Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge–Kutta and hp-Finite Element Methods
The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth con...
Saved in:
Published in | Foundations of computational mathematics Vol. 14; no. 5; pp. 913 - 949 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.10.2014
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1615-3375 1615-3383 |
DOI | 10.1007/s10208-013-9179-3 |
Cover
Loading…
Abstract | The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge–Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming
hp
-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski–Mosco–Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established. |
---|---|
AbstractList | The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established. Keywords Nonlinear evolutionary inequalities * Nonlinear differential inclusions * Monotone operators * Stiffly accurate Runge-Kutta methods * Nonconforming Galerkin methods * hp-finite element approximations * Stability * Convergence Mathematics Subject Classification (2010) 35K61 * 35K86 * 47J05 * 47J20 * 47J22 * 47H05 * 65M12 The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge–Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp -finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski–Mosco–Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established. The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established.[PUBLICATION ABSTRACT] The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established. The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming -finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established. |
Audience | Academic |
Author | Thalhammer, M. Gwinner, J. |
Author_xml | – sequence: 1 givenname: J. surname: Gwinner fullname: Gwinner, J. organization: Institut für Mathematik und Rechneranwendung, Universität der Bundeswehr München – sequence: 2 givenname: M. surname: Thalhammer fullname: Thalhammer, M. email: mechthild.thalhammer@uibk.ac.at organization: Institut für Mathematik, Leopold–Franzens Universität Innsbruck |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26029034$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNURC_wAGyQJTawSPEliZMN0lBmYEQBqYW15SQnM6489tSXiu4Qr8Ab8iR4mDJ0qgGUhSOf7_99fPwfZnvGGsiyxwQfE4z5C08wxXWOCcsbwpuc3csOSEXKnLGa7W3-ebmfHXp_gTEpG1I8yPZphWmDWXGQfZtErdFr5TsHQXkZlDUeDdahD9ZoZUA6NL6yOq4K0l2jqYHLKLUKCjx6JT30yBp0HtQw6Gs06rroZAB0Fs0Mfnz9_i6GIJE0PZov84kyKtXGGhZgAnoPYW57_zC7P0jt4dHNepR9now_nbzNTz--mZ6MTvOu4mXIWypLAF5LRmve1qyvgHQFIUXf9G3dNKQve455gXFbkYq20EJFWFO3kg9Uti07yl6ufZexXUDfpRac1GLp1CJdTFipxHbFqLmY2StRFAXHNUkGz24MnL2M4INYpLmB1tKAjV6Qumw4xrio_o9WNHElpzyhT--gFzY6kyYhSFmll6pKRv9QM6lBKDPY1GK3MhUjls5t6oKxROU7qBkYSPdJ2RlU2t7ij3fw6ethobqdgudbgsQE-BJmMnovpudn2-yT2_PeDPp3-BJA1kDnrPcOhg1CsFgFXKwDLlLAxSrgYmXK72g6FX6lNnWu9D-VdK306ZQUTndrzn8V_QRpYA6J |
CODEN | FCMOA3 |
CitedBy_id | crossref_primary_10_1007_s00033_016_0718_z crossref_primary_10_1007_s00211_015_0733_6 crossref_primary_10_1016_j_camwa_2024_11_020 |
Cites_doi | 10.1137/1.9781611970845 10.1007/978-1-4612-0981-2 10.1007/978-3-662-09947-6 10.1090/S0025-5718-09-02285-6 10.1007/978-1-4612-1048-1 10.1007/978-3-642-69512-4 10.1016/S0168-9274(99)00040-9 10.1007/s00466-009-0464-6 10.1016/j.apnum.2010.03.011 10.1007/978-3-642-66165-5 10.1016/j.cam.2013.03.013 10.1137/1036141 10.1007/978-3-662-12613-4 10.1002/9780470753767 10.1016/0001-8708(69)90009-7 10.1007/b99799 10.1007/s00211-006-0035-0 10.1007/978-3-8348-2263-5 10.1201/9781420027365 10.1007/s00466-006-0109-y 10.1007/BF02505918 10.1007/978-3-662-02888-9 10.1515/9783112479926-013 10.1007/978-3-642-15337-2_1 10.1090/qam/1146620 10.1017/S0027763000007716 10.1017/CBO9780511897450 10.1155/2013/108043 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 COPYRIGHT 2014 Springer SFoCM 2014 |
Copyright_xml | – notice: The Author(s) 2013 – notice: COPYRIGHT 2014 Springer – notice: SFoCM 2014 |
DBID | C6C AAYXX CITATION NPM ISR 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
DOI | 10.1007/s10208-013-9179-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Civil Engineering Abstracts MEDLINE - Academic Civil Engineering Abstracts PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Mathematics Applied Sciences Computer Science |
EISSN | 1615-3383 |
EndPage | 949 |
ExternalDocumentID | PMC4447081 3435082701 A385998433 26029034 10_1007_s10208_013_9179_3 |
Genre | Journal Article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD ABRTQ NPM AEIIB 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c675t-b2a5ee78a3287b83d6e1c4114d9db8991d5d707400b6162bebe61398ba7f2abb3 |
IEDL.DBID | U2A |
ISSN | 1615-3375 |
IngestDate | Thu Aug 21 18:16:57 EDT 2025 Fri Jul 11 08:13:38 EDT 2025 Fri Jul 11 02:08:16 EDT 2025 Fri Jul 25 19:07:42 EDT 2025 Tue Jun 17 21:09:47 EDT 2025 Thu Jun 12 23:33:04 EDT 2025 Tue Jun 10 20:22:40 EDT 2025 Fri Jun 27 04:50:54 EDT 2025 Mon Jul 21 06:02:55 EDT 2025 Tue Jul 01 04:30:04 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Fri Feb 21 02:36:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 35K86 finite element approximations Stability 35K61 Nonlinear evolutionary inequalities Monotone operators Stiffly accurate Runge–Kutta methods Nonlinear differential inclusions Convergence 47J22 47J20 47J05 47H05 Nonconforming Galerkin methods 65M12 hp-finite element approximations |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c675t-b2a5ee78a3287b83d6e1c4114d9db8991d5d707400b6162bebe61398ba7f2abb3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Communicated by Philippe Ciarlet. |
OpenAccessLink | https://link.springer.com/10.1007/s10208-013-9179-3 |
PMID | 26029034 |
PQID | 1562606532 |
PQPubID | 43692 |
PageCount | 37 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4447081 proquest_miscellaneous_1859700046 proquest_miscellaneous_1620045727 proquest_journals_1562606532 gale_infotracmisc_A385998433 gale_infotracgeneralonefile_A385998433 gale_infotracacademiconefile_A385998433 gale_incontextgauss_ISR_A385998433 pubmed_primary_26029034 crossref_primary_10_1007_s10208_013_9179_3 crossref_citationtrail_10_1007_s10208_013_9179_3 springer_journals_10_1007_s10208_013_9179_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: United States – name: New York |
PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
PublicationTitle | Foundations of computational mathematics |
PublicationTitleAbbrev | Found Comput Math |
PublicationTitleAlternate | Found Comut Math |
PublicationYear | 2014 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Gwinner (CR19) 1992; 50 Ainsworth, Kay (CR1) 2000; 34 Mosco (CR29) 1969; 3 Maischak, Stephan (CR28) 2007; 39 Renardy, Rogers (CR33) 2004 Strehmel, Weiner, Podhaisky (CR37) 2012 Sofonea, Han, Shillor (CR36) 2006 Hlavaček, Haslinger, Nečas, Lovišek (CR25) 1988 Glowinski, Lions, Tremolières (CR18) 1981 Aubin, Cellina (CR4) 1984 Butcher (CR7) 2008 Han, Reddy (CR24) 1999 Emmrich, Thalhammer (CR15) 2010; 79 Franke, Düster, Nübel, Rank (CR16) 2010; 45 Naumann (CR31) 1984 Oettli (CR32) 1988 Duvaut, Lions (CR13) 1976 CR2 Schwab (CR34) 1998 Glowinski (CR17) 1984 Shillor, Sofonea, Telega (CR35) 2004 Halphen, Salençon (CR23) 1987 Zeidler (CR39) 1990 Dörsek, Melenk (CR11) 2010; 60 Eck, Jarušek, Krbec (CR14) 2005 Babuška, Suri (CR5) 1994; 36 Attouch (CR3) 1984 CR20 Gwinner (CR21) 2013; 254 Hairer, Wanner (CR22) 1991 Nagase (CR30) 2000; 160 Bernardi, Maday, Ciarlet, Lions (CR6) 1997 Dautray, Lions (CR9) 1992 DeVore, Lorentz (CR10) 1993 Kikuchi, Oden (CR26) 1988 Dörsek, Melenk (CR12) 2011 Krebs, Stephan (CR27) 2007; 105 Carstensen, Gwinner (CR8) 1999; IV/CLXXVII Stummel (CR38) 1974–1975; 73A 9179_CR2 B. Halphen (9179_CR23) 1987 J. Naumann (9179_CR31) 1984 C. Carstensen (9179_CR8) 1999; IV/CLXXVII K. Strehmel (9179_CR37) 2012 G. Duvaut (9179_CR13) 1976 F. Stummel (9179_CR38) 1974–1975; 73A E. Emmrich (9179_CR15) 2010; 79 A. Krebs (9179_CR27) 2007; 105 H. Attouch (9179_CR3) 1984 P. Dörsek (9179_CR12) 2011 J.C. Butcher (9179_CR7) 2008 J. Gwinner (9179_CR21) 2013; 254 M. Maischak (9179_CR28) 2007; 39 H. Nagase (9179_CR30) 2000; 160 R. Dautray (9179_CR9) 1992 R.A. DeVore (9179_CR10) 1993 R. Glowinski (9179_CR18) 1981 P. Dörsek (9179_CR11) 2010; 60 E. Hairer (9179_CR22) 1991 I. Babuška (9179_CR5) 1994; 36 D. Franke (9179_CR16) 2010; 45 C. Eck (9179_CR14) 2005 J. Gwinner (9179_CR19) 1992; 50 M. Ainsworth (9179_CR1) 2000; 34 M. Sofonea (9179_CR36) 2006 M. Shillor (9179_CR35) 2004 C. Bernardi (9179_CR6) 1997 I. Hlavaček (9179_CR25) 1988 U. Mosco (9179_CR29) 1969; 3 E. Zeidler (9179_CR39) 1990 W. Oettli (9179_CR32) 1988 9179_CR20 Ch. Schwab (9179_CR34) 1998 R. Glowinski (9179_CR17) 1984 J.-P. Aubin (9179_CR4) 1984 N. Kikuchi (9179_CR26) 1988 M. Renardy (9179_CR33) 2004 W. Han (9179_CR24) 1999 |
References_xml | – year: 1992 ident: CR9 publication-title: Evolution Problems I – year: 1999 ident: CR24 publication-title: Plasticity—Mathematical Theory and Numerical Analysis – year: 1988 ident: CR26 publication-title: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods doi: 10.1137/1.9781611970845 – year: 1990 ident: CR39 publication-title: Nonlinear Functional Analysis and Its Applications, Vol. II/B: Nonlinear Monotone Operators doi: 10.1007/978-1-4612-0981-2 – ident: CR2 – year: 1981 ident: CR18 publication-title: Numerical Analysis of Variational Inequalities – year: 1991 ident: CR22 publication-title: Solving Ordinary Differential Equations, II: Stiff and Differential-Algebraic Problems doi: 10.1007/978-3-662-09947-6 – year: 1998 ident: CR34 publication-title: - and -Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics – start-page: 1 year: 2011 end-page: 17 ident: CR12 article-title: Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: the primal formulation publication-title: Proceedings of ICOSAHOM 2009 – volume: 79 start-page: 785 issue: 270 year: 2010 end-page: 806 ident: CR15 article-title: Stiffly accurate Runge–Kutta methods for nonlinear evolution problems governed by a monotone operator publication-title: Math. Comput. doi: 10.1090/S0025-5718-09-02285-6 – year: 1984 ident: CR3 publication-title: Variational Convergence for Functions and Operators – volume: 50 start-page: 11 year: 1992 end-page: 25 ident: CR19 article-title: Finite-element convergence for contact problems in plane linear elastostatics publication-title: Q. Appl. Math. – year: 1988 ident: CR25 publication-title: Numerical Solution of Variational Inequalities doi: 10.1007/978-1-4612-1048-1 – year: 1984 ident: CR4 publication-title: Differential Inclusions. Set-Valued Maps and Viability Theory doi: 10.1007/978-3-642-69512-4 – volume: 34 start-page: 329 year: 2000 end-page: 344 ident: CR1 article-title: Approximation theory for the -version finite element method and application to the nonlinear Laplacian publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(99)00040-9 – volume: 45 start-page: 513 year: 2010 end-page: 522 ident: CR16 article-title: A comparison of the -, -, -, and -version of the FEM for the solution of the 2D Hertzian contact problem publication-title: Comput. Mech. doi: 10.1007/s00466-009-0464-6 – volume: 60 start-page: 689 year: 2010 end-page: 704 ident: CR11 article-title: Adaptive -FEM for the contact problem with Tresca friction in linear elasticity: the primal–dual formulation and a posteriori error estimation publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2010.03.011 – year: 1976 ident: CR13 publication-title: Inequalities in Mechanics and Physics doi: 10.1007/978-3-642-66165-5 – year: 1984 ident: CR31 publication-title: Einführung in die Theorie parabolischer Variationsungleichungen – volume: 254 start-page: 175 year: 2013 end-page: 184 ident: CR21 article-title: -FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.03.013 – volume: 73A start-page: 5 year: 1974–1975 end-page: 49 ident: CR38 article-title: Perturbation theory for Sobolev spaces publication-title: Proc. R. Soc. Edinb. – volume: 36 start-page: 578 year: 1994 end-page: 632 ident: CR5 article-title: The and – version of the finite element method, basic principles and properties publication-title: SIAM Rev. doi: 10.1137/1036141 – start-page: 130 year: 1988 end-page: 136 ident: CR32 article-title: Monoton-konvexe Funktionen—eine Bemerkung zum Satz von Browder-Minty publication-title: Advances in Mathematical Optimization, Pap. Dedic. F. Nozicka Occas. 70. Birthday – year: 2004 ident: CR33 publication-title: An Introduction to Partial Differential Equations – start-page: 209 year: 1997 end-page: 485 ident: CR6 article-title: Spectral methods publication-title: Handbook of Numerical Analysis V, Part 2 – year: 1984 ident: CR17 publication-title: Numerical Methods for Nonlinear Variational Problems doi: 10.1007/978-3-662-12613-4 – year: 2006 ident: CR36 publication-title: Analysis and Approximation of Contact Problems with Adhesion or Damage – year: 2008 ident: CR7 publication-title: Numerical Methods for Ordinary Differential Equations doi: 10.1002/9780470753767 – volume: 3 start-page: 510 year: 1969 end-page: 585 ident: CR29 article-title: Convergence of convex sets and of solutions of variational inequalities publication-title: Adv. Math. doi: 10.1016/0001-8708(69)90009-7 – year: 2004 ident: CR35 publication-title: Models and Analysis of Quasistatic Contact. Variational Methods doi: 10.1007/b99799 – volume: 105 start-page: 457 year: 2007 end-page: 480 ident: CR27 article-title: A -version finite element method for nonlinear elliptic variational inequalities publication-title: Numer. Math. doi: 10.1007/s00211-006-0035-0 – year: 2012 ident: CR37 publication-title: Numerik gewöhnlicher Differentialgleichungen: nichtsteife, steife und differential-algebraische Gleichungen doi: 10.1007/978-3-8348-2263-5 – year: 2005 ident: CR14 publication-title: Unilateral Contact Problems—Variational Methods and Existence Theorems doi: 10.1201/9781420027365 – volume: 39 start-page: 597 year: 2007 end-page: 607 ident: CR28 article-title: Adaptive -versions of boundary element methods for elastic contact problems publication-title: Comput. Mech. doi: 10.1007/s00466-006-0109-y – volume: 160 start-page: 123 year: 2000 end-page: 134 ident: CR30 article-title: On a regularity property and a priori estimates for solutions of nonlinear parabolic variational inequalities publication-title: Nagoya Math. J. – volume: IV/CLXXVII start-page: 363 year: 1999 end-page: 394 ident: CR8 article-title: A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems publication-title: Ann. Mat. Pura Appl. doi: 10.1007/BF02505918 – year: 1993 ident: CR10 publication-title: Constructive Approximation doi: 10.1007/978-3-662-02888-9 – year: 1987 ident: CR23 publication-title: Élasto-plasticité – ident: CR20 – start-page: 130 volume-title: Advances in Mathematical Optimization, Pap. Dedic. F. Nozicka Occas. 70. Birthday year: 1988 ident: 9179_CR32 doi: 10.1515/9783112479926-013 – volume-title: Numerik gewöhnlicher Differentialgleichungen: nichtsteife, steife und differential-algebraische Gleichungen year: 2012 ident: 9179_CR37 doi: 10.1007/978-3-8348-2263-5 – volume-title: Élasto-plasticité year: 1987 ident: 9179_CR23 – volume-title: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods year: 1988 ident: 9179_CR26 doi: 10.1137/1.9781611970845 – volume-title: Numerical Methods for Nonlinear Variational Problems year: 1984 ident: 9179_CR17 doi: 10.1007/978-3-662-12613-4 – volume: 45 start-page: 513 year: 2010 ident: 9179_CR16 publication-title: Comput. Mech. doi: 10.1007/s00466-009-0464-6 – volume-title: Numerical Solution of Variational Inequalities year: 1988 ident: 9179_CR25 doi: 10.1007/978-1-4612-1048-1 – volume-title: Plasticity—Mathematical Theory and Numerical Analysis year: 1999 ident: 9179_CR24 – volume: 73A start-page: 5 year: 1974–1975 ident: 9179_CR38 publication-title: Proc. R. Soc. Edinb. – volume-title: Variational Convergence for Functions and Operators year: 1984 ident: 9179_CR3 – volume-title: Solving Ordinary Differential Equations, II: Stiff and Differential-Algebraic Problems year: 1991 ident: 9179_CR22 doi: 10.1007/978-3-662-09947-6 – volume-title: Differential Inclusions. Set-Valued Maps and Viability Theory year: 1984 ident: 9179_CR4 doi: 10.1007/978-3-642-69512-4 – volume-title: Numerical Methods for Ordinary Differential Equations year: 2008 ident: 9179_CR7 doi: 10.1002/9780470753767 – start-page: 1 volume-title: Proceedings of ICOSAHOM 2009 year: 2011 ident: 9179_CR12 doi: 10.1007/978-3-642-15337-2_1 – volume: 39 start-page: 597 year: 2007 ident: 9179_CR28 publication-title: Comput. Mech. doi: 10.1007/s00466-006-0109-y – volume-title: Einführung in die Theorie parabolischer Variationsungleichungen year: 1984 ident: 9179_CR31 – volume-title: Analysis and Approximation of Contact Problems with Adhesion or Damage year: 2006 ident: 9179_CR36 – volume: 34 start-page: 329 year: 2000 ident: 9179_CR1 publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(99)00040-9 – volume: 60 start-page: 689 year: 2010 ident: 9179_CR11 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2010.03.011 – volume-title: Models and Analysis of Quasistatic Contact. Variational Methods year: 2004 ident: 9179_CR35 doi: 10.1007/b99799 – volume: 50 start-page: 11 year: 1992 ident: 9179_CR19 publication-title: Q. Appl. Math. doi: 10.1090/qam/1146620 – volume: 79 start-page: 785 issue: 270 year: 2010 ident: 9179_CR15 publication-title: Math. Comput. doi: 10.1090/S0025-5718-09-02285-6 – volume-title: p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics year: 1998 ident: 9179_CR34 – volume-title: Unilateral Contact Problems—Variational Methods and Existence Theorems year: 2005 ident: 9179_CR14 doi: 10.1201/9781420027365 – volume-title: Constructive Approximation year: 1993 ident: 9179_CR10 doi: 10.1007/978-3-662-02888-9 – volume-title: Evolution Problems I year: 1992 ident: 9179_CR9 – volume-title: Nonlinear Functional Analysis and Its Applications, Vol. II/B: Nonlinear Monotone Operators year: 1990 ident: 9179_CR39 – volume: 160 start-page: 123 year: 2000 ident: 9179_CR30 publication-title: Nagoya Math. J. doi: 10.1017/S0027763000007716 – ident: 9179_CR2 doi: 10.1017/CBO9780511897450 – volume: IV/CLXXVII start-page: 363 year: 1999 ident: 9179_CR8 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/BF02505918 – volume-title: Inequalities in Mechanics and Physics year: 1976 ident: 9179_CR13 doi: 10.1007/978-3-642-66165-5 – volume-title: Numerical Analysis of Variational Inequalities year: 1981 ident: 9179_CR18 – volume-title: An Introduction to Partial Differential Equations year: 2004 ident: 9179_CR33 – volume: 36 start-page: 578 year: 1994 ident: 9179_CR5 publication-title: SIAM Rev. doi: 10.1137/1036141 – start-page: 209 volume-title: Handbook of Numerical Analysis V, Part 2 year: 1997 ident: 9179_CR6 – volume: 254 start-page: 175 year: 2013 ident: 9179_CR21 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.03.013 – volume: 105 start-page: 457 year: 2007 ident: 9179_CR27 publication-title: Numer. Math. doi: 10.1007/s00211-006-0035-0 – ident: 9179_CR20 doi: 10.1155/2013/108043 – volume: 3 start-page: 510 year: 1969 ident: 9179_CR29 publication-title: Adv. Math. doi: 10.1016/0001-8708(69)90009-7 |
SSID | ssj0015914 |
Score | 2.0246255 |
Snippet | The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied.... The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied.... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 913 |
SubjectTerms | Analysis Applications of Mathematics Approximation theory Chemical elements Computer Science Constants Convergence Economics Evolutionary Finite element method Galerkin methods Inequalities Inequalities (Mathematics) Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematics Mathematics and Statistics Matrix Theory Nonlinear equations Nonlinearity Numerical Analysis Runge-Kutta method |
Title | Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge–Kutta and hp-Finite Element Methods |
URI | https://link.springer.com/article/10.1007/s10208-013-9179-3 https://www.ncbi.nlm.nih.gov/pubmed/26029034 https://www.proquest.com/docview/1562606532 https://www.proquest.com/docview/1620045727 https://www.proquest.com/docview/1859700046 https://pubmed.ncbi.nlm.nih.gov/PMC4447081 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9gAceJSXoUQLQiBRWXK8u971MQkJLVVyaKlUTta-3EaqnCp2kHpD_AX-Ib-EWb-Io1KJUyTvOE48s7Pfp535FqF3EdOExyzwUyGsT0VsfWFcjbtixHADhKysdp_OooNT-uWMndV93HlT7d5sSZaZeq3ZLSwLr9xuMY99soV2mKPuEMSn4aDdOmBxKejtkIxPCGfNVuZNX9FZjDZT8tqatFkvubFpWq5Fk0foQQ0i8aDy-mN0x2a76GENKHE9XXO41JzZ0FzbRXebTmQYvj9tNVvzJ-inY6P40xzyiC2aIh8MmBbPKjkNucTj73WkyuU1Psxs1ZIJZBsPYTU0eJHhk2KeppfXeKD1yslQ4GNIJ_b3j19Hq6KQWGYGX1z5k7nDunhcFa_jaXmOdf4UnU7GX0cHfn1Cg6-BaBS-CiWzlgtJgHgpQUxk-5oCxTKxUcDk-oYZDiAlCFTUj0IFEQPwIRZK8jSUSpFnaDtbZPYFwlpypYWyRASCplIow2Vf9o0j75py7qGgcVWia_lyd4rGZfJXeNl5NwHvJs67CfHQx_aWq0q74zbjt87_idPEyFzRzblc5XlyeHKcDIhgwEopAaMPtVG6gIdrWfcwwF9wMlody_cdy_NKRPwmw72OIcxu3R1u4jGps0ueAOcGGhoxEnroTTvs7nQVc5ldrMAmcvmPATy9xQaewsv-YQ89r0K8fVHwgDAOCPUQ7wR_a-B0ybsj2fyi1CenlHJAmh7ab6bJ2k__1_t_-V_Wr9A9QK60qqrcQ9vFcmVfAzosVA_tDCbD4cx9fv52NO6hrVE06pU54g_n1GCi |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgLAoLHuUVKGAQAgkUKRM7sbMchhnN0M4s-pC6s_xKO1KVqSYJUneIX-AP-RKu86IZlUps45s4ybWvz5HvPUbofRxpwpIo8FPOrU95Yn1uXI67iohhBghZle0-X8TTY_rtJDppxKJdLczG_r0rcQurdCu3R8wSn9xGdygQZZe9N4pH3YZBlFQy3g6_-ISwqN3AvO4RvSVoMxBfWYk2syQ3tkqrFWjyEN1voCMe1r5-hG7ZbAc9aGAkbiZpDpfakxraaztou60_huZ7806pNX-MfjoOir8uIXrYok3twYBk8aIW0ZBrPP7ejE-5vsSzzNaFmECx8RdYAw1eZfiwWKbp-SUeal068Ql8AEHE_v7xa68sCollZvDZhT9ZOoSLx3XKOp5Xp1fnT9DxZHw0mvrNuQy-BnpR-CqUkbWMSwJ0S3FiYjvQFIiVSYwC_jYwkWEATYJAxYM4VDBOADQkXEmWhlIp8hRtZavMPkdYS6Y0V5bwgNNUcmWYHMiBcZRdU8Y8FLSuEroRLXdnZ5yLv3LLzrsCvCucdwXx0KfulotaseMm43fO_8IpYWQu1eZUlnkuZocHYkh4BFyUEjD62BilK-hcy6ZyAT7BiWf1LD_0LE9r6fDrDHd7hjCndb-5HY-iiSm5AKYN5DOOSOiht12zu9PlyWV2VYJN7KJeBKD0BhvohVVVwx56Vg_x7kdBB2ESEOoh1hv8nYFTI--3ZMuzSpWcUsoAX3rocztNrrz6v_7_i_-yfoO2p0fzfbE_W-y9RHcBu9I6r3IXbRXr0r4CfFio11Vk-AM4oluH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSFweuIxbYIBBCCRQtDR2YuexdK1WRiu0MWlvlm_ZKk1p1aRIe0P8Bf4hv4Tj3GiqMYnX-KRp4uPj79M55zNCb-NIE5ZEgZ9ybn3KE-tz42rcVUQMM0DIymr3yTTeP6afT6KT-pzTvKl2b1KSVU-DU2nKit2FSXfXGt_CsgjLZY5Z4pPr6AYQlTJPO4gHbRohSkpxb4dqfEJY1KQ1L_uJzsa0GZ7X9qfN2smNBGq5L43uo7s1oMT9ygMeoGs220b3anCJ66Wbw6Xm_Ibm2ja61XQlw_CdSavfmj9EPx0zxXsziCm2aAp-MOBbPK2kNeQSD7_XXiuXF3ic2ao9E4g3_gQ7o8HzDB8VszQ9v8B9rVdOkgIfQmixv3_8OlgVhcQyM_hs4Y9mDvfiYVXIjiflmdb5I3Q8Gn4b7Pv1aQ2-BtJR-CqUkbWMSwIkTHFiYtvTFOiWSYwCVtczkWEAWIJAxb04VOA9ACUSriRLQ6kUeYy2snlmnyKsJVOaK0t4wGkquTJM9mTPOCKvKWMeCpqpErqWMncnapyLvyLMbnYFzK5wsyuIhz60tywqHY-rjN-4-RdOHyNzBTincpXnYnx0KPqER8BQKQGj97VROoeHa1n3M8ArOEmtjuW7juVpJSh-meFOxxBWuu4ON_4o6kiTC-DfQEnjiIQeet0Ouztd9Vxm5yuwiV0sjACqXmEDT2FlL7GHnlQu3n4oeECYBIR6iHWcvzVwGuXdkWx2VmqVU0oZoE4PfWyWydpf_9f3f_Zf1q_Qza97I_FlPD14jm4DoKVVseUO2iqWK_sCQGOhXpaB4Q-B1mPO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+Discretisations+for+Nonlinear+Evolutionary+Inequalities+Based+on+Stiffly+Accurate+Runge%E2%80%93Kutta+and+hp-Finite+Element+Methods&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Gwinner%2C+J.&rft.au=Thalhammer%2C+M.&rft.date=2014-10-01&rft.pub=Springer+US&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=14&rft.issue=5&rft.spage=913&rft.epage=949&rft_id=info:doi/10.1007%2Fs10208-013-9179-3&rft.externalDocID=10_1007_s10208_013_9179_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |