“Heterogeneity within Order” in Metal–Organic Frameworks
Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 54; no. 11; pp. 3417 - 3430 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag
09.03.2015
Wiley Subscription Services, Inc Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.
Mix and MOF: Most metal–organic frameworks (MOFs) are ordered and generally composed of only a few of repeating building unit. This Review is describes how the use of various different components in the MOF backbone and within the pores of the MOF can produce heterogeneity without losing the order (crystallinity) of the MOF structure. |
---|---|
AbstractList | Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Mix and MOF: Most metal-organic frameworks (MOFs) are ordered and generally composed of only a few of repeating building unit. This Review is describes how the use of various different components in the MOF backbone and within the pores of the MOF can produce heterogeneity without losing the order (crystallinity) of the MOF structure. Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF. Mix and MOF: Most metal–organic frameworks (MOFs) are ordered and generally composed of only a few of repeating building unit. This Review is describes how the use of various different components in the MOF backbone and within the pores of the MOF can produce heterogeneity without losing the order (crystallinity) of the MOF structure. |
Author | Yaghi, Omar M. Müller, Ulrich Furukawa, Hiroyasu |
Author_xml | – sequence: 1 givenname: Hiroyasu surname: Furukawa fullname: Furukawa, Hiroyasu email: furukawa@berkeley.edu – sequence: 2 givenname: Ulrich surname: Müller fullname: Müller, Ulrich email: ulrich.mueller@BASF.com – sequence: 3 givenname: Omar M. surname: Yaghi fullname: Yaghi, Omar M. email: yaghi@berkeley.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25586609$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1384831$$D View this record in Osti.gov |
BookMark | eNqFkctuUzEQhi1URC90yxJFsOnmBF-O7eMNUlW1tFIhG7q25jjT1uXELrajKLu8A9vycnkSHKUUqRLqambxfR7P_PtkJ8SAhLxjdMwo5Z8geBxzylpGueSvyB6TnDVCa7FT-1aIRneS7ZL9nO8q33VUvSG7XMpOKWr2yOf16uEcC6Z4gwF9WY4Wvtz6MJqkKab16veo9l-xwLBe_ZqkmzrPjc4SzHAR04_8lry-hiHj4WM9IFdnp99PzpvLyZeLk-PLximteKN7YWgLAqbAjRGt0i0Y7CUDqWQPtUDbCW201ii1NKApKOUY77nstaTigHzYvhtz8TY7X9DduhgCumKZ6KrNKnS0he5T_DnHXOzMZ4fDAAHjPFumKatHo618Gd1chxvdmYp-fIbexXkKddtKSVP_LEVXqfeP1Lyf4dTeJz-DtLR_L12B8RZwKeac8PoJYdRuorSbKO1TlFVonwl1ayg-hpLAD__XzFZb-AGXLwyxx98uTv-5fwCs8rGs |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1021_jacs_7b03113 crossref_primary_10_1038_s41578_020_0225_x crossref_primary_10_1021_acssuschemeng_2c01467 crossref_primary_10_1021_acs_inorgchem_5b02234 crossref_primary_10_1016_j_poly_2019_01_024 crossref_primary_10_1039_D4SC02550D crossref_primary_10_1016_j_molcata_2015_11_020 crossref_primary_10_1002_ange_201902229 crossref_primary_10_1021_acs_inorgchem_6b00813 crossref_primary_10_1002_aenm_202002091 crossref_primary_10_1039_D2TA04835C crossref_primary_10_1021_jacs_0c10777 crossref_primary_10_1016_j_inoche_2017_09_003 crossref_primary_10_1021_acsami_0c07800 crossref_primary_10_1038_s41570_017_0056 crossref_primary_10_1021_acsomega_9b00295 crossref_primary_10_1016_j_jhazmat_2017_12_057 crossref_primary_10_1021_acs_inorgchem_6b00952 crossref_primary_10_1021_jacs_6b10460 crossref_primary_10_1038_s41467_024_47426_x crossref_primary_10_1038_s42004_018_0071_6 crossref_primary_10_1016_j_seppur_2023_124080 crossref_primary_10_1021_acsami_1c20420 crossref_primary_10_1021_acssuschemeng_8b06500 crossref_primary_10_1021_acs_langmuir_6b01530 crossref_primary_10_1039_C9QI00965E crossref_primary_10_1016_j_jics_2022_100493 crossref_primary_10_1002_anie_202419992 crossref_primary_10_1021_accountsmr_3c00097 crossref_primary_10_1007_s44169_024_00064_2 crossref_primary_10_1021_jacs_5b06780 crossref_primary_10_1039_D0SC05008C crossref_primary_10_1021_acs_iecr_7b03127 crossref_primary_10_1039_C7NJ00540G crossref_primary_10_1038_s41578_022_00482_5 crossref_primary_10_1002_ange_201602274 crossref_primary_10_1016_j_apcatb_2019_117746 crossref_primary_10_1002_cssc_202402165 crossref_primary_10_1016_j_ccr_2015_08_001 crossref_primary_10_1039_C6RA00463F crossref_primary_10_1002_anie_201814563 crossref_primary_10_1021_acs_energyfuels_4c05687 crossref_primary_10_1021_jacs_1c00001 crossref_primary_10_3390_bios13010114 crossref_primary_10_1016_j_ijbiomac_2020_11_011 crossref_primary_10_1016_j_seppur_2024_127955 crossref_primary_10_1021_acs_cgd_5b00426 crossref_primary_10_1002_ange_201504873 crossref_primary_10_1021_acs_cgd_6b00076 crossref_primary_10_1039_C7FD00160F crossref_primary_10_1007_s10904_018_0781_3 crossref_primary_10_1002_adsu_202200024 crossref_primary_10_1016_j_biomaterials_2017_01_025 crossref_primary_10_1002_smll_201702049 crossref_primary_10_1021_acs_jpcc_6b11719 crossref_primary_10_1021_acs_inorgchem_2c01128 crossref_primary_10_1016_j_ijhydene_2021_07_196 crossref_primary_10_3390_molecules28052139 crossref_primary_10_1021_acsami_1c22986 crossref_primary_10_1016_j_jmr_2017_04_008 crossref_primary_10_1021_jacs_9b00122 crossref_primary_10_1016_j_molliq_2019_02_069 crossref_primary_10_1021_acs_chemrev_5b00221 crossref_primary_10_1021_acsami_2c05961 crossref_primary_10_1002_ange_201802661 crossref_primary_10_1002_sstr_202100203 crossref_primary_10_1021_acs_inorgchem_8b00801 crossref_primary_10_1021_acs_inorgchem_9b01666 crossref_primary_10_1002_chem_201503685 crossref_primary_10_1016_j_jece_2023_111049 crossref_primary_10_1039_D1CE00180A crossref_primary_10_1039_D4CC02581D crossref_primary_10_1002_adma_201704501 crossref_primary_10_1002_anie_201608439 crossref_primary_10_1002_smll_201501710 crossref_primary_10_3390_molecules22010144 crossref_primary_10_1039_C8QO00519B crossref_primary_10_1021_acs_cgd_6b00056 crossref_primary_10_1021_jacs_6b12564 crossref_primary_10_1002_adma_201900820 crossref_primary_10_1021_acs_jpcc_6b07115 crossref_primary_10_1021_acs_chemrev_8b00361 crossref_primary_10_1016_j_talanta_2024_125848 crossref_primary_10_3390_molecules29245845 crossref_primary_10_1002_ange_201904834 crossref_primary_10_1021_jacs_0c11838 crossref_primary_10_1021_jacs_9b11355 crossref_primary_10_1039_C8CC04172E crossref_primary_10_1016_j_ccr_2021_214273 crossref_primary_10_1002_adfm_201908292 crossref_primary_10_1021_acs_inorgchem_2c04321 crossref_primary_10_1021_jacs_8b04277 crossref_primary_10_1039_C5CC09065B crossref_primary_10_1021_acsami_1c09619 crossref_primary_10_1016_j_ccr_2019_01_016 crossref_primary_10_1016_j_ultsonch_2017_09_030 crossref_primary_10_3390_nano10061036 crossref_primary_10_1002_ejic_201700446 crossref_primary_10_1002_anie_201802661 crossref_primary_10_1002_adma_202414151 crossref_primary_10_1039_C6CE01527A crossref_primary_10_1002_ange_202310354 crossref_primary_10_1002_chem_201606038 crossref_primary_10_1039_C7CC00029D crossref_primary_10_1039_C6CP07801J crossref_primary_10_1021_jacs_9b03707 crossref_primary_10_1039_D3DT01109G crossref_primary_10_1021_jacs_0c00612 crossref_primary_10_1021_jacs_8b07411 crossref_primary_10_1016_j_matt_2022_06_005 crossref_primary_10_1002_chem_202000043 crossref_primary_10_1021_acsami_2c04603 crossref_primary_10_1021_acs_jpcc_6b08594 crossref_primary_10_1142_S2529732519400054 crossref_primary_10_1039_C8CC08456D crossref_primary_10_1021_acsami_0c22276 crossref_primary_10_1038_srep21401 crossref_primary_10_1021_jacs_5b07687 crossref_primary_10_1039_D0DT03635H crossref_primary_10_1021_jacs_2c09756 crossref_primary_10_1039_C5DT04033G crossref_primary_10_1002_cphc_201800526 crossref_primary_10_1002_chem_202003304 crossref_primary_10_1007_s10876_015_0957_8 crossref_primary_10_1007_s11356_020_08316_z crossref_primary_10_1002_smll_202402486 crossref_primary_10_1080_08927022_2015_1036266 crossref_primary_10_1039_D4TA06740A crossref_primary_10_1007_s10934_016_0195_y crossref_primary_10_1007_s11705_022_2285_5 crossref_primary_10_3390_nano9081063 crossref_primary_10_1002_chem_201701477 crossref_primary_10_1021_acs_inorgchem_6b02713 crossref_primary_10_1016_j_marpolbul_2024_116752 crossref_primary_10_1007_s40684_022_00464_6 crossref_primary_10_1002_ange_201907074 crossref_primary_10_1002_batt_201900012 crossref_primary_10_1002_sstr_202100197 crossref_primary_10_1002_ange_201608439 crossref_primary_10_3390_cryst8010007 crossref_primary_10_1007_s11814_024_00053_0 crossref_primary_10_1021_acsami_0c08961 crossref_primary_10_1021_acs_jpclett_5b02683 crossref_primary_10_1002_anie_202004293 crossref_primary_10_1016_j_ccr_2016_04_017 crossref_primary_10_1002_chem_201504757 crossref_primary_10_1016_j_jssc_2019_120948 crossref_primary_10_1016_j_matt_2021_04_027 crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1016_j_chempr_2018_08_025 crossref_primary_10_1002_anie_201600661 crossref_primary_10_1093_nsr_nwx013 crossref_primary_10_1002_anie_201904834 crossref_primary_10_1039_C9SC04141A crossref_primary_10_1002_ange_202419992 crossref_primary_10_1002_ange_201802237 crossref_primary_10_1038_nenergy_2016_34 crossref_primary_10_1016_j_cjche_2023_09_015 crossref_primary_10_1021_acsami_0c16127 crossref_primary_10_1021_acscentsci_0c00803 crossref_primary_10_1002_chem_201803157 crossref_primary_10_1039_C7DT00350A crossref_primary_10_1021_acs_inorgchem_6b00413 crossref_primary_10_1016_j_cclet_2017_12_026 crossref_primary_10_1021_acs_cgd_7b00233 crossref_primary_10_1039_D0QI01317J crossref_primary_10_1021_acs_cgd_7b00119 crossref_primary_10_1002_adfm_202308376 crossref_primary_10_1021_acs_cgd_7b01321 crossref_primary_10_1002_ange_201814563 crossref_primary_10_1016_j_seppur_2022_121804 crossref_primary_10_1039_C9QI00543A crossref_primary_10_1002_ange_201916159 crossref_primary_10_1039_C6CE00198J crossref_primary_10_1021_jacs_1c10263 crossref_primary_10_1021_acs_cgd_7b01753 crossref_primary_10_1002_anie_202008858 crossref_primary_10_1016_j_susmat_2016_10_001 crossref_primary_10_1002_advs_202207545 crossref_primary_10_1002_ange_201510024 crossref_primary_10_1039_C7CC06979K crossref_primary_10_1134_S207020511905023X crossref_primary_10_1016_j_matchemphys_2019_122572 crossref_primary_10_1016_j_jlumin_2023_120092 crossref_primary_10_1007_s12274_015_0970_0 crossref_primary_10_1016_j_memsci_2017_09_056 crossref_primary_10_1021_acscentsci_8b00677 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1002_ejic_201800042 crossref_primary_10_1038_s41598_017_00733_4 crossref_primary_10_1039_C7QM00144D crossref_primary_10_1021_acs_cgd_7b00892 crossref_primary_10_1038_s41467_018_03102_5 crossref_primary_10_1002_chem_201903912 crossref_primary_10_1039_C9NR02167A crossref_primary_10_1002_adfm_202008989 crossref_primary_10_1021_acsami_0c08803 crossref_primary_10_1016_j_chemosphere_2022_136682 crossref_primary_10_1080_0144235X_2016_1187006 crossref_primary_10_1039_D3DT03654E crossref_primary_10_1016_j_ccr_2017_10_014 crossref_primary_10_1039_D1DT04222J crossref_primary_10_1039_D0CE01883J crossref_primary_10_1016_j_apsusc_2019_144612 crossref_primary_10_1021_acs_cgd_7b00200 crossref_primary_10_1002_adma_201704124 crossref_primary_10_1021_acs_inorgchem_6b02863 crossref_primary_10_1021_jacs_7b03578 crossref_primary_10_1039_C6TA03266D crossref_primary_10_1002_adfm_202307369 crossref_primary_10_1002_ange_201900863 crossref_primary_10_1039_C5CE02170G crossref_primary_10_1021_acs_chemrev_7b00091 crossref_primary_10_3390_compounds4020017 crossref_primary_10_1080_15569543_2024_2329921 crossref_primary_10_1039_C9RA03287H crossref_primary_10_1021_acs_accounts_8b00415 crossref_primary_10_1021_jacs_9b13473 crossref_primary_10_1038_pj_2016_8 crossref_primary_10_1016_j_jcis_2019_06_040 crossref_primary_10_1021_acs_cgd_7b01643 crossref_primary_10_1039_D4CE00131A crossref_primary_10_1039_D3MA00389B crossref_primary_10_1016_j_photonics_2020_100832 crossref_primary_10_1002_ange_201604023 crossref_primary_10_1021_acsanm_4c05030 crossref_primary_10_1021_acsomega_2c03973 crossref_primary_10_1039_C8CE00691A crossref_primary_10_1002_anie_201902229 crossref_primary_10_1002_anie_201504396 crossref_primary_10_1021_acscatal_6b03404 crossref_primary_10_1039_C7TA06996K crossref_primary_10_1039_C7QM00263G crossref_primary_10_1021_acs_jpclett_5b01135 crossref_primary_10_1016_j_ccr_2019_04_006 crossref_primary_10_1039_D0NJ01448F crossref_primary_10_1016_j_seppur_2020_117010 crossref_primary_10_1016_j_ccr_2019_04_002 crossref_primary_10_1002_advs_201901758 crossref_primary_10_1021_acs_chemmater_9b01068 crossref_primary_10_1016_j_ccr_2015_12_001 crossref_primary_10_1016_j_ccr_2015_12_004 crossref_primary_10_1002_ange_201600661 crossref_primary_10_1021_acs_jpcc_7b03181 crossref_primary_10_1016_j_mtchem_2022_101259 crossref_primary_10_1021_jacs_6b03263 crossref_primary_10_1021_acsami_7b05889 crossref_primary_10_2139_ssrn_4073410 crossref_primary_10_1002_ange_201905172 crossref_primary_10_1107_S2052252516019072 crossref_primary_10_1021_acscatal_8b04960 crossref_primary_10_1007_s11144_016_0986_9 crossref_primary_10_1039_C7GC02260C crossref_primary_10_1016_j_ccr_2018_10_002 crossref_primary_10_1021_acs_inorgchem_6b00276 crossref_primary_10_1016_j_ccr_2017_08_017 crossref_primary_10_1021_acs_jpcc_8b00781 crossref_primary_10_1039_D0CE00902D crossref_primary_10_1016_j_ica_2017_06_038 crossref_primary_10_1038_natrevmats_2017_45 crossref_primary_10_1021_jacs_3c07778 crossref_primary_10_1039_D2CC03220A crossref_primary_10_1021_ja511878b crossref_primary_10_1039_C7CC07853F crossref_primary_10_1016_j_pmatsci_2020_100743 crossref_primary_10_1039_C5DT01943E crossref_primary_10_1098_rspa_2018_0703 crossref_primary_10_1021_acscatal_8b04515 crossref_primary_10_1021_acs_inorgchem_3c00495 crossref_primary_10_1002_nadc_20164047491 crossref_primary_10_1007_s11356_020_12227_4 crossref_primary_10_1021_acssensors_3c00965 crossref_primary_10_1002_anie_201601587 crossref_primary_10_1126_science_ads7866 crossref_primary_10_1021_acs_langmuir_7b01409 crossref_primary_10_1002_anie_201808568 crossref_primary_10_1039_D0QI00231C crossref_primary_10_1002_smll_201600619 crossref_primary_10_1007_s12274_021_4006_7 crossref_primary_10_1021_jacs_8b04745 crossref_primary_10_1038_s41557_023_01277_z crossref_primary_10_1021_jacs_6b01093 crossref_primary_10_1002_ange_202004293 crossref_primary_10_1007_s12613_022_2555_8 crossref_primary_10_1021_acsami_4c15460 crossref_primary_10_1039_C6RA22971A crossref_primary_10_1021_jacs_3c08611 crossref_primary_10_1002_adma_201601133 crossref_primary_10_1016_j_ccr_2020_213655 crossref_primary_10_1039_C5DT03046C crossref_primary_10_1016_j_chroma_2020_461627 crossref_primary_10_1016_j_chempr_2020_08_008 crossref_primary_10_1002_advs_201900506 crossref_primary_10_1002_ejic_201600134 crossref_primary_10_1002_slct_201900821 crossref_primary_10_1073_pnas_2312959121 crossref_primary_10_1021_acscatal_2c00477 crossref_primary_10_1021_acs_jpcc_0c00597 crossref_primary_10_1021_acscentsci_8b00722 crossref_primary_10_1021_acs_jpcc_6b06710 crossref_primary_10_1002_slct_201600526 crossref_primary_10_1002_ijch_201800095 crossref_primary_10_1002_adtp_202100067 crossref_primary_10_1016_j_ccr_2019_213022 crossref_primary_10_1039_D2GC04682B crossref_primary_10_1002_ijch_201800099 crossref_primary_10_1016_j_scitotenv_2022_155309 crossref_primary_10_1007_s40242_021_0019_8 crossref_primary_10_1039_C8CS00688A crossref_primary_10_1021_acs_jpcc_5b10578 crossref_primary_10_1039_C9CS00250B crossref_primary_10_1002_aenm_201601296 crossref_primary_10_1002_adsu_202400043 crossref_primary_10_1007_s12274_020_2870_1 crossref_primary_10_1016_j_jhazmat_2021_127353 crossref_primary_10_1007_s00339_016_9651_4 crossref_primary_10_1039_C8NR02896F crossref_primary_10_1021_acs_inorgchem_5c00015 crossref_primary_10_1002_cphc_201901043 crossref_primary_10_1016_j_apsusc_2018_10_048 crossref_primary_10_1021_jacs_8b03505 crossref_primary_10_1021_jacs_6b07445 crossref_primary_10_1002_anie_201907074 crossref_primary_10_1016_j_jhazmat_2016_06_032 crossref_primary_10_1021_acs_jpcc_6b04672 crossref_primary_10_1039_D0SC04512H crossref_primary_10_1039_C7CC00810D crossref_primary_10_1002_smll_202410657 crossref_primary_10_1021_acs_inorgchem_5b00987 crossref_primary_10_1039_D3SC01550E crossref_primary_10_1021_jacs_6b05261 crossref_primary_10_1002_smsc_202200044 crossref_primary_10_1039_C6CE02246D crossref_primary_10_1002_chem_201501974 crossref_primary_10_2139_ssrn_4177987 crossref_primary_10_1016_j_heliyon_2023_e21314 crossref_primary_10_1021_acs_inorgchem_6b00050 crossref_primary_10_1039_D1CE00210D crossref_primary_10_3390_nano7110351 crossref_primary_10_1038_s41467_022_29849_6 crossref_primary_10_1016_j_jclepro_2018_11_136 crossref_primary_10_1039_D1SC05663H crossref_primary_10_1016_j_jhazmat_2019_01_107 crossref_primary_10_1021_acs_inorgchem_5b01952 crossref_primary_10_1039_C6CC02116F crossref_primary_10_1039_C8CE01044G crossref_primary_10_1021_acsami_9b01077 crossref_primary_10_1002_adsu_202000200 crossref_primary_10_1038_s41578_020_00250_3 crossref_primary_10_1039_C6DT04867F crossref_primary_10_1039_D0CE00120A crossref_primary_10_1039_D3CC02636A crossref_primary_10_1002_ange_201808568 crossref_primary_10_1039_C7FD00045F crossref_primary_10_1021_acs_inorgchem_5b02077 crossref_primary_10_1016_j_jece_2024_113823 crossref_primary_10_1039_C9CE01936G crossref_primary_10_1039_C6DT03637F crossref_primary_10_1021_acs_jpclett_1c01053 crossref_primary_10_1002_anie_202310354 crossref_primary_10_1139_cjc_2017_0306 crossref_primary_10_1126_science_aaz4304 crossref_primary_10_1002_aenm_201801564 crossref_primary_10_1002_adfm_202010052 crossref_primary_10_1039_C5DT03825A crossref_primary_10_1021_acsanm_0c01327 crossref_primary_10_1246_bcsj_20170371 crossref_primary_10_1021_jacs_3c03421 crossref_primary_10_1039_C6DT03975H crossref_primary_10_1016_j_jhazmat_2021_127559 crossref_primary_10_1021_acs_jpcc_8b12392 crossref_primary_10_1039_C6NR05463C crossref_primary_10_1039_C9SC02576F crossref_primary_10_1016_j_ccr_2019_213116 crossref_primary_10_1021_acsami_8b09388 crossref_primary_10_1002_bkcs_12185 crossref_primary_10_1016_j_microc_2023_108850 crossref_primary_10_15826_chimtech_2021_8_3_04 crossref_primary_10_1038_s41557_018_0171_z crossref_primary_10_1134_S1027451020020445 crossref_primary_10_1002_ejic_201701165 crossref_primary_10_1002_adfm_201700258 crossref_primary_10_1021_acssuschemeng_4c06002 crossref_primary_10_1039_C7RA05302A crossref_primary_10_1038_s41524_023_00969_x crossref_primary_10_1021_acs_accounts_3c00243 crossref_primary_10_1021_acsomega_9b00680 crossref_primary_10_1002_chem_201801301 crossref_primary_10_1039_C6RA01536K crossref_primary_10_1039_D0RA09132D crossref_primary_10_1038_s41467_018_04050_w crossref_primary_10_1021_acsami_2c10346 crossref_primary_10_1016_j_matlet_2015_12_129 crossref_primary_10_1002_anie_201916159 crossref_primary_10_1002_slct_201601205 crossref_primary_10_1039_C6RA12134A crossref_primary_10_1021_acsami_5b04991 crossref_primary_10_1007_s10934_022_01353_8 crossref_primary_10_1016_j_seppur_2019_116213 crossref_primary_10_1002_ijch_201800119 crossref_primary_10_1039_C6SC05616D crossref_primary_10_1016_j_ccr_2024_215674 crossref_primary_10_1002_anie_201602274 crossref_primary_10_1016_j_jssc_2020_121820 crossref_primary_10_1021_acs_inorgchem_6b03123 crossref_primary_10_1039_D3DT02188B crossref_primary_10_1002_ange_201601587 crossref_primary_10_1007_s10904_017_0745_z crossref_primary_10_1016_j_ccr_2019_02_022 crossref_primary_10_1021_jacs_2c12284 crossref_primary_10_1021_acsnano_8b00932 crossref_primary_10_1002_chem_201601752 crossref_primary_10_1002_anie_201504873 crossref_primary_10_1002_anie_201802237 crossref_primary_10_1021_acs_chemmater_6b00180 crossref_primary_10_1039_D0TA04891G crossref_primary_10_1016_j_jiec_2019_07_034 crossref_primary_10_1002_adma_201502545 crossref_primary_10_1039_C7DT03255B crossref_primary_10_1016_j_chempr_2016_09_009 crossref_primary_10_1080_01496395_2019_1577266 crossref_primary_10_1002_advs_202305378 crossref_primary_10_1039_C7RA05783K crossref_primary_10_1039_C9NR00103D crossref_primary_10_1039_D1NJ05015J crossref_primary_10_1016_j_memsci_2021_119201 crossref_primary_10_1039_C6QI00542J crossref_primary_10_1039_C8QI00811F crossref_primary_10_1002_chem_201905645 crossref_primary_10_1002_ange_201504396 crossref_primary_10_1021_jacs_5b09487 crossref_primary_10_1002_adfm_202107949 crossref_primary_10_1039_C5DT03856A crossref_primary_10_1088_1742_6596_2015_1_012059 crossref_primary_10_1039_C5NJ03572D crossref_primary_10_1021_acsami_2c20458 crossref_primary_10_1016_j_ijhydene_2016_08_040 crossref_primary_10_1039_D3CS01057K crossref_primary_10_1002_anie_201900863 crossref_primary_10_1002_chem_201600689 crossref_primary_10_1002_chem_201600566 crossref_primary_10_1016_j_jiec_2023_10_055 crossref_primary_10_1039_C8TA10483B crossref_primary_10_1002_cssc_201701438 crossref_primary_10_1016_j_memsci_2021_119339 crossref_primary_10_1039_D0FD00103A crossref_primary_10_1002_anie_201905172 crossref_primary_10_1021_acsami_8b01369 crossref_primary_10_1002_anie_201604023 crossref_primary_10_1007_s00723_023_01604_0 crossref_primary_10_1002_smll_201800826 crossref_primary_10_1021_acs_inorgchem_9b02026 crossref_primary_10_1002_ange_202008858 crossref_primary_10_1016_j_jcat_2016_07_021 crossref_primary_10_1002_slct_202404673 crossref_primary_10_1021_acsnano_8b06287 crossref_primary_10_1002_anie_201510024 crossref_primary_10_1073_pnas_2302561120 crossref_primary_10_1038_s41578_021_00287_y crossref_primary_10_1021_acs_inorgchem_3c02400 crossref_primary_10_1021_acsami_5b04315 crossref_primary_10_1038_s41467_019_12596_6 crossref_primary_10_12677_JOCR_2017_53020 crossref_primary_10_1016_j_saa_2023_122916 crossref_primary_10_1021_acsami_8b11037 crossref_primary_10_1016_j_jorganchem_2017_03_016 crossref_primary_10_2174_1570179419666211231113648 crossref_primary_10_1021_acsbiomaterials_1c00733 crossref_primary_10_1016_j_cej_2024_158519 crossref_primary_10_1080_03067319_2020_1853113 crossref_primary_10_1021_acsanm_2c00280 crossref_primary_10_1021_acsami_3c02929 |
Cites_doi | 10.1038/nmat3359 10.1021/cr400392k 10.1038/srep02562 10.1002/ange.201403980 10.1021/ja5048522 10.1021/ja500330a 10.1039/b904526k 10.1021/nl503007h 10.1038/nmat3343 10.1126/science.1192160 10.1039/B615006C 10.1038/nchem.402 10.1038/nchem.1272 10.1021/ja0753952 10.1002/anie.200300610 10.1039/C3SC53549E 10.1021/ja4064475 10.1002/ange.201202925 10.1021/ja00044a004 10.1073/pnas.0602439103 10.1126/science.283.5405.1148 10.1002/ange.201103155 10.1016/j.micromeso.2009.06.008 10.1002/anie.200705020 10.1002/ange.200390217 10.1021/cm802400f 10.1002/ange.200500156 10.1126/science.1067208 10.1039/c3cs35524a 10.1039/C3SC52633J 10.1002/anie.200804836 10.1039/b804680h 10.1021/ja0104352 10.1021/ja405078u 10.1021/ja501810r 10.1039/c0cs00147c 10.1016/S0020-1693(03)00246-9 10.1002/anie.200460712 10.1039/C3CS60472A 10.1039/c2jm16030g 10.1021/cm200737c 10.1002/ange.201209903 10.1002/ange.200705020 10.1002/adfm.201202996 10.1021/ic050452i 10.1039/b110015g 10.1021/cr200179u 10.1002/anie.201403980 10.1021/ja306869j 10.1038/nchem.1569 10.1126/science.1152516 10.1021/ja710123s 10.1002/anie.201206042 10.1126/science.1238339 10.1016/S1872-2067(10)60302-6 10.1126/science.1217544 10.1021/ja981669x 10.1038/ncomms5176 10.1038/35010088 10.1002/ange.200300610 10.1073/pnas.1305910110 10.1021/ar900116g 10.1021/ja053523l 10.1016/S1387-1811(02)00609-1 10.1016/j.micromeso.2008.11.020 10.1021/cg0498554 10.1126/science.1116275 10.1002/chem.201002381 10.1021/ar800124u 10.1002/anie.200500156 10.1021/ja300539p 10.1021/ja404514r 10.1002/anie.200390248 10.1021/cg3002866 10.1021/ja503218j 10.1038/nature02311 10.1021/ja4100244 10.1021/cr200216x 10.1016/j.micromeso.2011.12.010 10.1038/nchem.1982 10.1021/ja809459e 10.1038/nchem.834 10.1021/cg200271e 10.1126/science.1181761 10.1002/adma.201202116 10.1021/ja045123o 10.1002/anie.201202925 10.1021/ic049005d 10.1021/cen-v086n034.p013 10.1039/b817735j 10.1002/chem.201203145 10.1021/ic500722n 10.1039/B511962F 10.1021/ja808995d 10.1002/anie.201209903 10.1039/b104204c 10.1021/ja3085884 10.1002/ange.201206042 10.1021/ja076210u 10.1021/ar970151f 10.1002/anie.201103155 10.1021/ja8057953 10.1021/la100423a 10.1038/378703a0 10.1021/ja5063423 10.1021/ic500434a 10.1002/ange.200804836 10.1021/ja4005046 10.1126/science.1230444 10.1021/cr200167v 10.1002/anie.200300636 10.1038/46248 10.1039/b718443c 10.1021/cr200139g 10.1021/ja002102v 10.1021/ja1109826 10.1021/ja204818q 10.1021/ja802589u 10.1002/ange.200460712 10.1021/ja809985t |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS) |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 OTOTI |
DOI | 10.1002/anie.201410252 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3430 |
ExternalDocumentID | 1384831 3611341111 25586609 10_1002_anie_201410252 ANIE201410252 |
Genre | reviewArticle Journal Article |
GrantInformation_xml | – fundername: U.S. Department of Defense, Defense Threat Reduction Agency funderid: HDTRA 1‐12‐1‐0053 – fundername: King Abdulaziz City of Science and Technology – fundername: BASF SE – fundername: U.S. Department of Energy funderid: DE‐SC0001015 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OTOTI PQEST |
ID | FETCH-LOGICAL-c6762-7b3904a3ada29934674a9eb51a565ba1a5a48379777e5759a70a66c12b25b7503 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu May 18 22:30:32 EDT 2023 Fri Jul 11 02:19:32 EDT 2025 Fri Jul 11 10:53:20 EDT 2025 Sun Jul 13 05:01:04 EDT 2025 Thu Apr 03 07:01:54 EDT 2025 Thu Apr 24 22:57:41 EDT 2025 Tue Jul 01 03:26:46 EDT 2025 Wed Jan 22 17:11:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | secondary building units industrial chemistry heterogeneity defects metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6762-7b3904a3ada29934674a9eb51a565ba1a5a48379777e5759a70a66c12b25b7503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0001015 |
PMID | 25586609 |
PQID | 1659977538 |
PQPubID | 946352 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1384831 proquest_miscellaneous_1701100045 proquest_miscellaneous_1660929789 proquest_journals_1659977538 pubmed_primary_25586609 crossref_primary_10_1002_anie_201410252 crossref_citationtrail_10_1002_anie_201410252 wiley_primary_10_1002_anie_201410252_ANIE201410252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 9, 2015 |
PublicationDateYYYYMMDD | 2015-03-09 |
PublicationDate_xml | – month: 03 year: 2015 text: March 9, 2015 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany – name: United States |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2015 |
Publisher | WILEY‐VCH Verlag Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2014 2014; 53 126 2013; 3 2009 2009; 48 121 2013; 23 2003; 58 2011; 11 1999; 283 1995; 378 2008 2008; 47 120 2011; 17 2012; 12 2013; 5 1999; 402 2012; 11 2014; 136 2003; 353 2013 2013; 52 125 2013; 19 2014; 5 2010; 26 2012; 134 2001 2012 2012; 51 124 2000; 404 1992; 114 2008; 319 2007; 9 2014; 14 2005 2005; 44 117 2005; 309 2011; 23 2013; 110 2000; 122 2009; 120 2008; 20 2010; 2 2012; 335 2012; 24 2014; 6 2012; 22 1998; 120 2014; 53 2004; 43 2001; 123 2004 2004; 43 116 2007; 129 2010; 329 2010; 327 2010; 129 2002; 295 2006; 16 2013; 42 2011; 40 2009 2008 2013; 341 2003 2003; 42 115 2002 2009; 131 2004; 427 2012; 33 2005; 44 2014; 114 2011; 133 2014; 43 2010; 43 2012; 152 2012; 112 2005; 127 2005; 5 2013; 135 2011 2011; 50 123 2008; 41 2008; 86 2003; 423 2009; 1 2012; 4 1998; 31 2009; 38 2008; 130 2006; 103 e_1_2_7_108_2 e_1_2_7_3_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_123_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_116_2 e_1_2_7_90_2 e_1_2_7_112_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_71_3 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_98_3 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_120_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_40_3 e_1_2_7_12_2 e_1_2_7_63_3 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_48_3 e_1_2_7_29_2 e_1_2_7_109_2 e_1_2_7_117_2 e_1_2_7_113_2 e_1_2_7_70_3 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_3 e_1_2_7_59_2 e_1_2_7_5_2 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_121_2 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_2 e_1_2_7_118_3 e_1_2_7_118_2 e_1_2_7_114_2 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_96_3 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_122_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_2 e_1_2_7_65_3 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 e_1_2_7_119_2 e_1_2_7_115_2 e_1_2_7_111_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_38_2 |
References_xml | – volume: 5 start-page: 4176 year: 2014 publication-title: Nat. Commun. – volume: 42 start-page: 4881 year: 2013 end-page: 4893 publication-title: Chem. Soc. Rev. – volume: 123 start-page: 4368 year: 2001 end-page: 4369 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 1001 year: 2012 end-page: 1033 publication-title: Chem. Rev. – volume: 319 start-page: 939 year: 2008 end-page: 943 publication-title: Science – volume: 135 start-page: 17731 year: 2013 end-page: 17734 publication-title: J. Am. Chem. Soc. – volume: 329 start-page: 424 year: 2010 end-page: 428 publication-title: Science – volume: 47 120 start-page: 677 689 year: 2008 2008 end-page: 680 692 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 5979 year: 2014 end-page: 5983 publication-title: Nano Lett. – volume: 135 start-page: 5782 year: 2013 end-page: 5792 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2562 year: 2013 end-page: 1 publication-title: Sci. Rep. – volume: 295 start-page: 469 year: 2002 end-page: 472 publication-title: Science – volume: 24 start-page: 3970 year: 2012 end-page: 3974 publication-title: Adv. Mater. – volume: 136 start-page: 9627 year: 2014 end-page: 9636 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 3 year: 2012 end-page: 10 publication-title: Chin. J. Catal. – volume: 131 start-page: 3875 year: 2009 end-page: 3877 publication-title: J. Am. Chem. Soc. – volume: 402 start-page: 276 year: 1999 end-page: 279 publication-title: Nature – volume: 53 start-page: 5881 year: 2014 end-page: 5883 publication-title: Inorg. Chem. – volume: 335 start-page: 1606 year: 2012 end-page: 1610 publication-title: Science – volume: 120 start-page: 8571 year: 1998 end-page: 8572 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 474 year: 1998 end-page: 484 publication-title: Acc. Chem. Res. – volume: 23 start-page: 3132 year: 2011 end-page: 3134 publication-title: Chem. Mater. – volume: 103 start-page: 10186 year: 2006 end-page: 10191 publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 5300 year: 2010 end-page: 5303 publication-title: Langmuir – volume: 133 start-page: 1734 year: 2011 end-page: 1737 publication-title: J. Am. Chem. Soc. – volume: 152 start-page: 64 year: 2012 end-page: 70 publication-title: Microporous Mesoporous Mater. – volume: 43 start-page: 58 year: 2010 end-page: 67 publication-title: Acc. Chem. Res. – volume: 38 start-page: 1284 year: 2009 end-page: 1293 publication-title: Chem. Soc. Rev. – volume: 52 125 start-page: 2902 2974 year: 2013 2013 end-page: 2905 2977 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 1035 year: 2007 end-page: 1043 publication-title: Phys. Chem. Chem. Phys. – volume: 341 start-page: 974 year: 2013 publication-title: Science – volume: 136 start-page: 14465 year: 2014 end-page: 14471 publication-title: J. Am. Chem. Soc. – volume: 341 start-page: 882 year: 2013 end-page: 885 publication-title: Science – start-page: 1496 year: 2001 end-page: 1497 publication-title: Chem. Commun. – volume: 43 116 start-page: 5033 5143 year: 2004 2004 end-page: 5036 5146 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 2059 year: 2011 end-page: 2063 publication-title: Cryst. Growth Des. – volume: 135 start-page: 10525 year: 2013 end-page: 10532 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 13850 year: 2008 end-page: 13851 publication-title: J. Am. Chem. Soc. – start-page: 822 year: 2002 end-page: 823 publication-title: J. Chem. Soc. Dalton Trans. – volume: 4 start-page: 310 year: 2012 end-page: 316 publication-title: Nat. Chem. – volume: 427 start-page: 523 year: 2004 end-page: 527 publication-title: Nature – volume: 1 start-page: 705 year: 2009 end-page: 710 publication-title: Nat. Chem. – volume: 136 start-page: 4369 year: 2014 end-page: 4381 publication-title: J. Am. Chem. Soc. – start-page: 6162 year: 2009 end-page: 6164 publication-title: Chem. Commun. – volume: 43 start-page: 5468 year: 2014 end-page: 5512 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 6207 year: 2014 end-page: 6210 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2736 year: 2012 end-page: 2739 publication-title: Cryst. Growth Des. – volume: 44 start-page: 4912 year: 2005 end-page: 4914 publication-title: Inorg. Chem. – volume: 129 start-page: 15118 year: 2007 end-page: 15119 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 703 year: 1995 end-page: 706 publication-title: Nature – volume: 134 start-page: 14345 year: 2012 end-page: 14348 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 10561 year: 2014 end-page: 10564 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 20110 year: 2012 end-page: 20116 publication-title: J. Am. Chem. Soc. – volume: 43 116 start-page: 2334 2388 year: 2004 2004 end-page: 2375 2430 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 353 start-page: 151 year: 2003 end-page: 158 publication-title: Inorg. Chim. Acta – volume: 110 start-page: 17199 year: 2013 end-page: 17204 publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 1782 year: 2008 end-page: 1789 publication-title: Acc. Chem. Res. – volume: 129 start-page: 319 year: 2010 end-page: 329 publication-title: Microporous Mesoporous Mater. – volume: 5 start-page: 3729 year: 2014 end-page: 3734 publication-title: Chem. Sci. – volume: 6 start-page: 673 year: 2014 end-page: 680 publication-title: Nat. Chem. – year: 2009 – volume: 58 start-page: 105 year: 2003 end-page: 114 publication-title: Microporous Mesoporous Mater. – volume: 135 start-page: 11465 year: 2013 end-page: 11468 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 944 year: 2010 end-page: 948 publication-title: Nat. Chem. – volume: 5 start-page: 129 year: 2005 end-page: 135 publication-title: Cryst. Growth Des. – volume: 129 start-page: 15740 year: 2007 end-page: 15741 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 7211 year: 2012 end-page: 7214 publication-title: J. Am. Chem. Soc. – volume: 423 start-page: 705 year: 2003 end-page: 714 publication-title: Nature – volume: 53 start-page: 6914 year: 2014 end-page: 6919 publication-title: Inorg. Chem. – volume: 44 117 start-page: 2877 2937 year: 2005 2005 end-page: 2880 2940 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 3741 3829 year: 2013 2013 end-page: 3745 3833 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 404 start-page: 982 year: 2000 end-page: 986 publication-title: Nature – volume: 133 start-page: 11920 year: 2011 end-page: 11923 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 3814 year: 2009 end-page: 3815 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 818 year: 2013 end-page: 827 publication-title: Chem. Eur. J. – volume: 327 start-page: 846 year: 2010 end-page: 850 publication-title: Science – volume: 43 start-page: 6522 year: 2004 end-page: 6524 publication-title: Inorg. Chem. – volume: 114 start-page: 6974 year: 1992 end-page: 6979 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 12886 year: 2013 end-page: 12891 publication-title: J. Am. Chem. Soc. – volume: 283 start-page: 1148 year: 1999 end-page: 1150 publication-title: Science – volume: 11 start-page: 710 year: 2012 end-page: 716 publication-title: Nat. Mater. – volume: 5 start-page: 203 year: 2013 end-page: 211 publication-title: Nat. Chem. – volume: 48 121 start-page: 1766 1798 year: 2009 2009 end-page: 1770 1802 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 8034 8184 year: 2011 2011 end-page: 8037 8187 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 112 start-page: 1055 year: 2012 end-page: 1083 publication-title: Chem. Rev. – volume: 112 start-page: 836 year: 2012 end-page: 868 publication-title: Chem. Rev. – volume: 120 start-page: 325 year: 2009 end-page: 330 publication-title: Microporous Mesoporous Mater. – volume: 127 start-page: 1504 year: 2005 end-page: 1518 publication-title: J. Am. Chem. Soc. – volume: 86 start-page: 13 year: 2008 end-page: 16 publication-title: Chem. Eng. News – volume: 309 start-page: 2040 year: 2005 end-page: 2042 publication-title: Science – volume: 130 start-page: 1833 year: 2008 end-page: 1835 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 10313 year: 2012 end-page: 10321 publication-title: J. Mater. Chem. – volume: 11 start-page: 717 year: 2012 end-page: 723 publication-title: Nat. Mater. – volume: 127 start-page: 13744 year: 2005 end-page: 13745 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 4184 year: 2009 end-page: 4185 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1448 year: 2011 end-page: 1455 publication-title: Chem. Eur. J. – volume: 16 start-page: 626 year: 2006 end-page: 636 publication-title: J. Mater. Chem. – volume: 5 start-page: 32 year: 2014 end-page: 51 publication-title: Chem. Sci. – start-page: 1287 year: 2008 end-page: 1289 publication-title: Chem. Commun. – volume: 38 start-page: 1257 year: 2009 end-page: 1283 publication-title: Chem. Soc. Rev. – volume: 51 124 start-page: 8791 8921 year: 2012 2012 end-page: 8795 8925 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 13664 year: 2008 end-page: 13672 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 10645 10821 year: 2014 2014 end-page: 10648 10824 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 1343 year: 2014 end-page: 1370 publication-title: Chem. Rev. – volume: 42 115 start-page: 934 964 year: 2003 2003 end-page: 936 966 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 1081 year: 2011 end-page: 1106 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 970 year: 2012 end-page: 1000 publication-title: Chem. Rev. – volume: 23 start-page: 3790 year: 2013 end-page: 3798 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 7377 year: 2008 end-page: 7382 publication-title: Chem. Mater. – volume: 122 start-page: 11692 year: 2000 end-page: 11702 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_121_2 doi: 10.1038/nmat3359 – ident: e_1_2_7_62_2 doi: 10.1021/cr400392k – ident: e_1_2_7_20_2 doi: 10.1038/srep02562 – ident: e_1_2_7_59_3 doi: 10.1002/ange.201403980 – ident: e_1_2_7_117_2 doi: 10.1021/ja5048522 – ident: e_1_2_7_115_2 doi: 10.1021/ja500330a – ident: e_1_2_7_94_2 doi: 10.1039/b904526k – ident: e_1_2_7_116_2 doi: 10.1021/nl503007h – ident: e_1_2_7_95_2 doi: 10.1038/nmat3343 – ident: e_1_2_7_50_2 doi: 10.1126/science.1192160 – ident: e_1_2_7_46_2 doi: 10.1039/B615006C – ident: e_1_2_7_13_2 doi: 10.1038/nchem.402 – ident: e_1_2_7_111_2 doi: 10.1038/nchem.1272 – ident: e_1_2_7_66_2 doi: 10.1021/ja0753952 – ident: e_1_2_7_25_2 doi: 10.1002/anie.200300610 – ident: e_1_2_7_53_2 doi: 10.1039/C3SC53549E – ident: e_1_2_7_79_2 doi: 10.1021/ja4064475 – ident: e_1_2_7_51_2 – ident: e_1_2_7_96_3 doi: 10.1002/ange.201202925 – ident: e_1_2_7_105_2 – ident: e_1_2_7_74_2 doi: 10.1021/ja00044a004 – ident: e_1_2_7_64_2 doi: 10.1073/pnas.0602439103 – ident: e_1_2_7_91_2 doi: 10.1126/science.283.5405.1148 – ident: e_1_2_7_70_3 doi: 10.1002/ange.201103155 – ident: e_1_2_7_87_2 doi: 10.1016/j.micromeso.2009.06.008 – ident: e_1_2_7_1_2 – ident: e_1_2_7_48_2 doi: 10.1002/anie.200705020 – ident: e_1_2_7_63_3 doi: 10.1002/ange.200390217 – ident: e_1_2_7_57_2 doi: 10.1021/cm802400f – ident: e_1_2_7_65_3 doi: 10.1002/ange.200500156 – ident: e_1_2_7_10_2 doi: 10.1126/science.1067208 – ident: e_1_2_7_5_2 – ident: e_1_2_7_32_2 doi: 10.1039/c3cs35524a – ident: e_1_2_7_29_2 doi: 10.1039/C3SC52633J – ident: e_1_2_7_98_2 doi: 10.1002/anie.200804836 – ident: e_1_2_7_124_2 doi: 10.1039/b804680h – ident: e_1_2_7_69_2 doi: 10.1021/ja0104352 – ident: e_1_2_7_83_2 doi: 10.1021/ja405078u – ident: e_1_2_7_22_2 doi: 10.1021/ja501810r – ident: e_1_2_7_100_2 doi: 10.1039/c0cs00147c – ident: e_1_2_7_43_2 doi: 10.1016/S0020-1693(03)00246-9 – ident: e_1_2_7_40_2 doi: 10.1002/anie.200460712 – ident: e_1_2_7_109_2 doi: 10.1039/C3CS60472A – ident: e_1_2_7_81_2 doi: 10.1039/c2jm16030g – ident: e_1_2_7_110_2 doi: 10.1021/cm200737c – ident: e_1_2_7_118_3 doi: 10.1002/ange.201209903 – ident: e_1_2_7_48_3 doi: 10.1002/ange.200705020 – ident: e_1_2_7_108_2 doi: 10.1002/adfm.201202996 – ident: e_1_2_7_38_2 doi: 10.1021/ic050452i – ident: e_1_2_7_42_2 doi: 10.1039/b110015g – ident: e_1_2_7_93_2 doi: 10.1021/cr200179u – ident: e_1_2_7_59_2 doi: 10.1002/anie.201403980 – ident: e_1_2_7_119_2 doi: 10.1021/ja306869j – ident: e_1_2_7_120_2 doi: 10.1038/nchem.1569 – ident: e_1_2_7_55_2 doi: 10.1126/science.1152516 – ident: e_1_2_7_68_2 doi: 10.1021/ja710123s – ident: e_1_2_7_71_2 doi: 10.1002/anie.201206042 – ident: e_1_2_7_35_2 doi: 10.1126/science.1238339 – ident: e_1_2_7_123_2 doi: 10.1016/S1872-2067(10)60302-6 – ident: e_1_2_7_16_2 doi: 10.1126/science.1217544 – ident: e_1_2_7_47_2 – ident: e_1_2_7_3_2 doi: 10.1021/ja981669x – ident: e_1_2_7_44_2 – ident: e_1_2_7_86_2 doi: 10.1038/ncomms5176 – ident: e_1_2_7_60_2 – ident: e_1_2_7_9_2 doi: 10.1038/35010088 – ident: e_1_2_7_25_3 doi: 10.1002/ange.200300610 – ident: e_1_2_7_112_2 – ident: e_1_2_7_19_2 doi: 10.1073/pnas.1305910110 – ident: e_1_2_7_56_2 doi: 10.1021/ar900116g – ident: e_1_2_7_102_2 doi: 10.1021/ja053523l – ident: e_1_2_7_8_2 – ident: e_1_2_7_88_2 doi: 10.1016/S1387-1811(02)00609-1 – ident: e_1_2_7_14_2 doi: 10.1016/j.micromeso.2008.11.020 – ident: e_1_2_7_41_2 doi: 10.1021/cg0498554 – ident: e_1_2_7_12_2 doi: 10.1126/science.1116275 – ident: e_1_2_7_54_2 – ident: e_1_2_7_99_2 – ident: e_1_2_7_107_2 doi: 10.1002/chem.201002381 – ident: e_1_2_7_45_2 doi: 10.1021/ar800124u – ident: e_1_2_7_65_2 doi: 10.1002/anie.200500156 – ident: e_1_2_7_17_2 doi: 10.1021/ja300539p – ident: e_1_2_7_23_2 – ident: e_1_2_7_85_2 doi: 10.1021/ja404514r – ident: e_1_2_7_63_2 doi: 10.1002/anie.200390248 – ident: e_1_2_7_67_2 doi: 10.1021/cg3002866 – ident: e_1_2_7_37_2 – ident: e_1_2_7_80_2 doi: 10.1021/ja503218j – ident: e_1_2_7_11_2 doi: 10.1038/nature02311 – ident: e_1_2_7_52_2 doi: 10.1021/ja4100244 – ident: e_1_2_7_26_2 doi: 10.1021/cr200216x – ident: e_1_2_7_114_2 doi: 10.1016/j.micromeso.2011.12.010 – ident: e_1_2_7_21_2 doi: 10.1038/nchem.1982 – ident: e_1_2_7_58_2 doi: 10.1021/ja809459e – ident: e_1_2_7_15_2 doi: 10.1038/nchem.834 – ident: e_1_2_7_73_2 doi: 10.1021/cg200271e – ident: e_1_2_7_34_2 doi: 10.1126/science.1181761 – ident: e_1_2_7_103_2 doi: 10.1002/adma.201202116 – ident: e_1_2_7_76_2 doi: 10.1021/ja045123o – ident: e_1_2_7_96_2 doi: 10.1002/anie.201202925 – ident: e_1_2_7_39_2 doi: 10.1021/ic049005d – ident: e_1_2_7_7_2 doi: 10.1021/cen-v086n034.p013 – ident: e_1_2_7_61_2 doi: 10.1039/b817735j – ident: e_1_2_7_31_2 doi: 10.1002/chem.201203145 – ident: e_1_2_7_90_2 doi: 10.1021/ic500722n – ident: e_1_2_7_6_2 doi: 10.1039/B511962F – ident: e_1_2_7_30_2 – ident: e_1_2_7_78_2 doi: 10.1021/ja808995d – ident: e_1_2_7_118_2 doi: 10.1002/anie.201209903 – ident: e_1_2_7_36_2 doi: 10.1039/b104204c – ident: e_1_2_7_89_2 doi: 10.1021/ja3085884 – ident: e_1_2_7_71_3 doi: 10.1002/ange.201206042 – ident: e_1_2_7_104_2 doi: 10.1021/ja076210u – ident: e_1_2_7_4_2 doi: 10.1021/ar970151f – ident: e_1_2_7_70_2 doi: 10.1002/anie.201103155 – ident: e_1_2_7_113_2 doi: 10.1021/ja8057953 – ident: e_1_2_7_75_2 doi: 10.1021/la100423a – ident: e_1_2_7_2_2 doi: 10.1038/378703a0 – ident: e_1_2_7_84_2 – ident: e_1_2_7_92_2 doi: 10.1021/ja5063423 – ident: e_1_2_7_77_2 doi: 10.1021/ic500434a – ident: e_1_2_7_98_3 doi: 10.1002/ange.200804836 – ident: e_1_2_7_18_2 doi: 10.1021/ja4005046 – ident: e_1_2_7_28_2 doi: 10.1126/science.1230444 – ident: e_1_2_7_101_2 doi: 10.1021/cr200167v – ident: e_1_2_7_24_2 doi: 10.1002/anie.200300636 – ident: e_1_2_7_72_2 doi: 10.1038/46248 – ident: e_1_2_7_82_2 doi: 10.1039/b718443c – ident: e_1_2_7_27_2 doi: 10.1021/cr200139g – ident: e_1_2_7_97_2 doi: 10.1021/ja002102v – ident: e_1_2_7_106_2 doi: 10.1021/ja1109826 – ident: e_1_2_7_33_2 doi: 10.1021/ja204818q – ident: e_1_2_7_122_2 doi: 10.1021/ja802589u – ident: e_1_2_7_40_3 doi: 10.1002/ange.200460712 – ident: e_1_2_7_49_2 doi: 10.1021/ja809985t – ident: e_1_2_7_125_2 |
SSID | ssj0028806 |
Score | 2.6219811 |
SecondaryResourceType | review_article |
Snippet | Metal–organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF... Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20 000 MOF... Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3417 |
SubjectTerms | Anniversaries Backbone Buildings Construction Crystallinity defects Heterogeneity industrial chemistry membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Metal-organic frameworks Porosity secondary building units Strategy |
Title | “Heterogeneity within Order” in Metal–Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201410252 https://www.ncbi.nlm.nih.gov/pubmed/25586609 https://www.proquest.com/docview/1659977538 https://www.proquest.com/docview/1660929789 https://www.proquest.com/docview/1701100045 https://www.osti.gov/biblio/1384831 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CXpJLm_TpPIoLgZ6UWPJDq0shhCzbQhIoDeQmRrIMpcVburuXnPY_5Jr8uf0lnbHXTrf0Ae3JMpaMHjOaT_bMNwCHLvNkGFQQlTZaZFKVwiWVFqYsHKYKnUaOHT6_KMZX2fvr_PqHKP6WH6L_4Maa0ezXrODopscPpKEcgc2uWRmZyJw3YXbYYlT0oeePUiScbXhRmgrOQt-xNibqeL35mlUaTEi7foU41wFsY4FGjwG7vreOJ5-P5jN35G9-onX8n8Ftw6MVPI1PWnnagY1QP4HN0y4r3FN4u1zcjdmFZkKSFwjCx_wl91MdXzKH53JxH1P5PBCkXy5u20BPH486D7DpM7ganX08HYtVDgbhC9onhXapSTJMsUQyXCnnJkETXC6RkKBDuiBz0hOK1IFzfaJOsCi8VE7ljv-RPodBPanDS4hVZZQuUydLOsRhpUziK5l7LLDSMtc6AtGtgfUrgnLOk_HFttTKyvKs2H5WInjT1__aUnP8tuYeL6klUMHMuJ5diPzMynRIfZcR7HcrbVcKPLWyyA0NisxBBK_7xzTX_D8F6zCZc50iIXSph-YPdXRDykfAOYIXrRT1naXT3JBfEYFqZOEvo7AnF-_O-rvdf2m0B1tUzhsfOrMPg9m3eTggUDVzrxrF-Q6dixfU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VcCiX8m6XFlgkECe3a-_D2QNIVdsooU2QUCv1ZmyvV0KgDSKJUHvKf-BKf0T_Cj8hv4SZfaEgHhJSD5z25bX8mPHM2DPfADw1kUXBIBzLZSpZxEXGTJBLlmaJ0aHQRmqKHR6Okv5J9Oo0Pl2ByyYWpsKHaDfciDPK9ZoYnDakd36ghlIINvlmRSgjY1H7VR66s89otU1eDPZxip8J0Ts43uuzOrEAswkyP5MGLf1IhzrTuBqHlHBDp87EXKN6YzReNAGto2okHSWw1DLQSWK5MCI2dPCH9V6D65RGnOD699-0iFUC2aEKaApDRnnvG5zIQOwst3dJDnbGyM-_0nGXVeZS5vVuwrdmtCpXl_fbs6nZtuc_AUn-V8N5C9ZqDdzfrVjmNqy44g6s7jWJ7-7Cy8X8a5-8hMbIXA6tFJ82q98V_muCKV3ML3y8Hzq0WhbzL1Usq_V7jZPb5B6cXEnz70OnGBduA3yRp0JmoeEZ2qk6F2lgcx5bnehc8lhKD1gz6crWGOyUCuSDqtCjhaJZUO0sePC8Lf-xQh_5bclNoiGFehOB_1rykrJTxcMutp17sNWQlqrXqIniSZxip1DiefCk_YxjTUdGunDjGZVJAlSgZTf9QxlZ4g6ibeDBekW2bWPRYO1SFR6Ikvj-0gu1OxoctE8P_uWnx7DaPx4eqaPB6HATbuD7uHQZTLegM_00cw9Rh5yaRyXX-vD2qun6O7vBclY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIAEXyrtLCywSiNO2a-_D8QGkqmmUUBoQolJvru31SqjVpmoSITjlP3At_4G_wl_IL2FmXyiIh4TUA6d9eS0_Zjwz9sw3AE9MbFEwcBfkQoogZjwLTJiLQGap0RHXRmiKHd4fpYOD-OVhcrgCX5tYmAofot1wI84o12ti8NMs3_oBGkoR2OSaFaOITHjtVrnnPn5Ao23yfNjDGX7KeX_33c4gqPMKBDZF3g-EQUM_1pHONC7GEeXb0NKZhGnUbozGiyacddSMhKP8lVqEOk0t44Ynhs79sN5LcDlOQ0nJInpvW8AqjtxQxTNFUUBp7xuYyJBvLbd3SQx2xsjOv1JxlzXmUuT1V-FbM1iVp8vx5mxqNu2nn3Ak_6fRvAHXa_3b364Y5iasuOIWXN1p0t7dhheL-fmAfITGyFoObRSftqrfF_5rAildzL_4eL_v0GZZzD9XkazW7zcubpM7cHAhzb8LnWJcuDXweS65yCLDMrRSdc5laHOWWJ3qXLBECA-CZs6VrRHYKRHIiaqwo7miWVDtLHjwrC1_WmGP_LbkOpGQQq2JoH8t-UjZqWJRF9vOPNhoKEvVK9REsTSR2CmUdx48bj_jWNOBkS7ceEZlkMS5FF35hzKiRB1Ey8CDexXVto1Fc7VLVXjAS9r7Sy_U9mi42z7d_5efHsGVN72-ejUc7a3DNXydlP6CcgM607OZe4AK5NQ8LHnWh6OLJuvvyPZxBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%22Heterogeneity+within+order%22+in+metal-organic+frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Furukawa%2C+Hiroyasu&rft.au=M%C3%BCller%2C+Ulrich&rft.au=Yaghi%2C+Omar+M&rft.date=2015-03-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=54&rft.issue=11&rft.spage=3417&rft_id=info:doi/10.1002%2Fanie.201410252&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |