucial for studying the pathology of human occupational lung diseases. However, there is a lack of reviews focusing on these structures in different species. This review explores the lung anatomy of various mammals and its functional importance in disease to connect animal studies with human occupational lung diseases. Our results indicate that artiodactyls, especially small pig breeds and goats, are ideal for research because their respiratory bronchioles and lobular structures are similar to those of humans. This review aims to enhance the use of experimental animal data and improve our understanding of human occupational lung diseases, thereby facilitating early disease detection, treatment, and prevention.
Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly transferable to humans. The health of workers exposed to various chemicals and particulates at high doses or for long periods is at risk. Respiratory bronchioles and lobular structures, which are demarcated by interlobular septa, are key sites for occupational lung diseases such as pneumoconiosis; however, these structures vary among animal species. Understanding these differences is crucial for studying the pathology of human occupational lung diseases. However, there is a lack of reviews focusing on these structures in different species. This review explores the lung anatomy of various mammals and its functional importance in disease to connect animal studies with human occupational lung diseases. Our results indicate that artiodactyls, especially small pig breeds and goats, are ideal for research because their respiratory bronchioles and lobular structures are similar to those of humans. This review aims to enhance the use of experimental animal data and improve our understanding of human occupational lung diseases, thereby facilitating early disease detection, treatment, and prevention.Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly transferable to humans. The health of workers exposed to various chemicals and particulates at high doses or for long periods is at risk. Respiratory bronchioles and lobular structures, which are demarcated by interlobular septa, are key sites for occupational lung diseases such as pneumoconiosis; however, these structures vary among animal species. Understanding these differences is crucial for studying the pathology of human occupational lung diseases. However, there is a lack of reviews focusing on these structures in different species. This review explores the lung anatomy of various mammals and its functional importance in disease to connect animal studies with human occupational lung diseases. Our results indicate that artiodactyls, especially small pig breeds and goats, are ideal for research because their respiratory bronchioles and lobular structures are similar to those of humans. This review aims to enhance the use of experimental animal data and improve our understanding of human occupational lung diseases, thereby facilitating early disease detection, treatment, and prevention.
Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly transferable to humans. The health of workers exposed to various chemicals and particulates at high doses or for long periods is at risk. Respiratory bronchioles and lobular structures, which are demarcated by interlobular septa, are key sites for occupational lung diseases such as pneumoconiosis; however, these structures vary among animal species. Understanding these differences is crucial for studying the pathology of human occupational lung diseases. However, there is a lack of reviews focusing on these structures in different species. This review explores the lung anatomy of various mammals and its functional importance in disease to connect animal studies with human occupational lung diseases. Our results indicate that artiodactyls, especially small pig breeds and goats, are ideal for research because their respiratory bronchioles and lobular structures are similar to those of humans. This review aims to enhance the use of experimental animal data and improve our understanding of human occupational lung diseases, thereby facilitating early disease detection, treatment, and prevention.
Abstract: Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly transferable to humans. The health of workers exposed to various chemicals and particulates at high doses or for long periods is at risk. Respiratory bronchioles and lobular structures, which are demarcated by interlobular septa, are key sites for occupational lung diseases such as pneumoconiosis; however, these structures vary among animal species. Understanding these differences is crucial for studying the pathology of human occupational lung diseases. However, there is a lack of reviews focusing on these structures in different species. This review explores the lung anatomy of various mammals and its functional importance in disease to connect animal studies with human occupational lung diseases. Our results indicate that artiodactyls, especially small pig breeds and goats, are ideal for research because their respiratory bronchioles and lobular structures are similar to those of humans. This review aims to enhance the use of experimental animal data and improve our understanding of human occupational lung diseases, thereby facilitating early disease detection, treatment, and prevention.
ArticleNumber 2024-0071
Author Izawa, Takeshi
Nakamura, Shinichiro
Arai, Sachiko
Hano, Kazuki
Kazama, Kei
Kamiie, Junichi
Hirata, Akihiro
Yamano, Shotaro
Takasu, Masaki
Rittinghausen, Susanne
Umeda, Yumi
Author_xml – sequence: 1
  fullname: Umeda, Yumi
  organization: National Institute of Occupational Safety and Health, Japan, Organization of Occupational Health and Safety, 2-26-1 Muraoka-higashi, Fujisawa, Kanagawa 251-0015, Japan
– sequence: 2
  fullname: Izawa, Takeshi
  organization: Laboratory of Veterinary Pathology, Osaka Metropolitan University Graduate School of Veterinary Science, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
– sequence: 3
  fullname: Kazama, Kei
  organization: Department of Veterinary Medicine, Azabu University, School of Veterinary Medicine, 17-71 Fuchinobe 1-chome, Chuo-ku, Sagamihara 252-5201, Japan
– sequence: 4
  fullname: Arai, Sachiko
  organization: Department of Veterinary Medicine, Azabu University, School of Veterinary Medicine, 17-71 Fuchinobe 1-chome, Chuo-ku, Sagamihara 252-5201, Japan
– sequence: 5
  fullname: Kamiie, Junichi
  organization: Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
– sequence: 6
  fullname: Nakamura, Shinichiro
  organization: Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
– sequence: 7
  fullname: Hano, Kazuki
  organization: Gifu University Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
– sequence: 8
  fullname: Takasu, Masaki
  organization: Gifu University Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
– sequence: 9
  fullname: Hirata, Akihiro
  organization: Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Gifu, 501-1193, Japan
– sequence: 10
  fullname: Rittinghausen, Susanne
  organization: Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
– sequence: 11
  fullname: Yamano, Shotaro
  organization: National Institute of Occupational Safety and Health, Japan, Organization of Occupational Health and Safety, 2-26-1 Muraoka-higashi, Fujisawa, Kanagawa 251-0015, Japan
BackLink https://cir.nii.ac.jp/crid/1390865662949669376$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/40190622$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1URLeFI1cUCQ69pMzYiR2fULWiBakSHHrgZjmO0_UqsRc7qdh_j9Ntl4_LjBU_evKO54yc-OAtIW8RLpFK9nEKvy4p0KoEEPiCrLBpsJRY_zghK5BY5bNsTslZSlsAKqBmr8hpBSiBU7oi39dh3OmoJ_dgC-31FMZ9Efoi2rRz-XOI-6KNwZuNC4NNGemKIbTzoGORpjibac5o4Xwx6nHUQ3pNXva52TdP_ZzcXX--W38pb7_dfF1f3ZaGCzGVFQjJOqwQqBWMVr22xrKG972omO1kg50ArNuqb4SoJTfYcs1tTaFlrdXsnHw6aHdzO9rOWD9FPahddKOOexW0U__eeLdR9-FBIUrOkfJsuHgyxPBztmlSo0vGDoP2NsxJMWwERaQCM_r-P3Qb5ujzeIpRBsA40CZT7_6OdMzy_NgZKA-AiSGlaPsjgqCWZaq8TLUsUy3LzPyHA--dU8YtFZmEhtecU1nlOSQTyyA3Byz_1Bk9BD84b_9E7DqWvTu9mOtsZg3Q3FABIsslq-pKABPZtD6YtmnS9_YYT8fJmcE-xmONoo_lOebx1mx0VNaz3xg1yt8
Cites_doi 10.1164/ajrccm.162.3.9812153
10.1016/j.vascn.2010.05.009
10.2460/ajvr.1992.53.7.1218
10.1080/08958370150502476
10.1254/jphs.10R16FM
10.3109/17435390.2014.933903
10.1002/jmor.20192
10.1016/j.pathophys.2009.10.008
10.15272/ajbps.v4i31.470
10.1007/978-3-642-87553-3
10.1016/B978-0-7020-2759-8.50006-4
10.1080/01926230601132055
10.1289/ehp.001081063
10.1002/wdev.58
10.1038/s41586-024-07377-1
10.1016/j.humpath.2004.09.008
10.7717/peerj.6571
10.1242/dev.143784
10.1126/scitranslmed.3000928
10.1136/thx.13.2.110
10.1164/rccm.200510-1682OE
10.1242/dmm.006031
10.1186/s12989-016-0164-2
10.1002/aja.1001820303
10.1539/joh.10-0057-OA
10.1038/s41586-022-04552-0
10.1186/s12989-022-00498-3
10.1186/s12931-023-02355-z
10.1016/B978-0-7020-3370-4.00002-5
10.1293/tox.26.131
10.1111/j.1469-7580.2011.01473.x
10.1016/j.tube.2017.07.003
10.1089/humc.2014.154
10.1038/s41577-020-00477-9
10.1183/09031936.00133306
10.1183/09031936.97.10071655
10.1038/s41586-022-04541-3
10.1097/00004032-198907001-00008
10.3389/fphar.2018.01475
10.1152/ajplung.00085.2011
10.1038/laban.160
10.1016/S0046-8177(84)80332-9
10.1371/journal.pone.0284837
10.5858/134.3.462
10.1016/j.taap.2011.09.007
10.3390/pathogens12020236
10.1183/13993003.02057-2021
10.1038/s41598-022-19139-y
10.1172/JCI34773
10.1101/2022.03.10.483747
10.1177/0192623320975373
10.1016/B978-0-12-404577-4.00003-5
10.1128/JVI.01716-16
10.1038/s41586-024-07660-1
10.3109/08958378.2010.485226
10.1148/radiology.197.2.7480684
10.1177/0192623309353423
10.1186/s12989-022-00468-9
ContentType Journal Article
Copyright 2025 The Japanese Society of Toxicologic Pathology
2025 The Japanese Society of Toxicologic Pathology.
Copyright Japan Science and Technology Agency 2025
2025 The Japanese Society of Toxicologic Pathology 2025
Copyright_xml – notice: 2025 The Japanese Society of Toxicologic Pathology
– notice: 2025 The Japanese Society of Toxicologic Pathology.
– notice: Copyright Japan Science and Technology Agency 2025
– notice: 2025 The Japanese Society of Toxicologic Pathology 2025
CorporateAuthor Japan
Center for One Medicine Innovative Translational Research (COMIT
Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM
School of Veterinary Medicine
Laboratory of Veterinary Pathology
Department of Veterinary Medicine
Laboratory of Laboratory Animal Science
Gifu University
Faculty of Applied Biological Sciences
Osaka Metropolitan University Graduate School of Veterinary Science
National Institute of Occupational Safety and Health
Organization of Occupational Health and Safety
Joint Department of Veterinary Medicine
Gifu University Institute for Advanced Study
Azabu University
CorporateAuthor_xml – name: Osaka Metropolitan University Graduate School of Veterinary Science
– name: School of Veterinary Medicine
– name: Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM
– name: Joint Department of Veterinary Medicine
– name: Japan
– name: Organization of Occupational Health and Safety
– name: Azabu University
– name: Center for One Medicine Innovative Translational Research (COMIT
– name: Laboratory of Veterinary Pathology
– name: Gifu University Institute for Advanced Study
– name: Laboratory of Laboratory Animal Science
– name: National Institute of Occupational Safety and Health
– name: Faculty of Applied Biological Sciences
– name: Department of Veterinary Medicine
– name: Gifu University
DBID RYH
AAYXX
CITATION
NPM
7U7
C1K
7X8
5PM
DOI 10.1293/tox.2024-0071
DatabaseName CiNii Complete
CrossRef
PubMed
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Toxicology Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1881-915X
1347-7404
EndPage 129
ExternalDocumentID PMC11966126
40190622
10_1293_tox_2024_0071
dd3toxpa_2025_003802_001_0113_01294547037
article_tox_38_2_38_2024_0071_article_char_en
Genre Journal Article
Review
GroupedDBID ---
.55
29L
2WC
53G
5GY
ABDBF
ACPRK
ACUHS
ADBBV
ADRAZ
AEGXH
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
ESX
GX1
HYE
JMI
JSF
JSH
KQ8
M48
MOJWN
OK1
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
TUS
X7M
XSB
OVT
RYH
AAYXX
CITATION
NPM
7U7
C1K
7X8
5PM
ID FETCH-LOGICAL-c677t-40793d14102e7324faece386ff743ed981d7015b4f877596c1b6a6e520b3bea3
IEDL.DBID M48
ISSN 0914-9198
IngestDate Thu Aug 21 18:37:39 EDT 2025
Wed Jul 02 05:16:11 EDT 2025
Tue Jul 15 09:40:47 EDT 2025
Mon Jul 21 05:44:20 EDT 2025
Tue Jul 01 05:15:42 EDT 2025
Fri Jun 27 00:54:00 EDT 2025
Sun Jul 13 07:20:24 EDT 2025
Thu May 08 13:50:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords comparative anatomy
lung
respiratory bronchiole
lobular structure
interlobular septum
Language English
License 2025 The Japanese Society of Toxicologic Pathology.
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c677t-40793d14102e7324faece386ff743ed981d7015b4f877596c1b6a6e520b3bea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Yumi Umeda and Takeshi Izawa have contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1293/tox.2024-0071
PMID 40190622
PQID 3230036028
PQPubID 2006337
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11966126
proquest_miscellaneous_3187211271
proquest_journals_3230036028
pubmed_primary_40190622
crossref_primary_10_1293_tox_2024_0071
nii_cinii_1390865662949669376
medicalonline_journals_dd3toxpa_2025_003802_001_0113_01294547037
jstage_primary_article_tox_38_2_38_2024_0071_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Toxicologic Pathology
PublicationTitleAlternate J Toxicol Pathol
PublicationTitle_FL Journal of Toxicologic Pathology
J Toxicol Pathol
PublicationYear 2025
Publisher JAPANESE SOCIETY OF TOXICOLOGIC PATHOLOGY
The Japanese Society of Toxicologic Pathology
日本毒性病理学会
Japan Science and Technology Agency
Japanese Society of Toxicologic Pathology
Publisher_xml – name: JAPANESE SOCIETY OF TOXICOLOGIC PATHOLOGY
– name: The Japanese Society of Toxicologic Pathology
– name: 日本毒性病理学会
– name: Japan Science and Technology Agency
– name: Japanese Society of Toxicologic Pathology
References 10. DeLight N, and Sachs H. Pneumoconiosis. StatPearls Publishing, Treasure Island. 2024.
19. Akira M. Uncommon pneumoconioses: CT and pathologic findings. Radiology. 197: 403–409. 1995.
25. Reid L. The secondary lobule in the adult human lung, with special reference to its appearance in bronchograms. Thorax. 13: 110–115. 1958.
24. Miller WS. The Lung, 2nd edition. Charles C Thomas Publisher, Springfield. 1947.
48. Ramos L, Obregon-Henao A, Henao-Tamayo M, Bowen R, Lunney JK, and Gonzalez-Juarrero M. The minipig as an animal model to study mycobacterium tuberculosis infection and natural transmission. Tuberculosis (Edinb). 106: 91–98. 2017.
6. Tata PR, and Rajagopal J. Plasticity in the lung: making and breaking cell identity. Development. 144: 755–766. 2017.
63. Basil MC, Cardenas-Diaz FL, Kathiriya JJ, Morley MP, Carl J, Brumwell AN, Katzen J, Slovik KJ, Babu A, Zhou S, Kremp MM, McCauley KB, Li S, Planer JD, Hussain SS, Liu X, Windmueller R, Ying Y, Stewart KM, Oyster M, Christie JD, Diamond JM, Engelhardt JF, Cantu E, Rowe SM, Kotton DN, Chapman HA, and Morrisey EE. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature. 604: 120–126. 2022.
34. Jeffery PK, and Li D. Airway mucosa: secretory cells, mucus and mucin genes. Eur Respir J. 10: 1655–1662. 1997.
52. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, and Prather RS. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 118: 1571–1577. 2008.
33. Davies A, and Moores C. Structure of the respiratory system, regard to function. The Respiratory System 11–28. 2010.
30. Robinson N, and Furlow P. 1. Anatomy of the respiratory system. Equine Respiratory Medicine and Surgery. Elsevier, Philadelphia. 3–17. 2007.
21. Takeda T, Yamano S, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Daghlian G, Hong Y-K, Yoshimatsu Y, Hirashima M, Kobashi Y, Okamoto K, Kishimoto T, and Umeda Y. Dose-response relationship of pulmonary disorders by inhalation exposure to cross-linked water-soluble acrylic acid polymers in F344 rats. Part Fibre Toxicol. 19: 27. 2022.
41. Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, and Umeda Y. No evidence for carcinogenicity of titanium dioxide nanoparticles in 26-week inhalation study in rasH2 mouse model. Sci Rep. 12: 14969. 2022.
36. Renne R, Brix A, Harkema J, Herbert R, Kittel B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, Rosenbruch M, Tellier P, and Wohrmann T. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol Pathol. 37(Suppl): 5S–73S. 2009.
56. Koch W, Windt H, Walles M, Borlak J, and Clausing P. Inhalation studies with the Göttingen minipig. Inhal Toxicol. 13: 249–259. 2001.
1. West JB. How well designed is the human lung? Am J Respir Crit Care Med. 173: 583–584. 2006.
42. Yamano S, Goto Y, Takeda T, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, and Umeda Y. Pulmonary dust foci as rat pneumoconiosis lesion induced by titanium dioxide nanoparticles in 13-week inhalation study. Part Fibre Toxicol. 19: 58. 2022.
43. Nogueira I, Català M, White AD, Sharpe SA, Bechini J, Prats C, Vilaplana C, and Cardona P-J. Surveillance of daughter micronodule formation is a key factor for vaccine evaluation using experimental infection models of tuberculosis in macaques. Pathogens. 12: 236. 2023.
35. Miyata R, and van Eeden SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol. 257: 209–226. 2011.
38. Umeda Y, Kasai T, Saito M, Kondo H, Toya T, Aiso S, Okuda H, Nishizawa T, and Fukushima S. Two-week toxicity of multi-walled carbon nanotubes by whole-body inhalation exposure in rats. J Toxicol Pathol. 26: 131–140. 2013.
29. He W, Zhang W, Cheng C, Li J, Wu X, Li M, Chen Z, and Wang W. The distributive and structural characteristics of bronchus-associated lymphoid tissue (BALT) in Bactrian camels (Camelus bactrianus). PeerJ. 7: e6571. 2019.
22. Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Kobashi Y, Okamoto K, Kishimoto T, and Umeda Y. Mechanisms of pulmonary disease in F344 rats after workplace-relevant inhalation exposure to cross-linked water-soluble acrylic acid polymers. Re
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 4. Snipes MB, McClellan RO, Mauderly JL, and Wolff RK. Retention patterns for inhaled particles in the lung: comparisons between laboratory animals and humans for chronic exposures. Health Phys. 57(Suppl 1): 69–77, discussion 77–78. 1989.
– reference: 51. Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA 4th, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Ostedgaard LS, Uc A, Starner TD, Horswill AR, Brogden KA, Prather RS, Richter SS, Shilyansky J, McCray PB Jr, Zabner J, and Welsh MJ. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2: 29ra31–29ra31. 2010.
– reference: 53. Semaniakou A, Croll RP, and Chappe V. Animal models in the pathophysiology of cystic fibrosis. Front Pharmacol. 9: 1475. 2019.
– reference: 37. Nagano K, Nishizawa T, Umeda Y, Kasai T, Noguchi T, Gotoh K, Ikawa N, Eitaki Y, Kawasumi Y, Yamauchi T, Arito H, and Fukushima S. Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health. 53: 175–187. 2011.
– reference: 29. He W, Zhang W, Cheng C, Li J, Wu X, Li M, Chen Z, and Wang W. The distributive and structural characteristics of bronchus-associated lymphoid tissue (BALT) in Bactrian camels (Camelus bactrianus). PeerJ. 7: e6571. 2019.
– reference: 32. Weibel ER. Morphometry of the Human Lung. Springer. Berlin, Heidelberg. 1963.
– reference: 8. Baron RM, Choi AJS, Owen CA, and Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol. 302: L485–L497. 2012.
– reference: 47. Iwatsuki-Horimoto K, Nakajima N, Shibata M, Takahashi K, Sato Y, Kiso M, Yamayoshi S, Ito M, Enya S, Otake M, Kangawa A, da Silva Lopes TJ, Ito H, Hasegawa H, and Kawaoka Y. The microminipig as an animal model for influenza a virus infection. J Virol. 91: e01716–e16. 2017.
– reference: 39. Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Aiso S, Nishizawa T, Matsumoto M, and Fukushima S. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology. 9: 413–422. 2015.
– reference: 11. Pinkerton KE, Green FH, Saiki C, Vallyathan V, Plopper CG, Gopal V, Hung D, Bahne EB, Lin SS, Ménache MG, and Schenker MB. Distribution of particulate matter and tissue remodeling in the human lung. Environ Health Perspect. 108: 1063–1069. 2000.
– reference: 5. Chen Q, Klein JS, Gamsu G, and Webb WR. High-resolution computed tomography of the mammalian lung. Am J Vet Res. 53: 1218–1224. 1992.
– reference: 31. Sterner-Kock A, Kock M, Braun R, and Hyde DM. Ozone-induced epithelial injury in the ferret is similar to nonhuman primates. Am J Respir Crit Care Med. 162: 1152–1156. 2000.
– reference: 45. Kalita A. Histomorphological study of the respiratory system of Mizo Local Pig (zo vawk). Asian J Biomedical Pharm Sci 4 2014.
– reference: 3. Green FH, Vallyathan V, and Hahn FF. Comparative pathology of environmental lung disease: an overview. Toxicol Pathol. 35: 136–147. 2007.
– reference: 18. Sozio F, Rossi A, Weber E, Abraham DJ, Nicholson AG, Wells AU, Renzoni EA, and Sestini P. Morphometric analysis of intralobular, interlobular and pleural lymphatics in normal human lung. J Anat. 220: 396–404. 2012.
– reference: 9. Rock JR, Randell SH, and Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 3: 545–556. 2010.
– reference: 64. Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K, Conchola AS, Nakano S, Gregory S, Miller LA, Spence JR, Engelhardt JF, Boucher RC, Rock JR, Randell SH, and Tata PR. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature. 604: 111–119. 2022.
– reference: 38. Umeda Y, Kasai T, Saito M, Kondo H, Toya T, Aiso S, Okuda H, Nishizawa T, and Fukushima S. Two-week toxicity of multi-walled carbon nanotubes by whole-body inhalation exposure in rats. J Toxicol Pathol. 26: 131–140. 2013.
– reference: 57. Windt H, Kock H, Runge F, Hübel U, and Koch W. Particle deposition in the lung of the Göttingen minipig. Inhal Toxicol. 22: 828–834. 2010.
– reference: 24. Miller WS. The Lung, 2nd edition. Charles C Thomas Publisher, Springfield. 1947.
– reference: 48. Ramos L, Obregon-Henao A, Henao-Tamayo M, Bowen R, Lunney JK, and Gonzalez-Juarrero M. The minipig as an animal model to study mycobacterium tuberculosis infection and natural transmission. Tuberculosis (Edinb). 106: 91–98. 2017.
– reference: 33. Davies A, and Moores C. Structure of the respiratory system, regard to function. The Respiratory System 11–28. 2010.
– reference: 56. Koch W, Windt H, Walles M, Borlak J, and Clausing P. Inhalation studies with the Göttingen minipig. Inhal Toxicol. 13: 249–259. 2001.
– reference: 62. Lin B, Shah VS, Chernoff C, Sun J, Shipkovenska GG, Vinarsky V, Waghray A, Xu J, Leduc AD, Hintschich CA, Surve MV, Xu Y, Capen DE, Villoria J, Dou Z, Hariri LP, and Rajagopal J. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature. 629: 869–877. 2024.
– reference: 7. Wansleeben C, Barkauskas CE, Rock JR, and Hogan BLM. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease. Wiley Interdiscip Rev Dev Biol. 2: 131–148. 2013.
– reference: 35. Miyata R, and van Eeden SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol. 257: 209–226. 2011.
– reference: 60. Sikkema L, Ramírez-Suástegui C, Strobl DC, Gillett TE, Zappia L, Madissoon E, Markov NS, Zaragosi L-E, Ji Y, Ansari M, Arguel M-J, Apperloo L, Banchero M, Bécavin C, Berg M, Chichelnitskiy E, Chung MI, Collin A, Gay ACA, Gote-Schniering J, Hooshiar Kashani B, Inecik K, Jain M, Kapellos TS, Kole TM, Leroy S, Mayr CH, Oliver AJ, von Papen M, Peter L, Taylor CJ, Walzthoeni T, Xu C, Bui LT, De Donno C, Dony L, Faiz A, Guo M, Gutierrez AJ, Heumos L, Huang N, Ibarra IL, Jackson ND, Kadur Lakshminarasimha Murthy P, Lotfollahi M, Tabib T, Talavera-López C, Travaglini KJ, Wilbrey-Clark A, Worlock KB, Yoshida M, van den Berge M, Bossé Y, Desai TJ, Eickelberg O, Kaminski N, Krasnow MA, Lafyatis R, Nikolic MZ, Powell JE, Rajagopal J, Rojas M, Rozenblatt-Rosen O, Seibold MA, Sheppard D, Shepherd DP, Sin DD, Timens W, Tsankov AM, Whitsett J, Xu Y, Banovich NE, Barbry P, Duong TE, Falk CS, Meyer KB, Kropski JA, Pe’er D, Schiller HB, Tata PR, Schultze JL, Teichmann SA, Misharin AV, Nawijn MC, Luecken MD, Theis FJ. Lung Biological Network Consortium. An integrated cell atlas of the lung in health and disease. Nat Med. 29: 1563–1577. 2023.
– reference: 22. Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Kobashi Y, Okamoto K, Kishimoto T, and Umeda Y. Mechanisms of pulmonary disease in F344 rats after workplace-relevant inhalation exposure to cross-linked water-soluble acrylic acid polymers. Respir Res. 24: 47. 2023.
– reference: 28. Abdel-Salam LR, Hussein FA, Gad MH, Khattal A-RAA, Elhawari WA, Amer AH, and Sheriff DS. Light and scanning microscopic studies on the tracheobronchial epithelium of the one-humped camel (camelus dromedarius). Med Res Chron. 2: 649–686. 2015.
– reference: 59. Luecken MD, Zaragosi L-E, Madissoon E, Sikkema L, Firsova AB, De Domenico E, Kümmerle L, Saglam A, Berg M, Gay ACA, Schniering J, Mayr CH, Abalo XM, Larsson L, Sountoulidis A, Teichmann SA, van Eunen K, Koppelman GH, Saeb-Parsy K, Leroy S, Powell P, Sarkans U, Timens W, Lundeberg J, van den Berge M, Nilsson M, Horváth P, Denning J, Papatheodorou I, Schultze JL, Schiller HB, Barbry P, Petoukhov I, Misharin AV, Adcock IM, von Papen M, Theis FJ, Samakovlis C, Meyer KB, and Nawijn MC. The discovAIR project: a roadmap towards the Human Lung Cell Atlas. Eur Respir J. 60: 2102057. 2022.
– reference: 43. Nogueira I, Català M, White AD, Sharpe SA, Bechini J, Prats C, Vilaplana C, and Cardona P-J. Surveillance of daughter micronodule formation is a key factor for vaccine evaluation using experimental infection models of tuberculosis in macaques. Pathogens. 12: 236. 2023.
– reference: 21. Takeda T, Yamano S, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, Daghlian G, Hong Y-K, Yoshimatsu Y, Hirashima M, Kobashi Y, Okamoto K, Kishimoto T, and Umeda Y. Dose-response relationship of pulmonary disorders by inhalation exposure to cross-linked water-soluble acrylic acid polymers in F344 rats. Part Fibre Toxicol. 19: 27. 2022.
– reference: 20. Kishimoto T, Okamoto K, Koda S, Ono M, Umeda Y, Yamano S, Takeda T, Rai K, Kato K, Nishimura Y, Kobashi Y, and Kawamura T. Respiratory disease in workers handling cross-linked water-soluble acrylic acid polymer. PLoS One. 18: e0284837. 2023.
– reference: 6. Tata PR, and Rajagopal J. Plasticity in the lung: making and breaking cell identity. Development. 144: 755–766. 2017.
– reference: 2. West JB, Watson RR, and Fu Z. The human lung: did evolution get it wrong? Eur Respir J. 29: 11–17. 2007.
– reference: 36. Renne R, Brix A, Harkema J, Herbert R, Kittel B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, Rosenbruch M, Tellier P, and Wohrmann T. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol Pathol. 37(Suppl): 5S–73S. 2009.
– reference: 42. Yamano S, Goto Y, Takeda T, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, and Umeda Y. Pulmonary dust foci as rat pneumoconiosis lesion induced by titanium dioxide nanoparticles in 13-week inhalation study. Part Fibre Toxicol. 19: 58. 2022.
– reference: 26. Tyler NK, Hyde DM, Hendrickx AG, and Plopper CG. Morphogenesis of the respiratory bronchiole in rhesus monkey lungs. Am J Anat. 182: 215–223. 1988.
– reference: 44. Kaneko N, Itoh K, Sugiyama A, and Izumi Y. Microminipig, a non-rodent experimental animal optimized for life science research: preface. J Pharmacol Sci. 115: 112–114. 2011.
– reference: 16. Honma K, Abraham JL, Chiyotani K, De Vuyst P, Dumortier P, Gibbs AR, Green FHY, Hosoda Y, Iwai K, Williams WJ, Kohyama N, Ostiguy G, Roggli VL, Shida H, Taguchi O, and Vallyathan V. Proposed criteria for mixed-dust pneumoconiosis: definition, descriptions, and guidelines for pathologic diagnosis and clinical correlation. Hum Pathol. 35: 1515–1523. 2004.
– reference: 13. Roggli VL, Gibbs AR, Attanoos R, Churg A, Popper H, Cagle P, Corrin B, Franks TJ, Galateau-Salle F, Galvin J, Hasleton PS, Henderson DW, and Honma K. Pathology of asbestosis—an update of the diagnostic criteria: report of the asbestosis committee of the college of American pathologists and pulmonary pathology society. Arch Pathol Lab Med. 134: 462–480. 2010.
– reference: 63. Basil MC, Cardenas-Diaz FL, Kathiriya JJ, Morley MP, Carl J, Brumwell AN, Katzen J, Slovik KJ, Babu A, Zhou S, Kremp MM, McCauley KB, Li S, Planer JD, Hussain SS, Liu X, Windmueller R, Ying Y, Stewart KM, Oyster M, Christie JD, Diamond JM, Engelhardt JF, Cantu E, Rowe SM, Kotton DN, Chapman HA, and Morrisey EE. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature. 604: 120–126. 2022.
– reference: 40. Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, and Fukushima S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 13: 53. 2016.
– reference: 27. Goodarzi M, Azizi S, Koupaei MJ, and Moshkelani S. Pathologic findings of anthraco-silicosis in the lungs of one humped camels (Camelus dromedarius) and its role in the occurrence of pneumonia. Kafkas Univ Vet Fak Derg. 2013.
– reference: 14. Wright JL, and Churg A. Morphology of small-airway lesions in patients with asbestos exposure. Hum Pathol. 15: 68–74. 1984.
– reference: 19. Akira M. Uncommon pneumoconioses: CT and pathologic findings. Radiology. 197: 403–409. 1995.
– reference: 55. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J. Steering Group of the RETHINK Project. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 62: 196–220. 2010.
– reference: 61. Tsukui T, Wolters PJ, and Sheppard D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature. 631: 627–634. 2024.
– reference: 1. West JB. How well designed is the human lung? Am J Respir Crit Care Med. 173: 583–584. 2006.
– reference: 30. Robinson N, and Furlow P. 1. Anatomy of the respiratory system. Equine Respiratory Medicine and Surgery. Elsevier, Philadelphia. 3–17. 2007.
– reference: 34. Jeffery PK, and Li D. Airway mucosa: secretory cells, mucus and mucin genes. Eur Respir J. 10: 1655–1662. 1997.
– reference: 58. Hewitt RJ, and Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol. 21: 347–362. 2021.
– reference: 10. DeLight N, and Sachs H. Pneumoconiosis. StatPearls Publishing, Treasure Island. 2024.
– reference: 17. Schraufnagel DE. Lung lymphatic anatomy and correlates. Pathophysiology. 17: 337–343. 2010.
– reference: 50. Chen P, Hou J, Ding D, Hua X, Yang Z, and Cui L. Lipopolysaccharide-induced inflammation of bronchi and emphysematous changes of pulmonary parenchyma in miniature pigs (Sus scrofa domestica). Lab Anim (NY). 42: 86–91. 2013.
– reference: 54. Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB Jr, and Engelhardt JF. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev. 26: 38–49. 2015.
– reference: 15. Katzenstein ALA. Diagnostic Atlas of Non-Neoplastic Lung Disease: A Practical Guide for Surgical Pathologists. Demos Medical, Syracuse. 2016.
– reference: 52. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, and Prather RS. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest. 118: 1571–1577. 2008.
– reference: 41. Yamano S, Takeda T, Goto Y, Hirai S, Furukawa Y, Kikuchi Y, Kasai T, Misumi K, Suzuki M, Takanobu K, Senoh H, Saito M, Kondo H, and Umeda Y. No evidence for carcinogenicity of titanium dioxide nanoparticles in 26-week inhalation study in rasH2 mouse model. Sci Rep. 12: 14969. 2022.
– reference: 23. Peake JL, and Pinkerton KE. Chapter 3—Gross and subgross anatomy of lungs, pleura, connective tissue septa, distal airways, and structural units. Academic Press, San Diego. 2015.
– reference: 46. Piscitelli MA, Raverty SA, Lillie MA, and Shadwick RE. A review of cetacean lung morphology and mechanics. J Morphol. 274: 1425–1440. 2013.
– reference: 49. Skydsgaard M, Dincer Z, Haschek WM, Helke K, Jacob B, Jacobsen B, Jeppesen G, Kato A, Kawaguchi H, McKeag S, Nelson K, Rittinghausen S, Schaudien D, Vemireddi V, and Wojcinski ZW. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): nonproliferative and proliferative lesions of the minipig. Toxicol Pathol. 49: 110–228. 2021.
– reference: 12. Mukhopadhyay S. Non-Neoplastic Pulmonary Pathology: An Algorithmic Approach to Histologic Findings in the Lung. Cambridge University Press, Cambridge. 2016.
– reference: 25. Reid L. The secondary lobule in the adult human lung, with special reference to its appearance in bronchograms. Thorax. 13: 110–115. 1958.
– ident: 31
  doi: 10.1164/ajrccm.162.3.9812153
– ident: 55
  doi: 10.1016/j.vascn.2010.05.009
– ident: 5
  doi: 10.2460/ajvr.1992.53.7.1218
– ident: 56
  doi: 10.1080/08958370150502476
– ident: 12
– ident: 44
  doi: 10.1254/jphs.10R16FM
– ident: 39
  doi: 10.3109/17435390.2014.933903
– ident: 46
  doi: 10.1002/jmor.20192
– ident: 17
  doi: 10.1016/j.pathophys.2009.10.008
– ident: 45
  doi: 10.15272/ajbps.v4i31.470
– ident: 32
  doi: 10.1007/978-3-642-87553-3
– ident: 30
  doi: 10.1016/B978-0-7020-2759-8.50006-4
– ident: 3
  doi: 10.1080/01926230601132055
– ident: 11
  doi: 10.1289/ehp.001081063
– ident: 7
  doi: 10.1002/wdev.58
– ident: 62
  doi: 10.1038/s41586-024-07377-1
– ident: 16
  doi: 10.1016/j.humpath.2004.09.008
– ident: 29
  doi: 10.7717/peerj.6571
– ident: 6
  doi: 10.1242/dev.143784
– ident: 51
  doi: 10.1126/scitranslmed.3000928
– ident: 25
  doi: 10.1136/thx.13.2.110
– ident: 1
  doi: 10.1164/rccm.200510-1682OE
– ident: 9
  doi: 10.1242/dmm.006031
– ident: 40
  doi: 10.1186/s12989-016-0164-2
– ident: 26
  doi: 10.1002/aja.1001820303
– ident: 37
  doi: 10.1539/joh.10-0057-OA
– ident: 63
  doi: 10.1038/s41586-022-04552-0
– ident: 42
  doi: 10.1186/s12989-022-00498-3
– ident: 22
  doi: 10.1186/s12931-023-02355-z
– ident: 33
  doi: 10.1016/B978-0-7020-3370-4.00002-5
– ident: 27
– ident: 38
  doi: 10.1293/tox.26.131
– ident: 18
  doi: 10.1111/j.1469-7580.2011.01473.x
– ident: 48
  doi: 10.1016/j.tube.2017.07.003
– ident: 54
  doi: 10.1089/humc.2014.154
– ident: 58
  doi: 10.1038/s41577-020-00477-9
– ident: 2
  doi: 10.1183/09031936.00133306
– ident: 34
  doi: 10.1183/09031936.97.10071655
– ident: 64
  doi: 10.1038/s41586-022-04541-3
– ident: 10
– ident: 4
  doi: 10.1097/00004032-198907001-00008
– ident: 53
  doi: 10.3389/fphar.2018.01475
– ident: 8
  doi: 10.1152/ajplung.00085.2011
– ident: 50
  doi: 10.1038/laban.160
– ident: 14
  doi: 10.1016/S0046-8177(84)80332-9
– ident: 28
– ident: 20
  doi: 10.1371/journal.pone.0284837
– ident: 13
  doi: 10.5858/134.3.462
– ident: 24
– ident: 35
  doi: 10.1016/j.taap.2011.09.007
– ident: 43
  doi: 10.3390/pathogens12020236
– ident: 59
  doi: 10.1183/13993003.02057-2021
– ident: 41
  doi: 10.1038/s41598-022-19139-y
– ident: 52
  doi: 10.1172/JCI34773
– ident: 60
  doi: 10.1101/2022.03.10.483747
– ident: 15
– ident: 49
  doi: 10.1177/0192623320975373
– ident: 23
  doi: 10.1016/B978-0-12-404577-4.00003-5
– ident: 47
  doi: 10.1128/JVI.01716-16
– ident: 61
  doi: 10.1038/s41586-024-07660-1
– ident: 57
  doi: 10.3109/08958378.2010.485226
– ident: 19
  doi: 10.1148/radiology.197.2.7480684
– ident: 36
  doi: 10.1177/0192623309353423
– ident: 21
  doi: 10.1186/s12989-022-00468-9
SSID ssj0027053
Score 2.319559
SecondaryResourceType review_article
Snippet Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly...
Abstract: Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not...
Rodents are widely used to study the toxicity of chemicals; however, differences between species indicate that the results from rodents are not always directly...
SourceID pubmedcentral
proquest
pubmed
crossref
nii
medicalonline
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 113
SubjectTerms Anatomy
Animal diseases
Animal species
comparative anatomy
Disease detection
interlobular septum
Invited Review
lobular structure
lung
Lung diseases
Mammals
Occupational diseases
Occupational exposure
Occupational health
Particulates
Pneumoconiosis
respiratory bronchiole
Rodents
Toxicity
Title Comparative anatomy of respiratory bronchioles and lobular structures in mammals
URI https://www.jstage.jst.go.jp/article/tox/38/2/38_2024-0071/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=dd3toxpa/2025/003802/001&name=0113-0129e
https://cir.nii.ac.jp/crid/1390865662949669376
https://www.ncbi.nlm.nih.gov/pubmed/40190622
https://www.proquest.com/docview/3230036028
https://www.proquest.com/docview/3187211271
https://pubmed.ncbi.nlm.nih.gov/PMC11966126
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Toxicologic Pathology, 2025, Vol.38(2), pp.113-129
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgcECqqvJVAm1lJMQtsHES25FAFFVUBVTEoZV6s-LEUYOapGy3Uvvv-ybOJiz0wCUXTxJlPJN5zx_PjL2hdRaJlUVYuagKkxRhnAmdhk6W4BOZdkLTRuGjH_LwJPl2mp5OkkKDAy_vpHZ0ntTJ_Pzd9e-bT0j4j702Qha_X3TXIHoiCale3mcPUJQUHWZwlOiJe828IGUWJcjvTA9ym__cvlKeHv4CQqOt9-uNnzXx6hUoQ21d3wVJ_15Z-UepOthkGwPG5J99UDxm91z7hK37ATru9x09ZT_3J91vnrfg3s0N7yo-n-beuZ13bXFGU_eXMCn5eWdp1Sr3orNXMOV1y5u8aeDMZ-z44Mvx_mE4HK8QFlKpBZgjcrOkdZ7CKeCqKneFi7WsKqAKV2ZAsgpgwSaVVirNZBFZmUuXipmNrcvj52yt7Vr3gvG8QBYDuKTCadS30lapLaW1WuXKZUUZsLdLp5oLL6JhiHzA-wbeN-R9Q94P2Afv8tFsyJ_eLNZG9Jel-dhKO9SQ5gHbW-koswwnU5YxnnCR070p6aHqmaDlfAa_t9jQYBwJm81iFbAd9K0paroCHYPxAfCiGbQQSE4GbHvZ69PTY_A4IAFAtYC9HpuRpzT5kreuu4JNpIlsC_rILR8k40cmtKFfChEwvRI-owFpgK-2tPVZrwUe4Q8KkCpf_seLX7FH9Pl-AGmbrSFW3A4g1cLugkx8_b7bp8wtEl8dmg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+anatomy+of+respiratory+bronchioles+and+lobular+structures+in+mammals&rft.jtitle=Journal+of+toxicologic+pathology&rft.au=Umeda%2C+Yumi&rft.au=Izawa%2C+Takeshi&rft.au=Kazama%2C+Kei&rft.au=Arai%2C+Sachiko&rft.date=2025-01-01&rft.issn=0914-9198&rft.volume=38&rft.issue=2&rft.spage=113&rft_id=info:doi/10.1293%2Ftox.2024-0071&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-9198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-9198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-9198&client=summon