Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects

Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC)...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 63; no. 3; pp. 976 - 981
Main Authors Fabbrini, Elisa, Serafini, Mauro, Colic Baric, Irena, Hazen, Stanley L., Klein, Samuel
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.
AbstractList Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-[F.sub.2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure), Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/[m.sup.2]) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m(2)) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m(2)) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-[F.sub.2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure), Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/[m.sup.2]) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. DOI: 10.2337/db13-1396
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m(2)) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F...) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m...) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. (ProQuest: ... denotes formulae/symbols omitted.)
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1 ) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2 ) markers of systemic (urinary 8-iso-prostaglandin-F 2α ) and muscle (carbonylated protein content) oxidative stress; and 3 ) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m 2 ) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo.
Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-[F.sub.2[alpha]) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure), Thirty-one obese subjects (BMI 37.1 [+ or -] 0.7 kg/[m.sup.2]) with either high serum UA (HUA; 7.1 [+ or -] 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 [+ or -] 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20-90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45-95% decrease in NEAC and a 25-40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 [+ or -] 25% to 156 [+ or -] 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. DOI: 10.2337/db13-1396
Audience Professional
Author Hazen, Stanley L.
Serafini, Mauro
Colic Baric, Irena
Fabbrini, Elisa
Klein, Samuel
Author_xml – sequence: 1
  givenname: Elisa
  surname: Fabbrini
  fullname: Fabbrini, Elisa
  organization: Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO
– sequence: 2
  givenname: Mauro
  surname: Serafini
  fullname: Serafini, Mauro
  organization: Agricultural Research Council-Research Centre on Food and Nutrition, Rome, Italy
– sequence: 3
  givenname: Irena
  surname: Colic Baric
  fullname: Colic Baric, Irena
  organization: Agricultural Research Council-Research Centre on Food and Nutrition, Rome, Italy
– sequence: 4
  givenname: Stanley L.
  surname: Hazen
  fullname: Hazen, Stanley L.
  organization: Center for Cardiovascular Diagnostics and Prevention, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
– sequence: 5
  givenname: Samuel
  surname: Klein
  fullname: Klein, Samuel
  organization: Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402886$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24353177$$D View this record in MEDLINE/PubMed
BookMark eNp9km9r2zAQxs3oWNNuL_YFhmAMNqhb_XGk6M0ghK4rBDLoCnsnZPmcKThSZtml_fY707RZtjAkEJJ-90h395xkRyEGyLK3jJ5zIdRFVTKRM6Hli2zEtNC54OrHUTailPGcKa2Os5OUVpRSieNVdswLMRZMqVEWL-saXEdiTb41Nq0tuW29I1PnKxIDmYbOx3tf2dCRmd1Y57uHM7IYTjp_B-SmayGlM2JDRa5D6hsfyA2E5PEWUYLbRQkJwb5c4Tvpdfaytk2CN9v1NLv9cvl99jWfL66uZ9N57qSSXc6p5CW1nI8Zr7UooHSlljUH7XRlhbWUc1YVWgrJVFmBxmQUK8AWjLEJEqfZ50fdTV-uoXIQutY2ZtP6tW0fTLTe7N8E_9Ms450RWmAlNQp83Aq08VcPqTNrnxw0jQ0Q-2TYmDKhqJAU0fd_oavYtwHTM0wKJQuGc0ctbQPGhzriu24QNVMx9EVrrpDKD1BLCICfxK7XHo_3-PMDPI4K1t4dDPi0F4BMB_fd0vYpmcnV_H-f2bIuNg0swWDDZot9_t2fRX-u9pPdEPiwBWxytqlbG5xPO25SUD6ZSOQuHjnXxpRaqA0aDx0Xh175xjBqBuObwfhmMP4ureeIJ9F_2d8dhv2v
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1016_j_envpol_2024_125188
crossref_primary_10_3389_fendo_2024_1416311
crossref_primary_10_1152_japplphysiol_00873_2016
crossref_primary_10_1155_2016_9139731
crossref_primary_10_1016_j_nutres_2016_04_010
crossref_primary_10_1155_2019_7156038
crossref_primary_10_1186_s43044_022_00317_2
crossref_primary_10_3390_ijerph18020387
crossref_primary_10_1002_btm2_10199
crossref_primary_10_1016_j_jstrokecerebrovasdis_2015_01_011
crossref_primary_10_1111_apha_13196
crossref_primary_10_1186_s12302_023_00809_1
crossref_primary_10_26442_2075082X_2019_4_190686
crossref_primary_10_3390_antiox5040043
crossref_primary_10_1007_s00702_024_02804_z
crossref_primary_10_1002_mus_27807
crossref_primary_10_1016_j_psychres_2022_114476
crossref_primary_10_5897_AJBR2020_1111
crossref_primary_10_1038_jhh_2015_53
crossref_primary_10_1002_hep_30978
crossref_primary_10_1093_jambio_lxaf034
crossref_primary_10_1155_2018_6580178
crossref_primary_10_3390_nu10091195
crossref_primary_10_1016_j_envres_2022_113865
crossref_primary_10_38109_2075_082X_2022_1_5_22
crossref_primary_10_1007_s00204_015_1523_8
crossref_primary_10_15342_hs_3_595
crossref_primary_10_1186_s40798_022_00463_6
crossref_primary_10_1021_acsomega_3c08874
crossref_primary_10_3389_fphys_2019_00553
crossref_primary_10_1016_j_numecd_2021_05_032
crossref_primary_10_1016_j_cmet_2021_02_016
crossref_primary_10_1186_s12967_019_1953_9
crossref_primary_10_3390_nu11092111
crossref_primary_10_1016_j_pnpbp_2017_04_027
crossref_primary_10_1590_s0102_6720201500040018
crossref_primary_10_1159_000487677
crossref_primary_10_3390_jcm9072027
crossref_primary_10_1016_j_jad_2017_07_010
crossref_primary_10_1186_s13098_018_0356_z
crossref_primary_10_1111_jch_14730
crossref_primary_10_2337_db14_0740
crossref_primary_10_1080_07435800_2022_2142239
crossref_primary_10_1016_j_biochi_2015_06_025
crossref_primary_10_3389_fphys_2022_976190
crossref_primary_10_1080_01480545_2022_2131812
crossref_primary_10_1152_ajpendo_00401_2018
crossref_primary_10_3390_healthcare10081509
crossref_primary_10_1007_s12291_014_0462_0
crossref_primary_10_1021_acsami_3c02440
crossref_primary_10_1155_2019_6859757
crossref_primary_10_1155_2019_7919836
crossref_primary_10_1016_j_mehy_2020_109740
crossref_primary_10_1590_1809_6891v19e_39754
crossref_primary_10_1681_ASN_2014070660
crossref_primary_10_33549_physiolres_934186
crossref_primary_10_4168_aair_2019_11_1_104
crossref_primary_10_23736_S0393_3660_24_05454_8
crossref_primary_10_1186_s12902_024_01590_9
crossref_primary_10_18632_oncotarget_16198
crossref_primary_10_33549_physiolres_932851
crossref_primary_10_1186_s12891_021_04403_5
crossref_primary_10_1371_journal_pone_0239185
crossref_primary_10_1080_14767058_2018_1484093
crossref_primary_10_3164_jcbn_15_3
crossref_primary_10_14341_DM8039
crossref_primary_10_3390_molecules29194746
crossref_primary_10_4274_jarem_galenos_2022_32932
crossref_primary_10_1016_j_lfs_2020_118254
crossref_primary_10_1515_jpm_2023_0199
crossref_primary_10_3389_pore_2021_1609828
crossref_primary_10_1007_s13311_016_0497_4
crossref_primary_10_1016_j_atherosclerosis_2018_02_014
crossref_primary_10_4082_kjfm_17_0034
crossref_primary_10_47360_1995_4484_2021_727_737
crossref_primary_10_1038_s41371_020_0335_3
crossref_primary_10_3390_nu9030230
crossref_primary_10_18632_aging_202820
crossref_primary_10_2139_ssrn_4015291
crossref_primary_10_3390_ani10030459
crossref_primary_10_3390_md17040194
crossref_primary_10_1016_j_ejogrb_2018_01_008
crossref_primary_10_1016_j_clnesp_2022_01_022
crossref_primary_10_1016_j_jds_2016_06_002
crossref_primary_10_1038_s41387_021_00179_8
crossref_primary_10_1167_iovs_63_10_8
crossref_primary_10_3389_fendo_2025_1515176
crossref_primary_10_3390_antiox11030569
crossref_primary_10_1152_ajprenal_00066_2020
crossref_primary_10_1155_2016_8603164
crossref_primary_10_1038_srep25766
crossref_primary_10_1016_j_numecd_2023_07_012
crossref_primary_10_1016_j_expneurol_2017_06_017
crossref_primary_10_1139_apnm_2015_0152
crossref_primary_10_1007_s12247_022_09624_2
crossref_primary_10_1016_j_obmed_2022_100405
crossref_primary_10_1016_j_puhe_2020_06_029
crossref_primary_10_33667_2078_5631_2020_13_5_11
crossref_primary_10_3390_metabo12090864
crossref_primary_10_3389_fendo_2022_835154
crossref_primary_10_3390_molecules26134039
crossref_primary_10_1016_j_jad_2015_03_041
crossref_primary_10_1007_s12035_014_9075_0
crossref_primary_10_1080_19476337_2023_2202709
crossref_primary_10_3389_fvets_2020_602419
crossref_primary_10_3390_biomedicines9081027
crossref_primary_10_1021_acs_est_0c07627
crossref_primary_10_18087_cardio_2020_10_n1153
crossref_primary_10_3390_biomedicines11051255
crossref_primary_10_1038_s41598_023_48739_5
crossref_primary_10_3390_antiox12081569
crossref_primary_10_1080_03007995_2017_1378502
crossref_primary_10_26442_00403660_2020_05_000633
crossref_primary_10_1111_resp_13479
crossref_primary_10_1016_j_ejphar_2023_176062
crossref_primary_10_3389_fnut_2022_847910
crossref_primary_10_5937_pramed1901019s
crossref_primary_10_2174_1381612825666190408122557
crossref_primary_10_1038_s41371_019_0287_7
crossref_primary_10_3390_molecules28124646
crossref_primary_10_1007_s10067_019_04790_0
crossref_primary_10_1016_j_jhep_2020_04_033
crossref_primary_10_1007_s12013_024_01369_8
crossref_primary_10_5692_clinicalneurol_cn_001220
crossref_primary_10_1159_000362456
crossref_primary_10_4155_fmc_2018_0149
crossref_primary_10_3389_fendo_2024_1310122
crossref_primary_10_3389_fcvm_2021_717128
crossref_primary_10_3390_diagnostics13101741
crossref_primary_10_1111_jdi_13494
crossref_primary_10_3390_antiox11020408
crossref_primary_10_3945_jn_114_205674
crossref_primary_10_1016_j_clineuro_2020_105906
crossref_primary_10_1016_j_xkme_2024_100911
crossref_primary_10_1007_s00595_022_02612_6
crossref_primary_10_2217_bmm_2022_0368
crossref_primary_10_1016_j_dsx_2024_103143
crossref_primary_10_1002_prp2_904
crossref_primary_10_1142_S0192415X19500526
crossref_primary_10_1186_s12944_021_01556_z
crossref_primary_10_12677_ACM_2023_133631
crossref_primary_10_3923_pjbs_2018_348_358
crossref_primary_10_3390_medicina56100501
crossref_primary_10_3389_fendo_2022_899241
crossref_primary_10_20960_nh_03051
crossref_primary_10_3390_antiox12040795
crossref_primary_10_1007_s40200_019_00464_5
crossref_primary_10_1080_14737175_2020_1785873
crossref_primary_10_3390_toxins9010020
crossref_primary_10_1155_2016_5480267
crossref_primary_10_3390_oxygen2040030
crossref_primary_10_1016_j_ejmech_2020_112891
crossref_primary_10_56093_ijans_v88i3_78267
crossref_primary_10_1136_bmjopen_2024_092844
crossref_primary_10_1038_s41598_017_02392_x
crossref_primary_10_3390_life13071555
crossref_primary_10_1017_S0007114516001793
crossref_primary_10_1038_s41598_024_74869_5
crossref_primary_10_1371_journal_pone_0312217
crossref_primary_10_3390_antiox12081512
crossref_primary_10_3389_fphar_2024_1433991
crossref_primary_10_2147_DMSO_S301363
crossref_primary_10_1007_s12291_016_0599_0
crossref_primary_10_1016_j_jff_2020_103835
crossref_primary_10_3390_diagnostics10010051
crossref_primary_10_2337_db14_0885
Cites_doi 10.1172/JCI119126
10.2337/diabetes.50.2.404
10.7326/0003-4819-93-6-817
10.1073/pnas.78.11.6858
10.1172/JCI21625
10.1056/NEJM199602153340707
10.2337/db09-1105
10.1253/circj.69.928
10.2337/diabetes.47.10.1562
10.7326/0003-4819-158-7-201304020-00005
10.1179/135100004225004814
10.1093/ajcn/54.6.1129s
10.1038/ijo.2010.265
10.1152/jappl.1976.41.4.565
10.1200/JCO.2001.19.3.697
10.2337/diacare.25.10.1790
10.1530/EJE-11-0053
10.1016/S0026-0495(98)90035-X
10.1161/01.ATV.0000152605.64964.c0
10.1111/j.1365-2125.2010.03887.x
10.1016/j.amjmed.2010.03.027
ClassificationCodes 8000240
8000200
9105220
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2014 American Diabetes Association
COPYRIGHT 2014 American Diabetes Association
Copyright American Diabetes Association Mar 2014
2014 by the American Diabetes Association. 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2014 American Diabetes Association
– notice: COPYRIGHT 2014 American Diabetes Association
– notice: Copyright American Diabetes Association Mar 2014
– notice: 2014 by the American Diabetes Association. 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
K9.
NAPCQ
7X8
5PM
DOI 10.2337/db13-1396
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

MEDLINE
ProQuest Health & Medical Complete (Alumni)



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 981
ExternalDocumentID PMC3931399
3530588051
A360609927
24353177
28402886
10_2337_db13_1396
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: RR-00954
– fundername: NIGMS NIH HHS
  grantid: R24 GM136766
– fundername: NIDDK NIH HHS
  grantid: P01 DK-58398
– fundername: NIDDK NIH HHS
  grantid: P01 DK058398
– fundername: NIGMS NIH HHS
  grantid: P41 GM103422
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
– fundername: NCRR NIH HHS
  grantid: P41 RR000954
– fundername: NIDDK NIH HHS
  grantid: R01 DK037948
– fundername: NIDDK NIH HHS
  grantid: DK-37948
– fundername: NIDDK NIH HHS
  grantid: P30 DK020579
GroupedDBID ---
.55
.XZ
08P
0R~
18M
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
8GL
8R4
8R5
AAFWJ
AAKAS
AAQQT
AAWTL
AAYEP
AAYOK
AAYXX
ABOCM
ACGFO
ACGOD
ACPRK
ADBBV
ADGHP
ADZCM
AEGXH
AENEX
AERZD
AHMBA
AIAGR
AIZAD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BES
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FRP
GICCO
GX1
H13
HZ~
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
K2M
KQ8
L7B
M5~
O5R
O5S
O9-
OB3
OHH
OK1
OVD
P2P
PCD
Q2X
RHI
RPM
SJN
SV3
TDI
TEORI
TR2
VVN
W8F
WH7
WOQ
WOW
X7M
YFH
YHG
YOC
ZY1
~KM
.GJ
1CY
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
AAYJJ
ABUWG
AFFNX
AFKRA
AI.
AZQEC
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CCPQU
DWQXO
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
H~9
IQODW
J5H
K-O
K9-
LK8
M0R
M1P
M2O
M2P
M2Q
M7P
MVM
N4W
NAPCQ
PEA
PHGZT
PQQKQ
PROAC
PSQYO
S0X
SJFOW
UKHRP
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c676t-2062b0a22512f934ebcb96f2e9c9da3aa0221d4963617bde9177714ea41118da3
ISSN 0012-1797
1939-327X
IngestDate Thu Aug 21 14:19:27 EDT 2025
Tue Aug 05 10:56:49 EDT 2025
Fri Jul 25 19:42:37 EDT 2025
Tue Jun 17 21:22:35 EDT 2025
Thu Jun 12 23:49:20 EDT 2025
Tue Jun 10 20:17:26 EDT 2025
Fri Jun 27 03:38:12 EDT 2025
Tue Jun 10 15:30:34 EDT 2025
Thu Apr 03 07:05:18 EDT 2025
Wed Apr 02 08:10:23 EDT 2025
Tue Jul 01 03:10:36 EDT 2025
Thu Apr 24 22:51:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Endocrinopathy
Human
Obesity
Oxidative stress
Pancreatic hormone
Sensitivity
Diabetes mellitus
Nutrition disorder
Uric acid
Antioxidant
Insulin
Nutritional status
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c676t-2062b0a22512f934ebcb96f2e9c9da3aa0221d4963617bde9177714ea41118da3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3931399
PMID 24353177
PQID 1637641641
PQPubID 34443
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3931399
proquest_miscellaneous_1501370360
proquest_journals_1637641641
gale_infotracmisc_A360609927
gale_infotracgeneralonefile_A360609927
gale_infotracacademiconefile_A360609927
gale_incontextgauss_8GL_A360609927
gale_incontextcollege_GICCO_A360609927
pubmed_primary_24353177
pascalfrancis_primary_28402886
crossref_citationtrail_10_2337_db13_1396
crossref_primary_10_2337_db13_1396
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2014
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Morrow (2022031211054596300_B15) 2005; 25
Johnson (2022031211054596300_B21) 2010
Maddux (2022031211054596300_B2) 2001; 50
Patterson (2022031211054596300_B13) 1998; 47
Fabbrini (2022031211054596300_B11) 2013
Wei (2022031211054596300_B27) 2011; 71
Klein (2022031211054596300_B9) 2002; 25
Vuorinen-Markkola (2022031211054596300_B18) 1994; 78
Quiñones Galvan (2022031211054596300_B23) 1995; 268
Bonora (2022031211054596300_B7) 1996; 20
Matsuoka (2022031211054596300_B5) 1997; 99
Furukawa (2022031211054596300_B4) 2004; 114
Yoo (2022031211054596300_B8) 2005; 69
Al-Aubaidy (2022031211054596300_B1) 2011; 164
Rudich (2022031211054596300_B3) 1998; 47
Pui (2022031211054596300_B12) 2001; 19
Curtis (2022031211054596300_B16) 2010; 59
Sevanian (2022031211054596300_B25) 1991; 54
Ames (2022031211054596300_B6) 1981; 78
Bhole (2022031211054596300_B19) 2010; 123
Fink (2022031211054596300_B26) 2013; 158
Magkos (2022031211054596300_B17) 2011; 35
Emmerson (2022031211054596300_B20) 1996; 334
Miglio (2022031211054596300_B24) 2013
Serafini (2022031211054596300_B14) 2004; 9
McGuire (2022031211054596300_B10) 1976; 41
Messerli (2022031211054596300_B22) 1980; 93
25146479 - Diabetes. 2014 Sep;63(9):e18. doi: 10.2337/db14-0740
25146480 - Diabetes. 2014 Sep;63(9):e19. doi: 10.2337/db14-0885
References_xml – year: 2013
  ident: 2022031211054596300_B24
  article-title: Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion
  publication-title: Br J Nutr
– volume: 99
  start-page: 144
  year: 1997
  ident: 2022031211054596300_B5
  article-title: Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells
  publication-title: J Clin Invest
  doi: 10.1172/JCI119126
– volume: 50
  start-page: 404
  year: 2001
  ident: 2022031211054596300_B2
  article-title: Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of α-lipoic acid
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.2.404
– start-page: 366
  volume-title: Gastroenterology
  year: 2013
  ident: 2022031211054596300_B11
  article-title: Association between specific adipose tissue CD4(+) T-cell populations and insulin resistance in obese individuals
– volume: 93
  start-page: 817
  year: 1980
  ident: 2022031211054596300_B22
  article-title: Serum uric acid in essential hypertension: an indicator of renal vascular involvement
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-93-6-817
– volume: 78
  start-page: 6858
  year: 1981
  ident: 2022031211054596300_B6
  article-title: Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.78.11.6858
– volume: 114
  start-page: 1752
  year: 2004
  ident: 2022031211054596300_B4
  article-title: Increased oxidative stress in obesity and its impact on metabolic syndrome
  publication-title: J Clin Invest
  doi: 10.1172/JCI21625
– volume: 334
  start-page: 445
  year: 1996
  ident: 2022031211054596300_B20
  article-title: The management of gout
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199602153340707
– volume: 59
  start-page: 1132
  year: 2010
  ident: 2022031211054596300_B16
  article-title: Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction
  publication-title: Diabetes
  doi: 10.2337/db09-1105
– volume: 69
  start-page: 928
  year: 2005
  ident: 2022031211054596300_B8
  article-title: Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome
  publication-title: Circ J
  doi: 10.1253/circj.69.928
– volume: 47
  start-page: 1562
  year: 1998
  ident: 2022031211054596300_B3
  article-title: Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes
  publication-title: Diabetes
  doi: 10.2337/diabetes.47.10.1562
– volume: 158
  start-page: 535
  year: 2013
  ident: 2022031211054596300_B26
  article-title: Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-158-7-201304020-00005
– volume: 9
  start-page: 145
  year: 2004
  ident: 2022031211054596300_B14
  article-title: Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool?
  publication-title: Redox Rep
  doi: 10.1179/135100004225004814
– volume: 54
  start-page: 1129S
  year: 1991
  ident: 2022031211054596300_B25
  article-title: Serum urate as an antioxidant for ascorbic acid
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/54.6.1129s
– volume: 35
  start-page: 1233
  year: 2011
  ident: 2022031211054596300_B17
  article-title: Reproducibility of glucose, fatty acid and VLDL kinetics and multi-organ insulin sensitivity in obese subjects with non-alcoholic fatty liver disease
  publication-title: Int J Obes (Lond)
  doi: 10.1038/ijo.2010.265
– volume: 41
  start-page: 565
  year: 1976
  ident: 2022031211054596300_B10
  article-title: Effects of arterial versus venous sampling on analysis of glucose kinetics in man
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1976.41.4.565
– volume: 19
  start-page: 697
  year: 2001
  ident: 2022031211054596300_B12
  article-title: Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2001.19.3.697
– volume: 78
  start-page: 25
  year: 1994
  ident: 2022031211054596300_B18
  article-title: Hyperuricemia and insulin resistance
  publication-title: J Clin Endocrinol Metab
– volume: 268
  start-page: E1
  year: 1995
  ident: 2022031211054596300_B23
  article-title: Effect of insulin on uric acid excretion in humans
  publication-title: Am J Physiol
– volume: 25
  start-page: 1790
  year: 2002
  ident: 2022031211054596300_B9
  article-title: Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam
  publication-title: Diabetes Care
  doi: 10.2337/diacare.25.10.1790
– volume: 164
  start-page: 899
  year: 2011
  ident: 2022031211054596300_B1
  article-title: Oxidative DNA damage and obesity in type 2 diabetes mellitus
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-11-0053
– volume: 47
  start-page: 706
  year: 1998
  ident: 2022031211054596300_B13
  article-title: Improved accuracy and precision of gas chromatography/mass spectrometry measurements for metabolic tracers
  publication-title: Metabolism
  doi: 10.1016/S0026-0495(98)90035-X
– volume: 25
  start-page: 279
  year: 2005
  ident: 2022031211054596300_B15
  article-title: Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000152605.64964.c0
– volume: 71
  start-page: 600
  year: 2011
  ident: 2022031211054596300_B27
  article-title: Impact of allopurinol use on urate concentration and cardiovascular outcome
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2010.03887.x
– volume: 20
  start-page: 975
  year: 1996
  ident: 2022031211054596300_B7
  article-title: Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men Atherosclerosis Risk Factors Study
  publication-title: Int J Obes Relat Metab Disord
– start-page: 295
  volume-title: Trans Am Clin Climatol Assoc
  year: 2010
  ident: 2022031211054596300_B21
  article-title: Theodore E. Woodward award. The evolution of obesity: insights from the mid-Miocene
– volume: 123
  start-page: 957
  year: 2010
  ident: 2022031211054596300_B19
  article-title: Serum uric acid levels and the risk of type 2 diabetes: a prospective study
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2010.03.027
– reference: 25146479 - Diabetes. 2014 Sep;63(9):e18. doi: 10.2337/db14-0740
– reference: 25146480 - Diabetes. 2014 Sep;63(9):e19. doi: 10.2337/db14-0885
SSID ssj0006060
Score 2.5199928
Snippet Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 976
SubjectTerms Antioxidants
Antioxidants - metabolism
Biochemistry
Biological and medical sciences
Biomarkers
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Female
Health aspects
Humans
Insulin Resistance
Male
Medical research
Medical sciences
Medicine, Experimental
Metabolic diseases
Middle Aged
Obesity
Obesity - metabolism
Obesity Studies
Overweight persons
Oxidative Stress
Pathogenesis
Physiological aspects
Uric acid
Uric Acid - blood
Title Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/24353177
https://www.proquest.com/docview/1637641641
https://www.proquest.com/docview/1501370360
https://pubmed.ncbi.nlm.nih.gov/PMC3931399
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBehgzEYY-9ly4o2Rjdo3cWWH9HHkCxL1qQdpIV-M5Isd4HNDnnA6P-2_213luLYIYxtX0xsXWTL99M95NMdIe88HvAgUcxRPm87vuSJwyOYV9LzU84DLZMixcbkPBxe-V-ug-tG41clamm9kqfqdu--kv_hKlwDvuIu2X_gbNkpXIDfwF84Aofh-Fc8tqmHMYwNjOAf4vgK4-K7apbgN4AuBjL-nCXw7o57oBOVLQBwgdeKiKFpsVFkE8A5smHpU4xpt0Ul4BRLB2gUMLhis6was_3Kuu1uRZ_KCsNASInfiWwU2bJUBCCnRGobJmK9yLfLqjCOQnotdCZwcWOmtqLy1khKrH-MEm1cXbhw_W3kVmWvAAix8mF3AWlFtuthDlWjlbWR0pxxh3nRdVWMWzk5q3r5cxP_G-7TFR4rsg0k0mUOmMF78nEPu9P4a38Qj0fnZ_VWo_8DkJUg_nAD_x0PvBQsoNEfnZWGAPiGZgeUHYFJbIX3_VjetWYOWaPg_lwsYYKmprLKPtdnN4K3YhJdPiQPrC9DuwaYj0hDZ4_J3YmN1nhCcoNPmqfU4JMiPinik-YZreCTbvB5Qkt0UoPOEwrYpBabtIJNCqcFNukGm0_J1eDTZW_o2AIfjgqjcAVzOfRkW3hoY6ec-VoqycPU01zxRDAhwMB0Ex90BNjZMtHcjaLI9bXwQUN3gOIZOcjyTL8g1E-DIOVekrY73A9VR0ZMhB2Rwh_TRDPWJB827zlWNvs9FmH5HoMXjCyJkSUxsqRJ3pakc5PyZR_RETIrxhQqGcZoKbPOF8P4ehdxlyHzOfci6K1OeCPWy2Xc-TyuEb23RGkOT6WE3RsDY8P0bDXKoxrljUlOv4-wVSMEraFqzYc1lJUjBXMVXI4ODLC1gV1sRd4yBuctCsGF890meVM2Y9cYqpnpfA00AWYxBcO43STPDUq3nYNzBg4L3D2q4bckwGT39ZZs9q1Ies84g_fOX_75sV6Re1tR0yIHq8VavwavYSUPi7n5GxoYFxw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Plasma+Uric+Acid+on+Antioxidant+Capacity%2C+Oxidative+Stress%2C+and+Insulin+Sensitivity+in+Obese+Subjects&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Fabbrini%2C+Elisa&rft.au=Serafini%2C+Mauro&rft.au=Baric%2C+Irena+Colic&rft.au=Hazen%2C+Stanley+L&rft.date=2014-03-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=63&rft.issue=3&rft.spage=976&rft_id=info:doi/10.2337%2Fdb13-1396&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3530588051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon