Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge–Kutta and hp-Finite Element Methods

The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth con...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 14; no. 5; pp. 913 - 949
Main Authors Gwinner, J., Thalhammer, M.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.10.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-3375
1615-3383
DOI10.1007/s10208-013-9179-3

Cover

Loading…
Abstract The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge–Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp -finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski–Mosco–Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established.
AbstractList The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established. Keywords Nonlinear evolutionary inequalities * Nonlinear differential inclusions * Monotone operators * Stiffly accurate Runge-Kutta methods * Nonconforming Galerkin methods * hp-finite element approximations * Stability * Convergence Mathematics Subject Classification (2010) 35K61 * 35K86 * 47J05 * 47J20 * 47J22 * 47H05 * 65M12
The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge–Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp -finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski–Mosco–Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established.
The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established.[PUBLICATION ABSTRACT]
The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming hp-finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established.
The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied. The scope of applications includes differential inclusions governed by a nonlinear operator that is monotone and fulfills a certain growth condition. A basic assumption on the considered class of stiffly accurate Runge-Kutta time discretisations is a stability criterion which is in particular satisfied by the Radau IIA and Lobatto IIIC methods. In order to allow nonconforming -finite element approximations of unilateral constraints, set convergence of convex subsets in the sense of Glowinski-Mosco-Stummel is utilised. An appropriate formulation of the fully discrete variational inequality is deduced on the basis of a characteristic example of use, a Signorini-type initial-boundary value problem. Under hypotheses close to the existence theory of nonlinear first-order evolutionary equations and inequalities involving a monotone main part, a convergence result for the piecewise constant in time interpolant is established.
Audience Academic
Author Thalhammer, M.
Gwinner, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Gwinner
  fullname: Gwinner, J.
  organization: Institut für Mathematik und Rechneranwendung, Universität der Bundeswehr München
– sequence: 2
  givenname: M.
  surname: Thalhammer
  fullname: Thalhammer, M.
  email: mechthild.thalhammer@uibk.ac.at
  organization: Institut für Mathematik, Leopold–Franzens Universität Innsbruck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26029034$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURC_wAGyQJTawSPEliZMN0lBmYEQBqYW15SQnM6489tSXiu4Qr8Ab8iR4mDJ0qgGUhSOf7_99fPwfZnvGGsiyxwQfE4z5C08wxXWOCcsbwpuc3csOSEXKnLGa7W3-ebmfHXp_gTEpG1I8yPZphWmDWXGQfZtErdFr5TsHQXkZlDUeDdahD9ZoZUA6NL6yOq4K0l2jqYHLKLUKCjx6JT30yBp0HtQw6Gs06rroZAB0Fs0Mfnz9_i6GIJE0PZov84kyKtXGGhZgAnoPYW57_zC7P0jt4dHNepR9now_nbzNTz--mZ6MTvOu4mXIWypLAF5LRmve1qyvgHQFIUXf9G3dNKQve455gXFbkYq20EJFWFO3kg9Uti07yl6ufZexXUDfpRac1GLp1CJdTFipxHbFqLmY2StRFAXHNUkGz24MnL2M4INYpLmB1tKAjV6Qumw4xrio_o9WNHElpzyhT--gFzY6kyYhSFmll6pKRv9QM6lBKDPY1GK3MhUjls5t6oKxROU7qBkYSPdJ2RlU2t7ij3fw6ethobqdgudbgsQE-BJmMnovpudn2-yT2_PeDPp3-BJA1kDnrPcOhg1CsFgFXKwDLlLAxSrgYmXK72g6FX6lNnWu9D-VdK306ZQUTndrzn8V_QRpYA6J
CODEN FCMOA3
CitedBy_id crossref_primary_10_1007_s00033_016_0718_z
crossref_primary_10_1007_s00211_015_0733_6
crossref_primary_10_1016_j_camwa_2024_11_020
Cites_doi 10.1137/1.9781611970845
10.1007/978-1-4612-0981-2
10.1007/978-3-662-09947-6
10.1090/S0025-5718-09-02285-6
10.1007/978-1-4612-1048-1
10.1007/978-3-642-69512-4
10.1016/S0168-9274(99)00040-9
10.1007/s00466-009-0464-6
10.1016/j.apnum.2010.03.011
10.1007/978-3-642-66165-5
10.1016/j.cam.2013.03.013
10.1137/1036141
10.1007/978-3-662-12613-4
10.1002/9780470753767
10.1016/0001-8708(69)90009-7
10.1007/b99799
10.1007/s00211-006-0035-0
10.1007/978-3-8348-2263-5
10.1201/9781420027365
10.1007/s00466-006-0109-y
10.1007/BF02505918
10.1007/978-3-662-02888-9
10.1515/9783112479926-013
10.1007/978-3-642-15337-2_1
10.1090/qam/1146620
10.1017/S0027763000007716
10.1017/CBO9780511897450
10.1155/2013/108043
ContentType Journal Article
Copyright The Author(s) 2013
COPYRIGHT 2014 Springer
SFoCM 2014
Copyright_xml – notice: The Author(s) 2013
– notice: COPYRIGHT 2014 Springer
– notice: SFoCM 2014
DBID C6C
AAYXX
CITATION
NPM
ISR
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1007/s10208-013-9179-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

Civil Engineering Abstracts




MEDLINE - Academic
Civil Engineering Abstracts
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 949
ExternalDocumentID PMC4447081
3435082701
A385998433
26029034
10_1007_s10208_013_9179_3
Genre Journal Article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
ABRTQ
NPM
AEIIB
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c675t-b2a5ee78a3287b83d6e1c4114d9db8991d5d707400b6162bebe61398ba7f2abb3
IEDL.DBID U2A
ISSN 1615-3375
IngestDate Thu Aug 21 18:16:57 EDT 2025
Fri Jul 11 08:13:38 EDT 2025
Fri Jul 11 02:08:16 EDT 2025
Fri Jul 25 19:07:42 EDT 2025
Tue Jun 17 21:09:47 EDT 2025
Thu Jun 12 23:33:04 EDT 2025
Tue Jun 10 20:22:40 EDT 2025
Fri Jun 27 04:50:54 EDT 2025
Mon Jul 21 06:02:55 EDT 2025
Tue Jul 01 04:30:04 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Fri Feb 21 02:36:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 35K86
finite element approximations
Stability
35K61
Nonlinear evolutionary inequalities
Monotone operators
Stiffly accurate Runge–Kutta methods
Nonlinear differential inclusions
Convergence
47J22
47J20
47J05
47H05
Nonconforming Galerkin methods
65M12
hp-finite element approximations
Language English
License http://creativecommons.org/licenses/by/2.0
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-b2a5ee78a3287b83d6e1c4114d9db8991d5d707400b6162bebe61398ba7f2abb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Communicated by Philippe Ciarlet.
OpenAccessLink https://link.springer.com/10.1007/s10208-013-9179-3
PMID 26029034
PQID 1562606532
PQPubID 43692
PageCount 37
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4447081
proquest_miscellaneous_1859700046
proquest_miscellaneous_1620045727
proquest_journals_1562606532
gale_infotracmisc_A385998433
gale_infotracgeneralonefile_A385998433
gale_infotracacademiconefile_A385998433
gale_incontextgauss_ISR_A385998433
pubmed_primary_26029034
crossref_primary_10_1007_s10208_013_9179_3
crossref_citationtrail_10_1007_s10208_013_9179_3
springer_journals_10_1007_s10208_013_9179_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationTitleAlternate Found Comut Math
PublicationYear 2014
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Gwinner (CR19) 1992; 50
Ainsworth, Kay (CR1) 2000; 34
Mosco (CR29) 1969; 3
Maischak, Stephan (CR28) 2007; 39
Renardy, Rogers (CR33) 2004
Strehmel, Weiner, Podhaisky (CR37) 2012
Sofonea, Han, Shillor (CR36) 2006
Hlavaček, Haslinger, Nečas, Lovišek (CR25) 1988
Glowinski, Lions, Tremolières (CR18) 1981
Aubin, Cellina (CR4) 1984
Butcher (CR7) 2008
Han, Reddy (CR24) 1999
Emmrich, Thalhammer (CR15) 2010; 79
Franke, Düster, Nübel, Rank (CR16) 2010; 45
Naumann (CR31) 1984
Oettli (CR32) 1988
Duvaut, Lions (CR13) 1976
CR2
Schwab (CR34) 1998
Glowinski (CR17) 1984
Shillor, Sofonea, Telega (CR35) 2004
Halphen, Salençon (CR23) 1987
Zeidler (CR39) 1990
Dörsek, Melenk (CR11) 2010; 60
Eck, Jarušek, Krbec (CR14) 2005
Babuška, Suri (CR5) 1994; 36
Attouch (CR3) 1984
CR20
Gwinner (CR21) 2013; 254
Hairer, Wanner (CR22) 1991
Nagase (CR30) 2000; 160
Bernardi, Maday, Ciarlet, Lions (CR6) 1997
Dautray, Lions (CR9) 1992
DeVore, Lorentz (CR10) 1993
Kikuchi, Oden (CR26) 1988
Dörsek, Melenk (CR12) 2011
Krebs, Stephan (CR27) 2007; 105
Carstensen, Gwinner (CR8) 1999; IV/CLXXVII
Stummel (CR38) 1974–1975; 73A
9179_CR2
B. Halphen (9179_CR23) 1987
J. Naumann (9179_CR31) 1984
C. Carstensen (9179_CR8) 1999; IV/CLXXVII
K. Strehmel (9179_CR37) 2012
G. Duvaut (9179_CR13) 1976
F. Stummel (9179_CR38) 1974–1975; 73A
E. Emmrich (9179_CR15) 2010; 79
A. Krebs (9179_CR27) 2007; 105
H. Attouch (9179_CR3) 1984
P. Dörsek (9179_CR12) 2011
J.C. Butcher (9179_CR7) 2008
J. Gwinner (9179_CR21) 2013; 254
M. Maischak (9179_CR28) 2007; 39
H. Nagase (9179_CR30) 2000; 160
R. Dautray (9179_CR9) 1992
R.A. DeVore (9179_CR10) 1993
R. Glowinski (9179_CR18) 1981
P. Dörsek (9179_CR11) 2010; 60
E. Hairer (9179_CR22) 1991
I. Babuška (9179_CR5) 1994; 36
D. Franke (9179_CR16) 2010; 45
C. Eck (9179_CR14) 2005
J. Gwinner (9179_CR19) 1992; 50
M. Ainsworth (9179_CR1) 2000; 34
M. Sofonea (9179_CR36) 2006
M. Shillor (9179_CR35) 2004
C. Bernardi (9179_CR6) 1997
I. Hlavaček (9179_CR25) 1988
U. Mosco (9179_CR29) 1969; 3
E. Zeidler (9179_CR39) 1990
W. Oettli (9179_CR32) 1988
9179_CR20
Ch. Schwab (9179_CR34) 1998
R. Glowinski (9179_CR17) 1984
J.-P. Aubin (9179_CR4) 1984
N. Kikuchi (9179_CR26) 1988
M. Renardy (9179_CR33) 2004
W. Han (9179_CR24) 1999
References_xml – year: 1992
  ident: CR9
  publication-title: Evolution Problems I
– year: 1999
  ident: CR24
  publication-title: Plasticity—Mathematical Theory and Numerical Analysis
– year: 1988
  ident: CR26
  publication-title: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods
  doi: 10.1137/1.9781611970845
– year: 1990
  ident: CR39
  publication-title: Nonlinear Functional Analysis and Its Applications, Vol. II/B: Nonlinear Monotone Operators
  doi: 10.1007/978-1-4612-0981-2
– ident: CR2
– year: 1981
  ident: CR18
  publication-title: Numerical Analysis of Variational Inequalities
– year: 1991
  ident: CR22
  publication-title: Solving Ordinary Differential Equations, II: Stiff and Differential-Algebraic Problems
  doi: 10.1007/978-3-662-09947-6
– year: 1998
  ident: CR34
  publication-title: - and -Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics
– start-page: 1
  year: 2011
  end-page: 17
  ident: CR12
  article-title: Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: the primal formulation
  publication-title: Proceedings of ICOSAHOM 2009
– volume: 79
  start-page: 785
  issue: 270
  year: 2010
  end-page: 806
  ident: CR15
  article-title: Stiffly accurate Runge–Kutta methods for nonlinear evolution problems governed by a monotone operator
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02285-6
– year: 1984
  ident: CR3
  publication-title: Variational Convergence for Functions and Operators
– volume: 50
  start-page: 11
  year: 1992
  end-page: 25
  ident: CR19
  article-title: Finite-element convergence for contact problems in plane linear elastostatics
  publication-title: Q. Appl. Math.
– year: 1988
  ident: CR25
  publication-title: Numerical Solution of Variational Inequalities
  doi: 10.1007/978-1-4612-1048-1
– year: 1984
  ident: CR4
  publication-title: Differential Inclusions. Set-Valued Maps and Viability Theory
  doi: 10.1007/978-3-642-69512-4
– volume: 34
  start-page: 329
  year: 2000
  end-page: 344
  ident: CR1
  article-title: Approximation theory for the -version finite element method and application to the nonlinear Laplacian
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(99)00040-9
– volume: 45
  start-page: 513
  year: 2010
  end-page: 522
  ident: CR16
  article-title: A comparison of the -, -, -, and -version of the FEM for the solution of the 2D Hertzian contact problem
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-009-0464-6
– volume: 60
  start-page: 689
  year: 2010
  end-page: 704
  ident: CR11
  article-title: Adaptive -FEM for the contact problem with Tresca friction in linear elasticity: the primal–dual formulation and a posteriori error estimation
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.03.011
– year: 1976
  ident: CR13
  publication-title: Inequalities in Mechanics and Physics
  doi: 10.1007/978-3-642-66165-5
– year: 1984
  ident: CR31
  publication-title: Einführung in die Theorie parabolischer Variationsungleichungen
– volume: 254
  start-page: 175
  year: 2013
  end-page: 184
  ident: CR21
  article-title: -FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.03.013
– volume: 73A
  start-page: 5
  year: 1974–1975
  end-page: 49
  ident: CR38
  article-title: Perturbation theory for Sobolev spaces
  publication-title: Proc. R. Soc. Edinb.
– volume: 36
  start-page: 578
  year: 1994
  end-page: 632
  ident: CR5
  article-title: The and – version of the finite element method, basic principles and properties
  publication-title: SIAM Rev.
  doi: 10.1137/1036141
– start-page: 130
  year: 1988
  end-page: 136
  ident: CR32
  article-title: Monoton-konvexe Funktionen—eine Bemerkung zum Satz von Browder-Minty
  publication-title: Advances in Mathematical Optimization, Pap. Dedic. F. Nozicka Occas. 70. Birthday
– year: 2004
  ident: CR33
  publication-title: An Introduction to Partial Differential Equations
– start-page: 209
  year: 1997
  end-page: 485
  ident: CR6
  article-title: Spectral methods
  publication-title: Handbook of Numerical Analysis V, Part 2
– year: 1984
  ident: CR17
  publication-title: Numerical Methods for Nonlinear Variational Problems
  doi: 10.1007/978-3-662-12613-4
– year: 2006
  ident: CR36
  publication-title: Analysis and Approximation of Contact Problems with Adhesion or Damage
– year: 2008
  ident: CR7
  publication-title: Numerical Methods for Ordinary Differential Equations
  doi: 10.1002/9780470753767
– volume: 3
  start-page: 510
  year: 1969
  end-page: 585
  ident: CR29
  article-title: Convergence of convex sets and of solutions of variational inequalities
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(69)90009-7
– year: 2004
  ident: CR35
  publication-title: Models and Analysis of Quasistatic Contact. Variational Methods
  doi: 10.1007/b99799
– volume: 105
  start-page: 457
  year: 2007
  end-page: 480
  ident: CR27
  article-title: A -version finite element method for nonlinear elliptic variational inequalities
  publication-title: Numer. Math.
  doi: 10.1007/s00211-006-0035-0
– year: 2012
  ident: CR37
  publication-title: Numerik gewöhnlicher Differentialgleichungen: nichtsteife, steife und differential-algebraische Gleichungen
  doi: 10.1007/978-3-8348-2263-5
– year: 2005
  ident: CR14
  publication-title: Unilateral Contact Problems—Variational Methods and Existence Theorems
  doi: 10.1201/9781420027365
– volume: 39
  start-page: 597
  year: 2007
  end-page: 607
  ident: CR28
  article-title: Adaptive -versions of boundary element methods for elastic contact problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-006-0109-y
– volume: 160
  start-page: 123
  year: 2000
  end-page: 134
  ident: CR30
  article-title: On a regularity property and a priori estimates for solutions of nonlinear parabolic variational inequalities
  publication-title: Nagoya Math. J.
– volume: IV/CLXXVII
  start-page: 363
  year: 1999
  end-page: 394
  ident: CR8
  article-title: A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF02505918
– year: 1993
  ident: CR10
  publication-title: Constructive Approximation
  doi: 10.1007/978-3-662-02888-9
– year: 1987
  ident: CR23
  publication-title: Élasto-plasticité
– ident: CR20
– start-page: 130
  volume-title: Advances in Mathematical Optimization, Pap. Dedic. F. Nozicka Occas. 70. Birthday
  year: 1988
  ident: 9179_CR32
  doi: 10.1515/9783112479926-013
– volume-title: Numerik gewöhnlicher Differentialgleichungen: nichtsteife, steife und differential-algebraische Gleichungen
  year: 2012
  ident: 9179_CR37
  doi: 10.1007/978-3-8348-2263-5
– volume-title: Élasto-plasticité
  year: 1987
  ident: 9179_CR23
– volume-title: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods
  year: 1988
  ident: 9179_CR26
  doi: 10.1137/1.9781611970845
– volume-title: Numerical Methods for Nonlinear Variational Problems
  year: 1984
  ident: 9179_CR17
  doi: 10.1007/978-3-662-12613-4
– volume: 45
  start-page: 513
  year: 2010
  ident: 9179_CR16
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-009-0464-6
– volume-title: Numerical Solution of Variational Inequalities
  year: 1988
  ident: 9179_CR25
  doi: 10.1007/978-1-4612-1048-1
– volume-title: Plasticity—Mathematical Theory and Numerical Analysis
  year: 1999
  ident: 9179_CR24
– volume: 73A
  start-page: 5
  year: 1974–1975
  ident: 9179_CR38
  publication-title: Proc. R. Soc. Edinb.
– volume-title: Variational Convergence for Functions and Operators
  year: 1984
  ident: 9179_CR3
– volume-title: Solving Ordinary Differential Equations, II: Stiff and Differential-Algebraic Problems
  year: 1991
  ident: 9179_CR22
  doi: 10.1007/978-3-662-09947-6
– volume-title: Differential Inclusions. Set-Valued Maps and Viability Theory
  year: 1984
  ident: 9179_CR4
  doi: 10.1007/978-3-642-69512-4
– volume-title: Numerical Methods for Ordinary Differential Equations
  year: 2008
  ident: 9179_CR7
  doi: 10.1002/9780470753767
– start-page: 1
  volume-title: Proceedings of ICOSAHOM 2009
  year: 2011
  ident: 9179_CR12
  doi: 10.1007/978-3-642-15337-2_1
– volume: 39
  start-page: 597
  year: 2007
  ident: 9179_CR28
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-006-0109-y
– volume-title: Einführung in die Theorie parabolischer Variationsungleichungen
  year: 1984
  ident: 9179_CR31
– volume-title: Analysis and Approximation of Contact Problems with Adhesion or Damage
  year: 2006
  ident: 9179_CR36
– volume: 34
  start-page: 329
  year: 2000
  ident: 9179_CR1
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(99)00040-9
– volume: 60
  start-page: 689
  year: 2010
  ident: 9179_CR11
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.03.011
– volume-title: Models and Analysis of Quasistatic Contact. Variational Methods
  year: 2004
  ident: 9179_CR35
  doi: 10.1007/b99799
– volume: 50
  start-page: 11
  year: 1992
  ident: 9179_CR19
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/1146620
– volume: 79
  start-page: 785
  issue: 270
  year: 2010
  ident: 9179_CR15
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02285-6
– volume-title: p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics
  year: 1998
  ident: 9179_CR34
– volume-title: Unilateral Contact Problems—Variational Methods and Existence Theorems
  year: 2005
  ident: 9179_CR14
  doi: 10.1201/9781420027365
– volume-title: Constructive Approximation
  year: 1993
  ident: 9179_CR10
  doi: 10.1007/978-3-662-02888-9
– volume-title: Evolution Problems I
  year: 1992
  ident: 9179_CR9
– volume-title: Nonlinear Functional Analysis and Its Applications, Vol. II/B: Nonlinear Monotone Operators
  year: 1990
  ident: 9179_CR39
– volume: 160
  start-page: 123
  year: 2000
  ident: 9179_CR30
  publication-title: Nagoya Math. J.
  doi: 10.1017/S0027763000007716
– ident: 9179_CR2
  doi: 10.1017/CBO9780511897450
– volume: IV/CLXXVII
  start-page: 363
  year: 1999
  ident: 9179_CR8
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF02505918
– volume-title: Inequalities in Mechanics and Physics
  year: 1976
  ident: 9179_CR13
  doi: 10.1007/978-3-642-66165-5
– volume-title: Numerical Analysis of Variational Inequalities
  year: 1981
  ident: 9179_CR18
– volume-title: An Introduction to Partial Differential Equations
  year: 2004
  ident: 9179_CR33
– volume: 36
  start-page: 578
  year: 1994
  ident: 9179_CR5
  publication-title: SIAM Rev.
  doi: 10.1137/1036141
– start-page: 209
  volume-title: Handbook of Numerical Analysis V, Part 2
  year: 1997
  ident: 9179_CR6
– volume: 254
  start-page: 175
  year: 2013
  ident: 9179_CR21
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.03.013
– volume: 105
  start-page: 457
  year: 2007
  ident: 9179_CR27
  publication-title: Numer. Math.
  doi: 10.1007/s00211-006-0035-0
– ident: 9179_CR20
  doi: 10.1155/2013/108043
– volume: 3
  start-page: 510
  year: 1969
  ident: 9179_CR29
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(69)90009-7
SSID ssj0015914
Score 2.0246255
Snippet The convergence of full discretisations by implicit Runge–Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied....
The convergence of full discretisations by implicit Runge-Kutta and nonconforming Galerkin methods applied to nonlinear evolutionary inequalities is studied....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 913
SubjectTerms Analysis
Applications of Mathematics
Approximation theory
Chemical elements
Computer Science
Constants
Convergence
Economics
Evolutionary
Finite element method
Galerkin methods
Inequalities
Inequalities (Mathematics)
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix Theory
Nonlinear equations
Nonlinearity
Numerical Analysis
Runge-Kutta method
Title Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge–Kutta and hp-Finite Element Methods
URI https://link.springer.com/article/10.1007/s10208-013-9179-3
https://www.ncbi.nlm.nih.gov/pubmed/26029034
https://www.proquest.com/docview/1562606532
https://www.proquest.com/docview/1620045727
https://www.proquest.com/docview/1859700046
https://pubmed.ncbi.nlm.nih.gov/PMC4447081
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9gAceJSXoUQLQiBRWXK8u971MQkJLVVyaKlUTta-3EaqnCp2kHpD_AX-Ib-EWb-Io1KJUyTvOE48s7Pfp535FqF3EdOExyzwUyGsT0VsfWFcjbtixHADhKysdp_OooNT-uWMndV93HlT7d5sSZaZeq3ZLSwLr9xuMY99soV2mKPuEMSn4aDdOmBxKejtkIxPCGfNVuZNX9FZjDZT8tqatFkvubFpWq5Fk0foQQ0i8aDy-mN0x2a76GENKHE9XXO41JzZ0FzbRXebTmQYvj9tNVvzJ-inY6P40xzyiC2aIh8MmBbPKjkNucTj73WkyuU1Psxs1ZIJZBsPYTU0eJHhk2KeppfXeKD1yslQ4GNIJ_b3j19Hq6KQWGYGX1z5k7nDunhcFa_jaXmOdf4UnU7GX0cHfn1Cg6-BaBS-CiWzlgtJgHgpQUxk-5oCxTKxUcDk-oYZDiAlCFTUj0IFEQPwIRZK8jSUSpFnaDtbZPYFwlpypYWyRASCplIow2Vf9o0j75py7qGgcVWia_lyd4rGZfJXeNl5NwHvJs67CfHQx_aWq0q74zbjt87_idPEyFzRzblc5XlyeHKcDIhgwEopAaMPtVG6gIdrWfcwwF9wMlody_cdy_NKRPwmw72OIcxu3R1u4jGps0ueAOcGGhoxEnroTTvs7nQVc5ldrMAmcvmPATy9xQaewsv-YQ89r0K8fVHwgDAOCPUQ7wR_a-B0ybsj2fyi1CenlHJAmh7ab6bJ2k__1_t_-V_Wr9A9QK60qqrcQ9vFcmVfAzosVA_tDCbD4cx9fv52NO6hrVE06pU54g_n1GCi
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgLAoLHuUVKGAQAgkUKRM7sbMchhnN0M4s-pC6s_xKO1KVqSYJUneIX-AP-RKu86IZlUps45s4ybWvz5HvPUbofRxpwpIo8FPOrU95Yn1uXI67iohhBghZle0-X8TTY_rtJDppxKJdLczG_r0rcQurdCu3R8wSn9xGdygQZZe9N4pH3YZBlFQy3g6_-ISwqN3AvO4RvSVoMxBfWYk2syQ3tkqrFWjyEN1voCMe1r5-hG7ZbAc9aGAkbiZpDpfakxraaztou60_huZ7806pNX-MfjoOir8uIXrYok3twYBk8aIW0ZBrPP7ejE-5vsSzzNaFmECx8RdYAw1eZfiwWKbp-SUeal068Ql8AEHE_v7xa68sCollZvDZhT9ZOoSLx3XKOp5Xp1fnT9DxZHw0mvrNuQy-BnpR-CqUkbWMSwJ0S3FiYjvQFIiVSYwC_jYwkWEATYJAxYM4VDBOADQkXEmWhlIp8hRtZavMPkdYS6Y0V5bwgNNUcmWYHMiBcZRdU8Y8FLSuEroRLXdnZ5yLv3LLzrsCvCucdwXx0KfulotaseMm43fO_8IpYWQu1eZUlnkuZocHYkh4BFyUEjD62BilK-hcy6ZyAT7BiWf1LD_0LE9r6fDrDHd7hjCndb-5HY-iiSm5AKYN5DOOSOiht12zu9PlyWV2VYJN7KJeBKD0BhvohVVVwx56Vg_x7kdBB2ESEOoh1hv8nYFTI--3ZMuzSpWcUsoAX3rocztNrrz6v_7_i_-yfoO2p0fzfbE_W-y9RHcBu9I6r3IXbRXr0r4CfFio11Vk-AM4oluH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSFweuIxbYIBBCCRQtDR2YuexdK1WRiu0MWlvlm_ZKk1p1aRIe0P8Bf4hv4Tj3GiqMYnX-KRp4uPj79M55zNCb-NIE5ZEgZ9ybn3KE-tz42rcVUQMM0DIymr3yTTeP6afT6KT-pzTvKl2b1KSVU-DU2nKit2FSXfXGt_CsgjLZY5Z4pPr6AYQlTJPO4gHbRohSkpxb4dqfEJY1KQ1L_uJzsa0GZ7X9qfN2smNBGq5L43uo7s1oMT9ygMeoGs220b3anCJ66Wbw6Xm_Ibm2ja61XQlw_CdSavfmj9EPx0zxXsziCm2aAp-MOBbPK2kNeQSD7_XXiuXF3ic2ao9E4g3_gQ7o8HzDB8VszQ9v8B9rVdOkgIfQmixv3_8OlgVhcQyM_hs4Y9mDvfiYVXIjiflmdb5I3Q8Gn4b7Pv1aQ2-BtJR-CqUkbWMSwIkTHFiYtvTFOiWSYwCVtczkWEAWIJAxb04VOA9ACUSriRLQ6kUeYy2snlmnyKsJVOaK0t4wGkquTJM9mTPOCKvKWMeCpqpErqWMncnapyLvyLMbnYFzK5wsyuIhz60tywqHY-rjN-4-RdOHyNzBTincpXnYnx0KPqER8BQKQGj97VROoeHa1n3M8ArOEmtjuW7juVpJSh-meFOxxBWuu4ON_4o6kiTC-DfQEnjiIQeet0Ouztd9Vxm5yuwiV0sjACqXmEDT2FlL7GHnlQu3n4oeECYBIR6iHWcvzVwGuXdkWx2VmqVU0oZoE4PfWyWydpf_9f3f_Zf1q_Qza97I_FlPD14jm4DoKVVseUO2iqWK_sCQGOhXpaB4Q-B1mPO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+Discretisations+for+Nonlinear+Evolutionary+Inequalities+Based+on+Stiffly+Accurate+Runge%E2%80%93Kutta+and+hp-Finite+Element+Methods&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Gwinner%2C+J.&rft.au=Thalhammer%2C+M.&rft.date=2014-10-01&rft.pub=Springer+US&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=14&rft.issue=5&rft.spage=913&rft.epage=949&rft_id=info:doi/10.1007%2Fs10208-013-9179-3&rft.externalDocID=10_1007_s10208_013_9179_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon