Experimental study of needle–tissue interaction forces: Effect of needle geometries, insertion methods and tissue characteristics
A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three catego...
Saved in:
Published in | Journal of biomechanics Vol. 47; no. 13; pp. 3344 - 3353 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
17.10.2014
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7–3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10–85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5–10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy. |
---|---|
AbstractList | Abstract A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n =5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7–3.2 mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10–85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5–10 mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy. A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7–3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10–85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5–10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy. A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samplesn=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy. A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy. A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85 degree ) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy. |
Author | Jiang, Shan Yu, Yan Yang, Zhiyong Liu, Jun Li, Pan |
Author_xml | – sequence: 1 givenname: Shan surname: Jiang fullname: Jiang, Shan email: shanjmri@tju.edu.cn organization: Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Pan surname: Li fullname: Li, Pan organization: Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Yan surname: Yu fullname: Yu, Yan organization: Division of Medical Physics, Department of Radiation Oncology, Thomas Jefferson University, Kimmel Cancer Center, 111 South 11th Street, Philadelphia, PA 19107, USA – sequence: 4 givenname: Jun surname: Liu fullname: Liu, Jun organization: Department of Imaging, Tianjin Union Medicine Center, Tianjin 300121, China – sequence: 5 givenname: Zhiyong surname: Yang fullname: Yang, Zhiyong organization: Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25169657$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2KFDEUhYOMOD2trzAUuHFhlfmpSlVExGFof2DAhQruQip1y05bnfQkKZneCT6Cb-iTmLJ7HOiF7SoQvnNyc849QyfWWUDonOCCYMKfrYpVa9wa9LKgmJQFbgqM63toRpqa5ZQ1-ATNMKYkF1TgU3QWwgonoqzFA3RKK8IFr-oZ-rG42YA3a7BRDVmIY7fNXJ9ZgG6AX99_RhPCCJmxEbzS0Tib9c5rCM-zRd-Djnd09gXSQNEbCE-TIID_g6erpetCpmyX7d30Uk1m6d0QjQ4P0f1eDQEe7c85-vR68fHybX71_s27y4urXPO6irmqGBVaNwqg5KAUA1IqApxCV9egMK04J4JpKqAVHRNtTToGum2wIC2wks3Rk53vxrvrEUKUaxM0DIOy4MYgCaeCccI5O45WDScpTsYT-vgAXbnR2_SRZEhKQkRT0kSd76mxXUMnNylz5bfytokE8B2gvQvBQ_8XIVhOlcuVvK1cTpVL3Mhpgjl6cSDUJqop-uiVGY7LX-3kkJL_ZsDLoA1YDZ3xqV7ZOXPc4uWBhR6MNVoNX2EL4S4OGajE8sO0ltNWkhLjkpHP_zb4nwl-AxGN-Mk |
CitedBy_id | crossref_primary_10_7759_cureus_13409 crossref_primary_10_14326_abe_10_90 crossref_primary_10_1007_s42235_021_0031_1 crossref_primary_10_1142_S0219519418500239 crossref_primary_10_1007_s40799_023_00632_6 crossref_primary_10_1177_09544119231191910 crossref_primary_10_3390_ma17102334 crossref_primary_10_1080_13873954_2022_2158875 crossref_primary_10_1007_s11831_023_10020_3 crossref_primary_10_1016_j_medengphy_2017_01_006 crossref_primary_10_1186_s10033_022_00767_4 crossref_primary_10_5858_arpa_2018_0463_RA crossref_primary_10_1038_s41598_022_20161_3 crossref_primary_10_1021_acsnano_4c11612 crossref_primary_10_1088_1748_3190_ab9341 crossref_primary_10_1016_j_actbio_2021_09_057 crossref_primary_10_1080_10255842_2024_2338474 crossref_primary_10_1177_1098612X19845719 crossref_primary_10_12677_mos_2025_143228 crossref_primary_10_3390_s18020561 crossref_primary_10_1016_j_medengphy_2024_104166 crossref_primary_10_1016_j_bios_2016_10_081 crossref_primary_10_1002_admi_202101856 crossref_primary_10_1002_pen_26216 crossref_primary_10_1039_D2SM00257D crossref_primary_10_1177_1932296819836987 crossref_primary_10_1016_j_ijnonlinmec_2021_103832 crossref_primary_10_1016_j_compbiomed_2021_104982 crossref_primary_10_1016_j_jmbbm_2021_104958 crossref_primary_10_1016_j_eml_2018_11_006 crossref_primary_10_3390_pharmaceutics12080693 crossref_primary_10_1109_JSEN_2018_2846780 crossref_primary_10_1186_s10033_020_00515_6 crossref_primary_10_1007_s12555_019_0235_x crossref_primary_10_1177_09544119221137133 crossref_primary_10_1115_1_4065434 crossref_primary_10_1007_s10877_015_9801_9 crossref_primary_10_1007_s11465_022_0738_7 crossref_primary_10_1016_j_jmbbm_2023_106071 crossref_primary_10_1177_0954411917690763 crossref_primary_10_1002_adma_201907478 crossref_primary_10_1177_17298806251325136 crossref_primary_10_1007_s11517_018_1825_0 crossref_primary_10_1109_LRA_2020_2969151 crossref_primary_10_1016_j_procir_2020_05_130 crossref_primary_10_1371_journal_pone_0256344 crossref_primary_10_1155_2021_8883598 crossref_primary_10_1021_acsnano_2c01793 crossref_primary_10_1016_j_polymertesting_2016_08_004 crossref_primary_10_1007_s11548_021_02371_8 crossref_primary_10_1007_s40799_018_0255_0 crossref_primary_10_1039_D2LC00790H crossref_primary_10_1109_TBME_2020_2996980 crossref_primary_10_1016_j_ijpharm_2022_121835 crossref_primary_10_1177_0267659120967194 crossref_primary_10_1007_s11340_019_00479_2 crossref_primary_10_1002_mma_5980 crossref_primary_10_1115_1_4067070 crossref_primary_10_1109_TOH_2020_2967375 crossref_primary_10_1016_j_compbiomed_2023_107125 crossref_primary_10_1016_j_jmbbm_2023_106247 crossref_primary_10_1016_j_jmbbm_2020_103896 crossref_primary_10_1002_adfm_201903863 crossref_primary_10_3389_fonc_2022_829369 crossref_primary_10_1177_09544119221122024 crossref_primary_10_1115_1_4034134 crossref_primary_10_1016_j_eurpolymj_2024_112952 crossref_primary_10_1016_j_jmbbm_2023_106090 crossref_primary_10_1007_s11517_019_01955_6 crossref_primary_10_1063_5_0249464 crossref_primary_10_1177_0954411916644475 crossref_primary_10_1007_s11517_019_02001_1 crossref_primary_10_1016_j_jmbbm_2015_05_012 crossref_primary_10_1038_s41598_024_72615_5 crossref_primary_10_1155_2019_9756842 crossref_primary_10_1016_j_medengphy_2017_02_011 crossref_primary_10_1080_10910344_2015_1133917 crossref_primary_10_1016_j_ultrasmedbio_2022_07_016 crossref_primary_10_1177_0954411915599018 crossref_primary_10_1007_s11548_022_02640_0 crossref_primary_10_3390_act7040083 crossref_primary_10_1088_1741_2552_ad36e1 crossref_primary_10_1038_s41598_019_56403_0 crossref_primary_10_13045_jar_2018_00283 crossref_primary_10_1016_j_medengphy_2021_10_003 crossref_primary_10_1021_acsnano_0c05074 crossref_primary_10_1088_1742_6596_1959_1_012018 crossref_primary_10_1016_j_compbiomed_2019_103337 crossref_primary_10_1088_1748_3190_acfb65 crossref_primary_10_1016_j_tsf_2019_05_039 crossref_primary_10_1002_rcs_1692 crossref_primary_10_1109_TMRB_2025_3527705 crossref_primary_10_1016_j_jbiomech_2022_110995 crossref_primary_10_1177_0954411919891654 crossref_primary_10_1177_09544119221143860 crossref_primary_10_1021_acsnano_1c03310 crossref_primary_10_2139_ssrn_4199074 crossref_primary_10_1007_s10439_015_1329_0 crossref_primary_10_1007_s11548_024_03274_0 crossref_primary_10_1142_S0219519422500130 crossref_primary_10_1097_MAT_0000000000001593 crossref_primary_10_1002_mp_12435 crossref_primary_10_1002_mp_13645 crossref_primary_10_1007_s10846_022_01738_6 crossref_primary_10_1080_10255842_2021_1890047 crossref_primary_10_1002_adfm_201500006 crossref_primary_10_1088_1758_5090_8_1_015016 crossref_primary_10_1007_s11012_024_01767_5 |
Cites_doi | 10.1109/TBME.2009.2036856 10.1109/TBME.2005.847548 10.1016/j.medengphy.2012.04.007 10.1115/1.4008739 10.1016/j.jbiomech.2013.10.006 10.1007/s11548-006-0058-0 10.1016/S0021-9290(01)00099-9 10.1016/S0021-9290(02)00228-2 10.1016/0045-7949(89)90232-0 10.1016/j.jbiomech.2012.01.049 10.1016/0020-7225(65)90019-4 10.1016/j.jmbbm.2011.04.005 10.1093/bja/85.2.238 10.1109/TRA.2003.817044 10.1080/10255842.2011.596481 10.1177/0278364910369714 10.1088/0031-9155/52/19/021 10.1016/j.medengphy.2006.07.003 10.1109/TBME.2004.831542 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2014 |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2014.08.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Research Library ProQuest Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Collection url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 3353 |
ExternalDocumentID | 3465768641 25169657 10_1016_j_jbiomech_2014_08_007 S002192901400431X 1_s2_0_S002192901400431X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c675t-a5329cc8aee46eaa3e14a1e62ed77ea02566193c29eb9d39b71d3ecb8091be343 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 02:31:53 EDT 2025 Thu Jul 10 23:08:34 EDT 2025 Wed Aug 13 06:46:33 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 Tue Jul 01 01:14:06 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Fri Feb 23 02:34:47 EST 2024 Sun Feb 23 10:20:44 EST 2025 Tue Aug 26 16:33:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Tissue characteristic Insertion method Interaction forces Needle insertion Needle geometry |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c675t-a5329cc8aee46eaa3e14a1e62ed77ea02566193c29eb9d39b71d3ecb8091be343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25169657 |
PQID | 1614119842 |
PQPubID | 1226346 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1629361663 proquest_miscellaneous_1586100736 proquest_journals_1614119842 pubmed_primary_25169657 crossref_primary_10_1016_j_jbiomech_2014_08_007 crossref_citationtrail_10_1016_j_jbiomech_2014_08_007 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2014_08_007 elsevier_clinicalkeyesjournals_1_s2_0_S002192901400431X elsevier_clinicalkey_doi_10_1016_j_jbiomech_2014_08_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-17 |
PublicationDateYYYYMMDD | 2014-10-17 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Frick, Marucci, Cartmill, Martin, Walsh (bib7) 2001; 34 Misra, Reed, Schafer, Ramesh, Okamura (bib16) 2010; 29 Yankelevsky, Eisenberger, Adin (bib21) 1989; 31 Yan, Podder, Xiao, Yu, Liu, Cheng, Ng (bib20) 2006 Lewis, Lafferty, Sacks, Pallares, TerRiet (bib13) 2000; 85 Butz, Griebel, Novak, Harris, Kornokovich, Chiappetta, Neu (bib3) 2012; 45 DiMaio, Salcudean (bib6) 2003; 19 Okamura, Simone, O’Leary (bib17) 2004; 51 Jiang, Liu, Feng (bib12) 2011; 4 Mahvash, Dupont (bib14) 2010; 57 Choy, Cao, Tungjitkusolmun, Tsai, Haemmerich, Vorperian (bib4) 2002; 35 Abolhassani, Patel, Moallem (bib1) 2007; 29 Hing, J.T., Brooks, A.D., Desai, J.P., 2006. Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. In: Proceedings of the IEEE International Conference On Robotics And Automation, pp. 619–624. Groves, Coulman, Birchall, Evans (bib9) 2012; 15 Sneddon (bib18) 1965; 3 Biot (bib2) 1937; 59 Meltsner, Ferrier, Thomadsen (bib15) 2007; 52 Jee, Komvopoulos (bib11) 2014; 47 Stellman (bib19) 2009 Gerwen, Dankelman, Dobbelsteen (bib8) 2012; 34 DiMaio, Salcudean (bib5) 2005; 52 Jiang (10.1016/j.jbiomech.2014.08.007_bib12) 2011; 4 Sneddon (10.1016/j.jbiomech.2014.08.007_bib18) 1965; 3 Butz (10.1016/j.jbiomech.2014.08.007_bib3) 2012; 45 Meltsner (10.1016/j.jbiomech.2014.08.007_bib15) 2007; 52 DiMaio (10.1016/j.jbiomech.2014.08.007_bib5) 2005; 52 Okamura (10.1016/j.jbiomech.2014.08.007_bib17) 2004; 51 Misra (10.1016/j.jbiomech.2014.08.007_bib16) 2010; 29 10.1016/j.jbiomech.2014.08.007_bib10 Groves (10.1016/j.jbiomech.2014.08.007_bib9) 2012; 15 Stellman (10.1016/j.jbiomech.2014.08.007_bib19) 2009 Gerwen (10.1016/j.jbiomech.2014.08.007_bib8) 2012; 34 Jee (10.1016/j.jbiomech.2014.08.007_bib11) 2014; 47 Abolhassani (10.1016/j.jbiomech.2014.08.007_bib1) 2007; 29 Yan (10.1016/j.jbiomech.2014.08.007_bib20) 2006 Frick (10.1016/j.jbiomech.2014.08.007_bib7) 2001; 34 Choy (10.1016/j.jbiomech.2014.08.007_bib4) 2002; 35 Lewis (10.1016/j.jbiomech.2014.08.007_bib13) 2000; 85 Yankelevsky (10.1016/j.jbiomech.2014.08.007_bib21) 1989; 31 Biot (10.1016/j.jbiomech.2014.08.007_bib2) 1937; 59 DiMaio (10.1016/j.jbiomech.2014.08.007_bib6) 2003; 19 Mahvash (10.1016/j.jbiomech.2014.08.007_bib14) 2010; 57 |
References_xml | – volume: 45 start-page: 1176 year: 2012 end-page: 1179 ident: bib3 article-title: Prestress as an optimal biomechanical parameter for needle penetration publication-title: J. Biomech. – volume: 34 start-page: 665 year: 2012 end-page: 680 ident: bib8 article-title: Needle-tissue interaction forces-A survey of experimental data publication-title: Med. Eng. Phys. – volume: 31 start-page: 287 year: 1989 end-page: 292 ident: bib21 article-title: Analysis of beams on nonlinear winkler foundation publication-title: Comput. Struct. – volume: 4 start-page: 1228 year: 2011 end-page: 1233 ident: bib12 article-title: PVA hydrogel propertied for biomedical application publication-title: J. Mech. Behav. Biomed. Mater. – volume: 19 start-page: 864 year: 2003 end-page: 875 ident: bib6 article-title: Needle insertion modeling and simulation publication-title: IEEE Trans. Robot. Autom. – volume: 34 start-page: 1335 year: 2001 end-page: 1340 ident: bib7 article-title: Resistance forces acting on suture needles publication-title: J. Biomech. – volume: 57 start-page: 934 year: 2010 end-page: 943 ident: bib14 article-title: Mechanics of dynamic needle insertion into a biological material publication-title: IEEE Trans. Biomed. Eng. – volume: 85 start-page: 238 year: 2000 end-page: 241 ident: bib13 article-title: How much work is required to puncture dura with tuohy needles? publication-title: Br. J. Anaesth. – volume: 29 start-page: 1640 year: 2010 end-page: 1660 ident: bib16 article-title: Mechanics of flexible needles robotically steered through soft tissue publication-title: Int. J. Robot. Res. – volume: 29 start-page: 413 year: 2007 end-page: 431 ident: bib1 article-title: Needle insertion into soft tissue: a survey publication-title: Med. Eng. Phys. – volume: 35 start-page: 1671 year: 2002 end-page: 1676 ident: bib4 article-title: Mechanical compliance of the endocardium publication-title: J. Biomech. – volume: 3 start-page: 47 year: 1965 end-page: 57 ident: bib18 article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile publication-title: Int. J. Eng. Sci. – volume: 51 start-page: 1707 year: 2004 end-page: 1716 ident: bib17 article-title: Force modeling for needle insertion into soft tissue publication-title: IEEE Trans. Biomed. Eng. – volume: 52 start-page: 6027 year: 2007 end-page: 6037 ident: bib15 article-title: Observations on rotating needle insertions using a brachytherapy robot publication-title: Phys. Med. Biol. – reference: Hing, J.T., Brooks, A.D., Desai, J.P., 2006. Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. In: Proceedings of the IEEE International Conference On Robotics And Automation, pp. 619–624. – start-page: 205 year: 2006 end-page: 212 ident: bib20 article-title: An improved needle steering model with online parameter estimator publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 52 start-page: 1167 year: 2005 end-page: 1179 ident: bib5 article-title: Interactive simulation of needle insertion models publication-title: IEEE Trans. Biomed. Eng. – volume: 15 start-page: 73 year: 2012 end-page: 82 ident: bib9 article-title: Quantifying the mechanical properties of human skin to optimise future microneedle device design publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 47 start-page: 553 year: 2014 end-page: 559 ident: bib11 article-title: Skin viscoelasticity studied in vitro by microprobe-based techniques publication-title: J. Biomech. – year: 2009 ident: bib19 article-title: Development, production, and characterization of plastic hypodermic needles – volume: 59 start-page: A1 year: 1937 end-page: A7 ident: bib2 article-title: Bending of an infinite beam on an elastic foundation publication-title: J. Appl. Mech. – volume: 57 start-page: 934 year: 2010 ident: 10.1016/j.jbiomech.2014.08.007_bib14 article-title: Mechanics of dynamic needle insertion into a biological material publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2036856 – volume: 52 start-page: 1167 year: 2005 ident: 10.1016/j.jbiomech.2014.08.007_bib5 article-title: Interactive simulation of needle insertion models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.847548 – volume: 34 start-page: 665 year: 2012 ident: 10.1016/j.jbiomech.2014.08.007_bib8 article-title: Needle-tissue interaction forces-A survey of experimental data publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2012.04.007 – year: 2009 ident: 10.1016/j.jbiomech.2014.08.007_bib19 – volume: 59 start-page: A1 year: 1937 ident: 10.1016/j.jbiomech.2014.08.007_bib2 article-title: Bending of an infinite beam on an elastic foundation publication-title: J. Appl. Mech. doi: 10.1115/1.4008739 – volume: 47 start-page: 553 year: 2014 ident: 10.1016/j.jbiomech.2014.08.007_bib11 article-title: Skin viscoelasticity studied in vitro by microprobe-based techniques publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.006 – start-page: 205 year: 2006 ident: 10.1016/j.jbiomech.2014.08.007_bib20 article-title: An improved needle steering model with online parameter estimator publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-006-0058-0 – volume: 34 start-page: 1335 year: 2001 ident: 10.1016/j.jbiomech.2014.08.007_bib7 article-title: Resistance forces acting on suture needles publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00099-9 – volume: 35 start-page: 1671 year: 2002 ident: 10.1016/j.jbiomech.2014.08.007_bib4 article-title: Mechanical compliance of the endocardium publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00228-2 – volume: 31 start-page: 287 year: 1989 ident: 10.1016/j.jbiomech.2014.08.007_bib21 article-title: Analysis of beams on nonlinear winkler foundation publication-title: Comput. Struct. doi: 10.1016/0045-7949(89)90232-0 – volume: 45 start-page: 1176 year: 2012 ident: 10.1016/j.jbiomech.2014.08.007_bib3 article-title: Prestress as an optimal biomechanical parameter for needle penetration publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.049 – volume: 3 start-page: 47 year: 1965 ident: 10.1016/j.jbiomech.2014.08.007_bib18 article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(65)90019-4 – volume: 4 start-page: 1228 year: 2011 ident: 10.1016/j.jbiomech.2014.08.007_bib12 article-title: PVA hydrogel propertied for biomedical application publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.04.005 – volume: 85 start-page: 238 year: 2000 ident: 10.1016/j.jbiomech.2014.08.007_bib13 article-title: How much work is required to puncture dura with tuohy needles? publication-title: Br. J. Anaesth. doi: 10.1093/bja/85.2.238 – volume: 19 start-page: 864 year: 2003 ident: 10.1016/j.jbiomech.2014.08.007_bib6 article-title: Needle insertion modeling and simulation publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/TRA.2003.817044 – volume: 15 start-page: 73 year: 2012 ident: 10.1016/j.jbiomech.2014.08.007_bib9 article-title: Quantifying the mechanical properties of human skin to optimise future microneedle device design publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.596481 – ident: 10.1016/j.jbiomech.2014.08.007_bib10 – volume: 29 start-page: 1640 year: 2010 ident: 10.1016/j.jbiomech.2014.08.007_bib16 article-title: Mechanics of flexible needles robotically steered through soft tissue publication-title: Int. J. Robot. Res. doi: 10.1177/0278364910369714 – volume: 52 start-page: 6027 year: 2007 ident: 10.1016/j.jbiomech.2014.08.007_bib15 article-title: Observations on rotating needle insertions using a brachytherapy robot publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/19/021 – volume: 29 start-page: 413 year: 2007 ident: 10.1016/j.jbiomech.2014.08.007_bib1 article-title: Needle insertion into soft tissue: a survey publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2006.07.003 – volume: 51 start-page: 1707 year: 2004 ident: 10.1016/j.jbiomech.2014.08.007_bib17 article-title: Force modeling for needle insertion into soft tissue publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.831542 |
SSID | ssj0007479 |
Score | 2.4735374 |
Snippet | A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish... Abstract A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and... A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3344 |
SubjectTerms | Animals Biological Biomechanics Categories Diamonds Experiments Extraction Hydrogels Insertion Insertion method Interaction forces Liver Mechanical Phenomena Mechanical testing Methods Models, Biological Multivariate analysis Needle geometry Needle insertion Needles Phantoms, Imaging Phases Physical Medicine and Rehabilitation Robotics - instrumentation Robots Studies Swine Tissue characteristic Torque |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOCLY8AgUZCXEidP2InXBBFWpVIZUTlfZmOfYs0qpkS7M9cOSfM-M46SJBQZwz3iQ78cw3nplvGHsVl2Ba29SlR_dcai2XaAeDLY2vvdR1UymgfueTT-b4VH9cVIt84NbnssrRJiZDHdeBzsj3EZlogRGylu_Pv5U0NYqyq3mExk12i6jLqKTLLqaAi7jhc4mHKBEGzLc6hFdvV6m_PSUkhE40njRS9vfO6U_gMzmho_vsXkaP_GBQ9wN2A7oZ2z3oMHL--p2_5qmeMx2Uz9jdLarBGbt9kpPou-zH4RarP0_8sny95Cgaz6DcJE1wopG4GJoeOOJatCbv-MB0fCXLvwC-G03k6t_gAsrrk_gwlLrnvos8_1r4lRb6ITs9Ovz84bjMkxjKgAHFBhWpZBNC7QG0Ae8VCO0FGAnRWvCEmzAQU0E20DZRNa0VUUFoa0QjLSitHrGdbt3BE8bBetmiBRYmeh2Wws89gqwoKxUxOIqxYNWoAhcyTTlNyzhzYz3ayo2qc6Q6R2M057Zg-9O684Go468r7KhhN7ahouF06Ev-byX0ef_3TrheurmjVLhoUqqaUq5iUbBmWpkhzgBd_umue-Nn6K5uNG2Lgr2cLqOJoLyP72B9iTJVbagYRplrZAziPiMQfxbs8fCJT3-jpFyqqezT6x_gGbtDT0uOXdg9trO5uITniNg27Yu0LX8CnhRBgg priority: 102 providerName: ProQuest |
Title | Experimental study of needle–tissue interaction forces: Effect of needle geometries, insertion methods and tissue characteristics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S002192901400431X https://www.clinicalkey.es/playcontent/1-s2.0-S002192901400431X https://dx.doi.org/10.1016/j.jbiomech.2014.08.007 https://www.ncbi.nlm.nih.gov/pubmed/25169657 https://www.proquest.com/docview/1614119842 https://www.proquest.com/docview/1586100736 https://www.proquest.com/docview/1629361663 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VRUJwQJDyMJRqkRAn3GQf3rW5hSpVADVCiEq5rdbeTdWoOFWdHrggJH4C_5Bfwsx6naTiKbg4sjNjO57xzLeZFyFP3cyrUhd5asE9p1LyGdjBSqfK5pbLvMiEx3rno4kaH8vX02y6RQ66WhhMq4y2v7XpwVrHI_34NPvnp6dY4wtvWwgDYjiLTbGCXWrU8v1P6zQPgMsxzYOlSL1RJTzfn4ca9xCUYDK08sSxsj93UL8CoMERHd4mtyKCpMP2Ju-QLV_3yM6whtXzh4_0GQ05neHP8h65udFusEeuH8VA-g75Mtro7E9Dj1m6mFEgdWf-2-evyyAPis0kLtrSBwroFmzKC9r2O15T0xMPvw7ncjXPgQGj-0jejqZuqK0djWerrjaHvkuOD0fvD8ZpnMeQVrCsWII4BS-qKrfeS-WtFZ5Jy7zi3mntLaInWI6Jihe-LJwoSs2c8FWZAyYpvZDiHtmuF7V_QKjXlpdgh5lyVlYzZgcWoJbjmXCwRHIuIVknBFPFZuU4M-PMdFlpc9MJz6DwDA7THOiE9Fd85227jj9y6E7GpitGBfNpwKP8G6dvohVoDDMNNwPzg6YmpFhxXlH2v7rqbqeIZn0hAFmMFbnkCXmy-hoMBUZ_bO0Xl0CT5QpTYoT6DY0C9KcYoNCE3G-VfPUYOUZUVaYf_sfNPyI3cA99P9O7ZHt5cekfA6hblnvhrYWtnuo9cm346s14Ap8vR5O3774De4hR7g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJyQJDyCBRYJOCEafbhtY2EUIFUKW0ihFopt2XtnVSKilPqVKhH_hC_kVm_GiQoCKnnzNobz_qbbzwvgKduijqNkjiwZJ4DpcSUcDCLAm1jK1SchBJ9vfNorIcH6sMknKzAj6YWxqdVNphYArWbZ_4b-SYxE8XJQ1bizfHXwE-N8tHVZoRGdSx28ewbuWzF6533pN9nQmwP9t8Ng3qqQJAROV7QpqRIsiy2iEqjtRK5shy1QBdFaD0HIKdCZiLBNHEySSPuJGZpTJY1RakkXfcKrCpJrkwHVt8Oxh8_tdhP5LxOKuEBEY_-Uk3y7OWsrKgvQyBclY1D_RDb35vDP9Hd0uxt34QbNV9lW9UBuwUrmHdhfSsnX_3LGXvOygzS8tN8F64vNTfswtVRHbZfh--DpTkCrOxoy-ZTRqLuCINFqXvmG1ecVGUWjJg04dcrVvVWPpdlh0j_zc8AK17QAp9J4MWrMdgFs7lj9dWyXxtR34aDS9HSHejk8xzvAcPIipQwn2tnVTbltm-J1jkRSkfumHM9CBsVmKxujO7ncxyZJgNuZhrVGa864wd39qMebLbrjqvWIH9dETUaNk3hK0G1Iev1fyuxqBGnMNwUwvSND77zpAyO-yAvn_QgaVfWpKoiS_90143mGJrzG7UvYg-etD8TKPlIk81xfkoyYax9-o3UF8hoYpqaE-Ptwd3qiLePUfjorQ6j-xdv4DFcG-6P9szeznj3Aaz5nXtawaMN6CxOTvEh8cVF-qh-SRl8vmxc-AknkICp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLDlsVDASMCJsGs7sRMkhCraVUtpxYFKezNO7CCtSrY0W6Ee-Vv8OmacRxcJCkLqOePEyYxnvsm8AJ660qtcZ2lk0TxHcSxK1IOFjpRNrYjTLJGe6p33D9TOYfxumkxX4EdXC0NplZ1ODIrazQv6Rz5CZBJz9JBjMSrbtIgPW5M3x18jmiBFkdZunEYjInv-7Bu6b_Xr3S3k9TMhJtsf3-5E7YSBqECgvMANSpEVRWq9j5W3VnoeW-6V8E5rbwkPoIMhC5H5PHMyyzV30hd5ilY29zKWeN8rcFXLhNMZ09Pe2aO-9G16CY8QgoyXqpNnL2ehtj4EQ3gcWojSONvfG8Y_Ad9gACc34UaLXNlmI2q3YMVXA1jfrNBr_3LGnrOQSxp-0g_g-lKbwwGs7bcB_HX4vr00UYCF3rZsXjIkdUc-WgQpYNTC4qQpuGCIqVGTvWJNl-VzWvbZ47vRNLD6BS6gnAIibwZi18xWjrV3K35tSX0bDi-FR3dgtZpX_h4wr63IUftz5WxclNyOLQI8JxLp0DFzbghJxwJTtC3SaVLHkely4WamY50h1hka4TnWQxj1646bJiF_XaE7DpuuBBaVtkE79n8rfd3qntpwUwszNhSG51kIk1O4l0-HkPUrW3jVwKZ_eupGJ4bm_EH9kRzCk_4yqieKOdnKz0-RJkkVJeJIdQGNQsypOGLfIdxtRLz_jILiuCrR9y_ewGNYQ21g3u8e7D2Aa7Rxwhdcb8Dq4uTUP0TguMgfhRPK4NNlq4SfjM2DeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+of+needle%E2%80%93tissue+interaction+forces%3A+Effect+of+needle+geometries%2C+insertion+methods+and+tissue+characteristics&rft.jtitle=Journal+of+biomechanics&rft.au=Jiang%2C+Shan&rft.au=Li%2C+Pan&rft.au=Yu%2C+Yan&rft.au=Liu%2C+Jun&rft.date=2014-10-17&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=47&rft.issue=13&rft.spage=3344&rft.epage=3353&rft_id=info:doi/10.1016%2Fj.jbiomech.2014.08.007&rft.externalDocID=S002192901400431X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929014X00126%2Fcov150h.gif |