Global expansion and redistribution of Aedes-borne virus transmission risk with climate change

Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature,...

Full description

Saved in:
Bibliographic Details
Published inPLoS neglected tropical diseases Vol. 13; no. 3; p. e0007213
Main Authors Ryan, Sadie J, Carlson, Colin J, Mordecai, Erin A, Johnson, Leah R
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
AbstractList Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
Forecasting the impacts of climate change on Aedes-borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3–34.0°C for Ae. aegypti; 19.9–29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
Forecasting the impacts of climate change on Aedes -borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae . albopictus , as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3–34.0°C for Ae . aegypti ; 19.9–29.4°C for Ae . albopictus ), we can expect poleward shifts in Aedes -borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae . aegypti , but not by Ae . albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae . albopictus , most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae . albopictus , we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes -borne viruses, the most extreme increases in Ae . albopictus transmission are predicted to occur at intermediate climate change scenarios. The established scientific consensus indicates that climate change will severely exacerbate the risk and burden of Aedes- transmitted viruses, including dengue, chikungunya, Zika, and other significant threats to global health security. Here, we show more subtle impacts of climate change on transmission, caused primarily by differences between the more heat-tolerant Aedes aegypti and the more heat-limited Ae . albopictus . Within the next century, nearly a billion people could face their first exposure to viral transmission from either mosquito in the worst-case scenario, mainly in Europe and high-elevation tropical and subtropical regions. However, while year-round transmission potential from Ae . aegypti is likely to expand (particularly in south Asia and sub-Saharan Africa), Ae . albopictus transmission potential is likely to decline substantially in the tropics, marking a global shift towards seasonal risk as the tropics eventually become too hot for transmission by Ae . albopictus . Complete mitigation of climate change to a pre-industrial baseline may protect almost a billion people from arbovirus range expansions; however, middle-of-the-road mitigation could produce the greatest expansion in the potential for viral transmission by Ae . albopictus . In any scenario, mitigating climate change would shift the projected burden of both dengue and chikungunya (and potentially other Aedes transmitted viruses) from higher-income regions back onto the tropics, where transmission might otherwise begin to decline due to rising temperatures.
Audience Academic
Author Mordecai, Erin A
Carlson, Colin J
Johnson, Leah R
Ryan, Sadie J
AuthorAffiliation 1 Department of Geography, University of Florida, Gainesville, Florida, United States of America
3 School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
2 Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
7 Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
5 National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
6 Department of Biology, Stanford University, Stanford, California, United States of America
4 Department of Biology, Georgetown University, Washington, DC, United States of America
Cary Institute of Ecosystem Studies, UNITED STATES
AuthorAffiliation_xml – name: 1 Department of Geography, University of Florida, Gainesville, Florida, United States of America
– name: 2 Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
– name: Cary Institute of Ecosystem Studies, UNITED STATES
– name: 4 Department of Biology, Georgetown University, Washington, DC, United States of America
– name: 7 Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
– name: 6 Department of Biology, Stanford University, Stanford, California, United States of America
– name: 3 School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
– name: 5 National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
Author_xml – sequence: 1
  givenname: Sadie J
  orcidid: 0000-0002-4308-6321
  surname: Ryan
  fullname: Ryan, Sadie J
  organization: School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
– sequence: 2
  givenname: Colin J
  surname: Carlson
  fullname: Carlson, Colin J
  organization: National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
– sequence: 3
  givenname: Erin A
  surname: Mordecai
  fullname: Mordecai, Erin A
  organization: Department of Biology, Stanford University, Stanford, California, United States of America
– sequence: 4
  givenname: Leah R
  surname: Johnson
  fullname: Johnson, Leah R
  organization: Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30921321$$D View this record in MEDLINE/PubMed
BookMark eNptUtFu0zAUjdAQ2wp_gCASEuIlxY7jJH6ZVE0wJk3iBV6xbhy7dXHtYicD_p7bNptaNOUh0c055x4fn8vszAevs-w1JXPKGvpxHcbowc23fujnhJCmpOxZdkEF40XZMH529H2eXaa0JoQL3tIX2TkjAtElvch-3LjQgcv1ny34ZIPPwfd51L1NQ7TdOOxGweQL3etUdCF6nd_bOKZ8iEjY2LQnRZt-5r_tsMqVsxsYdK5W4Jf6ZfbcgEv61fSeZd8_f_p2_aW4-3pze724K1Td8KHQpqyEqtsOCGOkBkpUiSNjGlMzWgpDWCcqdMxL2gIYYKoXrK5Y0_OaiYrNsrcH3a0LSU7RJFkiAfkUQbPs9oDoA6zlNqLL-FcGsHI_CHEpIQ5WOS1B8LIEozitRGVq6JSgWuPevmHQgkGtq2nb2G10r7THMNyJ6Okfb1dyGe4lOm4rzlHgwyQQw69Rp0FikEo7B16Hcecb77NphGgR-u4_6NOnm1BLwANYbwLuVTtRucArZxxjbRA1fwKFT683VmG9jMX5CeH9EWGlwQ2rFNy-FekUWB2AKoaUojaPYVAid3V9cC13dZVTXZH25jjIR9JDP9k_u-ro2A
CitedBy_id crossref_primary_10_1016_j_softx_2020_100638
crossref_primary_10_1016_j_worlddev_2020_105214
crossref_primary_10_1093_cid_ciac697
crossref_primary_10_1371_journal_pgph_0002598
crossref_primary_10_3389_fevo_2020_566281
crossref_primary_10_3390_biology11101536
crossref_primary_10_1002_oa_2862
crossref_primary_10_1016_S2542_5196_19_30114_7
crossref_primary_10_1186_s13750_023_00296_0
crossref_primary_10_1186_s12936_023_04829_3
crossref_primary_10_1111_bjh_19344
crossref_primary_10_1111_trf_16950
crossref_primary_10_1029_2020GL091753
crossref_primary_10_3390_insects13040371
crossref_primary_10_1007_s00436_023_08065_1
crossref_primary_10_1098_rspb_2023_2457
crossref_primary_10_1016_j_lana_2022_100310
crossref_primary_10_1016_j_semperi_2023_151841
crossref_primary_10_1093_infdis_jiab541
crossref_primary_10_3390_v15040851
crossref_primary_10_3390_tropicalmed8040187
crossref_primary_10_1016_j_indcrop_2022_114780
crossref_primary_10_1007_s11356_021_15008_9
crossref_primary_10_3389_fbioe_2022_821428
crossref_primary_10_3390_challe14010008
crossref_primary_10_1007_s10584_021_03300_z
crossref_primary_10_1038_s41467_020_16010_4
crossref_primary_10_1016_j_virusres_2020_198288
crossref_primary_10_1126_scitranslmed_adf1093
crossref_primary_10_1128_msphere_00687_21
crossref_primary_10_7554_eLife_69630
crossref_primary_10_1186_s12936_023_04531_4
crossref_primary_10_1016_S1473_3099_19_30547_X
crossref_primary_10_1038_s41558_023_01746_w
crossref_primary_10_1080_17565529_2021_1951644
crossref_primary_10_1002_jmv_29394
crossref_primary_10_1111_ele_13520
crossref_primary_10_1186_s13071_022_05215_9
crossref_primary_10_1371_journal_pntd_0009465
crossref_primary_10_3390_ijerph192013555
crossref_primary_10_3390_vaccines12010087
crossref_primary_10_1111_gcb_15966
crossref_primary_10_1016_j_jns_2020_117281
crossref_primary_10_1016_j_mjafi_2019_07_003
crossref_primary_10_17159_2254_8854_2022_a11932
crossref_primary_10_1186_s12942_020_00241_1
crossref_primary_10_3390_cli11030062
crossref_primary_10_1093_jme_tjab230
crossref_primary_10_1186_s12929_022_00833_y
crossref_primary_10_3390_s22020695
crossref_primary_10_7554_eLife_69628
crossref_primary_10_1371_journal_pntd_0010334
crossref_primary_10_1111_tbed_14113
crossref_primary_10_1038_s41598_023_50346_3
crossref_primary_10_1289_EHP12772
crossref_primary_10_12688_wellcomeopenres_19957_1
crossref_primary_10_3390_tropicalmed8100469
crossref_primary_10_1007_s11356_022_18536_0
crossref_primary_10_1371_journal_pntd_0007969
crossref_primary_10_1016_j_joclim_2021_100015
crossref_primary_10_1038_s41467_023_43954_0
crossref_primary_10_1111_1365_2435_14065
crossref_primary_10_1007_s10653_022_01429_z
crossref_primary_10_1016_j_jns_2020_117287
crossref_primary_10_3389_fevo_2020_00271
crossref_primary_10_3390_insects12030213
crossref_primary_10_3390_ijerph21010041
crossref_primary_10_1007_s10393_024_01682_x
crossref_primary_10_1093_jisesa_ieaa077
crossref_primary_10_1098_rsbl_2022_0365
crossref_primary_10_1371_journal_pclm_0000243
crossref_primary_10_3390_ijerph18094474
crossref_primary_10_1093_jme_tjac110
crossref_primary_10_3390_tropicalmed7120431
crossref_primary_10_1186_s13071_021_04806_2
crossref_primary_10_2166_wh_2023_280
crossref_primary_10_1146_annurev_resource_111820_024214
crossref_primary_10_1186_s12936_022_04417_x
crossref_primary_10_1016_j_jobb_2020_10_002
crossref_primary_10_1186_s13071_022_05520_3
crossref_primary_10_1017_S0007485323000561
crossref_primary_10_1093_aesa_saab011
crossref_primary_10_3390_v15091869
crossref_primary_10_1016_S0140_6736_21_01787_6
crossref_primary_10_1080_20477724_2024_2369377
crossref_primary_10_1002_eji_201948420
crossref_primary_10_1007_s10900_023_01258_w
crossref_primary_10_12688_wellcomeopenres_19278_1
crossref_primary_10_3390_tropicalmed5020096
crossref_primary_10_1002_pan3_10495
crossref_primary_10_1016_j_epidem_2023_100667
crossref_primary_10_1016_j_lanepe_2020_100017
crossref_primary_10_3390_insects13070595
crossref_primary_10_1513_AnnalsATS_202110_1193OC
crossref_primary_10_3390_microorganisms11123006
crossref_primary_10_3390_v12091017
crossref_primary_10_1038_s41467_021_21496_7
crossref_primary_10_1128_mbio_02495_23
crossref_primary_10_3389_fitd_2022_953212
crossref_primary_10_1002_ece3_8466
crossref_primary_10_1016_j_scitotenv_2024_173054
crossref_primary_10_3390_tropicalmed4030101
crossref_primary_10_3390_ijerph192013656
crossref_primary_10_1542_peds_2023_065505
crossref_primary_10_3389_fgeed_2020_00001
crossref_primary_10_1016_j_coviro_2020_05_001
crossref_primary_10_1088_1755_1315_1314_1_012071
crossref_primary_10_1093_conphys_coab074
crossref_primary_10_1016_j_clp_2021_05_004
crossref_primary_10_1088_1748_9326_ac3589
crossref_primary_10_2903_j_efsa_2020_6297
crossref_primary_10_3389_fpubh_2021_715759
crossref_primary_10_1136_bmjgh_2021_007842
crossref_primary_10_1002_ps_6870
crossref_primary_10_1021_acssuschemeng_3c00334
crossref_primary_10_1371_journal_pntd_0008118
crossref_primary_10_3390_w14010031
crossref_primary_10_1111_gcb_16033
crossref_primary_10_1155_2023_3823879
crossref_primary_10_1186_s41256_023_00306_1
crossref_primary_10_1016_j_actatropica_2023_106829
crossref_primary_10_1098_rstb_2022_0018
crossref_primary_10_1007_s10393_024_01684_9
crossref_primary_10_1016_j_envint_2020_106272
crossref_primary_10_1038_s41598_023_35452_6
crossref_primary_10_1007_s40572_020_00290_5
crossref_primary_10_1128_jvi_01949_22
crossref_primary_10_1371_journal_ppat_1009433
crossref_primary_10_1371_journal_pntd_0008066
crossref_primary_10_3390_rs14195052
crossref_primary_10_4269_ajtmh_20_0419
crossref_primary_10_1289_EHP5899
crossref_primary_10_1016_j_vaccine_2024_04_009
crossref_primary_10_1136_bmj_m3389
crossref_primary_10_1186_s13071_022_05473_7
crossref_primary_10_1038_s41597_023_02170_7
crossref_primary_10_1186_s13071_024_06347_w
crossref_primary_10_1016_j_bmcl_2020_126965
crossref_primary_10_1038_s43017_024_00527_z
crossref_primary_10_1016_j_actatropica_2023_107001
crossref_primary_10_1016_j_ecolmodel_2022_110123
crossref_primary_10_1016_j_epidem_2023_100721
crossref_primary_10_1007_s42690_020_00367_6
crossref_primary_10_7554_eLife_80489
crossref_primary_10_1088_1748_9326_abeadd
crossref_primary_10_1016_j_actatropica_2023_107106
crossref_primary_10_3390_diseases12020031
crossref_primary_10_3389_fcell_2023_1085913
crossref_primary_10_3390_jcm13061711
crossref_primary_10_1080_13683500_2020_1825351
crossref_primary_10_1016_j_pt_2019_06_010
crossref_primary_10_1371_journal_pntd_0008614
crossref_primary_10_1007_s12035_020_02250_4
crossref_primary_10_1186_s12942_023_00349_0
crossref_primary_10_1002_hpm_3180
crossref_primary_10_1016_j_joclim_2022_100162
crossref_primary_10_1016_j_mmifmc_2023_09_003
crossref_primary_10_1099_jgv_0_001518
crossref_primary_10_1016_j_biombioe_2024_107122
crossref_primary_10_1016_S2542_5196_24_00021_4
crossref_primary_10_1016_S2542_5196_20_30246_1
crossref_primary_10_3390_v13050891
crossref_primary_10_47102_annals_acadmedsg_V48N6p188
crossref_primary_10_1038_s41467_024_48465_0
crossref_primary_10_1111_mec_16985
crossref_primary_10_1042_ETLS20200187
crossref_primary_10_1136_bmj_m797
crossref_primary_10_1186_s40249_023_01083_2
crossref_primary_10_1371_journal_pone_0249044
crossref_primary_10_1038_s41467_020_20416_5
crossref_primary_10_1371_journal_pntd_0009931
crossref_primary_10_3389_fpubh_2023_1018293
crossref_primary_10_1088_1748_9326_ac5271
crossref_primary_10_1186_s13071_024_06300_x
crossref_primary_10_1371_journal_ppat_1011727
crossref_primary_10_1016_j_epidem_2022_100588
crossref_primary_10_1289_EHP10382
crossref_primary_10_1111_gcb_15269
crossref_primary_10_1016_j_biocontrol_2019_104146
crossref_primary_10_3390_pathogens10060708
crossref_primary_10_1002_ps_6390
crossref_primary_10_1099_jgv_0_001885
crossref_primary_10_1111_1468_2427_13173
crossref_primary_10_1186_s13071_022_05401_9
crossref_primary_10_1371_journal_pntd_0010478
crossref_primary_10_1371_journal_pclm_0000312
crossref_primary_10_1007_s00382_023_06748_0
crossref_primary_10_1186_s12879_024_09142_1
crossref_primary_10_3389_fmicb_2020_584846
crossref_primary_10_1371_journal_pone_0304959
crossref_primary_10_1111_gcb_15384
crossref_primary_10_1128_jvi_01507_23
crossref_primary_10_2222_jsv_70_3
crossref_primary_10_1371_journal_pntd_0008541
crossref_primary_10_1371_journal_pntd_0010069
crossref_primary_10_52707_1081_1710_47_1_117
crossref_primary_10_1371_journal_pntd_0011713
crossref_primary_10_1073_pnas_2003201118
crossref_primary_10_1093_trstmh_traa192
crossref_primary_10_1111_ijd_14759
crossref_primary_10_1016_j_kisu_2021_01_007
crossref_primary_10_3389_fpubh_2023_1252910
crossref_primary_10_1080_20008686_2020_1782042
crossref_primary_10_1186_s12889_023_17277_0
crossref_primary_10_1111_geb_13390
crossref_primary_10_3390_v14050969
crossref_primary_10_1038_s41598_022_14096_y
crossref_primary_10_1016_S2542_5196_23_00056_6
crossref_primary_10_1080_1040841X_2021_1879006
crossref_primary_10_1016_j_jbc_2021_100438
crossref_primary_10_1038_s41597_019_0295_z
crossref_primary_10_3390_microorganisms11051249
crossref_primary_10_1186_s40794_023_00195_9
crossref_primary_10_1136_bmjopen_2023_074385
crossref_primary_10_1016_j_jinf_2020_10_038
crossref_primary_10_1016_j_lanepe_2021_100230
crossref_primary_10_1016_S2542_5196_20_30001_2
crossref_primary_10_3389_fenvs_2023_1128831
crossref_primary_10_1038_s41598_023_48089_2
crossref_primary_10_14423_SMJ_0000000000001152
crossref_primary_10_3389_fncel_2021_695106
crossref_primary_10_3389_fitd_2021_676905
crossref_primary_10_1016_j_isci_2024_109934
crossref_primary_10_1377_hlthaff_2020_01125
crossref_primary_10_1093_infdis_jiac246
crossref_primary_10_1088_1748_9326_ab9141
crossref_primary_10_3390_urbansci6020036
crossref_primary_10_1038_s41579_024_01026_0
crossref_primary_10_2987_20_6924_1
crossref_primary_10_3390_su14158975
crossref_primary_10_3389_fpubh_2023_1332334
crossref_primary_10_1016_j_onehlt_2022_100452
crossref_primary_10_3389_frsc_2021_707888
crossref_primary_10_3390_ijerph192013393
crossref_primary_10_1016_j_apm_2022_10_027
crossref_primary_10_1371_journal_pntd_0010291
crossref_primary_10_3390_tropicalmed8040238
crossref_primary_10_1007_s00436_020_06638_y
crossref_primary_10_1093_femspd_ftab043
crossref_primary_10_7326_L19_0756
crossref_primary_10_1007_s11908_023_00799_4
crossref_primary_10_1038_s42003_023_05180_8
crossref_primary_10_1038_s41598_022_26577_1
crossref_primary_10_1111_ele_13335
crossref_primary_10_1098_rspb_2020_0119
crossref_primary_10_1111_mve_12619
crossref_primary_10_1007_s10393_023_01646_7
crossref_primary_10_1016_j_envres_2019_108637
crossref_primary_10_1002_ece3_9824
crossref_primary_10_1016_j_crpvbd_2023_100139
crossref_primary_10_1093_jtm_taaa207
crossref_primary_10_1016_S2468_2667_20_30211_5
crossref_primary_10_1155_2024_4775361
crossref_primary_10_1177_2049936121991374
crossref_primary_10_1016_j_meegid_2022_105296
crossref_primary_10_1371_journal_pntd_0010839
crossref_primary_10_3389_fimmu_2020_00592
crossref_primary_10_1007_s00442_023_05481_z
crossref_primary_10_1016_j_envres_2022_114537
crossref_primary_10_7554_eLife_55619
crossref_primary_10_3389_fevo_2022_999169
crossref_primary_10_3390_tropicalmed8050241
crossref_primary_10_1126_science_abb1702
crossref_primary_10_1007_s10989_020_10020_y
crossref_primary_10_1038_s41598_019_50135_x
crossref_primary_10_1186_s13071_023_05966_z
crossref_primary_10_1038_s41598_023_27927_3
crossref_primary_10_1093_biosci_biab052
crossref_primary_10_1093_jme_tjac186
crossref_primary_10_1111_ecog_06714
crossref_primary_10_1016_j_ekir_2023_07_002
crossref_primary_10_3389_fnbeh_2022_778264
crossref_primary_10_3390_tropicalmed6020095
crossref_primary_10_1128_mbio_01108_23
crossref_primary_10_1038_s41467_022_29613_w
crossref_primary_10_1093_jme_tjae008
crossref_primary_10_1155_2023_2131801
crossref_primary_10_1186_s13071_021_04826_y
crossref_primary_10_3390_pathogens12020220
crossref_primary_10_1186_s12879_023_08717_8
crossref_primary_10_3390_v16060960
crossref_primary_10_1016_j_jip_2021_107644
crossref_primary_10_1098_rstb_2022_0011
crossref_primary_10_1056_NEJMra2200092
crossref_primary_10_1371_journal_pntd_0009963
crossref_primary_10_3889_oamjms_2021_7653
crossref_primary_10_1016_j_lanwpc_2024_101124
crossref_primary_10_1289_EHP8887
crossref_primary_10_1371_journal_pntd_0009312
crossref_primary_10_1016_j_tourman_2021_104471
crossref_primary_10_1186_s12862_020_1596_8
crossref_primary_10_1016_S2542_5196_20_30178_9
crossref_primary_10_1093_jme_tjac014
crossref_primary_10_1038_s41598_020_76231_x
crossref_primary_10_3389_fimmu_2020_00287
crossref_primary_10_1098_rstb_2020_0360
crossref_primary_10_1007_s11306_021_01783_6
crossref_primary_10_1029_2019GH000201
crossref_primary_10_1186_s12879_023_08300_1
crossref_primary_10_3389_fmicb_2020_00901
crossref_primary_10_1093_oxfimm_iqae003
crossref_primary_10_3897_neobiota_67_59134
crossref_primary_10_3390_idr15050050
crossref_primary_10_3390_insects14090752
crossref_primary_10_1186_s40249_023_01102_2
crossref_primary_10_3390_v15020368
crossref_primary_10_3390_molecules25204813
crossref_primary_10_1016_j_crpvbd_2021_100074
crossref_primary_10_1055_a_1562_7599
crossref_primary_10_2166_wcc_2023_476
crossref_primary_10_1111_1462_2920_16588
crossref_primary_10_1371_journal_pntd_0011501
crossref_primary_10_3390_ijerph19010245
crossref_primary_10_1016_j_actatropica_2020_105468
crossref_primary_10_1016_j_ebiom_2023_104922
crossref_primary_10_1016_j_isci_2023_106883
crossref_primary_10_1109_TMC_2022_3147474
crossref_primary_10_3389_fepid_2024_1342723
crossref_primary_10_1038_s41467_022_34534_9
crossref_primary_10_4103_jvbd_jvbd_143_23
crossref_primary_10_1016_j_jtbi_2021_110987
crossref_primary_10_1186_s12889_019_8102_5
crossref_primary_10_1002_ijgo_14479
crossref_primary_10_1016_j_tmaid_2022_102522
crossref_primary_10_1371_journal_pntd_0012158
crossref_primary_10_1137_22M1509862
crossref_primary_10_3390_ijms241210334
crossref_primary_10_18203_issn_2454_2156_IntJSciRep20233163
crossref_primary_10_3390_v14091881
crossref_primary_10_2987_21_7038
crossref_primary_10_1097_QCO_0000000000000575
crossref_primary_10_1111_1365_2664_14415
crossref_primary_10_3390_ijerph16245114
crossref_primary_10_1016_j_envres_2021_110849
crossref_primary_10_3390_biology13030182
crossref_primary_10_1111_1748_5967_12587
crossref_primary_10_1371_journal_pntd_0009548
crossref_primary_10_1016_j_ecoinf_2020_101180
crossref_primary_10_1111_ele_13652
crossref_primary_10_1080_08941920_2022_2153294
crossref_primary_10_1111_ijd_16636
crossref_primary_10_1007_s40572_020_00293_2
crossref_primary_10_1038_s41467_020_16153_4
crossref_primary_10_1093_femspd_ftab017
crossref_primary_10_3390_computation10120221
crossref_primary_10_1016_j_pt_2024_02_004
crossref_primary_10_3390_microbiolres14030064
crossref_primary_10_3390_ijerph182111117
crossref_primary_10_1016_j_ibmb_2020_103386
crossref_primary_10_2987_8756_971X_36_3_131
crossref_primary_10_1016_j_actatropica_2023_107061
crossref_primary_10_1038_s41598_021_98316_x
crossref_primary_10_3390_v13061024
crossref_primary_10_1038_s41390_023_02929_z
crossref_primary_10_3389_fitd_2023_1145340
crossref_primary_10_3389_fcimb_2021_799024
crossref_primary_10_3390_pathogens11091007
crossref_primary_10_1093_infdis_jiaa761
crossref_primary_10_3390_tropicalmed8010065
crossref_primary_10_1016_j_pt_2023_11_001
crossref_primary_10_3390_pathogens12111368
crossref_primary_10_1103_PhysRevResearch_2_013312
crossref_primary_10_1186_s13071_023_06109_0
crossref_primary_10_3390_ijerph20031681
crossref_primary_10_1289_EHP11068
crossref_primary_10_1093_infdis_jiad473
crossref_primary_10_3390_rs15245649
crossref_primary_10_1111_faf_12604
crossref_primary_10_3390_ijerph16132296
crossref_primary_10_1007_s00247_023_05807_2
crossref_primary_10_1002_ecm_1603
crossref_primary_10_1371_journal_pntd_0008679
Cites_doi 10.1038/nrmicro3430
10.1038/nature12060
10.1038/s41586-018-0157-4
10.1186/1756-3305-7-338
10.1016/j.trstmh.2008.07.025
10.1890/13-1964.1
10.1136/bmjgh-2017-000309
10.7554/eLife.08347
10.1590/0074-02760160149
10.1002/joc.1276
10.1007/s10393-012-0808-0
10.1016/S0140-6736(11)60281-X
10.1371/journal.pntd.0003301
10.1289/EHP218
10.1111/ele.12443
10.1038/s41598-018-22989-0
10.1371/journal.pmed.1002613
10.1038/nmicrobiol.2016.126
10.1007/s10393-017-1220-6
10.1111/ele.12893
10.1016/j.coviro.2016.02.007
10.3390/ijerph15020187
10.1038/s41598-017-03566-3
10.1073/pnas.1718945115
10.4269/ajtmh.2010.09-0322
10.1016/S0140-6736(02)09964-6
10.1089/vbz.2006.0562
10.1016/j.gheart.2012.10.004
10.1007/s10584-017-2009-x
10.1525/bio.2009.59.11.6
10.1098/rspb.2014.1078
10.1098/rstb.2013.0553
10.1371/journal.pntd.0004968
10.1016/S0188-4409(02)00378-8
10.1371/journal.pntd.0000429
10.1098/rspb.2018.0795
10.1016/j.actatropica.2016.11.020
10.1371/journal.pone.0089783
10.1111/ele.12015
10.1056/NEJMp1600297
10.1371/journal.pntd.0005568
10.1016/j.actatropica.2016.11.014
10.1098/rstb.2014.0135
10.1371/journal.pntd.0005173
10.1126/science.aan6836
10.1017/S0950268809002040
10.7554/eLife.15272
10.1111/j.1365-2427.2010.02565.x
10.1111/j.1365-2435.2008.01538.x
10.1057/palcomms.2017.27
10.1186/1756-3305-6-351
10.1001/jama.2016.0904
10.1371/journal.pntd.0002681
10.1089/vbz.2015.1822
10.1016/S0140-6736(16)00080-5
10.1890/08-0079.1
10.1603/0013-8746(2003)096[0512:AEOPDI]2.0.CO;2
10.1023/A:1010717502442
10.1016/j.ress.2015.07.008
10.1890/ES15-00094.1
10.7554/eLife.37762
10.1289/ehp.98106147
10.1016/S0140-6736(14)60185-9
10.1186/1476-072X-12-51
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Ryan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Ryan et al 2019 Ryan et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Ryan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Ryan et al 2019 Ryan et al
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7SS
7T2
7T7
7U9
7X7
7XB
88E
8C1
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
F1W
FR3
FYUFA
GHDGH
H94
H95
H97
K9.
L.G
M0S
M1P
M7N
P64
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1371/journal.pntd.0007213
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Entomology Abstracts (Full archive)
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Health & Safety Science Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE





Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
DocumentTitleAlternate Expansion and shifts of Aedes-borne virus transmission risk with climate change
EISSN 1935-2735
Editor Han, Barbara A.
Editor_xml – sequence: 1
  givenname: Barbara A.
  surname: Han
  fullname: Han, Barbara A.
ExternalDocumentID 2252312156
oai_doaj_org_article_a9522afc51494f6abc91ee8aad73a8af
A581353307
10_1371_journal_pntd_0007213
30921321
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
Florida
United States--US
Virginia
GeographicLocations_xml – name: United States
– name: Florida
– name: United States--US
– name: Virginia
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI122284
– fundername: NCEZID CDC HHS
  grantid: U01 CK000510
– fundername: ACL HHS
  grantid: U01CK000510
– fundername: ;
  grantid: 1641145
– fundername: ;
  grantid: 1U01CK000510-01
– fundername: ;
  grantid: 1640780
– fundername: ;
  grantid: 1518681
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8C1
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
ECGQY
ECM
EIF
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
M1P
M48
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
AAYXX
CITATION
AFPKN
7QL
7SS
7T2
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
F1W
FR3
H94
H95
H97
K9.
L.G
M7N
P64
PQEST
PQUKI
7X8
5PM
ACUHS
-
AAPBV
ABPTK
ADACO
B0M
BBAFP
PRINS
ID FETCH-LOGICAL-c675t-ef249c68ba03306a10c2f24ff7f63129f03b941325218aafa3cd936437d563943
IEDL.DBID RPM
ISSN 1935-2735
1935-2727
IngestDate Sun Jun 05 00:10:54 EDT 2022
Tue Dec 17 15:17:04 EST 2024
Tue Sep 17 21:18:47 EDT 2024
Sat Oct 26 04:40:01 EDT 2024
Sat Nov 09 08:55:06 EST 2024
Tue Nov 19 20:51:34 EST 2024
Tue Nov 12 22:36:29 EST 2024
Tue Aug 20 22:10:04 EDT 2024
Fri Nov 22 00:01:03 EST 2024
Sat Nov 02 12:19:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-ef249c68ba03306a10c2f24ff7f63129f03b941325218aafa3cd936437d563943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
These authors are joint first authors on this work.
ORCID 0000-0002-4308-6321
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438455/
PMID 30921321
PQID 2252312156
PQPubID 1436337
ParticipantIDs plos_journals_2252312156
doaj_primary_oai_doaj_org_article_a9522afc51494f6abc91ee8aad73a8af
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438455
proquest_miscellaneous_2200777998
proquest_journals_2252312156
gale_infotracmisc_A581353307
gale_infotracacademiconefile_A581353307
gale_healthsolutions_A581353307
crossref_primary_10_1371_journal_pntd_0007213
pubmed_primary_30921321
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS neglected tropical diseases
PublicationTitleAlternate PLoS Negl Trop Dis
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – sequence: 0
  name: Public Library of Science (PLoS)
– name: Public Library of Science
References BC O’Neill (ref56) 2018; 146
R Flage (ref48) 2015; 144
KD Lafferty (ref2) 2009; 90
G Grard (ref24) 2014; 8
FJ Burt (ref26) 2012; 379
LE Escobar (ref3) 2016
EO Nsoesie (ref42) 2016; 21
KA Tsetsarkin (ref70) 2011; 201018344
K Zouache (ref65) 2014; 281
EA Gould (ref83) 2009; 103
LP Lounibos (ref15) 2003; 96
ML Moro (ref71) 2010; 82
RJ Hijmans (ref36) 2005; 25
SJ Ryan (ref13) 2015; 15
M Equihua (ref53) 2017; 166
MV Evans (ref81) 2018
TA Perkins (ref28) 2015; 7
H Salje (ref47) 2018; 557
C Åström (ref20) 2012; 9
TA Perkins (ref79) 2016; 1
CJ Carlson (ref10) 2016; 10
B Ibelings (ref12) 2011; 56
LC Katzelnick (ref46) 2017; 358
JP Messina (ref4) 2015; 13
M Kearney (ref33) 2009; 23
HR Grau (ref66) 2003; 53
MJ Pongsiri (ref64) 2009; 59
OL Petchey (ref74) 2015; 18
S Hales (ref19) 2002; 360
AM Samy (ref43) 2016; 111
II Bogoch (ref45) 2016; 387
D Fischer (ref29) 2013; 12
MQ Benedict (ref78) 2007; 7
EP Hoberg (ref1) 2015; 370
C Williams (ref21) 2016
ref40
MS Shocket (ref59) 2018; 7
OJ Brady (ref16) 2014; 7
WM Getz (ref73) 2018; 21
B Tesla (ref35) 2018; 285
ref37
DR Lucey (ref57) 2016; 315
EA Mordecai (ref14) 2013; 16
DJ Gubler (ref17) 2010
L Bastos (ref31) 2016; 055475
A Wesolowski (ref60) 2015; 201504964
MU Kraemer (ref76) 2015; 4
NW Beebe (ref75) 2009; 3
MJ Hopp (ref34) 2001; 48
Y Li (ref67) 2014; 8
AS Fauci (ref25) 2016; 374
ref38
FJ Colón-González (ref22) 2018; 115
AE Moran (ref39) 2012; 7
J Liu-Helmersson (ref61) 2014; 9
DJ Gubler (ref18) 2002; 33
D Musso (ref49) 2018
MK Butterworth (ref51) 2017; 125
SV Mayer (ref23) 2017; 166
NB Tjaden (ref54) 2017; 7
AK Githeko (ref11) 2000; 78
JP Messina (ref44) 2016; 5
SJ Ryan (ref68) 2015; 6
OJ Brady (ref77) 2013; 6
LR Johnson (ref7) 2015; 96
AS Siraj (ref58) 2017; 2
J Riou (ref32) 2017
D Sissoko (ref72) 2010; 15
NB Tjaden (ref55) 2017
CJ Carlson (ref80) 2018; 8
I Leparc-Goffart (ref27) 2014; 383
E Mordecai (ref6) 2017; 11
S Funk (ref30) 2016; 10
HM Yang (ref62) 2009; 137
V Ng (ref50) 2017
KA Tsetsarkin (ref69) 2016; 16
K Olival (ref82) 2017; 14
K Hagel (ref63) 2017; 3
S Bhatt (ref41) 2013; 496
LP Campbell (ref9) 2015; 370
R Lowe (ref8) 2018; 15
JA Patz (ref5) 1998; 106
BK Acharya (ref52) 2018; 15
References_xml – ident: ref37
– volume: 201018344
  year: 2011
  ident: ref70
  article-title: Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes
  publication-title: Proc Natl Acad Sci
  contributor:
    fullname: KA Tsetsarkin
– volume: 13
  start-page: 230
  year: 2015
  ident: ref4
  article-title: The many projected futures of dengue
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3430
  contributor:
    fullname: JP Messina
– year: 2018
  ident: ref49
  article-title: Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America
  publication-title: Lancet Infect Dis
  contributor:
    fullname: D Musso
– volume: 496
  start-page: 504
  year: 2013
  ident: ref41
  article-title: The global distribution and burden of dengue
  publication-title: Nature
  doi: 10.1038/nature12060
  contributor:
    fullname: S Bhatt
– volume: 21
  year: 2016
  ident: ref42
  article-title: Global distribution and environmental suitability for chikungunya virus, 1952 to 2015
  publication-title: Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull
  contributor:
    fullname: EO Nsoesie
– start-page: 125
  year: 2017
  ident: ref50
  article-title: Assessment of the probability of autochthonous transmission of Chikungunya virus in Canada under recent and projected climate change
  publication-title: Environ Health Perspect
  contributor:
    fullname: V Ng
– volume: 557
  start-page: 719
  year: 2018
  ident: ref47
  article-title: Reconstruction of antibody dynamics and infection histories to evaluate dengue risk
  publication-title: Nature
  doi: 10.1038/s41586-018-0157-4
  contributor:
    fullname: H Salje
– volume: 7
  start-page: 338
  year: 2014
  ident: ref16
  article-title: Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission
  publication-title: Parasit Vectors
  doi: 10.1186/1756-3305-7-338
  contributor:
    fullname: OJ Brady
– volume: 055475
  year: 2016
  ident: ref31
  article-title: Zika in Rio de Janeiro: assessment of basic reproductive number and its comparison with dengue
  publication-title: BioRxiv
  contributor:
    fullname: L Bastos
– volume: 103
  start-page: 109
  year: 2009
  ident: ref83
  article-title: Impact of climate change and other factors on emerging arbovirus diseases
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1016/j.trstmh.2008.07.025
  contributor:
    fullname: EA Gould
– start-page: 39
  year: 2010
  ident: ref17
  article-title: The Global Threat of Emergent/Re-emergent Vector-Borne Diseases. In: Atkinson PW, editor. Vector Biology, Ecology and Control
  contributor:
    fullname: DJ Gubler
– volume: 96
  start-page: 203
  year: 2015
  ident: ref7
  article-title: Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach
  publication-title: Ecology
  doi: 10.1890/13-1964.1
  contributor:
    fullname: LR Johnson
– volume: 2
  start-page: e000309
  year: 2017
  ident: ref58
  article-title: Assessing the population at risk of Zika virus in Asia–is the emergency really over?
  publication-title: BMJ Glob Health
  doi: 10.1136/bmjgh-2017-000309
  contributor:
    fullname: AS Siraj
– volume: 4
  start-page: e08347
  year: 2015
  ident: ref76
  article-title: The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus
  publication-title: eLife
  doi: 10.7554/eLife.08347
  contributor:
    fullname: MU Kraemer
– volume: 111
  start-page: 559
  year: 2016
  ident: ref43
  article-title: Mapping the global geographic potential of Zika virus spread
  publication-title: Mem Inst Oswaldo Cruz
  doi: 10.1590/0074-02760160149
  contributor:
    fullname: AM Samy
– year: 2017
  ident: ref55
  article-title: Mosquito-borne diseases: advances in modelling climate-change impacts
  publication-title: Trends Parasitol
  contributor:
    fullname: NB Tjaden
– volume: 25
  start-page: 1965
  year: 2005
  ident: ref36
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int J Climatol
  doi: 10.1002/joc.1276
  contributor:
    fullname: RJ Hijmans
– volume: 9
  start-page: 448
  year: 2012
  ident: ref20
  article-title: Potential distribution of dengue fever under scenarios of climate change and economic development
  publication-title: Ecohealth
  doi: 10.1007/s10393-012-0808-0
  contributor:
    fullname: C Åström
– volume: 379
  start-page: 662
  year: 2012
  ident: ref26
  article-title: Chikungunya: a re-emerging virus
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(11)60281-X
  contributor:
    fullname: FJ Burt
– volume: 8
  start-page: e3301
  year: 2014
  ident: ref67
  article-title: Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0003301
  contributor:
    fullname: Y Li
– volume: 125
  start-page: 579
  year: 2017
  ident: ref51
  article-title: An analysis of the potential impact of climate change on dengue transmission in the southeastern United States
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP218
  contributor:
    fullname: MK Butterworth
– volume: 18
  start-page: 597
  year: 2015
  ident: ref74
  article-title: The ecological forecast horizon, and examples of its uses and determinants
  publication-title: Ecol Lett
  doi: 10.1111/ele.12443
  contributor:
    fullname: OL Petchey
– volume: 8
  start-page: 4921
  year: 2018
  ident: ref80
  article-title: Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-22989-0
  contributor:
    fullname: CJ Carlson
– volume: 15
  start-page: e1002613
  year: 2018
  ident: ref8
  article-title: Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1002613
  contributor:
    fullname: R Lowe
– volume: 1
  start-page: 16126
  year: 2016
  ident: ref79
  article-title: Model-based projections of Zika virus infections in childbearing women in the Americas
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.126
  contributor:
    fullname: TA Perkins
– volume: 14
  start-page: 1
  year: 2017
  ident: ref82
  article-title: Prioritizing the “Dormant” Flaviviruses
  publication-title: EcoHealth
  doi: 10.1007/s10393-017-1220-6
  contributor:
    fullname: K Olival
– volume: 21
  start-page: 153
  year: 2018
  ident: ref73
  article-title: Making ecological models adequate
  publication-title: Ecol Lett
  doi: 10.1111/ele.12893
  contributor:
    fullname: WM Getz
– volume: 16
  start-page: 143
  year: 2016
  ident: ref69
  article-title: Interspecies transmission and chikungunya virus emergence
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2016.02.007
  contributor:
    fullname: KA Tsetsarkin
– ident: ref40
– volume: 15
  start-page: 187
  year: 2018
  ident: ref52
  article-title: Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15020187
  contributor:
    fullname: BK Acharya
– volume: 7
  start-page: 3813
  year: 2017
  ident: ref54
  article-title: Modelling the effects of global climate change on Chikungunya transmission in the 21 st century
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-03566-3
  contributor:
    fullname: NB Tjaden
– volume: 115
  start-page: 6243
  year: 2018
  ident: ref22
  article-title: Limiting global-mean temperature increase to 1.5–2° C could reduce the incidence and spatial spread of dengue fever in Latin America
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1718945115
  contributor:
    fullname: FJ Colón-González
– volume: 82
  start-page: 508
  year: 2010
  ident: ref71
  article-title: Chikungunya virus in North-Eastern Italy: a seroprevalence survey
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2010.09-0322
  contributor:
    fullname: ML Moro
– volume: 53
  start-page: 1159
  year: 2003
  ident: ref66
  article-title: The ecological consequences of socioeconomic and land-use changes in postagriculture Puerto Rico
  publication-title: AIBS Bull
  contributor:
    fullname: HR Grau
– volume: 360
  start-page: 830
  year: 2002
  ident: ref19
  article-title: Potential effect of population and climate changes on global distribution of dengue fever: an empirical model
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(02)09964-6
  contributor:
    fullname: S Hales
– volume: 7
  start-page: 76
  year: 2007
  ident: ref78
  article-title: Spread of The Tiger: Global Risk of Invasion by The Mosquito Aedes albopictus
  publication-title: Vector-Borne Zoonotic Dis
  doi: 10.1089/vbz.2006.0562
  contributor:
    fullname: MQ Benedict
– volume: 7
  start-page: 315
  year: 2012
  ident: ref39
  article-title: Assessing the global burden of ischemic heart disease: part 1: methods for a systematic review of the global epidemiology of ischemic heart disease in 1990 and 2010
  publication-title: Glob Heart
  doi: 10.1016/j.gheart.2012.10.004
  contributor:
    fullname: AE Moran
– volume: 146
  start-page: 287
  year: 2018
  ident: ref56
  article-title: The benefits of reduced anthropogenic climate change (BRACE): a synthesis
  publication-title: Clim Change
  doi: 10.1007/s10584-017-2009-x
  contributor:
    fullname: BC O’Neill
– year: 2017
  ident: ref32
  article-title: A comparative analysis of Chikungunya and Zika transmission
  publication-title: Epidemics
  contributor:
    fullname: J Riou
– volume: 59
  start-page: 945
  year: 2009
  ident: ref64
  article-title: Biodiversity loss affects global disease ecology
  publication-title: Bioscience
  doi: 10.1525/bio.2009.59.11.6
  contributor:
    fullname: MJ Pongsiri
– volume: 281
  start-page: 20141078
  year: 2014
  ident: ref65
  article-title: Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential
  publication-title: Proc R Soc B Biol Sci
  doi: 10.1098/rspb.2014.1078
  contributor:
    fullname: K Zouache
– volume: 370
  start-page: 20130553
  year: 2015
  ident: ref1
  article-title: Evolution in action: climate change, biodiversity dynamics and emerging infectious disease
  publication-title: Phil Trans R Soc B
  doi: 10.1098/rstb.2013.0553
  contributor:
    fullname: EP Hoberg
– volume: 10
  start-page: e0004968
  year: 2016
  ident: ref10
  article-title: An ecological assessment of the pandemic threat of Zika virus
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0004968
  contributor:
    fullname: CJ Carlson
– volume: 33
  start-page: 330
  year: 2002
  ident: ref18
  article-title: The Global Emergence/Resurgence of Arboviral Diseases As Public Health Problems
  publication-title: Arch Med Res
  doi: 10.1016/S0188-4409(02)00378-8
  contributor:
    fullname: DJ Gubler
– volume: 3
  start-page: e429
  year: 2009
  ident: ref75
  article-title: Australia’s dengue risk driven by human adaptation to climate change
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000429
  contributor:
    fullname: NW Beebe
– volume: 285
  start-page: 20180795
  year: 2018
  ident: ref35
  article-title: Temperature drives Zika virus transmission: evidence from empirical and mathematical models
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.2018.0795
  contributor:
    fullname: B Tesla
– year: 2018
  ident: ref81
  article-title: Anticipating Emerging Mosquito-borne Flaviviruses in the USA: What Comes after Zika?
  publication-title: Trends Parasitol
  contributor:
    fullname: MV Evans
– volume: 166
  start-page: 155
  year: 2017
  ident: ref23
  article-title: The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2016.11.020
  contributor:
    fullname: SV Mayer
– volume: 9
  start-page: e89783
  year: 2014
  ident: ref61
  article-title: Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0089783
  contributor:
    fullname: J Liu-Helmersson
– volume: 15
  start-page: 600
  year: 2010
  ident: ref72
  article-title: Field evaluation of clinical features during chikungunya outbreak in Mayotte, 2005–2006
  publication-title: Trop Med Int Health
  contributor:
    fullname: D Sissoko
– volume: 16
  start-page: 22
  year: 2013
  ident: ref14
  article-title: Optimal temperature for malaria transmission is dramatically lower than previously predicted
  publication-title: Ecol Lett
  doi: 10.1111/ele.12015
  contributor:
    fullname: EA Mordecai
– volume: 374
  start-page: 601
  year: 2016
  ident: ref25
  article-title: Zika Virus in the Americas—Yet Another Arbovirus Threat
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1600297
  contributor:
    fullname: AS Fauci
– volume: 11
  start-page: e0005568
  year: 2017
  ident: ref6
  article-title: Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0005568
  contributor:
    fullname: E Mordecai
– volume: 201504964
  year: 2015
  ident: ref60
  article-title: Impact of human mobility on the emergence of dengue epidemics in Pakistan
  publication-title: Proc Natl Acad Sci
  contributor:
    fullname: A Wesolowski
– volume: 166
  start-page: 316
  year: 2017
  ident: ref53
  article-title: Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: increasing number of population at risk of mosquito-borne disease and future climate conditions
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2016.11.014
  contributor:
    fullname: M Equihua
– volume: 7
  year: 2015
  ident: ref28
  article-title: Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas
  publication-title: PLoS Curr
  contributor:
    fullname: TA Perkins
– volume: 370
  start-page: 20140135
  year: 2015
  ident: ref9
  article-title: Climate change influences on global distributions of dengue and chikungunya virus vectors
  publication-title: Phil Trans R Soc B
  doi: 10.1098/rstb.2014.0135
  contributor:
    fullname: LP Campbell
– volume: 10
  start-page: e0005173
  year: 2016
  ident: ref30
  article-title: Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0005173
  contributor:
    fullname: S Funk
– volume: 358
  start-page: 929
  year: 2017
  ident: ref46
  article-title: Antibody-dependent enhancement of severe dengue disease in humans
  publication-title: Science
  doi: 10.1126/science.aan6836
  contributor:
    fullname: LC Katzelnick
– ident: ref38
– volume: 137
  start-page: 1188
  year: 2009
  ident: ref62
  article-title: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268809002040
  contributor:
    fullname: HM Yang
– volume: 5
  start-page: e15272
  year: 2016
  ident: ref44
  article-title: Mapping global environmental suitability for Zika virus
  publication-title: Elife
  doi: 10.7554/eLife.15272
  contributor:
    fullname: JP Messina
– volume: 78
  start-page: 1136
  year: 2000
  ident: ref11
  article-title: Climate change and vector-borne diseases: a regional analysis
  publication-title: Bull World Health Organ
  contributor:
    fullname: AK Githeko
– volume: 56
  start-page: 754
  year: 2011
  ident: ref12
  article-title: Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemics in lakes
  publication-title: Freshw Biol
  doi: 10.1111/j.1365-2427.2010.02565.x
  contributor:
    fullname: B Ibelings
– volume: 23
  start-page: 528
  year: 2009
  ident: ref33
  article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia
  publication-title: Funct Ecol
  doi: 10.1111/j.1365-2435.2008.01538.x
  contributor:
    fullname: M Kearney
– volume: 3
  start-page: 17027
  year: 2017
  ident: ref63
  article-title: The level of climate-change mitigation depends on how humans assess the risk arising from missing the 2 C target
  publication-title: Palgrave Commun
  doi: 10.1057/palcomms.2017.27
  contributor:
    fullname: K Hagel
– volume: 6
  start-page: 1
  year: 2013
  ident: ref77
  article-title: Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings
  publication-title: Parasit Vectors
  doi: 10.1186/1756-3305-6-351
  contributor:
    fullname: OJ Brady
– volume: 315
  start-page: 865
  year: 2016
  ident: ref57
  article-title: The emerging Zika pandemic: enhancing preparedness
  publication-title: Jama
  doi: 10.1001/jama.2016.0904
  contributor:
    fullname: DR Lucey
– start-page: 1
  year: 2016
  ident: ref21
  article-title: Projections of increased and decreased dengue incidence under climate change
  publication-title: Epidemiol Infect
  contributor:
    fullname: C Williams
– volume: 8
  start-page: e2681
  year: 2014
  ident: ref24
  article-title: Zika Virus in Gabon (Central Africa)– 2007: A New Threat from Aedes albopictus?
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0002681
  contributor:
    fullname: G Grard
– volume: 15
  start-page: 718
  year: 2015
  ident: ref13
  article-title: Mapping physiological suitability limits for malaria in Africa under climate change
  publication-title: Vector-Borne Zoonotic Dis
  doi: 10.1089/vbz.2015.1822
  contributor:
    fullname: SJ Ryan
– volume: 387
  start-page: 335
  year: 2016
  ident: ref45
  article-title: Anticipating the international spread of Zika virus from Brazil
  publication-title: Lancet Lond Engl
  doi: 10.1016/S0140-6736(16)00080-5
  contributor:
    fullname: II Bogoch
– volume: 90
  start-page: 888
  year: 2009
  ident: ref2
  article-title: The ecology of climate change and infectious diseases
  publication-title: Ecology
  doi: 10.1890/08-0079.1
  contributor:
    fullname: KD Lafferty
– volume: 96
  start-page: 512
  year: 2003
  ident: ref15
  article-title: Asymmetric Evolution of Photoperiodic Diapause in Temperate and Tropical Invasive Populations of Aedes albopictus (Diptera: Culicidae)
  publication-title: Ann Entomol Soc Am
  doi: 10.1603/0013-8746(2003)096[0512:AEOPDI]2.0.CO;2
  contributor:
    fullname: LP Lounibos
– volume: 48
  start-page: 441
  year: 2001
  ident: ref34
  article-title: Global-scale relationships between climate and the dengue fever vector, Aedes aegypti
  publication-title: Clim Change
  doi: 10.1023/A:1010717502442
  contributor:
    fullname: MJ Hopp
– volume: 144
  start-page: 61
  year: 2015
  ident: ref48
  article-title: Emerging risk–Conceptual definition and a relation to black swan type of events
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.07.008
  contributor:
    fullname: R Flage
– volume: 6
  start-page: 170
  year: 2015
  ident: ref68
  article-title: Malaria control and senescence: the importance of accounting for the pace and shape of aging in wild mosquitoes
  publication-title: Ecosphere
  doi: 10.1890/ES15-00094.1
  contributor:
    fullname: SJ Ryan
– start-page: 6
  year: 2016
  ident: ref3
  article-title: Declining Prevalence of Disease Vectors Under Climate Change
  publication-title: Sci Rep
  contributor:
    fullname: LE Escobar
– volume: 7
  start-page: e37762
  year: 2018
  ident: ref59
  article-title: Temperature explains broad patterns of Ross River virus transmission
  publication-title: eLife
  doi: 10.7554/eLife.37762
  contributor:
    fullname: MS Shocket
– volume: 106
  start-page: 147
  year: 1998
  ident: ref5
  article-title: Dengue fever epidemic potential as projected by general circulation models of global climate change
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.98106147
  contributor:
    fullname: JA Patz
– volume: 383
  start-page: 514
  year: 2014
  ident: ref27
  article-title: Chikungunya in the Americas
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)60185-9
  contributor:
    fullname: I Leparc-Goffart
– volume: 12
  start-page: 51
  year: 2013
  ident: ref29
  article-title: Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements
  publication-title: Int J Health Geogr
  doi: 10.1186/1476-072X-12-51
  contributor:
    fullname: D Fischer
SSID ssj0059581
Score 2.686216
Snippet Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We...
Forecasting the impacts of climate change on Aedes-borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We...
Forecasting the impacts of climate change on Aedes -borne viruses—especially dengue, chikungunya, and Zika—is a key component of public health preparedness. We...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0007213
SubjectTerms Aedes
Aedes - growth & development
Aedes aegypti
Aedes albopictus
Animals
Aquatic insects
Biology and life sciences
Chikungunya virus
Climate
Climate Change
Dengue
Dengue fever
Disease
Disease transmission
Disease Transmission, Infectious
Distribution
Earth Sciences
Environmental aspects
Environmental impact
Environmental risk
Epidemics
Exposure
General circulation models
Global Health
Global strategy (Marketing)
Global temperature changes
Health
Health aspects
Human diseases
Humans
Malaria
Medical climatology
Medical research
Medicine and Health Sciences
Mosquito Vectors - growth & development
Mosquitoes
Niches
Pathogens
People and Places
Public health
Risk
Risk Assessment
Temperature
Transmission
Tropical diseases
Vector-borne diseases
Vectors
Vectors (Biology)
Viral diseases
Virus Diseases - epidemiology
Virus Diseases - transmission
Viruses
Weather forecasting
Yellow fever mosquito
Zika virus
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ri9QwEA6yD-KLqKde9TwjCD7Fa5s2bR7Xw-M4OJ88uCdLkia4cHSX3a748_2m6ZarHPji29JMF_LNJPNNMzNh7GOmTNkWuRUSm50AI05Fba0SygVLp0zQCxUKX39TlzfF1W15e--qL8oJi-2BI3BnRoMhmODg2HURlLFOZ97XxrSVNLUJw-6b5odgKu7BpS6H60nBTqjiKq_GojlZZWejjj5vur6l7oUIgeTMKQ29-6cderG5W-8eop9_Z1Hec0sXz9jTkU_yZZzHc_bIdy_Y4-vxxPyI_YhN_bn_jWVPX8a46Vq-pWrc6a4rvg586Vu_EzCIzvNfq-1-x3vyYrCC4SXKQOf0zZa7uxVIruexYvglu7n4-v38Uox3KgiH0KAXPiDecqq2JpWIFkyWuhyPQqiCkvD9IZVWw7HlcOsAORjpWi3pdK8tQWYK-YotunXnjxkHESBy0NZW-cI6aZUtdWpq_PIubU3CxAHUZhNbZzTD-VmFkCOi05ASmlEJCftCyE-y1Ph6eABzaEZzaP5lDgl7T3prYhXptHybJQxCUiZtlbBPgwQtYCDpzFiHgElRK6yZ5MlMEpC72fAx2cZhLrsGWyPYMjiUwpsHe3l4-MM0TH9KeW6dX-9JhvorVYiBE_Y6mteEh0w1UMqzhFUzw5sBNh_pVj-HjuHQX12U5Zv_gfBb9gSkUcc8vBO26Ld7_w7ErLenwxr8A0VXNos
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEF_0CiKIaH00WnUFwU9rk2xe-0mu0lKEFhEL_bbssx6U5LzkxD_fmexeNFL8FrKbkMzMzvxmdx6EvMsqVdoi14yDsmOAiFPWaF2xyniNp0zAF0wUPr-ozi6Lz1flVdxw62NY5U4njoradgb3yI9A7gCKgIGqPq5_MOwahaersYXGXbKXZ7xpFmTv-OTiy9edLi5FObYpBZSCmVd5HZPneJ0dRV59WLeDxSqG4ArxmXEaa_hPmnqxvun622Dov9GUf5mn00fkYcSVdBkE4TG549p9cu88npzvkwdhf46GtKMnRIZi_9T9AnWAO2ZUtZZuMEt36oFFO0-XzrqeMpCU1tGfq822pwOaNxCP8SkMTae4mUvNzQrQr6MhlfgpuTw9-fbpjMVmC8yAzzAw58ERM1WjVcrBjVBZanK45X3tK6C78CnXAiwesCFrlPKKGys4HvvZElBOwZ-RRdu17oBQQAiIGmyjK1dow3WlS5GqBq6cSa1KCNtRWa5DTQ05HqzV4IsEcknkioxcScgxsmKaixWxxxvd5lrGBSaVACSpvAEAKApfKW1E5hx8qa25apRPyBtkpAzppdO6lkuQEI4htnVC3o8zcGUDJY2KCQrwU1gjazbzcDYTSG5mwwcoLLt_6eUf2YUndwJ0-_DbaRhfigFwreu2OAcLL9XgHCfkeZC3iR48FUClPEtIPZPEGcHmI-3q-1hKHPjXFGX54v-f9ZLcB5woQujdIVkMm617BVhs0K_jgvsNRU0y3Q
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OFY57Eb-v56kRBJ96tE2btg8iq3gcwvrkwj0ZkjTRhaXda7ty99870y-srC--lWZS2skk85vOF8DbUKikiCPtczzsfETEgZ9pLXxhnCYvE64LJQqvvoqrdfzlOrk-grFn68DA5qBpR_2k1vX24vbm7gNu-Pdd14Y0HCdd7Mq2oHqEaNTwe3A_Qt1IQV6rePIrJHnStS1F1EKZWFE6JNP96ykncMyDHC-icKa3uvL-0yG-2G2r5hBC_TvQ8g_NdfkQHgyQky17GXkER7Z8DMerwan-BL73df-ZvcWTgX6eMVUWrKaE3akdFqscW9rCNj7KTGnZr029b1hLig4FpZtEQeqMfusys90gDrasTyp-CuvLz98-XflD2wXfoPXQ-tahSWZEplXA0aBQYWAivOVc6gRHeOACrnPUfRFq_kwpp7gpck4OwCJBvBPzZ7Aoq9KeAkOsQPihyLSwsTZcC53kgcrwypqgUB74I1Plrq-uITsXW4pWSc8dSeshh_Xw4CNxfqKl2tjdjar-IYetJlWOmFI5g1Awj51Q2uShtfimRcpVppwHr2ndZJ9oOu1wuUTZ4BRsm3rwrqMgqUNOGjWkKuBHUbWsGeX5jBJZbmbDpyQb47c0Ek9PBNQIswTOHOXl8PCbaZgeSqFwpa32REMlmFI0kz143ovXxI9RWD1IZ4I3Y9h8pNz87IqK4_plcZKc_ffMF3CCYDLv4_POYdHWe_sSAVurX3V78De0HD-S
  priority: 102
  providerName: Scholars Portal
Title Global expansion and redistribution of Aedes-borne virus transmission risk with climate change
URI https://www.ncbi.nlm.nih.gov/pubmed/30921321
https://www.proquest.com/docview/2252312156
https://www.proquest.com/docview/2200777998
https://pubmed.ncbi.nlm.nih.gov/PMC6438455
https://doaj.org/article/a9522afc51494f6abc91ee8aad73a8af
http://dx.doi.org/10.1371/journal.pntd.0007213
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBa7KZReSt_rdpuqUOjJiR35ecyGXZZClqV0IacaSZbaQNYOeZT-_H4jP6jLnnoxxhoZezSj-UaaGTH2KUxkXEYz5QtMdj4QceBnSiV-oq2iXSaMCyUKL2-S67voyypenbC4y4VxQftarSfV5n5SrX-62MrtvZ52cWLT2-UCVjSL4nh6yk5hfjsXvZl-4zx2J5MCmFCy1Sxt8-VEGk7b4Zlsq0NJhQvh_dA5OiLIcTMLB6bJVfDv5-nRdlPvHwKh_8ZS_mWcrp6xpy2q5PPm65-zE1O9YI-X7b75S_a9Ke3PzW8oP62PcVmVfEc5uf2JV7y2fG5Ks_chFpXhv9a7454fyJZBFlwnikPntHLL9WYNqGt4kzf8it1dXX5bXPvtyQq-hoNw8I2F16WTTMlAwGeQYaBneGRtahMBBGADoXKYtxmMeyallUKXuaA9vjIGpInEazaq6sqcMQ44QBChzFRiIqWFSlScBzLDndFBKT3md0wttk0BjcLtoqVwPBruFDQeRTseHrsgzve0VP7aPah3P4pWCAqZAzZKq4H28sgmUuk8NAZfWqZCZtJ67AONW9HkkvZKXMwhG4LiaVOPfXYUpMbgpJZtNgJ-igpiDSjPB5RguR40n5FsdP-yLzBBAjMDSSXo2cnLw80f-2Z6KUW7VaY-Eg1VWUrhCXvsTSNePT86YfVYOhC8AcOGLVAjVze8VZu3_93zHXsCvJg3IXjnbHTYHc17YLKDGkMTVymu2SIcs0cXlze3X8dufQPXZZSNnY7-AWwkOok
link.rule.ids 230,314,727,780,784,864,885,2102,2221,12056,12223,21388,24318,27924,27925,31719,31720,33266,33267,33744,33745,43310,43579,43805,53791,53793,73745,74014,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB90D1QQ0fPjqqcXQfCpXrvp55PsyR2r3i4id3BvIUkTXTjaddsV_3xnmmy1cvhWmrS0M5OZ3yTzAfAmzmRaJVMVclR2ISLiKCyUysJMW0WnTMgXShReLLP5ZfLpKr3yG26tD6vc6cReUVeNpj3yY5Q7hCJooLL36x8hdY2i01XfQuM27FHl9HQCeyenyy9fd7o4LdO-TSmiFMq8muY-eY7n8bHn1bt13VVUxRBdIT4yTn0N_0FTT9bXTXsTDP03mvIv83T2EB54XMlmThAewS1T78OdhT8534f7bn-OubSjxyBcsX9mfqE6oB0zJuuKbShLd-iBxRrLZqYyLQtRUmrDfq4225Z1ZN5QPPqnKDSd0WYu09crRL-GuVTiJ3B5dnrxYR76ZguhRp-hC41FR0xnhZIRRzdCxpGe4i1rc5sh3UsbcVWixUM2xIWUVnJdlZyO_aoUUU7Cn8KkbmpzAAwRAqGGqlCZSZTmKlNpGckCr4yOKhlAuKOyWLuaGqI_WMvRF3HkEsQV4bkSwAmxYphLFbH7G83mm_ALTMgSkaS0GgFgmdhMKl3GxuCXVjmXhbQBHBEjhUsvHda1mKGEcAqxzQN428-glY2U1NInKOBPUY2s0czD0UwkuR4NH5Cw7P6lFX9kF5_cCdDNw6-HYXopBcDVptnSHCq8lKNzHMAzJ28DPXhUIpWmcQD5SBJHBBuP1KvvfSlx5F-RpOnz_3_WEdydXyzOxfnH5ecXcA8xY-nC8A5h0m225iXisk698ovvN8AVNcU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_0CkUQ0frRaLUrCD7FS7L5fJKr9qgfPYpY6Nuyu9nVg5Kcl5z45zuTbKKR4lvITkIyMzvzm92ZWYBXYSqTMo6Uz9HY-YiIAz9XKvVTbRXtMqFcqFD4fJWeXcYfr5Irl__UuLTKwSZ2hrqsNa2Rz1HvEIqgg0rn1qVFXLxfvt388OkEKdppdcdp3IY99IpBNIO9k9PVxZfBLidF0h1ZioiFqrCizBXS8SycO7m92VRtSR0NMSziE0fV9fMfrfZsc103N0HSfzMr_3JVy_twz2FMtuiV4gHcMtUB7J-7XfQDuNuv1bG-BOkhiL7xPzO_0DTQ6hmTVcm2VLE7nofFassWpjQN81FrKsN-rre7hrXk6lBVuqcoTZ3Rwi7T12tEwob1ZcWP4HJ5-vXdme8OXvA1xg-tbywGZTrNlQw4hhQyDHSEt6zNbIoyKGzAVYHeD0US5lJayXVZcNoCLBNEPDF_DLOqrswhMEQLhCDKXKUmVpqrVCVFIHO8MjoopQf-wGWx6ftriG6TLcO4pGeXIKkIJxUPTkgUIy11x-5u1Ntvwk02IQtEldJqBINFbFOpdBEag19aZlzm0npwTIIUfanpOMfFAjWEU7pt5sHrjoJmOXJSS1esgD9F_bImlEcTSmS5ngwfkrIM_9KIP3qMTw4KdPPwy3GYXkrJcJWpd0RDTZgyDJQ9eNLr28gPHhTIpSj0IJto4oRh05Fq_b1rK47yy-Mkefr_zzqGfZx34vOH1adncAfhY9Fn5B3BrN3uzHOEaK164ebeb1PUOfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+expansion+and+redistribution+of+Aedes-borne+virus+transmission+risk+with+climate+change&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Ryan%2C+Sadie+J.&rft.au=Carlson%2C+Colin+J.&rft.au=Mordecai%2C+Erin+A.&rft.au=Johnson%2C+Leah+R.&rft.date=2019-03-01&rft.pub=Public+Library+of+Science&rft.issn=1935-2727&rft.eissn=1935-2735&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pntd.0007213&rft_id=info%3Apmid%2F30921321&rft.externalDBID=PMC6438455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon