Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC)...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 63; no. 3; pp. 976 - 981 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. |
---|---|
AbstractList | Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-[F.sub.2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure), Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/[m.sup.2]) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m(2)) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m(2)) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-[F.sub.2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure), Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/[m.sup.2]) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. DOI: 10.2337/db13-1396 Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m(2)) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F...) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m...) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. (ProQuest: ... denotes formulae/symbols omitted.) Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1 ) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2 ) markers of systemic (urinary 8-iso-prostaglandin-F 2α ) and muscle (carbonylated protein content) oxidative stress; and 3 ) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m 2 ) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-[F.sub.2[alpha]) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure), Thirty-one obese subjects (BMI 37.1 [+ or -] 0.7 kg/[m.sup.2]) with either high serum UA (HUA; 7.1 [+ or -] 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 [+ or -] 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 [+ or -] 25% to 156 [+ or -] 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. DOI: 10.2337/db13-1396 |
Audience | Professional |
Author | Hazen, Stanley L. Serafini, Mauro Colic Baric, Irena Fabbrini, Elisa Klein, Samuel |
Author_xml | – sequence: 1 givenname: Elisa surname: Fabbrini fullname: Fabbrini, Elisa organization: Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO – sequence: 2 givenname: Mauro surname: Serafini fullname: Serafini, Mauro organization: Agricultural Research Council-Research Centre on Food and Nutrition, Rome, Italy – sequence: 3 givenname: Irena surname: Colic Baric fullname: Colic Baric, Irena organization: Agricultural Research Council-Research Centre on Food and Nutrition, Rome, Italy – sequence: 4 givenname: Stanley L. surname: Hazen fullname: Hazen, Stanley L. organization: Center for Cardiovascular Diagnostics and Prevention, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH – sequence: 5 givenname: Samuel surname: Klein fullname: Klein, Samuel organization: Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402886$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24353177$$D View this record in MEDLINE/PubMed |
BookMark | eNp9km9r2zAQxs3oWNNuL_YFhmAMNqhb_XGk6M0ghK4rBDLoCnsnZPmcKThSZtml_fY707RZtjAkEJJ-90h395xkRyEGyLK3jJ5zIdRFVTKRM6Hli2zEtNC54OrHUTailPGcKa2Os5OUVpRSieNVdswLMRZMqVEWL-saXEdiTb41Nq0tuW29I1PnKxIDmYbOx3tf2dCRmd1Y57uHM7IYTjp_B-SmayGlM2JDRa5D6hsfyA2E5PEWUYLbRQkJwb5c4Tvpdfaytk2CN9v1NLv9cvl99jWfL66uZ9N57qSSXc6p5CW1nI8Zr7UooHSlljUH7XRlhbWUc1YVWgrJVFmBxmQUK8AWjLEJEqfZ50fdTV-uoXIQutY2ZtP6tW0fTLTe7N8E_9Ms450RWmAlNQp83Aq08VcPqTNrnxw0jQ0Q-2TYmDKhqJAU0fd_oavYtwHTM0wKJQuGc0ctbQPGhzriu24QNVMx9EVrrpDKD1BLCICfxK7XHo_3-PMDPI4K1t4dDPi0F4BMB_fd0vYpmcnV_H-f2bIuNg0swWDDZot9_t2fRX-u9pPdEPiwBWxytqlbG5xPO25SUD6ZSOQuHjnXxpRaqA0aDx0Xh175xjBqBuObwfhmMP4ureeIJ9F_2d8dhv2v |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1016_j_envpol_2024_125188 crossref_primary_10_3389_fendo_2024_1416311 crossref_primary_10_1152_japplphysiol_00873_2016 crossref_primary_10_1155_2016_9139731 crossref_primary_10_1016_j_nutres_2016_04_010 crossref_primary_10_1155_2019_7156038 crossref_primary_10_1186_s43044_022_00317_2 crossref_primary_10_3390_ijerph18020387 crossref_primary_10_1002_btm2_10199 crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_01_011 crossref_primary_10_1111_apha_13196 crossref_primary_10_1186_s12302_023_00809_1 crossref_primary_10_26442_2075082X_2019_4_190686 crossref_primary_10_3390_antiox5040043 crossref_primary_10_1007_s00702_024_02804_z crossref_primary_10_1002_mus_27807 crossref_primary_10_1016_j_psychres_2022_114476 crossref_primary_10_5897_AJBR2020_1111 crossref_primary_10_1038_jhh_2015_53 crossref_primary_10_1002_hep_30978 crossref_primary_10_1093_jambio_lxaf034 crossref_primary_10_1155_2018_6580178 crossref_primary_10_3390_nu10091195 crossref_primary_10_1016_j_envres_2022_113865 crossref_primary_10_38109_2075_082X_2022_1_5_22 crossref_primary_10_1007_s00204_015_1523_8 crossref_primary_10_15342_hs_3_595 crossref_primary_10_1186_s40798_022_00463_6 crossref_primary_10_1021_acsomega_3c08874 crossref_primary_10_3389_fphys_2019_00553 crossref_primary_10_1016_j_numecd_2021_05_032 crossref_primary_10_1016_j_cmet_2021_02_016 crossref_primary_10_1186_s12967_019_1953_9 crossref_primary_10_3390_nu11092111 crossref_primary_10_1016_j_pnpbp_2017_04_027 crossref_primary_10_1590_s0102_6720201500040018 crossref_primary_10_1159_000487677 crossref_primary_10_3390_jcm9072027 crossref_primary_10_1016_j_jad_2017_07_010 crossref_primary_10_1186_s13098_018_0356_z crossref_primary_10_1111_jch_14730 crossref_primary_10_2337_db14_0740 crossref_primary_10_1080_07435800_2022_2142239 crossref_primary_10_1016_j_biochi_2015_06_025 crossref_primary_10_3389_fphys_2022_976190 crossref_primary_10_1080_01480545_2022_2131812 crossref_primary_10_1152_ajpendo_00401_2018 crossref_primary_10_3390_healthcare10081509 crossref_primary_10_1007_s12291_014_0462_0 crossref_primary_10_1021_acsami_3c02440 crossref_primary_10_1155_2019_6859757 crossref_primary_10_1155_2019_7919836 crossref_primary_10_1016_j_mehy_2020_109740 crossref_primary_10_1590_1809_6891v19e_39754 crossref_primary_10_1681_ASN_2014070660 crossref_primary_10_33549_physiolres_934186 crossref_primary_10_4168_aair_2019_11_1_104 crossref_primary_10_23736_S0393_3660_24_05454_8 crossref_primary_10_1186_s12902_024_01590_9 crossref_primary_10_18632_oncotarget_16198 crossref_primary_10_33549_physiolres_932851 crossref_primary_10_1186_s12891_021_04403_5 crossref_primary_10_1371_journal_pone_0239185 crossref_primary_10_1080_14767058_2018_1484093 crossref_primary_10_3164_jcbn_15_3 crossref_primary_10_14341_DM8039 crossref_primary_10_3390_molecules29194746 crossref_primary_10_4274_jarem_galenos_2022_32932 crossref_primary_10_1016_j_lfs_2020_118254 crossref_primary_10_1515_jpm_2023_0199 crossref_primary_10_3389_pore_2021_1609828 crossref_primary_10_1007_s13311_016_0497_4 crossref_primary_10_1016_j_atherosclerosis_2018_02_014 crossref_primary_10_4082_kjfm_17_0034 crossref_primary_10_47360_1995_4484_2021_727_737 crossref_primary_10_1038_s41371_020_0335_3 crossref_primary_10_3390_nu9030230 crossref_primary_10_18632_aging_202820 crossref_primary_10_2139_ssrn_4015291 crossref_primary_10_3390_ani10030459 crossref_primary_10_3390_md17040194 crossref_primary_10_1016_j_ejogrb_2018_01_008 crossref_primary_10_1016_j_clnesp_2022_01_022 crossref_primary_10_1016_j_jds_2016_06_002 crossref_primary_10_1038_s41387_021_00179_8 crossref_primary_10_1167_iovs_63_10_8 crossref_primary_10_3389_fendo_2025_1515176 crossref_primary_10_3390_antiox11030569 crossref_primary_10_1152_ajprenal_00066_2020 crossref_primary_10_1155_2016_8603164 crossref_primary_10_1038_srep25766 crossref_primary_10_1016_j_numecd_2023_07_012 crossref_primary_10_1016_j_expneurol_2017_06_017 crossref_primary_10_1139_apnm_2015_0152 crossref_primary_10_1007_s12247_022_09624_2 crossref_primary_10_1016_j_obmed_2022_100405 crossref_primary_10_1016_j_puhe_2020_06_029 crossref_primary_10_33667_2078_5631_2020_13_5_11 crossref_primary_10_3390_metabo12090864 crossref_primary_10_3389_fendo_2022_835154 crossref_primary_10_3390_molecules26134039 crossref_primary_10_1016_j_jad_2015_03_041 crossref_primary_10_1007_s12035_014_9075_0 crossref_primary_10_1080_19476337_2023_2202709 crossref_primary_10_3389_fvets_2020_602419 crossref_primary_10_3390_biomedicines9081027 crossref_primary_10_1021_acs_est_0c07627 crossref_primary_10_18087_cardio_2020_10_n1153 crossref_primary_10_3390_biomedicines11051255 crossref_primary_10_1038_s41598_023_48739_5 crossref_primary_10_3390_antiox12081569 crossref_primary_10_1080_03007995_2017_1378502 crossref_primary_10_26442_00403660_2020_05_000633 crossref_primary_10_1111_resp_13479 crossref_primary_10_1016_j_ejphar_2023_176062 crossref_primary_10_3389_fnut_2022_847910 crossref_primary_10_5937_pramed1901019s crossref_primary_10_2174_1381612825666190408122557 crossref_primary_10_1038_s41371_019_0287_7 crossref_primary_10_3390_molecules28124646 crossref_primary_10_1007_s10067_019_04790_0 crossref_primary_10_1016_j_jhep_2020_04_033 crossref_primary_10_1007_s12013_024_01369_8 crossref_primary_10_5692_clinicalneurol_cn_001220 crossref_primary_10_1159_000362456 crossref_primary_10_4155_fmc_2018_0149 crossref_primary_10_3389_fendo_2024_1310122 crossref_primary_10_3389_fcvm_2021_717128 crossref_primary_10_3390_diagnostics13101741 crossref_primary_10_1111_jdi_13494 crossref_primary_10_3390_antiox11020408 crossref_primary_10_3945_jn_114_205674 crossref_primary_10_1016_j_clineuro_2020_105906 crossref_primary_10_1016_j_xkme_2024_100911 crossref_primary_10_1007_s00595_022_02612_6 crossref_primary_10_2217_bmm_2022_0368 crossref_primary_10_1016_j_dsx_2024_103143 crossref_primary_10_1002_prp2_904 crossref_primary_10_1142_S0192415X19500526 crossref_primary_10_1186_s12944_021_01556_z crossref_primary_10_12677_ACM_2023_133631 crossref_primary_10_3923_pjbs_2018_348_358 crossref_primary_10_3390_medicina56100501 crossref_primary_10_3389_fendo_2022_899241 crossref_primary_10_20960_nh_03051 crossref_primary_10_3390_antiox12040795 crossref_primary_10_1007_s40200_019_00464_5 crossref_primary_10_1080_14737175_2020_1785873 crossref_primary_10_3390_toxins9010020 crossref_primary_10_1155_2016_5480267 crossref_primary_10_3390_oxygen2040030 crossref_primary_10_1016_j_ejmech_2020_112891 crossref_primary_10_56093_ijans_v88i3_78267 crossref_primary_10_1136_bmjopen_2024_092844 crossref_primary_10_1038_s41598_017_02392_x crossref_primary_10_3390_life13071555 crossref_primary_10_1017_S0007114516001793 crossref_primary_10_1038_s41598_024_74869_5 crossref_primary_10_1371_journal_pone_0312217 crossref_primary_10_3390_antiox12081512 crossref_primary_10_3389_fphar_2024_1433991 crossref_primary_10_2147_DMSO_S301363 crossref_primary_10_1007_s12291_016_0599_0 crossref_primary_10_1016_j_jff_2020_103835 crossref_primary_10_3390_diagnostics10010051 crossref_primary_10_2337_db14_0885 |
Cites_doi | 10.1172/JCI119126 10.2337/diabetes.50.2.404 10.7326/0003-4819-93-6-817 10.1073/pnas.78.11.6858 10.1172/JCI21625 10.1056/NEJM199602153340707 10.2337/db09-1105 10.1253/circj.69.928 10.2337/diabetes.47.10.1562 10.7326/0003-4819-158-7-201304020-00005 10.1179/135100004225004814 10.1093/ajcn/54.6.1129s 10.1038/ijo.2010.265 10.1152/jappl.1976.41.4.565 10.1200/JCO.2001.19.3.697 10.2337/diacare.25.10.1790 10.1530/EJE-11-0053 10.1016/S0026-0495(98)90035-X 10.1161/01.ATV.0000152605.64964.c0 10.1111/j.1365-2125.2010.03887.x 10.1016/j.amjmed.2010.03.027 |
ClassificationCodes | 8000240 8000200 9105220 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS COPYRIGHT 2014 American Diabetes Association COPYRIGHT 2014 American Diabetes Association Copyright American Diabetes Association Mar 2014 2014 by the American Diabetes Association. 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2014 American Diabetes Association – notice: COPYRIGHT 2014 American Diabetes Association – notice: Copyright American Diabetes Association Mar 2014 – notice: 2014 by the American Diabetes Association. 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL K9. NAPCQ 7X8 5PM |
DOI | 10.2337/db13-1396 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 981 |
ExternalDocumentID | PMC3931399 3530588051 A360609927 24353177 28402886 10_2337_db13_1396 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: RR-00954 – fundername: NIGMS NIH HHS grantid: R24 GM136766 – fundername: NIDDK NIH HHS grantid: P01 DK-58398 – fundername: NIDDK NIH HHS grantid: P01 DK058398 – fundername: NIGMS NIH HHS grantid: P41 GM103422 – fundername: NCATS NIH HHS grantid: UL1 TR000448 – fundername: NCRR NIH HHS grantid: P41 RR000954 – fundername: NIDDK NIH HHS grantid: R01 DK037948 – fundername: NIDDK NIH HHS grantid: DK-37948 – fundername: NIDDK NIH HHS grantid: P30 DK020579 |
GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 8GL 8R4 8R5 AAFWJ AAKAS AAQQT AAWTL AAYEP AAYOK AAYXX ABOCM ACGFO ACGOD ACPRK ADBBV ADGHP ADZCM AEGXH AENEX AERZD AHMBA AIAGR AIZAD ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BES BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EJD EMOBN EX3 F5P FRP GICCO GX1 H13 HZ~ IAG IAO IEA IHR INH INR IOF IPO ITC K2M KQ8 L7B M5~ O5R O5S O9- OB3 OHH OK1 OVD P2P PCD Q2X RHI RPM SJN SV3 TDI TEORI TR2 VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 AAYJJ ABUWG AFFNX AFKRA AI. AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CCPQU DWQXO FYUFA GNUQQ GUQSH HCIFZ HMCUK H~9 IQODW J5H K-O K9- LK8 M0R M1P M2O M2P M2Q M7P MVM N4W NAPCQ PEA PHGZT PQQKQ PROAC PSQYO S0X SJFOW UKHRP VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c676t-2062b0a22512f934ebcb96f2e9c9da3aa0221d4963617bde9177714ea41118da3 |
ISSN | 0012-1797 1939-327X |
IngestDate | Thu Aug 21 14:19:27 EDT 2025 Tue Aug 05 10:56:49 EDT 2025 Fri Jul 25 19:42:37 EDT 2025 Tue Jun 17 21:22:35 EDT 2025 Thu Jun 12 23:49:20 EDT 2025 Tue Jun 10 20:17:26 EDT 2025 Fri Jun 27 03:38:12 EDT 2025 Tue Jun 10 15:30:34 EDT 2025 Thu Apr 03 07:05:18 EDT 2025 Wed Apr 02 08:10:23 EDT 2025 Tue Jul 01 03:10:36 EDT 2025 Thu Apr 24 22:51:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Endocrinopathy Human Obesity Oxidative stress Pancreatic hormone Sensitivity Diabetes mellitus Nutrition disorder Uric acid Antioxidant Insulin Nutritional status |
Language | English |
License | CC BY 4.0 Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c676t-2062b0a22512f934ebcb96f2e9c9da3aa0221d4963617bde9177714ea41118da3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3931399 |
PMID | 24353177 |
PQID | 1637641641 |
PQPubID | 34443 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3931399 proquest_miscellaneous_1501370360 proquest_journals_1637641641 gale_infotracmisc_A360609927 gale_infotracgeneralonefile_A360609927 gale_infotracacademiconefile_A360609927 gale_incontextgauss_8GL_A360609927 gale_incontextcollege_GICCO_A360609927 pubmed_primary_24353177 pascalfrancis_primary_28402886 crossref_citationtrail_10_2337_db13_1396 crossref_primary_10_2337_db13_1396 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2014 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Morrow (2022031211054596300_B15) 2005; 25 Johnson (2022031211054596300_B21) 2010 Maddux (2022031211054596300_B2) 2001; 50 Patterson (2022031211054596300_B13) 1998; 47 Fabbrini (2022031211054596300_B11) 2013 Wei (2022031211054596300_B27) 2011; 71 Klein (2022031211054596300_B9) 2002; 25 Vuorinen-Markkola (2022031211054596300_B18) 1994; 78 Quiñones Galvan (2022031211054596300_B23) 1995; 268 Bonora (2022031211054596300_B7) 1996; 20 Matsuoka (2022031211054596300_B5) 1997; 99 Furukawa (2022031211054596300_B4) 2004; 114 Yoo (2022031211054596300_B8) 2005; 69 Al-Aubaidy (2022031211054596300_B1) 2011; 164 Rudich (2022031211054596300_B3) 1998; 47 Pui (2022031211054596300_B12) 2001; 19 Curtis (2022031211054596300_B16) 2010; 59 Sevanian (2022031211054596300_B25) 1991; 54 Ames (2022031211054596300_B6) 1981; 78 Bhole (2022031211054596300_B19) 2010; 123 Fink (2022031211054596300_B26) 2013; 158 Magkos (2022031211054596300_B17) 2011; 35 Emmerson (2022031211054596300_B20) 1996; 334 Miglio (2022031211054596300_B24) 2013 Serafini (2022031211054596300_B14) 2004; 9 McGuire (2022031211054596300_B10) 1976; 41 Messerli (2022031211054596300_B22) 1980; 93 25146479 - Diabetes. 2014 Sep;63(9):e18. doi: 10.2337/db14-0740 25146480 - Diabetes. 2014 Sep;63(9):e19. doi: 10.2337/db14-0885 |
References_xml | – year: 2013 ident: 2022031211054596300_B24 article-title: Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion publication-title: Br J Nutr – volume: 99 start-page: 144 year: 1997 ident: 2022031211054596300_B5 article-title: Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells publication-title: J Clin Invest doi: 10.1172/JCI119126 – volume: 50 start-page: 404 year: 2001 ident: 2022031211054596300_B2 article-title: Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of α-lipoic acid publication-title: Diabetes doi: 10.2337/diabetes.50.2.404 – start-page: 366 volume-title: Gastroenterology year: 2013 ident: 2022031211054596300_B11 article-title: Association between specific adipose tissue CD4(+) T-cell populations and insulin resistance in obese individuals – volume: 93 start-page: 817 year: 1980 ident: 2022031211054596300_B22 article-title: Serum uric acid in essential hypertension: an indicator of renal vascular involvement publication-title: Ann Intern Med doi: 10.7326/0003-4819-93-6-817 – volume: 78 start-page: 6858 year: 1981 ident: 2022031211054596300_B6 article-title: Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.78.11.6858 – volume: 114 start-page: 1752 year: 2004 ident: 2022031211054596300_B4 article-title: Increased oxidative stress in obesity and its impact on metabolic syndrome publication-title: J Clin Invest doi: 10.1172/JCI21625 – volume: 334 start-page: 445 year: 1996 ident: 2022031211054596300_B20 article-title: The management of gout publication-title: N Engl J Med doi: 10.1056/NEJM199602153340707 – volume: 59 start-page: 1132 year: 2010 ident: 2022031211054596300_B16 article-title: Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction publication-title: Diabetes doi: 10.2337/db09-1105 – volume: 69 start-page: 928 year: 2005 ident: 2022031211054596300_B8 article-title: Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome publication-title: Circ J doi: 10.1253/circj.69.928 – volume: 47 start-page: 1562 year: 1998 ident: 2022031211054596300_B3 article-title: Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes publication-title: Diabetes doi: 10.2337/diabetes.47.10.1562 – volume: 158 start-page: 535 year: 2013 ident: 2022031211054596300_B26 article-title: Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline publication-title: Ann Intern Med doi: 10.7326/0003-4819-158-7-201304020-00005 – volume: 9 start-page: 145 year: 2004 ident: 2022031211054596300_B14 article-title: Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? publication-title: Redox Rep doi: 10.1179/135100004225004814 – volume: 54 start-page: 1129S year: 1991 ident: 2022031211054596300_B25 article-title: Serum urate as an antioxidant for ascorbic acid publication-title: Am J Clin Nutr doi: 10.1093/ajcn/54.6.1129s – volume: 35 start-page: 1233 year: 2011 ident: 2022031211054596300_B17 article-title: Reproducibility of glucose, fatty acid and VLDL kinetics and multi-organ insulin sensitivity in obese subjects with non-alcoholic fatty liver disease publication-title: Int J Obes (Lond) doi: 10.1038/ijo.2010.265 – volume: 41 start-page: 565 year: 1976 ident: 2022031211054596300_B10 article-title: Effects of arterial versus venous sampling on analysis of glucose kinetics in man publication-title: J Appl Physiol doi: 10.1152/jappl.1976.41.4.565 – volume: 19 start-page: 697 year: 2001 ident: 2022031211054596300_B12 article-title: Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma publication-title: J Clin Oncol doi: 10.1200/JCO.2001.19.3.697 – volume: 78 start-page: 25 year: 1994 ident: 2022031211054596300_B18 article-title: Hyperuricemia and insulin resistance publication-title: J Clin Endocrinol Metab – volume: 268 start-page: E1 year: 1995 ident: 2022031211054596300_B23 article-title: Effect of insulin on uric acid excretion in humans publication-title: Am J Physiol – volume: 25 start-page: 1790 year: 2002 ident: 2022031211054596300_B9 article-title: Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam publication-title: Diabetes Care doi: 10.2337/diacare.25.10.1790 – volume: 164 start-page: 899 year: 2011 ident: 2022031211054596300_B1 article-title: Oxidative DNA damage and obesity in type 2 diabetes mellitus publication-title: Eur J Endocrinol doi: 10.1530/EJE-11-0053 – volume: 47 start-page: 706 year: 1998 ident: 2022031211054596300_B13 article-title: Improved accuracy and precision of gas chromatography/mass spectrometry measurements for metabolic tracers publication-title: Metabolism doi: 10.1016/S0026-0495(98)90035-X – volume: 25 start-page: 279 year: 2005 ident: 2022031211054596300_B15 article-title: Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000152605.64964.c0 – volume: 71 start-page: 600 year: 2011 ident: 2022031211054596300_B27 article-title: Impact of allopurinol use on urate concentration and cardiovascular outcome publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2010.03887.x – volume: 20 start-page: 975 year: 1996 ident: 2022031211054596300_B7 article-title: Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men Atherosclerosis Risk Factors Study publication-title: Int J Obes Relat Metab Disord – start-page: 295 volume-title: Trans Am Clin Climatol Assoc year: 2010 ident: 2022031211054596300_B21 article-title: Theodore E. Woodward award. The evolution of obesity: insights from the mid-Miocene – volume: 123 start-page: 957 year: 2010 ident: 2022031211054596300_B19 article-title: Serum uric acid levels and the risk of type 2 diabetes: a prospective study publication-title: Am J Med doi: 10.1016/j.amjmed.2010.03.027 – reference: 25146479 - Diabetes. 2014 Sep;63(9):e18. doi: 10.2337/db14-0740 – reference: 25146480 - Diabetes. 2014 Sep;63(9):e19. doi: 10.2337/db14-0885 |
SSID | ssj0006060 |
Score | 2.5199928 |
Snippet | Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 976 |
SubjectTerms | Antioxidants Antioxidants - metabolism Biochemistry Biological and medical sciences Biomarkers Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Female Health aspects Humans Insulin Resistance Male Medical research Medical sciences Medicine, Experimental Metabolic diseases Middle Aged Obesity Obesity - metabolism Obesity Studies Overweight persons Oxidative Stress Pathogenesis Physiological aspects Uric acid Uric Acid - blood |
Title | Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24353177 https://www.proquest.com/docview/1637641641 https://www.proquest.com/docview/1501370360 https://pubmed.ncbi.nlm.nih.gov/PMC3931399 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBehgzEYY-9ly4o2Rjdo3cWWH9HHkCxL1qQdpIV-M5Isd4HNDnnA6P-2_213luLYIYxtX0xsXWTL99M95NMdIe88HvAgUcxRPm87vuSJwyOYV9LzU84DLZMixcbkPBxe-V-ug-tG41clamm9kqfqdu--kv_hKlwDvuIu2X_gbNkpXIDfwF84Aofh-Fc8tqmHMYwNjOAf4vgK4-K7apbgN4AuBjL-nCXw7o57oBOVLQBwgdeKiKFpsVFkE8A5smHpU4xpt0Ul4BRLB2gUMLhis6was_3Kuu1uRZ_KCsNASInfiWwU2bJUBCCnRGobJmK9yLfLqjCOQnotdCZwcWOmtqLy1khKrH-MEm1cXbhw_W3kVmWvAAix8mF3AWlFtuthDlWjlbWR0pxxh3nRdVWMWzk5q3r5cxP_G-7TFR4rsg0k0mUOmMF78nEPu9P4a38Qj0fnZ_VWo_8DkJUg_nAD_x0PvBQsoNEfnZWGAPiGZgeUHYFJbIX3_VjetWYOWaPg_lwsYYKmprLKPtdnN4K3YhJdPiQPrC9DuwaYj0hDZ4_J3YmN1nhCcoNPmqfU4JMiPinik-YZreCTbvB5Qkt0UoPOEwrYpBabtIJNCqcFNukGm0_J1eDTZW_o2AIfjgqjcAVzOfRkW3hoY6ec-VoqycPU01zxRDAhwMB0Ex90BNjZMtHcjaLI9bXwQUN3gOIZOcjyTL8g1E-DIOVekrY73A9VR0ZMhB2Rwh_TRDPWJB827zlWNvs9FmH5HoMXjCyJkSUxsqRJ3pakc5PyZR_RETIrxhQqGcZoKbPOF8P4ehdxlyHzOfci6K1OeCPWy2Xc-TyuEb23RGkOT6WE3RsDY8P0bDXKoxrljUlOv4-wVSMEraFqzYc1lJUjBXMVXI4ODLC1gV1sRd4yBuctCsGF890meVM2Y9cYqpnpfA00AWYxBcO43STPDUq3nYNzBg4L3D2q4bckwGT39ZZs9q1Ies84g_fOX_75sV6Re1tR0yIHq8VavwavYSUPi7n5GxoYFxw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Plasma+Uric+Acid+on+Antioxidant+Capacity%2C+Oxidative+Stress%2C+and+Insulin+Sensitivity+in+Obese+Subjects&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Fabbrini%2C+Elisa&rft.au=Serafini%2C+Mauro&rft.au=Baric%2C+Irena+Colic&rft.au=Hazen%2C+Stanley+L&rft.date=2014-03-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=63&rft.issue=3&rft.spage=976&rft_id=info:doi/10.2337%2Fdb13-1396&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3530588051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |