Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway

Background Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the...

Full description

Saved in:
Bibliographic Details
Published inBiological research Vol. 51; no. 1; pp. 17 - 10
Main Authors Moniruzzaman, Mahammed, Ghosal, Indranath, Das, Debjit, Chakraborty, Suman Bhusan
Format Journal Article
LanguageEnglish
Published Santiago BioMed Central Ltd 11.06.2018
BioMed Central
Sociedad de Biología de Chile
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the levels of oxidative stress and ROS induced damage, and amelioration of oxidative status through melatonin induced activation of signaling pathways. Hepatocytes were isolated from adult Labeo rohita and exposed to H2O2 at three different doses (12.5, 25 and 50 µM) to observe peroxide induced damage in fish hepatocytes. Melatonin (25, 50 and 100 μg/ml) was administered against the highest dose of H2O2. Enzymatic and non-enzymatic antioxidants such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) was measured spectrophotometrically. Expression level of heat shock proteins (HSP70 and HSP90), HSPs-associated signaling molecules (Akt, ERK, cytosolic and nuclear NFkB), and melatonin receptor was also measured by western blotting analysis. Results H2O2 induced oxidative stress significantly altered (P < 0.05) MDA and GSH level, SOD and CAT activity, and up regulated HSP70 and HSP90 expression in carp hepatocytes. Signaling proteins exhibited differential modulation as revealed from their expression patterns in H2O2-exposed fish hepatocytes, in comparison with control hepatocytes. Melatonin treatment of H2O2-stressed fish hepatocytes restored basal cellular oxidative status in a dose dependent manner. Melatonin was observed to be inducer of signaling process by modulation of signaling molecules and melatonin receptor. Conclusions The results suggest that exogenous melatonin at the concentration of 100 µg/ml is required to improve oxidative status of the H2O2-stressed fish hepatocytes. In H2O2 exposed hepatocytes, melatonin modulates expression of HSP70 and HSP90 that enable the hepatocytes to become stress tolerant and survive by altering the actions of ERK, Akt, cytosolic and nuclear NFkB in the signal transduction pathways. Study also confirms that melatonin could act through melatonin receptor coupled to ERK/Akt signaling pathways. This understanding of the mechanism by which melatonin regulates oxidative status in the stressed hepatocytes may initiate the development of novel strategies for hepatic disease therapy in future.
AbstractList Abstract Background Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the levels of oxidative stress and ROS induced damage, and amelioration of oxidative status through melatonin induced activation of signaling pathways. Hepatocytes were isolated from adult Labeo rohita and exposed to H2O2 at three different doses (12.5, 25 and 50 µM) to observe peroxide induced damage in fish hepatocytes. Melatonin (25, 50 and 100 μg/ml) was administered against the highest dose of H2O2. Enzymatic and non-enzymatic antioxidants such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) was measured spectrophotometrically. Expression level of heat shock proteins (HSP70 and HSP90), HSPs-associated signaling molecules (Akt, ERK, cytosolic and nuclear NFkB), and melatonin receptor was also measured by western blotting analysis. Results H2O2 induced oxidative stress significantly altered (P < 0.05) MDA and GSH level, SOD and CAT activity, and up regulated HSP70 and HSP90 expression in carp hepatocytes. Signaling proteins exhibited differential modulation as revealed from their expression patterns in H2O2-exposed fish hepatocytes, in comparison with control hepatocytes. Melatonin treatment of H2O2-stressed fish hepatocytes restored basal cellular oxidative status in a dose dependent manner. Melatonin was observed to be inducer of signaling process by modulation of signaling molecules and melatonin receptor. Conclusions The results suggest that exogenous melatonin at the concentration of 100 µg/ml is required to improve oxidative status of the H2O2-stressed fish hepatocytes. In H2O2 exposed hepatocytes, melatonin modulates expression of HSP70 and HSP90 that enable the hepatocytes to become stress tolerant and survive by altering the actions of ERK, Akt, cytosolic and nuclear NFkB in the signal transduction pathways. Study also confirms that melatonin could act through melatonin receptor coupled to ERK/Akt signaling pathways. This understanding of the mechanism by which melatonin regulates oxidative status in the stressed hepatocytes may initiate the development of novel strategies for hepatic disease therapy in future.
Background Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the levels of oxidative stress and ROS induced damage, and amelioration of oxidative status through melatonin induced activation of signaling pathways. Hepatocytes were isolated from adult Labeo rohita and exposed to H2O2 at three different doses (12.5, 25 and 50 µM) to observe peroxide induced damage in fish hepatocytes. Melatonin (25, 50 and 100 μg/ml) was administered against the highest dose of H2O2. Enzymatic and non-enzymatic antioxidants such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) was measured spectrophotometrically. Expression level of heat shock proteins (HSP70 and HSP90), HSPs-associated signaling molecules (Akt, ERK, cytosolic and nuclear NFkB), and melatonin receptor was also measured by western blotting analysis. Results H2O2 induced oxidative stress significantly altered (P < 0.05) MDA and GSH level, SOD and CAT activity, and up regulated HSP70 and HSP90 expression in carp hepatocytes. Signaling proteins exhibited differential modulation as revealed from their expression patterns in H2O2-exposed fish hepatocytes, in comparison with control hepatocytes. Melatonin treatment of H2O2-stressed fish hepatocytes restored basal cellular oxidative status in a dose dependent manner. Melatonin was observed to be inducer of signaling process by modulation of signaling molecules and melatonin receptor. Conclusions The results suggest that exogenous melatonin at the concentration of 100 µg/ml is required to improve oxidative status of the H2O2-stressed fish hepatocytes. In H2O2 exposed hepatocytes, melatonin modulates expression of HSP70 and HSP90 that enable the hepatocytes to become stress tolerant and survive by altering the actions of ERK, Akt, cytosolic and nuclear NFkB in the signal transduction pathways. Study also confirms that melatonin could act through melatonin receptor coupled to ERK/Akt signaling pathways. This understanding of the mechanism by which melatonin regulates oxidative status in the stressed hepatocytes may initiate the development of novel strategies for hepatic disease therapy in future.
Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the levels of oxidative stress and ROS induced damage, and amelioration of oxidative status through melatonin induced activation of signaling pathways. Hepatocytes were isolated from adult Labeo rohita and exposed to H2O2 at three different doses (12.5, 25 and 50 µM) to observe peroxide induced damage in fish hepatocytes. Melatonin (25, 50 and 100 μg/ml) was administered against the highest dose of H2O2. Enzymatic and non-enzymatic antioxidants such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) was measured spectrophotometrically. Expression level of heat shock proteins (HSP70 and HSP90), HSPs-associated signaling molecules (Akt, ERK, cytosolic and nuclear NFkB), and melatonin receptor was also measured by western blotting analysis.BACKGROUNDImproper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the levels of oxidative stress and ROS induced damage, and amelioration of oxidative status through melatonin induced activation of signaling pathways. Hepatocytes were isolated from adult Labeo rohita and exposed to H2O2 at three different doses (12.5, 25 and 50 µM) to observe peroxide induced damage in fish hepatocytes. Melatonin (25, 50 and 100 μg/ml) was administered against the highest dose of H2O2. Enzymatic and non-enzymatic antioxidants such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) was measured spectrophotometrically. Expression level of heat shock proteins (HSP70 and HSP90), HSPs-associated signaling molecules (Akt, ERK, cytosolic and nuclear NFkB), and melatonin receptor was also measured by western blotting analysis.H2O2 induced oxidative stress significantly altered (P < 0.05) MDA and GSH level, SOD and CAT activity, and up regulated HSP70 and HSP90 expression in carp hepatocytes. Signaling proteins exhibited differential modulation as revealed from their expression patterns in H2O2-exposed fish hepatocytes, in comparison with control hepatocytes. Melatonin treatment of H2O2-stressed fish hepatocytes restored basal cellular oxidative status in a dose dependent manner. Melatonin was observed to be inducer of signaling process by modulation of signaling molecules and melatonin receptor.RESULTSH2O2 induced oxidative stress significantly altered (P < 0.05) MDA and GSH level, SOD and CAT activity, and up regulated HSP70 and HSP90 expression in carp hepatocytes. Signaling proteins exhibited differential modulation as revealed from their expression patterns in H2O2-exposed fish hepatocytes, in comparison with control hepatocytes. Melatonin treatment of H2O2-stressed fish hepatocytes restored basal cellular oxidative status in a dose dependent manner. Melatonin was observed to be inducer of signaling process by modulation of signaling molecules and melatonin receptor.The results suggest that exogenous melatonin at the concentration of 100 µg/ml is required to improve oxidative status of the H2O2-stressed fish hepatocytes. In H2O2 exposed hepatocytes, melatonin modulates expression of HSP70 and HSP90 that enable the hepatocytes to become stress tolerant and survive by altering the actions of ERK, Akt, cytosolic and nuclear NFkB in the signal transduction pathways. Study also confirms that melatonin could act through melatonin receptor coupled to ERK/Akt signaling pathways. This understanding of the mechanism by which melatonin regulates oxidative status in the stressed hepatocytes may initiate the development of novel strategies for hepatic disease therapy in future.CONCLUSIONSThe results suggest that exogenous melatonin at the concentration of 100 µg/ml is required to improve oxidative status of the H2O2-stressed fish hepatocytes. In H2O2 exposed hepatocytes, melatonin modulates expression of HSP70 and HSP90 that enable the hepatocytes to become stress tolerant and survive by altering the actions of ERK, Akt, cytosolic and nuclear NFkB in the signal transduction pathways. Study also confirms that melatonin could act through melatonin receptor coupled to ERK/Akt signaling pathways. This understanding of the mechanism by which melatonin regulates oxidative status in the stressed hepatocytes may initiate the development of novel strategies for hepatic disease therapy in future.
Abstract Background Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is considered a potent regulator of such oxidative damage in different vertebrates. Aim of the current communication is to evaluate the levels of oxidative stress and ROS induced damage, and amelioration of oxidative status through melatonin induced activation of signaling pathways. Hepatocytes were isolated from adult Labeo rohita and exposed to H2O2 at three different doses (12.5, 25 and 50 µM) to observe peroxide induced damage in fish hepatocytes. Melatonin (25, 50 and 100 μg/ml) was administered against the highest dose of H2O2. Enzymatic and non-enzymatic antioxidants such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) was measured spectrophotometrically. Expression level of heat shock proteins (HSP70 and HSP90), HSPs-associated signaling molecules (Akt, ERK, cytosolic and nuclear NFkB), and melatonin receptor was also measured by western blotting analysis. Results H2O2 induced oxidative stress significantly altered (P < 0.05) MDA and GSH level, SOD and CAT activity, and up regulated HSP70 and HSP90 expression in carp hepatocytes. Signaling proteins exhibited differential modulation as revealed from their expression patterns in H2O2-exposed fish hepatocytes, in comparison with control hepatocytes. Melatonin treatment of H2O2-stressed fish hepatocytes restored basal cellular oxidative status in a dose dependent manner. Melatonin was observed to be inducer of signaling process by modulation of signaling molecules and melatonin receptor. Conclusions The results suggest that exogenous melatonin at the concentration of 100 µg/ml is required to improve oxidative status of the H2O2-stressed fish hepatocytes. In H2O2 exposed hepatocytes, melatonin modulates expression of HSP70 and HSP90 that enable the hepatocytes to become stress tolerant and survive by altering the actions of ERK, Akt, cytosolic and nuclear NFkB in the signal transduction pathways. Study also confirms that melatonin could act through melatonin receptor coupled to ERK/Akt signaling pathways. This understanding of the mechanism by which melatonin regulates oxidative status in the stressed hepatocytes may initiate the development of novel strategies for hepatic disease therapy in future.
ArticleNumber 17
Audience Academic
Author Moniruzzaman, Mahammed
Chakraborty, Suman Bhusan
Das, Debjit
Ghosal, Indranath
AuthorAffiliation University Of Calcutta
AuthorAffiliation_xml – name: University Of Calcutta
Author_xml – sequence: 1
  givenname: Mahammed
  surname: Moniruzzaman
  fullname: Moniruzzaman, Mahammed
– sequence: 2
  givenname: Indranath
  surname: Ghosal
  fullname: Ghosal, Indranath
– sequence: 3
  givenname: Debjit
  surname: Das
  fullname: Das, Debjit
– sequence: 4
  givenname: Suman Bhusan
  surname: Chakraborty
  fullname: Chakraborty, Suman Bhusan
BookMark eNp1Ul1v2yAUtaZW68f2A_ZmaS_bgxsgBszLpKxq10jdKq3b69A14ITENingrv33JU231ZUmhEBwzrn3Hp2jbK93vcmydxidYFyxSSgRo6JAuEqbVQV9lR0ijnnBSMX3nt0PsqMQVggRigh7nR0QUQmcKIfZr6-mheh62-fQmdY6D9GE_IJckcL2elBG5-7Oaoj21uQhehNCHpfeDYtl3jk9JLZ1fe6a_MyvJ7N1nHw7X3_ONxCXv-H-TbbfQBvM26fzOPt5fvbj9KK4vPoyP51dFopxFgsAU4LWdUnqGgvCKeOkIoyLalrWGnBTc9BcqDQ0AUKFYmkRJcCQRnM1nR5n852udrCSG2878PfSgZWPD84vJPhoVWtkbWqBSU05E1CqhoHSGGiFaAN1ZYAmrZOdVlDWtE6u3OD71Ly8Tn4yKThDJFmOEMLJUcwS4dOOsBnqzmhl-uihHXUx_untUi7craRCMErKJPDhScC7m8GEKDsblGlb6I0bgiSIloKUpeAJ-v4F9G97CcUYoVOE_6EWkCa2feNSXbUVlTNaskqUbPps0BEqLW06q1LUGpveR4SPI0LCRHMXFzCEIOfX38dYvsMq70LwppHKxsespCK2lRjJbYblLsMyGSq3GZZbJn7B_OPk_zkPs_bwoQ
CitedBy_id crossref_primary_10_3390_antiox13020226
crossref_primary_10_1016_j_biopha_2023_115471
crossref_primary_10_1016_j_taap_2020_115178
crossref_primary_10_1080_15226514_2019_1683715
crossref_primary_10_1080_21655979_2021_1954742
crossref_primary_10_1016_j_biopha_2021_111274
crossref_primary_10_1186_s11658_023_00484_3
crossref_primary_10_1016_j_jpsychires_2025_01_020
crossref_primary_10_3390_foods11213449
crossref_primary_10_1016_j_joca_2020_05_011
crossref_primary_10_1007_s11250_021_02760_w
crossref_primary_10_1155_2021_6678457
crossref_primary_10_1080_09687688_2019_1701720
crossref_primary_10_1111_jpi_12806
crossref_primary_10_3389_fcell_2024_1338828
crossref_primary_10_1002_fsn3_70034
crossref_primary_10_3389_fmed_2020_00510
crossref_primary_10_1016_j_cbpa_2022_111207
crossref_primary_10_3389_fimmu_2019_01039
crossref_primary_10_1111_plb_13645
crossref_primary_10_3390_ijms22042064
crossref_primary_10_3389_fmars_2024_1495068
crossref_primary_10_1016_j_jff_2021_104761
crossref_primary_10_1016_j_etap_2023_104312
crossref_primary_10_1038_s41598_020_71852_8
crossref_primary_10_3390_biom13121758
crossref_primary_10_1016_j_jsbmb_2020_105595
crossref_primary_10_3389_fphar_2022_994705
crossref_primary_10_3389_fcell_2021_619842
crossref_primary_10_1007_s11033_023_09021_z
crossref_primary_10_1155_2021_6889533
crossref_primary_10_1016_j_aquaculture_2022_739118
crossref_primary_10_1111_jpi_12958
crossref_primary_10_1016_j_jep_2021_114164
crossref_primary_10_1080_23308249_2020_1795616
crossref_primary_10_1186_s12931_020_1325_2
crossref_primary_10_1186_s40360_019_0352_4
crossref_primary_10_1016_j_biopha_2021_112142
crossref_primary_10_3390_biom12111646
crossref_primary_10_1186_s40360_024_00764_4
crossref_primary_10_1186_s13020_023_00859_w
crossref_primary_10_1021_acschemneuro_0c00375
crossref_primary_10_1080_15376516_2022_2090302
crossref_primary_10_3390_fermentation8040169
crossref_primary_10_7759_cureus_37425
crossref_primary_10_3390_ijms23010218
crossref_primary_10_1016_j_ecoenv_2020_110954
crossref_primary_10_1038_s41598_021_88949_3
crossref_primary_10_1021_acsomega_3c03084
crossref_primary_10_1186_s12964_024_01923_0
crossref_primary_10_1021_acschemneuro_1c00636
crossref_primary_10_1016_j_cbpc_2022_109300
crossref_primary_10_1016_j_etap_2022_103983
crossref_primary_10_1016_j_ejphar_2021_174355
crossref_primary_10_1016_j_bcp_2022_115265
crossref_primary_10_3390_antiox12101844
crossref_primary_10_3390_molecules28134940
crossref_primary_10_1016_j_intimp_2023_110527
crossref_primary_10_1016_j_scitotenv_2024_170699
crossref_primary_10_1155_2021_3565360
crossref_primary_10_1016_j_jnutbio_2022_108975
crossref_primary_10_1016_j_biopha_2023_114581
crossref_primary_10_1515_tnsci_2022_0243
crossref_primary_10_1016_j_ijbiomac_2024_136492
crossref_primary_10_1016_j_ecoenv_2021_112748
crossref_primary_10_1016_j_tice_2024_102480
crossref_primary_10_3389_fphar_2020_594496
crossref_primary_10_1007_s00299_024_03333_5
crossref_primary_10_3389_fnmol_2023_1071327
crossref_primary_10_1002_mnfr_202200562
crossref_primary_10_31083_j_fbl2709260
crossref_primary_10_3389_fimmu_2023_1098741
crossref_primary_10_1002_pul2_12277
crossref_primary_10_1016_j_lfs_2024_122557
crossref_primary_10_1177_11206721221123878
crossref_primary_10_1111_jpi_12847
crossref_primary_10_1016_j_ijbiomac_2021_10_136
crossref_primary_10_3390_molecules28196790
crossref_primary_10_4103_pm_pm_207_21
crossref_primary_10_1007_s10534_021_00324_x
crossref_primary_10_1186_s43066_021_00111_w
crossref_primary_10_1016_j_aqrep_2022_101423
crossref_primary_10_1016_j_envpol_2020_115230
crossref_primary_10_1371_journal_pone_0210513
crossref_primary_10_1007_s00299_023_03115_5
crossref_primary_10_3892_etm_2022_11197
crossref_primary_10_1021_acs_jpcb_2c05784
crossref_primary_10_1002_jsfa_13114
crossref_primary_10_1016_j_ecoenv_2022_114263
crossref_primary_10_1007_s11010_021_04151_z
crossref_primary_10_1007_s10753_021_01428_9
crossref_primary_10_1080_10454438_2022_2086445
crossref_primary_10_1111_jog_15683
crossref_primary_10_1155_2020_3123268
crossref_primary_10_3389_fmed_2021_750731
crossref_primary_10_1016_j_aquatox_2021_105771
crossref_primary_10_3390_ijms20143466
crossref_primary_10_3892_ijmm_2023_5310
crossref_primary_10_1016_j_scitotenv_2023_162109
crossref_primary_10_3390_nu12041175
crossref_primary_10_1016_j_marenvres_2023_106062
crossref_primary_10_1155_2019_5432792
crossref_primary_10_1186_s12575_023_00211_4
crossref_primary_10_1186_s13048_019_0502_8
crossref_primary_10_3390_antiox10111853
crossref_primary_10_1016_j_neuro_2021_11_011
crossref_primary_10_1016_j_jsps_2020_10_004
crossref_primary_10_1016_j_ecoenv_2018_07_053
crossref_primary_10_1016_j_ejphar_2020_173329
crossref_primary_10_1515_biol_2019_0052
crossref_primary_10_1002_cbin_11125
crossref_primary_10_3390_ph13090236
crossref_primary_10_3390_ijms21031135
crossref_primary_10_1016_j_phymed_2024_155388
crossref_primary_10_3892_mmr_2019_10211
crossref_primary_10_1016_j_cryobiol_2020_12_002
crossref_primary_10_3389_fimmu_2020_574029
crossref_primary_10_1016_j_fsi_2023_109122
crossref_primary_10_1016_j_aqrep_2020_100350
crossref_primary_10_1155_2019_4842592
crossref_primary_10_1080_15384047_2018_1529108
crossref_primary_10_1080_09064702_2023_2222733
crossref_primary_10_1016_j_heliyon_2024_e31880
crossref_primary_10_3389_fvets_2024_1444578
crossref_primary_10_18311_jer_2023_34512
Cites_doi 10.1016/j.bbabio.2006.03.012
10.2174/1568026615666150220120946
10.1165/ajrcmb.18.4.2958
10.1007/s10661-014-4147-1
10.1074/jbc.M203668200
10.3892/or.2017.5446
10.1016/j.mex.2015.11.001
10.1146/annurev.iy.12.040194.001041
10.1007/0-387-30128-3_3
10.1073/pnas.170276797
10.1016/S0006-8993(99)02376-8
10.1096/fj.01-0409fje
10.1016/j.jfca.2013.03.002
10.1098/rstb.1985.0168
10.1007/s12192-011-0255-9
10.1038/cddis.2013.63
10.1111/j.1600-079X.2006.00318.x
10.5152/jtgga.2013.53323
10.3389/fnmol.2015.00077
10.1007/s10495-016-1332-4
10.1111/jpi.12197
10.1128/MCB.21.24.8575-8591.2001
10.1161/01.RES.0000016837.26733.BE
10.1016/S1096-4959(01)00395-5
10.1016/S0006-2952(99)00296-8
10.1080/13880200902817901
10.1111/j.1600-079X.2010.00784.x
10.1258/ebm.2009.009250
10.2131/jts.42.731
10.1530/REP-15-0391
10.1016/S0960-9822(06)00046-7
10.1074/jbc.271.8.4138
10.1002/1097-4636(200010)52:1<171::AID-JBM22>3.0.CO;2-O
10.1128/MCB.16.10.5839
10.1111/jpi.12472
10.1093/carcin/10.6.1003
10.1046/j.1600-079X.2003.00092.x
10.1002/jcp.10119
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2018
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2018
– notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID AAYXX
CITATION
ISR
INF
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
GPN
DOA
DOI 10.1186/s40659-018-0168-5
DatabaseName CrossRef
Gale In Context: Science
Gale OneFile: Informe Academico
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SciELO
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 0717-6287
EndPage 10
ExternalDocumentID oai_doaj_org_article_beb912b5769a4cf6acd1a5805fab8ea5
S0716_97602018000100216
PMC5996524
A546894635
10_1186_s40659_018_0168_5
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABUWG
ABXHO
ACGFO
ACGFS
ACPRK
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APOWU
ASPBG
AVWKF
AZFZN
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
DU5
E3Z
EBLON
EBS
ECGQY
EJD
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INF
ISR
ITC
KQ8
LK8
M1P
M48
M7P
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSD
RSV
SCD
SOJ
TR2
UKHRP
XSB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
AHSBF
C1A
GPN
PUEGO
ID FETCH-LOGICAL-c676t-aae4addb42bb1927567282679834bda1fb7ad79c1862a259c6c6c2c9ae2fd7c33
IEDL.DBID 7X7
ISSN 0717-6287
0716-9760
IngestDate Wed Aug 27 01:30:31 EDT 2025
Tue Aug 19 13:45:22 EDT 2025
Thu Aug 21 14:19:04 EDT 2025
Tue Aug 05 09:31:31 EDT 2025
Fri Jul 25 12:02:04 EDT 2025
Tue Jun 17 21:49:42 EDT 2025
Tue Jun 10 20:21:56 EDT 2025
Fri Jun 27 04:40:23 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Tue Jul 01 01:53:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heat shock proteins
Oxidative stress
Fish
Melatonin
Hepatocytes
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c676t-aae4addb42bb1927567282679834bda1fb7ad79c1862a259c6c6c2c9ae2fd7c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2056625301?pq-origsite=%requestingapplication%
PMID 29891016
PQID 2056625301
PQPubID 2040165
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_beb912b5769a4cf6acd1a5805fab8ea5
scielo_journals_S0716_97602018000100216
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5996524
proquest_miscellaneous_2054924497
proquest_journals_2056625301
gale_infotracmisc_A546894635
gale_infotracacademiconefile_A546894635
gale_incontextgauss_ISR_A546894635
crossref_citationtrail_10_1186_s40659_018_0168_5
crossref_primary_10_1186_s40659_018_0168_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-11
PublicationDateYYYYMMDD 2018-06-11
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-11
  day: 11
PublicationDecade 2010
PublicationPlace Santiago
PublicationPlace_xml – name: Santiago
– name: London
PublicationTitle Biological research
PublicationTitleAlternate Biol. Res
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
Sociedad de Biología de Chile
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: Sociedad de Biología de Chile
– name: BMC
References L Huang (168_CR22) 2001; 21
168_CR11
T Schulte (168_CR26) 1996; 16
168_CR10
NM Radio (168_CR14) 2006; 40
RJ Ruch (168_CR19) 1989; 10
168_CR37
168_CR35
168_CR34
168_CR28
168_CR27
M Moniruzzaman (168_CR17) 2016; 151
A Faissner (168_CR39) 2006
KZ Guyton (168_CR31) 1996; 271
X-X Wang (168_CR32) 2000; 52
E Padmini (168_CR36) 2015; 187
168_CR3
PA Baeuerle (168_CR33) 1994; 12
168_CR5
E Padmini (168_CR13) 2011; 16
K Asok Kumar (168_CR18) 2009; 47
R Hardeland (168_CR1) 1996; 2
C Karaaslan (168_CR6) 2015; 15
168_CR8
168_CR9
JL Martindale (168_CR23) 2002; 192
168_CR21
168_CR20
C Rodriguez (168_CR38) 2004; 36
168_CR25
168_CR24
168_CR2
GF Vázquez (168_CR4) 2018; 64
168_CR16
A Chatterjee (168_CR12) 2013; 4
S Ikeyama (168_CR30) 2002; 16
A González (168_CR40) 2017; 37
M Moniruzzaman (168_CR7) 2017; 42
S Sethi (168_CR15) 2010; 49
N Fujita (168_CR29) 2002; 277
Fujita, N; Saori, S; Kazuhiro, K; Takashi, T 2002; 277
Jeong, WI; Do, SH; Jeong, DH; Hong, IH; Park, JK; Ran, KM 2006; 26
Baek, S-H; Kim, J-Y; Choi, J-H; Park, E-M; Han, M-Y; Kim, C-H 2000; 856
Wang, X-X; Hayakawa, S; Tsuru, K; Osaka, A 2000; 52
Karaaslan, C; Suzen, S 2015; 15
Shih, R-H; Wang, C-Y; Yang, C-M 2015
Ghadban, T; Dibbern, JL; Reeh, M; Miro, JT; Tsui, TY; Wellner, U 2017; 22
Sies, H; Cadenas, E; Symons, MCR; Scott, G 1985; 311
Faissner, A; Heck, N; Dobbertin, A; Garwood, J; Bähr, M 2006
Hardeland, R; Fuhrberg, B 1996; 2
Sethi, S; Radio, NM; Kotlarczyk, MP; Chen, C-T; Wei, Y-H; Jockers, R 2010; 49
Ikeyama, S; Kokkonen, G; Shack, S; Wang, X-T; Holbrook, NJ 2002; 16
Baghirova, S; Hughes, BG; Hendzel, MJ; Schulz, R 2015; 2
Padmini, E; Usha Rani, M 2011; 16
Baeuerle, PA; Henkel, T 1994; 12
Rodriguez, C; Mayo, JC; Sainz, RM; Antolin, I; Herrera, F; Martin, V 2004; 36
Asok Kumar, K; Uma Maheswari, M; Sivashanmugam, AT; Subhadra Devi, V; Subhashini, N; Ravi, T 2009; 47
Pratt, WB; Morishima, Y; Peng, HM; Osawa, Y 2010; 235
Abe, Mark K; Kartha, Sreedharan; Karpova, Alla Y; Li, Jing; Liu, Pai T; Kuo, Wen-Liang; Hershenson, MB 1998; 18
Yalçınkaya, E; Çakıroğlu, Y; Doğer, E; Budak, Ö; Çekmen, M; Çalışkan, E 2013; 14
Radio, NM; Doctor, JS; Witt-Enderby, PA 2006; 40
Kleszczyński, K; Zwicker, S; Tukaj, S; Kasperkiewicz, M; Zillikens, D; Wolf, R 2015; 58
Vázquez, GF; Reiter, RJ; Agil, A 2018; 64
Guyton, KZ; Liu, Y; Gorospe, M; Xu, Q; Holbrook, NJ 1996; 271
Anisimov, VN; Popovich, IG; Zabezhinski, MA; Anisimov, S V; Vesnushkin, GM; Vinogradova, IA 2006; 1757
Schulte, T; Blagosklonny, M; Romanova, L; Mushinski, J; Monia, B; Johnston, J 1996; 16
González, A; González-González, A; Alonso-González, C; Menéndez-Menéndez, J; Martínez-Campa, C; Cos, S 2017; 37
Martindale, JL; Holbrook, NJ 2002; 192
Moniruzzaman, M; Midday, P; Dhara, A; Das, D; Ghosal, I; Mukherjee, D 2017; 42
Gris, EF; Mattivi, F; Ferreira, EA; Vrhovsek, U; Filho, DW; Pedrosa, RC 2013; 31
Huang, L; Mivechi, NF; Moskophidis, D 2001; 21
Ruch, RJ; Cheng, S; Klaunig, JE 1989; 10
Padmini, E; Tharani, J 2015; 187
Sato, S; Fujita, N; Tsuruo, T 2000; 97
Kültz, D; Avila, K 2001; 129
Baichwal, VR; Baeuerle, PA 1997; 7
Chatterjee, A; Chatterjee, U; Ghosh, MK 2013; 4
Moniruzzaman, M; Hasan, KN; Maitra, SK 2016; 151
Bowie, A; O’Neill, LAJ 2000; 59
Fontana, J; Fulton, D; Chen, Y; Fairchild, TA; McCabe, TJ; Fujita, N 2002; 90
References_xml – ident: 168_CR5
  doi: 10.1016/j.bbabio.2006.03.012
– volume: 15
  start-page: 894
  year: 2015
  ident: 168_CR6
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026615666150220120946
– ident: 168_CR10
  doi: 10.1165/ajrcmb.18.4.2958
– volume: 187
  start-page: 4147
  year: 2015
  ident: 168_CR36
  publication-title: Environ Monit Assess.
  doi: 10.1007/s10661-014-4147-1
– volume: 277
  start-page: 28706
  year: 2002
  ident: 168_CR29
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M203668200
– volume: 37
  start-page: 2433
  year: 2017
  ident: 168_CR40
  publication-title: Oncol Rep
  doi: 10.3892/or.2017.5446
– ident: 168_CR16
  doi: 10.1016/j.mex.2015.11.001
– volume: 12
  start-page: 141
  year: 1994
  ident: 168_CR33
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.iy.12.040194.001041
– start-page: 25
  volume-title: Brain Repair
  year: 2006
  ident: 168_CR39
  doi: 10.1007/0-387-30128-3_3
– ident: 168_CR27
  doi: 10.1073/pnas.170276797
– ident: 168_CR25
  doi: 10.1016/S0006-8993(99)02376-8
– volume: 16
  start-page: 114
  year: 2002
  ident: 168_CR30
  publication-title: FASEB J
  doi: 10.1096/fj.01-0409fje
– ident: 168_CR21
  doi: 10.1016/j.jfca.2013.03.002
– ident: 168_CR3
  doi: 10.1098/rstb.1985.0168
– volume: 16
  start-page: 411
  year: 2011
  ident: 168_CR13
  publication-title: Cell Stress Chaperones.
  doi: 10.1007/s12192-011-0255-9
– volume: 4
  start-page: e543
  year: 2013
  ident: 168_CR12
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.63
– volume: 40
  start-page: 332
  year: 2006
  ident: 168_CR14
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.2006.00318.x
– ident: 168_CR20
  doi: 10.5152/jtgga.2013.53323
– ident: 168_CR35
  doi: 10.3389/fnmol.2015.00077
– ident: 168_CR8
  doi: 10.1007/s10495-016-1332-4
– ident: 168_CR9
  doi: 10.1111/jpi.12197
– volume: 21
  start-page: 8575
  issue: 24
  year: 2001
  ident: 168_CR22
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.24.8575-8591.2001
– ident: 168_CR28
  doi: 10.1161/01.RES.0000016837.26733.BE
– ident: 168_CR11
  doi: 10.1016/S1096-4959(01)00395-5
– ident: 168_CR37
  doi: 10.1016/S0006-2952(99)00296-8
– volume: 47
  start-page: 474
  year: 2009
  ident: 168_CR18
  publication-title: Pharm Biol
  doi: 10.1080/13880200902817901
– volume: 2
  start-page: 25
  year: 1996
  ident: 168_CR1
  publication-title: Trends Comp Biochem Physiol
– volume: 49
  start-page: 222
  year: 2010
  ident: 168_CR15
  publication-title: J Pineal Res.
  doi: 10.1111/j.1600-079X.2010.00784.x
– ident: 168_CR24
  doi: 10.1258/ebm.2009.009250
– volume: 42
  start-page: 731
  year: 2017
  ident: 168_CR7
  publication-title: J Toxicol Sci
  doi: 10.2131/jts.42.731
– volume: 151
  start-page: 285
  year: 2016
  ident: 168_CR17
  publication-title: Reproduction
  doi: 10.1530/REP-15-0391
– ident: 168_CR34
  doi: 10.1016/S0960-9822(06)00046-7
– volume: 271
  start-page: 4138
  year: 1996
  ident: 168_CR31
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.8.4138
– volume: 52
  start-page: 171
  year: 2000
  ident: 168_CR32
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(200010)52:1<171::AID-JBM22>3.0.CO;2-O
– ident: 168_CR2
– volume: 16
  start-page: 5839
  year: 1996
  ident: 168_CR26
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.10.5839
– volume: 64
  start-page: e12472
  issue: 4
  year: 2018
  ident: 168_CR4
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12472
– volume: 10
  start-page: 1003
  year: 1989
  ident: 168_CR19
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/10.6.1003
– volume: 36
  start-page: 1
  year: 2004
  ident: 168_CR38
  publication-title: J Pineal Res
  doi: 10.1046/j.1600-079X.2003.00092.x
– volume: 192
  start-page: 1
  year: 2002
  ident: 168_CR23
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.10119
– volume: 271
  start-page: 4138
  year: 1996
  end-page: 4142
  article-title: Activation of mitogen-activated protein kinase by ho role in cell survival following oxidant injury
  publication-title: J Biol Chem
– volume: 52
  start-page: 171
  year: 2000
  end-page: 176
  article-title: Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments
  publication-title: J Biomed Mater Res
– volume: 59
  start-page: 13
  year: 2000
  end-page: 23
  article-title: Oxidative stress and nuclear factor-κB activation∗∗Bowie A and O’Neill LAJ, unpublished results: a reassessment of the evidence in the light of recent discoveries
  publication-title: Biochem Pharmacol
– volume: 2
  start-page: 440
  year: 2015
  end-page: 445
  article-title: Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells
  publication-title: MethodsX
– volume: 58
  start-page: 117
  year: 2015
  end-page: 126
  article-title: Melatonin compensates silencing of heat shock protein 70 and suppresses ultraviolet radiation-induced inflammation in human skin ex vivo and cultured keratinocytes
  publication-title: J Pineal Res
– volume: 4
  year: 2013
  article-title: Activation of protein kinase CK2 attenuates FOXO3a functioning in a PML-dependent manner: implications in human prostate cancer
  publication-title: Cell Death Dis
– volume: 16
  start-page: 411
  year: 2011
  end-page: 425
  article-title: Heat-shock protein 90 alpha (HSP90α) modulates signaling pathways towards tolerance of oxidative stress and enhanced survival of hepatocytes of Mugil cephalus
  publication-title: Cell Stress Chaperones
– volume: 26
  start-page: 3517
  year: 2006
  end-page: 3526
  article-title: Kinetics of MMP-1 and MMP-3 produced by mast cells and macrophages in liver fibrogenesis of rat
  publication-title: Anticancer Res
– volume: 18
  start-page: 562
  year: 1998
  end-page: 569
  article-title: Hydrogen peroxide activates extracellular signal-regulated kinase via protein kinase C, Raf-1, and MEK1
  publication-title: Am J Respir Cell Mol Biol
– volume: 12
  start-page: 141
  year: 1994
  end-page: 179
  article-title: Function and activation of NF-kappaB in the immune system
  publication-title: Annu Rev Immunol
– volume: 187
  year: 2015
  article-title: Differential expression of HO-1 and CYP1A2 during up-regulation of ERK in stressed fish hepatocytes
  publication-title: Environ Monit Assess
– volume: 15
  start-page: 894
  year: 2015
  end-page: 903
  article-title: Antioxidant properties of melatonin and its potential action in diseases
  publication-title: Curr Top Med Chem
– volume: 856
  start-page: 28
  year: 2000
  end-page: 36
  article-title: Reduced glutathione oxidation ratio and 8 ohdG accumulation by mild ischemic pretreatment
  publication-title: Brain Res
– volume: 90
  start-page: 866
  year: 2002
  article-title: Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release
  publication-title: Circ Res
– volume: 36
  start-page: 1
  year: 2004
  end-page: 9
  article-title: Regulation of antioxidant enzymes: a significant role for melatonin
  publication-title: J Pineal Res
– volume: 235
  start-page: 278
  year: 2010
  end-page: 289
  article-title: Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage
  publication-title: Exp Biol Med (Maywood)
– volume: 192
  start-page: 1
  year: 2002
  end-page: 15
  article-title: Cellular response to oxidative stress: signaling for suicide and survival
  publication-title: J Cell Physiol
– volume: 151
  start-page: 285
  year: 2016
  end-page: 296
  article-title: Melatonin actions on ovaprim (synthetic GnRH and domperidone)-induced oocyte maturation in carp
  publication-title: Reproduction
– volume: 14
  start-page: 136
  year: 2013
  end-page: 141
  article-title: Effect of follicular fluid NO, MDA and GSH levels on in vitro fertilization outcomes
  publication-title: J Turk German Gynecol Assoc
– volume: 40
  start-page: 332
  year: 2006
  end-page: 342
  article-title: Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade
  publication-title: J Pineal Res
– volume: 1757
  start-page: 573
  year: 2006
  end-page: 589
  article-title: Melatonin as antioxidant, geroprotector and anticarcinogen
  publication-title: Biochimica et Biophysica Acta (BBA) - Bioenergetics
– volume: 21
  start-page: 8575
  issue: 24
  year: 2001
  end-page: 8591
  article-title: Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene
  publication-title: Mol Cell Biol
– volume: 277
  start-page: 28706
  year: 2002
  end-page: 28713
  article-title: Akt-dependent phosphorylation of p27Kip1promotes binding to 14-3-3 and cytoplasmic localization
  publication-title: J Biol Chem
– volume: 10
  start-page: 1003
  year: 1989
  end-page: 1008
  article-title: Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea
  publication-title: Carcinogenesis
– volume: 16
  start-page: 5839
  year: 1996
  end-page: 5845
  article-title: Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway
  publication-title: Mol Cell Biol
– volume: 7
  start-page: R94
  year: 1997
  end-page: R96
  article-title: Apoptosis: activate NF-κB or die?
  publication-title: Curr Biol
– volume: 37
  start-page: 2433
  year: 2017
  end-page: 2440
  article-title: Melatonin inhibits angiogenesis in SH-SY5Y human neuroblastoma cells by downregulation of VEGFNo
  publication-title: Oncol Rep
– volume: 64
  issue: 4
  year: 2018
  article-title: Melatonin increases brown adipose tissue mass and function in Zücker diabetic fatty rats: implications for obesity control
  publication-title: J Pineal Res
– volume: 22
  start-page: 369
  year: 2017
  end-page: 380
  article-title: HSP90 is a promising target in gemcitabine and 5-fluorouracil resistant pancreatic cancer
  publication-title: Apoptosis
– volume: 16
  start-page: 114
  year: 2002
  end-page: 116
  article-title: Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities
  publication-title: FASEB J
– year: 2015
  article-title: NF-kappaB signaling pathways in neurological inflammation: a mini review
  publication-title: Front Mol Neurosci
– volume: 129
  start-page: 821
  year: 2001
  end-page: 829
  article-title: Mitogen-activated protein kinases are in vivo transducers of osmosensory signals in fish gill cells
  publication-title: Comp Biochem Physiol Part B
– volume: 42
  start-page: 731
  year: 2017
  end-page: 740
  article-title: Change in redox state and heat shock protein expression in an Indian major carp Cirrhinus cirrhosus exposed to zinc and lead
  publication-title: J Toxicol Sci
– volume: 31
  start-page: 31
  year: 2013
  end-page: 40
  article-title: Phenolic profile and effect of regular consumption of Brazilian red wines on in vivo antioxidant activity
  publication-title: J Food Compos Anal
– volume: 47
  start-page: 474
  year: 2009
  end-page: 482
  article-title: Free radical scavenging and antioxidant activities of Glinus oppositifolius (carpet weed) using different in vitro assay systems
  publication-title: Pharm Biol
– start-page: 25
  year: 2006
  end-page: 53
  publication-title: Brain Repair
– volume: 311
  start-page: 617
  year: 1985
  end-page: 631
  publication-title: Philos Trans R Soc Lond Ser B Biol Sci
– volume: 97
  start-page: 10832
  year: 2000
  end-page: 10837
  article-title: Modulation of Akt kinase activity by binding to Hsp90
  publication-title: Proc Natl Acad Sci
– volume: 49
  start-page: 222
  year: 2010
  end-page: 238
  article-title: Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways
  publication-title: J Pineal Res
– volume: 2
  start-page: 25
  year: 1996
  end-page: 45
  article-title: Ubiquitous melatonin–presence and effects in unicells, plants and animals
  publication-title: Trends Comp Biochem Physiol
SSID ssj0025026
Score 2.520529
Snippet Background Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone...
Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal hormone melatonin is...
Abstract Background Improper control on reactive oxygen species (ROS) elimination process and formation of free radicals causes tissue dysfunction. Pineal...
SourceID doaj
scielo
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 17
SubjectTerms AKT protein
Analysis
Antioxidants
BIOLOGY
Catalase
Cellular signal transduction
Enzymes
Extracellular signal-regulated kinase
Fish
Free radicals
Gene expression
Glutathione
Health aspects
Heat shock proteins
Hepatocytes
Hsp70 protein
Hsp90 protein
Hydrogen peroxide
Kinases
Laboratory animals
Liver
Liver diseases
Malondialdehyde
Melatonin
NF-κB protein
Oxidation
Oxidative stress
Phosphorylation
Physiology
Pineal gland
Reactive oxygen species
Rodents
Signal transduction
Stress response
Studies
Superoxide dismutase
Western blotting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fixMxEA5yKPgi_sTVU6IIgrB0N5vNbh57cqUKnuB5cE-G_PSO9nbl2qL33zuTTestB_oifWtm22YySb6vmXxDyBujbZDGF7n1juc8FDI3gvtcO86Dl547H7MtjsT8hH88rU-vlfrCnLBBHnhw3MR4I0tmABZLzW0Q2rpS121RB21ar6N6Kex5WzKVqFYN1CKdYZatmKw4Hh8CbcbELbxqNNqFolj_zSX5ZprkbdyVltc3oNl9ci8hRzodfvEDcst3D8mdoZbk1SPy7ROmteGfq1Rf-CXevAcUSefsM8uBd8MIOtr_OndR6JsOV0RoqtJDL3qXynjRPtDDy8VkulhPjmaLA4oli3_qq8fkZHb49f08T8UTcisasc619hzWLsOZMYDimlo0wK7wzKXixukymEa7RlpwD9PAgayAF7NSexZcY6vqCdnr-s4_JVRLLnnQOLc118KbunBlFRh8SBHqymek2DpT2aQsjgUulioyjFaowf8K_K_Q_6rOyLvdIz8GWY2_GR_gCO0MURE7vgFxolKcqH_FSUZe4_gq1LzoMKnmu96sVurD8Rc1rbloJQfolZG3ySj00AOr0x0F8APKZI0s90eWMCntuHkbRiotCivFAGwC3YQlNSOvds34JCa6db7fRBsOlJjLJiPNKPxG3R-3dOdnURgcpXZqxqEXQ6D--epjQJJCAfQEdlC2COwR3Iln_8Ozz8ldFmeWyMtyn-ytLzf-BSC1tXkZJ-VvJ6E8Cw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGAIkXxKdWGMggJCSk0MR1nPgBoQ6tKkgbEqPSnrD8OaZ2CfRDrP89d05aiDZNfasvbn32-e7i8-9HyBujbZDGp4n1jic8pDIxgvtEO86Dl547H6stjsV4wr-c5qc7ZENv1SpwcW1qh3xSk_ns_eXv9Ucw-A_R4EvRX3A8HISkGMuy8CLRLXIbHFOBhAZHfHuoAM4-sq-BUxUJeOHNIee1XXTcVETzv7pnX62jvINua_a_hxo9IPfb0JIOm7XwkOz46hG525BNrh-TH0dY94ZvX6m-8DO8mg9hJh2zryyBxBym2NH68txFJHDa3CGhLY0Pvahdy_NF60AP59P-cLrsH4-mBxQ5jf_o9RMyGR1-_zROWnaFxIpCLBOtPYfNzXBmDIR5RS4KSL_wUGbAjdNZMIV2hbSgHqYhSbICPsxK7VlwhR0MnpLdqq78HqFacsmDRuPXXAtv8tRlg8CgkzTkA98j6UaZyrbQ48iAMVMxBSmFavSvQP8K9a_yHnm3feRXg7txk_ABztBWECGz4xf1_Ey1FqiMNzJjBvIrqbkNQluX6bxM86BN6TV08hrnVyEoRoVVN2d6tViozyff1DDnopQcYrMeedsKhRpGYHV7iQH0gDhaHcn9jiRYre02b5aR2ix6xSAahXwU9tweebVtxiexEq7y9SrKcMiZuSx6pOgsv87wuy3V-c-IHI5YPDnjMIpmof776RO0CoVWwRDSDV8VQPQnnt38N5-TeyzajEiybJ_sLucr_wKCtKV5GU3vL-SoNtE
  priority: 102
  providerName: Scholars Portal
Title Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway
URI https://www.proquest.com/docview/2056625301
https://www.proquest.com/docview/2054924497
https://pubmed.ncbi.nlm.nih.gov/PMC5996524
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602018000100216&lng=en&tlng=en
https://doaj.org/article/beb912b5769a4cf6acd1a5805fab8ea5
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rixMxEA96p-AX8YnVs6wiCMLS3TSb7X6SVlpq4apcPegnQ57n0d7u2Qd6_70z2bR1OTgKW2hmt5vJzGQmmfyGkA9Kalcom8TaGhYzlxSx4szG0jDmbGGZsT7bYsrH52wyz-ZhwW0d0ip3NtEbalNpXCOHIB0cD5qBPH6-_h1j1SjcXQ0lNO6TY4QuQ6nO54eAK0t8uTWYRXkM0-5uVzPt8c6a4YYiBNKYyoWHjxrzkofvv22kbydOPsB5avn_lDR6Qh4HXzLq14P_lNyz5TPysK4uefOc_DzFRDdcbo3klV3iWXzwK6Mx_UZjiMRhTE1U_b00Hvo7qg-NRKFuT3RVmVDYK6pcNFwtOv3FpjMdLQYRFjH-I29ekPPR8MeXcRzKKcSa53wTS2kZWDPFqFLg1-UZzyHewl2YLlNGpk7l0uSFBvZQCVGR5vChupCWOpPrbvclOSqr0r4ikSxYwZxEbZdMcquyxKRdR-Ehicu6tkWSHTOFDljjWPJiKXzM0eOi5r8A_gvkv8ha5NP-lusaaOMu4gGO0J4QMbL9D9XqQgSVE8qqIqUKAqpCMu241CaVWS_JnFQ9K-Eh73F8BaJglJhmcyG367X4OjsT_YzxXsHAGWuRj4HIVdADLcOpBeADAmc1KE8alKCmutm8EyMRzMRaHIS6Rd7tm_FOTH0rbbX1NAyCZFbkLZI3xK_R_WZLefnLQ4Uj-E5GGfSiFtTDX89QKwRqBUUMN1wbAHePv777Nd-QR9TrDI_T9IQcbVZb-xa8so1qe9Vrk-N-fzKbwPdgOP1-1vZrHHA9Zb1_fvE4vA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELaqAoIXxCkCBQwCISGtsut4vdkHhFJolNA2SLSV-lTjs1RJd0sOlfwpfiMzeySsKvWtylt21onHc332eIaQd1oZn2oXBsZZHnAfpoEW3AXKcu5d6rh1RbbFSAyO-Lfj-HiD_K3vwmBaZW0TC0Ntc4N75ADSIfBgMcjj54vfAXaNwtPVuoVGKRa7bnkJkG32afgV1vc9Y_2dwy-DoOoqEBiRiHmglOOg1JozrSG8SWKRAOzAw4gO11ZFXifKJqmJINZXAA6MgA8zqXLM28TgBiiY_FvgeEMEe8nxGuDFYdHeDby2CMDN16eoMFJ7xvEAE4A7po7hZaeGHyzaBVx1ClcTNW-jX5z87wL7D8j9KnalvVLYHpINlz0id8pulsvH5GQfE-twe5eqczfBu_8Qx9IB-84CQP4gQ5bmf85sUWqclpdUaNUniJ7ntmokRnNPd6bjdm88b4_6422KTZMv1fIJOboRRj8lm1meuWeEqpSn3Cu0Loor4XQc2qjjGQwS-rjjWiSsmSlNVdscW2xMZIFxukKW_JfAf4n8l3GLfFy9clEW9riOeBtXaEWINbmLL_LpqaxUXGqn04hpAHCp4sYLZWyk4m4Ye6W7TsEgb3F9JVbdyDCt51QtZjM5PPghezEX3ZRD8NciHyoin8MMjKpuSQAfsFBXg3KrQQlmwTQf12IkK7M0k2slapE3q8f4JqbaZS5fFDQcQDlPkxZJGuLXmH7zSXb2qyhNjsV-YsZhFqWgrn_6ALVColYwrBmHexEQXorn1__N1-Tu4HB_T-4NR7svyD1W6I8IomiLbM6nC_cSIsK5flWoISU_b1rv_wHacHGc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+ameliorates+H2O2-induced+oxidative+stress+through+modulation+of+Erk%2FAkt%2FNFkB+pathway&rft.jtitle=Biological+research&rft.au=Moniruzzaman%2C+Mahammed&rft.au=Ghosal%2C+Indranath&rft.au=Das%2C+Debjit&rft.au=Chakraborty%2C+Suman+Bhusan&rft.date=2018-06-11&rft.pub=BioMed+Central&rft.issn=0716-9760&rft.eissn=0717-6287&rft.volume=51&rft_id=info:doi/10.1186%2Fs40659-018-0168-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0717-6287&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0717-6287&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0717-6287&client=summon