Experimental study of needle–tissue interaction forces: Effect of needle geometries, insertion methods and tissue characteristics

A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three catego...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 47; no. 13; pp. 3344 - 3353
Main Authors Jiang, Shan, Li, Pan, Yu, Yan, Liu, Jun, Yang, Zhiyong
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 17.10.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7–3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10–85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5–10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.
AbstractList Abstract A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n =5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7–3.2 mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10–85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5–10 mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.
A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7–3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10–85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5–10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.
A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samplesn=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.
A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.
A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85 degree ) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy.
Author Jiang, Shan
Yu, Yan
Yang, Zhiyong
Liu, Jun
Li, Pan
Author_xml – sequence: 1
  givenname: Shan
  surname: Jiang
  fullname: Jiang, Shan
  email: shanjmri@tju.edu.cn
  organization: Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Pan
  surname: Li
  fullname: Li, Pan
  organization: Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Yan
  surname: Yu
  fullname: Yu, Yan
  organization: Division of Medical Physics, Department of Radiation Oncology, Thomas Jefferson University, Kimmel Cancer Center, 111 South 11th Street, Philadelphia, PA 19107, USA
– sequence: 4
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: Department of Imaging, Tianjin Union Medicine Center, Tianjin 300121, China
– sequence: 5
  givenname: Zhiyong
  surname: Yang
  fullname: Yang, Zhiyong
  organization: Centre for Advanced Mechanisms and Robotics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25169657$$D View this record in MEDLINE/PubMed
BookMark eNqNks2KFDEUhYOMOD2trzAUuHFhlfmpSlVExGFof2DAhQruQip1y05bnfQkKZneCT6Cb-iTmLJ7HOiF7SoQvnNyc849QyfWWUDonOCCYMKfrYpVa9wa9LKgmJQFbgqM63toRpqa5ZQ1-ATNMKYkF1TgU3QWwgonoqzFA3RKK8IFr-oZ-rG42YA3a7BRDVmIY7fNXJ9ZgG6AX99_RhPCCJmxEbzS0Tib9c5rCM-zRd-Djnd09gXSQNEbCE-TIID_g6erpetCpmyX7d30Uk1m6d0QjQ4P0f1eDQEe7c85-vR68fHybX71_s27y4urXPO6irmqGBVaNwqg5KAUA1IqApxCV9egMK04J4JpKqAVHRNtTToGum2wIC2wks3Rk53vxrvrEUKUaxM0DIOy4MYgCaeCccI5O45WDScpTsYT-vgAXbnR2_SRZEhKQkRT0kSd76mxXUMnNylz5bfytokE8B2gvQvBQ_8XIVhOlcuVvK1cTpVL3Mhpgjl6cSDUJqop-uiVGY7LX-3kkJL_ZsDLoA1YDZ3xqV7ZOXPc4uWBhR6MNVoNX2EL4S4OGajE8sO0ltNWkhLjkpHP_zb4nwl-AxGN-Mk
CitedBy_id crossref_primary_10_7759_cureus_13409
crossref_primary_10_14326_abe_10_90
crossref_primary_10_1007_s42235_021_0031_1
crossref_primary_10_1142_S0219519418500239
crossref_primary_10_1007_s40799_023_00632_6
crossref_primary_10_1177_09544119231191910
crossref_primary_10_3390_ma17102334
crossref_primary_10_1080_13873954_2022_2158875
crossref_primary_10_1007_s11831_023_10020_3
crossref_primary_10_1016_j_medengphy_2017_01_006
crossref_primary_10_1186_s10033_022_00767_4
crossref_primary_10_5858_arpa_2018_0463_RA
crossref_primary_10_1038_s41598_022_20161_3
crossref_primary_10_1021_acsnano_4c11612
crossref_primary_10_1088_1748_3190_ab9341
crossref_primary_10_1016_j_actbio_2021_09_057
crossref_primary_10_1080_10255842_2024_2338474
crossref_primary_10_1177_1098612X19845719
crossref_primary_10_12677_mos_2025_143228
crossref_primary_10_3390_s18020561
crossref_primary_10_1016_j_medengphy_2024_104166
crossref_primary_10_1016_j_bios_2016_10_081
crossref_primary_10_1002_admi_202101856
crossref_primary_10_1002_pen_26216
crossref_primary_10_1039_D2SM00257D
crossref_primary_10_1177_1932296819836987
crossref_primary_10_1016_j_ijnonlinmec_2021_103832
crossref_primary_10_1016_j_compbiomed_2021_104982
crossref_primary_10_1016_j_jmbbm_2021_104958
crossref_primary_10_1016_j_eml_2018_11_006
crossref_primary_10_3390_pharmaceutics12080693
crossref_primary_10_1109_JSEN_2018_2846780
crossref_primary_10_1186_s10033_020_00515_6
crossref_primary_10_1007_s12555_019_0235_x
crossref_primary_10_1177_09544119221137133
crossref_primary_10_1115_1_4065434
crossref_primary_10_1007_s10877_015_9801_9
crossref_primary_10_1007_s11465_022_0738_7
crossref_primary_10_1016_j_jmbbm_2023_106071
crossref_primary_10_1177_0954411917690763
crossref_primary_10_1002_adma_201907478
crossref_primary_10_1177_17298806251325136
crossref_primary_10_1007_s11517_018_1825_0
crossref_primary_10_1109_LRA_2020_2969151
crossref_primary_10_1016_j_procir_2020_05_130
crossref_primary_10_1371_journal_pone_0256344
crossref_primary_10_1155_2021_8883598
crossref_primary_10_1021_acsnano_2c01793
crossref_primary_10_1016_j_polymertesting_2016_08_004
crossref_primary_10_1007_s11548_021_02371_8
crossref_primary_10_1007_s40799_018_0255_0
crossref_primary_10_1039_D2LC00790H
crossref_primary_10_1109_TBME_2020_2996980
crossref_primary_10_1016_j_ijpharm_2022_121835
crossref_primary_10_1177_0267659120967194
crossref_primary_10_1007_s11340_019_00479_2
crossref_primary_10_1002_mma_5980
crossref_primary_10_1115_1_4067070
crossref_primary_10_1109_TOH_2020_2967375
crossref_primary_10_1016_j_compbiomed_2023_107125
crossref_primary_10_1016_j_jmbbm_2023_106247
crossref_primary_10_1016_j_jmbbm_2020_103896
crossref_primary_10_1002_adfm_201903863
crossref_primary_10_3389_fonc_2022_829369
crossref_primary_10_1177_09544119221122024
crossref_primary_10_1115_1_4034134
crossref_primary_10_1016_j_eurpolymj_2024_112952
crossref_primary_10_1016_j_jmbbm_2023_106090
crossref_primary_10_1007_s11517_019_01955_6
crossref_primary_10_1063_5_0249464
crossref_primary_10_1177_0954411916644475
crossref_primary_10_1007_s11517_019_02001_1
crossref_primary_10_1016_j_jmbbm_2015_05_012
crossref_primary_10_1038_s41598_024_72615_5
crossref_primary_10_1155_2019_9756842
crossref_primary_10_1016_j_medengphy_2017_02_011
crossref_primary_10_1080_10910344_2015_1133917
crossref_primary_10_1016_j_ultrasmedbio_2022_07_016
crossref_primary_10_1177_0954411915599018
crossref_primary_10_1007_s11548_022_02640_0
crossref_primary_10_3390_act7040083
crossref_primary_10_1088_1741_2552_ad36e1
crossref_primary_10_1038_s41598_019_56403_0
crossref_primary_10_13045_jar_2018_00283
crossref_primary_10_1016_j_medengphy_2021_10_003
crossref_primary_10_1021_acsnano_0c05074
crossref_primary_10_1088_1742_6596_1959_1_012018
crossref_primary_10_1016_j_compbiomed_2019_103337
crossref_primary_10_1088_1748_3190_acfb65
crossref_primary_10_1016_j_tsf_2019_05_039
crossref_primary_10_1002_rcs_1692
crossref_primary_10_1109_TMRB_2025_3527705
crossref_primary_10_1016_j_jbiomech_2022_110995
crossref_primary_10_1177_0954411919891654
crossref_primary_10_1177_09544119221143860
crossref_primary_10_1021_acsnano_1c03310
crossref_primary_10_2139_ssrn_4199074
crossref_primary_10_1007_s10439_015_1329_0
crossref_primary_10_1007_s11548_024_03274_0
crossref_primary_10_1142_S0219519422500130
crossref_primary_10_1097_MAT_0000000000001593
crossref_primary_10_1002_mp_12435
crossref_primary_10_1002_mp_13645
crossref_primary_10_1007_s10846_022_01738_6
crossref_primary_10_1080_10255842_2021_1890047
crossref_primary_10_1002_adfm_201500006
crossref_primary_10_1088_1758_5090_8_1_015016
crossref_primary_10_1007_s11012_024_01767_5
Cites_doi 10.1109/TBME.2009.2036856
10.1109/TBME.2005.847548
10.1016/j.medengphy.2012.04.007
10.1115/1.4008739
10.1016/j.jbiomech.2013.10.006
10.1007/s11548-006-0058-0
10.1016/S0021-9290(01)00099-9
10.1016/S0021-9290(02)00228-2
10.1016/0045-7949(89)90232-0
10.1016/j.jbiomech.2012.01.049
10.1016/0020-7225(65)90019-4
10.1016/j.jmbbm.2011.04.005
10.1093/bja/85.2.238
10.1109/TRA.2003.817044
10.1080/10255842.2011.596481
10.1177/0278364910369714
10.1088/0031-9155/52/19/021
10.1016/j.medengphy.2006.07.003
10.1109/TBME.2004.831542
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2014
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2014.08.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Research Library
ProQuest Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep
MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Collection
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 3353
ExternalDocumentID 3465768641
25169657
10_1016_j_jbiomech_2014_08_007
S002192901400431X
1_s2_0_S002192901400431X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c675t-a5329cc8aee46eaa3e14a1e62ed77ea02566193c29eb9d39b71d3ecb8091be343
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 02:31:53 EDT 2025
Thu Jul 10 23:08:34 EDT 2025
Wed Aug 13 06:46:33 EDT 2025
Mon Jul 21 06:06:32 EDT 2025
Tue Jul 01 01:14:06 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
Fri Feb 23 02:34:47 EST 2024
Sun Feb 23 10:20:44 EST 2025
Tue Aug 26 16:33:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Tissue characteristic
Insertion method
Interaction forces
Needle insertion
Needle geometry
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-a5329cc8aee46eaa3e14a1e62ed77ea02566193c29eb9d39b71d3ecb8091be343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25169657
PQID 1614119842
PQPubID 1226346
PageCount 10
ParticipantIDs proquest_miscellaneous_1629361663
proquest_miscellaneous_1586100736
proquest_journals_1614119842
pubmed_primary_25169657
crossref_primary_10_1016_j_jbiomech_2014_08_007
crossref_citationtrail_10_1016_j_jbiomech_2014_08_007
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2014_08_007
elsevier_clinicalkeyesjournals_1_s2_0_S002192901400431X
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2014_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-17
PublicationDateYYYYMMDD 2014-10-17
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Frick, Marucci, Cartmill, Martin, Walsh (bib7) 2001; 34
Misra, Reed, Schafer, Ramesh, Okamura (bib16) 2010; 29
Yankelevsky, Eisenberger, Adin (bib21) 1989; 31
Yan, Podder, Xiao, Yu, Liu, Cheng, Ng (bib20) 2006
Lewis, Lafferty, Sacks, Pallares, TerRiet (bib13) 2000; 85
Butz, Griebel, Novak, Harris, Kornokovich, Chiappetta, Neu (bib3) 2012; 45
DiMaio, Salcudean (bib6) 2003; 19
Okamura, Simone, O’Leary (bib17) 2004; 51
Jiang, Liu, Feng (bib12) 2011; 4
Mahvash, Dupont (bib14) 2010; 57
Choy, Cao, Tungjitkusolmun, Tsai, Haemmerich, Vorperian (bib4) 2002; 35
Abolhassani, Patel, Moallem (bib1) 2007; 29
Hing, J.T., Brooks, A.D., Desai, J.P., 2006. Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. In: Proceedings of the IEEE International Conference On Robotics And Automation, pp. 619–624.
Groves, Coulman, Birchall, Evans (bib9) 2012; 15
Sneddon (bib18) 1965; 3
Biot (bib2) 1937; 59
Meltsner, Ferrier, Thomadsen (bib15) 2007; 52
Jee, Komvopoulos (bib11) 2014; 47
Stellman (bib19) 2009
Gerwen, Dankelman, Dobbelsteen (bib8) 2012; 34
DiMaio, Salcudean (bib5) 2005; 52
Jiang (10.1016/j.jbiomech.2014.08.007_bib12) 2011; 4
Sneddon (10.1016/j.jbiomech.2014.08.007_bib18) 1965; 3
Butz (10.1016/j.jbiomech.2014.08.007_bib3) 2012; 45
Meltsner (10.1016/j.jbiomech.2014.08.007_bib15) 2007; 52
DiMaio (10.1016/j.jbiomech.2014.08.007_bib5) 2005; 52
Okamura (10.1016/j.jbiomech.2014.08.007_bib17) 2004; 51
Misra (10.1016/j.jbiomech.2014.08.007_bib16) 2010; 29
10.1016/j.jbiomech.2014.08.007_bib10
Groves (10.1016/j.jbiomech.2014.08.007_bib9) 2012; 15
Stellman (10.1016/j.jbiomech.2014.08.007_bib19) 2009
Gerwen (10.1016/j.jbiomech.2014.08.007_bib8) 2012; 34
Jee (10.1016/j.jbiomech.2014.08.007_bib11) 2014; 47
Abolhassani (10.1016/j.jbiomech.2014.08.007_bib1) 2007; 29
Yan (10.1016/j.jbiomech.2014.08.007_bib20) 2006
Frick (10.1016/j.jbiomech.2014.08.007_bib7) 2001; 34
Choy (10.1016/j.jbiomech.2014.08.007_bib4) 2002; 35
Lewis (10.1016/j.jbiomech.2014.08.007_bib13) 2000; 85
Yankelevsky (10.1016/j.jbiomech.2014.08.007_bib21) 1989; 31
Biot (10.1016/j.jbiomech.2014.08.007_bib2) 1937; 59
DiMaio (10.1016/j.jbiomech.2014.08.007_bib6) 2003; 19
Mahvash (10.1016/j.jbiomech.2014.08.007_bib14) 2010; 57
References_xml – volume: 45
  start-page: 1176
  year: 2012
  end-page: 1179
  ident: bib3
  article-title: Prestress as an optimal biomechanical parameter for needle penetration
  publication-title: J. Biomech.
– volume: 34
  start-page: 665
  year: 2012
  end-page: 680
  ident: bib8
  article-title: Needle-tissue interaction forces-A survey of experimental data
  publication-title: Med. Eng. Phys.
– volume: 31
  start-page: 287
  year: 1989
  end-page: 292
  ident: bib21
  article-title: Analysis of beams on nonlinear winkler foundation
  publication-title: Comput. Struct.
– volume: 4
  start-page: 1228
  year: 2011
  end-page: 1233
  ident: bib12
  article-title: PVA hydrogel propertied for biomedical application
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 19
  start-page: 864
  year: 2003
  end-page: 875
  ident: bib6
  article-title: Needle insertion modeling and simulation
  publication-title: IEEE Trans. Robot. Autom.
– volume: 34
  start-page: 1335
  year: 2001
  end-page: 1340
  ident: bib7
  article-title: Resistance forces acting on suture needles
  publication-title: J. Biomech.
– volume: 57
  start-page: 934
  year: 2010
  end-page: 943
  ident: bib14
  article-title: Mechanics of dynamic needle insertion into a biological material
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 85
  start-page: 238
  year: 2000
  end-page: 241
  ident: bib13
  article-title: How much work is required to puncture dura with tuohy needles?
  publication-title: Br. J. Anaesth.
– volume: 29
  start-page: 1640
  year: 2010
  end-page: 1660
  ident: bib16
  article-title: Mechanics of flexible needles robotically steered through soft tissue
  publication-title: Int. J. Robot. Res.
– volume: 29
  start-page: 413
  year: 2007
  end-page: 431
  ident: bib1
  article-title: Needle insertion into soft tissue: a survey
  publication-title: Med. Eng. Phys.
– volume: 35
  start-page: 1671
  year: 2002
  end-page: 1676
  ident: bib4
  article-title: Mechanical compliance of the endocardium
  publication-title: J. Biomech.
– volume: 3
  start-page: 47
  year: 1965
  end-page: 57
  ident: bib18
  article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile
  publication-title: Int. J. Eng. Sci.
– volume: 51
  start-page: 1707
  year: 2004
  end-page: 1716
  ident: bib17
  article-title: Force modeling for needle insertion into soft tissue
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 52
  start-page: 6027
  year: 2007
  end-page: 6037
  ident: bib15
  article-title: Observations on rotating needle insertions using a brachytherapy robot
  publication-title: Phys. Med. Biol.
– reference: Hing, J.T., Brooks, A.D., Desai, J.P., 2006. Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. In: Proceedings of the IEEE International Conference On Robotics And Automation, pp. 619–624.
– start-page: 205
  year: 2006
  end-page: 212
  ident: bib20
  article-title: An improved needle steering model with online parameter estimator
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 52
  start-page: 1167
  year: 2005
  end-page: 1179
  ident: bib5
  article-title: Interactive simulation of needle insertion models
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  start-page: 73
  year: 2012
  end-page: 82
  ident: bib9
  article-title: Quantifying the mechanical properties of human skin to optimise future microneedle device design
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 47
  start-page: 553
  year: 2014
  end-page: 559
  ident: bib11
  article-title: Skin viscoelasticity studied in vitro by microprobe-based techniques
  publication-title: J. Biomech.
– year: 2009
  ident: bib19
  article-title: Development, production, and characterization of plastic hypodermic needles
– volume: 59
  start-page: A1
  year: 1937
  end-page: A7
  ident: bib2
  article-title: Bending of an infinite beam on an elastic foundation
  publication-title: J. Appl. Mech.
– volume: 57
  start-page: 934
  year: 2010
  ident: 10.1016/j.jbiomech.2014.08.007_bib14
  article-title: Mechanics of dynamic needle insertion into a biological material
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2036856
– volume: 52
  start-page: 1167
  year: 2005
  ident: 10.1016/j.jbiomech.2014.08.007_bib5
  article-title: Interactive simulation of needle insertion models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.847548
– volume: 34
  start-page: 665
  year: 2012
  ident: 10.1016/j.jbiomech.2014.08.007_bib8
  article-title: Needle-tissue interaction forces-A survey of experimental data
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2012.04.007
– year: 2009
  ident: 10.1016/j.jbiomech.2014.08.007_bib19
– volume: 59
  start-page: A1
  year: 1937
  ident: 10.1016/j.jbiomech.2014.08.007_bib2
  article-title: Bending of an infinite beam on an elastic foundation
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4008739
– volume: 47
  start-page: 553
  year: 2014
  ident: 10.1016/j.jbiomech.2014.08.007_bib11
  article-title: Skin viscoelasticity studied in vitro by microprobe-based techniques
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.006
– start-page: 205
  year: 2006
  ident: 10.1016/j.jbiomech.2014.08.007_bib20
  article-title: An improved needle steering model with online parameter estimator
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-006-0058-0
– volume: 34
  start-page: 1335
  year: 2001
  ident: 10.1016/j.jbiomech.2014.08.007_bib7
  article-title: Resistance forces acting on suture needles
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00099-9
– volume: 35
  start-page: 1671
  year: 2002
  ident: 10.1016/j.jbiomech.2014.08.007_bib4
  article-title: Mechanical compliance of the endocardium
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00228-2
– volume: 31
  start-page: 287
  year: 1989
  ident: 10.1016/j.jbiomech.2014.08.007_bib21
  article-title: Analysis of beams on nonlinear winkler foundation
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90232-0
– volume: 45
  start-page: 1176
  year: 2012
  ident: 10.1016/j.jbiomech.2014.08.007_bib3
  article-title: Prestress as an optimal biomechanical parameter for needle penetration
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.049
– volume: 3
  start-page: 47
  year: 1965
  ident: 10.1016/j.jbiomech.2014.08.007_bib18
  article-title: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(65)90019-4
– volume: 4
  start-page: 1228
  year: 2011
  ident: 10.1016/j.jbiomech.2014.08.007_bib12
  article-title: PVA hydrogel propertied for biomedical application
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.04.005
– volume: 85
  start-page: 238
  year: 2000
  ident: 10.1016/j.jbiomech.2014.08.007_bib13
  article-title: How much work is required to puncture dura with tuohy needles?
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/85.2.238
– volume: 19
  start-page: 864
  year: 2003
  ident: 10.1016/j.jbiomech.2014.08.007_bib6
  article-title: Needle insertion modeling and simulation
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/TRA.2003.817044
– volume: 15
  start-page: 73
  year: 2012
  ident: 10.1016/j.jbiomech.2014.08.007_bib9
  article-title: Quantifying the mechanical properties of human skin to optimise future microneedle device design
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.596481
– ident: 10.1016/j.jbiomech.2014.08.007_bib10
– volume: 29
  start-page: 1640
  year: 2010
  ident: 10.1016/j.jbiomech.2014.08.007_bib16
  article-title: Mechanics of flexible needles robotically steered through soft tissue
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364910369714
– volume: 52
  start-page: 6027
  year: 2007
  ident: 10.1016/j.jbiomech.2014.08.007_bib15
  article-title: Observations on rotating needle insertions using a brachytherapy robot
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/19/021
– volume: 29
  start-page: 413
  year: 2007
  ident: 10.1016/j.jbiomech.2014.08.007_bib1
  article-title: Needle insertion into soft tissue: a survey
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2006.07.003
– volume: 51
  start-page: 1707
  year: 2004
  ident: 10.1016/j.jbiomech.2014.08.007_bib17
  article-title: Force modeling for needle insertion into soft tissue
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.831542
SSID ssj0007479
Score 2.4735374
Snippet A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish...
Abstract A thorough understanding of needle–tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and...
A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3344
SubjectTerms Animals
Biological
Biomechanics
Categories
Diamonds
Experiments
Extraction
Hydrogels
Insertion
Insertion method
Interaction forces
Liver
Mechanical Phenomena
Mechanical testing
Methods
Models, Biological
Multivariate analysis
Needle geometry
Needle insertion
Needles
Phantoms, Imaging
Phases
Physical Medicine and Rehabilitation
Robotics - instrumentation
Robots
Studies
Swine
Tissue characteristic
Torque
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOCLY8AgUZCXEidP2InXBBFWpVIZUTlfZmOfYs0qpkS7M9cOSfM-M46SJBQZwz3iQ78cw3nplvGHsVl2Ba29SlR_dcai2XaAeDLY2vvdR1UymgfueTT-b4VH9cVIt84NbnssrRJiZDHdeBzsj3EZlogRGylu_Pv5U0NYqyq3mExk12i6jLqKTLLqaAi7jhc4mHKBEGzLc6hFdvV6m_PSUkhE40njRS9vfO6U_gMzmho_vsXkaP_GBQ9wN2A7oZ2z3oMHL--p2_5qmeMx2Uz9jdLarBGbt9kpPou-zH4RarP0_8sny95Cgaz6DcJE1wopG4GJoeOOJatCbv-MB0fCXLvwC-G03k6t_gAsrrk_gwlLrnvos8_1r4lRb6ITs9Ovz84bjMkxjKgAHFBhWpZBNC7QG0Ae8VCO0FGAnRWvCEmzAQU0E20DZRNa0VUUFoa0QjLSitHrGdbt3BE8bBetmiBRYmeh2Wws89gqwoKxUxOIqxYNWoAhcyTTlNyzhzYz3ayo2qc6Q6R2M057Zg-9O684Go468r7KhhN7ahouF06Ev-byX0ef_3TrheurmjVLhoUqqaUq5iUbBmWpkhzgBd_umue-Nn6K5uNG2Lgr2cLqOJoLyP72B9iTJVbagYRplrZAziPiMQfxbs8fCJT3-jpFyqqezT6x_gGbtDT0uOXdg9trO5uITniNg27Yu0LX8CnhRBgg
  priority: 102
  providerName: ProQuest
Title Experimental study of needle–tissue interaction forces: Effect of needle geometries, insertion methods and tissue characteristics
URI https://www.clinicalkey.com/#!/content/1-s2.0-S002192901400431X
https://www.clinicalkey.es/playcontent/1-s2.0-S002192901400431X
https://dx.doi.org/10.1016/j.jbiomech.2014.08.007
https://www.ncbi.nlm.nih.gov/pubmed/25169657
https://www.proquest.com/docview/1614119842
https://www.proquest.com/docview/1586100736
https://www.proquest.com/docview/1629361663
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VRUJwQJDyMJRqkRAn3GQf3rW5hSpVADVCiEq5rdbeTdWoOFWdHrggJH4C_5Bfwsx6naTiKbg4sjNjO57xzLeZFyFP3cyrUhd5asE9p1LyGdjBSqfK5pbLvMiEx3rno4kaH8vX02y6RQ66WhhMq4y2v7XpwVrHI_34NPvnp6dY4wtvWwgDYjiLTbGCXWrU8v1P6zQPgMsxzYOlSL1RJTzfn4ca9xCUYDK08sSxsj93UL8CoMERHd4mtyKCpMP2Ju-QLV_3yM6whtXzh4_0GQ05neHP8h65udFusEeuH8VA-g75Mtro7E9Dj1m6mFEgdWf-2-evyyAPis0kLtrSBwroFmzKC9r2O15T0xMPvw7ncjXPgQGj-0jejqZuqK0djWerrjaHvkuOD0fvD8ZpnMeQVrCsWII4BS-qKrfeS-WtFZ5Jy7zi3mntLaInWI6Jihe-LJwoSs2c8FWZAyYpvZDiHtmuF7V_QKjXlpdgh5lyVlYzZgcWoJbjmXCwRHIuIVknBFPFZuU4M-PMdFlpc9MJz6DwDA7THOiE9Fd85227jj9y6E7GpitGBfNpwKP8G6dvohVoDDMNNwPzg6YmpFhxXlH2v7rqbqeIZn0hAFmMFbnkCXmy-hoMBUZ_bO0Xl0CT5QpTYoT6DY0C9KcYoNCE3G-VfPUYOUZUVaYf_sfNPyI3cA99P9O7ZHt5cekfA6hblnvhrYWtnuo9cm346s14Ap8vR5O3774De4hR7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJyQJDyCBRYJOCEafbhtY2EUIFUKW0ihFopt2XtnVSKilPqVKhH_hC_kVm_GiQoCKnnzNobz_qbbzwvgKduijqNkjiwZJ4DpcSUcDCLAm1jK1SchBJ9vfNorIcH6sMknKzAj6YWxqdVNphYArWbZ_4b-SYxE8XJQ1bizfHXwE-N8tHVZoRGdSx28ewbuWzF6533pN9nQmwP9t8Ng3qqQJAROV7QpqRIsiy2iEqjtRK5shy1QBdFaD0HIKdCZiLBNHEySSPuJGZpTJY1RakkXfcKrCpJrkwHVt8Oxh8_tdhP5LxOKuEBEY_-Uk3y7OWsrKgvQyBclY1D_RDb35vDP9Hd0uxt34QbNV9lW9UBuwUrmHdhfSsnX_3LGXvOygzS8tN8F64vNTfswtVRHbZfh--DpTkCrOxoy-ZTRqLuCINFqXvmG1ecVGUWjJg04dcrVvVWPpdlh0j_zc8AK17QAp9J4MWrMdgFs7lj9dWyXxtR34aDS9HSHejk8xzvAcPIipQwn2tnVTbltm-J1jkRSkfumHM9CBsVmKxujO7ncxyZJgNuZhrVGa864wd39qMebLbrjqvWIH9dETUaNk3hK0G1Iev1fyuxqBGnMNwUwvSND77zpAyO-yAvn_QgaVfWpKoiS_90143mGJrzG7UvYg-etD8TKPlIk81xfkoyYax9-o3UF8hoYpqaE-Ptwd3qiLePUfjorQ6j-xdv4DFcG-6P9szeznj3Aaz5nXtawaMN6CxOTvEh8cVF-qh-SRl8vmxc-AknkICp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLDlsVDASMCJsGs7sRMkhCraVUtpxYFKezNO7CCtSrY0W6Ee-Vv8OmacRxcJCkLqOePEyYxnvsm8AJ660qtcZ2lk0TxHcSxK1IOFjpRNrYjTLJGe6p33D9TOYfxumkxX4EdXC0NplZ1ODIrazQv6Rz5CZBJz9JBjMSrbtIgPW5M3x18jmiBFkdZunEYjInv-7Bu6b_Xr3S3k9TMhJtsf3-5E7YSBqECgvMANSpEVRWq9j5W3VnoeW-6V8E5rbwkPoIMhC5H5PHMyyzV30hd5ilY29zKWeN8rcFXLhNMZ09Pe2aO-9G16CY8QgoyXqpNnL2ehtj4EQ3gcWojSONvfG8Y_Ad9gACc34UaLXNlmI2q3YMVXA1jfrNBr_3LGnrOQSxp-0g_g-lKbwwGs7bcB_HX4vr00UYCF3rZsXjIkdUc-WgQpYNTC4qQpuGCIqVGTvWJNl-VzWvbZ47vRNLD6BS6gnAIibwZi18xWjrV3K35tSX0bDi-FR3dgtZpX_h4wr63IUftz5WxclNyOLQI8JxLp0DFzbghJxwJTtC3SaVLHkely4WamY50h1hka4TnWQxj1646bJiF_XaE7DpuuBBaVtkE79n8rfd3qntpwUwszNhSG51kIk1O4l0-HkPUrW3jVwKZ_eupGJ4bm_EH9kRzCk_4yqieKOdnKz0-RJkkVJeJIdQGNQsypOGLfIdxtRLz_jILiuCrR9y_ewGNYQ21g3u8e7D2Aa7Rxwhdcb8Dq4uTUP0TguMgfhRPK4NNlq4SfjM2DeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+of+needle%E2%80%93tissue+interaction+forces%3A+Effect+of+needle+geometries%2C+insertion+methods+and+tissue+characteristics&rft.jtitle=Journal+of+biomechanics&rft.au=Jiang%2C+Shan&rft.au=Li%2C+Pan&rft.au=Yu%2C+Yan&rft.au=Liu%2C+Jun&rft.date=2014-10-17&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=47&rft.issue=13&rft.spage=3344&rft.epage=3353&rft_id=info:doi/10.1016%2Fj.jbiomech.2014.08.007&rft.externalDocID=S002192901400431X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929014X00126%2Fcov150h.gif