“Heterogeneity within Order” in Metal–Organic Frameworks

Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 54; no. 11; pp. 3417 - 3430
Main Authors Furukawa, Hiroyasu, Müller, Ulrich, Yaghi, Omar M.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag 09.03.2015
Wiley Subscription Services, Inc
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Mix and MOF: Most metal–organic frameworks (MOFs) are ordered and generally composed of only a few of repeating building unit. This Review is describes how the use of various different components in the MOF backbone and within the pores of the MOF can produce heterogeneity without losing the order (crystallinity) of the MOF structure.
AbstractList Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Mix and MOF: Most metal-organic frameworks (MOFs) are ordered and generally composed of only a few of repeating building unit. This Review is describes how the use of various different components in the MOF backbone and within the pores of the MOF can produce heterogeneity without losing the order (crystallinity) of the MOF structure.
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.
Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Mix and MOF: Most metal–organic frameworks (MOFs) are ordered and generally composed of only a few of repeating building unit. This Review is describes how the use of various different components in the MOF backbone and within the pores of the MOF can produce heterogeneity without losing the order (crystallinity) of the MOF structure.
Author Yaghi, Omar M.
Müller, Ulrich
Furukawa, Hiroyasu
Author_xml – sequence: 1
  givenname: Hiroyasu
  surname: Furukawa
  fullname: Furukawa, Hiroyasu
  email: furukawa@berkeley.edu
– sequence: 2
  givenname: Ulrich
  surname: Müller
  fullname: Müller, Ulrich
  email: ulrich.mueller@BASF.com
– sequence: 3
  givenname: Omar M.
  surname: Yaghi
  fullname: Yaghi, Omar M.
  email: yaghi@berkeley.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25586609$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1384831$$D View this record in Osti.gov
BookMark eNqFkctuUzEQhi1URC90yxJFsOnmBF-O7eMNUlW1tFIhG7q25jjT1uXELrajKLu8A9vycnkSHKUUqRLqambxfR7P_PtkJ8SAhLxjdMwo5Z8geBxzylpGueSvyB6TnDVCa7FT-1aIRneS7ZL9nO8q33VUvSG7XMpOKWr2yOf16uEcC6Z4gwF9WY4Wvtz6MJqkKab16veo9l-xwLBe_ZqkmzrPjc4SzHAR04_8lry-hiHj4WM9IFdnp99PzpvLyZeLk-PLximteKN7YWgLAqbAjRGt0i0Y7CUDqWQPtUDbCW201ii1NKApKOUY77nstaTigHzYvhtz8TY7X9DduhgCumKZ6KrNKnS0he5T_DnHXOzMZ4fDAAHjPFumKatHo618Gd1chxvdmYp-fIbexXkKddtKSVP_LEVXqfeP1Lyf4dTeJz-DtLR_L12B8RZwKeac8PoJYdRuorSbKO1TlFVonwl1ayg-hpLAD__XzFZb-AGXLwyxx98uTv-5fwCs8rGs
CODEN ACIEAY
CitedBy_id crossref_primary_10_1021_jacs_7b03113
crossref_primary_10_1038_s41578_020_0225_x
crossref_primary_10_1021_acssuschemeng_2c01467
crossref_primary_10_1021_acs_inorgchem_5b02234
crossref_primary_10_1016_j_poly_2019_01_024
crossref_primary_10_1039_D4SC02550D
crossref_primary_10_1016_j_molcata_2015_11_020
crossref_primary_10_1002_ange_201902229
crossref_primary_10_1021_acs_inorgchem_6b00813
crossref_primary_10_1002_aenm_202002091
crossref_primary_10_1039_D2TA04835C
crossref_primary_10_1021_jacs_0c10777
crossref_primary_10_1016_j_inoche_2017_09_003
crossref_primary_10_1021_acsami_0c07800
crossref_primary_10_1038_s41570_017_0056
crossref_primary_10_1021_acsomega_9b00295
crossref_primary_10_1016_j_jhazmat_2017_12_057
crossref_primary_10_1021_acs_inorgchem_6b00952
crossref_primary_10_1021_jacs_6b10460
crossref_primary_10_1038_s41467_024_47426_x
crossref_primary_10_1038_s42004_018_0071_6
crossref_primary_10_1016_j_seppur_2023_124080
crossref_primary_10_1021_acsami_1c20420
crossref_primary_10_1021_acssuschemeng_8b06500
crossref_primary_10_1021_acs_langmuir_6b01530
crossref_primary_10_1039_C9QI00965E
crossref_primary_10_1016_j_jics_2022_100493
crossref_primary_10_1002_anie_202419992
crossref_primary_10_1021_accountsmr_3c00097
crossref_primary_10_1007_s44169_024_00064_2
crossref_primary_10_1021_jacs_5b06780
crossref_primary_10_1039_D0SC05008C
crossref_primary_10_1021_acs_iecr_7b03127
crossref_primary_10_1039_C7NJ00540G
crossref_primary_10_1038_s41578_022_00482_5
crossref_primary_10_1002_ange_201602274
crossref_primary_10_1016_j_apcatb_2019_117746
crossref_primary_10_1002_cssc_202402165
crossref_primary_10_1016_j_ccr_2015_08_001
crossref_primary_10_1039_C6RA00463F
crossref_primary_10_1002_anie_201814563
crossref_primary_10_1021_acs_energyfuels_4c05687
crossref_primary_10_1021_jacs_1c00001
crossref_primary_10_3390_bios13010114
crossref_primary_10_1016_j_ijbiomac_2020_11_011
crossref_primary_10_1016_j_seppur_2024_127955
crossref_primary_10_1021_acs_cgd_5b00426
crossref_primary_10_1002_ange_201504873
crossref_primary_10_1021_acs_cgd_6b00076
crossref_primary_10_1039_C7FD00160F
crossref_primary_10_1007_s10904_018_0781_3
crossref_primary_10_1002_adsu_202200024
crossref_primary_10_1016_j_biomaterials_2017_01_025
crossref_primary_10_1002_smll_201702049
crossref_primary_10_1021_acs_jpcc_6b11719
crossref_primary_10_1021_acs_inorgchem_2c01128
crossref_primary_10_1016_j_ijhydene_2021_07_196
crossref_primary_10_3390_molecules28052139
crossref_primary_10_1021_acsami_1c22986
crossref_primary_10_1016_j_jmr_2017_04_008
crossref_primary_10_1021_jacs_9b00122
crossref_primary_10_1016_j_molliq_2019_02_069
crossref_primary_10_1021_acs_chemrev_5b00221
crossref_primary_10_1021_acsami_2c05961
crossref_primary_10_1002_ange_201802661
crossref_primary_10_1002_sstr_202100203
crossref_primary_10_1021_acs_inorgchem_8b00801
crossref_primary_10_1021_acs_inorgchem_9b01666
crossref_primary_10_1002_chem_201503685
crossref_primary_10_1016_j_jece_2023_111049
crossref_primary_10_1039_D1CE00180A
crossref_primary_10_1039_D4CC02581D
crossref_primary_10_1002_adma_201704501
crossref_primary_10_1002_anie_201608439
crossref_primary_10_1002_smll_201501710
crossref_primary_10_3390_molecules22010144
crossref_primary_10_1039_C8QO00519B
crossref_primary_10_1021_acs_cgd_6b00056
crossref_primary_10_1021_jacs_6b12564
crossref_primary_10_1002_adma_201900820
crossref_primary_10_1021_acs_jpcc_6b07115
crossref_primary_10_1021_acs_chemrev_8b00361
crossref_primary_10_1016_j_talanta_2024_125848
crossref_primary_10_3390_molecules29245845
crossref_primary_10_1002_ange_201904834
crossref_primary_10_1021_jacs_0c11838
crossref_primary_10_1021_jacs_9b11355
crossref_primary_10_1039_C8CC04172E
crossref_primary_10_1016_j_ccr_2021_214273
crossref_primary_10_1002_adfm_201908292
crossref_primary_10_1021_acs_inorgchem_2c04321
crossref_primary_10_1021_jacs_8b04277
crossref_primary_10_1039_C5CC09065B
crossref_primary_10_1021_acsami_1c09619
crossref_primary_10_1016_j_ccr_2019_01_016
crossref_primary_10_1016_j_ultsonch_2017_09_030
crossref_primary_10_3390_nano10061036
crossref_primary_10_1002_ejic_201700446
crossref_primary_10_1002_anie_201802661
crossref_primary_10_1002_adma_202414151
crossref_primary_10_1039_C6CE01527A
crossref_primary_10_1002_ange_202310354
crossref_primary_10_1002_chem_201606038
crossref_primary_10_1039_C7CC00029D
crossref_primary_10_1039_C6CP07801J
crossref_primary_10_1021_jacs_9b03707
crossref_primary_10_1039_D3DT01109G
crossref_primary_10_1021_jacs_0c00612
crossref_primary_10_1021_jacs_8b07411
crossref_primary_10_1016_j_matt_2022_06_005
crossref_primary_10_1002_chem_202000043
crossref_primary_10_1021_acsami_2c04603
crossref_primary_10_1021_acs_jpcc_6b08594
crossref_primary_10_1142_S2529732519400054
crossref_primary_10_1039_C8CC08456D
crossref_primary_10_1021_acsami_0c22276
crossref_primary_10_1038_srep21401
crossref_primary_10_1021_jacs_5b07687
crossref_primary_10_1039_D0DT03635H
crossref_primary_10_1021_jacs_2c09756
crossref_primary_10_1039_C5DT04033G
crossref_primary_10_1002_cphc_201800526
crossref_primary_10_1002_chem_202003304
crossref_primary_10_1007_s10876_015_0957_8
crossref_primary_10_1007_s11356_020_08316_z
crossref_primary_10_1002_smll_202402486
crossref_primary_10_1080_08927022_2015_1036266
crossref_primary_10_1039_D4TA06740A
crossref_primary_10_1007_s10934_016_0195_y
crossref_primary_10_1007_s11705_022_2285_5
crossref_primary_10_3390_nano9081063
crossref_primary_10_1002_chem_201701477
crossref_primary_10_1021_acs_inorgchem_6b02713
crossref_primary_10_1016_j_marpolbul_2024_116752
crossref_primary_10_1007_s40684_022_00464_6
crossref_primary_10_1002_ange_201907074
crossref_primary_10_1002_batt_201900012
crossref_primary_10_1002_sstr_202100197
crossref_primary_10_1002_ange_201608439
crossref_primary_10_3390_cryst8010007
crossref_primary_10_1007_s11814_024_00053_0
crossref_primary_10_1021_acsami_0c08961
crossref_primary_10_1021_acs_jpclett_5b02683
crossref_primary_10_1002_anie_202004293
crossref_primary_10_1016_j_ccr_2016_04_017
crossref_primary_10_1002_chem_201504757
crossref_primary_10_1016_j_jssc_2019_120948
crossref_primary_10_1016_j_matt_2021_04_027
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1016_j_chempr_2018_08_025
crossref_primary_10_1002_anie_201600661
crossref_primary_10_1093_nsr_nwx013
crossref_primary_10_1002_anie_201904834
crossref_primary_10_1039_C9SC04141A
crossref_primary_10_1002_ange_202419992
crossref_primary_10_1002_ange_201802237
crossref_primary_10_1038_nenergy_2016_34
crossref_primary_10_1016_j_cjche_2023_09_015
crossref_primary_10_1021_acsami_0c16127
crossref_primary_10_1021_acscentsci_0c00803
crossref_primary_10_1002_chem_201803157
crossref_primary_10_1039_C7DT00350A
crossref_primary_10_1021_acs_inorgchem_6b00413
crossref_primary_10_1016_j_cclet_2017_12_026
crossref_primary_10_1021_acs_cgd_7b00233
crossref_primary_10_1039_D0QI01317J
crossref_primary_10_1021_acs_cgd_7b00119
crossref_primary_10_1002_adfm_202308376
crossref_primary_10_1021_acs_cgd_7b01321
crossref_primary_10_1002_ange_201814563
crossref_primary_10_1016_j_seppur_2022_121804
crossref_primary_10_1039_C9QI00543A
crossref_primary_10_1002_ange_201916159
crossref_primary_10_1039_C6CE00198J
crossref_primary_10_1021_jacs_1c10263
crossref_primary_10_1021_acs_cgd_7b01753
crossref_primary_10_1002_anie_202008858
crossref_primary_10_1016_j_susmat_2016_10_001
crossref_primary_10_1002_advs_202207545
crossref_primary_10_1002_ange_201510024
crossref_primary_10_1039_C7CC06979K
crossref_primary_10_1134_S207020511905023X
crossref_primary_10_1016_j_matchemphys_2019_122572
crossref_primary_10_1016_j_jlumin_2023_120092
crossref_primary_10_1007_s12274_015_0970_0
crossref_primary_10_1016_j_memsci_2017_09_056
crossref_primary_10_1021_acscentsci_8b00677
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1002_ejic_201800042
crossref_primary_10_1038_s41598_017_00733_4
crossref_primary_10_1039_C7QM00144D
crossref_primary_10_1021_acs_cgd_7b00892
crossref_primary_10_1038_s41467_018_03102_5
crossref_primary_10_1002_chem_201903912
crossref_primary_10_1039_C9NR02167A
crossref_primary_10_1002_adfm_202008989
crossref_primary_10_1021_acsami_0c08803
crossref_primary_10_1016_j_chemosphere_2022_136682
crossref_primary_10_1080_0144235X_2016_1187006
crossref_primary_10_1039_D3DT03654E
crossref_primary_10_1016_j_ccr_2017_10_014
crossref_primary_10_1039_D1DT04222J
crossref_primary_10_1039_D0CE01883J
crossref_primary_10_1016_j_apsusc_2019_144612
crossref_primary_10_1021_acs_cgd_7b00200
crossref_primary_10_1002_adma_201704124
crossref_primary_10_1021_acs_inorgchem_6b02863
crossref_primary_10_1021_jacs_7b03578
crossref_primary_10_1039_C6TA03266D
crossref_primary_10_1002_adfm_202307369
crossref_primary_10_1002_ange_201900863
crossref_primary_10_1039_C5CE02170G
crossref_primary_10_1021_acs_chemrev_7b00091
crossref_primary_10_3390_compounds4020017
crossref_primary_10_1080_15569543_2024_2329921
crossref_primary_10_1039_C9RA03287H
crossref_primary_10_1021_acs_accounts_8b00415
crossref_primary_10_1021_jacs_9b13473
crossref_primary_10_1038_pj_2016_8
crossref_primary_10_1016_j_jcis_2019_06_040
crossref_primary_10_1021_acs_cgd_7b01643
crossref_primary_10_1039_D4CE00131A
crossref_primary_10_1039_D3MA00389B
crossref_primary_10_1016_j_photonics_2020_100832
crossref_primary_10_1002_ange_201604023
crossref_primary_10_1021_acsanm_4c05030
crossref_primary_10_1021_acsomega_2c03973
crossref_primary_10_1039_C8CE00691A
crossref_primary_10_1002_anie_201902229
crossref_primary_10_1002_anie_201504396
crossref_primary_10_1021_acscatal_6b03404
crossref_primary_10_1039_C7TA06996K
crossref_primary_10_1039_C7QM00263G
crossref_primary_10_1021_acs_jpclett_5b01135
crossref_primary_10_1016_j_ccr_2019_04_006
crossref_primary_10_1039_D0NJ01448F
crossref_primary_10_1016_j_seppur_2020_117010
crossref_primary_10_1016_j_ccr_2019_04_002
crossref_primary_10_1002_advs_201901758
crossref_primary_10_1021_acs_chemmater_9b01068
crossref_primary_10_1016_j_ccr_2015_12_001
crossref_primary_10_1016_j_ccr_2015_12_004
crossref_primary_10_1002_ange_201600661
crossref_primary_10_1021_acs_jpcc_7b03181
crossref_primary_10_1016_j_mtchem_2022_101259
crossref_primary_10_1021_jacs_6b03263
crossref_primary_10_1021_acsami_7b05889
crossref_primary_10_2139_ssrn_4073410
crossref_primary_10_1002_ange_201905172
crossref_primary_10_1107_S2052252516019072
crossref_primary_10_1021_acscatal_8b04960
crossref_primary_10_1007_s11144_016_0986_9
crossref_primary_10_1039_C7GC02260C
crossref_primary_10_1016_j_ccr_2018_10_002
crossref_primary_10_1021_acs_inorgchem_6b00276
crossref_primary_10_1016_j_ccr_2017_08_017
crossref_primary_10_1021_acs_jpcc_8b00781
crossref_primary_10_1039_D0CE00902D
crossref_primary_10_1016_j_ica_2017_06_038
crossref_primary_10_1038_natrevmats_2017_45
crossref_primary_10_1021_jacs_3c07778
crossref_primary_10_1039_D2CC03220A
crossref_primary_10_1021_ja511878b
crossref_primary_10_1039_C7CC07853F
crossref_primary_10_1016_j_pmatsci_2020_100743
crossref_primary_10_1039_C5DT01943E
crossref_primary_10_1098_rspa_2018_0703
crossref_primary_10_1021_acscatal_8b04515
crossref_primary_10_1021_acs_inorgchem_3c00495
crossref_primary_10_1002_nadc_20164047491
crossref_primary_10_1007_s11356_020_12227_4
crossref_primary_10_1021_acssensors_3c00965
crossref_primary_10_1002_anie_201601587
crossref_primary_10_1126_science_ads7866
crossref_primary_10_1021_acs_langmuir_7b01409
crossref_primary_10_1002_anie_201808568
crossref_primary_10_1039_D0QI00231C
crossref_primary_10_1002_smll_201600619
crossref_primary_10_1007_s12274_021_4006_7
crossref_primary_10_1021_jacs_8b04745
crossref_primary_10_1038_s41557_023_01277_z
crossref_primary_10_1021_jacs_6b01093
crossref_primary_10_1002_ange_202004293
crossref_primary_10_1007_s12613_022_2555_8
crossref_primary_10_1021_acsami_4c15460
crossref_primary_10_1039_C6RA22971A
crossref_primary_10_1021_jacs_3c08611
crossref_primary_10_1002_adma_201601133
crossref_primary_10_1016_j_ccr_2020_213655
crossref_primary_10_1039_C5DT03046C
crossref_primary_10_1016_j_chroma_2020_461627
crossref_primary_10_1016_j_chempr_2020_08_008
crossref_primary_10_1002_advs_201900506
crossref_primary_10_1002_ejic_201600134
crossref_primary_10_1002_slct_201900821
crossref_primary_10_1073_pnas_2312959121
crossref_primary_10_1021_acscatal_2c00477
crossref_primary_10_1021_acs_jpcc_0c00597
crossref_primary_10_1021_acscentsci_8b00722
crossref_primary_10_1021_acs_jpcc_6b06710
crossref_primary_10_1002_slct_201600526
crossref_primary_10_1002_ijch_201800095
crossref_primary_10_1002_adtp_202100067
crossref_primary_10_1016_j_ccr_2019_213022
crossref_primary_10_1039_D2GC04682B
crossref_primary_10_1002_ijch_201800099
crossref_primary_10_1016_j_scitotenv_2022_155309
crossref_primary_10_1007_s40242_021_0019_8
crossref_primary_10_1039_C8CS00688A
crossref_primary_10_1021_acs_jpcc_5b10578
crossref_primary_10_1039_C9CS00250B
crossref_primary_10_1002_aenm_201601296
crossref_primary_10_1002_adsu_202400043
crossref_primary_10_1007_s12274_020_2870_1
crossref_primary_10_1016_j_jhazmat_2021_127353
crossref_primary_10_1007_s00339_016_9651_4
crossref_primary_10_1039_C8NR02896F
crossref_primary_10_1021_acs_inorgchem_5c00015
crossref_primary_10_1002_cphc_201901043
crossref_primary_10_1016_j_apsusc_2018_10_048
crossref_primary_10_1021_jacs_8b03505
crossref_primary_10_1021_jacs_6b07445
crossref_primary_10_1002_anie_201907074
crossref_primary_10_1016_j_jhazmat_2016_06_032
crossref_primary_10_1021_acs_jpcc_6b04672
crossref_primary_10_1039_D0SC04512H
crossref_primary_10_1039_C7CC00810D
crossref_primary_10_1002_smll_202410657
crossref_primary_10_1021_acs_inorgchem_5b00987
crossref_primary_10_1039_D3SC01550E
crossref_primary_10_1021_jacs_6b05261
crossref_primary_10_1002_smsc_202200044
crossref_primary_10_1039_C6CE02246D
crossref_primary_10_1002_chem_201501974
crossref_primary_10_2139_ssrn_4177987
crossref_primary_10_1016_j_heliyon_2023_e21314
crossref_primary_10_1021_acs_inorgchem_6b00050
crossref_primary_10_1039_D1CE00210D
crossref_primary_10_3390_nano7110351
crossref_primary_10_1038_s41467_022_29849_6
crossref_primary_10_1016_j_jclepro_2018_11_136
crossref_primary_10_1039_D1SC05663H
crossref_primary_10_1016_j_jhazmat_2019_01_107
crossref_primary_10_1021_acs_inorgchem_5b01952
crossref_primary_10_1039_C6CC02116F
crossref_primary_10_1039_C8CE01044G
crossref_primary_10_1021_acsami_9b01077
crossref_primary_10_1002_adsu_202000200
crossref_primary_10_1038_s41578_020_00250_3
crossref_primary_10_1039_C6DT04867F
crossref_primary_10_1039_D0CE00120A
crossref_primary_10_1039_D3CC02636A
crossref_primary_10_1002_ange_201808568
crossref_primary_10_1039_C7FD00045F
crossref_primary_10_1021_acs_inorgchem_5b02077
crossref_primary_10_1016_j_jece_2024_113823
crossref_primary_10_1039_C9CE01936G
crossref_primary_10_1039_C6DT03637F
crossref_primary_10_1021_acs_jpclett_1c01053
crossref_primary_10_1002_anie_202310354
crossref_primary_10_1139_cjc_2017_0306
crossref_primary_10_1126_science_aaz4304
crossref_primary_10_1002_aenm_201801564
crossref_primary_10_1002_adfm_202010052
crossref_primary_10_1039_C5DT03825A
crossref_primary_10_1021_acsanm_0c01327
crossref_primary_10_1246_bcsj_20170371
crossref_primary_10_1021_jacs_3c03421
crossref_primary_10_1039_C6DT03975H
crossref_primary_10_1016_j_jhazmat_2021_127559
crossref_primary_10_1021_acs_jpcc_8b12392
crossref_primary_10_1039_C6NR05463C
crossref_primary_10_1039_C9SC02576F
crossref_primary_10_1016_j_ccr_2019_213116
crossref_primary_10_1021_acsami_8b09388
crossref_primary_10_1002_bkcs_12185
crossref_primary_10_1016_j_microc_2023_108850
crossref_primary_10_15826_chimtech_2021_8_3_04
crossref_primary_10_1038_s41557_018_0171_z
crossref_primary_10_1134_S1027451020020445
crossref_primary_10_1002_ejic_201701165
crossref_primary_10_1002_adfm_201700258
crossref_primary_10_1021_acssuschemeng_4c06002
crossref_primary_10_1039_C7RA05302A
crossref_primary_10_1038_s41524_023_00969_x
crossref_primary_10_1021_acs_accounts_3c00243
crossref_primary_10_1021_acsomega_9b00680
crossref_primary_10_1002_chem_201801301
crossref_primary_10_1039_C6RA01536K
crossref_primary_10_1039_D0RA09132D
crossref_primary_10_1038_s41467_018_04050_w
crossref_primary_10_1021_acsami_2c10346
crossref_primary_10_1016_j_matlet_2015_12_129
crossref_primary_10_1002_anie_201916159
crossref_primary_10_1002_slct_201601205
crossref_primary_10_1039_C6RA12134A
crossref_primary_10_1021_acsami_5b04991
crossref_primary_10_1007_s10934_022_01353_8
crossref_primary_10_1016_j_seppur_2019_116213
crossref_primary_10_1002_ijch_201800119
crossref_primary_10_1039_C6SC05616D
crossref_primary_10_1016_j_ccr_2024_215674
crossref_primary_10_1002_anie_201602274
crossref_primary_10_1016_j_jssc_2020_121820
crossref_primary_10_1021_acs_inorgchem_6b03123
crossref_primary_10_1039_D3DT02188B
crossref_primary_10_1002_ange_201601587
crossref_primary_10_1007_s10904_017_0745_z
crossref_primary_10_1016_j_ccr_2019_02_022
crossref_primary_10_1021_jacs_2c12284
crossref_primary_10_1021_acsnano_8b00932
crossref_primary_10_1002_chem_201601752
crossref_primary_10_1002_anie_201504873
crossref_primary_10_1002_anie_201802237
crossref_primary_10_1021_acs_chemmater_6b00180
crossref_primary_10_1039_D0TA04891G
crossref_primary_10_1016_j_jiec_2019_07_034
crossref_primary_10_1002_adma_201502545
crossref_primary_10_1039_C7DT03255B
crossref_primary_10_1016_j_chempr_2016_09_009
crossref_primary_10_1080_01496395_2019_1577266
crossref_primary_10_1002_advs_202305378
crossref_primary_10_1039_C7RA05783K
crossref_primary_10_1039_C9NR00103D
crossref_primary_10_1039_D1NJ05015J
crossref_primary_10_1016_j_memsci_2021_119201
crossref_primary_10_1039_C6QI00542J
crossref_primary_10_1039_C8QI00811F
crossref_primary_10_1002_chem_201905645
crossref_primary_10_1002_ange_201504396
crossref_primary_10_1021_jacs_5b09487
crossref_primary_10_1002_adfm_202107949
crossref_primary_10_1039_C5DT03856A
crossref_primary_10_1088_1742_6596_2015_1_012059
crossref_primary_10_1039_C5NJ03572D
crossref_primary_10_1021_acsami_2c20458
crossref_primary_10_1016_j_ijhydene_2016_08_040
crossref_primary_10_1039_D3CS01057K
crossref_primary_10_1002_anie_201900863
crossref_primary_10_1002_chem_201600689
crossref_primary_10_1002_chem_201600566
crossref_primary_10_1016_j_jiec_2023_10_055
crossref_primary_10_1039_C8TA10483B
crossref_primary_10_1002_cssc_201701438
crossref_primary_10_1016_j_memsci_2021_119339
crossref_primary_10_1039_D0FD00103A
crossref_primary_10_1002_anie_201905172
crossref_primary_10_1021_acsami_8b01369
crossref_primary_10_1002_anie_201604023
crossref_primary_10_1007_s00723_023_01604_0
crossref_primary_10_1002_smll_201800826
crossref_primary_10_1021_acs_inorgchem_9b02026
crossref_primary_10_1002_ange_202008858
crossref_primary_10_1016_j_jcat_2016_07_021
crossref_primary_10_1002_slct_202404673
crossref_primary_10_1021_acsnano_8b06287
crossref_primary_10_1002_anie_201510024
crossref_primary_10_1073_pnas_2302561120
crossref_primary_10_1038_s41578_021_00287_y
crossref_primary_10_1021_acs_inorgchem_3c02400
crossref_primary_10_1021_acsami_5b04315
crossref_primary_10_1038_s41467_019_12596_6
crossref_primary_10_12677_JOCR_2017_53020
crossref_primary_10_1016_j_saa_2023_122916
crossref_primary_10_1021_acsami_8b11037
crossref_primary_10_1016_j_jorganchem_2017_03_016
crossref_primary_10_2174_1570179419666211231113648
crossref_primary_10_1021_acsbiomaterials_1c00733
crossref_primary_10_1016_j_cej_2024_158519
crossref_primary_10_1080_03067319_2020_1853113
crossref_primary_10_1021_acsanm_2c00280
crossref_primary_10_1021_acsami_3c02929
Cites_doi 10.1038/nmat3359
10.1021/cr400392k
10.1038/srep02562
10.1002/ange.201403980
10.1021/ja5048522
10.1021/ja500330a
10.1039/b904526k
10.1021/nl503007h
10.1038/nmat3343
10.1126/science.1192160
10.1039/B615006C
10.1038/nchem.402
10.1038/nchem.1272
10.1021/ja0753952
10.1002/anie.200300610
10.1039/C3SC53549E
10.1021/ja4064475
10.1002/ange.201202925
10.1021/ja00044a004
10.1073/pnas.0602439103
10.1126/science.283.5405.1148
10.1002/ange.201103155
10.1016/j.micromeso.2009.06.008
10.1002/anie.200705020
10.1002/ange.200390217
10.1021/cm802400f
10.1002/ange.200500156
10.1126/science.1067208
10.1039/c3cs35524a
10.1039/C3SC52633J
10.1002/anie.200804836
10.1039/b804680h
10.1021/ja0104352
10.1021/ja405078u
10.1021/ja501810r
10.1039/c0cs00147c
10.1016/S0020-1693(03)00246-9
10.1002/anie.200460712
10.1039/C3CS60472A
10.1039/c2jm16030g
10.1021/cm200737c
10.1002/ange.201209903
10.1002/ange.200705020
10.1002/adfm.201202996
10.1021/ic050452i
10.1039/b110015g
10.1021/cr200179u
10.1002/anie.201403980
10.1021/ja306869j
10.1038/nchem.1569
10.1126/science.1152516
10.1021/ja710123s
10.1002/anie.201206042
10.1126/science.1238339
10.1016/S1872-2067(10)60302-6
10.1126/science.1217544
10.1021/ja981669x
10.1038/ncomms5176
10.1038/35010088
10.1002/ange.200300610
10.1073/pnas.1305910110
10.1021/ar900116g
10.1021/ja053523l
10.1016/S1387-1811(02)00609-1
10.1016/j.micromeso.2008.11.020
10.1021/cg0498554
10.1126/science.1116275
10.1002/chem.201002381
10.1021/ar800124u
10.1002/anie.200500156
10.1021/ja300539p
10.1021/ja404514r
10.1002/anie.200390248
10.1021/cg3002866
10.1021/ja503218j
10.1038/nature02311
10.1021/ja4100244
10.1021/cr200216x
10.1016/j.micromeso.2011.12.010
10.1038/nchem.1982
10.1021/ja809459e
10.1038/nchem.834
10.1021/cg200271e
10.1126/science.1181761
10.1002/adma.201202116
10.1021/ja045123o
10.1002/anie.201202925
10.1021/ic049005d
10.1021/cen-v086n034.p013
10.1039/b817735j
10.1002/chem.201203145
10.1021/ic500722n
10.1039/B511962F
10.1021/ja808995d
10.1002/anie.201209903
10.1039/b104204c
10.1021/ja3085884
10.1002/ange.201206042
10.1021/ja076210u
10.1021/ar970151f
10.1002/anie.201103155
10.1021/ja8057953
10.1021/la100423a
10.1038/378703a0
10.1021/ja5063423
10.1021/ic500434a
10.1002/ange.200804836
10.1021/ja4005046
10.1126/science.1230444
10.1021/cr200167v
10.1002/anie.200300636
10.1038/46248
10.1039/b718443c
10.1021/cr200139g
10.1021/ja002102v
10.1021/ja1109826
10.1021/ja204818q
10.1021/ja802589u
10.1002/ange.200460712
10.1021/ja809985t
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
OTOTI
DOI 10.1002/anie.201410252
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3430
ExternalDocumentID 1384831
3611341111
25586609
10_1002_anie_201410252
ANIE201410252
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: U.S. Department of Defense, Defense Threat Reduction Agency
  funderid: HDTRA 1‐12‐1‐0053
– fundername: King Abdulaziz City of Science and Technology
– fundername: BASF SE
– fundername: U.S. Department of Energy
  funderid: DE‐SC0001015
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OTOTI
PQEST
ID FETCH-LOGICAL-c6762-7b3904a3ada29934674a9eb51a565ba1a5a48379777e5759a70a66c12b25b7503
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu May 18 22:30:32 EDT 2023
Fri Jul 11 02:19:32 EDT 2025
Fri Jul 11 10:53:20 EDT 2025
Sun Jul 13 05:01:04 EDT 2025
Thu Apr 03 07:01:54 EDT 2025
Thu Apr 24 22:57:41 EDT 2025
Tue Jul 01 03:26:46 EDT 2025
Wed Jan 22 17:11:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords secondary building units
industrial chemistry
heterogeneity
defects
metal-organic frameworks
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6762-7b3904a3ada29934674a9eb51a565ba1a5a48379777e5759a70a66c12b25b7503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
SC0001015
PMID 25586609
PQID 1659977538
PQPubID 946352
PageCount 14
ParticipantIDs osti_scitechconnect_1384831
proquest_miscellaneous_1701100045
proquest_miscellaneous_1660929789
proquest_journals_1659977538
pubmed_primary_25586609
crossref_primary_10_1002_anie_201410252
crossref_citationtrail_10_1002_anie_201410252
wiley_primary_10_1002_anie_201410252_ANIE201410252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 9, 2015
PublicationDateYYYYMMDD 2015-03-09
PublicationDate_xml – month: 03
  year: 2015
  text: March 9, 2015
  day: 09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2015
Publisher WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2014 2014; 53 126
2013; 3
2009 2009; 48 121
2013; 23
2003; 58
2011; 11
1999; 283
1995; 378
2008 2008; 47 120
2011; 17
2012; 12
2013; 5
1999; 402
2012; 11
2014; 136
2003; 353
2013 2013; 52 125
2013; 19
2014; 5
2010; 26
2012; 134
2001
2012 2012; 51 124
2000; 404
1992; 114
2008; 319
2007; 9
2014; 14
2005 2005; 44 117
2005; 309
2011; 23
2013; 110
2000; 122
2009; 120
2008; 20
2010; 2
2012; 335
2012; 24
2014; 6
2012; 22
1998; 120
2014; 53
2004; 43
2001; 123
2004 2004; 43 116
2007; 129
2010; 329
2010; 327
2010; 129
2002; 295
2006; 16
2013; 42
2011; 40
2009
2008
2013; 341
2003 2003; 42 115
2002
2009; 131
2004; 427
2012; 33
2005; 44
2014; 114
2011; 133
2014; 43
2010; 43
2012; 152
2012; 112
2005; 127
2005; 5
2013; 135
2011 2011; 50 123
2008; 41
2008; 86
2003; 423
2009; 1
2012; 4
1998; 31
2009; 38
2008; 130
2006; 103
e_1_2_7_108_2
e_1_2_7_3_2
e_1_2_7_104_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_123_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_116_2
e_1_2_7_90_2
e_1_2_7_112_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_71_3
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_98_3
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_124_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_120_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_40_3
e_1_2_7_12_2
e_1_2_7_63_3
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_48_3
e_1_2_7_29_2
e_1_2_7_109_2
e_1_2_7_117_2
e_1_2_7_113_2
e_1_2_7_70_3
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_59_3
e_1_2_7_59_2
e_1_2_7_5_2
e_1_2_7_106_2
e_1_2_7_9_2
e_1_2_7_125_2
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_121_2
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_2
e_1_2_7_118_3
e_1_2_7_118_2
e_1_2_7_114_2
e_1_2_7_110_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_96_3
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_39_2
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_103_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_122_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_65_3
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_27_2
e_1_2_7_119_2
e_1_2_7_115_2
e_1_2_7_111_2
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_99_2
e_1_2_7_38_2
References_xml – volume: 5
  start-page: 4176
  year: 2014
  publication-title: Nat. Commun.
– volume: 42
  start-page: 4881
  year: 2013
  end-page: 4893
  publication-title: Chem. Soc. Rev.
– volume: 123
  start-page: 4368
  year: 2001
  end-page: 4369
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 1001
  year: 2012
  end-page: 1033
  publication-title: Chem. Rev.
– volume: 319
  start-page: 939
  year: 2008
  end-page: 943
  publication-title: Science
– volume: 135
  start-page: 17731
  year: 2013
  end-page: 17734
  publication-title: J. Am. Chem. Soc.
– volume: 329
  start-page: 424
  year: 2010
  end-page: 428
  publication-title: Science
– volume: 47 120
  start-page: 677 689
  year: 2008 2008
  end-page: 680 692
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 5979
  year: 2014
  end-page: 5983
  publication-title: Nano Lett.
– volume: 135
  start-page: 5782
  year: 2013
  end-page: 5792
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2562
  year: 2013
  end-page: 1
  publication-title: Sci. Rep.
– volume: 295
  start-page: 469
  year: 2002
  end-page: 472
  publication-title: Science
– volume: 24
  start-page: 3970
  year: 2012
  end-page: 3974
  publication-title: Adv. Mater.
– volume: 136
  start-page: 9627
  year: 2014
  end-page: 9636
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 3
  year: 2012
  end-page: 10
  publication-title: Chin. J. Catal.
– volume: 131
  start-page: 3875
  year: 2009
  end-page: 3877
  publication-title: J. Am. Chem. Soc.
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  publication-title: Nature
– volume: 53
  start-page: 5881
  year: 2014
  end-page: 5883
  publication-title: Inorg. Chem.
– volume: 335
  start-page: 1606
  year: 2012
  end-page: 1610
  publication-title: Science
– volume: 120
  start-page: 8571
  year: 1998
  end-page: 8572
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 474
  year: 1998
  end-page: 484
  publication-title: Acc. Chem. Res.
– volume: 23
  start-page: 3132
  year: 2011
  end-page: 3134
  publication-title: Chem. Mater.
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 5300
  year: 2010
  end-page: 5303
  publication-title: Langmuir
– volume: 133
  start-page: 1734
  year: 2011
  end-page: 1737
  publication-title: J. Am. Chem. Soc.
– volume: 152
  start-page: 64
  year: 2012
  end-page: 70
  publication-title: Microporous Mesoporous Mater.
– volume: 43
  start-page: 58
  year: 2010
  end-page: 67
  publication-title: Acc. Chem. Res.
– volume: 38
  start-page: 1284
  year: 2009
  end-page: 1293
  publication-title: Chem. Soc. Rev.
– volume: 52 125
  start-page: 2902 2974
  year: 2013 2013
  end-page: 2905 2977
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1035
  year: 2007
  end-page: 1043
  publication-title: Phys. Chem. Chem. Phys.
– volume: 341
  start-page: 974
  year: 2013
  publication-title: Science
– volume: 136
  start-page: 14465
  year: 2014
  end-page: 14471
  publication-title: J. Am. Chem. Soc.
– volume: 341
  start-page: 882
  year: 2013
  end-page: 885
  publication-title: Science
– start-page: 1496
  year: 2001
  end-page: 1497
  publication-title: Chem. Commun.
– volume: 43 116
  start-page: 5033 5143
  year: 2004 2004
  end-page: 5036 5146
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 2059
  year: 2011
  end-page: 2063
  publication-title: Cryst. Growth Des.
– volume: 135
  start-page: 10525
  year: 2013
  end-page: 10532
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 13850
  year: 2008
  end-page: 13851
  publication-title: J. Am. Chem. Soc.
– start-page: 822
  year: 2002
  end-page: 823
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 4
  start-page: 310
  year: 2012
  end-page: 316
  publication-title: Nat. Chem.
– volume: 427
  start-page: 523
  year: 2004
  end-page: 527
  publication-title: Nature
– volume: 1
  start-page: 705
  year: 2009
  end-page: 710
  publication-title: Nat. Chem.
– volume: 136
  start-page: 4369
  year: 2014
  end-page: 4381
  publication-title: J. Am. Chem. Soc.
– start-page: 6162
  year: 2009
  end-page: 6164
  publication-title: Chem. Commun.
– volume: 43
  start-page: 5468
  year: 2014
  end-page: 5512
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 6207
  year: 2014
  end-page: 6210
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2736
  year: 2012
  end-page: 2739
  publication-title: Cryst. Growth Des.
– volume: 44
  start-page: 4912
  year: 2005
  end-page: 4914
  publication-title: Inorg. Chem.
– volume: 129
  start-page: 15118
  year: 2007
  end-page: 15119
  publication-title: J. Am. Chem. Soc.
– volume: 378
  start-page: 703
  year: 1995
  end-page: 706
  publication-title: Nature
– volume: 134
  start-page: 14345
  year: 2012
  end-page: 14348
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 10561
  year: 2014
  end-page: 10564
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 20110
  year: 2012
  end-page: 20116
  publication-title: J. Am. Chem. Soc.
– volume: 43 116
  start-page: 2334 2388
  year: 2004 2004
  end-page: 2375 2430
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 353
  start-page: 151
  year: 2003
  end-page: 158
  publication-title: Inorg. Chim. Acta
– volume: 110
  start-page: 17199
  year: 2013
  end-page: 17204
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 1782
  year: 2008
  end-page: 1789
  publication-title: Acc. Chem. Res.
– volume: 129
  start-page: 319
  year: 2010
  end-page: 329
  publication-title: Microporous Mesoporous Mater.
– volume: 5
  start-page: 3729
  year: 2014
  end-page: 3734
  publication-title: Chem. Sci.
– volume: 6
  start-page: 673
  year: 2014
  end-page: 680
  publication-title: Nat. Chem.
– year: 2009
– volume: 58
  start-page: 105
  year: 2003
  end-page: 114
  publication-title: Microporous Mesoporous Mater.
– volume: 135
  start-page: 11465
  year: 2013
  end-page: 11468
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 944
  year: 2010
  end-page: 948
  publication-title: Nat. Chem.
– volume: 5
  start-page: 129
  year: 2005
  end-page: 135
  publication-title: Cryst. Growth Des.
– volume: 129
  start-page: 15740
  year: 2007
  end-page: 15741
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 7211
  year: 2012
  end-page: 7214
  publication-title: J. Am. Chem. Soc.
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  publication-title: Nature
– volume: 53
  start-page: 6914
  year: 2014
  end-page: 6919
  publication-title: Inorg. Chem.
– volume: 44 117
  start-page: 2877 2937
  year: 2005 2005
  end-page: 2880 2940
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 3741 3829
  year: 2013 2013
  end-page: 3745 3833
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 404
  start-page: 982
  year: 2000
  end-page: 986
  publication-title: Nature
– volume: 133
  start-page: 11920
  year: 2011
  end-page: 11923
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 3814
  year: 2009
  end-page: 3815
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 818
  year: 2013
  end-page: 827
  publication-title: Chem. Eur. J.
– volume: 327
  start-page: 846
  year: 2010
  end-page: 850
  publication-title: Science
– volume: 43
  start-page: 6522
  year: 2004
  end-page: 6524
  publication-title: Inorg. Chem.
– volume: 114
  start-page: 6974
  year: 1992
  end-page: 6979
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 12886
  year: 2013
  end-page: 12891
  publication-title: J. Am. Chem. Soc.
– volume: 283
  start-page: 1148
  year: 1999
  end-page: 1150
  publication-title: Science
– volume: 11
  start-page: 710
  year: 2012
  end-page: 716
  publication-title: Nat. Mater.
– volume: 5
  start-page: 203
  year: 2013
  end-page: 211
  publication-title: Nat. Chem.
– volume: 48 121
  start-page: 1766 1798
  year: 2009 2009
  end-page: 1770 1802
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 8034 8184
  year: 2011 2011
  end-page: 8037 8187
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 112
  start-page: 1055
  year: 2012
  end-page: 1083
  publication-title: Chem. Rev.
– volume: 112
  start-page: 836
  year: 2012
  end-page: 868
  publication-title: Chem. Rev.
– volume: 120
  start-page: 325
  year: 2009
  end-page: 330
  publication-title: Microporous Mesoporous Mater.
– volume: 127
  start-page: 1504
  year: 2005
  end-page: 1518
  publication-title: J. Am. Chem. Soc.
– volume: 86
  start-page: 13
  year: 2008
  end-page: 16
  publication-title: Chem. Eng. News
– volume: 309
  start-page: 2040
  year: 2005
  end-page: 2042
  publication-title: Science
– volume: 130
  start-page: 1833
  year: 2008
  end-page: 1835
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 10313
  year: 2012
  end-page: 10321
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 717
  year: 2012
  end-page: 723
  publication-title: Nat. Mater.
– volume: 127
  start-page: 13744
  year: 2005
  end-page: 13745
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 4184
  year: 2009
  end-page: 4185
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1448
  year: 2011
  end-page: 1455
  publication-title: Chem. Eur. J.
– volume: 16
  start-page: 626
  year: 2006
  end-page: 636
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 32
  year: 2014
  end-page: 51
  publication-title: Chem. Sci.
– start-page: 1287
  year: 2008
  end-page: 1289
  publication-title: Chem. Commun.
– volume: 38
  start-page: 1257
  year: 2009
  end-page: 1283
  publication-title: Chem. Soc. Rev.
– volume: 51 124
  start-page: 8791 8921
  year: 2012 2012
  end-page: 8795 8925
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 13664
  year: 2008
  end-page: 13672
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 10645 10821
  year: 2014 2014
  end-page: 10648 10824
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 1343
  year: 2014
  end-page: 1370
  publication-title: Chem. Rev.
– volume: 42 115
  start-page: 934 964
  year: 2003 2003
  end-page: 936 966
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 1081
  year: 2011
  end-page: 1106
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 970
  year: 2012
  end-page: 1000
  publication-title: Chem. Rev.
– volume: 23
  start-page: 3790
  year: 2013
  end-page: 3798
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 7377
  year: 2008
  end-page: 7382
  publication-title: Chem. Mater.
– volume: 122
  start-page: 11692
  year: 2000
  end-page: 11702
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_121_2
  doi: 10.1038/nmat3359
– ident: e_1_2_7_62_2
  doi: 10.1021/cr400392k
– ident: e_1_2_7_20_2
  doi: 10.1038/srep02562
– ident: e_1_2_7_59_3
  doi: 10.1002/ange.201403980
– ident: e_1_2_7_117_2
  doi: 10.1021/ja5048522
– ident: e_1_2_7_115_2
  doi: 10.1021/ja500330a
– ident: e_1_2_7_94_2
  doi: 10.1039/b904526k
– ident: e_1_2_7_116_2
  doi: 10.1021/nl503007h
– ident: e_1_2_7_95_2
  doi: 10.1038/nmat3343
– ident: e_1_2_7_50_2
  doi: 10.1126/science.1192160
– ident: e_1_2_7_46_2
  doi: 10.1039/B615006C
– ident: e_1_2_7_13_2
  doi: 10.1038/nchem.402
– ident: e_1_2_7_111_2
  doi: 10.1038/nchem.1272
– ident: e_1_2_7_66_2
  doi: 10.1021/ja0753952
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.200300610
– ident: e_1_2_7_53_2
  doi: 10.1039/C3SC53549E
– ident: e_1_2_7_79_2
  doi: 10.1021/ja4064475
– ident: e_1_2_7_51_2
– ident: e_1_2_7_96_3
  doi: 10.1002/ange.201202925
– ident: e_1_2_7_105_2
– ident: e_1_2_7_74_2
  doi: 10.1021/ja00044a004
– ident: e_1_2_7_64_2
  doi: 10.1073/pnas.0602439103
– ident: e_1_2_7_91_2
  doi: 10.1126/science.283.5405.1148
– ident: e_1_2_7_70_3
  doi: 10.1002/ange.201103155
– ident: e_1_2_7_87_2
  doi: 10.1016/j.micromeso.2009.06.008
– ident: e_1_2_7_1_2
– ident: e_1_2_7_48_2
  doi: 10.1002/anie.200705020
– ident: e_1_2_7_63_3
  doi: 10.1002/ange.200390217
– ident: e_1_2_7_57_2
  doi: 10.1021/cm802400f
– ident: e_1_2_7_65_3
  doi: 10.1002/ange.200500156
– ident: e_1_2_7_10_2
  doi: 10.1126/science.1067208
– ident: e_1_2_7_5_2
– ident: e_1_2_7_32_2
  doi: 10.1039/c3cs35524a
– ident: e_1_2_7_29_2
  doi: 10.1039/C3SC52633J
– ident: e_1_2_7_98_2
  doi: 10.1002/anie.200804836
– ident: e_1_2_7_124_2
  doi: 10.1039/b804680h
– ident: e_1_2_7_69_2
  doi: 10.1021/ja0104352
– ident: e_1_2_7_83_2
  doi: 10.1021/ja405078u
– ident: e_1_2_7_22_2
  doi: 10.1021/ja501810r
– ident: e_1_2_7_100_2
  doi: 10.1039/c0cs00147c
– ident: e_1_2_7_43_2
  doi: 10.1016/S0020-1693(03)00246-9
– ident: e_1_2_7_40_2
  doi: 10.1002/anie.200460712
– ident: e_1_2_7_109_2
  doi: 10.1039/C3CS60472A
– ident: e_1_2_7_81_2
  doi: 10.1039/c2jm16030g
– ident: e_1_2_7_110_2
  doi: 10.1021/cm200737c
– ident: e_1_2_7_118_3
  doi: 10.1002/ange.201209903
– ident: e_1_2_7_48_3
  doi: 10.1002/ange.200705020
– ident: e_1_2_7_108_2
  doi: 10.1002/adfm.201202996
– ident: e_1_2_7_38_2
  doi: 10.1021/ic050452i
– ident: e_1_2_7_42_2
  doi: 10.1039/b110015g
– ident: e_1_2_7_93_2
  doi: 10.1021/cr200179u
– ident: e_1_2_7_59_2
  doi: 10.1002/anie.201403980
– ident: e_1_2_7_119_2
  doi: 10.1021/ja306869j
– ident: e_1_2_7_120_2
  doi: 10.1038/nchem.1569
– ident: e_1_2_7_55_2
  doi: 10.1126/science.1152516
– ident: e_1_2_7_68_2
  doi: 10.1021/ja710123s
– ident: e_1_2_7_71_2
  doi: 10.1002/anie.201206042
– ident: e_1_2_7_35_2
  doi: 10.1126/science.1238339
– ident: e_1_2_7_123_2
  doi: 10.1016/S1872-2067(10)60302-6
– ident: e_1_2_7_16_2
  doi: 10.1126/science.1217544
– ident: e_1_2_7_47_2
– ident: e_1_2_7_3_2
  doi: 10.1021/ja981669x
– ident: e_1_2_7_44_2
– ident: e_1_2_7_86_2
  doi: 10.1038/ncomms5176
– ident: e_1_2_7_60_2
– ident: e_1_2_7_9_2
  doi: 10.1038/35010088
– ident: e_1_2_7_25_3
  doi: 10.1002/ange.200300610
– ident: e_1_2_7_112_2
– ident: e_1_2_7_19_2
  doi: 10.1073/pnas.1305910110
– ident: e_1_2_7_56_2
  doi: 10.1021/ar900116g
– ident: e_1_2_7_102_2
  doi: 10.1021/ja053523l
– ident: e_1_2_7_8_2
– ident: e_1_2_7_88_2
  doi: 10.1016/S1387-1811(02)00609-1
– ident: e_1_2_7_14_2
  doi: 10.1016/j.micromeso.2008.11.020
– ident: e_1_2_7_41_2
  doi: 10.1021/cg0498554
– ident: e_1_2_7_12_2
  doi: 10.1126/science.1116275
– ident: e_1_2_7_54_2
– ident: e_1_2_7_99_2
– ident: e_1_2_7_107_2
  doi: 10.1002/chem.201002381
– ident: e_1_2_7_45_2
  doi: 10.1021/ar800124u
– ident: e_1_2_7_65_2
  doi: 10.1002/anie.200500156
– ident: e_1_2_7_17_2
  doi: 10.1021/ja300539p
– ident: e_1_2_7_23_2
– ident: e_1_2_7_85_2
  doi: 10.1021/ja404514r
– ident: e_1_2_7_63_2
  doi: 10.1002/anie.200390248
– ident: e_1_2_7_67_2
  doi: 10.1021/cg3002866
– ident: e_1_2_7_37_2
– ident: e_1_2_7_80_2
  doi: 10.1021/ja503218j
– ident: e_1_2_7_11_2
  doi: 10.1038/nature02311
– ident: e_1_2_7_52_2
  doi: 10.1021/ja4100244
– ident: e_1_2_7_26_2
  doi: 10.1021/cr200216x
– ident: e_1_2_7_114_2
  doi: 10.1016/j.micromeso.2011.12.010
– ident: e_1_2_7_21_2
  doi: 10.1038/nchem.1982
– ident: e_1_2_7_58_2
  doi: 10.1021/ja809459e
– ident: e_1_2_7_15_2
  doi: 10.1038/nchem.834
– ident: e_1_2_7_73_2
  doi: 10.1021/cg200271e
– ident: e_1_2_7_34_2
  doi: 10.1126/science.1181761
– ident: e_1_2_7_103_2
  doi: 10.1002/adma.201202116
– ident: e_1_2_7_76_2
  doi: 10.1021/ja045123o
– ident: e_1_2_7_96_2
  doi: 10.1002/anie.201202925
– ident: e_1_2_7_39_2
  doi: 10.1021/ic049005d
– ident: e_1_2_7_7_2
  doi: 10.1021/cen-v086n034.p013
– ident: e_1_2_7_61_2
  doi: 10.1039/b817735j
– ident: e_1_2_7_31_2
  doi: 10.1002/chem.201203145
– ident: e_1_2_7_90_2
  doi: 10.1021/ic500722n
– ident: e_1_2_7_6_2
  doi: 10.1039/B511962F
– ident: e_1_2_7_30_2
– ident: e_1_2_7_78_2
  doi: 10.1021/ja808995d
– ident: e_1_2_7_118_2
  doi: 10.1002/anie.201209903
– ident: e_1_2_7_36_2
  doi: 10.1039/b104204c
– ident: e_1_2_7_89_2
  doi: 10.1021/ja3085884
– ident: e_1_2_7_71_3
  doi: 10.1002/ange.201206042
– ident: e_1_2_7_104_2
  doi: 10.1021/ja076210u
– ident: e_1_2_7_4_2
  doi: 10.1021/ar970151f
– ident: e_1_2_7_70_2
  doi: 10.1002/anie.201103155
– ident: e_1_2_7_113_2
  doi: 10.1021/ja8057953
– ident: e_1_2_7_75_2
  doi: 10.1021/la100423a
– ident: e_1_2_7_2_2
  doi: 10.1038/378703a0
– ident: e_1_2_7_84_2
– ident: e_1_2_7_92_2
  doi: 10.1021/ja5063423
– ident: e_1_2_7_77_2
  doi: 10.1021/ic500434a
– ident: e_1_2_7_98_3
  doi: 10.1002/ange.200804836
– ident: e_1_2_7_18_2
  doi: 10.1021/ja4005046
– ident: e_1_2_7_28_2
  doi: 10.1126/science.1230444
– ident: e_1_2_7_101_2
  doi: 10.1021/cr200167v
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.200300636
– ident: e_1_2_7_72_2
  doi: 10.1038/46248
– ident: e_1_2_7_82_2
  doi: 10.1039/b718443c
– ident: e_1_2_7_27_2
  doi: 10.1021/cr200139g
– ident: e_1_2_7_97_2
  doi: 10.1021/ja002102v
– ident: e_1_2_7_106_2
  doi: 10.1021/ja1109826
– ident: e_1_2_7_33_2
  doi: 10.1021/ja204818q
– ident: e_1_2_7_122_2
  doi: 10.1021/ja802589u
– ident: e_1_2_7_40_3
  doi: 10.1002/ange.200460712
– ident: e_1_2_7_49_2
  doi: 10.1021/ja809985t
– ident: e_1_2_7_125_2
SSID ssj0028806
Score 2.6219811
SecondaryResourceType review_article
Snippet Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF...
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF...
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3417
SubjectTerms Anniversaries
Backbone
Buildings
Construction
Crystallinity
defects
Heterogeneity
industrial chemistry
membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Metal-organic frameworks
Porosity
secondary building units
Strategy
Title “Heterogeneity within Order” in Metal–Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201410252
https://www.ncbi.nlm.nih.gov/pubmed/25586609
https://www.proquest.com/docview/1659977538
https://www.proquest.com/docview/1660929789
https://www.proquest.com/docview/1701100045
https://www.osti.gov/biblio/1384831
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CXpJLm_TpPIoLgZ6UWPJDq0shhCzbQhIoDeQmRrIMpcVburuXnPY_5Jr8uf0lnbHXTrf0Ae3JMpaMHjOaT_bMNwCHLvNkGFQQlTZaZFKVwiWVFqYsHKYKnUaOHT6_KMZX2fvr_PqHKP6WH6L_4Maa0ezXrODopscPpKEcgc2uWRmZyJw3YXbYYlT0oeePUiScbXhRmgrOQt-xNibqeL35mlUaTEi7foU41wFsY4FGjwG7vreOJ5-P5jN35G9-onX8n8Ftw6MVPI1PWnnagY1QP4HN0y4r3FN4u1zcjdmFZkKSFwjCx_wl91MdXzKH53JxH1P5PBCkXy5u20BPH486D7DpM7ganX08HYtVDgbhC9onhXapSTJMsUQyXCnnJkETXC6RkKBDuiBz0hOK1IFzfaJOsCi8VE7ljv-RPodBPanDS4hVZZQuUydLOsRhpUziK5l7LLDSMtc6AtGtgfUrgnLOk_HFttTKyvKs2H5WInjT1__aUnP8tuYeL6klUMHMuJ5diPzMynRIfZcR7HcrbVcKPLWyyA0NisxBBK_7xzTX_D8F6zCZc50iIXSph-YPdXRDykfAOYIXrRT1naXT3JBfEYFqZOEvo7AnF-_O-rvdf2m0B1tUzhsfOrMPg9m3eTggUDVzrxrF-Q6dixfU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VcCiX8m6XFlgkECe3a-_D2QNIVdsooU2QUCv1ZmyvV0KgDSKJUHvKf-BKf0T_Cj8hv4SZfaEgHhJSD5z25bX8mPHM2DPfADw1kUXBIBzLZSpZxEXGTJBLlmaJ0aHQRmqKHR6Okv5J9Oo0Pl2ByyYWpsKHaDfciDPK9ZoYnDakd36ghlIINvlmRSgjY1H7VR66s89otU1eDPZxip8J0Ts43uuzOrEAswkyP5MGLf1IhzrTuBqHlHBDp87EXKN6YzReNAGto2okHSWw1DLQSWK5MCI2dPCH9V6D65RGnOD699-0iFUC2aEKaApDRnnvG5zIQOwst3dJDnbGyM-_0nGXVeZS5vVuwrdmtCpXl_fbs6nZtuc_AUn-V8N5C9ZqDdzfrVjmNqy44g6s7jWJ7-7Cy8X8a5-8hMbIXA6tFJ82q98V_muCKV3ML3y8Hzq0WhbzL1Usq_V7jZPb5B6cXEnz70OnGBduA3yRp0JmoeEZ2qk6F2lgcx5bnehc8lhKD1gz6crWGOyUCuSDqtCjhaJZUO0sePC8Lf-xQh_5bclNoiGFehOB_1rykrJTxcMutp17sNWQlqrXqIniSZxip1DiefCk_YxjTUdGunDjGZVJAlSgZTf9QxlZ4g6ibeDBekW2bWPRYO1SFR6Ikvj-0gu1OxoctE8P_uWnx7DaPx4eqaPB6HATbuD7uHQZTLegM_00cw9Rh5yaRyXX-vD2qun6O7vBclY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIAEXyrtLCywSiNO2a-_D8QGkqmmUUBoQolJvru31SqjVpmoSITjlP3At_4G_wl_IL2FmXyiIh4TUA6d9eS0_Zjwz9sw3AE9MbFEwcBfkQoogZjwLTJiLQGap0RHXRmiKHd4fpYOD-OVhcrgCX5tYmAofot1wI84o12ti8NMs3_oBGkoR2OSaFaOITHjtVrnnPn5Ao23yfNjDGX7KeX_33c4gqPMKBDZF3g-EQUM_1pHONC7GEeXb0NKZhGnUbozGiyacddSMhKP8lVqEOk0t44Ynhs79sN5LcDlOQ0nJInpvW8AqjtxQxTNFUUBp7xuYyJBvLbd3SQx2xsjOv1JxlzXmUuT1V-FbM1iVp8vx5mxqNu2nn3Ak_6fRvAHXa_3b364Y5iasuOIWXN1p0t7dhheL-fmAfITGyFoObRSftqrfF_5rAildzL_4eL_v0GZZzD9XkazW7zcubpM7cHAhzb8LnWJcuDXweS65yCLDMrRSdc5laHOWWJ3qXLBECA-CZs6VrRHYKRHIiaqwo7miWVDtLHjwrC1_WmGP_LbkOpGQQq2JoH8t-UjZqWJRF9vOPNhoKEvVK9REsTSR2CmUdx48bj_jWNOBkS7ceEZlkMS5FF35hzKiRB1Ey8CDexXVto1Fc7VLVXjAS9r7Sy_U9mi42z7d_5efHsGVN72-ejUc7a3DNXydlP6CcgM607OZe4AK5NQ8LHnWh6OLJuvvyPZxBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Heterogeneity+within+order%22+in+metal-organic+frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Furukawa%2C+Hiroyasu&rft.au=M%C3%BCller%2C+Ulrich&rft.au=Yaghi%2C+Omar+M&rft.date=2015-03-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=54&rft.issue=11&rft.spage=3417&rft_id=info:doi/10.1002%2Fanie.201410252&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon