Unlocking Potentials of Microwaves for Food Safety and Quality
Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short‐time in‐package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to t...
Saved in:
Published in | Journal of food science Vol. 80; no. 8; pp. E1776 - E1793 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.08.2015
Wiley Subscription Services, Inc John Wiley & Sons, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short‐time in‐package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave‐assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single‐mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. |
---|---|
AbstractList | Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation.Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. |
Author | Tang, Juming |
Author_xml | – sequence: 1 givenname: Juming surname: Tang fullname: Tang, Juming email: jtang@wsu.edu organization: Dept., of Biological Systems Engineering, Washington State Univ, WA, 509-335-2140, Pullman, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26242920$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9PFDEcxRsDkQU9ezOTePEy0N8_LiQGHNTgqiB6bDqdFguzU5zOgvvf22HZjZKYtZem0897nbzv2wVbXewcAC8Q3Ed5HSDBYEkkRfsIK6aegMn6yxaYQIhxiRAVO2A3pSs4ngl_CnYwxxQrDCfg8KJro70O3WXxOQ6uG4JpUxF98THYPt6ZW5cKH_uiirEpzo13w6IwXVN8mZs2DItnYNtngXv-sO-Bi-rt16N35emnk_dHb05LywVTpcXKSyukojUlRjIsKW9MXTeNp7IWBDksGZLGc66gF4haRqBrjEDOQuhrsgcOl74383rmGpt_tDetvunDzPQLHU3Qf9904Ye-jLeaciaoEtng9YNBH3_OXRr0LCTr2tZ0Ls6TxjkcSIUUZCOKJJSQCwnZZjQbKo44Vf-BQiKQRExm9NUj9CrO-y7nO1J5zvl5mqmXf0ayzmI12wywJZAHmVLvvLZhMEOIY0Kh1QjqsUN6bIweG6PvO5R1B490K-t_K_hScRdat9iE6w_V8flKWC6FIQ3u11po-mvNBRFMf5-e6OkZ_XZWVVMtyW_hneOo |
CODEN | JFDSAZ |
CitedBy_id | crossref_primary_10_1080_07373937_2021_2002355 crossref_primary_10_1080_07373937_2022_2080704 crossref_primary_10_1016_j_ifset_2021_102837 crossref_primary_10_1016_j_lwt_2023_114597 crossref_primary_10_1515_ijfe_2022_0130 crossref_primary_10_3390_foods10071623 crossref_primary_10_1016_j_jfoodeng_2016_03_021 crossref_primary_10_1111_jfpe_12858 crossref_primary_10_1016_j_tifs_2019_02_047 crossref_primary_10_3390_foods13132026 crossref_primary_10_1016_j_jfoodeng_2023_111434 crossref_primary_10_1016_j_lwt_2019_05_111 crossref_primary_10_1111_1750_3841_15384 crossref_primary_10_1007_s11694_022_01730_6 crossref_primary_10_1007_s12393_024_09370_w crossref_primary_10_1016_j_watres_2020_116102 crossref_primary_10_1016_j_ifset_2022_103089 crossref_primary_10_1039_D0RA09934A crossref_primary_10_3390_foods12061322 crossref_primary_10_1080_87559129_2021_2012789 crossref_primary_10_1016_j_jfoodeng_2017_01_003 crossref_primary_10_1111_1750_3841_14736 crossref_primary_10_1016_j_fbio_2024_105129 crossref_primary_10_1016_j_jafr_2024_101588 crossref_primary_10_1016_j_indcrop_2023_117526 crossref_primary_10_1016_j_jfoodeng_2022_111285 crossref_primary_10_1080_08327823_2020_1838048 crossref_primary_10_48130_fia_0024_0010 crossref_primary_10_1016_j_jfoodeng_2019_04_001 crossref_primary_10_3390_antiox10030417 crossref_primary_10_35848_1347_4065_aba50e crossref_primary_10_1016_j_lwt_2020_110287 crossref_primary_10_1016_j_lwt_2021_112280 crossref_primary_10_1007_s11694_022_01607_8 crossref_primary_10_1080_10408398_2021_1922871 crossref_primary_10_1080_10408398_2022_2130154 crossref_primary_10_1016_j_jfoodeng_2020_110162 crossref_primary_10_1016_j_lwt_2020_109861 crossref_primary_10_1016_j_jfoodeng_2023_111650 crossref_primary_10_1007_s11694_021_01118_y crossref_primary_10_1016_j_lwt_2018_05_054 crossref_primary_10_1016_j_jfoodeng_2023_111894 crossref_primary_10_1016_j_ifset_2023_103388 crossref_primary_10_1080_07373937_2019_1645162 crossref_primary_10_1515_ijfe_2020_0335 crossref_primary_10_1016_j_foodchem_2020_127706 crossref_primary_10_1016_j_tifs_2022_01_032 crossref_primary_10_3389_fnut_2022_780151 crossref_primary_10_3390_foods13172727 crossref_primary_10_3390_foods12244412 crossref_primary_10_1016_j_cofs_2018_10_004 crossref_primary_10_3390_foods10030545 crossref_primary_10_1016_j_cofs_2018_10_003 crossref_primary_10_1111_1750_3841_15034 crossref_primary_10_3390_foods9060837 crossref_primary_10_1007_s11947_018_2097_2 crossref_primary_10_1155_2022_3961233 crossref_primary_10_1007_s12393_023_09364_0 crossref_primary_10_1111_ijfs_15969 crossref_primary_10_1016_j_foodcont_2022_109187 crossref_primary_10_1017_age_2022_14 crossref_primary_10_1111_jfpe_12815 crossref_primary_10_3390_bios11040096 crossref_primary_10_1016_j_conbuildmat_2015_12_084 crossref_primary_10_1080_09546634_2022_2089333 crossref_primary_10_1038_s41598_025_89990_2 crossref_primary_10_1016_j_jfoodeng_2023_111470 crossref_primary_10_1016_j_fpsl_2020_100486 crossref_primary_10_1016_j_jfoodeng_2023_111909 crossref_primary_10_1111_jtxs_12635 crossref_primary_10_1016_j_foodres_2023_113781 crossref_primary_10_1016_j_icheatmasstransfer_2024_107594 crossref_primary_10_1016_j_cep_2024_109882 crossref_primary_10_1111_1750_3841_13278 crossref_primary_10_3390_foods11121811 crossref_primary_10_21323_2618_9771_2024_7_3_473_480 crossref_primary_10_1061_JMCEE7_MTENG_16849 crossref_primary_10_1016_j_ifset_2018_06_015 crossref_primary_10_1080_87559129_2025_2477206 crossref_primary_10_22434_IFAMR2020_0127 crossref_primary_10_1016_j_ifset_2018_06_013 crossref_primary_10_3390_foods10081903 crossref_primary_10_4315_JFP_19_572 crossref_primary_10_1016_j_fochx_2022_100387 crossref_primary_10_1016_j_foodchem_2024_140456 crossref_primary_10_3390_foods12030459 crossref_primary_10_1002_app_45481 crossref_primary_10_3390_ma9050309 crossref_primary_10_1016_j_tifs_2021_03_043 crossref_primary_10_1016_j_foodcont_2019_04_030 crossref_primary_10_1016_j_foodcont_2021_107936 crossref_primary_10_1080_10408398_2018_1483890 crossref_primary_10_17660_ActaHortic_2021_1311_56 crossref_primary_10_1111_1750_3841_15366 crossref_primary_10_1016_j_tifs_2020_01_030 crossref_primary_10_1016_j_foodcont_2023_109695 crossref_primary_10_1111_jfs_12616 crossref_primary_10_1016_j_jfoodeng_2017_04_014 crossref_primary_10_1063_5_0095909 crossref_primary_10_3390_app11209514 crossref_primary_10_1016_j_ifset_2024_103640 crossref_primary_10_1016_j_cofs_2020_01_004 crossref_primary_10_1016_j_ifset_2024_103643 crossref_primary_10_1016_j_jfoodeng_2024_112039 crossref_primary_10_3390_foods11182732 crossref_primary_10_1016_j_foodp_2025_100048 crossref_primary_10_1016_j_ijgfs_2021_100324 crossref_primary_10_1016_j_meafoo_2024_100158 crossref_primary_10_3390_foods9040406 crossref_primary_10_1016_j_ifset_2017_09_002 crossref_primary_10_1111_1750_3841_17655 crossref_primary_10_1515_ijfe_2018_0327 crossref_primary_10_1016_j_csite_2023_103531 crossref_primary_10_1111_1750_3841_13739 crossref_primary_10_1002_jsfa_11595 crossref_primary_10_1016_j_tifs_2021_01_017 crossref_primary_10_1155_2021_1093224 crossref_primary_10_1186_s13020_021_00500_8 crossref_primary_10_1016_j_foodchem_2021_131677 crossref_primary_10_3390_foods10102299 crossref_primary_10_1016_j_foodres_2024_114797 crossref_primary_10_1016_j_ifset_2023_103521 crossref_primary_10_1080_10408398_2019_1573415 crossref_primary_10_1007_s11694_021_01102_6 crossref_primary_10_1016_j_ifset_2022_103240 crossref_primary_10_3390_foods10020311 crossref_primary_10_1016_j_cep_2020_108088 crossref_primary_10_1016_j_fpsl_2020_100566 crossref_primary_10_1016_j_apenergy_2020_116300 crossref_primary_10_1016_j_fpsl_2019_100324 crossref_primary_10_1002_star_202000112 crossref_primary_10_1007_s40948_024_00749_x crossref_primary_10_3390_su151612395 crossref_primary_10_1111_ijfs_16084 crossref_primary_10_1111_jfpe_14525 crossref_primary_10_1016_j_lwt_2021_111907 crossref_primary_10_1016_j_foodchem_2021_131449 crossref_primary_10_1016_j_lwt_2017_04_019 crossref_primary_10_1080_10408398_2022_2033685 crossref_primary_10_1111_jfpp_14786 crossref_primary_10_1111_ijfs_15663 crossref_primary_10_1080_07373937_2019_1666274 crossref_primary_10_1002_pssa_202000732 crossref_primary_10_1111_jfs_13090 crossref_primary_10_1016_j_foodres_2023_113176 crossref_primary_10_1016_j_meatsci_2018_06_018 crossref_primary_10_1080_07373937_2019_1611595 crossref_primary_10_1016_j_lwt_2021_111466 crossref_primary_10_1080_10408398_2017_1408564 crossref_primary_10_1038_s41526_017_0022_z crossref_primary_10_1111_jfpe_12910 crossref_primary_10_1016_j_jfoodeng_2018_04_009 crossref_primary_10_1016_j_ifset_2016_12_002 crossref_primary_10_1016_j_ces_2021_116450 crossref_primary_10_1016_j_seppur_2024_128522 crossref_primary_10_1016_j_jfoodeng_2016_05_009 crossref_primary_10_12677_MS_2022_125051 crossref_primary_10_1002_agr_21716 crossref_primary_10_1007_s11947_019_02310_1 crossref_primary_10_1016_j_fbp_2018_06_004 crossref_primary_10_1016_j_foodcont_2023_109933 crossref_primary_10_1016_j_ifset_2024_103841 crossref_primary_10_1016_j_ifset_2021_102787 crossref_primary_10_1016_j_ifset_2022_103012 crossref_primary_10_1111_1541_4337_12940 crossref_primary_10_1111_1750_3841_15555 crossref_primary_10_1111_jfpp_14207 crossref_primary_10_1007_s12274_024_6672_8 crossref_primary_10_1002_agr_21705 crossref_primary_10_1080_10408398_2024_2399294 crossref_primary_10_1016_j_ifset_2016_09_024 crossref_primary_10_3233_JBR_170161 crossref_primary_10_1016_j_ifset_2021_102878 crossref_primary_10_1016_j_tifs_2024_104407 crossref_primary_10_1016_j_seta_2022_102643 crossref_primary_10_3390_foods13040631 crossref_primary_10_1016_j_tifs_2020_10_011 crossref_primary_10_1016_j_foodres_2018_10_036 crossref_primary_10_59324_ejtas_2024_2_2__04 crossref_primary_10_1111_joss_12682 crossref_primary_10_1080_87559129_2022_2149776 crossref_primary_10_1007_s11947_017_1900_9 crossref_primary_10_1080_10408398_2020_1853034 crossref_primary_10_1016_j_jaap_2023_106090 crossref_primary_10_1007_s43153_023_00391_2 crossref_primary_10_1038_s41598_018_22271_3 crossref_primary_10_1016_j_crcon_2023_03_002 crossref_primary_10_1016_j_crfs_2023_100641 crossref_primary_10_1111_jfpp_15950 crossref_primary_10_1007_s11947_021_02607_0 crossref_primary_10_1016_j_ijfoodmicro_2017_09_014 crossref_primary_10_1016_j_fpsl_2020_100514 crossref_primary_10_3390_ma10020095 crossref_primary_10_1016_j_ijfoodmicro_2023_110210 crossref_primary_10_1111_1750_3841_13587 crossref_primary_10_3390_foods9101342 crossref_primary_10_3390_pr12081668 crossref_primary_10_1007_s11947_018_2109_2 crossref_primary_10_1016_j_jfoodeng_2025_112502 crossref_primary_10_1016_j_foodcont_2021_108509 crossref_primary_10_1016_j_cej_2022_137345 crossref_primary_10_1111_jfpp_15286 crossref_primary_10_1016_j_foodres_2022_111663 crossref_primary_10_3390_min7020031 crossref_primary_10_1016_j_lwt_2024_116924 crossref_primary_10_1016_j_ifset_2021_102628 crossref_primary_10_1016_j_jfoodeng_2023_111724 crossref_primary_10_1111_1750_3841_13334 crossref_primary_10_1016_j_lwt_2016_09_020 crossref_primary_10_1016_j_tifs_2021_11_011 crossref_primary_10_52825_solarpaces_v1i_643 crossref_primary_10_1016_j_foodcont_2018_10_019 crossref_primary_10_1177_1528083720904678 crossref_primary_10_3390_foods12163140 crossref_primary_10_1016_j_foodchem_2020_127911 crossref_primary_10_1016_j_fbp_2021_03_018 crossref_primary_10_1016_j_jfoodeng_2020_110409 crossref_primary_10_1111_jfpp_16940 crossref_primary_10_1088_1742_6596_1502_1_012031 |
Cites_doi | 10.1002/pts.2055 10.1021/jf0491299 10.1016/j.lwt.2007.07.020 10.1016/j.jfoodeng.2003.09.019 10.1111/j.1365-2621.1980.tb07464.x 10.1080/08327823.2006.11688563 10.1002/mop.20322 10.4315/0362-028X.JFP-12-327 10.1111/j.1750-3841.2008.00950.x 10.1016/j.jfoodeng.2013.10.020 10.1016/j.jfoodeng.2008.04.025 10.1016/S0260-8774(98)00102-2 10.1111/j.1750-3841.2011.02445.x 10.1016/j.jfoodeng.2008.11.011 10.1080/08327823.2003.11688486 10.1016/j.lwt.2014.02.056 10.1007/978-1-4757-5833-7 10.1111/j.1365-2621.2011.02811.x 10.1111/j.1365-2621.1971.tb04045.x 10.1016/j.jfoodeng.2014.10.002 10.1111/j.1365-2621.1997.tb04387.x 10.1002/APP.4036 10.1111/j.1365-2621.1974.tb02882.x 10.1016/j.jfoodeng.2013.06.003 10.1016/j.jfoodeng.2007.11.034 10.1021/bk-1996-0631.ch006 10.1111/j.1750-3841.2008.00984.x 10.2495/978-1-85312-932-2/04 10.1016/j.jfoodeng.2007.04.002 10.1016/j.jfoodeng.2011.02.040 10.1016/j.jfoodeng.2014.09.041 10.1111/j.1365-2621.1980.tb07553.x 10.1016/j.jfoodeng.2014.10.014 10.1016/j.jfoodeng.2005.05.032 10.1016/j.jfoodeng.2013.04.021 10.1111/j.1365-2621.2003.tb07004.x 10.1016/S0260-8774(03)00063-3 10.4315/0362-028X.JFP-13-289 10.1111/j.1365-2621.2004.tb13621.x 10.1111/j.1745-4549.1996.tb00745.x 10.1111/j.1365-2621.1975.tb00522.x 10.1128/AEM.00428-14 10.1016/j.jfoodeng.2008.02.020 10.1080/08327823.1997.11688323 10.1016/j.jfoodeng.2005.10.039 10.1016/0260-8774(94)00063-F 10.1016/j.ijfoodmicro.2008.10.002 10.1201/b17118 10.1016/j.fm.2014.04.002 10.1111/j.1750-3841.2007.00301.x 10.1016/S0260-8774(01)00069-3 10.1533/9781845690212.1.22 10.1111/j.1745-4549.2002.tb00487.x 10.1111/j.1365-2621.1977.tb12653.x 10.1007/978-94-009-2370-6_3 10.1016/j.patcog.2007.03.021 10.1016/j.lwt.2009.08.018 10.1080/10408398.2010.504903 10.1021/ar020230d 10.1111/j.1365-2621.2003.tb09661.x |
ContentType | Journal Article |
Copyright | 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists 2015 Institute of Food Technologists 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists 2015 |
Copyright_xml | – notice: 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists – notice: 2015 Institute of Food Technologists – notice: 2015 The Authors. published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists 2015 |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QR 7ST 7T7 7U7 8FD C1K F28 FR3 K9. NAPCQ P64 RC3 SOI 7X8 7S9 L.6 5PM |
DOI | 10.1111/1750-3841.12959 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Chemoreception Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database Environment Abstracts AGRICOLA MEDLINE - Academic Technology Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1750-3841 |
EndPage | E1793 |
ExternalDocumentID | PMC4657497 3774184891 26242920 10_1111_1750_3841_12959 JFDS12959 ark_67375_WNG_NR4VRFFN_8 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GroupedDBID | --- -~X .3N .DC .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29K 3-9 31~ 33P 3EH 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABJNI ABPVW ACAHQ ACBNA ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFDN AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F D-I DC6 DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG P-O P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR RNS ROL RX1 RXW SAMSI SJN SUPJJ TAE TN5 UB1 UBH UHB UKR V8K VH1 W8V W99 WBFHL WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XOL Y6R YQJ ZCA ZCG ZGI ZT4 ZXP ZZTAW ~IA ~KM ~WT 24P AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QR 7ST 7T7 7U7 8FD C1K F28 FR3 K9. NAPCQ P64 RC3 SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6759-c29f8c7894b43a852846dabbddf48b731e28518af6690f714c530eda71ec00fb3 |
IEDL.DBID | DR2 |
ISSN | 0022-1147 1750-3841 |
IngestDate | Thu Aug 21 14:03:52 EDT 2025 Fri Jul 11 18:27:52 EDT 2025 Fri Jul 11 13:18:52 EDT 2025 Fri Jul 11 07:15:57 EDT 2025 Fri Jul 11 13:06:40 EDT 2025 Fri Jul 25 09:58:22 EDT 2025 Mon Jul 21 05:38:42 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Tue Jul 01 02:39:24 EDT 2025 Wed Aug 20 07:26:16 EDT 2025 Wed Oct 30 09:57:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | food safety pasteurization food quality microwave sterilization |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 2015 Institute of Food Technologists This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6759-c29f8c7894b43a852846dabbddf48b731e28518af6690f714c530eda71ec00fb3 |
Notes | ArticleID:JFDS12959 ark:/67375/WNG-NR4VRFFN-8 istex:D74365E5BFBB79F46B352130BDCC86B2DF20FDD4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1750-3841.12959 |
PMID | 26242920 |
PQID | 1702958064 |
PQPubID | 40513 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4657497 proquest_miscellaneous_2000047873 proquest_miscellaneous_1808067805 proquest_miscellaneous_1787961649 proquest_miscellaneous_1703718158 proquest_journals_1702958064 pubmed_primary_26242920 crossref_citationtrail_10_1111_1750_3841_12959 crossref_primary_10_1111_1750_3841_12959 wiley_primary_10_1111_1750_3841_12959_JFDS12959 istex_primary_ark_67375_WNG_NR4VRFFN_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chicago – name: Chichester, UK |
PublicationTitle | Journal of food science |
PublicationTitleAlternate | Journal of Food Science |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc John Wiley & Sons, Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: John Wiley & Sons, Ltd |
References | FDA. 1977. Code of Federal Regulations. Title 21. Washington, D.C.: Food and Drug. Food and Drug Administration, Government Services Administration. Bornhorst E. 2013. Sodium chloride diffusion in selected low-acid foods during thermal processing. MS Thesis. Pullman, WA: Washington State University. Luan D, Tang J, Pedrow, PD, Liu F, Tang Z. 2015. Performance of mobile metallic temperature sensors in high power microwave heating systems. J Food Eng 149:114-22. Mah JH, Kang DH, Tang J. 2009. Comparison of viability and heat resistance of Clostridium sporogenes stored at different temperatures. J Food Sci 74(1):M23-M27. Wang Y, Lau MH, Tang J, Mao R. 2004. Kinetics of chemical marker M-1 formation in whey protein gels for developing sterilization processes based on dielectric heating. J Food Eng 64(1):111-18. Steed LE, Truong VD, Simunovic J, Sandeed KP, Kumar P, Cartwright GD, Swartzel KR. 2008. Continuous flow of microwave-assisted processing and aseptic packaging of purple-fleshed sweet potato purees. J Food Sci 73(9):E455-E62. Teixeira AA, Zinsmeister GE, JR, Zahradnik JW. 1975. Computer simulation of variable control and container geometry as possible means of improving retention of thiamine retentions in thermally processed foods. J Food Sci 40 (4):656-9. Peng J, Tang JM, Barrett DM, Sablani SS, Powers JR. 2014. Kinetics of carrot texture degradation under pasteurization conditions. J Food Eng 125:69-76. Guan D, Gray P, Kang DH, Tang J, Shafer B, Ito K, Younce F, Yang TCS. 2003. Microbiological validation of microwave-circulated water combination heating technology by inoculated pack studies. J Food Sci 68(4):1428-32. Ayoub JA, Berkowitz D, Kenyon EM, Wadsworth CK. 1974. Continuous microwave sterilization of meat in flexible pouches. J Food Sci 39(2):309-13. Teixeira AA, Dixon JR, Zahradnik JW, Zinsmeister GE. 1969. INST Computer optimization of nutrient retention in the thermal processing of conduction heated foods. Food Technol 23(6):137-42. Kim HJ, Choi YM, Yang TCS, Taub IA, Tempest P, Skudder P, Tucker G, Parrott DL. 1996b. Validation of ohmic heating for quality enhancement of food products. Food Technol:253-61. Komarov V, Tang J 2004. Dielectric permittivity and loss factor of tap water at 915 MHz. Microw Optic Technol Lett 42(5):419-20. Goedeken DL, Tong CH, Virtanen AJ. 1997. Dielectric properties of a pregelatinized bread system at 2450 MHz as a function of temperature, moisture, salt and specific volume. J Food Sci 62(1):145-49. Lenz MK, Lund DB. 1977. The lethal-Fourier number methods: Experimental verification of a model for calculating average quality factor retention in conductive heating canned foods. J Food Sci 42(4):997-1001. Ramaswamy HS, Awuah GB, Kim HJ, Choi Y M. 1996. Evaluation of a chemical marker for process lethality measurement at 110C in a continuous flow holding tube. J Food Process Preserv 20:235-49. Stumbo CR. 1973. Thermobacteriology in food processing. 2nd Ed. New York: Academic Press. Bozkurt H, D'Souza DH, Davidson PM. 2014a. A comparison of the thermal inactivation kinetics of human norovirus surrogates and hepatitis A virus in buffered cell culture medium. Food Microbiol 42:212-7. doi:10.1016/j.fm.2014.04.002. Morris CE. 1996. Manufacturing forecast accelerating changes. Food Eng March Issue:73-7. Chan TVCT, Reader HC. 2000. Understanding microwave heating cavities. Norword, MA: Artech House. Ohlsson T. 1980a. Optimal sterilization temperatures for flat containers. J Food Sci 45:848-52. Rattan NS, Ramaswamy HS. 2014. Comparison of free/bi-axial, fix axial, end-over-end and static thermal processing effects on processing lethality and quality changes in canned potatoes. LWT-Food Sci Technol 58(1):150-7. Luechapattanaporn K, Wang Y, Wang J, Al-Holy M, Kang DH, Tang J, Hallberg LM. 2004. Microbial safety in radio frequency processing of packaged foods. J Food Sci 67(7):M201-M206. Kenyon EM, Westcott DE, LA Casse P, Gould JW. 1971. A system for continuous thermal processing of pouches using microwave energy. J Food Sci 36 (2):289-93. Dhawan S, Varney C, Barbosa-Canovas GV, Tang JM, Selim F, Sablani SS. 2014b. The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films. J Appl Polym Sci 131 (12), Article 40376 (1-8), DOI:10.1002/APP.4036. Schiffmann RF. 1992. Microwave processing in the U.S. food industry. Food Technol 46(12):50-6. Ohlsson T. 1980b. Optimal sterilization temperatures for sensory quality in cylindrical containers. J Food Sci 45:1517-21. Dwivedi M, Ramaswamy HS. 2010. Comparison of heat transfer rates during thermal processing under end-over-end and axial modes of rotation. LWT-Food Sci Technol 43(2):350-60. Kong F, Tang J, Lin M, Rasco B. 2008. Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT-Food Sci Technol 41:1210-22. Decareau RV. 1996. Microwaves and foods newsletter, 6(1):5; Trumbull, CT: Food and Nutrition Press Inc. Prakash A, Kim HJ, Taub IA. 1997. Assessment of microwave sterilization of foods using intrinsic chemical markers. J Microwave Power Electromagnetic Energy 32(1):50-57. Catauro PM, Perchonok MH. Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. J Food Sci 71(1):S29-S39. Tang Z, Mikhaylenko G, Liu F, Mah JH, Tang J, Pandit R, Younce F. 2008. Microwave sterilization of sliced beef in gravy in 7 oz trays. J Food Eng 89(4):375-83. Giese J. 1992. Advances in microwave food processing. Food Technol 46(9):118-23. Schlegel W. 1992. Commercial pasteurization and sterilization of food products using microwave technology. Food Technol 46(12):62-3. Sloan E. 2013. Demographic redirection. Food Technol July:38-50. Bozkurt H, D'Souza DH, Davidson PM. 2014c. Thermal inactivation of human norovirus surrogates in spinach and measurement of its uncertainty. J Food Protect 77(2):276-83. doi:10.4315/0362-028X.JFP-13-289. Pandit RB, Tang J, Liu F, Pitts M. 2007a. Development of a novel approach to determine heating pattern using computer vision and chemical marker (M-2) yield. J Food Eng 78(2): 522-28. Coronel P, Simunovic J, Sandeep KP. 2003. Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. J Food Sci 68(6):1976-81. Pandit RB, Tang J, Liu F, Mikhaylenko G. 2007b. A computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognition 40 (12):3667-76. Nachay K. 2013. Moving forward on sodium reduction. Food Technol May Issue:35-44. Downing DLD. 1996. A complete course in canning. 13th ED. Baltimore, MA: CTI Publications. Guan DS, Plotka VCF, Clark S, Tang JM. 2002. Sensory evaluation of microwave treated macaroni and cheese. J Food Process Preserv 26(5):307-22. Luan D, Tang J, Pedrow PD, Liu F, Tang Z. 2013. Using mobile metallic temperature sensors in continuous microwave assisted sterilization (MATS) systems. J Food Eng 119:552-60. Goldblith SA. 1971. A condensed history of the science and technology of thermal processing. Food Technol 25(12)1-11. Zhang W, Tang J, Liu F, Bohnet S, Tang Z. 2014. Chemical marker M2 (4-hydroxy-5-methyl-3(2H)-furanone) formation in egg white gel model for heating pattern determination of microwave-assisted pasteurization processing. J Food Eng 125:69-76. Haynes WM. 2014. Handbook of chemistry and physics. 95th Edition. Boca Raton, FL: CRC Press. Mokwena KK, Tang J, Laborie MP. 2011. Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films. J Food Eng 105:436-43. Buffler CR. 1993. Microwave cooking and processing. New York: Van Nostrand Reinhold. Decareau RV. 1985. Microwaves in the food processing industry. New York: Academic Press Inc. Blansky SJ, Ellison GB. 2003. Bond dissociation energies of organic molecules. Acc Chemic Res 36(4):255-63. Bozkurt H, D'Souza DH, Davidson PM. 2014b. Determination of thermal inactivation kinetics of hepatitis A virus in blue mussel (Mytilus edulis) homogenate. Appl Environ Microbiol 80(10):3191-7. doi:10.1128/AEM.00428-14. Harlfinger L. 1992. Microwave sterilization. Food Technol 46(12):57-61. Resurreccion FP, Luan D, Tang J, Liu F, Tang Z, Pedrow PD, Cavalieri R. 2015. Effect of changes in microwave frequency on heating patterns of foods in a microwave assisted thermal sterilization system. J Food Eng 150:99-105. Decareau RV. 1994. The microwave sterilization process. Microwave World 15(2):12-15. Lau MH, Tang J. 2002. Pasteurization of pickled asparagus using 915 MHz microwaves. J Food Eng 51(4):283-90. Marsh K, Bugusu B. 2007. Food packaging-roles, materials and environmental issues. J Food Sci 72(3):R39-55. Buffer C, Stanford M. 1991. The effect of dielectric and thermal properties on the microwave heating of foods. Microwave World 9(4):15-24. Bozkurt H, D'Souza DH, Davidson PM. 2013. Determination of the thermal inactivation kinetics of the human norovirus surrogates, murine norovirus and feline calicivirus. J Food Protect 76:79-84. doi:10.4315/0362-028X.JFP-12-327. Lau MH, Tang J, Taub IA, Yang TCS, Edwards CG, Mao R. 2003. Kinetics of chemical marker formation in whey protein gels for studying high temperature short time microwave sterilization. J Food Eng 60(4):397-05. O'Meara JP, Tinga WR, Wadsworth CK, Farkas DF. 1976. Food sterilization in a microwave pressure retort. J Microwave Power 11:213. Pozar DM. 1998. Microwave engineering, 2nd Ed. Hoboken, NJ: John Wiley & Sons, Inc. Sadiku MNO. 1995. Elements of electromagnetics 2nd edition. New York: Oxford University Press, Inc. Wang Y, Tang J, Rasco B, Kong F, and Wang S. 2008. Dielectric properties of salmon fillets as a function of temperature and composition. J Food Eng 87(2):236-46. Metaxas AC, Meredith RJ. 1983. Industrial microwave heating. London, UK: Peter Peregrinus, Ltd. Zhang W, Luan D, Tang J, Sablani S, Rasco B, Lin H, Liu F. 2015. Dielectric properties and other physical properties of low-acyl gellan gel as relevant to microwave assisted pasteu 2004; 64 2015; 149 2006; 76 2002; 51 2004; 69 2004; 67 1974 1973 1972 2007; 72 2008; 73 1979 2012; 52 1977 2007b; 40 2009; 92 2000 2013; 119 2013; 118 2007a; 78 1987 1986 1985 2014; 58 1997; 16 1980a; 45 1992; 46 1983 1995; 29 1975; 40 2014; 125 1996; 20 1996; 6 1989 2014a; 27 1993; 47 2004; 42 1997; 62 2010 1980b; 45 1971; 25 2009 1998 1954 2003; 36 2008 1997 1996 1977; 42 2007 2008; 128 2003; 38 1995 2006 1950 2005 1993 1992 1991 71 1991; 9 1974; 39 2011; 105 1998; 37 2010; 43 2002; 26 2015; 150 2009; 74 1976; 11 2013; 76 1997; 32 1971; 36 2003; 68 1996b 1969; 23 1996a 2005; 53 2008; 89 2008; 87 2008; 88 1994; 15 2007; 83 2015 2014a; 42 2014c; 77 2014 2008; 41 2013 2007; 41 2003; 60 2014b; 80 2014b; 131 Tipler PA (e_1_2_8_104_1) 1991 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Stenstrom LA (e_1_2_8_92_1) 1972 Pathak S (e_1_2_8_77_1) 2003; 38 Hippel AR (e_1_2_8_107_1) 1954 Mudgett RE (e_1_2_8_64_1) 1985 e_1_2_8_9_1 e_1_2_8_45_1 Lund DB (e_1_2_8_54_1) 1986 Pozar DM (e_1_2_8_79_1) 1998 Sadiku MNO (e_1_2_8_86_1) 1995 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 Peng J (e_1_2_8_78_1) 2014; 125 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 Schiffmann RF (e_1_2_8_87_1) 1992; 46 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_76_1 e_1_2_8_101_1 Decareau RV (e_1_2_8_19_1) 1996 e_1_2_8_29_1 Lu L (e_1_2_8_52_1) 1997; 16 e_1_2_8_25_1 Catauro PM (e_1_2_8_12_1); 71 e_1_2_8_48_1 e_1_2_8_2_1 Luechapattanaporn K (e_1_2_8_51_1) 2004; 67 Buffer C (e_1_2_8_10_1) 1991; 9 e_1_2_8_110_1 Mudgett RE (e_1_2_8_65_1) 1986 e_1_2_8_6_1 Giese J (e_1_2_8_28_1) 1992; 46 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 Guan D (e_1_2_8_33_1) 2004; 69 e_1_2_8_40_1 e_1_2_8_82_1 Holdsworth SD (e_1_2_8_37_1) 1997 Sloan E (e_1_2_8_89_1) 2013 e_1_2_8_14_1 Decareau RV (e_1_2_8_17_1) 1985 e_1_2_8_90_1 Lund DB (e_1_2_8_53_1) 1977 e_1_2_8_98_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_75_1 e_1_2_8_71_1 Bornhorst E (e_1_2_8_5_1) 2013 e_1_2_8_47_1 Downing DLD (e_1_2_8_22_1) 1996 FDA (e_1_2_8_24_1) 1977 Baron D (e_1_2_8_3_1) 2009 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 Metaxas AC (e_1_2_8_58_1) 1983 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_62_1 e_1_2_8_85_1 Harlfinger L (e_1_2_8_34_1) 1992; 46 Stumbo CR (e_1_2_8_94_1) 1973 Chan TVCT (e_1_2_8_13_1) 2000 e_1_2_8_36_1 e_1_2_8_59_1 Tang J (e_1_2_8_100_1) 2009 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 Kim HJ (e_1_2_8_42_1) 1996 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 O'Meara JP (e_1_2_8_72_1) 1976; 11 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Schlegel W (e_1_2_8_88_1) 1992; 46 e_1_2_8_80_1 e_1_2_8_4_1 Teixeira AA (e_1_2_8_102_1) 1969; 23 Goldblith SA (e_1_2_8_30_1) 1971; 25 e_1_2_8_8_1 e_1_2_8_23_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 Morris CE (e_1_2_8_63_1) 1996 e_1_2_8_16_1 e_1_2_8_96_1 e_1_2_8_31_1 e_1_2_8_108_1 Decareau RV (e_1_2_8_18_1) 1994; 15 e_1_2_8_73_1 Nachay K (e_1_2_8_66_1) 2013 e_1_2_8_50_1 1047697 - J Microw Power. 1976 Jun;11(2):213-4 22530715 - Crit Rev Food Sci Nutr. 2012;52(7):640-50 19021801 - J Food Sci. 2008 Nov;73(9):E455-62 24929739 - Food Microbiol. 2014 Sep;42:212-7 15631507 - J Agric Food Chem. 2005 Jan 12;53(1):42-8 17995809 - J Food Sci. 2007 Apr;72(3):R39-55 24490922 - J Food Prot. 2014 Feb;77(2):276-83 24632250 - Appl Environ Microbiol. 2014 May;80(10):3191-7 22260129 - J Food Sci. 2012 Jan;77(1):S29-39 9177017 - J Microw Power Electromagn Energy. 1997;32(1):50-7 19200102 - J Food Sci. 2009 Jan-Feb;74(1):M23-7 23317860 - J Food Prot. 2013 Jan;76(1):79-84 18986726 - Int J Food Microbiol. 2008 Dec 10;128(2):385-9 18351003 - J Microw Power Electromagn Energy. 2007;41(3):50-68 12693923 - Acc Chem Res. 2003 Apr;36(4):255-63 |
References_xml | – reference: Guan D, Cheng M, Wang Y, Tang J. 2004. Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. J Food Sci 69(1):30-37. – reference: Lenz MK, Lund DB. 1977. The lethal-Fourier number methods: Experimental verification of a model for calculating average quality factor retention in conductive heating canned foods. J Food Sci 42(4):997-1001. – reference: Prakash A, Kim HJ, Taub IA. 1997. Assessment of microwave sterilization of foods using intrinsic chemical markers. J Microwave Power Electromagnetic Energy 32(1):50-57. – reference: Rattan NS, Ramaswamy HS. 2014. Comparison of free/bi-axial, fix axial, end-over-end and static thermal processing effects on processing lethality and quality changes in canned potatoes. LWT-Food Sci Technol 58(1):150-7. – reference: Goldblith SA. 1971. A condensed history of the science and technology of thermal processing. Food Technol 25(12)1-11. – reference: Sloan E. 2013. Demographic redirection. Food Technol July:38-50. – reference: Lau MH, Tang J, Taub IA, Yang TCS, Edwards CG, Mao R. 2003. Kinetics of chemical marker formation in whey protein gels for studying high temperature short time microwave sterilization. J Food Eng 60(4):397-05. – reference: Kim HJ, Choi YM, Yang TCS, Taub IA, Tempest P, Skudder P, Tucker G, Parrott DL. 1996b. Validation of ohmic heating for quality enhancement of food products. Food Technol:253-61. – reference: Chen H, Tang J, Liu F. 2008. Simulation model for moving food packages in microwave heating processes using conformal FDTD method. J Food Eng 88:294-305. – reference: Steed LE, Truong VD, Simunovic J, Sandeed KP, Kumar P, Cartwright GD, Swartzel KR. 2008. Continuous flow of microwave-assisted processing and aseptic packaging of purple-fleshed sweet potato purees. J Food Sci 73(9):E455-E62. – reference: Wang Y, Tang J, Rasco B, Kong F, and Wang S. 2008. Dielectric properties of salmon fillets as a function of temperature and composition. J Food Eng 87(2):236-46. – reference: Bornhorst E. 2013. Sodium chloride diffusion in selected low-acid foods during thermal processing. MS Thesis. Pullman, WA: Washington State University. – reference: Nachay K. 2013. Moving forward on sodium reduction. Food Technol May Issue:35-44. – reference: Mah JH, Kang DH, Tang J. 2008. Effects of minerals on sporulation and heat resistance of Clostridium sporogenes. Int J Food Microbiol 128:385-89. – reference: Pandit RB, Tang J, Liu F, Mikhaylenko G. 2007b. A computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognition 40 (12):3667-76. – reference: Ohlsson T. 1980b. Optimal sterilization temperatures for sensory quality in cylindrical containers. J Food Sci 45:1517-21. – reference: Lau MH, Tang J. 2002. Pasteurization of pickled asparagus using 915 MHz microwaves. J Food Eng 51(4):283-90. – reference: Herve AG, Tang J, Luedecke L, Feng H. 1998. Dielectric properties of cottage cheese and surface treatment using microwaves. J Food Eng 37(4):389-10. – reference: Kong FB, Tang JM, Rasco B, Crapo C. 2007. Kinetics of salmon quality changes during thermal processing. J Food Eng 83(4):510-20. – reference: Pathak S, Liu F, and Tang J. 2003. Finite difference time domain (FDTD) characterization of a single mode applicator. J Microwave Powers Electromagnetic Energy 38(1):37-48. – reference: Teixeira AA, Zinsmeister GE, JR, Zahradnik JW. 1975. Computer simulation of variable control and container geometry as possible means of improving retention of thiamine retentions in thermally processed foods. J Food Sci 40 (4):656-9. – reference: Decareau RV. 1985. Microwaves in the food processing industry. New York: Academic Press Inc. – reference: Haynes WM. 2014. Handbook of chemistry and physics. 95th Edition. Boca Raton, FL: CRC Press. – reference: Lund DB. 1977. Design of thermal processes for maximum nutrient retention. Food Technol February Issue:71-78. – reference: FDA. 1977. Code of Federal Regulations. Title 21. Washington, D.C.: Food and Drug. Food and Drug Administration, Government Services Administration. – reference: Bozkurt H, D'Souza DH, Davidson PM. 2014a. A comparison of the thermal inactivation kinetics of human norovirus surrogates and hepatitis A virus in buffered cell culture medium. Food Microbiol 42:212-7. doi:10.1016/j.fm.2014.04.002. – reference: Mokwena KK, Tang JM. 2012. Ethylene vinyl alcohol: A review of barrier properties for packaging shelf stable foods. Crit Rev Food Sci Nutr 52(7):640-50. – reference: Buffer C, Stanford M. 1991. The effect of dielectric and thermal properties on the microwave heating of foods. Microwave World 9(4):15-24. – reference: Goedeken DL, Tong CH, Virtanen AJ. 1997. Dielectric properties of a pregelatinized bread system at 2450 MHz as a function of temperature, moisture, salt and specific volume. J Food Sci 62(1):145-49. – reference: Ramaswamy HS, Awuah GB, Kim HJ, Choi Y M. 1996. Evaluation of a chemical marker for process lethality measurement at 110C in a continuous flow holding tube. J Food Process Preserv 20:235-49. – reference: Schiffmann RF. 1992. Microwave processing in the U.S. food industry. Food Technol 46(12):50-6. – reference: Lu L, Tang J, Liang L. 1997. Moisture distribution in spherical foods in microwave drying. Drying Technol 16(3-5):503-24. – reference: Bozkurt H, D'Souza DH, Davidson PM. 2014b. Determination of thermal inactivation kinetics of hepatitis A virus in blue mussel (Mytilus edulis) homogenate. Appl Environ Microbiol 80(10):3191-7. doi:10.1128/AEM.00428-14. – reference: Bozkurt H, D'Souza DH, Davidson PM. 2013. Determination of the thermal inactivation kinetics of the human norovirus surrogates, murine norovirus and feline calicivirus. J Food Protect 76:79-84. doi:10.4315/0362-028X.JFP-12-327. – reference: Luan D, Tang J, Pedrow PD, Liu F, Tang Z. 2013. Using mobile metallic temperature sensors in continuous microwave assisted sterilization (MATS) systems. J Food Eng 119:552-60. – reference: Pandit RB, Tang J, Liu F, Pitts M. 2007a. Development of a novel approach to determine heating pattern using computer vision and chemical marker (M-2) yield. J Food Eng 78(2): 522-28. – reference: Zhang W, Luan D, Tang J, Sablani S, Rasco B, Lin H, Liu F. 2015. Dielectric properties and other physical properties of low-acyl gellan gel as relevant to microwave assisted pasteurization process. J Food Eng 149:195-203. – reference: Dhawan S, Sablani SS, Tang JM, Barbosa-Canovas GV, Ullman JL, Bhunia K. 2014a. Silicon migration from high-barrier coated multilayer polymeric films to selected food simulants after microwave processing treatments. Packaging Technol Sci 27(8):625-38. – reference: Sadiku MNO. 1995. Elements of electromagnetics 2nd edition. New York: Oxford University Press, Inc. – reference: Marsh K, Bugusu B. 2007. Food packaging-roles, materials and environmental issues. J Food Sci 72(3):R39-55. – reference: Tang Z, Mikhaylenko G, Liu F, Mah JH, Tang J, Pandit R, Younce F. 2008. Microwave sterilization of sliced beef in gravy in 7 oz trays. J Food Eng 89(4):375-83. – reference: Resurreccion FP, Tang J, Pedrow P, Cavalieri R, Liu F, Tang Z. 2013. Development of a computer simulation model for processing food in a microwave assisted thermal sterilization (MATS) system. J Food Eng 118:406-16. – reference: Ryynänen S. 1995. The electromagnetic properties of food materials: a review of the basic principles. J Food Eng 29:409-29. – reference: Tipler PA. 1991. Physics for scientists and engineers, 3rd Ed. New York: Worth Publishers. – reference: Resurreccion FP, Luan D, Tang J, Liu F, Tang Z, Pedrow PD, Cavalieri R. 2015. Effect of changes in microwave frequency on heating patterns of foods in a microwave assisted thermal sterilization system. J Food Eng 150:99-105. – reference: Luechapattanaporn K, Wang Y, Wang J, Al-Holy M, Kang DH, Tang J, Hallberg LM. 2004. Microbial safety in radio frequency processing of packaged foods. J Food Sci 67(7):M201-M206. – reference: Schlegel W. 1992. Commercial pasteurization and sterilization of food products using microwave technology. Food Technol 46(12):62-3. – reference: Zhang W, Tang J, Liu F, Bohnet S, Tang Z. 2014. Chemical marker M2 (4-hydroxy-5-methyl-3(2H)-furanone) formation in egg white gel model for heating pattern determination of microwave-assisted pasteurization processing. J Food Eng 125:69-76. – reference: Morris CE. 1996. Manufacturing forecast accelerating changes. Food Eng March Issue:73-7. – reference: Decareau RV. 1994. The microwave sterilization process. Microwave World 15(2):12-15. – reference: Catauro PM, Perchonok MH. Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. J Food Sci 71(1):S29-S39. – reference: Giese J. 1992. Advances in microwave food processing. Food Technol 46(9):118-23. – reference: Kim HJ, Taub IA. 1993. Intrinsic chemical markers for Aseptic processing of particulate foods. Food Technol 47(1):91-97, 99. – reference: Metaxas AC, Meredith RJ. 1983. Industrial microwave heating. London, UK: Peter Peregrinus, Ltd. – reference: Bozkurt H, D'Souza DH, Davidson PM. 2014c. Thermal inactivation of human norovirus surrogates in spinach and measurement of its uncertainty. J Food Protect 77(2):276-83. doi:10.4315/0362-028X.JFP-13-289. – reference: Ayoub JA, Berkowitz D, Kenyon EM, Wadsworth CK. 1974. Continuous microwave sterilization of meat in flexible pouches. J Food Sci 39(2):309-13. – reference: Chen H, Tang J, Liu L. 2007. Coupled simulation of an electromagnetic heating process using the finite difference time domain method. J Microwave Powers Electromagnetic Energy 41(3): 50-56. – reference: Pozar DM. 1998. Microwave engineering, 2nd Ed. Hoboken, NJ: John Wiley & Sons, Inc. – reference: Mokwena KK, Tang J, Laborie MP. 2011. Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films. J Food Eng 105:436-43. – reference: Kong F, Tang J, Lin M, Rasco B. 2008. Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT-Food Sci Technol 41:1210-22. – reference: Pandit RB, Tang J, Mikhaylenko G, Liu F. 2006. Kinetics of chemical marker M-2 formation in mashed potato - A tool to locate cold spots under microwave sterilization. J Food Eng 76(3): 353-61. – reference: Downing DLD. 1996. A complete course in canning. 13th ED. Baltimore, MA: CTI Publications. – reference: Stenstrom LA. 1972. Taming microwave for solid food sterilization. Paper 7.4 presented at the IMPI symposium, Ottawa, Canada, May 24-26. – reference: O'Meara JP, Tinga WR, Wadsworth CK, Farkas DF. 1976. Food sterilization in a microwave pressure retort. J Microwave Power 11:213. – reference: Peng J, Tang JM, Barrett DM, Sablani SS, Powers JR. 2014. Kinetics of carrot texture degradation under pasteurization conditions. J Food Eng 125:69-76. – reference: Blansky SJ, Ellison GB. 2003. Bond dissociation energies of organic molecules. Acc Chemic Res 36(4):255-63. – reference: Luan D, Tang J, Pedrow, PD, Liu F, Tang Z. 2015. Performance of mobile metallic temperature sensors in high power microwave heating systems. J Food Eng 149:114-22. – reference: Sun T, Tang JM, Powers JR. 2005. Effect of commercial pectolytic enzyme preparations on the phenolic composition and antioxidant activity of asparagus juice. J Agric Food Chem 53(1):42-48. – reference: VonHippel AR. 1954. Dielectrics and waves. New York: Wiley. – reference: Dhawan S, Varney C, Barbosa-Canovas GV, Tang JM, Selim F, Sablani SS. 2014b. The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films. J Appl Polym Sci 131 (12), Article 40376 (1-8), DOI:10.1002/APP.4036. – reference: Chan TVCT, Reader HC. 2000. Understanding microwave heating cavities. Norword, MA: Artech House. – reference: Guan DS, Plotka VCF, Clark S, Tang JM. 2002. Sensory evaluation of microwave treated macaroni and cheese. J Food Process Preserv 26(5):307-22. – reference: Decareau RV. 1996. Microwaves and foods newsletter, 6(1):5; Trumbull, CT: Food and Nutrition Press Inc. – reference: Teixeira AA, Dixon JR, Zahradnik JW, Zinsmeister GE. 1969. INST Computer optimization of nutrient retention in the thermal processing of conduction heated foods. Food Technol 23(6):137-42. – reference: Ohlsson T. 1980a. Optimal sterilization temperatures for flat containers. J Food Sci 45:848-52. – reference: Guan D, Gray P, Kang DH, Tang J, Shafer B, Ito K, Younce F, Yang TCS. 2003. Microbiological validation of microwave-circulated water combination heating technology by inoculated pack studies. J Food Sci 68(4):1428-32. – reference: Harlfinger L. 1992. Microwave sterilization. Food Technol 46(12):57-61. – reference: Mah JH, Kang DH, Tang J. 2009. Comparison of viability and heat resistance of Clostridium sporogenes stored at different temperatures. J Food Sci 74(1):M23-M27. – reference: Buffler CR. 1993. Microwave cooking and processing. New York: Van Nostrand Reinhold. – reference: Komarov V, Tang J 2004. Dielectric permittivity and loss factor of tap water at 915 MHz. Microw Optic Technol Lett 42(5):419-20. – reference: Dwivedi M, Ramaswamy HS. 2010. Comparison of heat transfer rates during thermal processing under end-over-end and axial modes of rotation. LWT-Food Sci Technol 43(2):350-60. – reference: Stumbo CR. 1973. Thermobacteriology in food processing. 2nd Ed. New York: Academic Press. – reference: Holdsworth SD. 1997. Thermal processing of packaged foods. London: Chapman & Hall. – reference: Kenyon EM, Westcott DE, LA Casse P, Gould JW. 1971. A system for continuous thermal processing of pouches using microwave energy. J Food Sci 36 (2):289-93. – reference: Mokwena KK, Tang J, Dunne CP, Yang TCS, Chow E. 2009. Oxygen transmission of multilayer EVOH films after microwave sterilization. J Food Eng 92(3):291-96. – reference: Coronel P, Simunovic J, Sandeep KP. 2003. Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. J Food Sci 68(6):1976-81. – reference: Wang Y, Lau MH, Tang J, Mao R. 2004. Kinetics of chemical marker M-1 formation in whey protein gels for developing sterilization processes based on dielectric heating. J Food Eng 64(1):111-18. – volume: 47 start-page: 91 issue: 1 year: 1993 end-page: 97, 99 article-title: Intrinsic chemical markers for Aseptic processing of particulate foods publication-title: Food Technol – volume: 68 start-page: 1428 issue: 4 year: 2003 end-page: 32 article-title: Microbiological validation of microwave‐circulated water combination heating technology by inoculated pack studies publication-title: J Food Sci – start-page: 22 year: 2005 end-page: 40 – year: 1989 – volume: 36 start-page: 289 issue: 2 year: 1971 end-page: 93 article-title: A system for continuous thermal processing of pouches using microwave energy publication-title: J Food Sci – volume: 105 start-page: 436 year: 2011 end-page: 43 article-title: Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films publication-title: J Food Eng – volume: 128 start-page: 385 year: 2008 end-page: 89 article-title: Effects of minerals on sporulation and heat resistance of Clostridium sporogenes publication-title: Int J Food Microbiol – volume: 42 start-page: 997 issue: 4 year: 1977 end-page: 1001 article-title: The lethal‐Fourier number methods: Experimental verification of a model for calculating average quality factor retention in conductive heating canned foods publication-title: J Food Sci – volume: 40 start-page: 656 issue: 4 year: 1975 end-page: 9 article-title: Computer simulation of variable control and container geometry as possible means of improving retention of thiamine retentions in thermally processed foods publication-title: J Food Sci – year: 2014 – volume: 119 start-page: 552 year: 2013 end-page: 60 article-title: Using mobile metallic temperature sensors in continuous microwave assisted sterilization (MATS) systems publication-title: J Food Eng – volume: 87 start-page: 236 issue: 2 year: 2008 end-page: 46 article-title: Dielectric properties of salmon fillets as a function of temperature and composition publication-title: J Food Eng – year: 1998 – year: 1986 – volume: 77 start-page: 276 issue: 2 year: 2014c end-page: 83 article-title: Thermal inactivation of human norovirus surrogates in spinach and measurement of its uncertainty publication-title: J Food Protect – volume: 51 start-page: 283 issue: 4 year: 2002 end-page: 90 article-title: Pasteurization of pickled asparagus using 915 MHz microwaves publication-title: J Food Eng – volume: 41 start-page: 50 issue: 3 year: 2007 end-page: 56 article-title: Coupled simulation of an electromagnetic heating process using the finite difference time domain method publication-title: J Microwave Powers Electromagnetic Energy – volume: 60 start-page: 397 issue: 4 year: 2003 end-page: 05 article-title: Kinetics of chemical marker formation in whey protein gels for studying high temperature short time microwave sterilization publication-title: J Food Eng – volume: 76 start-page: 353 issue: 3 year: 2006 end-page: 61 article-title: Kinetics of chemical marker M‐2 formation in mashed potato ‐ A tool to locate cold spots under microwave sterilization publication-title: J Food Eng – year: 2008 – volume: 125 start-page: 69 year: 2014 end-page: 76 article-title: Chemical marker M2 (4‐hydroxy‐5‐methyl‐3(2H)‐furanone) formation in egg white gel model for heating pattern determination of microwave‐assisted pasteurization processing publication-title: J Food Eng – start-page: 38 year: 2013 end-page: 50 article-title: Demographic redirection publication-title: Food Technol – volume: 64 start-page: 111 issue: 1 year: 2004 end-page: 18 article-title: Kinetics of chemical marker M‐1 formation in whey protein gels for developing sterilization processes based on dielectric heating publication-title: J Food Eng – volume: 38 start-page: 37 issue: 1 year: 2003 end-page: 48 article-title: Finite difference time domain (FDTD) characterization of a single mode applicator publication-title: J Microwave Powers Electromagnetic Energy – start-page: 54 year: 1996a end-page: 69 – year: 1993 – volume: 62 start-page: 145 issue: 1 year: 1997 end-page: 49 article-title: Dielectric properties of a pregelatinized bread system at 2450 MHz as a function of temperature, moisture, salt and specific volume publication-title: J Food Sci – volume: 9 start-page: 15 issue: 4 year: 1991 end-page: 24 article-title: The effect of dielectric and thermal properties on the microwave heating of foods publication-title: Microwave World – start-page: 22 year: 1987 end-page: 23 – volume: 83 start-page: 510 issue: 4 year: 2007 end-page: 20 article-title: Kinetics of salmon quality changes during thermal processing publication-title: J Food Eng – volume: 46 start-page: 62 issue: 12 year: 1992 end-page: 3 article-title: Commercial pasteurization and sterilization of food products using microwave technology publication-title: Food Technol – volume: 46 start-page: 57 issue: 12 year: 1992 end-page: 61 article-title: Microwave sterilization publication-title: Food Technol – year: 1973 – year: 1950 – volume: 39 start-page: 309 issue: 2 year: 1974 end-page: 13 article-title: Continuous microwave sterilization of meat in flexible pouches publication-title: J Food Sci – volume: 32 start-page: 50 issue: 1 year: 1997 end-page: 57 article-title: Assessment of microwave sterilization of foods using intrinsic chemical markers publication-title: J Microwave Power Electromagnetic Energy – year: 1992 – volume: 71 start-page: S29 issue: 1 end-page: S39 article-title: Assessment of the long‐term stability of retort pouch foods to support extended duration spaceflight publication-title: J Food Sci – year: 2010 – volume: 45 start-page: 848 year: 1980a end-page: 52 article-title: Optimal sterilization temperatures for flat containers publication-title: J Food Sci – volume: 27 start-page: 625 issue: 8 year: 2014a end-page: 38 article-title: Silicon migration from high‐barrier coated multilayer polymeric films to selected food simulants after microwave processing treatments publication-title: Packaging Technol Sci – volume: 43 start-page: 350 issue: 2 year: 2010 end-page: 60 article-title: Comparison of heat transfer rates during thermal processing under end‐over‐end and axial modes of rotation publication-title: LWT‐Food Sci Technol – volume: 29 start-page: 409 year: 1995 end-page: 29 article-title: The electromagnetic properties of food materials: a review of the basic principles publication-title: J Food Eng – volume: 36 start-page: 255 issue: 4 year: 2003 end-page: 63 article-title: Bond dissociation energies of organic molecules publication-title: Acc Chemic Res – volume: 118 start-page: 406 year: 2013 end-page: 16 article-title: Development of a computer simulation model for processing food in a microwave assisted thermal sterilization (MATS) system publication-title: J Food Eng – year: 1995 – volume: 92 start-page: 291 issue: 3 year: 2009 end-page: 96 article-title: Oxygen transmission of multilayer EVOH films after microwave sterilization publication-title: J Food Eng – volume: 125 start-page: 69 year: 2014 end-page: 76 article-title: Kinetics of carrot texture degradation under pasteurization conditions publication-title: J Food Eng – year: 2013 – volume: 80 start-page: 3191 issue: 10 year: 2014b end-page: 7 article-title: Determination of thermal inactivation kinetics of hepatitis A virus in blue mussel ( ) homogenate publication-title: Appl Environ Microbiol – year: 1985 – volume: 16 start-page: 503 issue: 3–5 year: 1997 end-page: 24 article-title: Moisture distribution in spherical foods in microwave drying publication-title: Drying Technol – year: 2009 – volume: 149 start-page: 114 year: 2015 end-page: 22 article-title: Performance of mobile metallic temperature sensors in high power microwave heating systems publication-title: J Food Eng – volume: 67 start-page: M201 issue: 7 year: 2004 end-page: M206 article-title: Microbial safety in radio frequency processing of packaged foods publication-title: J Food Sci – year: 1979 – volume: 76 start-page: 79 year: 2013 end-page: 84 article-title: Determination of the thermal inactivation kinetics of the human norovirus surrogates, murine norovirus and feline calicivirus publication-title: J Food Protect – volume: 52 start-page: 640 issue: 7 year: 2012 end-page: 50 article-title: Ethylene vinyl alcohol: A review of barrier properties for packaging shelf stable foods publication-title: Crit Rev Food Sci Nutr – volume: 6 start-page: 5 issue: 1 year: 1996 – volume: 58 start-page: 150 issue: 1 year: 2014 end-page: 7 article-title: Comparison of free/bi‐axial, fix axial, end‐over‐end and static thermal processing effects on processing lethality and quality changes in canned potatoes publication-title: LWT‐Food Sci Technol – volume: 78 start-page: 522 issue: 2 year: 2007a end-page: 28 article-title: Development of a novel approach to determine heating pattern using computer vision and chemical marker (M‐2) yield publication-title: J Food Eng – volume: 37 start-page: 389 issue: 4 year: 1998 end-page: 10 article-title: Dielectric properties of cottage cheese and surface treatment using microwaves publication-title: J Food Eng – volume: 150 start-page: 99 year: 2015 end-page: 105 article-title: Effect of changes in microwave frequency on heating patterns of foods in a microwave assisted thermal sterilization system publication-title: J Food Eng – volume: 41 start-page: 1210 year: 2008 end-page: 22 article-title: Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure publication-title: LWT‐Food Sci Technol – year: 1997 – start-page: 35 year: 2013 end-page: 44 article-title: Moving forward on sodium reduction publication-title: Food Technol – volume: 23 start-page: 137 issue: 6 year: 1969 end-page: 42 article-title: INST Computer optimization of nutrient retention in the thermal processing of conduction heated foods publication-title: Food Technol – volume: 15 start-page: 12 issue: 2 year: 1994 end-page: 15 article-title: The microwave sterilization process publication-title: Microwave World – volume: 46 start-page: 118 issue: 9 year: 1992 end-page: 23 article-title: Advances in microwave food processing publication-title: Food Technol – volume: 26 start-page: 307 issue: 5 year: 2002 end-page: 22 article-title: Sensory evaluation of microwave treated macaroni and cheese publication-title: J Food Process Preserv – volume: 69 start-page: 30 issue: 1 year: 2004 end-page: 37 article-title: Dielectric properties of mashed potatoes relevant to microwave and radio‐frequency pasteurization and sterilization processes publication-title: J Food Sci – volume: 53 start-page: 42 issue: 1 year: 2005 end-page: 48 article-title: Effect of commercial pectolytic enzyme preparations on the phenolic composition and antioxidant activity of asparagus juice publication-title: J Agric Food Chem – start-page: 253 year: 1996b end-page: 61 article-title: Validation of ohmic heating for quality enhancement of food products publication-title: Food Technol – year: 2015 – start-page: 73 year: 1996 end-page: 7 article-title: Manufacturing forecast accelerating changes publication-title: Food Eng – year: 1983 – volume: 131 start-page: 1 issue: 12 year: 2014b end-page: 8 article-title: The impact of microwave‐assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films publication-title: J Appl Polym Sci – volume: 25 start-page: 1 issue: 12 year: 1971 end-page: 11 article-title: A condensed history of the science and technology of thermal processing publication-title: Food Technol – volume: 45 start-page: 1517 year: 1980b end-page: 21 article-title: Optimal sterilization temperatures for sensory quality in cylindrical containers publication-title: J Food Sci – volume: 68 start-page: 1976 issue: 6 year: 2003 end-page: 81 article-title: Temperature profiles within milk after heating in a continuous‐flow tubular microwave system operating at 915 MHz publication-title: J Food Sci – year: 2000 – year: 1996 – volume: 46 start-page: 50 issue: 12 year: 1992 end-page: 6 article-title: Microwave processing in the U.S. food industry publication-title: Food Technol – year: 1954 – volume: 42 start-page: 212 year: 2014a end-page: 7 article-title: A comparison of the thermal inactivation kinetics of human norovirus surrogates and hepatitis A virus in buffered cell culture medium publication-title: Food Microbiol – year: 1977 – volume: 42 start-page: 419 issue: 5 year: 2004 end-page: 20 article-title: Dielectric permittivity and loss factor of tap water at 915 MHz publication-title: Microw Optic Technol Lett – start-page: 1 year: 2009 end-page: 37 article-title: Electromagnetic basis of microwave heating – volume: 74 start-page: M23 issue: 1 year: 2009 end-page: M27 article-title: Comparison of viability and heat resistance of Clostridium stored at different temperatures publication-title: J Food Sci – volume: 20 start-page: 235 year: 1996 end-page: 49 article-title: Evaluation of a chemical marker for process lethality measurement at 110C in a continuous flow holding tube publication-title: J Food Process Preserv – volume: 40 start-page: 3667 issue: 12 year: 2007b end-page: 76 article-title: A computer vision method to locate cold spots in foods in microwave sterilization processes publication-title: Pattern Recognition – volume: 73 start-page: E455 issue: 9 year: 2008 end-page: E62 article-title: Continuous flow of microwave‐assisted processing and aseptic packaging of purple‐fleshed sweet potato purees publication-title: J Food Sci – start-page: 71 year: 1977 end-page: 78 article-title: Design of thermal processes for maximum nutrient retention publication-title: Food Technol – start-page: 24 year: 1972 end-page: 26 – start-page: 101 year: 2007 end-page: 57 – year: 2006 – volume: 149 start-page: 195 year: 2015 end-page: 203 article-title: Dielectric properties and other physical properties of low‐acyl gellan gel as relevant to microwave assisted pasteurization process publication-title: J Food Eng – year: 1974 – volume: 72 start-page: R39 issue: 3 year: 2007 end-page: 55 article-title: Food packaging‐roles, materials and environmental issues publication-title: J Food Sci – volume: 88 start-page: 294 year: 2008 end-page: 305 article-title: Simulation model for moving food packages in microwave heating processes using conformal FDTD method publication-title: J Food Eng – year: 1991 – volume: 11 start-page: 213 year: 1976 article-title: Food sterilization in a microwave pressure retort publication-title: J Microwave Power – volume: 89 start-page: 375 issue: 4 year: 2008 end-page: 83 article-title: Microwave sterilization of sliced beef in gravy in 7 oz trays publication-title: J Food Eng – ident: e_1_2_8_20_1 doi: 10.1002/pts.2055 – volume-title: Sodium chloride diffusion in selected low‐acid foods during thermal processing year: 2013 ident: e_1_2_8_5_1 – start-page: 71 year: 1977 ident: e_1_2_8_53_1 article-title: Design of thermal processes for maximum nutrient retention publication-title: Food Technol – ident: e_1_2_8_95_1 doi: 10.1021/jf0491299 – ident: e_1_2_8_45_1 doi: 10.1016/j.lwt.2007.07.020 – volume-title: A complete course in canning year: 1996 ident: e_1_2_8_22_1 – ident: e_1_2_8_108_1 doi: 10.1016/j.jfoodeng.2003.09.019 – volume: 46 start-page: 62 issue: 12 year: 1992 ident: e_1_2_8_88_1 article-title: Commercial pasteurization and sterilization of food products using microwave technology publication-title: Food Technol – ident: e_1_2_8_67_1 doi: 10.1111/j.1365-2621.1980.tb07464.x – ident: e_1_2_8_14_1 doi: 10.1080/08327823.2006.11688563 – start-page: 73 year: 1996 ident: e_1_2_8_63_1 article-title: Manufacturing forecast accelerating changes publication-title: Food Eng – ident: e_1_2_8_43_1 doi: 10.1002/mop.20322 – volume: 16 start-page: 503 issue: 3 year: 1997 ident: e_1_2_8_52_1 article-title: Moisture distribution in spherical foods in microwave drying publication-title: Drying Technol – ident: e_1_2_8_6_1 doi: 10.4315/0362-028X.JFP-12-327 – ident: e_1_2_8_91_1 doi: 10.1111/j.1750-3841.2008.00950.x – ident: e_1_2_8_71_1 – volume-title: Understanding microwave heating cavities year: 2000 ident: e_1_2_8_13_1 – ident: e_1_2_8_69_1 – volume: 46 start-page: 50 issue: 12 year: 1992 ident: e_1_2_8_87_1 article-title: Microwave processing in the U.S. food industry publication-title: Food Technol – volume: 11 start-page: 213 year: 1976 ident: e_1_2_8_72_1 article-title: Food sterilization in a microwave pressure retort publication-title: J Microwave Power – ident: e_1_2_8_110_1 doi: 10.1016/j.jfoodeng.2013.10.020 – ident: e_1_2_8_101_1 doi: 10.1016/j.jfoodeng.2008.04.025 – ident: e_1_2_8_36_1 doi: 10.1016/S0260-8774(98)00102-2 – ident: e_1_2_8_99_1 – start-page: 253 year: 1996 ident: e_1_2_8_42_1 article-title: Validation of ohmic heating for quality enhancement of food products publication-title: Food Technol – volume: 71 start-page: S29 issue: 1 ident: e_1_2_8_12_1 article-title: Assessment of the long‐term stability of retort pouch foods to support extended duration spaceflight publication-title: J Food Sci doi: 10.1111/j.1750-3841.2011.02445.x – ident: e_1_2_8_59_1 doi: 10.1016/j.jfoodeng.2008.11.011 – volume: 38 start-page: 37 issue: 1 year: 2003 ident: e_1_2_8_77_1 article-title: Finite difference time domain (FDTD) characterization of a single mode applicator publication-title: J Microwave Powers Electromagnetic Energy doi: 10.1080/08327823.2003.11688486 – ident: e_1_2_8_73_1 – ident: e_1_2_8_82_1 doi: 10.1016/j.lwt.2014.02.056 – volume-title: Thermobacteriology in food processing year: 1973 ident: e_1_2_8_94_1 – volume-title: Microwaves in the food processing industry year: 1985 ident: e_1_2_8_17_1 – ident: e_1_2_8_11_1 doi: 10.1007/978-1-4757-5833-7 – ident: e_1_2_8_40_1 doi: 10.1111/j.1365-2621.2011.02811.x – ident: e_1_2_8_39_1 doi: 10.1111/j.1365-2621.1971.tb04045.x – ident: e_1_2_8_25_1 – volume: 23 start-page: 137 issue: 6 year: 1969 ident: e_1_2_8_102_1 article-title: INST Computer optimization of nutrient retention in the thermal processing of conduction heated foods publication-title: Food Technol – volume-title: Code of Federal Regulations year: 1977 ident: e_1_2_8_24_1 – ident: e_1_2_8_84_1 doi: 10.1016/j.jfoodeng.2014.10.002 – ident: e_1_2_8_29_1 doi: 10.1111/j.1365-2621.1997.tb04387.x – start-page: 35 year: 2013 ident: e_1_2_8_66_1 article-title: Moving forward on sodium reduction publication-title: Food Technol – ident: e_1_2_8_60_1 – ident: e_1_2_8_21_1 doi: 10.1002/APP.4036 – volume: 9 start-page: 15 issue: 4 year: 1991 ident: e_1_2_8_10_1 article-title: The effect of dielectric and thermal properties on the microwave heating of foods publication-title: Microwave World – ident: e_1_2_8_38_1 – ident: e_1_2_8_2_1 doi: 10.1111/j.1365-2621.1974.tb02882.x – ident: e_1_2_8_48_1 doi: 10.1016/j.jfoodeng.2013.06.003 – ident: e_1_2_8_109_1 doi: 10.1016/j.jfoodeng.2007.11.034 – ident: e_1_2_8_41_1 doi: 10.1021/bk-1996-0631.ch006 – ident: e_1_2_8_56_1 doi: 10.1111/j.1750-3841.2008.00984.x – volume: 125 start-page: 69 year: 2014 ident: e_1_2_8_78_1 article-title: Kinetics of carrot texture degradation under pasteurization conditions publication-title: J Food Eng – ident: e_1_2_8_98_1 – ident: e_1_2_8_97_1 doi: 10.2495/978-1-85312-932-2/04 – ident: e_1_2_8_44_1 doi: 10.1016/j.jfoodeng.2007.04.002 – ident: e_1_2_8_61_1 doi: 10.1016/j.jfoodeng.2011.02.040 – ident: e_1_2_8_49_1 doi: 10.1016/j.jfoodeng.2014.09.041 – ident: e_1_2_8_68_1 doi: 10.1111/j.1365-2621.1980.tb07553.x – ident: e_1_2_8_111_1 doi: 10.1016/j.jfoodeng.2014.10.014 – ident: e_1_2_8_74_1 doi: 10.1016/j.jfoodeng.2005.05.032 – ident: e_1_2_8_83_1 doi: 10.1016/j.jfoodeng.2013.04.021 – ident: e_1_2_8_16_1 doi: 10.1111/j.1365-2621.2003.tb07004.x – volume-title: Engineering properties of foods year: 1986 ident: e_1_2_8_65_1 – ident: e_1_2_8_93_1 – volume: 46 start-page: 118 issue: 9 year: 1992 ident: e_1_2_8_28_1 article-title: Advances in microwave food processing publication-title: Food Technol – ident: e_1_2_8_47_1 doi: 10.1016/S0260-8774(03)00063-3 – volume: 25 start-page: 1 issue: 12 year: 1971 ident: e_1_2_8_30_1 article-title: A condensed history of the science and technology of thermal processing publication-title: Food Technol – start-page: 5 volume-title: Microwaves and foods newsletter year: 1996 ident: e_1_2_8_19_1 – volume-title: Microwaves in the food processing industry year: 1985 ident: e_1_2_8_64_1 – ident: e_1_2_8_9_1 doi: 10.4315/0362-028X.JFP-13-289 – volume-title: Thermal processing of packaged foods year: 1997 ident: e_1_2_8_37_1 – volume: 46 start-page: 57 issue: 12 year: 1992 ident: e_1_2_8_34_1 article-title: Microwave sterilization publication-title: Food Technol – volume: 67 start-page: M201 issue: 7 year: 2004 ident: e_1_2_8_51_1 article-title: Microbial safety in radio frequency processing of packaged foods publication-title: J Food Sci doi: 10.1111/j.1365-2621.2004.tb13621.x – ident: e_1_2_8_81_1 doi: 10.1111/j.1745-4549.1996.tb00745.x – ident: e_1_2_8_103_1 doi: 10.1111/j.1365-2621.1975.tb00522.x – ident: e_1_2_8_8_1 doi: 10.1128/AEM.00428-14 – ident: e_1_2_8_15_1 doi: 10.1016/j.jfoodeng.2008.02.020 – ident: e_1_2_8_80_1 doi: 10.1080/08327823.1997.11688323 – ident: e_1_2_8_75_1 doi: 10.1016/j.jfoodeng.2005.10.039 – ident: e_1_2_8_85_1 doi: 10.1016/0260-8774(94)00063-F – ident: e_1_2_8_105_1 – volume-title: Development of packaging and products for use in microwave ovens year: 2009 ident: e_1_2_8_3_1 – ident: e_1_2_8_26_1 – volume: 69 start-page: 30 issue: 1 year: 2004 ident: e_1_2_8_33_1 article-title: Dielectric properties of mashed potatoes relevant to microwave and radio‐frequency pasteurization and sterilization processes publication-title: J Food Sci – volume-title: Physical and chemical properties of food year: 1986 ident: e_1_2_8_54_1 – ident: e_1_2_8_55_1 doi: 10.1016/j.ijfoodmicro.2008.10.002 – ident: e_1_2_8_35_1 doi: 10.1201/b17118 – ident: e_1_2_8_7_1 doi: 10.1016/j.fm.2014.04.002 – volume: 15 start-page: 12 issue: 2 year: 1994 ident: e_1_2_8_18_1 article-title: The microwave sterilization process publication-title: Microwave World – ident: e_1_2_8_57_1 doi: 10.1111/j.1750-3841.2007.00301.x – ident: e_1_2_8_106_1 – volume-title: Dielectrics and waves year: 1954 ident: e_1_2_8_107_1 – ident: e_1_2_8_46_1 doi: 10.1016/S0260-8774(01)00069-3 – start-page: 24 volume-title: Taming microwave for solid food sterilization year: 1972 ident: e_1_2_8_92_1 – volume-title: Microwave engineering year: 1998 ident: e_1_2_8_79_1 – ident: e_1_2_8_96_1 doi: 10.1533/9781845690212.1.22 – ident: e_1_2_8_31_1 doi: 10.1111/j.1745-4549.2002.tb00487.x – ident: e_1_2_8_50_1 doi: 10.1111/j.1365-2621.1977.tb12653.x – ident: e_1_2_8_90_1 – ident: e_1_2_8_70_1 doi: 10.1007/978-94-009-2370-6_3 – ident: e_1_2_8_27_1 – ident: e_1_2_8_76_1 doi: 10.1016/j.patcog.2007.03.021 – volume-title: Elements of electromagnetics year: 1995 ident: e_1_2_8_86_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.lwt.2009.08.018 – volume-title: Industrial microwave heating year: 1983 ident: e_1_2_8_58_1 – ident: e_1_2_8_62_1 doi: 10.1080/10408398.2010.504903 – volume-title: Physics for scientists and engineers year: 1991 ident: e_1_2_8_104_1 – ident: e_1_2_8_4_1 doi: 10.1021/ar020230d – start-page: 1 volume-title: Development of packaging and products for use in microwave ovens year: 2009 ident: e_1_2_8_100_1 – start-page: 38 year: 2013 ident: e_1_2_8_89_1 article-title: Demographic redirection publication-title: Food Technol – ident: e_1_2_8_32_1 doi: 10.1111/j.1365-2621.2003.tb09661.x – reference: 24490922 - J Food Prot. 2014 Feb;77(2):276-83 – reference: 24632250 - Appl Environ Microbiol. 2014 May;80(10):3191-7 – reference: 15631507 - J Agric Food Chem. 2005 Jan 12;53(1):42-8 – reference: 9177017 - J Microw Power Electromagn Energy. 1997;32(1):50-7 – reference: 1047697 - J Microw Power. 1976 Jun;11(2):213-4 – reference: 24929739 - Food Microbiol. 2014 Sep;42:212-7 – reference: 22260129 - J Food Sci. 2012 Jan;77(1):S29-39 – reference: 23317860 - J Food Prot. 2013 Jan;76(1):79-84 – reference: 18351003 - J Microw Power Electromagn Energy. 2007;41(3):50-68 – reference: 18986726 - Int J Food Microbiol. 2008 Dec 10;128(2):385-9 – reference: 19200102 - J Food Sci. 2009 Jan-Feb;74(1):M23-7 – reference: 12693923 - Acc Chem Res. 2003 Apr;36(4):255-63 – reference: 17995809 - J Food Sci. 2007 Apr;72(3):R39-55 – reference: 19021801 - J Food Sci. 2008 Nov;73(9):E455-62 – reference: 22530715 - Crit Rev Food Sci Nutr. 2012;52(7):640-50 |
SSID | ssj0002236 |
Score | 2.5917172 |
SecondaryResourceType | review_article |
Snippet | Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short‐time in‐package... Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E1776 |
SubjectTerms | compliance Cooking - methods E: Food Engineering and Materials Science energy Food Microbiology Food Packaging Food plants Food Quality Food Safety Food science Foods Government regulations heat Heating Hot Temperature Humans Mats microwave microwave treatment Microwaves Pasteurization Pasteurization - methods Polymers process design Safety Sterilization systems engineering |
Title | Unlocking Potentials of Microwaves for Food Safety and Quality |
URI | https://api.istex.fr/ark:/67375/WNG-NR4VRFFN-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1750-3841.12959 https://www.ncbi.nlm.nih.gov/pubmed/26242920 https://www.proquest.com/docview/1702958064 https://www.proquest.com/docview/1703718158 https://www.proquest.com/docview/1787961649 https://www.proquest.com/docview/1808067805 https://www.proquest.com/docview/2000047873 https://pubmed.ncbi.nlm.nih.gov/PMC4657497 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHOBS3jRQKiMhxCVLHn5ekBAQqkpdVVsWuEV2YgtUlKDuLlB-PTPOg26hRYhbpIwd2ZnJfON8_kzIY82U4N7o2HCWxczDd9AqKFwz6RNTIcaucUF_fyp252zvAx_YhLgXptOHGBfcMDLC9xoD3NjFqSCHvIfKsCydQMriuIUPGVsIi2a_BKQg-YlBLxyQv-zFfZDLc6b9Wl66glP8_U-g83fu5GlMG5JScZ3YYTgdF-VoslraSfXjjNLjf433BtnsISt90fnYTXLJNbfI1WFH8-I2eT5vICXimjs9aJdIPwKfpq2n-8j2-2a-ugUFbEyLtq3pofFueUJNU9NOv-PkDpkXr9--3I37cxniCsoLHVeZ9qqSSjPLcqM4ZDhRG2vr2jNlZZ66DHCcMl5A6e1lyiqeJ642MnVVknib3yUbTdu4LUJVVjlIo85B5cmsyqzIa400LlnDk4SIyGR4K2XVi5bj2Rmfy6F4wWkpcVrKMC0ReTo2-NLpdZxv-iS85tHOHB8hzU3y8v30TTmdsXezopiWKiLbgx-UfYQvoLMEOgG3ZhF5NN6G2MQfLqZx7SrY5JD7U64uslFSCyha9QU2KP4p8PSJ822yUO1BZ3lE7nUuOg4sw01AOksiItecdzRAjfH1O82nj0FrnAkumZYReRZ8829zWu4Vrw7D1f1_bvGAXAM0yjt25TbZWB6v3ENAfEu7Qy5n7GAnhPZPa_ZHpg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V9lAuvB-BAkYCxGWXrOPE9gEkxBK2j12h7YPegpM4AhUlqLtLWX4Wf4U_xExedAst4tADt5Uy8Sa2v5lvnPFngEdaqMDPjO4YX_COyNAPxgoTVy4z1yTEsVNa0B-OgsGu2Nj395fge7MXptKHaBfcCBmlvyaA04L0MZRj4CNpWNHrYszydV1YuWnnR5i2TZ6v93GMH3Mevt55NejUJwt0EiTIupNwnalEKi1i4Rnlo48OUhPHaZoJFUuvZzkyEWWyAJPHTPZE4nuuTY3s2cR1s9jDdi_ACp0jTnr9_fEvySoMt0GjUI65hqzlhKh66MQDL0TCFRrUr3-iub9Xax5n0WUYDC_Dj6YDq-qXg-5sGneTbye0Jf-vHr4Cl2pWzl5WMLoKSza_BqvNpu3JdXixm2PUp88K7G0xpQorhC0rMjakgsYj88VOGNJ_FhZFyrZNZqdzZvKUVRIl8xuwey6PfxOW8yK3t4EpnlhkCtZici1ixePASzVVqskU_ykIHOg20yBKal12Oh7kU9TkZzQMEQ1DVA6DA0_bGz5XkiSnmz4p51VrZw4PqJJP-tG70ZtoNBZ74zAcRcqBtWbiRbUTm2BjLjaCyBUOPGwvo_uhb0omt8WstPGQ3vR8dZaNkjrAvFyfYUP6pgEdsHG6DS8TWmzMc-BWhYn2xTjtc9LcdUAuoKU1IBn1xSv5xw-lnDqiWAotHXhWguFvfRpthP3t8tedf77jAawOdoZb0db6aPMuXETy7VfFpGuwPD2c2XtIcKfx_dKjMHh_3gD7CR2BpNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkYCxGVL1nH8OICEWEIfdLVqKfQWnMQWCJRU3S1lfxb_kJm81AVaxKG3SBk7yXjG840z_gzw2AgtY2_NwMaCD4THeTDTmLhy5UObE8YuaEF_eyzX98Tmfry_BD-7vTANP0S_4EaeUc_X5OAHhT_h5Bj3iBlWDNcwZMWmravccvNjzNqmLzZGOMRPOE_evH-9PmgPFhjkiI_NIOfG61xpIzIRWR3jFC0Lm2VF4YXOVDR0HIGItl5i7ujVUORxFLrCqqHLw9BnEfZ7AVboFyNVkXEx6Sd_jLayIyjHVEO1bEJUPPTbCy8EwhUa0x9_Q7l_FmueBNF1FEyuwpUWvrJXjb1dgyVXXodL3e7m6Q14uVdieKT1dzapZlSKhPbNKs-2qfLv2H53U4Y4mSVVVbBd691szmxZsIbLY34T9s5FlbdguaxKdweY5rnDkOocZqEi0zyTUWGopEsV-CQpA1jrFJbmLYE5naPxLe0SGdJwShpOaw0H8KxvcNBwd5wu-rQegV7OHn6lkjcVpx_Hb9PxjviwkyTjVAew2g1R2nr7FDsLsRM0cRHAo_42-in9fLGlq45qmQhxwDDWZ8loZSQmsOYMGSIClXQSxekyvM78sLMogNuN9fQfxmlDkOFhAGrBrnoB4htfvFN--VzzjgsZK2FUAM9rC_yXTtPNZLRbX9397xYP4eJklKTvNsZb9-AygtS4KbpcheXZ4ZG7j0Bwlj2oXY_Bp_P29V8PW2Ku |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+Potentials+of+Microwaves+for+Food+Safety+and+Quality&rft.jtitle=Journal+of+food+science&rft.au=Tang%2C+Juming%2C+1959-&rft.date=2015-08-01&rft.issn=0022-1147&rft.volume=80&rft.issue=8+p.E1776-E1793&rft_id=info:doi/10.1111%2F1750-3841.12959&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1147&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1147&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1147&client=summon |