Global expansion and redistribution of Aedes-borne virus transmission risk with climate change
Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature,...
Saved in:
Published in | PLoS neglected tropical diseases Vol. 13; no. 3; p. e0007213 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios. |
---|---|
AbstractList | Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios. Forecasting the impacts of climate change on Aedes-borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3–34.0°C for Ae. aegypti; 19.9–29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios. Forecasting the impacts of climate change on Aedes -borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae . albopictus , as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3–34.0°C for Ae . aegypti ; 19.9–29.4°C for Ae . albopictus ), we can expect poleward shifts in Aedes -borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae . aegypti , but not by Ae . albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae . albopictus , most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae . albopictus , we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes -borne viruses, the most extreme increases in Ae . albopictus transmission are predicted to occur at intermediate climate change scenarios. The established scientific consensus indicates that climate change will severely exacerbate the risk and burden of Aedes- transmitted viruses, including dengue, chikungunya, Zika, and other significant threats to global health security. Here, we show more subtle impacts of climate change on transmission, caused primarily by differences between the more heat-tolerant Aedes aegypti and the more heat-limited Ae . albopictus . Within the next century, nearly a billion people could face their first exposure to viral transmission from either mosquito in the worst-case scenario, mainly in Europe and high-elevation tropical and subtropical regions. However, while year-round transmission potential from Ae . aegypti is likely to expand (particularly in south Asia and sub-Saharan Africa), Ae . albopictus transmission potential is likely to decline substantially in the tropics, marking a global shift towards seasonal risk as the tropics eventually become too hot for transmission by Ae . albopictus . Complete mitigation of climate change to a pre-industrial baseline may protect almost a billion people from arbovirus range expansions; however, middle-of-the-road mitigation could produce the greatest expansion in the potential for viral transmission by Ae . albopictus . In any scenario, mitigating climate change would shift the projected burden of both dengue and chikungunya (and potentially other Aedes transmitted viruses) from higher-income regions back onto the tropics, where transmission might otherwise begin to decline due to rising temperatures. |
Audience | Academic |
Author | Mordecai, Erin A Carlson, Colin J Johnson, Leah R Ryan, Sadie J |
AuthorAffiliation | 1 Department of Geography, University of Florida, Gainesville, Florida, United States of America 3 School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa 2 Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America 7 Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America 5 National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America 6 Department of Biology, Stanford University, Stanford, California, United States of America 4 Department of Biology, Georgetown University, Washington, DC, United States of America Cary Institute of Ecosystem Studies, UNITED STATES |
AuthorAffiliation_xml | – name: 1 Department of Geography, University of Florida, Gainesville, Florida, United States of America – name: 2 Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America – name: Cary Institute of Ecosystem Studies, UNITED STATES – name: 4 Department of Biology, Georgetown University, Washington, DC, United States of America – name: 7 Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America – name: 6 Department of Biology, Stanford University, Stanford, California, United States of America – name: 3 School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa – name: 5 National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America |
Author_xml | – sequence: 1 givenname: Sadie J orcidid: 0000-0002-4308-6321 surname: Ryan fullname: Ryan, Sadie J organization: School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa – sequence: 2 givenname: Colin J surname: Carlson fullname: Carlson, Colin J organization: National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America – sequence: 3 givenname: Erin A surname: Mordecai fullname: Mordecai, Erin A organization: Department of Biology, Stanford University, Stanford, California, United States of America – sequence: 4 givenname: Leah R surname: Johnson fullname: Johnson, Leah R organization: Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30921321$$D View this record in MEDLINE/PubMed |
BookMark | eNptUtFu0zAUjdAQ2wp_gCASEuIlxY7jJH6ZVE0wJk3iBV6xbhy7dXHtYicD_p7bNptaNOUh0c055x4fn8vszAevs-w1JXPKGvpxHcbowc23fujnhJCmpOxZdkEF40XZMH529H2eXaa0JoQL3tIX2TkjAtElvch-3LjQgcv1ny34ZIPPwfd51L1NQ7TdOOxGweQL3etUdCF6nd_bOKZ8iEjY2LQnRZt-5r_tsMqVsxsYdK5W4Jf6ZfbcgEv61fSeZd8_f_p2_aW4-3pze724K1Td8KHQpqyEqtsOCGOkBkpUiSNjGlMzWgpDWCcqdMxL2gIYYKoXrK5Y0_OaiYrNsrcH3a0LSU7RJFkiAfkUQbPs9oDoA6zlNqLL-FcGsHI_CHEpIQ5WOS1B8LIEozitRGVq6JSgWuPevmHQgkGtq2nb2G10r7THMNyJ6Okfb1dyGe4lOm4rzlHgwyQQw69Rp0FikEo7B16Hcecb77NphGgR-u4_6NOnm1BLwANYbwLuVTtRucArZxxjbRA1fwKFT683VmG9jMX5CeH9EWGlwQ2rFNy-FekUWB2AKoaUojaPYVAid3V9cC13dZVTXZH25jjIR9JDP9k_u-ro2A |
CitedBy_id | crossref_primary_10_1016_j_softx_2020_100638 crossref_primary_10_1016_j_worlddev_2020_105214 crossref_primary_10_1093_cid_ciac697 crossref_primary_10_1371_journal_pgph_0002598 crossref_primary_10_3389_fevo_2020_566281 crossref_primary_10_3390_biology11101536 crossref_primary_10_1002_oa_2862 crossref_primary_10_1016_S2542_5196_19_30114_7 crossref_primary_10_1186_s13750_023_00296_0 crossref_primary_10_1186_s12936_023_04829_3 crossref_primary_10_1111_bjh_19344 crossref_primary_10_1111_trf_16950 crossref_primary_10_1029_2020GL091753 crossref_primary_10_3390_insects13040371 crossref_primary_10_1007_s00436_023_08065_1 crossref_primary_10_1098_rspb_2023_2457 crossref_primary_10_1016_j_lana_2022_100310 crossref_primary_10_1016_j_semperi_2023_151841 crossref_primary_10_1093_infdis_jiab541 crossref_primary_10_3390_v15040851 crossref_primary_10_3390_tropicalmed8040187 crossref_primary_10_1016_j_indcrop_2022_114780 crossref_primary_10_1007_s11356_021_15008_9 crossref_primary_10_3389_fbioe_2022_821428 crossref_primary_10_3390_challe14010008 crossref_primary_10_1007_s10584_021_03300_z crossref_primary_10_1038_s41467_020_16010_4 crossref_primary_10_1016_j_virusres_2020_198288 crossref_primary_10_1126_scitranslmed_adf1093 crossref_primary_10_1128_msphere_00687_21 crossref_primary_10_7554_eLife_69630 crossref_primary_10_1186_s12936_023_04531_4 crossref_primary_10_1016_S1473_3099_19_30547_X crossref_primary_10_1038_s41558_023_01746_w crossref_primary_10_1080_17565529_2021_1951644 crossref_primary_10_1002_jmv_29394 crossref_primary_10_1111_ele_13520 crossref_primary_10_1186_s13071_022_05215_9 crossref_primary_10_1371_journal_pntd_0009465 crossref_primary_10_3390_ijerph192013555 crossref_primary_10_3390_vaccines12010087 crossref_primary_10_1111_gcb_15966 crossref_primary_10_1016_j_jns_2020_117281 crossref_primary_10_1016_j_mjafi_2019_07_003 crossref_primary_10_17159_2254_8854_2022_a11932 crossref_primary_10_1186_s12942_020_00241_1 crossref_primary_10_3390_cli11030062 crossref_primary_10_1093_jme_tjab230 crossref_primary_10_1186_s12929_022_00833_y crossref_primary_10_3390_s22020695 crossref_primary_10_7554_eLife_69628 crossref_primary_10_1371_journal_pntd_0010334 crossref_primary_10_1111_tbed_14113 crossref_primary_10_1038_s41598_023_50346_3 crossref_primary_10_1289_EHP12772 crossref_primary_10_12688_wellcomeopenres_19957_1 crossref_primary_10_3390_tropicalmed8100469 crossref_primary_10_1007_s11356_022_18536_0 crossref_primary_10_1371_journal_pntd_0007969 crossref_primary_10_1016_j_joclim_2021_100015 crossref_primary_10_1038_s41467_023_43954_0 crossref_primary_10_1111_1365_2435_14065 crossref_primary_10_1007_s10653_022_01429_z crossref_primary_10_1016_j_jns_2020_117287 crossref_primary_10_3389_fevo_2020_00271 crossref_primary_10_3390_insects12030213 crossref_primary_10_3390_ijerph21010041 crossref_primary_10_1007_s10393_024_01682_x crossref_primary_10_1093_jisesa_ieaa077 crossref_primary_10_1098_rsbl_2022_0365 crossref_primary_10_1371_journal_pclm_0000243 crossref_primary_10_3390_ijerph18094474 crossref_primary_10_1093_jme_tjac110 crossref_primary_10_3390_tropicalmed7120431 crossref_primary_10_1186_s13071_021_04806_2 crossref_primary_10_2166_wh_2023_280 crossref_primary_10_1146_annurev_resource_111820_024214 crossref_primary_10_1186_s12936_022_04417_x crossref_primary_10_1016_j_jobb_2020_10_002 crossref_primary_10_1186_s13071_022_05520_3 crossref_primary_10_1017_S0007485323000561 crossref_primary_10_1093_aesa_saab011 crossref_primary_10_3390_v15091869 crossref_primary_10_1016_S0140_6736_21_01787_6 crossref_primary_10_1080_20477724_2024_2369377 crossref_primary_10_1002_eji_201948420 crossref_primary_10_1007_s10900_023_01258_w crossref_primary_10_12688_wellcomeopenres_19278_1 crossref_primary_10_3390_tropicalmed5020096 crossref_primary_10_1002_pan3_10495 crossref_primary_10_1016_j_epidem_2023_100667 crossref_primary_10_1016_j_lanepe_2020_100017 crossref_primary_10_3390_insects13070595 crossref_primary_10_1513_AnnalsATS_202110_1193OC crossref_primary_10_3390_microorganisms11123006 crossref_primary_10_3390_v12091017 crossref_primary_10_1038_s41467_021_21496_7 crossref_primary_10_1128_mbio_02495_23 crossref_primary_10_3389_fitd_2022_953212 crossref_primary_10_1002_ece3_8466 crossref_primary_10_1016_j_scitotenv_2024_173054 crossref_primary_10_3390_tropicalmed4030101 crossref_primary_10_3390_ijerph192013656 crossref_primary_10_1542_peds_2023_065505 crossref_primary_10_3389_fgeed_2020_00001 crossref_primary_10_1016_j_coviro_2020_05_001 crossref_primary_10_1088_1755_1315_1314_1_012071 crossref_primary_10_1093_conphys_coab074 crossref_primary_10_1016_j_clp_2021_05_004 crossref_primary_10_1088_1748_9326_ac3589 crossref_primary_10_2903_j_efsa_2020_6297 crossref_primary_10_3389_fpubh_2021_715759 crossref_primary_10_1136_bmjgh_2021_007842 crossref_primary_10_1002_ps_6870 crossref_primary_10_1021_acssuschemeng_3c00334 crossref_primary_10_1371_journal_pntd_0008118 crossref_primary_10_3390_w14010031 crossref_primary_10_1111_gcb_16033 crossref_primary_10_1155_2023_3823879 crossref_primary_10_1186_s41256_023_00306_1 crossref_primary_10_1016_j_actatropica_2023_106829 crossref_primary_10_1098_rstb_2022_0018 crossref_primary_10_1007_s10393_024_01684_9 crossref_primary_10_1016_j_envint_2020_106272 crossref_primary_10_1038_s41598_023_35452_6 crossref_primary_10_1007_s40572_020_00290_5 crossref_primary_10_1128_jvi_01949_22 crossref_primary_10_1371_journal_ppat_1009433 crossref_primary_10_1371_journal_pntd_0008066 crossref_primary_10_3390_rs14195052 crossref_primary_10_4269_ajtmh_20_0419 crossref_primary_10_1289_EHP5899 crossref_primary_10_1016_j_vaccine_2024_04_009 crossref_primary_10_1136_bmj_m3389 crossref_primary_10_1186_s13071_022_05473_7 crossref_primary_10_1038_s41597_023_02170_7 crossref_primary_10_1186_s13071_024_06347_w crossref_primary_10_1016_j_bmcl_2020_126965 crossref_primary_10_1038_s43017_024_00527_z crossref_primary_10_1016_j_actatropica_2023_107001 crossref_primary_10_1016_j_ecolmodel_2022_110123 crossref_primary_10_1016_j_epidem_2023_100721 crossref_primary_10_1007_s42690_020_00367_6 crossref_primary_10_7554_eLife_80489 crossref_primary_10_1088_1748_9326_abeadd crossref_primary_10_1016_j_actatropica_2023_107106 crossref_primary_10_3390_diseases12020031 crossref_primary_10_3389_fcell_2023_1085913 crossref_primary_10_3390_jcm13061711 crossref_primary_10_1080_13683500_2020_1825351 crossref_primary_10_1016_j_pt_2019_06_010 crossref_primary_10_1371_journal_pntd_0008614 crossref_primary_10_1007_s12035_020_02250_4 crossref_primary_10_1186_s12942_023_00349_0 crossref_primary_10_1002_hpm_3180 crossref_primary_10_1016_j_joclim_2022_100162 crossref_primary_10_1016_j_mmifmc_2023_09_003 crossref_primary_10_1099_jgv_0_001518 crossref_primary_10_1016_j_biombioe_2024_107122 crossref_primary_10_1016_S2542_5196_24_00021_4 crossref_primary_10_1016_S2542_5196_20_30246_1 crossref_primary_10_3390_v13050891 crossref_primary_10_47102_annals_acadmedsg_V48N6p188 crossref_primary_10_1038_s41467_024_48465_0 crossref_primary_10_1111_mec_16985 crossref_primary_10_1042_ETLS20200187 crossref_primary_10_1136_bmj_m797 crossref_primary_10_1186_s40249_023_01083_2 crossref_primary_10_1371_journal_pone_0249044 crossref_primary_10_1038_s41467_020_20416_5 crossref_primary_10_1371_journal_pntd_0009931 crossref_primary_10_3389_fpubh_2023_1018293 crossref_primary_10_1088_1748_9326_ac5271 crossref_primary_10_1186_s13071_024_06300_x crossref_primary_10_1371_journal_ppat_1011727 crossref_primary_10_1016_j_epidem_2022_100588 crossref_primary_10_1289_EHP10382 crossref_primary_10_1111_gcb_15269 crossref_primary_10_1016_j_biocontrol_2019_104146 crossref_primary_10_3390_pathogens10060708 crossref_primary_10_1002_ps_6390 crossref_primary_10_1099_jgv_0_001885 crossref_primary_10_1111_1468_2427_13173 crossref_primary_10_1186_s13071_022_05401_9 crossref_primary_10_1371_journal_pntd_0010478 crossref_primary_10_1371_journal_pclm_0000312 crossref_primary_10_1007_s00382_023_06748_0 crossref_primary_10_1186_s12879_024_09142_1 crossref_primary_10_3389_fmicb_2020_584846 crossref_primary_10_1371_journal_pone_0304959 crossref_primary_10_1111_gcb_15384 crossref_primary_10_1128_jvi_01507_23 crossref_primary_10_2222_jsv_70_3 crossref_primary_10_1371_journal_pntd_0008541 crossref_primary_10_1371_journal_pntd_0010069 crossref_primary_10_52707_1081_1710_47_1_117 crossref_primary_10_1371_journal_pntd_0011713 crossref_primary_10_1073_pnas_2003201118 crossref_primary_10_1093_trstmh_traa192 crossref_primary_10_1111_ijd_14759 crossref_primary_10_1016_j_kisu_2021_01_007 crossref_primary_10_3389_fpubh_2023_1252910 crossref_primary_10_1080_20008686_2020_1782042 crossref_primary_10_1186_s12889_023_17277_0 crossref_primary_10_1111_geb_13390 crossref_primary_10_3390_v14050969 crossref_primary_10_1038_s41598_022_14096_y crossref_primary_10_1016_S2542_5196_23_00056_6 crossref_primary_10_1080_1040841X_2021_1879006 crossref_primary_10_1016_j_jbc_2021_100438 crossref_primary_10_1038_s41597_019_0295_z crossref_primary_10_3390_microorganisms11051249 crossref_primary_10_1186_s40794_023_00195_9 crossref_primary_10_1136_bmjopen_2023_074385 crossref_primary_10_1016_j_jinf_2020_10_038 crossref_primary_10_1016_j_lanepe_2021_100230 crossref_primary_10_1016_S2542_5196_20_30001_2 crossref_primary_10_3389_fenvs_2023_1128831 crossref_primary_10_1038_s41598_023_48089_2 crossref_primary_10_14423_SMJ_0000000000001152 crossref_primary_10_3389_fncel_2021_695106 crossref_primary_10_3389_fitd_2021_676905 crossref_primary_10_1016_j_isci_2024_109934 crossref_primary_10_1377_hlthaff_2020_01125 crossref_primary_10_1093_infdis_jiac246 crossref_primary_10_1088_1748_9326_ab9141 crossref_primary_10_3390_urbansci6020036 crossref_primary_10_1038_s41579_024_01026_0 crossref_primary_10_2987_20_6924_1 crossref_primary_10_3390_su14158975 crossref_primary_10_3389_fpubh_2023_1332334 crossref_primary_10_1016_j_onehlt_2022_100452 crossref_primary_10_3389_frsc_2021_707888 crossref_primary_10_3390_ijerph192013393 crossref_primary_10_1016_j_apm_2022_10_027 crossref_primary_10_1371_journal_pntd_0010291 crossref_primary_10_3390_tropicalmed8040238 crossref_primary_10_1007_s00436_020_06638_y crossref_primary_10_1093_femspd_ftab043 crossref_primary_10_7326_L19_0756 crossref_primary_10_1007_s11908_023_00799_4 crossref_primary_10_1038_s42003_023_05180_8 crossref_primary_10_1038_s41598_022_26577_1 crossref_primary_10_1111_ele_13335 crossref_primary_10_1098_rspb_2020_0119 crossref_primary_10_1111_mve_12619 crossref_primary_10_1007_s10393_023_01646_7 crossref_primary_10_1016_j_envres_2019_108637 crossref_primary_10_1002_ece3_9824 crossref_primary_10_1016_j_crpvbd_2023_100139 crossref_primary_10_1093_jtm_taaa207 crossref_primary_10_1016_S2468_2667_20_30211_5 crossref_primary_10_1155_2024_4775361 crossref_primary_10_1177_2049936121991374 crossref_primary_10_1016_j_meegid_2022_105296 crossref_primary_10_1371_journal_pntd_0010839 crossref_primary_10_3389_fimmu_2020_00592 crossref_primary_10_1007_s00442_023_05481_z crossref_primary_10_1016_j_envres_2022_114537 crossref_primary_10_7554_eLife_55619 crossref_primary_10_3389_fevo_2022_999169 crossref_primary_10_3390_tropicalmed8050241 crossref_primary_10_1126_science_abb1702 crossref_primary_10_1007_s10989_020_10020_y crossref_primary_10_1038_s41598_019_50135_x crossref_primary_10_1186_s13071_023_05966_z crossref_primary_10_1038_s41598_023_27927_3 crossref_primary_10_1093_biosci_biab052 crossref_primary_10_1093_jme_tjac186 crossref_primary_10_1111_ecog_06714 crossref_primary_10_1016_j_ekir_2023_07_002 crossref_primary_10_3389_fnbeh_2022_778264 crossref_primary_10_3390_tropicalmed6020095 crossref_primary_10_1128_mbio_01108_23 crossref_primary_10_1038_s41467_022_29613_w crossref_primary_10_1093_jme_tjae008 crossref_primary_10_1155_2023_2131801 crossref_primary_10_1186_s13071_021_04826_y crossref_primary_10_3390_pathogens12020220 crossref_primary_10_1186_s12879_023_08717_8 crossref_primary_10_3390_v16060960 crossref_primary_10_1016_j_jip_2021_107644 crossref_primary_10_1098_rstb_2022_0011 crossref_primary_10_1056_NEJMra2200092 crossref_primary_10_1371_journal_pntd_0009963 crossref_primary_10_3889_oamjms_2021_7653 crossref_primary_10_1016_j_lanwpc_2024_101124 crossref_primary_10_1289_EHP8887 crossref_primary_10_1371_journal_pntd_0009312 crossref_primary_10_1016_j_tourman_2021_104471 crossref_primary_10_1186_s12862_020_1596_8 crossref_primary_10_1016_S2542_5196_20_30178_9 crossref_primary_10_1093_jme_tjac014 crossref_primary_10_1038_s41598_020_76231_x crossref_primary_10_3389_fimmu_2020_00287 crossref_primary_10_1098_rstb_2020_0360 crossref_primary_10_1007_s11306_021_01783_6 crossref_primary_10_1029_2019GH000201 crossref_primary_10_1186_s12879_023_08300_1 crossref_primary_10_3389_fmicb_2020_00901 crossref_primary_10_1093_oxfimm_iqae003 crossref_primary_10_3897_neobiota_67_59134 crossref_primary_10_3390_idr15050050 crossref_primary_10_3390_insects14090752 crossref_primary_10_1186_s40249_023_01102_2 crossref_primary_10_3390_v15020368 crossref_primary_10_3390_molecules25204813 crossref_primary_10_1016_j_crpvbd_2021_100074 crossref_primary_10_1055_a_1562_7599 crossref_primary_10_2166_wcc_2023_476 crossref_primary_10_1111_1462_2920_16588 crossref_primary_10_1371_journal_pntd_0011501 crossref_primary_10_3390_ijerph19010245 crossref_primary_10_1016_j_actatropica_2020_105468 crossref_primary_10_1016_j_ebiom_2023_104922 crossref_primary_10_1016_j_isci_2023_106883 crossref_primary_10_1109_TMC_2022_3147474 crossref_primary_10_3389_fepid_2024_1342723 crossref_primary_10_1038_s41467_022_34534_9 crossref_primary_10_4103_jvbd_jvbd_143_23 crossref_primary_10_1016_j_jtbi_2021_110987 crossref_primary_10_1186_s12889_019_8102_5 crossref_primary_10_1002_ijgo_14479 crossref_primary_10_1016_j_tmaid_2022_102522 crossref_primary_10_1371_journal_pntd_0012158 crossref_primary_10_1137_22M1509862 crossref_primary_10_3390_ijms241210334 crossref_primary_10_18203_issn_2454_2156_IntJSciRep20233163 crossref_primary_10_3390_v14091881 crossref_primary_10_2987_21_7038 crossref_primary_10_1097_QCO_0000000000000575 crossref_primary_10_1111_1365_2664_14415 crossref_primary_10_3390_ijerph16245114 crossref_primary_10_1016_j_envres_2021_110849 crossref_primary_10_3390_biology13030182 crossref_primary_10_1111_1748_5967_12587 crossref_primary_10_1371_journal_pntd_0009548 crossref_primary_10_1016_j_ecoinf_2020_101180 crossref_primary_10_1111_ele_13652 crossref_primary_10_1080_08941920_2022_2153294 crossref_primary_10_1111_ijd_16636 crossref_primary_10_1007_s40572_020_00293_2 crossref_primary_10_1038_s41467_020_16153_4 crossref_primary_10_1093_femspd_ftab017 crossref_primary_10_3390_computation10120221 crossref_primary_10_1016_j_pt_2024_02_004 crossref_primary_10_3390_microbiolres14030064 crossref_primary_10_3390_ijerph182111117 crossref_primary_10_1016_j_ibmb_2020_103386 crossref_primary_10_2987_8756_971X_36_3_131 crossref_primary_10_1016_j_actatropica_2023_107061 crossref_primary_10_1038_s41598_021_98316_x crossref_primary_10_3390_v13061024 crossref_primary_10_1038_s41390_023_02929_z crossref_primary_10_3389_fitd_2023_1145340 crossref_primary_10_3389_fcimb_2021_799024 crossref_primary_10_3390_pathogens11091007 crossref_primary_10_1093_infdis_jiaa761 crossref_primary_10_3390_tropicalmed8010065 crossref_primary_10_1016_j_pt_2023_11_001 crossref_primary_10_3390_pathogens12111368 crossref_primary_10_1103_PhysRevResearch_2_013312 crossref_primary_10_1186_s13071_023_06109_0 crossref_primary_10_3390_ijerph20031681 crossref_primary_10_1289_EHP11068 crossref_primary_10_1093_infdis_jiad473 crossref_primary_10_3390_rs15245649 crossref_primary_10_1111_faf_12604 crossref_primary_10_3390_ijerph16132296 crossref_primary_10_1007_s00247_023_05807_2 crossref_primary_10_1002_ecm_1603 crossref_primary_10_1371_journal_pntd_0008679 |
Cites_doi | 10.1038/nrmicro3430 10.1038/nature12060 10.1038/s41586-018-0157-4 10.1186/1756-3305-7-338 10.1016/j.trstmh.2008.07.025 10.1890/13-1964.1 10.1136/bmjgh-2017-000309 10.7554/eLife.08347 10.1590/0074-02760160149 10.1002/joc.1276 10.1007/s10393-012-0808-0 10.1016/S0140-6736(11)60281-X 10.1371/journal.pntd.0003301 10.1289/EHP218 10.1111/ele.12443 10.1038/s41598-018-22989-0 10.1371/journal.pmed.1002613 10.1038/nmicrobiol.2016.126 10.1007/s10393-017-1220-6 10.1111/ele.12893 10.1016/j.coviro.2016.02.007 10.3390/ijerph15020187 10.1038/s41598-017-03566-3 10.1073/pnas.1718945115 10.4269/ajtmh.2010.09-0322 10.1016/S0140-6736(02)09964-6 10.1089/vbz.2006.0562 10.1016/j.gheart.2012.10.004 10.1007/s10584-017-2009-x 10.1525/bio.2009.59.11.6 10.1098/rspb.2014.1078 10.1098/rstb.2013.0553 10.1371/journal.pntd.0004968 10.1016/S0188-4409(02)00378-8 10.1371/journal.pntd.0000429 10.1098/rspb.2018.0795 10.1016/j.actatropica.2016.11.020 10.1371/journal.pone.0089783 10.1111/ele.12015 10.1056/NEJMp1600297 10.1371/journal.pntd.0005568 10.1016/j.actatropica.2016.11.014 10.1098/rstb.2014.0135 10.1371/journal.pntd.0005173 10.1126/science.aan6836 10.1017/S0950268809002040 10.7554/eLife.15272 10.1111/j.1365-2427.2010.02565.x 10.1111/j.1365-2435.2008.01538.x 10.1057/palcomms.2017.27 10.1186/1756-3305-6-351 10.1001/jama.2016.0904 10.1371/journal.pntd.0002681 10.1089/vbz.2015.1822 10.1016/S0140-6736(16)00080-5 10.1890/08-0079.1 10.1603/0013-8746(2003)096[0512:AEOPDI]2.0.CO;2 10.1023/A:1010717502442 10.1016/j.ress.2015.07.008 10.1890/ES15-00094.1 10.7554/eLife.37762 10.1289/ehp.98106147 10.1016/S0140-6736(14)60185-9 10.1186/1476-072X-12-51 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Ryan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Ryan et al 2019 Ryan et al |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Ryan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Ryan et al 2019 Ryan et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7SS 7T2 7T7 7U9 7X7 7XB 88E 8C1 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH H94 H95 H97 K9. L.G M0S M1P M7N P64 PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1371/journal.pntd.0007213 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Entomology Abstracts (Full archive) Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Health & Safety Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
DocumentTitleAlternate | Expansion and shifts of Aedes-borne virus transmission risk with climate change |
EISSN | 1935-2735 |
Editor | Han, Barbara A. |
Editor_xml | – sequence: 1 givenname: Barbara A. surname: Han fullname: Han, Barbara A. |
ExternalDocumentID | 2252312156 oai_doaj_org_article_a9522afc51494f6abc91ee8aad73a8af A581353307 10_1371_journal_pntd_0007213 30921321 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States Florida United States--US Virginia |
GeographicLocations_xml | – name: United States – name: Florida – name: United States--US – name: Virginia |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI122284 – fundername: NCEZID CDC HHS grantid: U01 CK000510 – fundername: ACL HHS grantid: U01CK000510 – fundername: ; grantid: 1641145 – fundername: ; grantid: 1U01CK000510-01 – fundername: ; grantid: 1640780 – fundername: ; grantid: 1518681 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8C1 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD ECGQY ECM EIF EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR IHW IPNFZ ITC KQ8 M1P M48 M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO PV9 RIG RNS RPM RZL SV3 TR2 TUS UKHRP WOQ AAYXX CITATION AFPKN 7QL 7SS 7T2 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO F1W FR3 H94 H95 H97 K9. L.G M7N P64 PQEST PQUKI 7X8 5PM ACUHS - AAPBV ABPTK ADACO B0M BBAFP PRINS |
ID | FETCH-LOGICAL-c675t-ef249c68ba03306a10c2f24ff7f63129f03b941325218aafa3cd936437d563943 |
IEDL.DBID | RPM |
ISSN | 1935-2735 1935-2727 |
IngestDate | Sun Jun 05 00:10:54 EDT 2022 Tue Dec 17 15:17:04 EST 2024 Tue Sep 17 21:18:47 EDT 2024 Sat Oct 26 04:40:01 EDT 2024 Sat Nov 09 08:55:06 EST 2024 Tue Nov 19 20:51:34 EST 2024 Tue Nov 12 22:36:29 EST 2024 Tue Aug 20 22:10:04 EDT 2024 Fri Nov 22 00:01:03 EST 2024 Sat Nov 02 12:19:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c675t-ef249c68ba03306a10c2f24ff7f63129f03b941325218aafa3cd936437d563943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. These authors are joint first authors on this work. |
ORCID | 0000-0002-4308-6321 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438455/ |
PMID | 30921321 |
PQID | 2252312156 |
PQPubID | 1436337 |
ParticipantIDs | plos_journals_2252312156 doaj_primary_oai_doaj_org_article_a9522afc51494f6abc91ee8aad73a8af pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438455 proquest_miscellaneous_2200777998 proquest_journals_2252312156 gale_infotracmisc_A581353307 gale_infotracacademiconefile_A581353307 gale_healthsolutions_A581353307 crossref_primary_10_1371_journal_pntd_0007213 pubmed_primary_30921321 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS neglected tropical diseases |
PublicationTitleAlternate | PLoS Negl Trop Dis |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – sequence: 0 name: Public Library of Science (PLoS) – name: Public Library of Science |
References | BC O’Neill (ref56) 2018; 146 R Flage (ref48) 2015; 144 KD Lafferty (ref2) 2009; 90 G Grard (ref24) 2014; 8 FJ Burt (ref26) 2012; 379 LE Escobar (ref3) 2016 EO Nsoesie (ref42) 2016; 21 KA Tsetsarkin (ref70) 2011; 201018344 K Zouache (ref65) 2014; 281 EA Gould (ref83) 2009; 103 LP Lounibos (ref15) 2003; 96 ML Moro (ref71) 2010; 82 RJ Hijmans (ref36) 2005; 25 SJ Ryan (ref13) 2015; 15 M Equihua (ref53) 2017; 166 MV Evans (ref81) 2018 TA Perkins (ref28) 2015; 7 H Salje (ref47) 2018; 557 C Åström (ref20) 2012; 9 TA Perkins (ref79) 2016; 1 CJ Carlson (ref10) 2016; 10 B Ibelings (ref12) 2011; 56 LC Katzelnick (ref46) 2017; 358 JP Messina (ref4) 2015; 13 M Kearney (ref33) 2009; 23 HR Grau (ref66) 2003; 53 MJ Pongsiri (ref64) 2009; 59 OL Petchey (ref74) 2015; 18 S Hales (ref19) 2002; 360 AM Samy (ref43) 2016; 111 II Bogoch (ref45) 2016; 387 D Fischer (ref29) 2013; 12 MQ Benedict (ref78) 2007; 7 EP Hoberg (ref1) 2015; 370 C Williams (ref21) 2016 ref40 MS Shocket (ref59) 2018; 7 OJ Brady (ref16) 2014; 7 WM Getz (ref73) 2018; 21 B Tesla (ref35) 2018; 285 ref37 DR Lucey (ref57) 2016; 315 EA Mordecai (ref14) 2013; 16 DJ Gubler (ref17) 2010 L Bastos (ref31) 2016; 055475 A Wesolowski (ref60) 2015; 201504964 MU Kraemer (ref76) 2015; 4 NW Beebe (ref75) 2009; 3 MJ Hopp (ref34) 2001; 48 Y Li (ref67) 2014; 8 AS Fauci (ref25) 2016; 374 ref38 FJ Colón-González (ref22) 2018; 115 AE Moran (ref39) 2012; 7 J Liu-Helmersson (ref61) 2014; 9 DJ Gubler (ref18) 2002; 33 D Musso (ref49) 2018 MK Butterworth (ref51) 2017; 125 SV Mayer (ref23) 2017; 166 NB Tjaden (ref54) 2017; 7 AK Githeko (ref11) 2000; 78 JP Messina (ref44) 2016; 5 SJ Ryan (ref68) 2015; 6 OJ Brady (ref77) 2013; 6 LR Johnson (ref7) 2015; 96 AS Siraj (ref58) 2017; 2 J Riou (ref32) 2017 D Sissoko (ref72) 2010; 15 NB Tjaden (ref55) 2017 CJ Carlson (ref80) 2018; 8 I Leparc-Goffart (ref27) 2014; 383 E Mordecai (ref6) 2017; 11 S Funk (ref30) 2016; 10 HM Yang (ref62) 2009; 137 V Ng (ref50) 2017 KA Tsetsarkin (ref69) 2016; 16 K Olival (ref82) 2017; 14 K Hagel (ref63) 2017; 3 S Bhatt (ref41) 2013; 496 LP Campbell (ref9) 2015; 370 R Lowe (ref8) 2018; 15 JA Patz (ref5) 1998; 106 BK Acharya (ref52) 2018; 15 |
References_xml | – ident: ref37 – volume: 201018344 year: 2011 ident: ref70 article-title: Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes publication-title: Proc Natl Acad Sci contributor: fullname: KA Tsetsarkin – volume: 13 start-page: 230 year: 2015 ident: ref4 article-title: The many projected futures of dengue publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3430 contributor: fullname: JP Messina – year: 2018 ident: ref49 article-title: Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America publication-title: Lancet Infect Dis contributor: fullname: D Musso – volume: 496 start-page: 504 year: 2013 ident: ref41 article-title: The global distribution and burden of dengue publication-title: Nature doi: 10.1038/nature12060 contributor: fullname: S Bhatt – volume: 21 year: 2016 ident: ref42 article-title: Global distribution and environmental suitability for chikungunya virus, 1952 to 2015 publication-title: Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull contributor: fullname: EO Nsoesie – start-page: 125 year: 2017 ident: ref50 article-title: Assessment of the probability of autochthonous transmission of Chikungunya virus in Canada under recent and projected climate change publication-title: Environ Health Perspect contributor: fullname: V Ng – volume: 557 start-page: 719 year: 2018 ident: ref47 article-title: Reconstruction of antibody dynamics and infection histories to evaluate dengue risk publication-title: Nature doi: 10.1038/s41586-018-0157-4 contributor: fullname: H Salje – volume: 7 start-page: 338 year: 2014 ident: ref16 article-title: Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission publication-title: Parasit Vectors doi: 10.1186/1756-3305-7-338 contributor: fullname: OJ Brady – volume: 055475 year: 2016 ident: ref31 article-title: Zika in Rio de Janeiro: assessment of basic reproductive number and its comparison with dengue publication-title: BioRxiv contributor: fullname: L Bastos – volume: 103 start-page: 109 year: 2009 ident: ref83 article-title: Impact of climate change and other factors on emerging arbovirus diseases publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2008.07.025 contributor: fullname: EA Gould – start-page: 39 year: 2010 ident: ref17 article-title: The Global Threat of Emergent/Re-emergent Vector-Borne Diseases. In: Atkinson PW, editor. Vector Biology, Ecology and Control contributor: fullname: DJ Gubler – volume: 96 start-page: 203 year: 2015 ident: ref7 article-title: Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach publication-title: Ecology doi: 10.1890/13-1964.1 contributor: fullname: LR Johnson – volume: 2 start-page: e000309 year: 2017 ident: ref58 article-title: Assessing the population at risk of Zika virus in Asia–is the emergency really over? publication-title: BMJ Glob Health doi: 10.1136/bmjgh-2017-000309 contributor: fullname: AS Siraj – volume: 4 start-page: e08347 year: 2015 ident: ref76 article-title: The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus publication-title: eLife doi: 10.7554/eLife.08347 contributor: fullname: MU Kraemer – volume: 111 start-page: 559 year: 2016 ident: ref43 article-title: Mapping the global geographic potential of Zika virus spread publication-title: Mem Inst Oswaldo Cruz doi: 10.1590/0074-02760160149 contributor: fullname: AM Samy – year: 2017 ident: ref55 article-title: Mosquito-borne diseases: advances in modelling climate-change impacts publication-title: Trends Parasitol contributor: fullname: NB Tjaden – volume: 25 start-page: 1965 year: 2005 ident: ref36 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int J Climatol doi: 10.1002/joc.1276 contributor: fullname: RJ Hijmans – volume: 9 start-page: 448 year: 2012 ident: ref20 article-title: Potential distribution of dengue fever under scenarios of climate change and economic development publication-title: Ecohealth doi: 10.1007/s10393-012-0808-0 contributor: fullname: C Åström – volume: 379 start-page: 662 year: 2012 ident: ref26 article-title: Chikungunya: a re-emerging virus publication-title: The Lancet doi: 10.1016/S0140-6736(11)60281-X contributor: fullname: FJ Burt – volume: 8 start-page: e3301 year: 2014 ident: ref67 article-title: Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0003301 contributor: fullname: Y Li – volume: 125 start-page: 579 year: 2017 ident: ref51 article-title: An analysis of the potential impact of climate change on dengue transmission in the southeastern United States publication-title: Environ Health Perspect doi: 10.1289/EHP218 contributor: fullname: MK Butterworth – volume: 18 start-page: 597 year: 2015 ident: ref74 article-title: The ecological forecast horizon, and examples of its uses and determinants publication-title: Ecol Lett doi: 10.1111/ele.12443 contributor: fullname: OL Petchey – volume: 8 start-page: 4921 year: 2018 ident: ref80 article-title: Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States publication-title: Sci Rep doi: 10.1038/s41598-018-22989-0 contributor: fullname: CJ Carlson – volume: 15 start-page: e1002613 year: 2018 ident: ref8 article-title: Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study publication-title: PLOS Med doi: 10.1371/journal.pmed.1002613 contributor: fullname: R Lowe – volume: 1 start-page: 16126 year: 2016 ident: ref79 article-title: Model-based projections of Zika virus infections in childbearing women in the Americas publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.126 contributor: fullname: TA Perkins – volume: 14 start-page: 1 year: 2017 ident: ref82 article-title: Prioritizing the “Dormant” Flaviviruses publication-title: EcoHealth doi: 10.1007/s10393-017-1220-6 contributor: fullname: K Olival – volume: 21 start-page: 153 year: 2018 ident: ref73 article-title: Making ecological models adequate publication-title: Ecol Lett doi: 10.1111/ele.12893 contributor: fullname: WM Getz – volume: 16 start-page: 143 year: 2016 ident: ref69 article-title: Interspecies transmission and chikungunya virus emergence publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2016.02.007 contributor: fullname: KA Tsetsarkin – ident: ref40 – volume: 15 start-page: 187 year: 2018 ident: ref52 article-title: Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15020187 contributor: fullname: BK Acharya – volume: 7 start-page: 3813 year: 2017 ident: ref54 article-title: Modelling the effects of global climate change on Chikungunya transmission in the 21 st century publication-title: Sci Rep doi: 10.1038/s41598-017-03566-3 contributor: fullname: NB Tjaden – volume: 115 start-page: 6243 year: 2018 ident: ref22 article-title: Limiting global-mean temperature increase to 1.5–2° C could reduce the incidence and spatial spread of dengue fever in Latin America publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1718945115 contributor: fullname: FJ Colón-González – volume: 82 start-page: 508 year: 2010 ident: ref71 article-title: Chikungunya virus in North-Eastern Italy: a seroprevalence survey publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2010.09-0322 contributor: fullname: ML Moro – volume: 53 start-page: 1159 year: 2003 ident: ref66 article-title: The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico publication-title: AIBS Bull contributor: fullname: HR Grau – volume: 360 start-page: 830 year: 2002 ident: ref19 article-title: Potential effect of population and climate changes on global distribution of dengue fever: an empirical model publication-title: The Lancet doi: 10.1016/S0140-6736(02)09964-6 contributor: fullname: S Hales – volume: 7 start-page: 76 year: 2007 ident: ref78 article-title: Spread of The Tiger: Global Risk of Invasion by The Mosquito Aedes albopictus publication-title: Vector-Borne Zoonotic Dis doi: 10.1089/vbz.2006.0562 contributor: fullname: MQ Benedict – volume: 7 start-page: 315 year: 2012 ident: ref39 article-title: Assessing the global burden of ischemic heart disease: part 1: methods for a systematic review of the global epidemiology of ischemic heart disease in 1990 and 2010 publication-title: Glob Heart doi: 10.1016/j.gheart.2012.10.004 contributor: fullname: AE Moran – volume: 146 start-page: 287 year: 2018 ident: ref56 article-title: The benefits of reduced anthropogenic climate change (BRACE): a synthesis publication-title: Clim Change doi: 10.1007/s10584-017-2009-x contributor: fullname: BC O’Neill – year: 2017 ident: ref32 article-title: A comparative analysis of Chikungunya and Zika transmission publication-title: Epidemics contributor: fullname: J Riou – volume: 59 start-page: 945 year: 2009 ident: ref64 article-title: Biodiversity loss affects global disease ecology publication-title: Bioscience doi: 10.1525/bio.2009.59.11.6 contributor: fullname: MJ Pongsiri – volume: 281 start-page: 20141078 year: 2014 ident: ref65 article-title: Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential publication-title: Proc R Soc B Biol Sci doi: 10.1098/rspb.2014.1078 contributor: fullname: K Zouache – volume: 370 start-page: 20130553 year: 2015 ident: ref1 article-title: Evolution in action: climate change, biodiversity dynamics and emerging infectious disease publication-title: Phil Trans R Soc B doi: 10.1098/rstb.2013.0553 contributor: fullname: EP Hoberg – volume: 10 start-page: e0004968 year: 2016 ident: ref10 article-title: An ecological assessment of the pandemic threat of Zika virus publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0004968 contributor: fullname: CJ Carlson – volume: 33 start-page: 330 year: 2002 ident: ref18 article-title: The Global Emergence/Resurgence of Arboviral Diseases As Public Health Problems publication-title: Arch Med Res doi: 10.1016/S0188-4409(02)00378-8 contributor: fullname: DJ Gubler – volume: 3 start-page: e429 year: 2009 ident: ref75 article-title: Australia’s dengue risk driven by human adaptation to climate change publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000429 contributor: fullname: NW Beebe – volume: 285 start-page: 20180795 year: 2018 ident: ref35 article-title: Temperature drives Zika virus transmission: evidence from empirical and mathematical models publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.2018.0795 contributor: fullname: B Tesla – year: 2018 ident: ref81 article-title: Anticipating Emerging Mosquito-borne Flaviviruses in the USA: What Comes after Zika? publication-title: Trends Parasitol contributor: fullname: MV Evans – volume: 166 start-page: 155 year: 2017 ident: ref23 article-title: The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers publication-title: Acta Trop doi: 10.1016/j.actatropica.2016.11.020 contributor: fullname: SV Mayer – volume: 9 start-page: e89783 year: 2014 ident: ref61 article-title: Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential publication-title: PLoS ONE doi: 10.1371/journal.pone.0089783 contributor: fullname: J Liu-Helmersson – volume: 15 start-page: 600 year: 2010 ident: ref72 article-title: Field evaluation of clinical features during chikungunya outbreak in Mayotte, 2005–2006 publication-title: Trop Med Int Health contributor: fullname: D Sissoko – volume: 16 start-page: 22 year: 2013 ident: ref14 article-title: Optimal temperature for malaria transmission is dramatically lower than previously predicted publication-title: Ecol Lett doi: 10.1111/ele.12015 contributor: fullname: EA Mordecai – volume: 374 start-page: 601 year: 2016 ident: ref25 article-title: Zika Virus in the Americas—Yet Another Arbovirus Threat publication-title: N Engl J Med doi: 10.1056/NEJMp1600297 contributor: fullname: AS Fauci – volume: 11 start-page: e0005568 year: 2017 ident: ref6 article-title: Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0005568 contributor: fullname: E Mordecai – volume: 201504964 year: 2015 ident: ref60 article-title: Impact of human mobility on the emergence of dengue epidemics in Pakistan publication-title: Proc Natl Acad Sci contributor: fullname: A Wesolowski – volume: 166 start-page: 316 year: 2017 ident: ref53 article-title: Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: increasing number of population at risk of mosquito-borne disease and future climate conditions publication-title: Acta Trop doi: 10.1016/j.actatropica.2016.11.014 contributor: fullname: M Equihua – volume: 7 year: 2015 ident: ref28 article-title: Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas publication-title: PLoS Curr contributor: fullname: TA Perkins – volume: 370 start-page: 20140135 year: 2015 ident: ref9 article-title: Climate change influences on global distributions of dengue and chikungunya virus vectors publication-title: Phil Trans R Soc B doi: 10.1098/rstb.2014.0135 contributor: fullname: LP Campbell – volume: 10 start-page: e0005173 year: 2016 ident: ref30 article-title: Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0005173 contributor: fullname: S Funk – volume: 358 start-page: 929 year: 2017 ident: ref46 article-title: Antibody-dependent enhancement of severe dengue disease in humans publication-title: Science doi: 10.1126/science.aan6836 contributor: fullname: LC Katzelnick – ident: ref38 – volume: 137 start-page: 1188 year: 2009 ident: ref62 article-title: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue publication-title: Epidemiol Infect doi: 10.1017/S0950268809002040 contributor: fullname: HM Yang – volume: 5 start-page: e15272 year: 2016 ident: ref44 article-title: Mapping global environmental suitability for Zika virus publication-title: Elife doi: 10.7554/eLife.15272 contributor: fullname: JP Messina – volume: 78 start-page: 1136 year: 2000 ident: ref11 article-title: Climate change and vector-borne diseases: a regional analysis publication-title: Bull World Health Organ contributor: fullname: AK Githeko – volume: 56 start-page: 754 year: 2011 ident: ref12 article-title: Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemics in lakes publication-title: Freshw Biol doi: 10.1111/j.1365-2427.2010.02565.x contributor: fullname: B Ibelings – volume: 23 start-page: 528 year: 2009 ident: ref33 article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia publication-title: Funct Ecol doi: 10.1111/j.1365-2435.2008.01538.x contributor: fullname: M Kearney – volume: 3 start-page: 17027 year: 2017 ident: ref63 article-title: The level of climate-change mitigation depends on how humans assess the risk arising from missing the 2 C target publication-title: Palgrave Commun doi: 10.1057/palcomms.2017.27 contributor: fullname: K Hagel – volume: 6 start-page: 1 year: 2013 ident: ref77 article-title: Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings publication-title: Parasit Vectors doi: 10.1186/1756-3305-6-351 contributor: fullname: OJ Brady – volume: 315 start-page: 865 year: 2016 ident: ref57 article-title: The emerging Zika pandemic: enhancing preparedness publication-title: Jama doi: 10.1001/jama.2016.0904 contributor: fullname: DR Lucey – start-page: 1 year: 2016 ident: ref21 article-title: Projections of increased and decreased dengue incidence under climate change publication-title: Epidemiol Infect contributor: fullname: C Williams – volume: 8 start-page: e2681 year: 2014 ident: ref24 article-title: Zika Virus in Gabon (Central Africa)– 2007: A New Threat from Aedes albopictus? publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002681 contributor: fullname: G Grard – volume: 15 start-page: 718 year: 2015 ident: ref13 article-title: Mapping physiological suitability limits for malaria in Africa under climate change publication-title: Vector-Borne Zoonotic Dis doi: 10.1089/vbz.2015.1822 contributor: fullname: SJ Ryan – volume: 387 start-page: 335 year: 2016 ident: ref45 article-title: Anticipating the international spread of Zika virus from Brazil publication-title: Lancet Lond Engl doi: 10.1016/S0140-6736(16)00080-5 contributor: fullname: II Bogoch – volume: 90 start-page: 888 year: 2009 ident: ref2 article-title: The ecology of climate change and infectious diseases publication-title: Ecology doi: 10.1890/08-0079.1 contributor: fullname: KD Lafferty – volume: 96 start-page: 512 year: 2003 ident: ref15 article-title: Asymmetric Evolution of Photoperiodic Diapause in Temperate and Tropical Invasive Populations of Aedes albopictus (Diptera: Culicidae) publication-title: Ann Entomol Soc Am doi: 10.1603/0013-8746(2003)096[0512:AEOPDI]2.0.CO;2 contributor: fullname: LP Lounibos – volume: 48 start-page: 441 year: 2001 ident: ref34 article-title: Global-scale relationships between climate and the dengue fever vector, Aedes aegypti publication-title: Clim Change doi: 10.1023/A:1010717502442 contributor: fullname: MJ Hopp – volume: 144 start-page: 61 year: 2015 ident: ref48 article-title: Emerging risk–Conceptual definition and a relation to black swan type of events publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.07.008 contributor: fullname: R Flage – volume: 6 start-page: 170 year: 2015 ident: ref68 article-title: Malaria control and senescence: the importance of accounting for the pace and shape of aging in wild mosquitoes publication-title: Ecosphere doi: 10.1890/ES15-00094.1 contributor: fullname: SJ Ryan – start-page: 6 year: 2016 ident: ref3 article-title: Declining Prevalence of Disease Vectors Under Climate Change publication-title: Sci Rep contributor: fullname: LE Escobar – volume: 7 start-page: e37762 year: 2018 ident: ref59 article-title: Temperature explains broad patterns of Ross River virus transmission publication-title: eLife doi: 10.7554/eLife.37762 contributor: fullname: MS Shocket – volume: 106 start-page: 147 year: 1998 ident: ref5 article-title: Dengue fever epidemic potential as projected by general circulation models of global climate change publication-title: Environ Health Perspect doi: 10.1289/ehp.98106147 contributor: fullname: JA Patz – volume: 383 start-page: 514 year: 2014 ident: ref27 article-title: Chikungunya in the Americas publication-title: The Lancet doi: 10.1016/S0140-6736(14)60185-9 contributor: fullname: I Leparc-Goffart – volume: 12 start-page: 51 year: 2013 ident: ref29 article-title: Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements publication-title: Int J Health Geogr doi: 10.1186/1476-072X-12-51 contributor: fullname: D Fischer |
SSID | ssj0059581 |
Score | 2.686216 |
Snippet | Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We... Forecasting the impacts of climate change on Aedes-borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We... Forecasting the impacts of climate change on Aedes -borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0007213 |
SubjectTerms | Aedes Aedes - growth & development Aedes aegypti Aedes albopictus Animals Aquatic insects Biology and life sciences Chikungunya virus Climate Climate Change Dengue Dengue fever Disease Disease transmission Disease Transmission, Infectious Distribution Earth Sciences Environmental aspects Environmental impact Environmental risk Epidemics Exposure General circulation models Global Health Global strategy (Marketing) Global temperature changes Health Health aspects Human diseases Humans Malaria Medical climatology Medical research Medicine and Health Sciences Mosquito Vectors - growth & development Mosquitoes Niches Pathogens People and Places Public health Risk Risk Assessment Temperature Transmission Tropical diseases Vector-borne diseases Vectors Vectors (Biology) Viral diseases Virus Diseases - epidemiology Virus Diseases - transmission Viruses Weather forecasting Yellow fever mosquito Zika virus |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ri9QwEA6yD-KLqKde9TwjCD7Fa5s2bR7Xw-M4OJ88uCdLkia4cHSX3a748_2m6ZarHPji29JMF_LNJPNNMzNh7GOmTNkWuRUSm50AI05Fba0SygVLp0zQCxUKX39TlzfF1W15e--qL8oJi-2BI3BnRoMhmODg2HURlLFOZ97XxrSVNLUJw-6b5odgKu7BpS6H60nBTqjiKq_GojlZZWejjj5vur6l7oUIgeTMKQ29-6cderG5W-8eop9_Z1Hec0sXz9jTkU_yZZzHc_bIdy_Y4-vxxPyI_YhN_bn_jWVPX8a46Vq-pWrc6a4rvg586Vu_EzCIzvNfq-1-x3vyYrCC4SXKQOf0zZa7uxVIruexYvglu7n4-v38Uox3KgiH0KAXPiDecqq2JpWIFkyWuhyPQqiCkvD9IZVWw7HlcOsAORjpWi3pdK8tQWYK-YotunXnjxkHESBy0NZW-cI6aZUtdWpq_PIubU3CxAHUZhNbZzTD-VmFkCOi05ASmlEJCftCyE-y1Ph6eABzaEZzaP5lDgl7T3prYhXptHybJQxCUiZtlbBPgwQtYCDpzFiHgElRK6yZ5MlMEpC72fAx2cZhLrsGWyPYMjiUwpsHe3l4-MM0TH9KeW6dX-9JhvorVYiBE_Y6mteEh0w1UMqzhFUzw5sBNh_pVj-HjuHQX12U5Zv_gfBb9gSkUcc8vBO26Ld7_w7ErLenwxr8A0VXNos priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEF_0CiKIaH00WnUFwU9rk2xe-0mu0lKEFhEL_bbssx6U5LzkxD_fmexeNFL8FrKbkMzMzvxmdx6EvMsqVdoi14yDsmOAiFPWaF2xyniNp0zAF0wUPr-ozi6Lz1flVdxw62NY5U4njoradgb3yI9A7gCKgIGqPq5_MOwahaersYXGXbKXZ7xpFmTv-OTiy9edLi5FObYpBZSCmVd5HZPneJ0dRV59WLeDxSqG4ArxmXEaa_hPmnqxvun622Dov9GUf5mn00fkYcSVdBkE4TG549p9cu88npzvkwdhf46GtKMnRIZi_9T9AnWAO2ZUtZZuMEt36oFFO0-XzrqeMpCU1tGfq822pwOaNxCP8SkMTae4mUvNzQrQr6MhlfgpuTw9-fbpjMVmC8yAzzAw58ERM1WjVcrBjVBZanK45X3tK6C78CnXAiwesCFrlPKKGys4HvvZElBOwZ-RRdu17oBQQAiIGmyjK1dow3WlS5GqBq6cSa1KCNtRWa5DTQ05HqzV4IsEcknkioxcScgxsmKaixWxxxvd5lrGBSaVACSpvAEAKApfKW1E5hx8qa25apRPyBtkpAzppdO6lkuQEI4htnVC3o8zcGUDJY2KCQrwU1gjazbzcDYTSG5mwwcoLLt_6eUf2YUndwJ0-_DbaRhfigFwreu2OAcLL9XgHCfkeZC3iR48FUClPEtIPZPEGcHmI-3q-1hKHPjXFGX54v-f9ZLcB5woQujdIVkMm617BVhs0K_jgvsNRU0y3Q priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OFY57Eb-v56kRBJ96tE2btg8iq3gcwvrkwj0ZkjTRhaXda7ty99870y-srC--lWZS2skk85vOF8DbUKikiCPtczzsfETEgZ9pLXxhnCYvE64LJQqvvoqrdfzlOrk-grFn68DA5qBpR_2k1vX24vbm7gNu-Pdd14Y0HCdd7Mq2oHqEaNTwe3A_Qt1IQV6rePIrJHnStS1F1EKZWFE6JNP96ykncMyDHC-icKa3uvL-0yG-2G2r5hBC_TvQ8g_NdfkQHgyQky17GXkER7Z8DMerwan-BL73df-ZvcWTgX6eMVUWrKaE3akdFqscW9rCNj7KTGnZr029b1hLig4FpZtEQeqMfusys90gDrasTyp-CuvLz98-XflD2wXfoPXQ-tahSWZEplXA0aBQYWAivOVc6gRHeOACrnPUfRFq_kwpp7gpck4OwCJBvBPzZ7Aoq9KeAkOsQPihyLSwsTZcC53kgcrwypqgUB74I1Plrq-uITsXW4pWSc8dSeshh_Xw4CNxfqKl2tjdjar-IYetJlWOmFI5g1Awj51Q2uShtfimRcpVppwHr2ndZJ9oOu1wuUTZ4BRsm3rwrqMgqUNOGjWkKuBHUbWsGeX5jBJZbmbDpyQb47c0Ek9PBNQIswTOHOXl8PCbaZgeSqFwpa32REMlmFI0kz143ovXxI9RWD1IZ4I3Y9h8pNz87IqK4_plcZKc_ffMF3CCYDLv4_POYdHWe_sSAVurX3V78De0HD-S priority: 102 providerName: Scholars Portal |
Title | Global expansion and redistribution of Aedes-borne virus transmission risk with climate change |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30921321 https://www.proquest.com/docview/2252312156 https://www.proquest.com/docview/2200777998 https://pubmed.ncbi.nlm.nih.gov/PMC6438455 https://doaj.org/article/a9522afc51494f6abc91ee8aad73a8af http://dx.doi.org/10.1371/journal.pntd.0007213 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBa7KZReSt_rdpuqUOjJiR35ecyGXZZClqV0IacaSZbaQNYOeZT-_H4jP6jLnnoxxhoZezSj-UaaGTH2KUxkXEYz5QtMdj4QceBnSiV-oq2iXSaMCyUKL2-S67voyypenbC4y4VxQftarSfV5n5SrX-62MrtvZ52cWLT2-UCVjSL4nh6yk5hfjsXvZl-4zx2J5MCmFCy1Sxt8-VEGk7b4Zlsq0NJhQvh_dA5OiLIcTMLB6bJVfDv5-nRdlPvHwKh_8ZS_mWcrp6xpy2q5PPm65-zE1O9YI-X7b75S_a9Ke3PzW8oP62PcVmVfEc5uf2JV7y2fG5Ks_chFpXhv9a7454fyJZBFlwnikPntHLL9WYNqGt4kzf8it1dXX5bXPvtyQq-hoNw8I2F16WTTMlAwGeQYaBneGRtahMBBGADoXKYtxmMeyallUKXuaA9vjIGpInEazaq6sqcMQ44QBChzFRiIqWFSlScBzLDndFBKT3md0wttk0BjcLtoqVwPBruFDQeRTseHrsgzve0VP7aPah3P4pWCAqZAzZKq4H28sgmUuk8NAZfWqZCZtJ67AONW9HkkvZKXMwhG4LiaVOPfXYUpMbgpJZtNgJ-igpiDSjPB5RguR40n5FsdP-yLzBBAjMDSSXo2cnLw80f-2Z6KUW7VaY-Eg1VWUrhCXvsTSNePT86YfVYOhC8AcOGLVAjVze8VZu3_93zHXsCvJg3IXjnbHTYHc17YLKDGkMTVymu2SIcs0cXlze3X8dufQPXZZSNnY7-AWwkOok |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,12223,21388,24318,27924,27925,31719,31720,33266,33267,33744,33745,43310,43579,43805,53791,53793,73745,74014,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB90D1QQ0fPjqqcXQfCpXrvp55PsyR2r3i4id3BvIUkTXTjaddsV_3xnmmy1cvhWmrS0M5OZ3yTzAfAmzmRaJVMVclR2ISLiKCyUysJMW0WnTMgXShReLLP5ZfLpKr3yG26tD6vc6cReUVeNpj3yY5Q7hCJooLL36x8hdY2i01XfQuM27FHl9HQCeyenyy9fd7o4LdO-TSmiFMq8muY-eY7n8bHn1bt13VVUxRBdIT4yTn0N_0FTT9bXTXsTDP03mvIv83T2EB54XMlmThAewS1T78OdhT8534f7bn-OubSjxyBcsX9mfqE6oB0zJuuKbShLd-iBxRrLZqYyLQtRUmrDfq4225Z1ZN5QPPqnKDSd0WYu09crRL-GuVTiJ3B5dnrxYR76ZguhRp-hC41FR0xnhZIRRzdCxpGe4i1rc5sh3UsbcVWixUM2xIWUVnJdlZyO_aoUUU7Cn8KkbmpzAAwRAqGGqlCZSZTmKlNpGckCr4yOKhlAuKOyWLuaGqI_WMvRF3HkEsQV4bkSwAmxYphLFbH7G83mm_ALTMgSkaS0GgFgmdhMKl3GxuCXVjmXhbQBHBEjhUsvHda1mKGEcAqxzQN428-glY2U1NInKOBPUY2s0czD0UwkuR4NH5Cw7P6lFX9kF5_cCdDNw6-HYXopBcDVptnSHCq8lKNzHMAzJ28DPXhUIpWmcQD5SBJHBBuP1KvvfSlx5F-RpOnz_3_WEdydXyzOxfnH5ecXcA8xY-nC8A5h0m225iXisk698ovvN8AVNcU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0CkUQ0frRaLUrCD7FS7L5fJKr9qgfPYpY6Nuyu9nVg5Kcl5z45zuTbKKR4lvITkIyMzvzm92ZWYBXYSqTMo6Uz9HY-YiIAz9XKvVTbRXtMqFcqFD4fJWeXcYfr5Irl__UuLTKwSZ2hrqsNa2Rz1HvEIqgg0rn1qVFXLxfvt388OkEKdppdcdp3IY99IpBNIO9k9PVxZfBLidF0h1ZioiFqrCizBXS8SycO7m92VRtSR0NMSziE0fV9fMfrfZsc103N0HSfzMr_3JVy_twz2FMtuiV4gHcMtUB7J-7XfQDuNuv1bG-BOkhiL7xPzO_0DTQ6hmTVcm2VLE7nofFassWpjQN81FrKsN-rre7hrXk6lBVuqcoTZ3Rwi7T12tEwob1ZcWP4HJ5-vXdme8OXvA1xg-tbywGZTrNlQw4hhQyDHSEt6zNbIoyKGzAVYHeD0US5lJayXVZcNoCLBNEPDF_DLOqrswhMEQLhCDKXKUmVpqrVCVFIHO8MjoopQf-wGWx6ftriG6TLcO4pGeXIKkIJxUPTkgUIy11x-5u1Ntvwk02IQtEldJqBINFbFOpdBEag19aZlzm0npwTIIUfanpOMfFAjWEU7pt5sHrjoJmOXJSS1esgD9F_bImlEcTSmS5ngwfkrIM_9KIP3qMTw4KdPPwy3GYXkrJcJWpd0RDTZgyDJQ9eNLr28gPHhTIpSj0IJto4oRh05Fq_b1rK47yy-Mkefr_zzqGfZx34vOH1adncAfhY9Fn5B3BrN3uzHOEaK164ebeb1PUOfI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+expansion+and+redistribution+of+Aedes-borne+virus+transmission+risk+with+climate+change&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Ryan%2C+Sadie+J.&rft.au=Carlson%2C+Colin+J.&rft.au=Mordecai%2C+Erin+A.&rft.au=Johnson%2C+Leah+R.&rft.date=2019-03-01&rft.pub=Public+Library+of+Science&rft.issn=1935-2727&rft.eissn=1935-2735&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pntd.0007213&rft_id=info%3Apmid%2F30921321&rft.externalDBID=PMC6438455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon |